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Abstract: Fungi represents a rich repository of taxonomically restricted, yet chemically diverse,
secondary metabolites that are synthesised via specific metabolic pathways. An enzyme’s specificity
and biosynthetic gene clustering are the bottleneck of secondary metabolite evolution. Trichoderma
harzianum M10 v1.0 produces many pharmaceutically important molecules; however, their specific
biosynthetic pathways remain uncharacterised. Our genomic-based analysis of this species reveals
the biosynthetic diversity of its specialised secondary metabolites, where over 50 BGCs were pre-
dicted, most of which were listed as polyketide-like compounds associated clusters. Gene annotation
of the biosynthetic candidate genes predicted the production of many medically/industrially im-
portant compounds including enterobactin, gramicidin, lovastatin, HC-toxin, tyrocidine, equisetin,
erythronolide, strobilurin, asperfuranone, cirtinine, protoilludene, germacrene, and epi-isozizaene.
Revealing the biogenetic background of these natural molecules is a step forward towards the expan-
sion of their chemical diversification via engineering their biosynthetic genes heterologously, and the
identification of their role in the interaction between this fungus and its biotic/abiotic conditions as
well as its role as bio-fungicide.
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1. Introduction

The serious ecological and economical damage caused by some pathogenic microor-
ganisms necessitates robust control strategies. The ubiquitous nature of fungi makes
controlling their role in food stability especially challenging, preventing the use of tradi-
tional agronomic cultural control practices such as fallowing and long rotations. Due to
their ability to parasitise other living systems, fungi can be sometimes devastating. There
were several reports on the catastrophic effects of some fungal species on food stability,
including the Bengal and the Irish famines. In addition to that, they can be pathogenic to
humans [1].

Despite their beneficial uses, biological control usage has been proving challenging
due to the potential interaction with invasive species, increasing crops’ varieties, pesticides
competitions, random effects, as well as risk assessment policies [2,3]. Effective control
strategies are therefore of urgent need to safeguard human social stability and survival [4].

The reported use of organisms as biological control agents can be dated to nearly a
century ago [5]. During that time, it was estimated that annual crop losses in the US alone
costs hundreds of billions of dollars [6], which was mainly associated to the interaction
of many pathogenic fungal species with plants, as well as the rise in the population of
insecticide resistance. However, many microbes, particularly fungi, have proven to be
an effective tool in the management of pest attacks [7]. There are several factors that
could influence the effectiveness of microbes as biological control agents including nutrient
deficiency, familiar species of plant pathogens, as well as stress induced environment [8,9].
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Generally, microbes’ products are preferred in terms of biological controls as they are
cost effective products, can minimise the use of many harmful pesticides and they have a
broad-spectrum efficiency [2,10]. A recent update on biological control sources, showed
that around 31 fungal genera, most of which belong to the phylum Ascomycota, were
used either directly or as active ingredient. The ability to produce specialised molecules
with biological activities has promoted Trichoderma species as bio-fertilizers, bio-stimulants,
and biological control agents [11]. Despite over 450 species of Trichoderma have been
described so far, only a small ratio of this number is currently in use as biological control
agents. Trichoderma’s ability in diminishing the growth of other inhabitants in their niche,
is primarily due to their prolific metabolites profile. Apart from their role in organism’s
fitness, they have been used successfully as both communication and defence agents with
or against another microorganism in their environment [12–14].

Although many clinically valuable secondary metabolites have been reported from
Trichoderma, only a handful of them have been investigated at the genetic level. However,
the recent advancements in the genome analysis tools are promising, as more biosynthetic
pathways and novel molecules can be characterised and modified [15]. Owing to their
saprophytic lifestyle, Trichoderma fungi can survive a wide range of ecological conditions,
including wood, soil, and animals. The first time Trichoderma was recognised as a biocontrol
species was by [16], resulting in awareness of the side effects of the use of fumigants
and chemical pesticides [17]. The ability to control the growth of a wide spectrum of
plant pathogens has classified Trichoderma genus as one of the most efficient biocontrol
species [18,19]. This ability is based on several strategies including the production of
antagonistic materials and catalysing enzymes as well as nutrients competition. Trichoderma
has also the ability to diminish the growth of other fungi in its environment (especially on
plants) using its mycoparasitism mechanisms, surpassing other genera as bio-fungicides [8].
On the other hand, it can promote the growth of plants and enable them to tolerate
unfavourable growth conditions such as drought and salinity [20]. The involvement of
secondary metabolites produced by Trichoderma in their antagonistic activity against many
microbes, has been evidenced in many reports [21,22].

