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Abstract
● AIM: To assess the performance of a bespoke software 
for automated counting of intraocular lens (IOL) glistenings 
in slit-lamp images.
● METHODS: IOL glistenings from slit-lamp-derived digital 
images were counted manually and automatically by the 
bespoke software. The images of one randomly selected 
eye from each of 34 participants were used as a training 
set to determine the threshold setting that gave the best 
agreement between manual and automatic grading. A 
second set of 63 images, selected using randomised 
stratified sampling from 290 images, were used for software 
validation. The images were obtained using a previously 
described protocol. Software-derived automated glistenings 
counts were compared to manual counts produced by three 
ophthalmologists. 
● RESULTS: A threshold value of 140 was determined that 
minimised the total deviation in the number of glistenings 
for the 34 images in the training set. Using this threshold 
value, only slight agreement was found between automated 
software counts and manual expert counts for the validating 
set of 63 images (κ=0.104, 95%CI, 0.040-0.168). Ten 
images (15.9%) had glistenings counts that agreed between 
the software and manual counting. There were 49 images 
(77.8%) where the software overestimated the number of 
glistenings.
● CONCLUSION: The low levels of agreement show 
between an initial release of software used to automatically 
count glistenings in in vivo slit-lamp images and manual 

counting indicates that this is a non-trivial application. 
Iterative improvement involving a dialogue between 
software developers and experienced ophthalmologists is 
required to optimise agreement. The results suggest that 
validation of software is necessary for studies involving 
semi-automatic evaluation of glistenings.
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INTRODUCTION

G listenings are vacuoles that can develop within 
intraocular lenses (IOLs) implanted as part of routine 

cataract surgery. They occur in all materials used for IOLs but 
are mostly associated with hydrophobic acrylic polymers[1-11]. 
Glistenings form when water permeates through micro-
channels within the material to create small fluid-filled 
inclusions that are typically up to 30 mm in size and may 
affect visual function[1,12-19]. Improved manufacturing processes 
have led to a reduction in the incidence of glistenings in IOL 
models[1,3]. Nevertheless, glistenings persist even in the latest 
so-called ‘glistenings-free’ materials[1,3,20].
Current methods for quantifying glistenings in clinical studies, 
(number and sometimes size and shape), have largely centred 
on subjective grading[1,3,12,17,20-21]. Image processing provides 
an objective method for quantifying glistenings from digital 
images either obtained in vivo or from laboratory studies. Most 
publications that have taken this approach have used a public 
domain image processing programme - Image J (National 
Institutes of Health, Bethesda. Available at: http://rsb.info.nih.
gov/ij/. Accessed 1 March 2022.)[5,14,22-25]. These studies focus 
on the clinical or laboratory results, or clinical consequences of 
laboratory findings. As a result, very little detail is given about 
the methods used to quantify glistenings or results presented to 
confirm that the methods produce valid results. 
Digital images obtained in laboratory studies can be imaged 
with uniform illumination, include the entire IOL and have 
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far less variability than in vivo images. A few reports give 
details of the image processing steps and validation of the 
software methods against ground truth images[26]. In contrast, 
obtaining in vivo images poses a significant challenge due to 
multiple optical media and intraocular structures involved and 
the potential for artefacts in images such as IOL scratches and 
scuff marks, pigment granules, posterior capsule irregularities 
and the anterior capsulorrhexis. Furthermore, in vivo imaging 
is sensitive to movements of both the subject and the examiner 
as well as the ambient illumination. High-quality clinical 
imaging and automated image processing including utilization 
of artificial intelligence is becoming increasingly popular in 
ophthalmology[27-29].
The aim of the current work is to evaluate and validate the first 
release of bespoke software designed by Sparca Ltd. (Croydon, 
Surrey, United Kingdom) for the quantification of glistenings 
from in vivo slit-lamp images. To our best knowledge, it 
is the first study where software developers and clinicians 
with experience of IOL glistenings, image processing and 
evaluation, have collaborated to assess the performance of 
image processing software to quantify glistenings.
MATERIALS AND METHODS
Software Description  The software was designed and 
developed by Sparca Ltd (Croydon, Surrey, United Kingdom), 
an ophthalmic software and technology firm. The technology is 
based on digital signal processing (DSP) and operates in both 
image processing and computer vision (CV) fields of study. 
The newly developed software and technology retains all 
original data points as part of the processing, ensuring accurate 
pixel and therefore data representation. This software is the 
first attempt by our team to deliver software that automatically 
detects and counts glistenings. The glistening analysis was 
designed to detect glistenings from in vivo digital slit-lamp 
images using a proprietary technique employing DSP and CV 
algorithms, which delineate the DSP signal based on channel 
and classify pixels as either glistening or not glistening. The 
data point classification can be manually controlled via a 
threshold setting that affects the specificity and sensitivity of 
the algorithm output. This is necessary given the variability of 
the in vivo images and the preferred subset classification, such 
as signal to noise ratio. The threshold is based on class-based 
pixel values, in which each pixel within the areas of interest is 
assigned to a class because of the quantification algorithm. 
The major steps in obtaining glistenings counts are indicated 
in Figure 1. Semi-automatic glistenings detection begins with 
uploading an in vivo slit-lamp image into the online software 
system. A DSP iris detection algorithm is applied to the image 
and a circle fitted to the detected iris delineating the pupil. 
The software overlays five 1 mm2 measurement squares in a 
vertical strip centred on the pupil.  The user then chooses either 

