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Abstract
Many infectious pathogens are shared through social interactions, and examining host 
connectivity has offered valuable insights for understanding patterns of pathogen 
transmission across wildlife species. African buffalo are social ungulates and impor-
tant reservoirs of directly-transmitted pathogens that impact numerous wildlife and 
livestock species. Here, we analyzed African buffalo social networks to quantify vari-
ation in close contacts, examined drivers of contact heterogeneity, and investigated 
how the observed contact patterns affect pathogen invasion likelihoods for a wild 
social ungulate. We collected continuous association data using proximity collars and 
sampled host traits approximately every 2 months during a 15-month study period in 
Kruger National Park, South Africa. Although the observed herd was well connected, 
with most individuals contacting each other during each bimonthly interval, our analy-
ses revealed striking heterogeneity in close-contact associations among herd mem-
bers. Network analysis showed that individual connectivity was stable over time and 
that individual age, sex, reproductive status, and pairwise genetic relatedness were 
important predictors of buffalo connectivity. Calves were the most connected mem-
bers of the herd, and adult males were the least connected. These findings highlight 
the role susceptible calves may play in the transmission of pathogens within the herd. 
We also demonstrate that, at time scales relevant to infectious pathogens found in 
nature, the observed level of connectivity affects pathogen invasion likelihoods for a 
wide range of infectious periods and transmissibilities. Ultimately, our study identifies 
key predictors of social connectivity in a social ungulate and illustrates how contact 
heterogeneity, even within a highly connected herd, can shape pathogen invasion 
likelihoods.
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1  |  INTRODUC TION

The development of social structure and how individuals interact 
within populations is a foundational topic in animal behavior, with 
important implications for the transfer of information (McComb 
et al.,  2001), genes (Altmann et al.,  1996), and pathogens (Altizer 
et al., 2003). In particular, there is mounting evidence that a popula-
tion's social structure can impact the invasion likelihood of a patho-
gen, the speed at which it spreads, and the number of individuals 
it infects (Keeling, 1999; Newman, 2002; Romano et al., 2020; Sah 
et al., 2018). Network analysis has become a powerful tool for exam-
ining linkages between wildlife social connectivity and disease, espe-
cially for primates, rodents, and reptiles (Godfrey, 2013; Rushmore 
et al.,  2017; Sah et al.,  2021; White et al.,  2017). Social networks 
have been described for a handful of herd-living species, offering 
valuable insights into social structure at the population level for 
ungulates (African buffalo: Cross et al., 2004; Onagers and Grevy's 
zebra: Sundaresan et al.,  2007; reticulated giraffe: VanderWaal, 
Wang, et al., 2014; alpine ibex: Brambilla et al., 2022). These studies 
typically consider individuals to be associating if they are in the same 
group, which assumes that groups are well-mixed. However, rela-
tively little is known about the close-contact patterns of herd-living 
(rarely solitary) ungulate species and the resulting consequences for 
pathogen invasion.

Among social species, individuals typically exhibit considerable 
variation in contact rates, as demonstrated by social networks (dol-
phins: Lusseau, 2003; deer mice: Clay et al., 2009; spider monkeys: 
Rimbach et al.,  2015; red deer: Albery et al.,  2021). Many wildlife 
species have complex social structures in which relatedness and 
life history traits (e.g., age, sex, or reproductive status) play an im-
portant role in determining how frequently individuals interact with 
conspecifics. For example, in bighorn sheep, contact rates between 
lambs and reproductive ewes are orders of magnitude higher than 
contact rates among other group members (Manlove et al., 2017). 
Examining how individual traits affect contact heterogeneity can 
identify groups of individuals that play important roles in contact-
driven processes, such as pathogen transmission. Superspreaders 
are a common feature of infectious disease epidemics, where a small 
portion of well-connected individuals are responsible for a majority 
of transmission events (Lloyd-Smith et al., 2005). Such heterogene-
ities in individual transmission potentials can profoundly affect the 
course of an outbreak and strategies for disease control, under-
scoring the need to elucidate drivers of transmission heterogene-
ities (Lloyd-Smith et al., 2005; Salathé et al., 2010; VanderWaal & 
Ezenwa, 2016).

Given their large and typically well-connected populations, 
herd-living ungulates frequently serve as reservoirs for infectious 
diseases that circulate among wildlife species and at the wildlife-
livestock interface (Barroso et al., 2021; Coetzer et al., 1994). Afri-
can buffalo (Syncerus caffer) are considered the primary maintenance 
hosts for foot-and-mouth disease virus (FMDV: Bastos et al., 2000; 
Jolles et al., 2021; Vosloo et al., 2002) and a maintenance host for 
Mycobacterium bovis (causative agent of bovine tuberculosis: Jolles 

et al., 2005; Renwick et al., 2007) in African ecosystems. Buffalo are 
often implicated in transmission events that affect wildlife species 
and cattle farms, with profound effects on wildlife management and 
local human livelihoods (Bastos et al., 2000; Michel & Bengis, 2012; 
Omondi et al., 2020; Vosloo et al., 2002). Understanding how life his-
tory traits correspond to buffalo connectivity could help clarify how 
individual buffalo contribute to population-level disease outbreaks.