The development of resistance to pesticides around the globe, has motivated the
research community particularly the fungal scientists to combine efforts in combating this
problem. A significant part of these efforts comes from genomic/computational analysis
of many microbial genomes. The JGI community for instance, has recently launched the
1000 fungal genomes project, providing genome references for many scientists to further
investigate these microorganisms’s capability as antagonists/biocontrols, pathogens, and
decomposers [23]. Additionally, our previous work on genome analysis of basidiomycetes,
proved that in-silico analysis of biosynthetic gene clusters can help in underlying the bio-
genetic production of several SMs, as well as in developing biological agents with novel
antagonistic mechanisms [24,25]. We therefore selected the Trichoderma species, to underpin
their metabolic pathways, as the genome of nearly nighty species of them are publicly
available on JGI platform, of which we selected four isolates of the Trichoderma harzianum
species (TR274, CBS226, T22, and M10 v1.0), owing to their ubiquitous activities in bio-
control and as prolific producer of biomedical agents, as well as their various metabolic
pathway, especially the recently added strain Trichoderma harzianum M10 v1.0, which had a
unique aromatic prenyltransferase (DMAT) within their biosynthetic pathways.

2. Materials and Methods
2.1. Trichoderma Species Genome Scan

The genome of twenty-three out of over eighty-six of the Trichoderma species [26–48],
were manually scanned for potential novel secondary metabolites. All core enzymes
potentially involved in the production of the three main types of SMs including polyke-
tides (PKS), nonribosomal peptides (NRPS), terpene cyclase (TC), as well as the aromatic
prenyltransferase-like enzyme dimethylallyltryptophan (DMAT) were investigated.
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2.2. Validation of the M10 v1.0 Isolate and Annotation of the Core Enzymes of Its Secondary
Metabolites (SMs)

Following the genomic scan of Trichoderma species, it appeared that amongst the Tricho-
derma harzianum species, the M10 v1.0 strain has the DMAT BGC. This gene cluster could
potentially be responsible for unique features or functions in M10 v1.0 strain. Numerous
genes have been used as biomarkers for the identification of Trichoderma species includ-
ing those involved in secondary metabolism, mycoparasitism, and cell wall biosynthesis.
Translation elongation factor (tef) for example, has shown to have high sequence variability
among different Trichoderma species and can be used to differentiate closely related species.
The chitinase gene (chi18-5) on the other hand, is involved in mycoparasitism, and can be
used to characterise Trichoderma isolates with biocontrol potential, while endochitinase 1
gene (ech1), is used for the identification of Trichoderma species, especially those with high
cellulase and xylanase activity such as T. harzianum Rifai. Additionally, two housekeeping
genes; beta-tubulin (β-tubulin) and glyceraldehyde-3-phosphate dehydrogenase (gpdh),
were also involved in species characterisation. We therefore performed a phylogenetic
analysis of the above-mentioned conserved genes, to validate whether the genetic makeup
of M10 v1.0 strain was distinct from other strains of Trichoderma harzianum, as well as to
reconcile the inconsistent classification of T. harzianum strains [49–51], and possibly identify
any unique traits that could set it apart from the other strains. The evolutionary relationship
between the strains was inferred by using the Maximum Likelihood method and Whelan
and Goldman model. The tree with the highest log likelihood (−5181.56) is presented
and shows the percentage of trees in which the associated taxa clustered together. Initial
tree (s) for the heuristic search were obtained automatically by applying the Maximum
Parsimony method. A discrete Gamma distribution was used to model evolutionary rate
differences among sites (5 categories (+G, parameter = 200.0000)). This analysis involved
20 amino acid sequences. All positions with less than 95% site coverage were eliminated,
i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed
at any position (partial deletion option). There was a total of 369 positions in the final
dataset. The evolutionary analyses were performed using MEGA11 [52]. This was followed
with multiple databases analysis using JGI [23] alongside antiSMASH [53] and MIBiG [54]
platforms, to analyse the potential core enzymes involved in its metabolic pathway. The
predicted genes were subsequently evaluated through BlastP search against NCBI database
for potential homologous in other species.

