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Abstract
Feature selection and its subsequent dimensionality reduction are significant problems in machine learning and it is at the core 
of several data science techniques. The ‘shape’ of data, or in other words its related topological properties, can provide crucial 
insights into the corresponding data types and sources and it enables the identification of general properties that facilitate 
its analysis and assessment. In this article, we discuss an information theoretic approach combined with data homological 
properties to assess dimensionality reduction, which can be applied to semantic feature selection.
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1 Introduction

Data science has become an extensively investigated dis-
cipline, where diverse methods are applied to identify and 
extract actionable information.

Mathematical areas including Network Theory, Dynami-
cal Systems, Topology, as well as sophisticated algebraic 
approaches have been introduced, which have demonstrated 
their potential in addressing data complexity and their appli-
cations have led to the design of effective algorithms (Tro-
vati et al. 2020; Shao et al. 2017; Ray and Trovati 2018; Xu 
et al. 2019; Ray et al. 2018; Trovati et al. 2022).

In this work, an approach based on the topological and 
information theoretic properties of networks is introduced, 
which aims to assess and analyse semantic features and and 
their reduction. The main motivation follows from the recent 
advance in Topological Data Analysis (TDA) which has been 
shown to identify invariant data properties that can be used 
to assess and analyse large quantities of unstructured data, 

otherwise difficult to investigate via standard approaches 
(Carlsson 2008).

We define a knowledge system as a set of concepts and 
mutually connecting semantic properties, which naturally 
define semantic networks. More specifically, they are defined 
as networks G = G(V ,E) , where V = {vi}

n
i=1

 is the node-set 
and E = {e(vi, vj)}

n
i≠j=1

 is the edge set; each edge can be rep-
resented as a multi-dimensional vector based on a predefined 
set of (semantic) relations. In other words, multiple relations 
typically exist between two concepts. Furthermore, each 
node is embedded into an multi-dimensional feature space. 
It is important to specify that features are assumed to be 
semantic, that is well defined relational concepts, which can 
be quantified based on their attributes. These properties 
define semantic features, which are the central part to this 
work. Loosely speaking, they refer to semantic properties, 
which are linked to (potentially multiple) edges, or embed-
ded into the nodes. In particular, we will assume that each 
component of every edge can be evaluated within the inter-
val [0, 1] via a weight w(e(vi, vj)) ∶ E ↦ [0, 1] of an edge 
e(vi, vj) ∈ E.

As discussed above, each edge contains specific infor-
mation embedded in an n−dimensional feature space 
R ⊂ [0, 1]n . These features are typically captured by mul-
tiple edges between nodes, which can be flattened into a 
single edge. We will assume that such evaluation and assess-
ment can be carried out independently from the approach 
introduced in this work, and as part of any suitable data 
pre-processing process. Furthermore, it is also assumed that 
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an appropriate measure to capture the potentially multiple 
semantic links between pairs of nodes has been carried out.

As a consequence, each node vi ∈ V can be represented as 
an element of [0, 1]n . Furthermore, every edge is associated 
with a map Rk ∶ x → y for the k− th feature in R linking the 
nodes x and y ∈ V  . Finally, let

be the set of relations shared by the nodes x and y.
This article is structured as follows: in Sect. 2, exist-

ing research and methods are discussed. Sections 3 and 4 
introduce the main background information and the main 
results, respectively. Finally, Sect. 5 concludes the article 
and prompts to new directions.

2  Related works

Much of the research in this area is focused on the extrac-
tion of information that may be utilised to make decisions 
from unstructured data (Chazal and Michel 2017). In fact, 
research and industry organisations, as well as general 
human activities, generate massive amount of data, which 
poses significant challenges, as well as significant opportu-
nities. A major problem is comprehending and evaluating 
the importance and worth of the useful information that is 
included within this abundance of data.

With an emphasis on the structure and shape of data in 
terms of the relationships between its components, new 
theoretical methods based on topological techniques have 
been created (Carlsson 2008). The capacity to categorise 
things based on their shared characteristics, or in other 
words, those displaying invariant qualities, is one property of 
topology. The geometrical characteristics of the data under 
investigation are crucial in many clustering and classifica-
tion techniques. In reality, a large portion of these methods 
concentrate on the idea of distance, which must be described 

(1)n(x ↔ y) = {R1,… ,Rn} ⊂ R,

in terms of the mathematical spaces in which the data is 
contained.

Persistent homology, which focuses on identifying the 
topological qualities that remain invariant (Edelsbrunner and 
Harer 2008), has been drawing increasing attention from the 
research community due to its applicability to AI, machine 
learning and data science in general. Simplicial complexes 
are the fundamental components in persistent topology. 
These are topological space triangulations consisting of 
coupled, non-overlapping polyhedra, as depicted in Fig. 1.