African buffalo are social ungulates that live in large herds 
(N = 30–1500). Buffalo demonstrate nonrandom association pat-
terns (Cross et al., 2005; Sinclair, 1977; Turner et al., 2005), which 
may translate into predictable differences in individual connectivity 
and infection risk. Specifically, buffalo have a fission-fusion social 
structure, whereby individuals form separate groups that rejoin and 
mix over time (Cross et al., 2005; Prins, 1996), with adult dispersal 
occurring in both males and females (Spaan et al., 2019). The basic 
family unit consists of a mother and her one or two most recent 
calves (Sinclair, 1977). Calves are born in the wet season (Novem-
ber to April) after an 11-month gestation period (Fairall, 1968; Ryan 
et al., 2006). They lose maternally derived immunity to some patho-
gens around 4–6 months of age (Jolles et al., 2021), but remain as-
sociated with their mothers for 1.5–2 years, often remaining close 
even after the next calf is born (Prins,  1996). Juveniles gradually 
spend more time away from their mothers within the herd, and by 
4 years of age, males start to leave the breeding herd for bachelor 
groups during dry seasons (Turner et al., 2005). As they age, some 
adult males stop returning to the breeding herd and remain in small 
mature male bachelor groups (Prins,  1996; Sinclair,  1977). While 
broad-scale social patterns are well documented in this species, little 
is known about associations at a finer scale.

Here, we analyzed temporally dynamic African buffalo social 
networks to gain insight into close association patterns among herd 
members, with a focus on identifying drivers of contact heteroge-
neity and pathogen invasion. Epidemiological models for gregarious 
ungulate herds have historically been limited by the assumption 
that herds are well mixed with respect to pathogen transmission. By 
combining detailed data on buffalo association patterns, life history 
traits, and genetics with models of disease spread, we were able to 
test this assumption and investigate how individual characteristics 
scale up to affect group-level processes, with valuable insights for 
identifying key traits of potential superspreaders. First, we exam-
ined how genetic relatedness, age, sex, reproductive status, and 
measures of animal quality affect connectivity. Given that mothers 
and young calves remain as family units for up to 2 years in breeding 
herds, we expected genetic relatedness, age, and sex to be the most 
important predictors of buffalo association patterns, with males 
becoming less connected as they reach puberty and join bachelor 
herds. Next, we examined how the observed social network could 
affect a pathogen's potential ability to invade and spread within the 
herd, given a range of pathogen infectious periods and transmissi-
bilities. This work provides insights into how data on contact pat-
terns and life histories can reveal hidden heterogeneities capable of 
shaping pathogen invasion likelihoods, even in seemingly well-mixed 
populations.
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2  |  MATERIAL S AND METHODS

2.1  |  Study site and population

Kruger National Park (KNP) spans nearly 19,485km2 (22.5°–25.5° 
S, 31.0°–31.57° E) and hosts a diversity of wildlife, including wild 
African buffalo. Our study population included a wild buffalo herd, 
which was captured in Northern KNP during the early 2000s and 
relocated to a 900-hectare enclosure in the center of the park, 
near Satara camp (Figure  S1). The buffalo sample size varied dur-
ing our study (N = 60–70) due to births and deaths. On average, 
25.60 ± 0.10% of the herd were calves, 22.95 ± 0.09% were juveniles 
and 51.45 ± 0.19% were adults. Buffalo were free to graze and breed 
in the enclosure, and during extreme droughts, they had access to 
supplemental grass hay. Water was available to buffalo at a natural 
pan and a manmade water point (Figure  S1). This “nearly natural” 
enclosure included numerous other species typical of the ecosystem 
(e.g., giraffe, zebra, warthogs, and small predators) while excluding 
megaherbivores (e.g., rhinos, elephants) and large predators (e.g., 
lions, leopards).

2.2  |  Buffalo captures and sedation procedures

Data collection spanned six observation periods (OPs) that oc-
curred from March 2014 to May 2015 (Table  S1). We captured 
buffalo to collect biological data and download association data 
from proximity-logging collars at the end of each OP. Captures oc-
curred five times per year, at two to three-month intervals. We 
performed three active captures, in which buffalo were darted 
from a helicopter, and four passive captures during the dry season 
in which researchers filled man-made water troughs that attracted 
buffalo into a fenced area with a remote-controlled gate closure 
(Figure  S1). At each capture, we darted small groups of buffalo 
using chemical immobilization procedures described by Couch 
et al. (2017).

2.3  |  Data collection: biological data and samples

At captures, we visually sexed sedated buffalo and determined indi-
vidual age by incisor wear and tooth emergence (Jolles, 2007). We 
assigned each buffalo a body condition score (BCS) on a scale of 
1–5, determined by palpation (following Ezenwa et al.,  2009). We 
evaluated average horn width, proposed as a proxy for overall animal 
quality (Ezenwa & Jolles, 2008), by measuring the widest point of 
each buffalo's horns. We also measured average boss size (i.e., the 
fused base of the horns) and average testicle circumference at the 
widest point for male juveniles and adults. We determined female 
lactation status (0/1) by manually milking all teats (Beechler, 2013), 
and we assessed pregnancy status (0/1) by rectal palpation of the 
uterus. African buffalo gestational periods last approximately 
11 months (Sinclair, 1977).

Throughout the study period, we also collected ear tissue sam-
ples (2–4 cm), which we used to determine genetic relatedness 
among individuals (Tavalire et al., 2018; details in Data S1).

