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A B S T R A C T

Real estate is a favored investment option as it allows investors to diversify their portfolios and minimize risk.
Investors can invest in real estate directly by purchasing a property, or through real estate investment funds
(REITs) where they can purchase shares in companies that own and manage real estate. Investing in REITs
has become increasingly popular because it eliminates some of the disadvantages associated with direct real
estate investment, such as the need for a large upfront payment. When investing in mixed asset portfolios,
it is crucial to predict future prices accurately to ensure profitable and less risky asset allocation. However,
literature on price prediction often focuses on only one or two algorithms, and there is no research that explores
REITs’ price prediction in the context of portfolio optimization. To address this gap, we conducted a thorough
evaluation of 5 machine learning algorithms (ML), including Ordinary Least Squares Linear Regression
(LR), Support Vector Regression (SVR), k-Nearest Neighbors Regression (KNN), Extreme Gradient Boosting
(XGBoost), and Long/Short-Term Memory Neural Networks (LSTM), as well as other financial benchmarks
like Holt’s Exponential Smoothing (HES), Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors,
Trend, and Seasonal Components (TBATS), and Auto-Regression Integrated Moving Average (ARIMA). We
applied these algorithms to predict future prices for 30 REITs from the US, UK, and Australia, as well as 30
stocks and 30 bonds. The assets were then used as part of a portfolio, which we optimized using a genetic
algorithm. Our results showed that using ML algorithms for price prediction provided at least three times the
return over benchmark models and reduced risk by almost two-fold. For REITs, we observed that the use of
ML algorithms led to a higher allocation to REITs diversified by country. In particular, our results showed
that SVR was the best-performing algorithm in terms of risk-adjusted returns across different time horizons,
as confirmed by our Friedman test results (Sharpe ratio). Overall, our study highlights the effectiveness of ML
algorithms in predicting asset prices and optimizing portfolio allocation.
1. Introduction

To optimize a portfolio, the ideal weights of investments must be
determined to reduce risk and/or increase returns (Brabazon, Kam-
pouridis, & O’Neill, 2020). One way to decrease investment risk is
by investing in real estate (Akinsomi, 2020; Jain, 2017; Jayaraman,
2021). Institutional investors have found that a significant allocation
to real estate protects their wealth during difficult times, such as the
Covid-19 pandemic (Akinsomi, 2020). However, direct investment in
real estate assets can be expensive, so many investors choose indirect
investment through real estate investment trusts (REITs), which are
companies that own and manage real estate. REITs offer individual
investors the opportunity to invest in real estate without the hassle
of owning or managing properties. The low entry cost of REITs makes
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them an attractive option, with shares available for as little as $500.1
Additionally, REITs are highly liquid, like stocks, making them easier
to buy and sell quickly compared to real estate properties that can take
months to complete.

Research has consistently highlighted the potential benefits of in-
cluding REITs in a diversified investment portfolio. Firstly, studies
indicate that REITs have historically shown low correlations with tra-
ditional asset classes such as stocks and bonds (Anderson, Anderson,
Guirguis, Proppe, & Seiler, 2021). This low correlation suggests that
including REITs in a portfolio can enhance diversification and poten-
tially reduce overall portfolio risk. By introducing an asset class that
behaves differently from others, investors can reduce their exposure
to market fluctuations and potentially achieve a more stable risk-
return profile. Furthermore, the addition of REITs to a mixed-asset
vailable online 16 August 2023
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portfolio has been associated with potential improvements in risk-
adjusted returns (Marzuki & Newell, 2019). Several studies (Günther,
Wills, & Piazolo, 2022; Pilusa, Niesing, & Zulch, 2022) have found
that portfolios that include REITs tend to have higher risk-adjusted
returns compared to portfolios that exclude REITs. This finding suggests
that REITs may offer unique return characteristics that can enhance
the overall performance of a mixed-asset portfolio (Pilusa et al., 2022;
Razak, 2023).

Investors in REITs who want to determine the best weight for each
asset in their portfolio need to solve a portfolio optimization problem.
This problem involves two main steps: (i) creating a model that fits
historical asset prices and predicts future values for a test set, and (ii)
utilizing the price predictions to allocate optimal weights to each asset
via an optimization algorithm that is based on a specific metric, such
as risk or return. Another option is to perform the optimization process
directly on the training set, but this approach has drawbacks, as the
weights may not be optimal for the test set if there are significant
variations in prices, as noted by Habbab and Kampouridis (2022b).

Although the two-step approach for optimizing mixed-asset portfo-
lios has been utilized before, it has not yet been applied to portfolios
that include REITs. Previous research that utilized portfolio optimiza-
tion with REITs relied on the optimal weights computed in the training
set, as noted by Delfim and Hoesli (2019), Geiger, Cajias, and Fuerst
(2016) and Wiklund, Flood, and Lunde (2020). Our study, on the other
hand, concentrates on the first step of this approach, which is to predict
REIT prices accurately. This step is crucial since the prices are utilized
as input in the portfolio optimization step.

Although a few researchers have made attempts to predict REIT
prices using machine learning algorithms, the number of such studies
remains limited. For example, Li, Fong, and Chong (2017) utilized a
neural network algorithm to predict both stock and REIT prices and
demonstrated that this algorithm was more accurate than an autore-
gressive integrated moving average (ARIMA) model. Similarly, Chen,
Chang, Ho, and Diaz (2014) used machine learning-based regression
algorithms, including neural networks, to predict REIT returns. Other
studies focused on comparing machine learning algorithms to ARIMA
for REIT return prediction, primarily through the use of artificial neural
networks and multiple variables, as noted by Jain, Mandal, Singh,
Kulkarni, and Sayed (2021), Lian, Li, and Wei (2021) and Loo (2019).
In summary, while a handful of studies have been conducted on REIT
price prediction, most of them have centered around neural networks.

Several studies have been conducted to predict REIT prices us-
ing machine learning algorithms, and some have shown that these
algorithms perform better than traditional models like autoregressive
integrated moving average (ARIMA) in terms of prediction accuracy,
as noted by Jain et al. (2021), Lian et al. (2021) and Loo (2019).
While most of the current literature has concentrated on the use of
artificial neural networks with multiple variables, our research aims
to investigate other machine learning techniques for predicting REIT
prices.

Prior research has indicated that machine learning algorithms can
outperform traditional models such as autoregressive integrated mov-
ing average (ARIMA) when it comes to predicting REIT prices, as
noted by Habbab and Kampouridis (2022a), Jain et al. (2021), Lian
et al. (2021) and Loo (2019). Nevertheless, most of these studies
have concentrated on using artificial neural networks with multiple
variables.

Our study seeks to overcome the existing limitations by exploring
five different machine learning algorithms for REIT price prediction.
Previous research in the context of portfolio optimization has generally
used only one or two machine learning algorithms to predict prices
of non-REIT assets (Butler & Kwon, 2021; Chen, Zhang, Mehlawat, &
Jia, 2021; Freitas, De Souza, & De Almeida, 2009; Ma, Han, & Wang,
2020, 2021; Pawar, Jalem, & Tiwari, 2019; Sen, Dutta, & Mehtab,
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2021; Sen et al., 2021). The five algorithms used in our study are
Ordinary Least Squares Linear Regression (LR), Support Vector Regres-
sion (SVR), k-Nearest Neighbors Regression (KNN), Extreme Gradient
Boosting (XGBoost), and Long/Short-Term Memory Neural Networks
(LSTM). We will compare the prediction errors generated by these algo-
rithms with commonly used financial benchmarks such as Holt’s Expo-
nential Smoothing, Trigonometric seasonality, Box-cox transformation,
ARMA errors, Trends and Seasonal components, and ARIMA. Our ob-
jective is to demonstrate that machine learning techniques can provide
accurate REIT price predictions and outperform popular financial time
series benchmarks.

Once we have obtained price predictions, we use a genetic algorithm
(GA) to optimize the portfolio (Goldberg, 1989; Habbab & Kampouridis,
2022b; Kalayci, Polat, & Akbay, 2020; Yaman & Dalkılıç, 2021). GA
has been widely used for portfolio optimization, and it has proven to
perform better than the Global Minimum Variance (GMV) portfolio,
which is one of the most advanced methods available (Habbab, Kam-
pouridis, & Voudouris, 2022). Moreover, Li and Wu (2021) presented a
GA model that constructs an investment portfolio including real estate
with reduced risk under uncertainty conditions. Their study shows that
GA is effective in finding an optimal portfolio composition in the case of
real estate investments. In another study, Adebiyi, Ogunbiyi, and Amole
(2022) adopted a GA-based model to optimize a mixed-asset portfolio
including real estate by using historical market data. Their findings
suggested that GA could effectively optimize portfolios including differ-
ent asset classes. However, the literature has provided limited insights
into the inclusion of real estate investments, such as real estate in-
vestment trusts (REITs), within the optimization process. Incorporating
real estate into portfolio optimization using genetic algorithms presents
unique challenges and opportunities. Real estate assets possess distinct
risk and return characteristics compared to stocks and bonds, and their
integration could potentially enhance diversification and improve risk-
adjusted returns. In our study, we aim to fill this gap by investigating
the incorporation of real estate investments, including REITs, within
the genetic algorithm-based portfolio optimization framework. This
would involve considering the specific risk/return characteristics and
correlation values that are unique to that asset class (Chen & Smith,
2019).

In this study, we adopt a GA to find the optimal weights for a given
set of assets based on the return and risk parameters derived from the
Modern Portfolio Theory (MPT) concepts. This will be explained in
more detail in Section 3.4. Our goal is to demonstrate that using ML
price predictions results in better portfolio performance. We evaluate
financial metrics such as Sharpe ratio, returns, and risk and compare
the results with two benchmarks. The first benchmark is a portfolio
optimized on the training set, which is a standard approach in financial
literature (Jones & Trevillion, 2022; Lee & Moss, 2018; Parikh & Zhang,
2019). However, weights calculated using the training set might result
in inferior portfolio performance if there are significant differences be-
tween prices in the training and test sets. Therefore, we aim to evaluate
the added value of accurate price predictions in portfolio allocation.
The second benchmark is a theoretical portfolio that assumes perfect
price predictions in the test set (referred to as perfect foresight), which
we use to compare portfolio performance with ML price predictions.

In conclusion, our study assesses the performance of REITs in mixed-
asset portfolios and examines the differences among the US, UK, and
Australian markets. Prior research on the role of real estate in mixed-
asset portfolios has mainly focused on real estate investments within
a single country. In contrast, we make a novel contribution to the
literature by discussing the similarities and differences between these
three markets. We investigate the correlation between stocks, bonds,
and REITs in each market’s portfolio and discuss the advantages of
managing international portfolios.

In summary, this study contributes in three main ways: (i) it con-
ducts a comprehensive exploration of price prediction for REITs and
other asset classes in portfolios using five different machine learning

techniques and three financial benchmarks; (ii) it optimizes the weights
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of a mixed-asset international portfolio that includes REITs using the
aforementioned price predictions; and (iii) it provides a detailed anal-
ysis and discussion of the performance of REITs within mixed asset
portfolios.

The rest of this paper is organized as follows. Section 2 provides
a brief overview of REITs and the Modern Portfolio Theory. Section 3
explains the methodology used in this study. Our experimental setup is
presented in Section 4. The results of our experiments are presented
in Section 5, where we provide a detailed discussion of the results
obtained by applying machine learning and other financial models to
our data. Finally, Section 6 summarizes the conclusions of the study
and offers suggestions for future research.

2. Background

2.1. The real estate asset class

Real estate is one of the available investment options, along with
publicly listed stocks, bonds, and cash. Investing in real estate provides
opportunities for diversification by utilizing correlations between real
estate and other asset classes (Baker & Chinloy, 2014).

To gain exposure to the real estate market, an investor can either
invest directly in a property or indirectly by purchasing shares in
companies that hold real estate investments in their portfolios. Direct
investment in real estate allows control and management of the prop-
erty, but requires a significant initial investment and may be difficult to
sell due to the low liquidity in real estate markets. Indirect investment
in real estate offers lower unit prices and greater liquidity, but may
be harder to manage and control the property. By investing in listed
real estate, investors can enjoy the benefits of diversification without
the need for a significant financial commitment or the responsibility of
property management and control.

The remainder of this section is structured as follows. Section 2.1.1
outlines the current real estate sectors, while Section 2.1.2 furnishes
details about a specific kind of publicly traded real estate investments
called Real Estate Investment Trusts (REITs), which is the focal point
of this article.

2.1.1. Real estate markets
The real estate market is diverse and can be categorized into several

types of products, including (a) residential real estate, which includes
any property used for residential purposes; (b) commercial real estate,
which refers to any property used for business purposes; (c) indus-
trial real estate, which includes any property used for manufacturing,
storage, and distribution of goods; and (d) raw land.