2.3. Secondary Metabolites Phylogenetic Analysis

To determine any potential evolutionary connections that might exist between the
predicted core enzymes and other experimentally characterised secondary metabolites, we
constructed a phylogenetic tree for each type of the predicted enzymes using the software
Mega11 [52]. We used the Maximum Likelihood method and the Whelan Goldman model.
To provide insight into the evolutionary history and relationships of the genes selected from
M10 v1.0 isolate and other experimentally validated biosynthetic genes. The generated
trees illustrate the relationships between the genes and have the highest log likelihood
values (−30,402.32, −29,486.13, −17,158.06 for NRPS, PKS, and TC trees, respectively)
out of all the trees produced during the analysis. The initial trees used for the analysis
were obtained through the Neighbor-Join and BioNJ algorithms, which estimated pairwise
distances using the JIT model, and then selected the topology with the best log likelihood
value. A discrete Gamma distribution with a parameter value of 11.8827, 3.2345, and
15.0423 (for NRPS, PKS, and TC trees, respectively) and 5 categories were used to model
evolutionary rate differences among sites. The trees are drawn to scale, with branch lengths
measured in the number of substitutions per site. The study involved 54, 61, and 36 amino
acid sequences for NRPS, PKS, and TC trees, respectively), and all positions with less than
95% site coverage were removed from the analysis. The final dataset contained a total of
285, 344, and 205 positions for NRPS, PKS, and TC trees, respectively. For tree reliability
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test we selected the bootstrap method with an average of 100 replicates. All evolutionary
analyses were performed using Mega11 [52].

2.4. Annotation of the Predicted Biosynthetic Gene Clusters

Each predicted core enzyme was individually analysed through BlastP search against
the JGI database to localise its association with biosynthetic gene clusters on Trichoderma’s
M10 v1.0 genome and annotated through homology search against the NCBI database.
Whether the annotated core enzymes are part of a metabolite associated biosynthetic
gene cluster was putatively determined by examining the respective genomic scaffold of
Trichoderma’s genome. Cluster layouts were drawn using MS Word and PowerPoint.

3. Results
3.1. Genome Scan

Several biologically important compounds have been described from Trichoderma ssp.
indicating that this genus is capable of producing a wide range of secondary metabolites;
yet, very few associated BGCs (if present) have been characterised from this genus [55].
The genomic data of twenty-three out of approximately ninety Trichoderma species were
available on JGI, which we scanned to select the most promising profile. Manual investiga-
tion was carried out using the JGI platform. We navigated each genome by locating each
predicted core enzyme of three main SMs (PKS, NRPS, and TC) as well as the DMAT, to
their BGC or surrounding genes, resulting in many pseudo/duplicated BGCs (Figure 1 and
Table S1 in the supplementary information). Furthermore, the phylogenetic analysis of five
conserved genes of the four selected T. harzianum isolates, allowed for a better understand-
ing of the evolutionary relationships between these isolates, and further confirmed that
the M10 v1.0 isolate belongs to the T. harzianum family, as high sequence similarity was
observed between its conserved genes and the other T. harzianum isolates (Figure 2).
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3.2. Trichoderma Harzianum Genomes Comparison

Trichoderma harzianum species are famously known for their ubiquitous activities as bio-
control and prolific producers of biomedical agents, and to determine the biological role of
any potential SM biosynthetic genes, the selected four Trichoderma harzianum genomes were
searched carefully, through a subsequent genome investigation on antiSMASH. We first
downloaded the whole genome of each isolate from the JGI portal, and then submitted it to
antiSMASH, where a total of 190 BGCs including 57 NRPs, 74 PKS, 24 TC, and 35 hybrid
NRPs-PKS were detected. The antiSMASH prediction also included the “most similar
cluster” prediction, where sequences homologous (33–100%) to other antibiotics BGCs
could be obtained, including Metachelin A-C, Ochratoxin, Tricholignan, Dichlorodiapothin,
Trichoxide, Harzianopyridone, Calvaric acid, Hariphilone, Squalestatin, Depudecin, Tri-
chobrasilenol, Choline, Peramine and Lucilactaene (Table 1). Whereas a total of 241 BGCs
including 22 hybrid, 96 NRPs, 99 PKS, and 24 TC clusters were predicted on the JGI website.
In addition to that, the genome of the T. harzianum M10 v1.0, included a potential novel
DMAT-BGC, we therefore, selected this genome for further BGCs annotation.
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Table 1. Homologous sequences percentage of the four selected Trichoderma harzianum predicted
BGCs with other characterised antibiotic BGCs on antiSMASH.