Image pixellation is a simple but instructive example of a 
space triangulation in which a genuine image is covered in 
pixels to provide an accurate approximation.

The fact that a simplicial complex provides an ‘approxi-
mation’ of the object which is covered via a triangulation. 
Triangulations include, but are not limited to Voronoi dia-
grams, Delaunay triangulations, Vietoris complexes, and 
C̆ech complexes. In general, they are defined in terms of a 
certain distance or by ball intersections, whose centres are 
the data points. Additionally, the adjacency graphs produced 
by these triangulations can provide a number of details about 
their invariant topological characteristics, making them per-
tinent to data science (Carlsson 2008). Refer to Edelsbrun-
ner and Harer (2008) for further information on simplicial 
complexes.

3  Observability

In this section, the concept of observability is introduced. 
The main motivation is that information is inter-twinned 
with its observability. In other words, information must be 
observed. We define the following types of observability 
which, as explained above, are embedded in a knowledge 
system, or in other words, a suitably defined semantic 
network.

Fig. 1  The graphical representation of simplicial complexes as described in Zhang et al. (2020)
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• Single object observability: O(x) measures the observ-
ability of x with respect to the other nodes. More specifi-
cally, we have

– Absolutely observability: this is a single observ-
ability which covers the entire network

– Local observability: similar to the above but cov-
ers only a subnetwork containing x

• Mutual observability: this occurs between two 
(semantic) objects x, and y, and it is defined as O(x, y).

In the rest of this section, a formal definition of the rel-
evant observabilities derived from the above instances, is 
introduced.

Definition 1 (Observabilities) Let G = G(V ,E) be a (seman-
tic) network (knowledge system) and let x, y ∈ V  be two 
nodes, and e ∈ E be an edge. Assume that n(x) is the set of 
incidents edges with respect to x (or the degree of x), so that 
n(x ↔ y) is the set of (undirected) edges connecting x with 
y. Let w(e) ∈ (0, 1] be the weight of the edge e. We define 
the observability from x to y as

where

and

In this article, a simplified version of observability, the naïve 
observability of x, will be used, which is defined as

The difference between the naïve observability On(x) 
and those described above is that the former only consider 
the level of connectivity of x with its neighbours compared 
to all the other nodes in the network G. In other words, 
this type of observability is only affected by the immedi-
ate connections of x, as opposed to the overall topology 
of G and the corresponding connected components and 
paths. Despite this, it proves to provide a useful tool in 
the analysis of the results in the remaining of the article.

It is trivial to see that O(x → y) is a premetric as in gen-
eral it is not symmetric and the triangle inequality does 
not hold.

(2)O(x → y) = − log

(
w(x ↔ y)

w(x)

)
,

(3)w(x ↔ y) =
∑

ei∈n(x↔y)

w(ei)

(4)w(x) =
∑

ej∈n(x)

w(ej).

(5)On(x) = − log

�
w(x)

∑
y∈V(G̃) w(y)

�
.

Let x = x1x2 ⋯ xn be a path joining a set of incident nodes. 
We can easily see that the observability of such a path is

In particular, using Eq. 2 this can be written as

3.1  Probability as a function of observability

Any probability measure defined over complex networks 
is closely related to their overall topology, which usually 
depends on the corresponding degree distribution.

Based on the above and on general network properties 
(Newman 2010), we have that

where p(x), p(x, y) and p(y | x) are the probability of x, the 
joint probability of x and y, and the conditional probability 
of y given x, respectively.

Using the notation introduced in Definition 1, let x1 and 
xk be two nodes. Define the path x = x1,… , xk and let the 
probability p(x) of reaching xk from xs along the is

Note that, if we define a path x̃ = xk,… , x1 , that is the path 
going in the opposite direction of x , we have that

and p(x) = w(x)
∑

y∈V(G̃) w(y)
 for any node x ∈ V .

The above shows that, in general, p(x) ≠ p(x̃) . Again, we 
can easily see that p(x) can be written in terms of O(x) as

The above observations and remarks lead to the following 
result

(6)O(x) =

n−1∑

i=1

O(xi, xi+1)

(7)

O(x) = − log

(
w(x1 ↔ x2)

w(x1)
⋯

w(xn−1 ↔ xn)

w(xn−1)

)

= − log

(
n−1∏

i=1

w(xi ↔ xi+1)

w(xi)

)

(8)

p(x) =e−On(x),

p(x, y) =e−O(x,y), and

p(y | x) =e−O(x→y),

(9)p(x) =

k−1∏

i=1

w(xi → xi+1)

w(xi)

(10)p(x̃) =

k−1∏

i=1

w(xk−i → xk−i−1)

w(xk−i)

(11)
p(x) = e

−

k−1∑

i=1

O(xi → xi+1)

= e−O(x).
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Lemma 1 Let O(x, y) be the joint observability of y and x. 
Then