The residential real estate sector comprises various types of houses,
such as standalone houses that host one family or multi-family houses
that accommodate several families. It also includes townhouses, which
are individually-owned dwellings, and condominiums, privately-owned
properties located together with other units. The residential real estate
sector is essential for the well-being of any economy since it addresses
the fundamental need of people to find a home. Investors typically
invest in this sector to obtain a stable form of income through rent.

The commercial real estate sector is made of properties used for
business purposes, such as shopping malls, hotels, and offices. It also
includes flat buildings used for business. Investing in commercial real
estate can be profitable since it offers the opportunity for capital
appreciation, as the value of a commercial property tends to increase
over time due to inflation. This makes it possible to sell the property
at a higher price in the future.

On the other hand, industrial real estate includes properties used
for producing, storing, and transporting goods and services, such as
warehouses and farms. This sector plays a critical role in the econ-
omy by maintaining the supply chain and improving the efficiency of
distribution. High-quality industrial real estate that is well-located can
ensure the efficient movement of goods from producers to markets,
which satisfies the needs of both customers and producers.
3

2.1.2. Real estate investment trusts
REITs are entities that manage, fund, or possess income-producing

real estate assets. Well-known REITs are Realty Income Corporation
(O), Digital Realty Trust, Inc (DLR), and Simon Property Group, Inc
(SPG), among others. Through investing in REITs, regular investors can
participate in real estate investments and reap the benefits of com-
petitive returns and dividend-based income without the large capital
expenditure that direct real estate investment requires (Block, 2011).

Investing in REITs is similar to investing in other financial markets,
and there are various ways investors can do so. Some options include
purchasing individual company stocks, mutual funds, or exchange-
traded funds (ETFs). To identify suitable REIT investments, investors
may consult with a broker, financial advisor, or planner to estab-
lish their financial objectives. A 2020 study conducted in the US
by Chatham Partners2 showed that approximately 80% of financial
advisors recommend REITs to their clients. Additionally, investors can
consider investing in private REITs or public non-listed REITs.

The ownership of some properties is transferred to investors who
hold shares in REITs, allowing them to earn a share of the income gen-
erated without needing to purchase, manage, or finance the property.
Optimal portfolio allocation for REITs has been studied extensively,
with studies such as those conducted by Bhuyan, Kuhle, Ikromov,
and Chiemeke (2014), Hocht, Ng, Wolf, and Zagst (2008), and Jalil,
Ali, Razali, and Yim (2015) suggesting that REIT investment should
typically make up between 5% and 15% of an investment portfolio.
This weighting may vary depending on the investment horizon, with
research by Rehring (2012) and Stephen and Simon (2005) highlighting
that the diversification potential of REITs increases over longer holding
periods.

REITs typically invest in a variety of real estate properties, including
but not limited to, offices, apartments, warehouses, retail centers,
medical facilities, data centers, cell towers, infrastructures, and hotels.
While some REITs focus on a particular type of property, others may
have portfolios that comprise multiple property types.

REITs primarily generate income by leasing properties and receiving
rent payments, which are then distributed to shareholders in the form
of dividends. In the US, REITs are required to pay at least 90% of their
taxable income to shareholders, who are then responsible for paying
taxes on those dividends.

Investors find REITs an appealing investment choice because of
their competitive returns, which come from a mix of steady income
and long-term capital appreciation, as well as their low correlation
with other asset classes. This attribute provides a chance for portfolio
diversification, making portfolios that include REITs less risky than
those without, as illustrated in Section 5.

There are several REIT types, including Equity REITs (e-REITs),
Mortgage REITs (m-REITs), Public Non-Listed REITs, and Private REITs.
The most common type of REITs on the market are Equity REITs, which
own or operate income-producing real estate. Mortgage REITs (mREITs)
finance income-producing real estate by purchasing or creating mort-
gages and mortgage-backed securities, earning interest-based income
from these investments. Public non-listed REITs are registered with the
SEC but do not trade on national exchanges, whereas private REITs are
not traded on national exchanges and are exempt from SEC registration.

Like other financial markets, REIT share prices fluctuate throughout
the trading day. The value of REIT shares is influenced by various
factors such as expected earnings growth, expected total returns, div-
idend yields compared to other yield-oriented investments like bonds
or utility stocks, dividend payout ratios, management quality, corpo-
rate structure, and the underlying asset values of the real estate and
mortgages. REIT market values are represented by different indices,
including the FTSE EPRA/Nareit US Real Estate Index, which contains
specific REIT companies operating in the US. This study focuses on

2 https://www.reit.com/investing/why-invest-reits.

https://www.reit.com/investing/why-invest-reits
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publicly listed equity REITs (e-REITs) like American Tower Corporation
(AMT), Prologis (PLD), Crown Castle (CCI), Public Storage (PSA), and
Welltower (WELL) that hold various types of real estate properties such
as infrastructure, offices, shopping malls, and others.

2.2. Modern portfolio theory

Modern portfolio theory (MPT) is a conceptual framework that helps
nvestors tackle asset allocation issues. MPT is based on the premise
hat investors are risk-averse and favor portfolios that offer the same
nticipated return with lower risk. Investors will only select a more
isky portfolio if it is accompanied by a higher expected return. The
ompromise between maximizing returns and minimizing risk is de-
ermined by the degree of individual risk aversion. MPT provides a
athematical approach to resolving this trade-off.

The MPT is a theory that relies on the Efficient Market Hypothesis
EMH), which presumes that a security’s price incorporates all the
vailable information and reflects its economic value. An efficient
arket is one in which a security’s price is influenced solely by all

vailable information and not by managerial decisions. This theory
s critical in guiding investment decision-making and helps investors
redict future market trends that may affect asset allocation.

According to MPT, an effective portfolio is one that maximizes
xpected return for a given level of risk or minimizes expected risk for a
iven level of return. To determine the expected return of a portfolio,
he past returns of the assets in the portfolio are taken into account,
nd their weights are determined based on the proportions assigned to
ach asset class.

The equation for the expected return of a portfolio is typically given
s:

(𝑟𝑝) =
𝑛
∑

𝑖=1
𝑤𝑖𝐸(𝑟𝑖), (1)

here 𝐸(𝑟𝑝) is the expected return of the portfolio, 𝑤𝑖 is the weight
f the 𝑖th asset in the portfolio, 𝐸(𝑟𝑖) is the expected return of the 𝑖th
sset, and 𝑛 is the number of assets in the portfolio.

In the MPT, the expected risk of a portfolio is not solely determined
y the individual risks of its constituent assets. Instead, the expected
isk of a portfolio depends on the interdependence of the assets in the
ortfolio, which is captured by their pairwise correlations. The higher
he pairwise correlations between assets in the portfolio, the higher the
xpected risk of the portfolio.

More specifically, the expected risk of a portfolio can be expressed
s a function of the variances and pairwise correlations of its con-
tituent assets. This function is commonly known as the portfolio
ariance equation and is given by:
2
𝑝 =

∑

𝑖
𝑤2

𝑖 𝜎
2
𝑖 +

∑

𝑖

∑

𝑗≠𝑖
𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖,𝑗 (2)

where 𝜎2𝑝 is the expected risk (variance) of the portfolio, 𝑤𝑖 and 𝑤𝑗
are the weights of assets 𝑖 and 𝑗 in the portfolio, 𝜌𝑖,𝑗 is the pairwise
correlation coefficient between assets 𝑖 and 𝑗, and 𝜎𝑖 and 𝜎𝑗 are the
standard deviations of returns for assets 𝑖 and 𝑗, respectively.

Therefore, the expected risk of a portfolio is influenced not only
by the individual risks of its constituent assets, but also by their
pairwise correlations. In other words, diversification can help reduce
the expected risk of a portfolio by combining assets that have low
pairwise correlations, as they can offset each other’s risk.

The correlation between two assets measures the strength and di-
rection of their relationship. If two assets have a positive correlation,
they tend to move in the same direction, while if they have a negative
correlation, they tend to move in opposite directions.

In MPT, when the correlation between two assets in a portfolio is
low, their movements tend to offset each other, resulting in a lower
4

overall portfolio risk. In contrast, when the correlation between two
assets is high, their movements tend to be in the same direction,
increasing the overall portfolio risk.

Furthermore, when a portfolio contains many highly correlated
assets, the overall portfolio risk can become very high. However, if the
portfolio contains a mix of assets with different correlation levels, the
overall risk can be reduced. This is because assets with low or negative
correlations can help offset the risk of highly correlated assets in the
portfolio.

Therefore, in MPT, managing correlation levels between assets in
a portfolio is a key factor in determining the expected risk of the
portfolio. The goal is to construct a portfolio that achieves the highest
expected return for a given level of risk, taking into account the
correlations between the assets in the portfolio.

3. Methodology

Our methodology can be broken down into two steps: (i) price
prediction, and (ii) portfolio optimization. In the first step, the machine
learning algorithms employed in this study undergo training on the
training set, aiming to minimize the root mean squared error (RMSE) of
predicted prices for various assets. Subsequently, these trained models
are utilized to forecast prices in the test set. In the second step, the
predicted prices from the test set are fed into the genetic algorithm
(GA), which seeks to optimize the allocation of weights assigned to
each asset. The performance metric used for this portfolio optimization
task is the Sharpe ratio. The portfolio optimization process incorporates
principles derived from the Modern Portfolio Theory (MPT).

This section will thus present in detail the above two steps. We will
first present the various data pre-processing measures we needed to
undertake before using the machine learning algorithms, in Section 3.1.
Then, Section 3.2 offers a brief overview of how we utilized the
machine learning algorithms. We also present the cost function used
by all the algorithms in Section 3.3. Finally, in Section 3.4, we present
the genetic algorithm that we used to tackle our portfolio optimization
problem.

3.1. Data preprocessing

Each time series data is preprocessed by differencing and scaling
before being used for price prediction. Differencing makes the time
series stationary, removing the upward trend and keeping the average
constant over time. Stationarity is crucial in time series analysis because
several models, including ARIMA, assume that data are independent
of one another. Since market price time series often exhibit time
dependence, it is necessary to remove this dependence in order to apply
prediction models.

Differencing involves taking the difference between consecutive
observations in the time series data, such that 𝐷𝑡 = 𝑃𝑡 − 𝑃𝑡−1. For
example, the price at time 𝑡1 is transformed into 𝐷𝑡2 = 𝑃𝑡2−𝑃𝑡1. This has
the effect of removing the trend component of the time series, making
it stationary. The resulting time series data will have a constant mean
and variance, and its statistical properties will be consistent over time.
The original SL Green Realty Corp REIT (SLG) time series (prior to
differencing) is shown in Fig. 1(a), while the differenced time series
is shown in Fig. 1(b).

Stationarity is important in time series analysis because many sta-
tistical models, such as ARIMA, assume that the data are stationary. By
differencing a non-stationary time series, we can make it stationary and
use these models to make predictions about future observations in the
time series.

Once 𝐷𝑡 has been obtained, its values are then scaled to be in the
range of 0 and 1, according to the following transformation, presented
in Eqs. (3):

𝑁𝑡 =
(𝐷 −𝐷𝑚𝑖𝑛) (3)
(𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛)
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Fig. 1. Differencing example.
Table 1
Example of time series differentiation and feature selection.
𝑡 𝑃𝑡 𝑃𝑡−1 𝐷𝑡 𝑁𝑡 𝑁𝑡−1 𝑁𝑡−2

t1 63.88 – – – – –
t2 61.70 63.88 −2.19 0.07 – –
t3 59.20 61.70 −2.50 0 0.07 –
t4 59.40 59.20 0.20 0.64 0 0.07
t5 60.21 59.40 0.80 0.79 0.64 0
t6 60.24 60.21 0.03 0.60 0.79 0.64
t7 61.93 60.24 1.69 1 0.60 0.79
t8 61.26 61.93 −0.67 0.44 1 0.60
t9 61.62 61.26 0.36 0.68 0.44 1
t10 63.26 61.62 1.64 0.99 0.68 0.44

where 𝑁𝑡 is the standardized value of each variable (in this case
the differenced price 𝐷), and 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are the minimum and
maximum value for 𝐷 respectively, over all data in each dataset.

