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To model chromatography, researchers have developed several approaches. These cover a broad range of 
applications and, depending on the assumptions adopted, have different levels of accuracy. In general, the most 
suitable modelling approach is the simplest that can describe a process with the desired accuracy. A model that 
often meets this criterion is the equilibrium dispersion model (EDM). This features one mass balance equation per 
analyte, including an axial dispersion term, and assumes the analyte concentrations in the mobile and stationary 
phases to be in local equilibrium. To account for the finite mass transfer rate between the phases, the model 
employs an apparent dispersion coefficient. Two expressions are available for this coefficient, one being used 
much more frequently than the other. In this paper, we aimed to clarify which one should be favoured. A 
desirable feature of simple models is that they can be derived from more general ones with appropriate physical 
assumptions and rigorous mathematical methods. Thus, to answer our research question, we derived the EDM 
from the more general pore diffusion model (POR), using an asymptotic method. The expression obtained for 
the apparent dispersion coefficient does agree with one of the two reported in the literature – the less frequently 
used. To test the validity of this expression, we simulated elution profiles using the two versions of the EDM and 
compared the results against those from the POR model. The simulations were conducted in the range where the 
POR and EDM models should be essentially equivalent, their results confirming the outcome of the asymptotic 
analysis. This work offers a solid theoretical grounding for the EDM, clarifies which formulation of the model is 
correct, and provides usable applicability conditions for the model.
1. Introduction

Chromatography is one of the most common techniques for ana-

lyzing and purifying fine chemicals and drug compounds. Because the 
increase in computational power has allowed the in-silico design and 
optimization of the process, for many years developing chromatography 
models has been of critical interest. Many models of different accuracy 
and complexity have been proposed. In general, the model that should 
be favoured is the simplest one that can describe a process with the de-

sired accuracy; this is particularly important for industrial applications, 
where simulations must describe the behaviour of actual chromatogra-

phy units sufficiently well, but computational time must be minimized.

The most detailed chromatography model is known as general rate 
model (GRM) [1–7]. This accounts for the physical phenomena of 
adsorption-desorption, pore surface diffusion and pore bulk diffusion 
within the stationary phase, of mass transfer between the stationary 
and mobile phases, and of convection and fluid dynamic dispersion 
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within the mobile phase. If adsorption and desorption can be regarded 
as infinitely fast, then in every location inside the stationary phase the 
analyte concentration in the bulk of the pores can be assumed to be 
in equilibrium with the analyte concentration on the surface of the 
pores; therefore, an adsorption isotherm can be used in lieu of rate 
equations for the adsorption and desorption processes. In addition, of-

ten it is assumed that pore surface diffusion is negligible, so that only 
bulk diffusion in the pores of the stationary phase is considered [8,9]. 
But even with these simplifying assumptions, the GRM is rarely used 
in industrial applications, because it is computationally expensive and 
contains too many unknown parameters whose estimation is complex 
and time-consuming, requiring significant extra experimental work in 
the early stages of process development.

To find simpler models, researchers often describe the stationary 
phase in terms of analyte concentrations averaged over the volume 
of stationary phase present between two infinitesimally close cross-

sections of the chromatography column. In this approach, one does not 
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account for the variation of concentration within the particles form-

ing the stationary phase; but to account for the mass transfer resistance 
within the particles, one replaces the coefficient of mass transfer be-

tween the surface of the particles and the bulk of the mobile phase with 
an effective mass transfer coefficient that lumps the internal (to the parti-

cles) and external mass transfer resistances [9–11]. In the stationary and 
mobile phases, the evolution in time and space of the analyte concentra-

tions are governed by a set of two differential mass balance equations 
per analyte, and in the mobile phase dispersion effects are formulated 
via an axial dispersion coefficient that depends only on the fluid dynam-

ics within the column [12–15]. Various authors refer to this model as 
lumped pore diffusion model, using the acronym POR [11,16–19], but 
others refer to it as transport dispersion model (TDM) (e.g., [9,20,21]).

An even simpler model, frequently used for industrial applications, 
is known as equilibrium dispersion model (EDM). In addition to all the as-

sumptions reported above, the EDM also assumes that (at every axial 
location in the column) the analyte concentrations in the mobile and 
stationary phases are in equilibrium, so that they may be related via 
adsorption isotherms. As a consequence, the EDM features only one dif-

ferential mass balance equation per analyte. The equilibrium relations 
between the analyte concentrations in the two phases would rigorously 
hold if the rate of mass transfer between the phases were infinite; since 
this is never the case, to account for the finite rate of mass transfer, 
the model employs an apparent dispersion coefficient [9–11,19,22–28]. 
Usually, this coefficient is modeled as the sum of the fluid dynamic axial 
dispersion coefficient, which features in the POR model, and a correc-

tive term that accounts for the mass transfer effects between the two 
phases.

The apparent dispersion coefficient can be calculated either with 
Van Deemter plots [23] or with equations that involve parameters 
related to fluid dynamics, mass transfer and adsorption isotherms 
[11,19,24,29,30]. These equations were obtained through the method 
of moments analysis [10,11,31–33]. In this method, Laplace transforms 
are used to solve the chromatographic models analytically. Using the 
solutions in the Laplace domain, one can then derive analytical expres-

sions for the temporal moments of the analyte concentration profiles, 
quantities that are closely related to important properties of the elution 
profiles, such as retention time, band broadening, front asymmetry and 
kurtosis. Expressions for the apparent dispersion coefficient can then 
be obtained by matching the second central moment of the EDM with 
that of the GRM. This procedure is thoroughly outlined in the article by 
Qamar et al. [33].

In the literature, two equations are available for the apparent dis-

persion coefficient, and even if they may seem similar, they do yield 
quite different predictions. In this work, we aimed to determine which 
expression should be favoured. To do this, we derived the EDM – along 
with the analytical expression for the apparent dispersion coefficient – 
from the more general POR model by applying an asymptotic method 
[34]. The advantage of this approach is that not only does it allow de-

riving the EDM via rigorous mathematical passages, but it also yields 
the conditions under which the model can be used. Encouragingly, the 
resulting expression for the apparent dispersion coefficient coincides 
with one of the two expressions reported in the literature – but inter-

estingly it is the expression that appears to be used far less frequently. 
To test the validity of our findings and the accuracy of the two expres-

sions, we simulated a chromatographic separation using the POR model 
(regarded as benchmark) and the two versions of the EDM, under con-

ditions where the models should be virtually equivalent.