Most Similar
BGC on

antiSMASH
BGC Type

Trichoderma
harzianum CBS

226.95 v1.0
(Triha1)

Trichoderma
harzianum T22

v1.0
(TriharT22)

Trichoderma
harzianum TR274

v1.0 (Trihar1)

Trichoderma
harzianum M10
v1.0 (TriharM10)

Metachelin A-C NRPS 62% 75% 62% 62%
Ochratoxin NRPS-PKS X X X 100%

Dichlorodiapothin PKS 50% 50% 50% 33%
Trichoxide PKS 75% 83% 75% 83%

Harzianopyridone NRPS-PKS 60% 60% 60% 70%
Clavaric acid Terpene 100% X 100% 100%
Harziphilone PKS 80% 80% 80% 80%
Squalestatin Terpene 40% 40% X 40%
Depudecin PKS 33% 33% 33% 33%

Trichobrasilenol Terpene 60% 60% 60% X
Tricholignan PKS 100% 100% 100% 100%

Choline NRPS 100% 100% 100% 100%
Peramine NRPS X 100% X 100%

Lucilactaene PKS X X X 38%

3.2.1. NRPS and NRPS-Like Phylogenetic Analysis and Biosynthetic Gene Clusters Annotation

In our study, 19 NRPS/NRPS-like backbone enzymes were predicted in the genome
of the examined T. harzianum M10 v1.0. To reveal any potential relationship between
these NRPS backbones and previously characterised NRPS-like antibiotic biosynthetic gene
clusters, including those being described from other Trichoderma ssp., a phylogenetic tree
based on a collection of NRPS enzymes from the selected Trichoderma in addition to other
randomly selected NRPSs from the MIBiG database that represents part of experimentally
characterised biologically active NRPSs, was constructed using Maximum Likelihood. The
resulted tree consisted of three major clades, and revealed the following homology of
sequences between the Trichoderma NRPS/NRPS-like core enzymes and other previously
characterised NRPS antibiotic related enzymes. Although, Tricho-NRPS-like1, 2, 3, 4,
5, and 9, have clustered with several antibiotic enzymes in clade 1, Tricho-NRPS-like 1,
Tricho-NRPS-like 2, and NRPS-like 9, appeared to be closer to carboxylic, gramicidin, and
siderphore than Tricho-NRPS-like3, Tricho-NRPS-like5 and Tricho-NRPS-like4, respectively.
In clade 2, on the other hand, the three NRPS enzymes including NRPS1, NRPS-like7,
and NRPS-like8, were closely clustered with enzymes responsible for the production
of lovastatin, enterobactin, and alpha-aminoadipate one to one. The remaining fifteen
NRPSs were all clustered in clade 3, where Tricho-NRPS11, 3, 6, 15, and 14 seemed to have
homologous sequences to several medically important NRPS enzymes such as leualacin,
surfactin, HC-toxin, tyrocidine, and antipain, respectively, Figure 3.

Anticipating that some of the predicted NRPSs might be associated with the biosynthe-
sis of uncharacterised SMs, the genomic regions surrounding each backbone enzyme were
mined for a possible BGC. Out of the 25 predicted NRPS/NRPS-like enzymes, 19 were
found to be organised within a BGC, as shown in Figure 4.