Table 1 illustrates the differencing and scaling processes using the
SLG time series data between 01 January 2021 and 15 January 2021.
The table includes columns for the time steps, the security price 𝑃𝑡, the
one-lag value of 𝑃𝑡, the differenced 𝐷𝑡 value, the scaled 𝑁𝑡 variable, and
the lagged values for 𝑁𝑡. To obtain 𝐷𝑡, the one-lag value is subtracted
from 𝑃𝑡 for each time point. This process creates stationary data by
eliminating the upward trend and making the average constant over
time. Stationarity is essential for time series analysis as several models
require data independence. The fifth column contains the scaled 𝐷𝑡 val-
ues, which are transformed into 𝑁𝑡. The scaling process normalizes the
independent variable to a range between 0 and 1. For example, at time
step 𝑡2, 𝐷𝑡 is equal to −2.19, which becomes 0.07 after normalization.3

The target variable is 𝑁𝑡, and the predictors consist of past observa-
tions of 𝑁𝑡, such as 𝑁𝑡−1, 𝑁𝑡−2, 𝑁𝑡−3, and so on, up to 𝑁𝑡−𝑛. The optimal
value of 𝑛 is selected by employing the Akaike Information Criterion
(AIC), which is a widely used metric for model selection (Vrieze, 2012;
Yamaoka, Nakagawa, & Uno, 1978). The value of 𝑛 may vary depending
on the specific dataset, resulting in a different number of features for
each dataset.

After having obtained the predicted time series, we revert the
differencing and scaling process in order to calculate the cost function
described in Section 3.3.

3.2. Machine learning algorithms for price prediction

Once the data has been pre-processed and the relevant lagged
features have been created, they can then be passed to the machine

3 To normalize the 𝐷𝑡 values, we need to identify the minimum and
maximum value for 𝐷𝑡, which are −2.50 and 1.69 respectively. Then, we use
Eq. (3) to normalize the 𝐷𝑡 values. For instance, to normalize 𝐷2, we calculate
the result of 𝑁 = 𝐷𝑡−(−2.50) that is 0.07.
5

𝑡 1.69−(−2.50)
learning algorithms to predict the price of the datasets, which fall
into one of three asset classes, namely REITs, stocks and bonds. More
information about the datasets will be provided in Section 4. The price
thus forms the target variable of this regression task. The objective of
this task is to demonstrate that using machine learning algorithms leads
to a significantly reduced error when predicting the price of a REIT,
stock, or bond.

This study compares the performance of five commonly-used ma-
chine learning algorithms, namely linear regression, support vector
regression, extreme gradient boosting, long/short-term memory neural
network and k-nearest neighbors regression. A brief introduction of
these algorithms is presented in Appendix A.

To apply these machine learning algorithms, we used the following
python libraries: sklearn, xbgoost, and keras. The functions used to fit
the algorithm to the training data include

• sklearn.linear_model.LinearRegression,
• sklearn.svm.SVR
• xgboost
• Sequential
• sklearn.neighbors.KNeighborsRegressor
The parameters included in such functions were determined using

a grid search method, which is described in Section 4. The algorithms
were then fitted to the training data and subsequently applied to the
test set using the predict attribute of the relevant model.

3.3. Cost function

For our regression problem, we use the root mean square error as
cost function, which is presented in Eq. (4):

𝑅𝑀𝑆𝐸 =

√

∑𝑇
𝑡=1(𝑃𝑡 − 𝑃𝑡)2

𝑇
, (4)

where 𝑃𝑡 refers to the actual value of the price, 𝑃𝑡 is its predicted
value, and 𝑇 is the number of observations. Please note that as it was
explained in Section 3.1, the differenced and scaled values are reverted
back to their original price values, so that the cost function can be
calculated. That is why in the above equation we use 𝑃𝑡 and not 𝐷𝑡
or 𝑁𝑡.

3.4. Portfolio optimization via genetic algorithm

Once we have obtained the price predictions, our next step is to
use them as input to a portfolio. As already mentioned, we use three
different asset classes for the portfolio (REITs, stocks, and bonds). Our
objective is to demonstrate that using ML price predictions leads to
better portfolio performance. We will assess portfolios in terms of three
financial metrics, namely Sharpe ratio, returns, and risk.
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Fig. 2. A sample chromosome for a 5-asset portfolio. Each gene (cell) represents a
different asset in the portfolio. The value inside each gene represents the allocated
weight for that particular asset in the portfolio.

To optimize the weights of the assets in the portfolio we use genetic
algorithms (GA) (Goldberg, 1989; Michalewicz, 2013; Mitchell, 1996).
GAs have been applied successfully to a wide range of problems,
including algorithmic trading (Adegboye, Kampouridis, & Otero, 2023),
engineering design (Deb, 2011), financial portfolio optimization (Li,
Liang, Li, & Liu, 2015), and image recognition (Liu, Liu, & Xin, 2002).

The following section provides a brief overview of the GA we have
utilized.

Representation In GAs, the process of initializing the population in-
volves creating a set of initial solutions to the problem at hand. The
population typically consists of chromosomes, each of which represents
a potential solution. In the context of portfolio optimization, for exam-
ple, a chromosome would be comprised of 𝑁 genes that correspond to
the weights of 𝑁 assets in the portfolio. These weights are real numbers
between 0 and 1 and must sum to 1. For instance, let us have a look
at Fig. 2, where a sample chromosome is presented. This chromosome
contains 5 genes (cells), where each gene represents a different asset in
the portfolio. The value inside each gene indicates the allocated weight
for that particular asset in the portfolio. Hence, Asset 1 has a weight of
31%, Asset 2 a weight of 8% Asset 3 a weight of 2%, Asset 4 a weight
of 29%, and Asset 5 a weight of 30%. During population initialization,
each gene is assigned an equal weight (i.e., 𝑊𝑖 = 1∕𝑁 for each asset 𝑖),
and these weights are then updated through a set of operators during
the evolution process.

Operators The GA operators utilized in our approach are elitism, one-
point crossover, and one-point mutation. Considering the limited num-
ber of datasets, one-point crossover and mutation operators are consid-
ered to be adequate (additional details can be found in Section 4). To
maintain the total weight of 1 for all assets, we perform normalization
on each GA individual following the application of the crossover and
mutation operators.

Fitness function Several metrics have been employed as fitness func-
tions for solving portfolio optimization problems in the state-of-the-art
methods. In this study, we employ the Sharpe ratio, which is computed
as the ratio of the difference between the mean return and the risk-free
rate to the standard deviation of the returns, that is,

𝑆 =
𝑟 − 𝑟𝑓
𝜎𝑟

, (5)

where 𝑟 is the average return of the investment, 𝑟𝑓 is the risk-free rate,
and 𝜎𝑟 is the standard deviation of the returns.

The average return of each asset is calculated as the simple average
of the returns of that asset, that is,

𝑟 =
∑𝑇

𝑡=1 𝑟𝑡
𝑇

, (6)

where 𝑟𝑡 is the return observed for each time point 𝑡 and 𝑁 is the
number of observations.

To calculate the return 𝑟𝑡, we need to transform the price time series
to returns through the following formula:

𝑟𝑡 =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
(7)

The standard deviation of returns is calculated as the square root of
the average of the squared differences between the average return and
each observed return follows.

𝜎 =

√

∑𝑇
𝑡=1(𝑟 − 𝑟𝑡)2 . (8)
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𝑟 𝑇
The above three metrics (Sharpe ratio, average return, risk) are
derived from the MPT (see Section 2.2), and are presented for both out-
of-sample over a period, and for out-of-sample one-day-ahead forecast
(see Section 3.3).

4. Experimental setup

Our experiments’ aim is twofold: (a) predict REITs, stocks, and
bonds prices through five machine learning algorithms: linear regres-
sion (LR), support vector regression (SVR), XGBoost, LSTM, and KNN,
and (b) demonstrate the improvements in the performance of a portfo-
lio including stocks, bonds, and REITs that can be achieved by including
ML based predictions.

In the remainder of this section, we will first present the data used
for our experiments, in Section 4.1. We will then discuss the algorithmic
hyperparameter tuning in Section 4.2. Lastly, in Section 4.3 we will
discuss the benchmarks used in our experiments.

4.1. Data

We gathered daily prices for financial instruments belonging to
three asset classes (stocks, bonds, and real estate) and to three countries
(US, UK, and Australia) for the period between January 2019 and July
2021, using the Eikon Refinitiv database. We selected ten stocks, ten
bonds, and ten REITs for each of the three markets, resulting in a
total of 90 datasets (see Table 2). To mitigate the currency risk, we
downloaded all datasets in USD.

It is worth noting that a lot of the datasets’ price series can fluctuate
significantly, particularly stocks and REITs. For example, let us look
at Fig. 3, which presents the US REIT close price time series for the
period between 1st January 2021 and 1st July 2021. As we can observe,
there are high variations in the trend, especially in the lower part of
the distribution. This can of course affect the performance of some
algorithms, particularly ARIMA’s, which is heavily dependent on past
observations.

Table 3 presents summary statistics for the return distributions
grouped by each of the nine asset classes considered. We summa-
rized those return distributions in terms of mean, median, standard
deviation, interquartile range and maximum–minimum range. Each
asset is assigned the same weight inside the asset class. We consider
the training period in calculating the summary statistics. We noticed
that bond rates of return present lower volatility values with respect
to other asset classes, and at the same time, lower average values.
Stock markets tend to be more volatile, and at the same time more
profitable compared to the other asset classes. Real estate returns are
positioned in between in terms of expected return and volatility. For
instance, for the Australian market, bonds present an average return
of 1.97E−04, while REITs have a greater return of 7.35E−04, and
stocks show the greatest return average value of 2.00E−03. In terms
of volatility, bonds show the lowest value at 5.70E−03, while stocks
present the highest value at 2.44E−02, and REITs are positioned in
between with a value of 1.44E−02. This explains the higher return, and
lower risk that portfolios including real estate present with respect to
portfolios including stocks and bonds only (Habbab et al., 2022).

Moreover, in Fig. 4, we present the correlation values between the
different asset classes. As we can observe the real estate asset classes
generally present low correlation with respect to the other asset classes
especially in the case of international investments, explaining the diver-
sification potential, and thus lower risk level, that REITs could bring to
a mixed-asset portfolio (Fig. 4). For instance, the value observed for
correlation between UK REITs and Australian stocks is −0.23. These
values explain why a portfolio including international REIT investments
could reduce the risk of a multi-asset portfolio.

To summarize, our findings indicate that, on average, REITs show
higher returns compared to bonds and lower returns compared to
stocks. This is attributed to a higher risk level when compared to
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Fig. 3. US REIT time series.
Table 2
Eikon Refinitiv tickers for the data sets used.

US UK Australia

Stocks AAPL, AMZN, BRKb, GOOGL, JNJ, META,
MSFT, NVDA, TSLA, UNH

AZN, BATS, BP, DGE, GLEN, GSK, HSBA,
RIO, SHEL, ULVR

ANZ, BHP, CBA, CSL, FMG, MQG, NAB,
WBC, WES, WOW

Bonds AFIF, HOLD, IBMN, IUWAA, JNK, KORP,
LQD, LQDI, NFLT, RIGS

AGPH, CCBO, DTLE, EMDD, EMES, ERNA,
ERNS, FLOS, IHYG, SDHY

CRED, HBRD, IAF, QPON, RCB, RINCINAV,
VACF, VAF, VBND, VGB

REITs AMT, AVB, CCI, DLR, EQIX, PLD, PSA,
SBAC, SPG, WELL

AEWU, AGRP, BLND, BYG, CAL, CREI, CSH,
CTPT, DLN, EPICE

BWP, CHC, DXS, GMG, GOZ, GPT, MGR,
SCG, SGP, VCX
Table 3
Summary statistics for different asset classes.

Average Median Std Dev IQR Max–Min

AU bonds 1.97E−04 3.15E−04 5.70E−03 3.00E−03 9.54E−02
AU REITs 7.35E−04 1.20E−03 1.44E−02 1.87E−02 2.95E−01
AU stocks 2.00E−03 1.80E−03 2.44E−02 2.14E−02 2.59E−01
UK bonds 2.38E−04 3.86E−04 7.90E−03 5.70E−03 1.12E−01
UK REITs 7.11E−05 4.35E−04 2.56E−02 2.14E−02 3.51E−01
UK stocks 1.88E−04 3.83E−05 2.14E−02 1.93E−02 2.61E−01
US bonds 3.11E−04 2.74E−04 8.50E−03 7.70E−03 1.07E−01
US REITs 6.99E−04 7.25E−04 2.59E−02 1.95E−02 3.49E−01
US stocks 1.10E−03 1.20E−03 2.25E−02 1.86E−02 2.40E−01

bonds and a lower risk level when compared to stocks. Essentially,
the return-to-risk profile of the real estate asset class falls between the
other asset classes, allowing for diversification potential in a mixed-
asset portfolio. Additionally, we observed that the returns of REITs
display a low correlation with other asset classes, which helps explain
the reduced risk associated with including REITs in a mixed-asset
portfolio. These two findings confirm that the inclusion of REITs in a
mixed-asset portfolio could potentially reduce the overall risk of that
portfolio, while also increasing its return. Investors look for a greater
diversification which is made possible by investing in asset classes that
have low correlation.