The paper is organized as follows. In Section 2, we briefly present 
the POR and EDM models, along with the expressions for the appar-

ent dispersion coefficient. In Section 3, starting from the POR model, 
we derive the EDM using perturbation theory. In Section 4, we simulate 
a chromatographic separation using the POR model and the two ver-

sions of the EDM, comparing and discussing the results. In Section 5, 
2

we summarize our findings and conclude the work.
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2. The POR and EDM models

Both models assume that adsorption and desorption are infinitely 
fast and pore surface diffusion is negligible. Moreover, they both de-

scribe the stationary phase in terms of mean analyte concentrations, 
without capturing the concentration changes inside the particles that 
form the stationary phase. As said, to account for the mass transfer 
resistance within the particles, both models replace the mass transfer 
coefficient between the surface of the particles and the bulk of the mo-

bile phase with an effective mass transfer coefficient that lumps internal 
and external mass transfer resistances. For each analyte, both models 
consider three concentration terms: the concentration 𝑐1 in the bulk of 
the mobile phase, the concentration 𝑐2 in the fluid contained inside the 
pores of the stationary phase particles, and the concentration 𝑞2 on the 
surfaces of the pores (solid-side) referred to the unit volume of particle. 
Because adsorption and desorption are assumed to be instantaneous, 𝑐2
and 𝑞2 are in equilibrium, so that only one of them is independent. Here, 
the equilibrium equation relating them, known as adsorption isotherm, 
is assumed to be linear; thus, we write 𝑞2 = 𝑎 𝑐2, where 𝑎 is known as 
Henry coefficient. Finally, the analyte concentrations are assumed to 
depend solely on the spatial coordinate 𝑥 along the axis of the chro-

matography column and on the time 𝑡.

2.1. The POR model

For each analyte, the concentrations in the mobile and stationary 
phases are governed by differential balance equations expressing the 
principle of mass conservation. Because 𝑐2 and 𝑞2 are functionally re-

lated, only two differential equations are necessary. In an infinitesimal 
slice of the column, the analyte can accumulate in the mobile phase, in 
the fluid within the pores, and on the surfaces of the pores; hence, three 
accumulations terms are present. Therefore, the accumulation rate per 
unit volume reads:

𝜖
𝑒
𝜕
𝑡
𝑐1 + (1 − 𝜖

𝑒
)𝜖

𝑖
𝜕
𝑡
𝑐2 + (1 − 𝜖

𝑒
)(1 − 𝜖

𝑖
)𝜕

𝑡
𝑞2

= 𝜖
𝑒
𝜕
𝑡
𝑐1 + (1 − 𝜖

𝑒
)
[
𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎
]
𝜕
𝑡
𝑐2

= 𝜖
𝑒
𝜕
𝑡
𝑐1 + 𝜖

𝑒

[(1 − 𝜖
𝑒

𝜖
𝑒

)
𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎

𝑎

]
𝜕
𝑡
𝑞2 = 𝜖

𝑒
(𝜕

𝑡
𝑐1 +𝐺𝜕

𝑡
𝑞2) (2.1)

with:

𝐺 ≡

(1 − 𝜖
𝑒

𝜖
𝑒

)
𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎

𝑎
(2.2)

and where 𝜖
𝑒

and 𝜖
𝑖

are the external and internal porosities [11], re-

spectively. The analyte can enter and leave the infinitesimal slice of the 
column only via convection and (purely fluid dynamic) axial dispersion, 
so the mass balance equation reads:

𝜕
𝑡
𝑐1(𝑥, 𝑡) +𝐺𝜕

𝑡
𝑞2(𝑥, 𝑡) = −𝑈

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) +𝒟

𝑥
𝜕2
𝑥𝑥
𝑐1(𝑥, 𝑡) (2.3)

where we have divided throughout by 𝜖
𝑒
, because this term appears 

in all the terms featuring in the equation. Above, 𝑈
𝑥

is the interstitial 
velocity (that is, the velocity at which a nonpenetrating nonretained 
tracer moves along the column) and 𝒟

𝑥
is the fluid dynamic dispersion 

coefficient.

The second differential equation can be written over a control vol-

ume coinciding with a stationary phase particle (assumed to be spheri-

cal). Here, the analyte mass varies only owing to mass transfer between 
the two phases, so the equation reads:

[𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎]𝜕

𝑡
𝑐2(𝑥, 𝑡) =

3𝑘
𝑒

𝑅
[𝑐1(𝑥, 𝑡) − 𝑐2(𝑥, 𝑡)] (2.4)

where 𝑘
𝑒

is the effective mass transfer coefficient that lumps the internal 
(inside the particle) and external (in the boundary layer around the 
particle) mass transfer resistances and 𝑅 is the particle radius. On the 

right of the equation, 3∕𝑅 expresses the specific external surface area 
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of the particle. Eq. (2.4) may be expressed more conveniently in terms 
of the concentration 𝑞2 as follows:

𝜕
𝑡
𝑞2(𝑥, 𝑡) = 𝜁 [𝑎𝑐1(𝑥, 𝑡) − 𝑞2(𝑥, 𝑡)] ; 𝜁 ≡

[
1

𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎

]3𝑘
𝑒

𝑅
(2.5)

Eqs. (2.3) and (2.5) agree with equivalent equations reported in the 
literature; for instance, refer to Glueckauf & Coates [35] and Schmidt-

Traub et al. [9] (in this reference, the authors refer to this model as 
transport dispersion model). Expressions for calculating 𝒟

𝑥
and 𝑘

𝑒
are 

also found in the literature [11,14,15,36].

2.2. The EDM model

In addition to the assumptions used in the POR model, the EDM 
also assumes that locally, along the column, the analyte concentrations 
in the mobile and stationary phases are in equilibrium, so that 𝑐1 = 𝑐2 =
𝑞2∕𝑎. As a consequence, Eq. (2.5) is no longer needed. To account for the 
finite rate of mass transfer between the mobile and stationary phases, 
the model replaces 𝒟

𝑥
(i.e., the fluid dynamic dispersion coefficient) 

with an apparent dispersion coefficient [9,11].

In the literature, the EDM is sometimes written in terms of intersti-

tial fluid velocity and some other times in terms of hypothetical fluid 
velocity (the velocity at which a penetrating nonretained tracer moves 
along the column). In the first case, the EDM differential mass balance 
equation is identical to Eq. (2.3), except that 𝑞2 is eliminated with the 
equilibrium condition 𝑞2 = 𝑎 𝑐1 and 𝒟

𝑥
is replaced by an apparent disper-

sion coefficient, denoted here as 𝒟
𝑎
. Accordingly, the equation reads:

(1 + 𝑎𝐺)𝜕
𝑡
𝑐1(𝑥, 𝑡) = −𝑈

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) +𝒟

𝑎
𝜕2
𝑥𝑥
𝑐1(𝑥, 𝑡) (2.6)

As reported in the literature [9], the hypothetical fluid velocity, denoted 
here as �̂�

𝑥
, is equal to the interstitial fluid velocity 𝑈

𝑥
times the term 

𝜖
𝑒
∕𝜖

𝑡
, where 𝜖

𝑡
≡ 𝜖

𝑒
+ (1 − 𝜖

𝑒
) 𝜖

𝑖
denotes the total porosity in the column. 