the three central or all five 1 mm2 measurement squares for 
analysis. The software deploys the glistenings quantification 
function, with the threshold selected by the user (range 0-254), 
and glistenings counts are presented based on distribution 
between the three or five areas, with results shown as a 
function of area. Figure 2 shows the software interface.
For the initial development of the software, a set of 12 
anonymized images from previous studies[3,12] demonstrating 
a full range of IOL glistenings densities [grade 0-7 on the 
Guy’s and St Thomas’ Trust (GSTT) scale[12]] were used. In the 
images, glistenings were manually drawn and labelled pixel by 
pixel by one of the authors (Stanojcic N), who is experienced 
in glistenings imaging, grading, and counting. These were used 
as ground truth images when developing the alpha version of 
the software.
Training Set  The training set comprised 34 images obtained 
from a previously published study from our group[12]. Images 
were obtained from patients implanted with the same-design 
monofocal, spherical, hydrophobic acrylic IOLs (Alcon 
AcrySof SA60AT) at different post-operative follow-up times 
(median 14mo, range 5-66mo). This study was approved 
by London Bloomsbury Research Ethics Committee (REC 
reference 17/LO/1074) and this research conformed to the 
tenets of the Declaration of Helsinki[12]. Images of glistenings 
were taken with a 5MP digital camera (Topcon DC-4, Topcon 
Corporation, Tokyo, Japan) mounted on a slit-lamp (Topcon 
SL-701, Topcon Corporation, Tokyo, Japan). All images 
were taken under the same mesopic conditions; the ambient 
illuminance on the slit-lamp table did not exceed 0.3 lx. A 
vertical slit beam, 10 mm high by 2 mm wide, was used at an 
angle of 40 degrees. Magnification was 16× with the slit-lamp 
set to maximum brightness to illuminate the centre of the IOL 
within the pupil. For the Topcon DC-4 camera, an ISO of 800 
was used with a shutter speed of 1/30 second, a sharpness of 
‘+32’ (default), a denoising of ‘0’ (default), a contrast of ‘50’ 
(default) and the ‘auto-brightness’ setting at “off’’. 
The initial software thresholds were chosen based on 
preliminary testing of the software by authors O’Brart D 

Figure 1 Steps taken by the software in obtaining glistenings counts  

IOL: Intraocular lens.

Automated counting of IOL glistenings in vivo
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and Stanojcic N on 8 images from a previous study[12]. Four 
images had less than five manually counted total glistenings 
and the remaining four images had more than 40 glistenings. 
At thresholds lower than 70, the software was incorrectly 
identifying image noise as glistenings. Based on preliminary 
findings, the graders agreed the following four threshold 
values for initial formal software testing: 70, 90, 170, and 
254. Each image in the training set (n=34) was then analysed 
independently by the one author (Stanojcic N), using the 
software at these four pre-determined threshold values.
The glistenings counts generated by the software were then 
passed to an independent researcher for statistical analysis 
(Hull CC). The software counts were compared to the manual 
counts agreed between three experienced, ophthalmologist 
graders prior to the start of software development. For 
each threshold an error score was calculated by taking the 
automated software count and subtracting the expert agreed 
subjective count, considered the ‘gold standard’. A negative 
score therefore meant the software was finding fewer 
glistenings than the manual graders. The total deviation was 
then computed by summing the error scores for the central 3 
zones of all 34 images and threshold plotted against the total 
deviation to determine a threshold value that minimised the 
error.  This threshold value was then applied to all images in 
the validating set to test the ability of the software to detect 
glistenings without user intervention.
Validating Set  The validating set of images was a sub-sample 
(n=63) selected from a dataset of 278 images collected in a 
previous study where glistenings had been graded by three 
experts[3]. This study was approved by West Midlands Solihull 
Research Ethics Committee (REC reference 17/WM/0414) 
and this research conformed to the tenets of the Declaration 
of Helsinki[3]. Stratified sampling was used to create the sub-
sample used in the current study so that the number of images 