2.4  |  Data collection: behavioral association data

In February 2014, we fitted the majority of buffalo aged over 
6 months with Sirtrack proximity-logging collars (Sirtrack Tracking 
Solutions, Havelock North, New Zealand), which record the iden-
tity of collars in close proximity in addition to the date, time, and 
duration of each encounter. Percentage coverage across the herd 
is provided in Table S1 of Data S1. Calves <6 months in age were 
not collared for ethical considerations, as their growth rate ex-
ceeded collar re-fitting schedules. We programmed collars with a 
UHF range coefficient of 20 and a separation time of 240 s, which 
in a laboratory setting initiated an association when collars were 
within 1.22 m ± 0.46 m (mean ± SD), and terminated the association 
when collars exceeded a distance of 1.70 m ± 0.67 m for more than 
240 s. We deemed this a reasonable representation of transmission 
distances for pathogens spread via close contact (e.g., respiratory 
viruses and bacteria; Olsen et al., 2003; Wells, 1934). While proxim-
ity collars allowed for near-complete data collection without obser-
vation bias, we note that close contacts were inferred from data on 
physical proximity (Farine, 2015; Farine & Whitehead, 2015) rather 
than directly-observed interactions.

2.5  |  Estimating association indices and 
social networks

We analyzed association data for 69 buffalo (males = 22, fe-
males = 47), including 18 calves (<1.5 years). We created a matrix 
of pairwise association indices for each of the six observation pe-
riods (OPs). The number of buffalo varied across OPs due to births, 
deaths, and collar malfunctions. Overall, matrices included an aver-
age of 39.33 buffalo (±SD: 14.11) and ranged from 17 to 53 buffalo 
(Table S1).

When cleaning association data, we excluded capture days and a 
2-day buffer after each intervention, and we removed 1 s encounters 
shown to skew results (Drewe et al., 2012). To reduce asymmetries 
in association matrices, we excluded encounters logged after one 
individual in a pair had a full proximity logger memory. For each pair 
of individuals i and j, we calculated an association index (AI) for a 
given OP as follows:

in which Cij refers to the summed duration (h) of association logged 
between individuals i and j during the observation period, and Nij re-
fers to the total hours during the observation period in which i and j 
were not in contact. Thus Tij, in which Tij = Cij+Nij, refers to the total 
hours during the observation period in which individuals i and j could 

AIij =
Cij

Cij + Nij
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associate with each other (i.e., both had collars with available memory 
to record data). Because data were collected continuously by proximity 
collars with little to no observation bias or missing groups within the 
herd (Davis et al., 2018), we used the simple ratio index of proportion 
of time a dyad spent in close proximity (Farine & Whitehead, 2015) 
with the resultant index being a value between 0 and 1 that indicates 
the proportion of time a dyad spent in close proximity. These indices 
were used to create adjacency matrices.

When recording association data, ideally both collars in a pair 
would record identical information; however, previous studies 
demonstrate that collars vary in their abilities to transfer information 
(Boyland et al., 2013; Drewe et al., 2012). We reduced inter-collar 
variation biases, specifically conflation of individual ID and error/
strength of proximity collar, using a method similar to that proposed 
by Boyland et al. (2013). In brief, we assessed variation in reciprocal 
AIs in a given matrix to evaluate each collar's relative performance 
and to develop a measure of collar bias. We then corrected matrix 
AIs by scaling each collar's data according to its average bias across 
collars, resulting in a nearly identical pre-  and post-correction av-
erage AI for the matrix. Further details about collar corrections are 
provided in Data S1. Finally, we used matrices to develop associa-
tion networks corresponding to the six OPs. In each network, nodes 
represented buffalo with available data for a given OP, and network 
edges were weighted according to the AI calculated for each dyad.

2.6  |  Statistical analysis: pairwise 
association models

To examine the effect of biological traits on association patterns, we 
fit pairwise AI data to a Bayesian logistic mixed-effect model using 
a multimembership Markov chain Monte Carlo (MCMC) framework 
with the MCMCglmm package in R (Hadfield, 2010; Hart et al., 2022; 
R Core Development Team, 2010). This multimembership modeling 
framework included a node dependence term and accounted for the 
undirected nature of association measures (Hart et al.,  2022). We 
examined the relationship between pairwise AIs (represented in the 
model as a proportion of time spent together for a given observa-
tion period) and the following pairwise predictor variables: age/sex 
(pairwise combinations of: adult female, adult male, juvenile, and 
calf), number of pregnant buffalo in pair (0, 1, 2), number of lactating 
buffalo in pair (0, 1, 2), difference in BCS, and genetic relatedness. 
Histograms of continuous data for pairwise difference in BCS and 
genetic relatedness each showed three peaks, prompting the con-
version of these data into categorical variables.

For all statistical analyses: buffalo were grouped as calves 
(<1.5 years), juveniles (≥1.5 and ≤4 years), or adults (>4 years); BCS 
was averaged across measurements collected at the capture before 
and after each OP; a female's reproductive status was determined 
at the capture prior to a given OP. Categories describing pairwise 
difference in BCS included: low (<0.5), medium (0.5–1), and high (>1). 
Similarly, categories described genetic relatedness as low (<0.12: 
cousins and unrelated pairs), medium (0.12–0.36: half-siblings and 

aunt-niece level relationships), or high (>0.36: full siblings and 
parent-offspring pairs; additional details in Data S1).

Horn width increases as an animal grows; therefore, for the pair-
wise association models we performed a linear regression of log(av-
erage age) on average horn width for buffalo captured at least three 
times, with different slopes for males and females. We used the re-
sulting regression residuals, proposed as an indicator of individual 
quality (Ezenwa & Jolles, 2008), in subsequent analyses. We used 
a similar approach to calculate residuals for average testicular size 
and average boss size for male juveniles and adults captured at least 
three times. We expected that males with larger testicles and boss 
sizes may have increased mating access and contact rates.