3.2.2. PKS and PKS-like Phylogenetic Analysis and Biosynthetic Gene Clusters Annotation

In a similar manner to the NRPSs, the predicted Trichoderma PKS biosynthetic genes
were aligned with other microbial PKSs selected from the MIBiG database, and resulted in
several examples of sequence homology that are clustered in six clades in a one maximum
likelihood tree, as shown in Figure 4. The Tricho-PKSLike1, for example, formed clade one
with the streptoketide, saccharothrix, polyene, phaeospelide, and sorbicillinoid antibiotic
enzymes. Clade 2 involved more Tricho-PKS enzymes, such as Tricho-PKS3, Tricho-PKS14,
Tricho-PKS5, Tricho-PKS17, Tricho-PKS2, and Tricho-PKS12, of which only Tricho-PKS3
and 12 showed high sequence homology with conidial and citrinin antibiotic enzymes,
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respectively. Clade 3 mostly consisted of antibiotic enzymes of other microbes with one
Tricho-PKS (PKS3), which shared homologous sequences with the erythronolide antibiotic
gene cluster. On the other hand, clade 4 gathered enzymes of three groups, one included
four Tricho-PKS enzymes, of which Tricho-PKS1 was the closest to the antibiotic compactin,
second contained three PKS enzymes, including the Tricho-PKS19 which seemed to be
closely related to the asperfuranone antibiotic, and in the last group, the Tricho-PKS18
shared homologous sequences with both zopfiellin and scytalidin antibiotics. Clade five
was more likely a Tricho-PKS enzymes clade, as it gathered six enzymes of Trichoderma
with the enzyme responsible for one antibiotic that is chrodrimanin. In contrast, clade
six, demonstrated more diversity, in terms of sequence homology between the Tricho-PKS
enzymes and the selected antibiotic enzymes, such as the sequence similarity between
Tricho-HrPKS1 and equisetin, Tricho-PKS11 and calbistrin, Tricho-HrPKS4 and shimalac-
tone, Tricho-HrPKS5 and fusarin, Tricho-HrPKS6 and gregatin, and finally Tricho-HrPKS3
with lovastatin, as shown in Figure 5.
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Figure 4. Organization of the genetic structure of the predicted non-ribosomal peptide BGCs of
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Given the potential importance of the other biosynthetic genes, we further annotated
the genes surrounding the PKS core enzymes, and 10 putative BGCs were predicted.
Looking at those clusters, it can be hypothesized that these clusters may encode the enzymes
that could be responsible for the production of many medically relevant compounds, as
shown in Figures 6 and 7.

3.2.3. Terpene Cyclase Phylogenetic Analysis and Biosynthetic Gene Clusters Annotation

In addition to the prediction of the NRPS and the PKS core enzymes, we also predicted
core enzymes for the production of terpene-like molecules, for which a maximum likelihood
tree was also constructed using a combination of protein sequences of other microbial antibi-
otics selected from the MIBiG database, and unearthed highly closely related core enzymes
for the production of many SMs and bioactive molecules, including sequence similarity
between TC1 and presilphiperfolan-8-beta-ol from other Trichoderma sp., Tricho-TC2 with
protoilludine, Tricho-TC3 and Tricho-TC5 with penifulvin, and Tricho-TC4 with germacrene
A. Five of the six identified terpene cyclases were co-localised with other biosynthetic genes
including cytochrome P450s, FAD oxidoreductases, different substrate transporters as well
as several functionally unknown genes which were annotated as hypothetical proteins,
as shown in Figures 8 and 9. Additionally, an aromatic prenyltransferase-like enzyme
dimethylallyltryptophan biosynthetic gene cluster (DMAT-BGC) was also predicted, as
shown in Figure 10.
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3.3. Clinker Investigation
3.3.1. Core Enzymes Cblaster

To further confirm our phylogenetic results, we performed cblaster [56]. Analysis
for the antibiotic enzymes that have shown high sequence similarity with our selected
Trichoderma SM enzymes. A set of enzymes sequences/accession number of each group of
the investigated SM were provided to cblaster to search the local/remote and the NCBI
database for homologous core enzymes in other potential Trichoderma species that might
be missed out during our genomic analysis. For the NRPS enzymes set, for example, we
provided the genomic context of the following genes: tyrocidine (KAF3057669.1), antipain
(QOE83922.1), surfactin (KKP05429.1), HC-toxin (QQK47936.1), enterobactin (KKP03098.1),
lovastatin (KKP04599.1), gramicidin (KAF3074477.1), and carboxylic acid (KND86407.1),
and the PKS enzymes provided set involved citrinin (QYS96965.1), clavatol (QBK15044.1),
erythronolide (KXX74579.1), compactin (KAF3072919.1), strobilurin A (ATV82110.1), as-
perfuranone (KAF3054684.1), zopfiellin (BBU42026.1), scytalidin (QTE76000.1), while for
the TC enzymes, we inputted protoilludane (QJQ03973.1), penifulvin A (QDO73502.1),
epi-isozizaene (KAF3075500.1), germacrene A (KAG2008219.1), presilphiperfolan-8-beta-ol
(KAF3065568.1) proteins as query. Among all searched Trichoderma species, only Tricho-
derma asperellum demonstrated potential similarity (around 30%) with three of the eight
investigated NRPS enzymes. Likewise, our query of the selected PKS genes, resulted in
sequences similarity (less than 30%) with six of the eight examined genes. In contrast, none
of the investigated TC enzymes resulted in sequence matches (Figure 11).
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3.3.2. Biosynthetic Gene Clusters Cblaster