Thus, to express Eq. (2.6) in terms of hypothetical fluid velocity, we 
must multiply the equation by 𝜖

𝑒
∕𝜖

𝑡
. This yields:

(𝜖
𝑒
∕𝜖

𝑡
)(1 + 𝑎𝐺)𝜕

𝑡
𝑐1(𝑥, 𝑡) = − �̂�

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) + (𝜖

𝑒
∕𝜖

𝑡
)𝒟

𝑎
𝜕2
𝑥𝑥
𝑐1(𝑥, 𝑡) (2.7)

If we now define �̂�
𝑎
≡ (𝜖

𝑒
∕𝜖

𝑡
)𝒟

𝑎
and 𝐹

𝑡
≡ (1 − 𝜖

𝑡
)∕𝜖

𝑡
, and then use the 

relation (1 + 𝑎𝐺)𝜖
𝑒
= (1 + 𝑎𝐹

𝑡
)𝜖

𝑡
(whose proof is left to the readers), we 

obtain:

(1 + 𝑎𝐹
𝑡
)𝜕

𝑡
𝑐1(𝑥, 𝑡) = − �̂�

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) + �̂�

𝑎
𝜕2
𝑥𝑥
𝑐1(𝑥, 𝑡) (2.8)

To use Eqs. (2.6) and (2.8), one requires an expression for the apparent 
dispersion coefficient. As mentioned, in the literature two are available. 
Opting for the formulation in terms of interstitial fluid velocity, Kostka 
et al. [19] suggested:

𝒟
𝑎
=𝒟

𝑥
+

𝑎𝐺𝑈 2
𝑥

𝜁 (1 + 𝑎𝐺)2
(2.9)

Conversely, opting for the formulation in terms of hypothetical fluid 
velocity, Miyabe & Guiochon [10], as well as Guiochon et al. [11], sug-

gested:

�̂�
𝑎
=𝒟

𝑥
+

𝑎𝐹
𝑡
�̂� 2
𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

(2.10)

These two expressions are not equivalent, and in fact they yield quite 
different predictions. As the reader can verify, the expression for 𝒟

𝑎

equivalent to that given in Eq. (2.9) is:

�̂�
𝑎
=

𝜖
𝑒

𝜖
𝑡

[
𝒟

𝑥
+

𝑎𝐺𝑈 2
𝑥

𝜁 (1 + 𝑎𝐺)2

]
=

𝜖
𝑒

𝜖
𝑡

[
𝒟

𝑥
+

𝑎𝐺�̂� 2
𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

]
(2.11)

This relation coincides with that given in Eq. (2.10) only for 𝜖
𝑖
= 0, 

a condition that often is not fulfilled. This inconsistency motivated the 
main objective of this work: determining which expression is the correct 
3

one. To answer this question, we opted to derive the EDM from the POR 
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Table 1

Summary of the main equations of the POR model and of 
the EDM. In the EDM, the mass balances reduce from two 
to one. To compensate for the missing mass balance, the 
EDM replaces the fluid dynamic dispersion coefficient 𝒟

𝑥

with an apparent dispersion coefficient 𝒟
𝑎
. The two re-

ported versions of the EDM mass balance are equivalent, 
but the two closures for 𝒟

𝑎
are not.

Pore diffusion model – Mass balances

𝜕
𝑡
𝑐
1
(𝑥, 𝑡) +𝐺𝜕

𝑡
𝑞
2
(𝑥, 𝑡) = −𝑈

𝑥
𝜕
𝑥
𝑐
1
(𝑥, 𝑡) +𝒟

𝑥
𝜕2
𝑥𝑥
𝑐
1
(𝑥, 𝑡)

𝜕
𝑡
𝑞
2
(𝑥, 𝑡) = 𝜁 [𝑎𝑐

1
(𝑥, 𝑡) − 𝑞

2
(𝑥, 𝑡)]

Equilibrium dispersion model – Mass balance

First formulation

(1 + 𝑎𝐺)𝜕
𝑡
𝑐
1
(𝑥, 𝑡) = −𝑈

𝑥
𝜕
𝑥
𝑐
1
(𝑥, 𝑡) +𝒟

𝑎
𝜕2
𝑥𝑥
𝑐
1
(𝑥, 𝑡)

Second (equivalent) formulation

(1 + 𝑎𝐹
𝑡
)𝜕

𝑡
𝑐
1
(𝑥, 𝑡) = − �̂�

𝑥
𝜕
𝑥
𝑐
1
(𝑥, 𝑡) + �̂�

𝑎
𝜕2
𝑥𝑥
𝑐
1
(𝑥, 𝑡)

Constitutive equations

First closure available in the literature

𝒟
𝑎
=𝒟

𝑥
+

𝑎𝐺𝑈 2
𝑥

𝜁 (1 + 𝑎𝐺)2
⇒ �̂�

𝑎
=

𝜖
𝑒

𝜖
𝑡

[
𝒟

𝑥
+

𝑎𝐺�̂� 2
𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

]

Second (non-equivalent) closure available in the literature

�̂�
𝑎
=𝒟

𝑥
+

𝑎𝐹
𝑡
�̂� 2

𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

⇒ 𝒟
𝑎
=

𝜖
𝑡

𝜖
𝑒

[
𝒟

𝑥
+

𝑎𝐹
𝑡
�̂� 2

𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

]

Parameters

𝐺 ≡

( 1 − 𝜖
𝑒

𝜖
𝑒

)
𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎

𝑎
; 𝜁 ≡

[
1

𝜖
𝑖
+ (1 − 𝜖

𝑖
)𝑎

] 3𝑘
𝑒

𝑅

𝐹
𝑡
≡

1 − 𝜖
𝑡

𝜖
𝑡

; 𝜖
𝑡
≡ 𝜖

𝑒
+ (1 − 𝜖

𝑒
)𝜖

𝑖

model, using an asymptotic or perturbation method. For details about 
this powerful technique, we refer to the literature [34,37–39].

To help the readers to compare and contrast the POR model and the 
two versions of the EDM, we have summarized the main equations of 
these models in Table 1.

3. Derivation of the EDM via asymptotics

The starting point is the differential balance equations of the POR 
model, i.e., Eqs. (2.3) and (2.5). These feature various terms, each 
representing a physical process (e.g., axial dispersion) with a specific 
characteristic time. To obtain these times, we scale the variables (both 
dependent and independent) present in the equations. The scaled vari-

ables are:

𝜏 ≡ 𝑡∕𝑡
𝑐

, �̄� ≡ 𝑥∕𝑥
𝑐

, 𝑐1 ≡ 𝑐1∕𝑐1,𝑐 , 𝑞2 ≡ 𝑞2∕(𝑎𝑐1,𝑐) (3.1)

The scalars at the denominators are the scales, which for now we leave 
unspecified. Because Eqs. (2.3) and (2.5) are linear, the value of 𝑐1,𝑐 is 
irrelevant; the scale of 𝑞2 is equal to 𝑎 𝑐1,𝑐 , because at equilibrium 𝑐1 and 
𝑞2 must satisfy the linear adsorption isotherm. The scaled equations are:

𝜕
𝜏
𝑐1(�̄�, 𝜏) + 𝑎𝐺𝜕

𝜏
𝑞2(�̄�, 𝜏) = − (𝑈

𝑥
𝑡
𝑐
∕𝑥

𝑐
)𝜕

�̄�
𝑐1(�̄�, 𝜏) + (𝒟

𝑥
𝑡
𝑐
∕𝑥2

𝑐
)𝜕2

�̄��̄�
𝑐1(�̄�, 𝜏)

(3.2)

𝜕
𝜏
𝑞2(�̄�, 𝜏) = (𝜁 𝑡

𝑐
)[𝑐1(�̄�, 𝜏) − 𝑞2(�̄�, 𝜏)] (3.3)

The characteristic times have now appeared: that of convection is 
𝑥
𝑐
∕𝑈

𝑥
, that of dispersion is 𝑥2

𝑐
∕𝒟

𝑥
and that of mass transfer is 1∕𝜁 . We 

assume that mass transfer is very fast, convection is fast and dispersion 
is slow. In other words, we assume that:

𝜀 ≡𝑈
𝑥
∕𝜁 𝑥

𝑐
Î 1 ; Pe ≡𝑈

𝑥
𝑥
𝑐
∕𝒟

𝑥
Ï 1 (3.4)

Here, Pe is the Péclet number based on the length scale 𝑥
𝑐

(not on the 
length of the chromatography column). In Eq. (3.1), the time scale 𝑡

𝑐

must coincide with the characteristic time of the fastest process; hence, 

𝑡
𝑐
≡ 1∕𝜁 . Then, the nondimensionalized balance equations turn into:
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𝜕
𝜏
𝑐1(�̄�, 𝜏) + 𝑎𝐺𝜕

𝜏
𝑞2(�̄�, 𝜏) = − 𝜀𝜕

�̄�
𝑐1(�̄�, 𝜏) + (𝜀∕Pe)𝜕2

�̄��̄�
𝑐1(�̄�, 𝜏) (3.5)

𝜕
𝜏
𝑞2(�̄�, 𝜏) = 𝑐1(�̄�, 𝜏) − 𝑞2(�̄�, 𝜏) (3.6)

We know that 𝜀 Î 1, and so we seek a solution in the form of a power 
series in this parameter. Following the method of perturbation theory, 
we write:

𝑐1(�̄�, 𝜏;𝜀) = 𝑐1,0(�̄�, 𝜏) + 𝑐1,1(�̄�, 𝜏)𝜀+𝑂(𝜀2) (3.7)

𝑞2(�̄�, 𝜏;𝜀) = 𝑞2,0(�̄�, 𝜏) + 𝑞2,1(�̄�, 𝜏)𝜀+𝑂(𝜀2) (3.8)

Let us briefly discuss the meaning of these equations; we refer to the 
first, but the same considerations apply also to the second. 𝑐1 is a func-

tion of �̄� and 𝜏 (i.e., of the dimensionless space and time coordinates). 
But the mathematical problem features also various dimensionless num-

bers, e.g., 𝑎, Pe and 𝜀, so 𝑐1 may be regarded as a function also of them. 
Hence, we can write 𝑐1 = 𝑐1(�̄�, 𝜏;𝑎,Pe, 𝜀,…). In our analysis, we want to 
fix the values of all the parameters except 𝜀 and investigate how the 
system behaves in the limit of vanishingly small values of 𝜀 (that is, in 
the limit of very fast mass transfer between the mobile and stationary 
phases). Thus, we lighten the notation and just write 𝑐1 = 𝑐1(�̄�, 𝜏;𝜀). We 
do not know this function (for we have not solved the mathematical 
problem), but we do know that the parameter 𝜀 is much smaller than 
unity. Thus, if we expand 𝑐1 = 𝑐1(�̄�, 𝜏;𝜀) in a Taylor series with respect 
to 𝜀, choosing as expansion point 𝜀 = 0, and then retain only the first 
few terms of the expansion, we expect that the error of approximation 
should be small. Eq. (3.7) is this expansion, with 𝑐1,0(�̄�, 𝜏) ≡ 𝑐1(�̄�, 𝜏;𝜀 = 0)
and 𝑐1,1(�̄�, 𝜏) ≡ 𝜕

𝜀
𝑐1(�̄�, 𝜏;𝜀 = 0).

Now, if we substitute the series into Eqs. (3.5) and (3.6) and equate 
coefficients of equal powers of 𝜀, we get a set of equations. The first, 
the equations at leading order, are:

𝜕
𝜏
𝑐1,0(�̄�, 𝜏) = − 𝑎𝐺𝜕

𝜏
𝑞2,0(�̄�, 𝜏) ; 𝜕

𝜏
𝑞2,0(�̄�, 𝜏) = 𝑐1,0(�̄�, 𝜏) − 𝑞2,0(�̄�, 𝜏) (3.9)

These equations simply say that over a dimensionless time of order one, 
𝑐1,0 and 𝑞2,0 become equal. In terms of real time, this equilibration pro-

cess (driven by mass transfer) occurs over a time of order 1∕𝜁 . Before 
the two concentrations become equal, 𝑐1 − 𝑞2 becomes small enough to 
make the mass transfer process as fast as the convection process; from 
this moment onward, the time scale of the system becomes the convec-

tion time; so, in Eq. (3.1), 𝑡
𝑐
≡ 𝑥

𝑐
∕𝑈

𝑥
. The time interval where mass 

transfer dominates is very narrow and is referred to as temporal bound-

ary layer; outside it, in the outer region, convection is as important as 
mass transfer and the time scale coincides with the characteristic time 
of convection. With this time scale, the nondimensionalized balance 
equations become:

𝜕
𝜏
𝑐1(�̄�, 𝜏) + 𝑎𝐺𝜕

𝜏
𝑞2(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1(�̄�, 𝜏) (3.10)

𝜀𝜕
𝜏
𝑞2(�̄�, 𝜏) = 𝑐1(�̄�, 𝜏) − 𝑞2(�̄�, 𝜏) (3.11)

We now operate as before. We seek a solution in the form of a power 
series in 𝜀. Using Eqs. (3.7) and (3.8), we find a set of equations. Those 
at leading order read:

𝜕
𝜏
𝑐1,0(�̄�, 𝜏) + 𝑎𝐺𝜕

𝜏
𝑞2,0(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1,0(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1,0(�̄�, 𝜏) (3.12)

𝑐1,0(�̄�, 𝜏) = 𝑞2,0(�̄�, 𝜏) (3.13)

whence:

(1 + 𝑎𝐺)𝜕
𝜏
𝑐1,0(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1,0(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1,0(�̄�, 𝜏) (3.14)

or equivalently:

𝜕
𝜏
𝑐1,0(�̄�, 𝜏) = − 𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) +𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏) (3.15)

with:
4

𝑉0 ≡ (1 + 𝑎𝐺)−1 ; 𝒟0 ≡ 𝑉0∕Pe (3.16)
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We would employ Eq. (3.14) if mass transfer was infinitely fast; but 
we are assuming it is extremely fast, so we must consider higher-order 
terms. At 𝑂(𝜀), the equations read:

𝜕
𝜏
𝑐1,1(�̄�, 𝜏) + 𝑎𝐺𝜕

𝜏
𝑞2,1(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1,1(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1,1(�̄�, 𝜏) (3.17)

𝜕
𝜏
𝑐1,0(�̄�, 𝜏) = 𝑐1,1(�̄�, 𝜏) − 𝑞2,1(�̄�, 𝜏) (3.18)

In Eq. (3.18), the term on the left is the time derivative of the leading-

order concentration, given by Eq. (3.15). Thus, we can write Eq. (3.18)

as follows:

𝑞2,1(�̄�, 𝜏) = 𝑐1,1(�̄�, 𝜏) + 𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕
2
�̄��̄�
𝑐1,0(�̄�, 𝜏) (3.19)

We now use this equation to eliminate 𝑞2,1 from Eq. (3.17), so that the 
latter features 𝑐1,1 only (then, Eq. (3.17) is no longer coupled with Eq. 
(3.18)). Doing so yields:

(1 + 𝑎𝐺)𝜕
𝜏
𝑐1,1(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1,1(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1,1(�̄�, 𝜏)

− 𝑎𝐺𝜕
𝜏

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
(3.20)

Now, we multiply all the terms in the equation above by 𝜀, and then we 
sum the equation to Eq. (3.14). Because Eq. (3.7) holds, we obtain:

(1 + 𝑎𝐺)𝜕
𝜏
𝑐1(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1(�̄�, 𝜏) + (1∕Pe)𝜕2

�̄��̄�
𝑐1(�̄�, 𝜏)

− 𝜀𝑎𝐺𝜕
𝜏

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
+𝑂(𝜀2) (3.21)

Now, we write:

𝜕
𝜏

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
= 𝜕

�̄�

[
𝑉0𝜕𝜏𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄�𝜏
𝑐1,0(�̄�, 𝜏)

]

(3.22)

Then, using Eq. (3.15), we obtain:

𝜕
𝜏

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
=− 𝑉0𝜕�̄�

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]

+𝒟0𝜕
2
�̄��̄�

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
(3.23)

This features four terms, whose orders of magnitude are very different; 
the first does not involve Pe, while the other three, when combined, are 
of order 1∕Pe. Thus, we have:

𝜕
𝜏

[
𝑉0𝜕�̄�𝑐1,0(�̄�, 𝜏) −𝒟0𝜕

2
�̄��̄�
𝑐1,0(�̄�, 𝜏)

]
=− 𝑉 2

0 𝜕
2
�̄��̄�
𝑐1,0(�̄�, 𝜏) +𝑂(1∕Pe) (3.24)

Eq. (3.20) now becomes:

(1 + 𝑎𝐺)𝜕
𝜏
𝑐1(�̄�, 𝜏) = − 𝜕

�̄�
𝑐1(�̄�, 𝜏)

+ (1∕Pe)𝜕2
�̄��̄�
𝑐1(�̄�, 𝜏) + 𝜀𝑎𝐺𝑉 2

0 𝜕
2
�̄��̄�
𝑐1(�̄�, 𝜏) +𝑂(𝜀∕Pe) +𝑂(𝜀2) (3.25)

Note that, in the term featuring 𝑉 2
0 , we have replaced 𝑐1,0 with 𝑐1. Doing 

this is allowed at the approximation order at which we are working. 
In the equation above, the last two terms on the right-hand side are 
extremely small compared to the others (refer to Eq. (3.4)). Thus, these 
terms can be safely neglected. If we now go back to dimensional form, 
Eq. (3.25) turns into Eq. (2.6) with 𝒟

𝑎
given by Eq. (2.9).

This analysis has shown that the EDM can be rigorously derived 
from the more general POR model; the former may be regarded as 
the asymptotic approximation of the latter in the limit of very rapid 
mass transfer between mobile and stationary phases. The analysis has 
also given the analytical expression for the apparent dispersion coeffi-

cient, showing that between Eqs. (2.9) and (2.10), the former should be 
favoured. Finally, it has provided the conditions under which the EDM 
is valid, given by Eq. (3.4). In that equation, the length scale 𝑥

𝑐
should 

represent the average width of the analyte concentration spatial profile 
between the inlet and the outlet of the chromatography column. This 
can be easily estimated. Because the analyte moves along the column at 
velocity 𝑈

𝑥
∕(1 + 𝑎𝐺), its residence time in the column is (1 + 𝑎𝐺)𝐿∕𝑈

𝑥
, 

where 𝐿 is the column length. We know that over a given time 𝑡 the or-√

der of magnitude of the spread induced by dispersion is 2 𝒟 𝑡, where 
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𝒟 is the dispersion coefficient [37]. Therefore, if we assume that at the 
inlet of the column the concentration profile is very sharp (so that its 
width is negligible), considering that for the analyte in question the dis-

persion coefficient is equal to 𝒟
𝑎
∕(1 + 𝑎𝐺), we obtain 𝑥

𝑐
∼ 2

√
𝒟

𝑎
𝐿∕𝑈

𝑥
. 

If the concentration profile at the inlet of the column is not very sharp, 
this estimate is invalid, but the correct one may be easily obtained with 
similar considerations.

To conclude this section, we would like to discuss why our expres-

sion for 𝒟
𝑎

differs from that of Miyabe & Guiochon [10] and Guiochon 
et al. [11]. To see why this happens, we must focus on the accumulation 
terms in Eq. (2.3). While we wrote it as 𝜕

𝑡
𝑐1 + 𝐺𝜕

𝑡
𝑞2, Miyabe & Guiochon

wrote it as 𝜕
𝑡
𝑐1 +𝐹

𝑡
𝜕
𝑡
𝑞2. The latter expression appears to be incorrect. As 

we discussed in Section 2.1, the analyte accumulates in three regions: 
in the mobile phase, in the fluid within the pores, and on the surfaces of 
the pores, so the accumulation terms should be three, not two. But both 
our model and that of Miyabe & Guiochon feature only two terms. To 
see why, let’s write the expressions of the three terms; these are 𝜖

𝑒
𝜕
𝑡
𝑐1, 

(1 − 𝜖
𝑒
) 𝜖

𝑖
𝜕
𝑡
𝑐2, and (1 − 𝜖

𝑒
)(1 − 𝜖

𝑖
)𝜕

𝑡
𝑞2, respectively. We assumed that 𝑐2

and 𝑞2 are in equilibrium – which implies assuming that the adsorption 
and desorption processes are infinitely fast. This permits combining the 
second and third accumulation terms, as shown in Eq. (2.1), leading to 
𝜖
𝑒
(𝜕