with low, medium, and high numbers of glistenings was as 
balanced as possible. This is because there were a significant 
number of images with low levels of glistenings in the original 
data set. One expert grader (Stanojcic N) manually counted the 
number of glistenings in all 63 images prior to testing the software 
(In the original study only grades had been determined).
Manual counting of the total numbers of glistenings in each 
image (all five zones) was compared to the results from the 
software using the optimum threshold determined from the 
training set of images.
Statistical Analysis  Agreement between the number of 
glistenings determined by software, and manual counting 
by an ophthalmologist experienced in glistenings evaluation 
(Stanojcic N), was assessed using both qualitative and 
quantitative methods. Scatter plots were used to indicate bias 
and agreement and Cohen’s weighted kappa calculated to give 
a quantitative measure of agreement. Quadratic weighting 
was employed to give more credit to near disagreements 
in the number of glistenings found by each method. Data 
organisation and manipulation was carried out using Excel 
(Microsoft Corporation, WA, USA). Graphs and curve 
fitting were generated using SigmaPlot v14 (Systat Software 
Inc, Chicago, IL, USA) and agreement statistics calculated 
using the Real Statistics Resource Pack software Release 7.6 
[copyright (2013-2021) Charles Zaiontz available from www.
real-statistics.com].
RESULTS
Training Set  The variation in the total deviation with threshold 
for the 34 images in the training set is shown in Figure 3. The 
relationship is non-linear and so a second-order polynomial 
curve fit was used, which had an R2 of 96.8%. The polynomial 
only has one root within the valid range of threshold values 
(0 to 254), which was at 140. This threshold was used for 
subsequent testing using the validating set of images.

Figure 2 Software interface indicating steps in the detection process and a sample image with output.
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Validating Set  Figure 4 shows the number of glistenings 
counted by a manual grader versus the number detected by the 
software. The line has a gradient of 1 and passes through the 
origin; points falling on this line represent perfect agreement 
between the two methods. Ten images (15.9%) had manual 
and automatic counts for glistenings that agreed but most 
data points (77.8%) lie above the agreement line indicating 
that the automated software is over-estimating the number 
of glistenings. Manual glistenings counts indicate very few 
glistenings, even when summed across all 5 zones, which is 
unsurprising since the images in the validating set were taken from 
a clinical trial comparing two glistenings resistant materials[3].
Cohen’s weighted kappa (quadratic weighting) corroborated 
this observation and indicated only ‘slight agreement’ between 

the two methods (κ=0.104; 95%CI, 0.040-0.168) based on the 
interpretation suggested by Landis and Koch[30].
DISCUSSION
This study has described and validated the initial version of 
new software developed to count glistenings from in vivo slit-lamp 
images. Only slight agreement was found between automatic 
glistenings counts and manual counting by an experienced 
ophthalmologist. Our results indicate that detection of 
glistenings from in vivo slit-lamp images is non-trivial and 
therefore there is a need for careful testing and validation of 
the software. Very few studies that have used software for 
assessing glistenings have included details of the testing and 
validation of the software. This casts doubt on the results of 
clinical studies that use automated software counts without 
evidence of the validity of the methods. A careful and ongoing 
dialogue is needed between clinicians and software developers 
to avoid artefacts affecting the results and to optimise software 
parameters. It may also be necessary to have a pre-assessment 
phase, which is semi-automatic and requires the input of an 
experienced clinician.
Our results may have been affected if the training set is not 
representative of the validating set of images. This is because 
the training set resulted in a fixed (optimum) value for the 
threshold used by the glistenings detection algorithm. In 
our study, both sets of images were taken using the same 
slit-lamp system and protocol. However, although the same 
IOL had been implanted in all 34 patients in the training 
set, the follow-up times varied (median of 14mo; range 5 to 
66mo)[12]. In comparison the validating set contained images 
from only two glistenings resistant IOLs at 12-month follow-
up. As a result, very few glistenings were observed in this 
set of images potentially leading to a signal to noise ratio 
problem for the software where a similarly small number of 
artefacts detected (non-glistenings) will significantly impact 
the agreement. In contrast, the percentage error when a few 
artefacts are detected and added to a large glistenings count is 
much lower. Many modern IOLs develop only small numbers of 
glistenings so any software needs to perform well in this situation.
It is also appropriate to question the acceptance of manual 
counting as the “gold standard” for comparison. For the 
training set of 34 images, three graders had previously used the 
GSTT scale and had graded all five zones. The overall grade 
for each image was calculated as the sum of the grades for all 
five zones for each rater. Inter-rater reliability for grading was 
“good” with an intra-class correlation coefficient of 0.84 (CI: 
0.72-0.91).  The graders were ophthalmologists with different 
levels of experience lending support to the idea that manual 
grading is appropriate as a reference standard for clinical trials 
or testing the performance of semi-automatic or automatic 
methods. 