We examined model fit for the pairwise association model with 
the following random effects: buffalo identity, pair identity, and ob-
servation period.

2.7  |  Statistical analysis: network centrality models

To evaluate the effect of host traits on individual connectivity, we 
calculated centrality metrics for buffalo in each network using the 
igraph and sna packages in R (Csardi & Nepusz,  2006; McFarland 
et al., 2010). Specifically, we calculated the following weighted met-
rics: strength (summed edge weights connected to a given node), 
flowbetweenness (proportion of times a node lies along the short-
est path between pairs in the network), and eigenvector (a function 
of the connectedness of a nodes' associates; Freeman et al., 1991; 
Newman, 2010). While strength considers a node's immediate neigh-
bors, flowbetweenness and eigenvector centrality also account 
for indirect connections. We chose these metrics based on stud-
ies that have shown that individuals with high flow-betweenness, 
strength, and/or eigenvector centralities are more likely to contract 
and transmit pathogens (Corner et al.,  2003; Gómez et al.,  2013; 
Salathé et al., 2010). To assess variation in diversity of associates, 
we also calculated a filtered degree centrality metric. Degree typi-
cally sums the number of edges for a given node. However, because 
all six networks were fully connected (i.e., all buffalo associated 
with each other), we filtered out edges below each network's me-
dian association, effectively removing the weakest 50% of edges. 
Without a filter, all buffalo in the fully connected networks would 
have the same degree centrality for a given observation period. We 
summed the remaining edges for a given node to calculate filtered 
degree centrality (hereafter referred to as degree). Notably, degree 
is the only metric with a filtered approach. Previous epidemiologi-
cal studies have shown that strength outperforms other centrality 
metrics (e.g., degree, betweenness, and eigenvector centrality) when 
predicting an individual's infection risk (Christley et al.,  2005) and 
predicting outbreak size based on an index case's centrality (Sala-
thé et al., 2010). Additionally, multiple testing of several correlated 
metrics can lead to an increased false discovery rate (type I error; 
Benjamini & Hochberg, 1995). Given that strength was strongly cor-
related with eigenvector (rs = .86, n = 241, p < .001) and flowbetween-
ness (rs = .79, n = 241, p < .001), but only moderately correlated with 
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degree (rs = .54, n = 241, p < .001), our models focused on testing how 
life history traits affect individual strength and degree.

We fit individual centrality data to node-level permutation-based 
regressions in R (30,000 permutations/test; following Rushmore 
et al., 2013). Using a separate model for each centrality metric (i.e., 
strength and degree), we first examined a set of global models that 
included all buffalo across all observation periods and tested signifi-
cant relationships between individual centrality and the following bi-
ological traits: sex (M/F), age (continuous), average BCS (continuous), 
lactation status (1/0), pregnancy status (1/0), and an age:sex inter-
action. Horn width data were only available for adults and juveniles; 
thus, we established a second set of models that only included data 
for adult and juvenile buffalo and examined relationships between 
individual centrality and sex, age, average BCS, horn width resid-
uals (continuous), and age:sex. Lastly, testicular size and boss size 
were only available for adult and juvenile males; thus, we used a final 
model set to assess relationships between individual centrality and 
age, average BCS, testes size residuals (continuous), and boss size 
residuals (continuous). Each model incorporated a categorical pa-
rameter for the observation period to control for repeated measures 
and temporal effects. We applied a Bonferroni correction to model 
outputs to account for multiple testing of two centrality metrics and 
considered relationships of p < .025 (i.e., p < .05/2) to be significant.

2.8  |  Examining variation in individual R0 and 
pathogen invasibility of the herd

We examined how the observed connectivity patterns might affect 
a pathogen's invasibility—ability to invade and spread within the 
herd—for a range of pathogen infectious periods and transmission 
efficiencies. Here we make a simplifying assumption that there is a 
minimum time in close contact needed to achieve transmission. The 
mean and variance of individual R0 values (i.e., where individual R0 
refers to the number of expected secondary infections arising from 
a given individual) define a pathogen's ability to invade and spread 
within a population (Lloyd-Smith et al., 2005). Thus, we used an it-
erative approach to calculate individual R0 values for each buffalo 
across a range of infectious periods (range: 1–7 days) and transmis-
sion efficiencies (defined as the minimum amount of time a dyad 
needs to spend in close contact for pathogen transmission to occur; 
range: 30–600 min). Specifically, for a given buffalo and observation 
period (OP) we randomly selected a timeframe of association data 
corresponding to a given infectious period (e.g., 2 days). Then for a 
given transmission efficiency, we determined the buffalo's individual 
R0 as its number of transmission-relevant contacts (i.e., the num-
ber of contacts exceeding the minimum duration for transmission). 
We iterated this process 50 times per parameter combination (buf-
falo × OP × infectious period × transmission efficiency), and averaged 
outcomes across iterations and OPs to determine a mean individual 
R0 (hereafter referred to as v) for each buffalo at each pathogen in-
fectious period and transmission efficiency. Our selection of infec-
tious periods and transmission efficiencies were based on available 

estimates of disease parameters relevant to our study system (de-
tails in Data S1).

In populations with homogenous contact patterns, pathogens 
tend to invade if the mean v > 1 (i.e., R0 > 1; Anderson & May, 1991); 
however, invasion likelihood is highly dependent on variation in indi-
vidual infectiousness around a population's mean v (i.e., R0), and this 
variation can be heavily influenced by contact heterogeneity (Lloyd-
Smith et al., 2005). Thus, for each pathogen infectious period and 
transmission efficiency, we calculated the proportion of the herd 
with v > 1 to visualize how the observed association patterns affect 
pathogen invasibility at the herd level.