𝑡
𝑐1 +𝐺𝜕

𝑡
𝑞2) as total accumulation term. Eq. (2.3) does not feature 

𝜖
𝑒
, for we divided by it throughout. Note that in the POR model we can-

not assume 𝑐1 and 𝑐2, or equivalently 𝑎 𝑐1 and 𝑞2, to be equal, since the 
mass transfer between stationary and mobile phases is not assumed to 
be infinitely fast; this is shown by Eq. (2.5), which Miyabe & Guiochon

also employ. However, this is precisely the assumption required to ob-

tain the other expression for the total accumulation term. If we assume 
– incorrectly – that the concentrations 𝑐1 and 𝑐2 are equal, we can write:

𝜖
𝑒
𝜕
𝑡
𝑐1 + (1 − 𝜖

𝑒
)𝜖

𝑖
𝜕
𝑡
𝑐2 + (1 − 𝜖

𝑒
)(1 − 𝜖

𝑖
)𝜕

𝑡
𝑞2

=
[
𝜖
𝑒
+ (1 − 𝜖

𝑒
)𝜖

𝑖

]
𝜕
𝑡
𝑐1 + (1 − 𝜖

𝑒
)(1 − 𝜖

𝑖
)𝜕

𝑡
𝑞2

= 𝜖
𝑡
𝜕
𝑡
𝑐1 + (1 − 𝜖

𝑡
)𝜕

𝑡
𝑞2 = 𝜖

𝑡
𝜕
𝑡
𝑐1 + 𝜖

𝑡

( 1 − 𝜖
𝑡

𝜖
𝑡

)
𝜕
𝑡
𝑞2 = 𝜖

𝑡
(𝜕

𝑡
𝑐1 + 𝐹

𝑡
𝜕
𝑡
𝑞2) (3.26)

Then, dividing the entire differential mass balance equation (written in 
terms of hypothetical fluid velocity) by 𝜖

𝑡
, we obtain the accumulation 

term of Miyabe & Guiochon. Hence, the differential equations that these 
authors use in the POR model are:

𝜕
𝑡
𝑐1(𝑥, 𝑡) + 𝐹

𝑡
𝜕
𝑡
𝑞2(𝑥, 𝑡) = − �̂�

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) + �̂�

𝑥
𝜕2
𝑥𝑥
𝑐1(𝑥, 𝑡) (3.27)

𝜕
𝑡
𝑞2(𝑥, 𝑡) = 𝜁 [𝑎𝑐1(𝑥, 𝑡) − 𝑞2(𝑥, 𝑡)] (3.28)

with �̂�
𝑥
≡ (𝜖

𝑒
∕𝜖

𝑡
)𝒟

𝑥
. Applying the perturbation method to this set of 

equations, after similar mathematical passages, we obtain Eq. (2.8) with 
�̂�

𝑎
given by Eq. (2.10). This equation should not be used, because it is 

based on the incorrect assumption that 𝑎 𝑐1 and 𝑞2 are equal, a condition 
that in the POR model is not satisfied, as Eq. (3.28) clearly reveals. Eqs. 
(3.27) and (3.28) are incompatible.

It is encouraging to see that other authors have supported the cor-

rectness of Eq. (2.9). In particular, Qamar et al. [33] have derived this 
equation using the moment method analysis. In their work, they pos-

tulated the validity of the EDM model given by Eq. (2.6) and derived 
Eq. (2.9) by matching the analytical expressions of the second central 
moments of the analyte concentration profiles found from the analyti-

cal solutions of the EDM and GRM models. By deriving both Eqs. (2.6)

and (2.9) from a more general chromatography model, our work offers 
a stronger theoretical grounding to these equations. Furthermore, as 
mentioned, it also provides clear applicability conditions for the model 
(Eq. (3.4)), which researchers and practitioners can use to verify that 
the EDM is valid for their specific systems of interest.

4. Numerical validation

To support our claim that Eq. (2.9) should be favoured when sim-
5

ulating chromatographic separations with the EDM, we simulated the 
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Table 2

Process parameters used in the EDM numerical simulations.

Symbol Property Value Units

𝜖
𝑡

Total porosity 0.55 −
𝜖
𝑒

External porosity 0.25 −
𝐿 Column length 0.15 m

𝐷 Column diameter 4.6 ⋅ 10−3 m

𝑅 Particle radius 2.5 ⋅ 10−6 m

𝑘
𝑒

Mass transfer coefficient 3.2 ⋅ 10−5 m∕s

𝒟
𝑥

Axial dispersion coefficient 2.8 ⋅ 10−8 m2∕s

𝑎 Henry coefficient 5.69 −
𝑄 Volume flow rate 1.7 ⋅ 10−8 m3∕s

𝑐
𝐼𝑁

Inlet concentration 0.50 kg∕m3

𝑉 Sample volume 5.0 ⋅ 10−9 m3

elution of a generic analyte employing both expressions for the appar-

ent dispersion coefficient; that is, we used Eq. (2.6) coupled with:

𝒟
𝑎,1 =𝒟

𝑥
+

𝑎𝐺𝑈 2
𝑥

𝜁 (1 + 𝑎𝐺)2
and 𝒟

𝑎,2 =
𝜖
𝑡

𝜖
𝑒

[
𝒟

𝑥
+

𝑎𝐹
𝑡
�̂� 2
𝑥

𝜁 (1 + 𝑎𝐹
𝑡
)2

]
(4.1)

We also simulated the system using the POR model, aiming to com-

pare the results of the two versions of the EDM against those of the 
POR model (regarded as benchmark). Provided the EDM applicability 
conditions, given by Eq. (3.4), are met, the correct version of the EDM 
should yield results nearly identical to those of the POR model. We 
chose the process parameter values to satisfy this requirement; they are 
reported in Table 2. Since the inlet concentration profile was taken very 
sharp, the length scale 𝑥

𝑐
in Eq. (3.4) can be estimated with the relation 

𝑥
𝑐
∼ 2

√
𝒟

𝑎
𝐿∕𝑈

𝑥
. This yields 5 mm, whence 𝜀 = 8 ⋅ 10−2 and Pe = 669; 

thus, the applicability conditions are satisfied.

To solve the three models, at the inlet and outlet of the chromatogra-

phy column, we used the Danckwerts boundary conditions [11], given 
by:

𝑐1(𝑥 = 0, 𝑡) − (𝒟
𝑎
∕𝑈

𝑥
)𝜕

𝑥
𝑐1(𝑥 = 0, 𝑡) = 𝑐

𝐼𝑁
; 𝜕

𝑥
𝑐1(𝑥 =𝐿, 𝑡) = 0 (4.2)

Here, 𝑐
𝐼𝑁

is the analyte concentration at the inlet, but upstream, of the 
column. The boundary condition at the outlet of the column is adopted 
very frequently in chromatography – but its validity is not obvious. One 
may argue that as the analyte leaves the column, crossing its outlet 
section, 𝜕

𝑥
𝑐1(𝑥 =𝐿, 𝑡) cannot be zero, since the analyte concentration 

is not uniform (it has a bell shape). Therefore, it may seem that the 
outlet boundary condition given above should be rejected. However, in 
certain conditions, it is correct. Moreover, even when it is incorrect, 
one can prove that when Pe is far larger than unity (a requirement for 
the validity of the EDM and a condition that is often satisfied), that 
boundary condition can be adopted without affecting the accuracy of 
the results. For details, we refer to the Appendix.