Proof Note that

Since

then we have that

The result follows.   ◻

3.2  Mutual information

Mutual information plays an important role in assessing the 
feature space and in particular, in reducing its dimensionality 
(Shadvar 2012). It is defined as

Mutual information can provide useful insights into feature 
inter-dependencies. In particular, an optimal level of features 
is linked with a maximum value of I(x; y). Similarly to the 
above, we can write I(x; y) in terms of observabilities using 
Eq. 14, namely

Eq. 15 can be used to find a lower bound of I(x; y) with 
respect to the observabilities. Recall that

Hence

Since p(x, y) can also be written as p(x | y)p(y) , or in other 
words as e−(O(y→x)+O(y)) , using a similar argument we have 
that

Recall from Definition 1, O(y → x) = O(x → y) − log
w(x)

w(y)
 . 

This implies that, if no extra neighbouring nodes are added 
to either x or y, then if O(y → x) increases, O(x → y) will 

(12)O(x, y) = O(x → y) + O(x)

p(y | x) = p(x, y)

p(x)
.

p(y | x) = e−O(x→y),

(13)e−O(x→y) =
e−O(x,y)

e−O(x)
= eO(x)−O(x,y).

(14)I(x;y) = p(x, y) log

(
p(x, y)

p(x)p(y)

)

(15)I(x;y) = e−O(x,y)(O(x) + O(y) − O(x, y))

(16)
p(x, y) =p(y | x)p(x)

=e−(O(x→y)+O(x))

(17)I(x;y) = e−(O(x→y)+O(x))(O(y) − O(x → y))

(18)I(x;y) = e−(O(y→x)+O(y))(O(x) − O(y → x))

increase as well, and vice-versa. This leads to the following 
result.

Lemma 2 Let I(x; y) be the mutual information between x 
and y. If O(y → x) , or O(x → y) , are minimised then I(x; y) 
will increase towards its maximum value.

It is important to emphasise that Lemma 2 does not provide 
an exact evaluation of the behaviour of mutual information, 
but only an estimation. However, it provides a tool to identify 
which features should be removed likely to increase mutual 
information.

3.3  Entropy and its variations

From Eq. 17, we can easily calculate the conditional entropy as

If we consider such (semantic) networks as dynamical net-
works, which change with respect to a (discrete) ‘time’ 
parameter, Eq. 2 can be written to emphasise the iteration 
time k, as

Assume we remove one semantic feature from n(x1, x2) and 
let the corresponding weight of such feature be w̃ . Equa-
tion 20 can be re-written as:

Since

From the above observations, for a path x = x1,… , xk , we 
have that

Let

From the above equations, we can derive that

using the notation in (24), and we can also derive that

(19)H(x2 | x1) = −e(O(x1→x2)+O(x1))(O(x1 → x2) + O(x1))

(20)Ok(x1 → x2) = − log

(
wk(x1 ↔ x2)

wk(x1)

)
,

(21)log (wk(x ↔ y)) = log (wk(x)) − Ok(x → y).

(22)
wk−1(x ↔ y) =wk(x ↔ y) − w̃

wk−1(x) =wk(x) − w̃

(23)

Ok(x) − Ok−1(x) ≥

log

∏n

i=1
w̃(xi)

(wk(xi) − w̃)(wk(xn) − w̃)
∏n−1

i=2
wk(xi − 2w̃)

(24)Δk(H(x2 | x1)) = |Hk(x2 | x1) − Hk−1(x2 | x1)|

(25)
Δk(H(x2 | x1)) ≤(Ok(x1 → x2) − Ok−1(x1 → x2))

w̃

wk(x1)

≤Δk(Ok(x1 → x2))
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If we use Hk(xi | xj) for two adjacent nodes xi and xj at time 
iteration k, as a general entropy ‘indicator’, we can consider 
its overall contribution based on all the nodes in the network 
Gk(V ,E) . In other words,

This will allow to evaluate

Following a similar approach as above, we can also see that

Recall that we are removing one semantic relation across all 
the edges. Therefore, Eq. (29), can be arranged as follows

The above calculation lead to the following result

Lemma 3 The entropy variation Δk(H(G) of the network G at 
the time iteration k, can be minimised by minimising

.

This lemma further demonstrates the role of observ-
ability in the dynamical and topological properties of the 
corresponding networks. Although it would be equivalent 
to maximise I(x; y) directly, this approach strengthen the 
motivation of using observability to achieve this, which 
can be used to further investigate and analyse the topo-
logical and stochastic properties of the corresponding 
network.

(26)Δk(H(x2 | x1)) ≥
n−1∑

i=1

Δk(Ok(xi → xi+1)).

(27)Hk(G) =
1

2

∑

i∈V

∑

ji∈nk(i)

Hk(xji | xi).