3  |  RESULTS

3.1  |  Close-contact heterogeneity

After removing capture and buffer periods, our dataset included an 
average of 5046 h (roughly 210 days; SD: 2077 h) of proximity collar 
data per buffalo during a 15-month study period. The buffalo herd 
was well-connected, with a single component (entirely connected 
network) for each two-month observation period (OP). In fact, most 
buffalo associated with >75% of herd-mates for at least 30 min 
within a 5-day period (averaged across daily intervals selected ran-
domly from each OP; Figure 1a). However, buffalo showed striking 
heterogeneity in their level of connectivity (Figures 1 and 2), includ-
ing the rate with which they acquired connections within the herd 
(Figure 1a). Across OPs, randomly selected dyads spent an average 
of 2.74% of their time associating within a ~1 m distance, with con-
siderable diversity across buffalo pairs (range: <0.01%–82.02%). 
Buffalo demonstrated general temporal consistency in network cen-
trality such that buffalo with high or low centrality at the beginning 
of the study period tended to maintain their relative level of con-
nectedness throughout the study duration (Figure 1b).

3.2  |  Drivers of close-contact heterogeneity

Network-based models revealed that key buffalo traits were signifi-
cantly associated with connectivity. Overall, the best predictors of 
connectedness were pairwise relatedness, individual age, individual 
sex, and female reproductive status (Figures 2 and 3). Relatedness 
played the biggest role in determining the likelihood of buffalo in-
teracting (Table 1, Figure 2). Dyads with a high level of relatedness 
(i.e., full siblings, parent-offspring pairs) or medium level of relat-
edness (i.e., half-siblings, aunt-niece pairs) were significantly more 
likely to associate than dyads with a low level of relatedness (i.e., 
cousin pairs, unrelated pairs; Table 1, Figure 2). In fact, highly related 
buffalo were over 14 times more likely to associate than those with 
a low level of relatedness (Table 1). Mother-offspring pairs associ-
ated substantially more than other pairs (Figure 2), with mother-calf 
pairs being within ~1 m of each other 53.7% of the time on aver-
age, whereas unrelated pairs only associated an average of 1.7% of 
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6 of 14  |     RUSHMORE et al.

the time. Despite a small number of full sibling pairs in our dataset, 
we found that calves and juveniles associated more with full siblings 
(mean: 13.8% of the time, N = 4 pairs) than with cousins/half-siblings 
(mean: 2.8%, N = 37 pairs) or unrelated buffalo (mean: 1.7%, N = 255 
pairs; Figure 2, Figure S2). Observed father-offspring pairs associ-
ated less than 1% of the time; however, this calculation is based on a 

small sample size of 14 offspring who all shared the same father; no 
other fathers existed in the study herd.

After relatedness, buffalo age and sex had the greatest im-
pact on herd connectivity. Our network centrality model showed 
that an age-sex interaction significantly affected buffalo strength 
and degree centrality (Table  2). Connectivity decreased with age, 

F I G U R E  1 Buffalo showed considerable heterogeneity in close-contact patterns, and individual buffalo centrality was consistent over 
time. (a) The average cumulative proportion of the herd each buffalo “contacted” within 1 m (i.e., individual degree/total collared buffalo) 
over randomly-selected 14-day periods is shown for three minimum contact durations (red: 30 min, orange: 180 min, blue: 540 min). Each 
thin line represents a single buffalo, with a thick line showing the herd average for each minimum contact duration. (b) Each colored line 
indicates the strength centrality for a single buffalo at each of the observation periods (OPs) the buffalo was observed. Lines are colored 
according to each buffalo's average (mean) strength centrality across OPs (red: highest average strength, blue: lowest average strength). 
The black line shows the mean herd strength centrality at each OP. Corresponding modularity (degree of subdivision) showed relatively less 
variation during the study period (see Figure S3). Apparent decreases in strength centrality in Observation Period 4 (December 2014) are 
likely due to unrelated collar failures which resulted in only 17 individuals being sampled during this observation period (Table S1).
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    |  7 of 14RUSHMORE et al.

F I G U R E  2 Relatedness, age, and sex predict connectedness among buffalo. Hive plots show connections between (a) highly related 
buffalo pairs (i.e., mom-offspring and full-sibling) and (b) all other buffalo pairs. Buffalo are represented as circular nodes along three 
age-based axes (A, adult; C, calf; J, juvenile). Node colors indicate sex (red: female, blue: male), with larger nodes having a higher strength 
(averaged across observation periods). Weak connections below the median association index (across all pairs) are not visualized. Individuals 
with data spanning two age classes (e.g., juveniles who become adults during the study period) are represented as two nodes, one for each 
age class with node size and edge weights corresponding to associations observed for the individual at each age status. (c) Bar plots show 
mean association indices (+SE) across relatedness categories (after averaging association indices for each pair across observation periods). 
Categories shown include: mother-offspring pairs (N = 30), full sibling pairs (N = 4), cousin pairs (N = 58), and unrelated pairs (N = 1438). *Pairs 
in the category “cousin” include cousins and half-siblings (sharing one parent).