The simulations were performed using gPROMS® ModelBuilder, dis-

cretizing the spatial grid (formed of 2000 elements) using the second-

order Centred Finite Difference Method. The results of the simulations 
are shown in Fig. 1, which reports the analyte concentration at the 
outlet of the column as a function of time. As we can observe, the pro-

files obtained from the POR model and from the EDM coupled with 
the expression of 𝒟

𝑎,1 reported in Eq. (4.1) are nearly indistinguishable, 
whereas that based on the expression of 𝒟

𝑎,2 reported in Eq. (4.1) differs 
considerably from the other two.

5. Conclusions

The EDM is frequently used for designing and optimizing chromato-

graphic processes. It is convenient, since it involves only one differ-

ential mass balance equation per analyte. This is possible since the 
model assumes that the analyte concentrations in the mobile and sta-

tionary phases are in equilibrium, a condition that would require an 
infinite mass transfer rate between the two phases. Because the real 

mass transfer rate is finite, the model replaces the fluid dynamic dis-
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Fig. 1. Comparison between the simulated profiles of the POR model and of the 
two versions of the EDM obtained by coupling Eq. (2.6) with the two apparent 
dispersion coefficients given in Eq. (4.1).

persion coefficient present in the analyte mass balance equation with 
an apparent one, related to fluid dynamics, mass transfer and thermo-

dynamics (adsorption isotherm). Finding a suitable expression for this 
dispersion coefficient is a critical part of this modeling strategy. In the 
literature, two expressions are available, their predictions differing sig-

nificantly. In this work, we intended to determine which expression 
should be favoured. To do this, we derived the EDM from the more 
general POR model via an asymptotic method; this technique provides a 
stronger foundation for the EDM model, gives an analytical expression 
for the apparent dispersion coefficient and specifies the applicability 
conditions of the model. The expression that we obtained does coin-

cide with one of those available in the literature, but this appears to be 
the less frequently adopted. To confirm the validity of our analysis, we 
simulated a chromatographic process using the POR model and the two 
versions of the EDM, selecting conditions that meet the EDM applica-

bility criteria provided by the asymptotic analysis. In such conditions, 
the POR and the correct version of the EDM should yield almost iden-

tical results. This is indeed what we observed, the simulation results 
confirming that the expression for the apparent dispersion coefficient 
supported by our analysis should be favoured.

CRediT authorship contribution statement

Konstantinos Katsoulas: Data curation, Investigation, Software, 
Validation, Visualization, Writing – original draft, Writing – review 
& editing. Monica Tirapelle: Data curation, Investigation, Software, 
Validation, Visualization, Writing – original draft, Writing – review 
& editing. Eva Sorensen: Funding acquisition, Project administration, 
Resources, Supervision, Writing – original draft, Writing – review & 
editing. Luca Mazzei: Conceptualization, Formal analysis, Methodol-

ogy, Project administration, Resources, Supervision, Writing – original 
draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests: 
The authors declare that financial support was provided by the Engi-

neering and Physical Sciences Research Council (EPSRC), grant code 
EP/T005556/1.

Data availability
6

Data will be made available on request.
Journal of Chromatography A 1708 (2023) 464345

Acknowledgements

The authors wish to acknowledge the financial support provided for 
this work by the Engineering and Physical Sciences Research Council 
(EPSRC), grant code EP/T005556/1.

Appendix A

A.1. On the EDM outlet boundary condition

Let us consider a chromatographic system which consists of three 
parts: an inlet section, the chromatography column, and an outlet sec-

tion. At the boundaries between them (located at 𝑥 = 0 and 𝑥 = 𝐿, that 
is, at the inlet and outlet of the column), one assumes that both the con-

centration and the mass flow rate of the analyte are continuous [40]. 
Thus, at the column outlet, it is:

𝑆𝜖
𝑒
(𝑈

𝑥
𝑐1 −𝒟

𝑎
𝜕
𝑥
𝑐1) = 𝑆

𝑜
𝜖
𝑒,𝑜
(𝑈

𝑥,𝑜
𝑐1 −𝒟

𝑥,𝑜
𝜕
𝑥
𝑐1,𝑜) (A.1)

where 𝑆 denotes the area of the cross-section of the column, and the 
symbols with the subscript 𝑜 refer to the outlet section of the system. 
It is understood that all the variables are evaluated at 𝑥 =𝐿. Moreover, 
on the right-hand side of Eq. (A.1), using the assumption that the con-

centration is continuous, we have replaced 𝑐1,𝑜 with 𝑐1. Notice that the 
outlet section involves not the apparent dispersion coefficient but the 
fluid dynamic one. If we assume that the fluid is incompressible, then 
mass conservation requires that 𝑆𝜖

𝑒
𝑈
𝑥
= 𝑆

𝑜
𝜖
𝑒,𝑜
𝑈
𝑥,𝑜

. Therefore, Eq. (A.1)

reduces to:

𝜕
𝑥
𝑐1 = (𝑈

𝑥
𝒟

𝑥,𝑜
∕𝑈

𝑥,𝑜
𝒟

𝑎
)𝜕

𝑥
𝑐1,𝑜 (A.2)

Often, in the literature it is assumed that in the outlet section fluid dy-

namic dispersion is negligibly small. If in Eq. (A.2) we make 𝒟
𝑥,𝑜

tend

to zero, then, provided that 𝜕
𝑥
𝑐1,𝑜 remains finite (as we shall presently 

see, this is indeed the case), the equation yields 𝜕
𝑥
𝑐1 = 0. This is the 

outlet boundary condition in Eq. (4.2), which was first advanced by 
Danckwerts [41] during the study of steady-state reactors. For chro-

matography columns, this condition might surprise: when an analyte 
leaves the column, its concentration is not uniform (it usually has a bell 
shape), so how can its spatial derivative vanish? Moreover, when the 
function 𝑐1(𝑥, 𝑡) is plotted, in most cases near the outlet of the column 
one does not see a region where the concentration gradient gradually 
reduces to eventually vanish at the outlet. So, at 𝑥 =𝐿, does 𝜕

𝑥
𝑐1 really 

go to zero? Before answering these questions, we point out that if in 
the outlet section fluid dynamic dispersion is not negligible, Eq. (A.2)

must be used. This is inconvenient, because it implies that also the out-

let section must be modeled [40]. Fortunately, in most chromatographic 
systems, convection dominates over dispersion. As we shall see, when 
this happens, one can still adopt the condition 𝜕

𝑥
𝑐1 = 0, without alter-

ing the solution in most of the column. But understanding the reason 
for this is important.