The outcome of antiSMASH analysis of the four selected Trichoderma harzianum isolates
suggested the presence of several BGCs for pharmaceutically relevant compounds (Table 1),
some of which might be uniquely present in the harzianum species, and to further confirm
this, we carried out cblaster analysis for the predicted BGCs on antiSMASH, of which we
selected the clusters that had their core set of genes (essential for compound production)
experimentally characterised, and had the highest identity percentage with the investigated
Trichoderma core enzymes. Selected clusters included ochratoxin, clavaric acid, harziphilon,
tricholignan, choline, and peramin. Each cluster was further investigated individually
through cblaster against local/remote genome database. The outcome of such analysis
has further confirmed the antiSMASH prediction, and suggested that two of these BGCs,
namely clavaric acid and choline, are present only in the harzianum species among other
Trichoderma species, as shown in Table 2 (see repository on https://github.com/Suhadbio
(accessed on 11 May 2023) for details of the cblaster analysis using the ochratoxin, clavaric
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Figure 11. Cblaster analysis of three types of SMs enzymes that had high percentage matches with
the T. harzianum M10 v1.0 SMs enzymes in our phylogenetic analysis. (A) Eight NRPS genes of T.
harzianum were used as query, three of which had homologous sequence with T. asperellum. (B) Eight
PKS genes of T. harzianum were used as query, five of which had homologous sequence with T. gracile.
(C) Five TC genes of T. harzianum were used as query, none of which had sequences similarity with
other organisms on NCBI database. A darker shade of blue denotes a higher percentage identity of
the query in the output cluster, while the number within each box, resembles the counts of hits for
a specific query sequence in the co-localized region. Orange and red borders indicate that similar
genes found in multiple clusters.
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Table 2. Outcome of cblaster analysis of six BGCs that are identified within antiSMASH as homolo-
gous clusters of the T. harzianum M10 v1.0.

BGC of Interest No. of Organisms
Searched

No. of Genomic
Scaffold Searched

No. of Scaffolds
Identified with the

BGC

No. of Trichoderma
Species with Similar

BGC

Ochratoxin 416 566 573 18
Clavaric acid 513 568 559 None
Harziphilon 631 2971 735 9
Tricholignan 93 390 96 7

Choline 1088 1134 1133 None
Peramine 346 628 512 8

4. Discussion

The fungal species Trichoderma harzianum is widely known as a biocontrol agent and
biofertilizer, which utilises its SMs to interact with its ecosystem. Unfortunately, many
of those SMs are not produced under laboratory conditions, as their associated gene
clusters are silent [55]. We therefore performed a genomic-based sequence analysis to
predict candidate genes for potential bioactive molecules in four selected Trichoderma
harzianum isolates via means of JGI [38,57], antiSMASH, NCBI blastP, and cblaster. Based
on the obtained results in Table 1, it is evident that some gene clusters responsible for the
biosynthesis of molecules such as trichoxide, harzianopyridone, tricholignan, and cholin
are conserved across different T. harzianum isolates. This suggest that these compounds
may have important biological and ecological roles in these species. However, our results
also revealed notable diversity and complexity in the chemical profiles of T. harzianum
isolates, with isolate-specific molecules such as ochratoxin and lucilactaene predicted in the
M10 isolate. This highlights again the potential of T. harzianum to produce a broad range of
bioactive molecules that could be useful in various industries including agriculture and
medicine [9,55,58].

Following that, we performed manual sequence alignment to predict the homology
and variations between the predicted core enzymes and other previously characterised
bioactive SMs. This has revealed high sequence similarity with more antibiotic core en-
zymes of the three types of the SMs. The NRPS antibiotics that had high percentage
of sequences homology with our NRPS core enzymes included leualacin, surfactin, HC-
toxin, tyrocidine, antipain, enterobactin, lovastatin, gramicidin, siderphore, and carboxylic
acid while the PKS antibiotics highest matches were citrinin, clavatol, erythronotide, so-
rangipyranone, compactin, strobilurin, asperfuranone, zopfiellin, scytalidin, lovastatin,
illicicolin, gregatin, fusarin, and equisetin. Finally, the TC antibiotics matches were protoil-
ludine, penifulvin, presilphiperfolan-8-beta-ol, germacrene, and epi-isozizaene. While other
Trichoderma sp. are known for the production of a few of the above predicted molecules,
such as squalestatin, naphthopyrone, dimethylcoprogen, and clavaric acid [59], interest-
ingly, our sequence analysis shed light on many more potential bioactive molecules that
are most likely first reported in Trichoderma harzianum M10 v1.0.