F I G U R E  3 Age and sex significantly 
affected buffalo centrality. Scatterplots 
visualize the age-sex interaction for 
strength centrality. Points show centrality 
data for females (red) and males (blue), 
and model predictions are shown as lines 
for females (red) and males (blue).
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8 of 14  |     RUSHMORE et al.

but this effect was much stronger for males than for females, who 
maintained a relatively consistent centrality over their lifetimes 
(Table 2, Figure 3). Males started to experience a lower centrality 
than females around age 4–5 years (Figure 3). In general, calves had 
the highest centrality, and dyads with a calf had among the high-
est association rates. For example, AF-C and C-C pairs were each 

approximately 30% more likely to associate than J-J pairs (baseline; 
Table 1; see Table 1 caption for abbreviations). Dyads that included 
an adult male and a young buffalo (i.e., AM-C, AM-J pairs) tended to 
have lower association indices than corresponding pairs without an 
adult male (e.g., AF-C, C-C, J-J pairs; Table 1).

Female reproductive status had a marginal impact on buffalo 
connectivity. Most notably, pairs with at least one pregnant female 
were significantly more likely to associate than pairs without a preg-
nant female (Table 1). Pregnant females also tended to have a higher 
degree centrality, although this test was not significant after a Bon-
ferroni correction (p = .036, Table 2). While lactation status did not 
significantly affect the likelihood of buffalo associating (Table  1), 
lactating buffalo tended to have higher strength centrality (not sig-
nificant after a Bonferroni correction, p = .041; Table 2). We did not 
observe an effect of testicular size, BCS, horn width, or boss size on 
connectivity (Tables S3 and S4).

3.3  |  Individual R0 (v) and pathogen 
invasibility of the herd

Our calculations of v and the proportion of the herd with v > 1 indi-
cate that close-contact heterogeneities drive invasion likelihoods in 
our study herd for pathogens with a range of infectious periods and 
transmission efficiencies (Figure 4a). In particular, upwards of 75% 

Factor
Posterior 
mean CI p-value OR

Intercept −4.280 (−4.78, −3.70) <.001

Group (AM: C) −0.198 (−0.37, −0.03) .028 0.82

Group (AM: J) −0.220 (−0.36, −0.09) <.001 0.8

Group (AM: AM) 0.073 (−0.18, 0.31) .561 1.08

Group (AF: C) 0.295 (0.00, 0.57) .042 1.34

Group (AF: J) 0.007 (−0.24, 0.28) .977 1.01

Group (AF: AM) 0.012 (−0.27, 0.30) .953 1.01

Group (AF: AF) 0.279 (−0.20, 0.79) .266 1.32

Group (J: C) −0.009 (−0.13, 0.11) .876 0.99

Group (C: C) 0.261 (0.06, 0.49) .018 1.3

Lactation: 1 0.021 (−0.04, 0.08) .501 1.02

Lactation: 2 0.131 (−0.02, 0.25) .066 1.14

Pregnant: 1 0.122 (0.06, 0.19) <.001 1.13

Pregnant: 2 0.170 (0.03, 0.32) .022 1.19

Relatedness: med 0.190 (0.14, 0.25) <.001 1.21

Relatedness: high 2.668 (2.56, 2.78) <.001 14.41

Diff in BCS: med 0.019 (−0.02, 0.06) .346 1.02

Diff in BCS: high 0.016 (−0.08, 0.12) .741 1.02

Note: The posterior mean, 95% credible interval, p-value based on MCMC sampling, and odds 
ratios (OR) are shown for fixed effects. Random effects include buffalo identity and observation 
period; pair identity was not included in the final model due to improved model fit after removal. J, 
J is the baseline age-sex category. Bolded values indicate significant relationships P < .05.
Abbreviations: AF, adult female; AM, adult male; BCS, body condition score; C, Calf; J, Juvenile.

TA B L E  1 Effect of biological host traits 
on pairwise buffalo associations.

TA B L E  2 Effect of host traits on individual centrality during six 
observation periods (N = 235).

Factor

Strength centrality Degree centrality

β p-value β p-value

Intercept 1.01 .438 30.54 .095

Sex (M) 0.23 .006 6.33 .005

Age −0.01 .149 −0.13 .273

Average BCS −0.06 .230 −2.21 .140

Pregnant (1) 0.11 .113 4.32 .036

Lactating (1) 0.15 .041 2.15 .179

Sex (M): Age −0.06 <.001 −1.08 .004

Note: Italicized values indicate significant relationships (p < .050). 
Bolded values indicate significant relationships after Bonferroni 
correction (p < .025). See Data S1 for observation period estimates and 
p-values (Table S2).
Abbreviations: BCS, body condition score; M, male; 1, “yes” for 1/0 
binomial indicators.
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    |  9 of 14RUSHMORE et al.

of the herd had v > 1 (indicated by dark red: Figure 4a) when mini-
mal to moderate contact was required for transmission, depending 
on the infectious period. Pathogens with short infectious periods 
(<2 days) and very long contact requirements for transmission re-
sulted in a few individuals having v > 1 (indicated by white/pale yel-
low: Figure 4a). The remaining portions of Figure 4a (indicated by 
yellow/light orange) show pathogen infectious periods and contact 
durations for which ~25%–75% of the herd had v > 1. Further inves-
tigation into a subset of parameter combinations revealed that age 
and sex were often predictive of v, such that on average, calves had 
v > 1 and adult males had v < 1: Figure 4c,d when there was consider-
able heterogeneity in associations (e.g., yellow regions: Figure 4a); 
however, at parameter combinations with more homogenous con-
nectivity patterns, age, and sex had little effect on v, and all age-sex 
combinations had a mean v > 1 (Figure 4b).