Consider Eq. (2.6), i.e., the differential equation characterizing the 
EDM. As this involves a second-order derivative with respect to 𝑥, the 
model requires two boundary conditions. The right-hand side of the 
equation features a convection and a dispersion term, whose relative 
importance one can judge by scaling the equation [37,42,43]. Doing 
this leads to Eq. (3.10). In a correctly scaled equation, the dimen-

sionless derivatives have unit order of magnitude; hence, the relative 
importance of the various terms is revealed by the factors by which 
the derivatives are multiplied [37]. In Eq. (3.10), such factors are 1 for 
the convection term and 1∕Pe for the dispersion term. Consequently, if 
Pe Ï 1, we conclude that the dispersion term is very small compared 
with the convection term. In light of this, one may rightly eliminate it 
(at the lowest order of approximation), solving the simplified differen-

tial equation:
(1 + 𝑎𝐺)𝜕
𝑡
𝑐1(𝑥, 𝑡) = −𝑈

𝑥
𝜕
𝑥
𝑐1(𝑥, 𝑡) (A.3)
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But this equation features only a first-order derivative with respect to 
𝑥, and thus requires only one boundary condition. When this situation 
arises, a boundary layer – in our case, a concentration boundary layer – 
exists near one of the two boundaries [34,37]. In the problem at hand, 
the boundary layer is located at the outlet of the column; here, the analyte 
concentration changes significantly not over the length 𝑥

𝑐
introduced in 

Section 3 but over a far shorter length (the boundary layer thickness), 
so that no matter how large Pe is, in the boundary layer the dispersion 
term is not negligible and the outlet boundary condition is not lost. The 
outlet boundary condition influences the solution solely within the boundary 
layer; in the rest of the domain (referred to as the outer region), the 
solution is virtually unaffected by the outlet boundary condition. In 
several applications, this overcomes the issue of assigning the outlet 
boundary condition – a very fortunate outcome, insofar as often this 
condition is unknown [44].

In our case, if in the outlet section fluid dynamic dispersion is neg-

ligible, the outlet boundary condition is known, being 𝜕
𝑥
𝑐1 = 0. As just 

said, this condition affects the concentration profile only extremely near 
the column outlet; outside this thin region, the profile has the expected 
bell shape. This also explains why when we plot the variable 𝑐1 against 
𝑥, we usually do not see a region where the concentration gradient 
gradually reduces to eventually vanish at the column outlet; we do not 
see it, because this region is extremely thin. But if a sufficiently fine 
computational grid is used, zooming in close to the column outlet will 
reveal this region. If in the outlet section fluid dynamic dispersion is 
not negligible, we can still adopt the (incorrect) condition 𝜕

𝑥
𝑐1 = 0, but 

we must disregard the part of the solution that falls within the bound-

ary layer, considering as column outlet concentration the value of 𝑐1(𝑥, 𝑡)
immediately upstream of the boundary layer. This location can be easily 
estimated. The boundary layer must be thin enough to permit the dis-

persion term to balance the convection term; the latter scales as 𝑈
𝑥
∕𝛿, 

where 𝛿 is the boundary layer thickness, while the former scales as 
𝒟

𝑎
∕𝛿2. To balance, these terms must have the same order of magnitude; 

that is, 𝑈
𝑥
∕𝛿 ∼𝒟

𝑎
∕𝛿2. From this condition, we obtain 𝛿∕𝐿 ∼𝒟

𝑎
∕𝑈

𝑥
𝐿 or 

equivalently 𝛿∕𝐿 ∼ 1∕Pe
𝐿
, where Pe

𝐿
is a Péclet number based on the 

length of the chromatography column and on the apparent dispersion 
coefficient. Hence, the location just upstream of the outlet boundary 
layer is at 𝑥

𝐿
∼ (1 − 1∕Pe

𝐿
)𝐿.

A final remark about the condition 𝜕
𝑥
𝑐1 = 0 is in order. We obtained 

this condition by taking the limit of Eq. (A.2) for 𝒟
𝑥,𝑜

→ 0, in the as-

sumption that as 𝒟
𝑥,𝑜

goes to zero, 𝜕
𝑥
𝑐1,𝑜 remains finite at 𝑥 = 𝐿. When 

𝒟
𝑥,𝑜

goes to zero, also in the outlet section a concentration bound-

ary layer arises, its thickness being proportional to 𝒟
𝑥,𝑜

. Hence, for 
𝒟

𝑥,𝑜
→ 0, 𝜕

𝑥
𝑐1,𝑜 tends to diverge in the boundary layer (because the gra-

dient is inversely proportional to the boundary layer thickness). But the 
boundary layer lies at the end of the outlet section, not at 𝑥 = 𝐿. Con-

sequently, 𝜕
𝑥
𝑐1,𝑜 remains finite at 𝑥 = 𝐿. Note that the same is not true 

for the inlet section of the chromatographic system; here, when the dis-

persion coefficient 𝒟
𝑥,𝑖

goes to zero, a boundary layer forms at 𝑥 = 0
(that is, at the end of the inlet section), and so the concentration gradi-

ent 𝜕
𝑥
𝑐1,𝑖 diverges at 𝑥 = 0, creating a discontinuity in the concentration 

profile; this is present in the inlet boundary condition reported in Eq. 
(4.2), where 𝑐1(𝑥 = 0, 𝑡) ≠ 𝑐

𝐼𝑁
. Of course, this discontinuity will never 

occur in reality, because in a real system the dispersion coefficient will 
never be zero.

To confirm the validity of these considerations, we solved Eq. (2.6), 
with the first relation for the apparent dispersion coefficient reported in 
Eq. (4.1), using these outlet boundary conditions:

𝜕
𝑥
𝑐1(𝑥 =𝐿, 𝑡) = 0kg∕m4 ; 𝜕

𝑥
𝑐1(𝑥 =𝐿, 𝑡) = 5kg∕m4 ;

𝜕
𝑥
𝑐1(𝑥 =𝐿, 𝑡) = 10kg∕m4 (A.4)

Fig. 2 shows the analyte concentration spatial profiles at a time (𝑡 = 4
m) where the profiles are far from the column outlet; as we can see, the 
outlet boundary condition does not affect the solution: the three pro-
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files are identical. This is true at any spatial location that lies outside 
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Fig. 2. Spatial concentration profiles far from the outlet of the column calcu-

lated with the outlet boundary conditions reported in Eq. (A.2).

Fig. 3. Spatial concentration profiles close to the outlet of the column calculated 
with the outlet boundary conditions reported in Eq. (A.2).

the outlet boundary layer; i.e., for any 𝑥 < 𝑥
𝐿
. Fig. 3 shows the analyte 

concentration spatial profiles at a time (𝑡 ≈ 7 m) where the profiles are 
crossing the column outlet. As we can see, only the very final part of 
the profiles (the part lying within the outlet boundary layer) is affected 
by the outlet boundary condition, and while the boundary conditions 
that set 𝜕

𝑥
𝑐1(𝑥 =𝐿, 𝑡) different from zero create a sudden change in con-

centration, the condition that sets the concentration gradient to zero 
does preserve the value of the concentration immediately upstream of 
the outlet boundary layer. This confirms the validity of our previous 
considerations.
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