4.2. Experimental parameters tuning

After differencing and scaling each dataset (see Section 3.1), we
split that into three sets: training, which is for the period January
2019–June 2020, and is used to fit a model from each algorithm to
the given data; validation, which is for the period July 2020–December
2020, and is used to tune the hyperparameters of each model; and test,
which is for the period January 2021–July 2021, and is used to assess
the final performance of a previously trained model. During the grid
7

search tuning phase, the validation set was utilized to determine the
experimental hyper-parameters.

To address the price prediction problem (using ML algorithms),
we customized the experimental parameters for each dataset through
tuning. Thus, each dataset has its own unique experimental parameters.
The complete range of parameters for each model can be found in Ta-
ble 4. The Grid Search method in Python was used to select the optimal
parameters. The ranges for parameter values were established based on
the dataset types used. Furthermore, since LR lacks parameters to be
tuned, we did not conduct parameter tuning for this model.

GA parameter values were tuned on the same validation set. The
resulted tuned values are presented in Table 5.

4.3. Benchmarks

In addition to investigating the performance of the five ML al-
gorithms for the problems of price prediction and portfolio weights
optimization, we also explore the performance of three common finan-
cial benchmarks, which are presented next, in Section 4.3.1. Further-
more, for the problem of portfolio optimization, we are also interested
in comparing the algorithms’ performance across different portfolio
techniques. We thus introduce two further benchmarks, which are
presented in Section 4.3.2.

4.3.1. Machine learning benchmarks
Holt’s exponential smoothing The Holt’s Exponential Smoothing (HES)
technique uses the exponential window function to forecast time series
data. The use of an exponential window function was first introduced
by Poisson (Oppenheim & Schafer, 1975) and recommended in the
statistical literature by Brown (1956). Holt (2004) further developed
this technique. Unlike the simple moving average (SMA) technique,
which assigns the same weight to all past observations, HES assigns
exponentially decreasing weights over time. HES employs a window
function to eliminate noise in time series data, that is, observations
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Fig. 4. Correlation matrix between asset classes.
Table 4
ML algorithms and parameters.

Algorithm Parameter Value range

SVR Kernel function ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’
Degree of the kernel function 1, 2, 3
Kernel coefficient (gamma) ‘scale’, ‘auto’
Tolerance for stopping criterion 0.001, 0.01, 0.1
Epsilon 0.1, 0.5, 0.8
Regularization parameter (C) 1.0, 1.5, 2

XGBoost Number of estimators 10, 20, 30
Maximum depth of a tree 3, 4, 5
Minimum child weight 1, 5, 10
Learning rate 0.001, 0.01, 0.1

LSTM Number of epochs Early stopping criterion
Batch size 4, 8, 16
Number of hidden layers 1, 2
Number of neurons 5, 10, 25, 50

KNN Number of neighbors 5, 10, 20
Weights ‘uniform’, ‘distance’
Algorithm ‘auto’, ‘ball_tree’, ‘kd_tree’
Table 5
GA parameters.

Parameter Values

Population size 500
Tournament size 3
Mutation rate 0.1
Number of generations 25

that deviate greatly from the average. If the time series is composed
of 𝑁0, 𝑁1, 𝑁2,… , 𝑁𝑡 points, the function can be expressed as follows.

�̂�0 = 𝑁0 (9)

�̂�𝑡 = 𝛼𝑁𝑡 + (1 − 𝛼)𝑛𝑡−1, (10)

where 𝛼 is the smoothing parameter, and 0 < 𝛼 < 1. The value
for 𝛼 results from a parameter tuning process. The �̂�𝑡 value is a
simple weighted average of the current observation 𝑁 and the previous
8

𝑡

smoothed values 𝑁𝑡−1, where 𝛼 is the weighting factor. Larger values of
𝛼 reduce the level of smoothing, and in the case of 𝛼 = 1 the resulting
time series contains the actual values. Higher values for 𝛼 give more
weight to recent observations, while lower values for 𝛼 have a greater
smoothing effect, and thus assigns less weight to recent observations.
The optimal value for alpha was found within the range [0.1, 0.2, 0.3]
on the training set, and verified on the validation set.

TBATS TBATS is an abbreviation for Trigonometric seasonality, Box–
Cox transformation, ARMA errors, Trend, and Seasonal components.
It refers to a set of models created for fitting seasonal periods. The
basic premise behind these models is that high-frequency data requires
a transformation to be used effectively in fitting a model.

To accomplish this transformation, the Box–Cox method is applied
using an exponential parameter, lambda 𝜆, which can take on any value
between −5 and 5. The optimal value of 𝜆 is determined by the best
approximation of a normal distribution curve. In this study, we fine-
tuned the 𝜆 parameter by identifying the optimal value for 𝜆 based
on the training–validation split. This transforms the time series into
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a stationary state, where statistical properties such as the mean and
standard deviation remain constant over time.

The Box–Cox transformation of 𝑁𝑡 is represented as below:

𝑁𝑡(𝜆) =

{𝑁𝜆
𝑡 −1
𝜆 , if 𝜆 ≠ 0,

log𝑁𝑡, if 𝜆 = 0.
(11)

Regarding the other components, the ARMA (which stands for
utoRegressive Moving Average) errors process attempts to capture

nformation in the residuals. On the other side, the trend component
xplains the long-term change in the average values of a time series.
inally, the seasonal component explains the periodical variation in the
eries (e.g., daily or monthly).

RIMA The Autoregressive Integrated Moving Average (ARIMA) models
re used to study the structure of a time series. These models forecast
he value of a variable (e.g., current market price) by utilizing its
istorical values and the distribution of its errors. ARIMA is frequently
sed in finance for time series prediction and is used as a benchmark
n this study.

An ARIMA model of order (𝑝, 𝑑, 𝑞) consists of three components:
he autoregression model of order 𝑝, differencing of order 𝑑, and the
oving average model of order 𝑞. The mathematical form of ARIMA is

iven by Eq. (12), where 𝑁𝑡 represents the time series.

𝑡 = 𝑐 +
𝑝
∑

𝑖=1
𝜙𝑖𝑁𝑡−𝑖 + 𝜖𝑡 +

𝑞
∑

𝑗=0
𝜃𝑗𝜖𝑡−1 (12)

here 𝜙 denotes the autoregression coefficient, 𝜃 refers to the moving
verage coefficient, and 𝜖 refers to the error rate of the autoregression
odel at each time point.

To determine the appropriate ARIMA model for each training
ataset, we utilized the AIC criterion as mentioned in Section 3.1, and
elected the 𝑝, 𝑑, and 𝑞 order that corresponded to the minimum AIC
alue.

It is important to note that for ARIMA models to be applied, the
ime series being analyzed must be stationary, meaning that its statis-
ical properties remain constant over time. Since many financial time
eries are not stationary, various transformations such as differencing,
ogarithmic transformation, and Box–Cox transformation are required.

.3.2. Additional benchmarks for portfolios
istorical data portfolio. Optimizing weights on the training set (i.e. on
istorical data), rather than the test set which is our proposed method-
logy, is a common approach in the literature (Jones & Trevillion,
022; Lee & Moss, 2018; Parikh & Zhang, 2019). However, a drawback
f this method is that the trained weights might be ‘obsolete’ if the test
et price series significantly varies to the price series of the training
et. Nevertheless, given that this is still a common approach, we are
otivated in using it as a benchmark to demonstrate the benefits of

ur proposed approach.

erfect foresight portfolio This is a theoretical benchmark, as it assumes
erfect price predictions in the test set. The reason for including this
enchmark is to be able to see how closely or how far away is the
L-based portfolio performance to the performance of the theoretical

ortfolio of perfect price predictions. This will assist us in understand-
ng the quality of the performance of our proposed portfolio, and is thus
useful real-world benchmark.

. Results

In this section, we analyze the predictive power of our five ma-
hine learning algorithms in terms of RMSE distributional statistics
Section 5.1), and the implications for the expected returns, risks, and
harpe ratio of a multi-asset portfolio (Section 5.2).
9
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.1. RMSE

In this section, we examine the predictive power of the eight al-
orithms (five ML algorithms and three benchmarks) used against
wo out-of-sample prediction methods. First, we evaluate out-of-sample
redictions over different time periods (30, 60, 90, 120, and 150 days);
econd, we make one-day-ahead predictions over a specific period. In
he first case, the out-of-sample predictions, today’s price (at time-step
) is known and used to predict the price of tomorrow (at time-step 1).
owever, tomorrow’s price is unknown and cannot be used to predict

he price two days ahead (at time-step 2). Hence, we use the price at
ime-step 1 to predict the price at time-step 2, and so on. We call this
ethod the out-of-sample over a period forecast.4 In the second case,

he one-day-ahead prediction, we operate as follows. The price of today
at time-step 0) is known, and is used to predict tomorrow’s price (at
ime-step 1). Then, tomorrow’s price is used to predict the price at time-
tep 2, and so on. We refer to this method as the one-day-ahead over a
eriod forecast.5 Naturally, we expect to obtain lower error rates from
he second technique.

Fig. 5 presents the RMSE results for the three asset classes, over
he 8 algorithms and the 5 different horizons, both for out-of-sample
top) and one-day-ahead (bottom) methods. With regards to the out-
f-sample results, we can observe that all machine learning algo-
ithms experience considerably lower RMSE values than the economet-
ic benchmarks (HES, TBATS, ARIMA), with improvements often being
ore than 50%. This is an important finding, which demonstrates the

trengths of ML algorithms compared to the econometric approaches.
urthermore, we can also observe a tendency of increased RMSE values
s the horizon increases, across all algorithms. Lastly, it is worth noting
hat bonds tend to experience the lowest error (RMSE values up to
round 2), followed by REITs (RMSE value up to around 20), and then
y stocks (RMSE values around 70).

With regards to the one-day-ahead results, we can make similar
bservations: ML errors are again considerably lower than the bench-
arks, and bonds experience the lowest error, followed by REITs,

nd then by stocks. One important difference to the previous (out-of-
ample) results is that one-day-ahead consistently experiences lower
rrors, which is expected, as it was explained earlier. As we can

4 To provide a clearer explanation, let us consider a numerical example.
uppose we are using linear regression with 5 lagged values, meaning we
se the previous five price values as features for prediction. These five data
oints, denoted as 𝑃1, 𝑃2, 𝑃3, 𝑃4, and 𝑃5, have the respective values of 0.07,
, 0.64, 0.79, and 0.60. Let us assume the next two prices, at times 𝑡6 and 𝑡7
i.e. prices 𝑃6 and 𝑃7), represent the test set and have values of 1 and 0.44
espectively. To calculate the out-of-sample prediction at time 𝑡6, we use the
inear regression equation: 𝑃6 = 𝛽0 + 𝛽1 ⋅ 𝑃1 + 𝛽2 ⋅ 𝑃2 + 𝛽3 ⋅ 𝑃3 + 𝛽4 ⋅ 𝑃4 + 𝛽5 ⋅ 𝑃5 =
0+𝛽1 ⋅0.07+𝛽2 ⋅0+𝛽3 ⋅0.64+𝛽4 ⋅0.79+𝛽5 ⋅0.60, where 𝛽0 to 𝛽5 are the coefficients
stimated by the algorithm. Let us assume the algorithm’s prediction 𝑃6 is
.75. Now, to calculate the prediction at time 𝑡7, we consider the prices from
2 to 𝑡5 (i.e. 𝑃2 to 𝑃7), along with the prediction for time 𝑡6 (i.e. 𝑃6, which
as equal to 0.75). Therefore, the price at time 𝑡7 is predicted as: 𝑃7 =
0+𝛽1⋅𝑃2+𝛽2⋅𝑃3+𝛽3⋅𝑃4+𝛽4⋅𝑃5+𝛽5⋅𝐏𝟔 = 𝛽0+𝛽1⋅0+𝛽2⋅0.64+𝛽3⋅0.79+𝛽4⋅0.60+𝛽5⋅0.75.
s we can observe, the last feature was the predicted price 𝑃6 (equal to 0.75),
ather than the actual price 𝑃6 (equal to 1). This is because under the out-
f-sample approach, the actual values are unknown in the test set. Hence, to
ompute our predictions, we use the predicted values from the previous time
teps.

5 Let us again consider a numerical example by using the same data points
s in the previous footnote. The prediction at time 𝑡6 (i.e. 𝑃6) is done in the
ame way as for the out-of-sample prediction method. However, to calculate
he prediction at time step 𝑡7 (i.e. 𝑃7) under the one-day-ahead paradigm, we
se the actual value (i.e. 𝑃6) at time step 𝑡6. Hence, the predicted value is
omputed as follows: P = 𝛽0 + 𝛽1 ⋅ 𝑃2 + 𝛽2 ⋅ 𝑃3 + 𝛽3 ⋅ 𝑃4 + 𝛽4 ⋅ 𝑃5 + 𝛽5 ⋅ 𝑃6 =
0 + 𝛽1 ⋅ 0 + 𝛽2 ⋅ 0.64 + 𝛽3 ⋅ 0.79 + 𝛽4 ⋅ 0.60 + 𝛽5 ⋅ 1. As we can observe, the last
eature was the actual price 𝑃6, and not the predicted 𝑃6, as it happened with
he out-of-sample approach.
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Fig. 5. Comparison of RMSE results.
observe, the highest error per asset class tends to be at least 50% lower
for the one-day-ahead method (REITs: from 20 to 10; Stocks: from 70
to 30, Bonds: from 2 to 1). Lastly, we have provided, for reference,
detailed distribution statistics for all RMSE results in the Appendix,
Tables B.8–B.10.