4  |  DISCUSSION

Our study strengthens challenges to the assumption within epide-
miological models that gregarious ungulate herds are well-mixed 
with respect to pathogen transmission. While our network analyses 

of African buffalo indeed revealed a well-connected herd, we found 
considerable heterogeneity in the duration of close-contact inter-
actions among buffalo. Herd connectivity was highly dependent on 
interval length: at short time scales, only a small subset of individu-
als contacted one another, whereas at longer time scales, connec-
tivity saturated to panmixia. Individual centrality was stable across 
observation periods and key buffalo traits predicted connectivity, 
indicating that different classes of individuals likely play contrast-
ing roles in contact-driven processes, such as pathogen transmis-
sion. For example, pathogens with short infectious periods require 
highly connected individuals for invasion to occur. Our study herd 
is regularly exposed to a range of respiratory pathogens that range 
in dynamic behavior from endemic to cyclical to sporadic (Glidden 
et al., 2021). By visualizing the proportion of the herd with v > 1 for 
a range of pathogen infectious periods and transmission efficien-
cies, we found that the level of contact heterogeneity we observed 
in buffalo would be sufficient to shape the likelihood of pathogen 
invasion, even within our well-connected and highly gregarious 
study herd.

We identified several life history traits that significantly affected 
individual connectivity, including pairwise relatedness, individual age 
and sex, and female reproductive status. Genetic relatedness was the 

F I G U R E  4 Herd association patterns shape the pathogen invasibility landscape and life history traits drive variation in mean individual 
R0 (v) for pathogens with relatively short infectious periods. (a) The proportion of the herd with v > 1 is shown for a range of pathogen 
infectious periods and transmissibilities (i.e., minimum minutes of association required for pathogen transmission). Bar plots, broken down 
by age and sex (AF, adult female; AM, adult male; C, calf; J, juvenile), show average v (mean ± SE) for pathogens with infectious periods and 
transmissibilities that are (b) long/low, (c) medium, and (d) short/high.
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strongest predictor of buffalo association rates, with mother-offspring 
and full-sibling dyads being significantly more likely to associate than 
other buffalo pairs. Kinship and kin selection are important drivers of 
behavioral associations in the animal kingdom, which is particularly 
evident among primates (Maestripieri, 2018; Silk, 2002; Städele et al., 
2016) and birds (Krakauer, 2005; Leedale et al., 2020). Less is known 
about how kinship affects social patterns of large-bodied herd-living 
animals. Some species show aggregation among close relatives (e.g., 
elephants: Chiyo et al., 2011; Wittemyer et al., 2005), whereas others 
do not (e.g., elk: Vander Wal et al., 2012). For species that associate 
closely with kin, relatedness might predict pairwise infection likeli-
hoods, as demonstrated for bovine tuberculosis infections among 
closely related white-tailed deer (Blanchong et al., 2007) and African 
swine fever in wild boar (Podgórski et al., 2022).

Age and sex also significantly affected buffalo connectivity. Buf-
falo became less centrally connected with age, with a steeper de-
cline for males than for females. Dyads including one adult male had 
among the lowest association rates. These findings support previous 
observations that adult male buffalo become less social around pu-
berty (4–5 years) as they leave the breeding herd to join bachelor 
herds (Prins, 1996; Sinclair, 1977; Turner et al., 2005). Contrastingly, 
calves held relatively central positions in the social network, and 
dyads including at least one calf had among the highest association 
rates (other than AM-C pairs). It is possible that early exposure to 
diverse social interactions may increase social competence and offer 
fitness benefits later in life, as has been suggested for a range of 
wildlife species (McDonald, 2007; Stanton & Mann, 2012; Thomp-
son, 2019; Vander Wal et al., 2015). However, diverse social expo-
sures may come at a cost if they simultaneously increase pathogen 
exposures.

Reproductive status played a small role in connectivity, such that 
pairs with one or two pregnant females were significantly more likely 
to associate than pairs without a pregnant female. While not signifi-
cant after Bonferroni correction, pregnant and lactating buffalo also 
tended to be more central in the social networks. Female reproduc-
tive status has been linked to association patterns in a handful of 
wild and domestic ungulates. For example, Swain et al. (2015) found 
that pregnant and maternal (post-calving) beef cows preferentially 
associated with individuals of the same status, with an immediate 
switch in preferred associates after calving. Networks of Grevy's 
zebra showed that females assorted according to their lactation 
status (Sundaresan et al., 2007), with similar findings in dairy cows 
(Boyland et al.,  2016). Water and energetic needs typically vary 
with the reproductive stage and could drive association preferences 
(Boyland et al.,  2016; Sundaresan et al.,  2007). Relatively central 
positions in the social network may increase pathogen exposures 
for mothers and calves; however, these costs might be offset if as-
sortative mixing allows mothers more time to graze or strengthens 
bonds that protect the young. Lastly, we did not observe an effect of 
testicular size, horn width, or boss size on buffalo connectivity, after 
controlling for age.