Figure 3 Variation in total deviation (automatic - manual count) for 

all images in the training set with threshold.

Figure 4 Scatter plot showing agreement between manual and 

automatic glistenings counts  The line is the 1:1 agreement line.  

There are multiple overlying data points.

Automated counting of IOL glistenings in vivo
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Glistenings grades, rather than raw numbers, have been widely 
used in IOL research and may be more clinically relevant[1,3]. 
We have therefore investigated how well the software counts 
are associated with the grades determined by experienced 
graders. Arguably the grading scale with the best resolution 
for modern IOLs is the recently published GSTT scale. Its 
grade boundaries correspond to the much smaller numbers 
of glistenings that are commonly observed in modern IOL 
materials. To assess the association between software counts 
and manual grading, we took the median grade of the three 
ratters for the training set of 34 images mentioned above. The 
association between this grade and the number of glistenings 
counted by the software was 0.42 (Spearman’s rho, P=0.015) 
indicating only a moderate association between software 
counts of glistenings and GSTT grades.  
The most likely reason for poor agreement between automated 
and manual expert counts are artefacts such as anterior or 
posterior IOL surface particulates (e.g. pigment), IOL scratches 
and scuff marks [(e.g. from the IOL loading device or forceps), 
posterior capsule irregularities and vitreous floaters] that 
posed a challenge for the software. Unlike the software, expert 
graders can exclude artefacts based on subjective determination 
and experience. To assess how our results are affected by 
artefacts, we have conducted a sensitivity analysis on the 
agreement statistic. In this analysis we have progressively 
removed images with errors in total glistenings counts of more 
than 30 (one image), 20 (four images) and 10 (14 images) from 
the validation data set of 63 images. This resulted in weighted 
kappa statistics of 0.073 (CI: 0.017, 0.128), 0.114 (CI: 0.046, 
0.182) and 0.165 (CI: 0.048, 0.282) respectively. Although the 
level of agreement improves, removing images that may have 
been affected by artefacts and where there are large differences 
in counts does not make a significant difference to the overall 
agreement which remains slight. This could be a signal to 
noise ratio problem where a difference in counts by only one 
or two when the number of glistenings is very small will still 
not produce a kappa value close to one. In contrast, even when 
there are differences in the number of glistenings counted by 
the two methods, it is possible to get a value for kappa close 
to unity provided the results from most images agree and also 
when there are relatively few images with large differences.
The issue of artefacts affecting the automated counting 
software has been explored further. Images were ranked 
according to the difference in the number of glistenings 
between the two methods and an experienced ophthalmologist 
reviewed the four images where the difference was 20 
glistenings or more. The four images all exhibited one or 
a combination of the following: opacity or a scratch mark 
on the anterior surface of the IOL (presumed to be from a 

loading device or intra-operative manipulation with metallic 
instruments); posterior capsule irregularities combined with 
vitreous strands/floaters or pigment granules anywhere on 
IOL surface. In all instances glistenings in these areas were 
overestimated. IOL scratch marks do indeed appear like 
glistenings (granular metallic debris reflecting light) but their 
distribution pattern does not. Pigment granules on the IOL 
surface (anterior or posterior) also resemble glistenings in size 
and shape but their distribution pattern and proximity to the 
IOL surface do not.
In summary, we have presented findings to validate the initial 
release of new software designed to count glistenings in in vivo 
slit-lamp images. Our results demonstrate this is a challenging 
problem and an iterative development process is required 
between software developers and ophthalmologists to improve 
on software performance. Our results also indicate that studies 
using automated detection and counting software should 
provide appropriate detail and validation of their methods 
otherwise it is possible that additional and unwanted variability 
could affect results.
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