(28)

Δk(H(G)) =
1

2

∑

i∈V

(
∑

ji∈nk(i)

Hk(xji | xi) −
∑

ji∈nk−1(i)

H−1(xji | xi)
)
.

(29)Δk(H(G)) ≤
1

2

∑

i∈V

∑

ji∈nk(i)

Δk(O(xi → xji ))
w̃

wk(xi)
, and

(30)

Δk(H(G)) ≥
1

2

∑

i∈V

∑

ji∈nk(i)

Δk(O(xi → xji ))
w̃

wk(xi) − wk(z)
.

(31)

Δk(H(G)) ≤
w̃

2

∑

i∈V

∑

ji∈nk(i)

Δk(O(xi → xji))

wk(xi)

=
w̃

2

∑

i∈V

Δk(On(xi))

wk(xi)
.

∑

i∈V

Δk(On(xi))

wk(xi)

4  Feature dimensionality reduction

Lemma 2 provides a useful tool to assess a feature space 
based on the corresponding observabilities. This will be 
achieved by considering the (semantic) network, as defined 
above. This will be constructed as a simplicial complex as 
discussed in Sect. 4.1.

4.1  Simplicial complexes via observability

Observability, despite being a premetric, can naturally create 
a network structure, or more precisely a simplicial complex 
G = G(V ,E) . More specifically, we assume that a link (or 
edge) exists between any two nodes in V, if their observabil-
ity is less than a given (numerical) threshold 𝜃 > 0 , which 
will define a filtration of the simplicial complex (Chazal and 
Michel 2017).

More formally, we define the edge-set E of a simplicial 
complex G as

Note that (32) implies that G is an undirected network. Fur-
thermore, as discussed in Sect. 1, the nodes of G are n−
dimensional so that they can be embedded in an n− dimen-
sional space to satisfy the homology construction as per 
Eq. 33.

We can define the usual simplicial homology

where �m◦�m+1 = 0 . The m− th homology group is defined 
as Hm(G) ∶= ker (�m)∕ Im (�m)

The assessment of m−dimensional homology groups, will 
determine, loosely speaking, the number of m−dimensional 
holes in G, which can be associated with the correspond-
ing Betti numbers bk . Recall that a contractible space has 
trivial reduced homology groups, Hatcher (2002). Based on 
Alexander and Bishop (1990), and the fact that G is typically 
a compact space, a non-contractible space is not necessar-
ily a uniquely geodesic space. Therefore, G might not be a 
uniquely geodesic space and so there are some points (asso-
ciated with nodes in the simplicial complex) which cannot 
be connected via shortest path (from an observability point 
of view). This implies that mutual information cannot be in 
general maximised for all nodes in V. Therefore, by itera-
tively removing the appropriate features associated to the 
nodes in the node-set V, the feature space would be contract-
ible. The above facts lead to the following result.

Proposition 1 Let G = G(V ,E) be a simplicial complex as 
defined in Sect. 4.1. Its overall mutual information can be 

(32)E = {e(vi, vj) ∶ O(vi → vj), or O(vi → vj) ≤ �}.

(33)



 Evolving Systems

1 3

maximised by removing those feature dimensions related to 
the nodes in V, that do not yield trivial reduced homology 
groups.

The above proposition can be written as the following 
algorithm 

Step 1: let G = G(V ,E) be the simplicial complex as per 
Proposition 1.

Step 2: let p ∶ Gn → Gk
m

 be the projection from the n−
dimensional space G onto the m− dimensional space 
Gk

m
 , by removing k features so that n = m + k.

Step 3: start from k = 0

Step 4: if bk ≠ 0 for Gk
m
 , then k = k − 1 and repeat this step

Step 5: else, stop.

4.2  Evaluation

As part of this work, an evaluation of the above approach 
was carried out. The datasets introduced in Trovati et al. 
(2020) and Trovati et al. (2022) based on ConceptNet (Liu 
and Singh 2004) were used to create a selection of semantic 
networks (with approximately 150 nodes), based on different 
values of � . Each node had 10 features.

Table 1 depicts the main results for different � which gen-
erates different edges and from 10 different reductions

The data used in this evaluation is limited due to the 
extensive manual labelling required, which has been cre-
ated by the authors as part of ongoing research (Trovati et al. 
2022). However, more datasets are being designed to pro-
vide more comprehensive data-driven evaluations for future 
research and implementations.

5  Conclusions

In this article, a method to identify the most likely feature 
dimensions to reduce based on on homological properties of 
observability is introduced. Despite the limited experimen-
tal evaluation, the potential of this approach is clear, both 
from theoretical and implementation perspectives. In fact, 
the use of the concept of observability suggests important 
research areas to further investigate where the dynamical 

and topological properties should be integrated to provide a 
more comprehensive understanding of the evolving nature of 
data. In particular, future steps include a deeper assessment 
of different network topology properties which can provide 
further insights.
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