In order to compare the RMSE results among the different algo-
rithms, we run the Friedman non-parametric test, where we calculated
the average rank of each algorithm—the lower the average rank, the
better the algorithm’s performance. The average rank is based on the
comparison in terms of RMSE values for each dataset among the dif-
ferent algorithms. In addition to the Friedman test, we also performed
the Bonferroni post-hoc test. We present both in Table 6. For each
algorithm, the table shows the average rank (first column), and the
adjusted 𝑝-value of the statistical test when that algorithm’s average
rank is compared to the average rank of the algorithm with the best
rank (control algorithm) according to Bonferroni’s post-hoc test (second
column) (Demšar, 2006; Garcia & Herrera, 2008). When statistically
significant differences between the average ranks of an algorithm and
the control algorithm at the 5% level (𝑝 ≤ 0.05) are observed, the
relevant 𝑝-value is put in bold face. The statistical tests were conducted
for all different setups, i.e., the combined results of different horizons
(30-, 60- 90-, 120-, and 150-days), over both the one-day-ahead and
out-of-sample experiments.

We can observe that the best (control) algorithm is KNN which
statistically outperforms LSTM, LR, HES, TBATS, and ARIMA (given
p-values equal to 1.86E−05; 6.83E−08; 5.76E−24; 5.76E−24; and
3.58E−45, respectively). The other algorithms (i.e., SVR and XGBoost)
can be considered not to be statistically significantly different than KNN
(given p-values equal to 5.62 and 0.76, respectively).

In conclusion, we observed that the RMSE distributions tend to be
lower on average for ML algorithms than for benchmark algorithms,
10
Table 6
Statistical test results according to the non-parametric Friedman test with the Bon-
ferroni’s post-hoc test RMSE distributions. Values in bold represent a statistically
significant difference at the 5% significance level.

Algorithm Average rank 𝑝𝐵𝑜𝑛𝑓
KNN (c) 2.88 –
SVR 2.91 5.62
XGBoost 3.07 0.76
LSTM 3.42 1.86E−05
LR 3.54 6.83E−08
HES 6.46 5.76E−24
TBATS 6.46 5.76E−24
ARIMA 7.26 3.58E−45

with better results observed for one-day-ahead prediction (as expected).
We also noticed that the lowest average RMSE values are observed
for bonds, followed by REITs and stocks. This is explained by the
lower volatility featuring bond prices that we have already discussed
in Section 4.1. In the case of REITs, the RMSE distributions tend to
have higher averages than for bonds but lower than for stocks. This is
due to the financial structure of REIT prices which is between that of
bonds and stocks in terms of risk and return. According to the Friedman
test results, KNN is the best algorithm in predicting the prices of REITs,
stocks and bonds both one-day-ahead and out-of-sample.

5.2. Portfolio optimization

In this section, we present results for the genetic algorithm (GA)
applied to portfolio allocation considering a transaction cost of 0.02%.
After calculating the optimal weights, we obtain the distribution for ex-
pected returns, expected risks and Sharpe ratio for each of the datasets.
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Fig. 6. Comparison of portfolio results. For reference, the perfect foresight values for returns are 4.16E−03 (30 days), 4.07E−03 (60 days), 4.56E−03 (90 days), 3.85E−03 (120
days), and 3.78E−03 (150 days). The perfect foresight values for risk are 1.14E−03 (30 days), 2.42E−03 (60 days), 2.51E−03 (90 days), 2.58E−03 (120 days), and 2.34E−03 (150
days). The perfect foresight values for Sharpe ratio are 4.04E−02 (30 days), 3.72E−02 (60 days), 3.72E−02 (90 days), 3.29E−02 (120 days), and 3.23E−02 (150 days).
The ML models are compared to the benchmarks (HES, TBATS, and
ARIMA), to the historical data method, and to the theoretical perfect
foresight approach. In the case of historical data, portfolio optimization
is performed on the training set, while the expected portfolio metrics
are obtained using data from the testing set. Under the perfect foresight
approach, the portfolio optimization takes place on the testing set.

Fig. 6 presents the expected return distributions (left), expected
portfolio risk (middle), and expected Sharpe ratio (right) obtained from
the GA portfolio optimization task for a 30-, 60-, 90-, 120-, and 150-day
holding period, for out-of-sample (top) and one-day-ahead (bottom).
With regards to the portfolio returns, we can observe that for the out-
of-sample method the machine learning algorithms yield higher returns
across all holding periods when compared to the benchmark methods
and the historical data approach. The highest average daily return for
the 30 days is achieved by LSTM and SVR (1.44E−03), followed by KNN
(1.43E−03). In the case of one-day-ahead predictions for the same hold-
ing period, the expected daily return is higher for all the algorithms,
with the highest values achieve by LSTM (2.72E−03). For reference, the
average return for the theoretical benchmark of the perfect foresight is
4.16E−03. It is also worth noting that all algorithms (except TBATS in
the case of out-of-sample prediction) outperform the historical method,
which showcases the importance of making price predictions in the test
set, rather than simply applying the weights obtained in the training
set directly to the test set. There is of course room for even greater
improvements, given that the ‘ceiling’ of the perfect foresight is around
57% higher than LSTM’s average daily return of 2.72E−03 (for the
one-day-ahead method), showing that there are significant research
potentials in this area. Lastly, as the horizon period increases to 60 days
and higher, we observe similar improvements in the performance of the
ML algorithms with respect to the benchmarks. For reference, we have
provided detailed tables for returns, as well as risk and Sharpe ratio
distributions, in the Appendix, in Tables B.11–B.13.
11
With regards to portfolio risks, we can generally observe that it
tends to be higher for benchmarks with respect to the ML algorithms
and the historical approach. However, there are some other cases, par-
ticularly in the out-of-sample method, where the econometric bench-
marks and the historical data approach outperform the machine learn-
ing algorithms. Nevertheless, it is worth noting that the majority of
these differences is not significant.6 Furthermore, we can observe that
the risk levels achieved by a perfect foresight-based portfolio (presented
in the caption of Fig. 6) are closely achieved by most of the portfolios
built using one-day-ahead predictions. In the case of out-of-sample
predictions, the relative difference between the risk value achieved by
the best algorithm and the perfect foresight case is around 6% (TBATS)
for a 30-day period, 15% (historical data approach) for a 60-day period,
5% (historical data approach) for a 90-day period, 12% (TBATS) for
a 120-day period, and 6% (TBATS) for a 150 day period. This is an
important observation, as it demonstrates that the above results are
very close to the best possible risk performance that can be achieved,
as shown in the theoretical case of perfect foresight.

Lastly, when looking at the Sharpe ratio results of Fig. 6, we can ob-
serve that all ML algorithms outperform the benchmarks for all periods
in both cases of out-of-sample and one-day-ahead predictions. In many
cases, the differences in Sharpe ratio values are quite noticeable, e.g. for
both out-of-sample and one-step ahead the econometric benchmarks
(HES, TBATS, ARIMA) appear to have at least 50% lower values than
the ML algorithms. This is an important observation, because it demon-
strates the importance of using machine learning for price predictions
instead of traditional econometric approaches.

To investigate if the above results are statistically significant, we
again performed a Friedman test at the 5% significance level, along

6 This becomes evident when we have a look at the Friedman ranking,
which is presented in Table 7.
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Table 7
Statistical test results according to the non-parametric Friedman test with the Bonferroni post-hoc for expected returns (left), expected risks (middle) and expected Sharpe ratios
(right). Values in bold represent a statistically significant difference.

(a) Return (b) Risk (c) Sharpe ratio

Algorithm Average rank 𝑝Bonf Algorithm Average rank 𝑝Bonf Algorithm Average rank 𝑝Bonf

LSTM (c) 2.97 – XGBoost (c) 4.26 – SVR (c) 2.63 –
SVR 2.99 6.71 KNN 4.32 6.35 LSTM 2.82 1.06
KNN 3.30 0.05 SVR 4.42 2.31 KNN 2.96 0.06
XGBoost 3.49 1.40E−04 LR 4.42 2.25 LR 3.42 9.94E−10
LR 4.06 2.14E−18 LSTM 4.44 1.67 XGBoost 3.49 2.21E−11
ARIMA 4.88 1.98E−54 HistData 4.53 0.37 ARIMA 7.02 1.05E−279
HistData 7.35 3.25E−280 TBATS 4.84 4.51E−05 HES 7.05 2.84E−283
HES 7.80 0 HES 4.89 6.80E−06 TBATS 7.61 0
TBATS 8.15 0 ARIMA 8.87 0 HistData 8 0
with the Bonferroni post-hoc test. We present these results in Table 7
for returns (left), risk (middle), and Sharpe ratio (right). With regards
to returns, LSTM has the best rank (2.97), followed by SVR (2.99),
and KNN (3.30). Given a 5% significance level, LSTM statistically
outperforms XGBoost (𝑝-value equal to 1.40E−04), LR (𝑝-value equal to
.14E−18), ARIMA (𝑝-value equal to 1.98E−54), the historical method
𝑝-value equal to 3.25E−280), HES (𝑝-value equal to 0), and TBATS

(𝑝-value equal to 0). On the other side, there is no statistical difference
between LSTM and SVR (𝑝-value equal to 6.71) and KNN (0.05).

With regards to risk, we can observe that XGBoost has the best
rank (4.26), followed by KNN (4.32), and SVR (4.42). Given a 5%
significance level, LSTM statistically outperforms TBATS (𝑝-value equal
o 4.51E−05), HES (𝑝-value equal to 6.80E−06), and ARIMA (𝑝-value

equal to 0). On the other side, there is no statistical significance in the
results between XGBoost and KNN (𝑝-value equal to 6.35), SVR (𝑝-value
equal to 2.31), LR (𝑝-value equal to 2.25), LSTM (𝑝-value equal to 1.67),
and the historical data approach (𝑝-value equal to 0.37).

With regards to Sharpe ratio, SVR has the best rank (2.63) followed
by LSTM (2.82) and KNN (2.96). In addition, we observe that KNN
statistically outperforms LR (𝑝-value equal to 9.94E−10), XGBoost (𝑝-
value equal to 2.21E−11), ARIMA (𝑝-value equal to 1.05E−279), HES
(𝑝-value equal to 2.84E−283), TBATS (𝑝-value equal to 0), and the
historical data approach (𝑝-value equal to 0). Lastly, it is worth noting
that all algorithms have a higher rank compared to the historical
method which showcases the importance of including price predictions
in order to improve the risk-adjusted performance of a mixed-asset
portfolio.

5.3. Computational times

The computational times of most algorithms were found to be
comparable. On average, ARIMA took approximately 0.168 min to run,
while LR, SVR, and KNN took between 0.2 and 0.3 min. LSTM was the
most computationally expensive algorithm, taking around 1.818 min
to run. With regards to the genetic algorithm, a single run took around
0.3 min to complete. Generally, we can observe that all of the runtimes
are relatively fast. In addition, given that all of them are typically run
offline, and only their trained models are used in the real world, these
time differences are not considered significant. Besides, parallelization
techniques can be employed to reduce the computational time of these
algorithms (Brookhouse, Otero, & Kampouridis, 2014).

5.4. Discussion

From the above results, we can summarize our findings as follows.

Machine learning algorithms are able to outperform econometric approaches
for price prediction. The initial objective of our experiments was to
compare the performance of ML models against our benchmark models,
namely HES, TBATS, and ARIMA, in terms of their predictive power
measured by RMSE. The experimental results showed that the RMSE
12

distributions of the ML models tend to have lower average values
and lower volatility than those of the benchmark models. The Fried-
man tests further revealed that KNN, SVR, and XGBoost ranked first,
second, and third, respectively, outperforming the other models, indi-
cating their superior ability to make one-day-ahead and out-of-sample
predictions compared to the statistical tools.

REITs’ low volatility leads to improved price predictions. We observed
that volatility affects price prediction results. More specifically, the
predictive ability of the different algorithms tends to improve for bonds,
which can be attributed to the lower price volatility for this asset
class. In the case of REITs, the RMSE distributions show lower averages
compared to stocks for all periods. This is due to a lower volatility that
features REITs time series, as we have already discussed in Section 4.1.