Generally, the non-ribosomal peptide synthetases are large enzymes that are associated
with the production of cyclic peptide natural products. Typically, they consist of a range of
modules, each of which contains the three standard domains structure of NRPS enzymes;
the adenylation (A) domain, the condensation (C) domain, the thiolation (T) domain.
However, this is not always the case, as some modules may lack a condensation domain
while others may include extra domains in their structure, such as an epimerization (E)
domain, N-methylation (M) domain, and a heterocyclization (Cy) domain. These extra
domains are usually associated with the modification of the amino acid substrate complex,
and more often influence the bioactivity spectrum of such enzymes [60].

Some of the above identified/described SM BCGs are involved in the synthesis of
toxins, while others are responsible for the production of pharmaceutically important
molecules. To begin with the molecule antipain for example, is medically known as a
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protease inhibitor, and is produced by many bacterial species, and a BGC was recently
identified from the producer species Streptomyces sp. ID38640 that is responsible for making
it [61]. The cinnapeptin was recently added to the depsipeptide family alongside other dep-
sipeptide molecules including atratumycin, skyllamycin, and kitacinnamycin [62–64]. It has
a rare cyclization pattern that is shared with its related atratumycin. In terms of its synthesis,
cinnapeptin is usually synthesized by the Phe ammonia lyase, which is attributed to type II
PKSs, particularly to non-proteinogenic amino acids, suggesting a NRPS-T2PKS participa-
tion in such biosynthesis; however, a detailed pathway is yet to be characterised [65]. The
stechlisins are cyclic lipoproteins that are structurally related isomers and have been char-
acterised from Pseudomonas sp. FhG100052 recently. The structure diversity in stechlisins is
due to the positional interchange of either the aliphatic or the acidic residues. In addition to
that, these amino acids represent the substrate flexible family, meaning that their A domains
have similar substrate specificities [64,66] and that they are named after their peptide posi-
tions. It can be therefore postulated that stechlisins associated enzymes are able to produce
many other structurally diverse compounds that could have pharmaceutical properties [67].
Tentoxin, is a member of the cyclic tetrapeptide family, that has the ability to block the
F1-ATPase in many plant chloroplasts, classifying it as a potential herbicide [68]. What is
special about these cyclic peptides, is the presence of several unusual non-proteinogenic
residues, to which many pharmaceutically important molecules including cephalosporin,
penicillin, vancomycin, and gramicidin belong [69]. Terreazepine represents an unusual
compound produced by a duplicated neo-functionalized indoleamine diozyenase that is
only present in Aspergillus terreus. Its biosynthesis includes an unusual cyclization pattern
of the precursor kynurenine [70]. HC-toxin, is capable of inhibiting the histone deacety-
lases of the RPD3, enabling its producer to infect a variety of maize plant species, and
participate in the selective pressure on many grasses’ evolution. HC-toxin synthase is a
tetra module non-ribosomal peptide synthetase with one epimerase domain that has been
characterised in the pathogenic fungus Cochliobolus carbonum [71]. Destruxin synthase has
only recently been characterised through gene targeted disruption in the pathogenic fungus
Metarhizium robertsii [72], despite destruxin having been known for a long time. It was
found that the non-ribosomal peptide synnthetase responsible for destruxin production
consists of six adenylation domains, of which two are selective in terms of amino acids
they bind to during the biosynthesis process. So far, six groups of destruxins have been
characterised, most of which are produced by the species Metarhizium anisopliae. Destruxin
compounds have insecticidal effects, they can cause paralysis and intestinal construction as
well as block the Ca2+ channel of the ATPase [73,74]. Both gramicidin and tyrocidine are
cyclic decapeptide compounds that are synthesized by three mega-synthetases including
a non-ribosomal peptide via the thiol template biosynthetic pathway. These compounds
are pharmaceutically important as they are capable of penetrating the lipid layer of many
Gram-positive bacteria including antibiotic resistant ones, and ultimately disrupt their
membrane [75,76]. Leualacin is chemically recognised for its unique cyclic depsipeptide
structure, and it was first characterised from the fungus Hapsidospora irregularis. In terms of
its pharmacological role, leualacin is known for its effectiveness in blocking calcium chan-
nels [77]. Finally, enterobactin, made by both Salmonella and E. coli, is naturally synthesised
from the precursor chorismic acid via an NRPS in a two-step reaction [78,79].