The observed herd connectivity patterns define the invasibil-
ity landscape for pathogens that vary in their infectious periods 

and transmission efficiencies. Specifically, our estimates of v indi-
cated that index case centrality and herd connectivity would drive 
the invasion potential for pathogens with short infectious periods 
(1–4 days) and moderate close-contact durations required for trans-
mission. Contrastingly, the within-herd structure would have mini-
mal impact on invasion likelihood for pathogens with long infectious 
periods and minimal association requirements, as the majority of the 
herd had a v > 1. Similarly, briefly, infectious pathogens with lengthy 
contact requirements resulted in a majority of buffalo being unsuit-
able as an index case (with v < 1). Buffalo and cattle diseases range 
widely in their transmission efficiencies, but little is known regarding 
how much time in close contact is required for transmission to occur. 
Charleston et al.'s (2011) study of direct FMDV transmission events 
determined that positive cattle at peak shedding can infect suscep-
tible cattle within 2 h. They subsequently exposed naïve cattle to 
FMDV-positive cattle in 8-h time periods, which resulted in roughly 
a quarter of susceptible cattle becoming infected. Thus, while the 
average duration of transmission-relevant contacts is not known, 
it appears that FMDV can transmit in brief time periods (<2 h), but 
it could take upwards of 10 h of close contact for transmission to 
occur. While little is known about the amount of contact required 
for transmission of most pathogens in ungulates, our results suggest 
herd connectivity could affect the invasion likelihood for FMDV 
and several respiratory viruses that have relatively short infectious 
periods with viral shedding often peaking in the first couple days 
after infection (see supplemental text: Charleston et al., 2011; Gris-
sett et al., 2015). For pathogens with short infectious periods and 
moderate close-contact durations, our analyses revealed that age 
and sex of the index case affected invasion likelihood, with calves 
being the most likely to have v > 1 and adult males being the least 
likely to have v > 1. This finding highlights the important role that 
susceptible calves may play in pathogen transmission within the 
herd. Herd structure and life-history traits of the index case should 
matter less for the invasion potential of pathogens with very long 
infectious periods, like Mycobacterium bovis, which provide ample 
time for the network to fully saturate. We note that our emphasis 
here was on behavioral drivers of herd invasibility by pathogens. 
We have not addressed how the contact network structure we ob-
served might influence other disease dynamic outcomes, such as the 
time to epidemic peak, outbreak size, or persistence time of rele-
vant pathogens. Future work could address these questions through 
the development of an agent-based model or network-based model 
using a SIR framework.

While our study focused on behavioral drivers of v, it is im-
portant to point out that physiological heterogeneities can also 
affect v (Manlove et al., 2017). Specifically, individual differences 
in immunity can affect pathogen shedding and recovery rates, 
ultimately impacting an individual's level and duration of infec-
tiousness (VanderWaal & Ezenwa, 2016). While behavior does not 
explain the whole picture, studies comparing contact networks 
and individual infection status show that connectivity can often 
serve as a reasonable proxy for estimating transmission poten-
tial across a range of host-pathogen systems (Corner et al., 2003; 
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    |  11 of 14RUSHMORE et al.

Godfrey et al.,  2009; Raulo et al.,  2021; Tung et al.,  2015). For 
example, a study of wild reticulated giraffe found that a giraffe's 
position in the social network predicted its position in an Esch-
erichia coli transmission network, with social hubs also acting as 
transmission hubs (VanderWaal, Atwill, et al., 2014). Additionally, 
epidemiological models have shown that outbreaks tend to be 
more widespread if the index case is well connected whereas a 
pathogen may fail to invade if the index case is more peripheral 
(Lloyd-Smith et al.,  2005; Rushmore et al.,  2014). In our study, 
buffalo calves emerged as the most widely connected animals in 
the herd; due to limited prior exposures, they are also among the 
most susceptible animals (particularly after maternal immunity 
has waned), underscoring the central role calves are likely to play 
in pathogen transmission within buffalo populations. Indeed, the 
propensity for gregarious and highly susceptible young-of-the-
year to spread infections in herd-living ungulates may present an 
efficient mechanism for density-dependent population regulation, 
as high recruitment may catalyze increased exposure of the herd 
to infectious pathogens. To better understand the synergistic ef-
fects of host sociality and physiology on pathogen invasion and 
transmission dynamics, our upcoming work will explore relation-
ships between connectivity, immunity, and infection status for re-
spiratory diseases among buffalo in this herd.

A notable limitation of our study is its focus on directly-
transmissible pathogens. Several studies have shown that environ-
mental transmission (indirect transmission) can also play a key role 
in some systems (e.g., Beerens et al., 2021; Breban et al., 2009). In 
these systems, invasibility may be more dependent upon pathogen 
viability in the environment and host habitat use than host contact 
rates. Future work could quantify the relative effect of contact het-
erogeneity versus space use on the invasibility of pathogens that use 
multiple routes of transmission. As an additional limitation, while 
our study herd was in a large “nearly natural” enclosure with other 
species typical of the ecosystem, there remain differences with 
free-ranging buffalo populations. In particular, predator exclusion, 
occasional supplemental feeding, and access to only a single water 
source in the dry season could affect social dynamics in our study 
herd.

In conclusion, we found considerable close-contact heteroge-
neity in an African buffalo herd, with particular life-history traits 
predicting association patterns. These findings challenge the as-
sumption within epidemiological models that ungulate herds are 
well-mixed with respect to pathogen transmission. Our study fur-
ther shows that heterogeneity among individuals drives invasion 
likelihood at time scales relevant to infectious pathogens, even 
within a highly-connected and gregarious population. For a range 
of pathogen parameters, well-connected age-sex classes were more 
likely to have v > 1, making index cases with key characteristics 
more likely to spark outbreaks. Our data provide quantifiable dif-
ferences among age-sex classes that can be used to parameterize 
network-based infectious disease models for evaluating pathogen 
transmission and control in this epidemiologically important wildlife 
host species. Finally, our study provides a framework that links host 

connectivity and infectious disease biology to characterize a study 
population's pathogen invasion landscape and identify classes of su-
perspreading hosts.
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