Portfolios using prices predicted by ML algorithms lead to better perfor-
mance. The second objective of our experiments was to compare the
performance of portfolios derived from ML-based predictions with that
of portfolios obtained from HES-, TBATS-, and ARIMA-based predic-
tions (benchmarks), as well as a portfolio obtained from historical data.
According to our findings, ML-based predictions increased the expected
Sharpe ratio level compared to the historical data situation, mostly due
to the increase in expected return levels rather than expected risk levels,
which were also low for some of the benchmark algorithms. Having
very good performance in terms of Sharpe ratio is paramount, because
it is an aggregate metric that takes into account both returns and risk.
It is also worth noting that practitioners pay particular attention to
such aggregate metrics, thus the ML algorithms’ superior performance
in Sharpe ratio is a very positive result.

The inclusion of REITs into mixed-asset portfolios leads to better diver-
sification results. Fig. 7 displays the optimal weights of a portfolio
constructed using SVR (the best ranked algorithm according to the
Friedman test) out-of-sample price predictions. It is evident that the
highest weight is assigned to UK stocks (44.27%), US bonds (24.07%),
and UK REITs (20.78%). Such allocation aids in enhancing the final
portfolio’s performance, and is consistent with the one suggested by
previous studies (Chen, Lee, & Lee, 2019; Li & Stevenson, 2018; Smith
& Johnson, 2021). This underscores the importance of including REITs
in mixed-asset portfolios due to the diversification potential of this
asset class. In other words, the higher accuracy of out-of-sample pre-
dictions for REITs time series contributes to the construction of less
risky portfolios and may be a signal of better risk-adjusted portfolio
performance.

The risk-adjusted performance of a portfolio obtained from ML predictions
appear to be higher compared to the portfolio obtained from historical data
and benchmark price predictions for all time horizons. We noticed that
the average Sharpe ratio resulting from SVR predictions is the highest
for a 30-day period, while the highest value is observed for XGBoost for
a 60-day period, SVR for a 90-day period, LSTM (in the case of out-of-
sample predictions) and LR (in the case of one-day-ahead predictions)
for a 120-day period, and XGBoost for a 150-day period. As expected,
the one-day-ahead predictions lead to better results in terms of Sharpe

ratio compared to the out-of-sample predictions due to generally lower
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Fig. 7. SVR-GA portfolio weights.

RMSE values for all time horizons. But as we have noticed, there is still
some potential improvement in the portfolio performance that can be
achieved by the ML algorithms.

6. Conclusion

To conclude, this work contributed to the current literature about
multi-asset portfolio optimization including REITs by incorporating
price predictions through the use of machine learning algorithms,
rather than relying on historical prices, which is the usual practice.
Our experimental findings suggest that ML models outperform the
commonly used econometric benchmarks (HES, TBATS, ARIMA) when
applied to one-day-ahead and out-of-sample price predictions over 30-,
60-, 90-, 120-, and 150-day periods, due to the lower average RMSE
values observed for ML algorithms. Among the ML algorithms, KNN,
SVR, and XGBoost performed the best and showed a statistically signif-
icant difference compared to LSTM and LR. Furthermore, our results
demonstrate that ML-based predictions yield better results in terms
of mixed-asset portfolio performance, considering all three metrics
of return, risk, and Sharpe ratio. Finally, our analysis highlights the
significance of incorporating REITs in such portfolios, as it aids in
diversification, maximizes returns, and reduces risk.

The focus of future work will be to improve the predictive capabil-
ities of the machine learning models by incorporating more algorithms
and additional features. Our findings suggest that there is potential
to enhance portfolio performance beyond the hypothetical scenario of
perfect foresight. Since our study relied only on lagged features, such as
normalized prices at time step 𝑡−1, it would be valuable to investigate
the impact of incorporating other variables, including technical analysis
indicators.
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Appendix A. Brief introduction on the machine learning algo-
rithms used in this article

The algorithms considered in this study are: Ordinary Least Squares
Linear Regression (or LR), Support Vector Regression (or SVR), k-
Nearest Neighbor (or KNN), Extreme Gradient Boosting (or XGBoost),
and Long-Short Term Memory Neural Networks (or LSTM).

LR is a modeling technique that aims to find a linear relationship
between the dependent variable (price) and independent variables
(features).

The LR equation for price prediction is given by:

Price = 𝛽0 + 𝛽1 ⋅ Feature1 + 𝛽2 ⋅ Feature2 +⋯ + 𝛽𝑇 ⋅ Feature𝑇 (13)

Here, we are predicting the price using a linear combination of the
features. Let us break down the components:

• Price: This represents the dependent variable, which is the vari-
able we want to predict. In the context of price prediction, it could
represent the price of a security, such as a stock, bond, or REIT
share.

• 𝛽0: This is the y-intercept or the constant term. It represents the
baseline value of the dependent variable when all the indepen-
dent variables are zero.

• 𝛽1, 𝛽2,… , 𝛽𝑇 : These are the coefficients corresponding to the inde-
pendent variables Feature1, Feature2,… , Feature𝑇 , respectively.
Each coefficient represents the change in the dependent variable
for each unit change in the respective independent variable.

The LR equation allows us to estimate the relationship between the
features and the price. By estimating the coefficients (𝛽 values), we can
determine the impact of each feature on the predicted price.

SVR is a machine learning technique that can handle both linear
and non-linear relationships between the dependent variable (price)
and independent variables (features).

The SVR equation for price prediction is given by:

Price =
𝑇
∑

𝑡=1
𝛼𝑡𝐾(𝐍𝑡,𝐍) + 𝑏 (14)

Here, we are predicting the price using a linear combination of the
kernel evaluations between the training instances and the new instance
𝐍. Let us break down the components:

• Price: This represents the dependent variable, which is the vari-
able we want to predict. In the context of price prediction, it could
represent the price of a house, a product, or any other relevant
variable.

• 𝛼𝑡: These are the Lagrange multipliers, determined during the
training process of the SVR model. They control the contribution
of each training instance to the prediction.

• 𝐾(𝐍𝑡,𝐍): This is the kernel function that measures the similarity
between two instances 𝐍𝑡 (training instance) and 𝐍 (new in-
stance). The choice of kernel depends on the problem at hand
and can be linear, polynomial, Gaussian (RBF), or other types.

• 𝑏: This is the bias term, which accounts for any translation in the
predicted values. It allows the regression line to fit the data more
flexibly.
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Table B.8
RMSE summary statistics for REITs. Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 21.77 40.15 2.53 6.94 6.47 14.23 3.89 17.45
TBATS 21.77 40.15 2.53 6.94 6.47 14.23 3.89 17.45
ARIMA 21.47 38.98 2.44 6.29 6.69 14.68 3.89 17.46
LR 5.60 12.49 3.98 18.16 1.04 2.10 3.97 18.49
SVR 5.59 12.45 3.97 18.13 1.02 2.01 3.84 17.51
KNN 5.61 12.53 4.00 18.38 1.03 2.04 3.88 17.77
XGBoost 5.60 12.49 3.98 18.19 1.02 2.00 3.82 17.35
LSTM 5.60 12.57 4.00 18.33 1.08 2.16 3.91 18.03

60 days

HES 16.87 35.63 3.61 15.17 10.28 24.67 3.74 15.69
TBATS 16.87 35.63 3.61 15.17 10.28 24.67 3.74 15.69
ARIMA 17.08 35.82 3.57 14.89 10.60 25.29 3.71 15.38
LR 7.47 14.79 3.37 13.61 2.40 5.76 3.50 12.44
SVR 7.46 14.75 3.37 13.58 2.40 5.76 3.50 12.44
KNN 7.48 14.82 3.38 13.72 2.39 5.75 3.48 12.23
XGBoost 7.49 14.87 3.39 13.70 2.39 5.75 3.49 12.37
LSTM 7.56 14.50 3.20 12.19 2.40 5.75 3.49 12.37

90 days

HES 20.82 35.66 2.05 3.78 9.30 17.45 2.76 8.59
TBATS 21.28 36.75 2.11 4.11 9.30 17.45 2.76 8.59
ARIMA 20.81 35.67 2.06 3.78 9.47 17.78 2.77 8.69
LR 9.70 19.79 3.25 12.28 1.15 2.18 3.53 15.09
SVR 9.69 19.73 3.24 12.25 1.13 2.12 3.48 14.77
KNN 9.70 19.74 3.23 12.18 1.13 2.12 3.48 14.77
XGBoost 9.70 19.78 3.25 12.27 1.13 2.13 3.49 14.83
LSTM 9.72 19.86 3.25 12.30 1.14 2.16 3.50 14.89

120 days

HES 22.91 35.97 1.54 1.36 9.83 15.19 1.61 1.82
TBATS 22.91 35.97 1.54 1.36 9.83 15.19 1.61 1.82
ARIMA 22.88 35.95 1.54 1.35 10.01 15.51 1.64 2.00
LR 10.96 16.75 1.58 1.81 1.16 2.22 3.55 15.26
SVR 10.95 16.73 1.58 1.80 1.14 2.16 3.49 14.80
KNN 10.97 16.79 1.59 1.83 1.14 2.16 3.50 14.83
XGBoost 10.95 16.75 1.58 1.82 1.14 2.16 3.50 14.86
LSTM 10.99 16.81 1.58 1.82 1.17 2.23 3.53 15.10

150 days

HES 17.32 27.37 1.73 2.14 7.91 12.70 1.97 3.72
TBATS 17.32 27.37 1.73 2.14 7.91 12.70 1.97 3.72
ARIMA 16.91 26.80 1.76 2.30 8.07 13.00 1.99 3.89
LR 8.00 12.91 1.99 3.84 1.16 2.19 3.51 14.98
SVR 8.00 12.91 1.99 3.81 1.15 2.16 3.48 14.77
KNN 8.02 12.96 1.99 3.84 1.15 2.16 3.49 14.78
XGBoost 8.00 12.91 1.99 3.85 1.15 2.17 3.50 14.91
LSTM 8.00 12.92 2.00 3.88 1.16 2.18 3.50 14.87
b
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The SVR equation enables us to estimate the relationship between
he features and the price by constructing a hyperplane that maximizes
he margin around the predicted values. It finds the optimal weights
𝑡 and bias 𝑏 to minimize the prediction error while satisfying the
pecified tolerance.

KNN is a non-parametric machine learning algorithm that relies on
he similarity between instances to make predictions.

The KNN regression equation for price prediction is given by:

rice = 1
𝑇

𝑇
∑

𝑡=1
Price𝑡 (15)

Here, we are predicting the price by taking the average of the prices
f the t nearest neighbors. Let us break down the components:

• Price: This represents the dependent variable, which is the vari-
able we want to predict.

• Price𝑡: These are the prices of the t nearest neighbors to the
instance we want to predict. The t nearest neighbors are chosen
14

based on a distance metric, such as Euclidean distance. e
• 𝑡: This is the number of nearest neighbors to consider in the
prediction. It is a hyperparameter that needs to be specified in
advance.

The KNN regression equation allows us to estimate the relationship
etween the features and the price by finding the most similar in-
tances in the training dataset. By averaging the prices of the k nearest
eighbors, we obtain the predicted price for the new instance.

XGBoost is a powerful gradient boosting algorithm that can handle
omplex relationships and has gained popularity in various machine
earning competitions.

The XGBoost regression equation for price prediction is given by:

rice =
𝑇
∑

𝑡=1
𝑓𝑡(𝐍) (16)

Here, we are predicting the price by summing the outputs of mul-
iple individual regression trees 𝑓𝑡(𝐍). Each tree represents a weak
earner that captures a different aspect of the relationship between the
eatures and the price.