As for the PKS predicted matches in this study, they included equisetin, a broadly
known toxic substrate, that is mainly derived from the polyketide derivative decalin and
the amino acid derivative tetramic acid, and has backbone similarity to other distantly
related molecules such as lovastatin. This compound has been used as a source for the
development of pharmaceutical and agrochemical materials for many years; yet, only
recently its biosynthetic gene cluster has been identified [80,81]. Lovastatin was first
isolated from Aspergillus terreus in 1978, and later in Monascus ruber in 1979 [82]. The
nonaketide enzyme that encodes lovastatin synthase consists of six domains including KS,
AT, DH, MT, KR, inactive ER, and ACP domains. Lovastatin’s therapeutical uses include
the treatment of hypercholesterolemia, as it inhibits the enzyme responsible for catalysing
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the rate limiting step of the biosynthesis of cholesterol. Another known use of lovastatin
is its involvement in the semi-synthesis of the drug simvastatin [83]. On the other hand,
surfactin is an antimicrobial molecule that actively alters membrane integrity of microbes.
It is mainly synthesised by a heptapeptide type of PKS which is distinguished with its
LLDLLDL chiral sequences that are linked to a hydroxy fatty acid by a lactone bond [84].
Additionally, erythronolide is a member of the type I polyketide synthase enzyme family,
and capable of catalysing reactions involving propionyl-CoA and malonyl-CoA substrates.
It is generally considered to be a transferase enzyme, and is found to be responsible for
the synthesis of the building blocks of erythromycin derivatives. Fusarin-A is naturally
produced by different species of the genus Fusarium, and its biosynthesis is largely induced
by nitrogen availability. The enzyme responsible for the production of this compound
consists of 10 protein domains, 4 of which are characteristic of NRPS domains, making
it the largest enzyme member of its family. What is unusual about these NRPS domains
is that they are specifically involved in the synthesis of the pyrrolidone ring of fusarin,
and their sequences could be used for the identification of other fusarin-producing species,
particularly those in relation with plants [85]. Furthermore, the asperfuranone, which
is an unusual PK molecule that is produced by the fungus Aspergillus nidulans via the
participation of two PKSs of the non-reducing type [86]. Finally, citrinin is a polyketide
mycotoxin that has potential carcinogenic, nephrotoxic and hepatotoxic activities, and
is produced by several species including Aspergillus sp., Monascus sp., and Penicillium
citrinum [87].

In terms of TC antibiotics matches, and as noted from the phylogenetic tree, there
were three antibiotic core enzymes that demonstrated sequence homology to our TC core
enzymes, including the presilphiperfolan-8-ol, a tricyclic alcohol terpen precursor. It
is found that the cyclase responsible for the production of the sesquiterpene botrydial,
the phytotoxin that causes the grey mould disease in a wide range of plants, is one of
the genes involved in the synthesis of presilphiperfolan-8-ol [88]. Germacrene A is a
sesquiterpene-like compound that was first characterised from Eunicea mammosa in the
1970s. Biologically, it is synthesised from the terpene precursor farnesyl diphosphate (FPP)
via germacrene synthase following a 1, 10-cyclisation pattern [24,89]. Finally, epi-isozizaene
is a bacterial sesquiterpene that is structurally related to pentalenen. Its biosynthetic en-
zyme, epi-isozizaene cyclase, was first characterised from Streptomyces coelicolor A3(2) [90].
Epi-isozizaene cyclase is a promiscuous enzyme that can produce several end products,
with one being the major. Our predicted core biosynthetic genes were often co-localized on
contigs with other modifying genes including FAD-binding proteins, short chain dehydro-
genase, cytochrome P450, substrate transporters, aldo-keto reductase, O-methyltransferase,
and regulatory factors. Localising similar genes in Trichoderma, will likely help in the
identification of overlooked potential pharma-agro related molecules [87].

5. Conclusions

Based on chemical and analytical studies, the Trichoderma genus is a prolific producer
of SMs, as more than 300 molecules have been characterised and far more than that
number was estimated to be produced over the years from different species of this genus.
However, the specific biological activity and the biogenetic origin of the identified molecules
remained largely unknown, as only a handful of them including gliotoxin and several
trichothecenes have been experimentally investigated. However, with the rapid advances
in computational genomic analysis, and more and more genomes being sequenced, one
can hope that this scenario can be changed and that more metabolite pathways can be
elucidated as well as more novel molecules can be discovered and modified. Our genome
annotation together with the phylogenetic and cblaster analysis, further confirm the high
potential of T. harzianum species as untapped source of pharmaceutically relevant and
agrochemical molecules.
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