XGBoost builds the regression model in a stage-wise manner, where

ach new tree is trained to correct the residuals of the previous trees.
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Table B.9
RMSE summary statistics for stocks. Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 41.21 100.20 4.25 20.12 11.36 26.54 3.84 16.04
TBATS 41.21 100.20 4.25 20.12 11.36 26.54 3.84 16.04
ARIMA 41.47 100.15 4.16 19.29 11.72 27.15 3.81 15.80
LR 9.19 20.62 3.76 15.61 2.28 4.38 3.43 12.14
SVR 9.16 20.51 3.76 15.60 2.29 4.44 3.51 12.84
KNN 9.21 20.66 3.75 15.50 2.30 4.45 3.46 12.32
XGBOOST 9.19 20.58 3.75 15.54 2.30 4.48 3.49 12.59
LSTM 9.11 20.21 3.71 15.19 2.31 4.39 3.43 12.22

60 days

HES 30.29 71.90 4.69 23.83 12.38 24.16 3.73 15.82
TBATS 30.29 71.90 4.69 23.83 12.38 24.16 3.73 15.82
ARIMA 31.30 75.72 4.74 24.26 12.73 24.77 3.70 15.52
LR 12.34 23.85 3.44 13.18 2.77 5.64 3.54 12.73
SVR 12.32 23.75 3.42 12.99 2.77 5.64 3.53 12.61
KNN 12.30 23.80 3.45 13.24 2.76 5.63 3.52 12.52
XGBOOST 12.31 23.75 3.43 13.09 2.77 5.63 3.53 12.67
LSTM 12.29 23.67 3.41 12.95 2.77 5.63 3.53 12.67

90 days

HES 42.37 98.42 3.55 13.60 18.72 44.32 4.36 20.98
TBATS 42.85 100.01 3.62 14.23 18.72 44.32 4.36 20.98
ARIMA 42.37 98.45 3.54 13.59 19.08 44.93 4.34 20.80
LR 19.45 43.66 3.84 16.33 3.25 6.97 3.51 12.09
SVR 19.45 43.63 3.83 16.26 3.35 7.31 3.46 11.38
KNN 19.39 43.57 3.85 16.42 3.24 6.96 3.51 11.98
XGBOOST 19.44 43.61 3.84 16.30 3.25 7.00 3.53 12.21
LSTM 19.44 43.53 3.81 16.07 3.25 6.97 3.51 11.99

120 days

HES 62.94 192.98 4.96 25.76 28.82 81.52 4.25 18.94
TBATS 62.94 192.98 4.96 25.76 28.82 81.52 4.25 18.94
ARIMA 62.76 193.89 5.01 26.24 29.20 82.25 4.24 18.83
LR 28.90 85.13 4.74 23.70 3.39 7.47 3.59 12.64
SVR 28.87 84.97 4.73 23.65 3.45 7.70 3.52 11.87
KNN 28.82 84.91 4.74 23.72 3.36 7.43 3.59 12.69
XGBOOST 28.88 85.06 4.74 23.70 3.39 7.49 3.58 12.52
LSTM 28.89 85.01 4.72 23.58 3.36 7.39 3.58 12.58

150 days

HES 71.50 190.19 4.53 21.83 29.09 75.40 4.50 21.46
TBATS 71.50 190.19 4.53 21.83 29.09 75.40 4.50 21.46
ARIMA 71.46 190.44 4.55 22.02 28.78 75.06 4.62 22.68
LR 28.62 75.28 4.61 22.55 3.28 7.15 3.53 12.05
SVR 28.55 75.08 4.61 22.56 3.28 7.18 3.52 11.88
KNN 28.58 75.07 4.60 22.45 3.27 7.13 3.54 12.10
XGBoost 28.62 75.24 4.60 22.52 3.27 7.15 3.54 12.16
LSTM 28.46 74.86 4.62 22.63 3.27 7.13 3.53 12.00
This allows XGBoost to handle non-linear relationships, interactions
between features, and perform feature selection.

The final prediction is obtained by summing the outputs of all
the individual trees. XGBoost employs regularization techniques such
as shrinkage, tree depth control, and column subsampling to prevent
overfitting and improve generalization performance.

LSTM is a type of recurrent neural network (RNN) that can capture
long-term dependencies and patterns in sequential data.

The LSTM regression equation for price prediction is given by:

Price𝑡 = 𝑓 (Price𝑡−1,Price𝑡−2,… ,Price𝑡−𝑛, Feature𝑡−1,
Feature𝑡−2,… , Feature𝑡−𝑇 )

(17)

Here, we are predicting the price at time step 𝑡 based on the
revious 𝑇 prices and corresponding features. Let us break down the
omponents:

• Price𝑡: This represents the price at time step 𝑡, which is the
variable we want to predict.

• Price𝑡−1,Price𝑡−2,… ,Price𝑡−𝑇 : These are the previous 𝑇 prices
leading up to time step 𝑡.
15
• Feature𝑡−1, Feature𝑡−2,… , Feature𝑡−𝑇 : These are the corresponding
features at each time step, if available.

• 𝑓 (⋅): This function represents the mapping from the input se-
quence of prices and features to the predicted price at time step 𝑡.
It is modeled by the LSTM network, which consists of LSTM cells
and trainable parameters.

LSTM networks are well-suited for capturing complex temporal
patterns in price data. The network learns to recognize relevant patterns
in the historical prices and features, allowing it to make predictions
for future time steps. The training process involves optimizing the
network’s parameters to minimize the prediction error.

Appendix B. Supplementary tables for results for REITs, stocks,
and bonds

In this section, we present summary statistics, namely mean, stan-
dard deviation, skewness and kurtosis for all RMSE and portfolio re-
sults.
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Table B.10
RMSE summary statistics for bonds. Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 1.22 1.48 1.73 2.54 0.48 0.57 2.24 6.23
TBATS 1.16 1.37 1.67 2.34 0.48 0.57 2.24 6.23
ARIMA 1.22 1.48 1.72 2.53 0.51 0.60 2.10 5.34
LR 0.51 0.56 1.46 1.54 0.17 0.18 1.09 −0.17
SVR 0.51 0.56 1.47 1.60 0.17 0.18 1.09 −0.17
KNN 0.51 0.56 1.48 1.64 0.17 0.18 1.11 −0.08
XGBoost 0.51 0.56 1.45 1.50 0.17 0.18 1.09 −0.14
LSTM 0.52 0.56 1.47 1.57 0.18 0.18 1.14 0.03

60 days

HES 0.93 1.24 1.98 3.25 0.60 0.68 1.39 0.92
TBATS 0.93 1.24 1.98 3.25 0.60 0.68 1.39 0.92
ARIMA 0.96 1.29 1.95 3.14 0.62 0.69 1.38 0.87
LR 0.58 0.73 1.87 2.93 0.17 0.17 1.16 0.32
SVR 0.58 0.73 1.89 3.04 0.17 0.17 1.14 0.24
KNN 0.58 0.73 1.88 2.99 0.17 0.17 1.16 0.33
XGBoost 0.58 0.73 1.86 2.88 0.17 0.17 1.17 0.38
LSTM 0.59 0.74 1.83 2.70 0.18 0.18 1.15 0.22

90 days

HES 1.74 2.05 1.53 1.70 0.85 0.86 1.12 0.38
TBATS 1.74 2.05 1.53 1.70 0.85 0.86 1.12 0.38
ARIMA 1.72 2.02 1.54 1.71 0.87 0.88 1.10 0.31
LR 0.87 0.89 1.14 0.45 0.20 0.20 1.04 0.04
SVR 0.87 0.89 1.13 0.43 0.20 0.20 1.06 0.22
KNN 0.87 0.89 1.13 0.41 0.20 0.19 1.00 −0.09
XGBoost 0.87 0.90 1.14 0.42 0.20 0.20 1.05 0.11
LSTM 0.88 0.90 1.15 0.46 0.20 0.20 1.03 0.01

120 days

HES 2.05 2.48 1.25 0.09 0.99 1.19 1.48 1.10
TBATS 2.05 2.48 1.25 0.09 0.99 1.19 1.48 1.10
ARIMA 2.07 2.51 1.27 0.16 1.01 1.20 1.46 1.03
LR 0.94 1.12 1.58 1.79 0.19 0.19 1.04 −0.01
SVR 0.93 1.10 1.55 1.62 0.19 0.19 1.02 −0.08
KNN 0.93 1.12 1.59 1.79 0.19 0.18 1.01 −0.11
XGBoost 0.94 1.12 1.58 1.75 0.20 0.20 1.15 0.40
LSTM 0.94 1.12 1.54 1.56 0.20 0.19 1.03 −0.05

150 days

HES 1.79 2.37 2.15 4.60 1.03 1.28 2.09 4.01
TBATS 1.79 2.37 2.15 4.60 1.03 1.28 2.09 4.01
ARIMA 1.83 2.41 2.16 4.65 1.05 1.29 2.07 3.96
LR 1.03 1.26 2.06 4.13 0.20 0.19 1.03 −0.11
SVR 1.03 1.26 2.07 4.15 0.19 0.19 1.00 −0.21
KNN 1.04 1.26 2.06 4.13 0.20 0.19 1.03 −0.06
XGBoost 1.03 1.26 2.06 4.13 0.20 0.19 1.03 −0.06
LSTM 1.04 1.25 2.09 4.26 0.20 0.19 1.00 −0.18
16
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Table B.11
Expected portfolio return summary statistics. For reference, the perfect foresight values are 4.16E−03 (30 days), 4.07E−03 (60 days), 4.56E−03 (90
days), 3.85E−03 (120 days), and 3.78E−03 (150 days). Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 9.06E−04 1.78E−06 6.45 42.24 9.62E−04 1.79E−04 −0.95 13.5
TBATS 1.93E−04 7.73E−05 7.74 64.27 9.02E−04 3.79E−04 7.21 64.12
ARIMA 6.73E−04 2.85E−05 −9.16 89.52 1.25E−03 4.35E−04 −0.2 −0.84
LR 1.12E−03 4.75E−06 −1.52 7.10 1.31E−03 3.52E−04 −0.27 5.89
SVR 1.44E−03 4.92E−04 0.34 −1.15 2.01E−03 3.95E−04 6.12 54.35
KNN 1.43E−03 1.25E−05 −1.91 2.06 1.41E−03 2.95E−04 1.15 12.11
XGBoost 1.23E−03 5.04E−04 0.04 0.63 1.47E−03 1.50E−04 −0.85 13.86
LSTM 1.44E−03 1.69E−04 0.22 1.09 2.72E−03 2.37E−04 −2.37 23.91
HistData 6.68E−04 1.56E−05 0.26 3.93 6.68E−04 1.56E−05 0.26 3.93

60 days

HES 3.81E−04 2.33E−06 4.65 34.48 6.90E−04 1.55E−04 6.03 47.52
TBATS 2.40E−04 2.78E−05 2.99 28.45 2.84E−04 1.34E−04 5.6 33.24
ARIMA 6.72E−04 7.48E−05 2.18 3.74 2.12E−03 2.16E−04 −4.15 20.26
LR 8.40E−04 3.49E−04 2.81 7.89 1.86E−03 1.97E−04 1.12 9.39
SVR 1.52E−03 6.36E−04 2.34 5.32 1.88E−03 1.90E−04 −1.11 19.89
KNN 1.02E−03 9.18E−05 2.18 5.90 1.75E−03 2.17E−04 −1.75 16.76
XGBoost 1.58E−03 6.06E−04 1.67 3.36 2.07E−03 2.28E−04 −2.55 9.31
LSTM 1.26E−03 4.09E−05 3.83 22.53 1.45E−03 4.50E−04 1.57 1.88
HistData 7.00E−04 1.46E−05 −3.09 13.13 7.00E−04 1.46E−05 −3.09 13.13

90 days

HES 6.49E−04 4.14E−06 4.40 18.73 9.84E−04 1.73E−04 −0.27 17.24
TBATS 1.70E−04 1.39E−05 5.66 41.16 9.62E−04 1.48E−04 −4.24 22.63
ARIMA 3.92E−04 6.81E−05 2.85 8.08 1.91E−03 1.73E−04 −3.12 16.22
LR 8.21E−04 2.08E−04 3.08 11.57 1.74E−03 2.06E−04 −1.07 5.51
SVR 1.35E−03 4.26E−04 −0.35 0.56 1.91E−03 1.77E−04 −4.8 23.04
KNN 1.70E−03 2.38E−04 −1.93 3.70 1.85E−03 2.68E−04 −2.71 7.23
XGBoost 1.42E−03 2.89E−04 1.89 18.64 1.71E−03 1.91E−04 2.09 16.91
LSTM 1.40E−03 4.99E−04 −1.13 0.94 1.73E−03 1.46E−04 −3.42 14.83
HistData 5.75E−04 3.88E−05 −4.07 20.32 5.75E−04 3.88E−05 −4.07 20.32

120 days

HES 5.19E−04 1.05E−18 0.88 −1.70 5.48E−04 9.70E−05 3.81 34.42
TBATS 1.85E−04 1.04E−05 4.93 35.12 3.75E−04 1.39E−04 4.79 31.22
ARIMA 3.21E−04 2.92E−05 0.02 −0.73 8.56E−04 8.18E−05 0.76 15.17
LR 1.14E−03 4.15E−04 0.99 −0.89 1.49E−03 1.76E−04 0.02 10.42
SVR 1.14E−03 2.26E−04 1.64 3.77 1.42E−03 6.14E−04 −0.20 −1.11
KNN 1.12E−03 3.50E−04 1.7 2.82 1.32E−03 1.15E−04 2.09 12.94
XGBoost 1.11E−03 2.79E−04 3.45 11.84 1.22E−03 1.93E−04 −0.56 12.53
LSTM 1.15E−03 2.72E−04 −0.30 1.25 1.43E−03 1.77E−04 −0.29 6.53
HistData 5.67E−04 2.73E−05 1.05 23.44 5.67E−04 2.73E−05 1.05 23.44

150 days

HES 1.13E−04 1.06E−04 7.68 66.53 1.40E−03 8.89E−05 −0.06 25.79
TBATS 1.11E−04 1.05E−04 5.77 41.93 1.38E−03 1.15E−04 −4.95 25.24
ARIMA 6.94E−04 1.09E−04 3.92 31.66 1.65E−03 1.33E−04 −4.21 19.16
LR 9.53E−04 5.63E−05 −2.56 12.75 1.51E−03 9.19E−05 −4.3 18.65
SVR 1.17E−03 3.15E−04 0.36 3.69 1.75E−03 1.77E−04 −3.39 12.69
KNN 9.31E−04 4.53E−05 0.21 −0.18 1.76E−03 1.34E−04 −3.81 15.44
XGBoost 1.27E−03 2.31E−04 1.93 20.23 1.76E−03 1.14E−04 −3.77 15.39
LSTM 1.03E−03 3.38E−04 1.22 0.37 1.78E−03 1.26E−04 −1.01 19.06
HistData 3.55E−04 4.14E−05 5.90 43.05 3.55E−04 4.14E−05 5.9 43.05
17
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Table B.12
Expected portfolio risk summary statistics. For reference, the perfect foresight values are 1.14E−03 (30 days), 2.42E−03 (60 days), 2.51E−03 (90 days),
2.58E−03 (120 days), and 2.34E−03 (150 days). Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 8.24E−03 3.41E−05 6.79 45.67 2.66E−03 6.95E−04 3.43 12.68
TBATS 1.21E−03 2.75E−04 8.17 72.01 2.76E−03 1.26E−03 4.71 24.11
ARIMA 3.91E−03 4.27E−05 −6.72 60.62 8.29E−03 5.99E−04 −1.95 7.41
LR 1.86E−03 3.44E−05 −0.31 −1.47 1.80E−03 6.41E−04 3.74 16.71
SVR 6.16E−03 1.70E−03 0.93 0.35 1.79E−03 9.90E−04 5.30 29.66
KNN 3.13E−03 7.79E−05 −1.98 2.00 1.90E−03 1.12E−03 4.51 23.79
XGBoost 4.61E−03 9.17E−04 0.49 0.45 1.57E−03 8.05E−04 5.20 27.92
LSTM 3.39E−03 1.06E−03 −0.40 −1.47 1.85E−03 8.39E−04 5.19 27.54
HistData 3.03E−03 7.57E−05 3.94 20.31 3.47E−03 6.08E−04 3.42 13.26

60 days

HES 4.51E−03 6.24E−06 7.36 69.47 4.96E−03 5.93E−04 4.99 26.20
TBATS 3.89E−03 7.39E−05 0.98 2.60 5.17E−03 3.52E−04 6.05 38.69
ARIMA 5.05E−03 2.37E−04 2.40 6.65 1.38E−02 1.17E−03 −3.44 11.89
LR 4.03E−03 3.89E−03 4.82 22.82 4.04E−03 1.38E−03 4.11 17.53
SVR 6.77E−03 2.05E−03 1.44 2.77 3.10E−03 7.58E−04 4.50 22.05
KNN 3.84E−03 4.49E−04 1.97 4.21 3.54E−03 7.27E−04 3.81 15.76
XGBoost 6.00E−03 1.95E−03 1.72 2.37 4.13E−03 8.27E−04 3.55 13.15
LSTM 5.37E−03 2.24E−04 2.61 10.55 2.86E−03 9.96E−04 1.96 2.79
HistData 2.86E−03 5.92E−05 4.46 23.99 4.52E−03 1.09E−03 6.58 49.25

90 days

HES 5.89E−03 2.41E−05 4.44 19.44 5.92E−03 1.09E−03 4.99 27.52
TBATS 2.73E−03 4.62E−05 2.21 5.91 5.75E−03 5.45E−04 4.17 28.29
ARIMA 5.73E−03 2.92E−04 2.09 7.58 1.94E−02 1.65E−03 −3.17 9.52
LR 3.71E−03 3.81E−04 2.05 7.32 4.29E−03 7.32E−04 3.14 11.22
SVR 5.78E−03 1.15E−03 −0.54 0.74 4.57E−03 5.03E−04 4.40 35.30
KNN 1.00E−02 1.55E−03 −1.84 3.04 4.82E−03 1.09E−03 3.82 15.06
XGBoost 8.02E−03 1.97E−03 6.38 55.74 4.22E−03 1.37E−03 5.47 33.86
LSTM 6.98E−03 1.55E−03 −1.27 1.99 4.20E−03 5.59E−04 3.17 16.06
HistData 2.65E−03 1.00E−04 6.85 52.37 5.25E−03 6.86E−04 5.26 41.50

120 days

HES 3.93E−03 6.94E−18 −1.36 −0.62 4.96E−03 8.69E−04 3.62 14.51
TBATS 2.92E−03 5.79E−05 −0.07 11.49 7.05E−03 4.32E−04 −1.28 15.96
ARIMA 5.42E−03 1.59E−04 0.19 −0.84 2.03E−02 1.75E−03 −3.89 15.08
LR 7.68E−03 1.39E−03 0.36 −1.53 3.89E−03 6.04E−04 3.59 15.33
SVR 7.32E−03 1.81E−03 −0.78 0.80 2.99E−03 9.70E−04 3.69 16.75
KNN 7.05E−03 4.35E−04 −3.26 12.28 3.02E−03 1.33E−03 4.30 25.96
XGBoost 6.52E−03 9.75E−04 3.38 17.98 2.86E−03 9.66E−04 2.98 8.12
LSTM 6.32E−03 9.92E−04 −0.35 −0.03 3.75E−03 6.15E−04 4.72 31.24
HistData 2.85E−03 1.56E−04 7.80 66.41 5.45E−03 4.08E−04 6.07 47.25

150 days

HES 3.93E−03 6.94E−18 −1.36 −0.62 9.34E−03 8.19E−04 5.41 55.52
TBATS 2.49E−03 2.15E−04 8.02 71.54 9.26E−03 6.46E−04 −4.33 26.20
ARIMA 4.67E−03 1.88E−04 −7.00 58.73 3.07E−02 3.39E−03 −2.51 5.11
LR 5.49E−03 2.68E−04 −2.34 9.18 5.02E−03 6.39E−04 4.39 26.29
SVR 6.81E−03 1.20E−03 0.52 2.55 5.72E−03 5.65E−04 4.18 28.53
KNN 5.04E−03 2.06E−04 0.48 0.08 5.66E−03 6.71E−04 7.41 70.54
XGBoost 7.75E−03 1.34E−03 0.06 4.06 5.66E−03 4.83E−04 7.95 73.75
LSTM 5.07E−03 1.29E−03 1.04 0.74 5.89E−03 2.16E−03 9.45 92.23
HistData 2.76E−03 9.24E−05 2.05 5.68 5.13E−03 1.86E−03 5.00 30.51
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Table B.13
Expected portfolio Sharpe ratio summary statistics. For reference, the perfect foresight values are 4.04E−02 (30 days), 3.72E−02 (60 days), 3.72E−02
(90 days), 3.29E−02 (120 days), and 3.23E−02 (150 days). Best value per column (for each algorithm) is shown in boldface.

30 days Out-of-sample One-day-ahead

Mean SD Skewness Kurtosis Mean SD Skewness Kurtosis

HES 1.04E−02 3.60E−06 −2.33 11.07 1.75E−02 3.05E−03 −3.91 19.98
TBATS 4.91E−03 1.12E−03 6.83 49.75 1.72E−02 4.72E−03 3.40 33.56
ARIMA 1.05E−02 4.22E−04 −9.31 91.19 1.35E−02 4.67E−03 0.02 −0.07
LR 1.88E−02 1.86E−04 0.62 −1.07 3.12E−02 7.08E−03 −2.91 8.87
SVR 2.55E−02 2.69E−03 0.73 −1.05 3.43E−02 6.00E−03 −2.91 20.73
KNN 2.49E−02 1.06E−04 2.18 4.11 3.29E−02 6.30E−03 −3.27 9.95
XGBoost 2.23E−02 9.52E−03 0.34 −0.59 3.17E−02 4.36E−03 −4.21 18.83
LSTM 2.29E−02 1.72E−03 1.00 1.39 3.42E−02 5.65E−03 −4.63 22.79
HistData 1.83E−02 4.83E−03 −2.73 9.20 1.83E−02 4.83E−03 −2.73 9.20

60 days

HES 5.11E−03 3.84E−05 2.94 31.95 9.99E−03 1.93E−03 6.42 55.21
TBATS 3.54E−03 4.58E−04 3.18 28.98 3.67E−03 1.65E−03 5.27 28.47
ARIMA 9.17E−03 8.21E−04 2.21 3.88 1.79E−02 1.54E−03 −2.30 18.00
LR 1.35E−02 3.37E−03 1.87 6.47 2.96E−02 3.66E−03 −2.97 9.76
SVR 1.81E−02 5.12E−03 1.55 2.16 2.66E−02 3.68E−03 −3.95 18.05
KNN 1.62E−02 5.44E−04 2.29 7.67 2.96E−02 4.07E−03 −3.79 16.15
XGBoost 2.01E−02 5.06E−03 0.42 1.05 3.23E−02 4.21E−03 −2.99 8.49
LSTM 1.69E−02 4.21E−04 6.80 60.02 2.69E−02 4.96E−03 −0.71 4.29
HistData 1.21E−02 1.40E−03 −1.80 21.04 1.21E−02 1.40E−03 −1.80 21.04

90 days

HES 8.20E−03 3.81E−05 4.14 16.48 1.26E−02 2.05E−03 −2.80 15.94
TBATS 2.89E−03 2.54E−04 6.11 47.25 1.25E−02 1.85E−03 −4.93 26.76
ARIMA 4.91E−03 7.47E−04 2.80 7.84 1.36E−02 1.12E−03 0.46 22.37
LR 1.31E−02 2.66E−03 2.40 7.35 2.64E−02 3.10E−03 −3.15 10.96
SVR 1.74E−02 4.71E−03 −0.60 0.01 2.80E−02 2.64E−03 −4.22 18.00
KNN 1.67E−02 1.17E−03 −2.41 7.18 2.69E−02 4.65E−03 −2.80 7.19
XGBoost 1.57E−02 1.98E−03 −2.16 13.26 2.63E−02 1.80E−03 −3.77 17.19
LSTM 1.62E−02 5.58E−03 −1.05 0.51 2.65E−02 2.40E−03 −4.85 25.12
HistData 1.08E−02 8.27E−04 −4.01 17.80 1.08E−02 8.27E−04 −4.01 17.80

120 days

HES 7.55E−03 1.42E−17 1.26 −1.46 7.98E−03 1.26E−03 1.27 21.04
TBATS 3.07E−03 2.14E−04 5.67 44.64 4.23E−03 1.50E−03 4.39 27.30
ARIMA 4.10E−03 3.37E−04 −0.07 −0.70 5.90E−03 7.67E−04 4.19 19.43
LR 1.26E−02 3.75E−03 1.08 −0.80 2.36E−02 1.95E−03 −5.10 41.21
SVR 1.60E−02 5.80E−03 −0.40 −1.39 2.07E−02 2.45E−03 −1.34 7.96
KNN 1.55E−02 1.12E−03 2.95 12.13 2.02E−02 3.86E−03 −0.84 5.29
XGBoost 1.49E−02 1.88E−03 −3.60 16.67 2.04E−02 2.67E−03 0.54 8.29
LSTM 1.67E−02 2.40E−03 −0.79 1.29 2.31E−02 2.01E−03 −2.99 11.44
HistData 1.03E−02 4.56E−04 −3.21 15.81 2.71E−04 9.52E−04 8.17 76.41

150 days

HES 7.76E−03 1.42E−17 1.26 −1.46 1.43E−02 7.98E−04 1.94 22.08
TBATS 3.38E−03 1.97E−04 4.57 52.51 1.41E−02 8.73E−04 −4.74 23.67
ARIMA 3.88E−03 1.03E−03 −1.69 2.36 9.32E−03 5.83E−04 −0.83 16.33
LR 1.26E−02 4.93E−04 −2.97 17.70 2.12E−02 1.39E−03 −3.54 13.33
SVR 1.38E−02 2.79E−03 −0.30 2.18 2.30E−02 2.52E−03 −3.78 16.36
KNN 1.28E−02 3.84E−04 −0.03 −0.14 2.32E−02 1.65E−03 −3.57 13.34
XGBoost 1.42E−02 1.70E−03 0.80 11.74 2.32E−02 1.73E−03 −4.75 24.98
LSTM 1.40E−02 3.04E−03 0.73 −0.64 2.32E−02 1.63E−03 −3.30 11.59
HistData 1.30E−02 4.39E−04 −6.82 61.77 7.15E−03 1.58E−03 0.59 20.76
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