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LETTER TO THE EDITOR

Data saves lives: optimising routinely 
collected clinical data for rare disease research
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Abstract 

Necessity driven organisational change in the post-pandemic landscape has seen health care providers adopting 
innovations to manage and process health data. These include the use of ‘real-world’ datasets of routinely collected 
clinical information, enabling data-driven delivery. Rare disease risks being ‘left-behind’ unless our clinical and research 
communities engage with the challenges and opportunities afforded by the burgeoning field of health data infor‑
matics. We address the challenges to the meaningful use and reuse of rare disease data, and, through a series of rec‑
ommendations around workforce education, harmonisation of taxonomy, and ensuring an inclusive health data 
environment, we highlight the role that those who manage rare disease must play in addressing them. 
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Despite the significant direct and indirect negative 
impact of the COVID-19 pandemic on global health, 
the disruption to health care services has, in some areas, 
resulted in opportunities for the advancement of patient 
care [1]. Necessity driven organisational change has seen 
health care providers adopting innovations to manage 
and process health data [2, 3]. A next step in address-
ing the complex challenges of longer-term restoration of 
quality care will be the operationalisation of ‘real-world’ 

datasets of routinely collected clinical information. This 
will enable data-driven delivery of care by supporting 
agile pragmatic or adaptive studies anchored in ‘real-life’ 
data [4]. These advances are only possible with stake-
holder engagement, particularly of those clinical teams 
who generate these data. Rare disease—collectively 
affecting 3.5–6% of the population, an estimated 263–446 
million persons[5]—risks being ‘left-behind’ unless our 
clinical and research communities engage with the chal-
lenges and opportunities afforded by the burgeoning field 
of health data informatics. Meaningful use of health data 
is all the more important in areas where those health data 
are particularly scarce, and the individual rarity of these 
uncommon disorders magnifies the adverse impact to 
the evidence base of ‘data wastage’ through failure to take 
advantage of appropriate design and implementation of 
health informatic platforms and applications.

Not all health informatic systems are created equal
Electronic health records—also termed electronic 
patient or electronic medical records in different clini-
cal contexts—vary in quality and usability. Maturity is a 
key metric of EHR robustness which speaks to the sta-
bility, responsiveness, interoperability and usability of 
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the system, as well as the measurable benefit to patient 
care and the wider population. This measurable posi-
tive impact lies at the heart of the importance of EHR 
maturity, with ideal system being one which enables 
meaningful use of data for the delivery of high quality, 
equitable patient-centred care, consistent with national 
(eg, the US Centre for Disease Control, Fig. 1) [6] and 
supranational (eg, the United Nations) [7] definitions of 
such care.

Mature EHR systems support the operationalization 
of data [8]. The essential requisites for a mature EHR 
are laid out in the Healthcare Information and Man-
agement Systems Society’s inpatient and outpatient 
Electronic Medical Record Adoption Model (EMRAM 
and (O)EMRAM, Fig. 1). It is important that clinicians 
understand these requisites and are familiar with the 
issue of maturity when called on to engage with the 
choice and adoption of EHR systems within their prac-
tice. However, clinicians should also be aware that the 
maturity of these systems is irrelevant to the meaning-
ful use of health data without an infrastructure for sys-
tem implementation. The success of this infrastructure 
is dependent on their teams. We address the challenges 
to the meaningful use and reuse of rare disease data, 
and, through a series of recommendations, we highlight 
the role that those who manage rare disease must play 
in addressing them.

Education: data literacy skills for clinical 
and non‑clinical health care staff
The digitisation of data within a health care setting is 
“adaptive change of the highest order” [9], irrevocably 
changing the nature of work and those who do the work 
[10]. Data management skills are a necessary workforce 
prerequisite for the successful implementation of an elec-
tronic health records system.

Within a health care system, data flows in a cyclical 
fashion, from generation (by patients or clinicians), to 
storage, processing, analysis and the use of that analysis 
to impact care and subsequent generation of data. Weak 
links in this data cycle limit the effectiveness of analysis 
and resultant application of data. This health data cycle is 
particularly vulnerable in rare disease. The evidence base 
which supports improvements in rare disease care and 
services is reliant on studies with small population sizes, 
where the scarcity of generated data makes efficient use 
of that data critically important. Rare disease care is also 
reliant on multi-centre collaborations, where efficient 
processing (harmonisation and integration) and analysis 
is dependent on the quality of the generated data.

Increasingly, medical schools and nurse training 
courses include modules on data management, but 
this is not routinely offered to allied health profession-
als or non-medical staff, all of whom generate and use 
data within health care settings. New staff joining a care 
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Fig. 1  The requisites of the maturity of electronic health records are determined by the priorities for patient and population health outcomes [6]
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facility typically have inductive training in the relevant 
EHR system, but not on the principles of the health data 
cycle or the importance of understanding the structure of 
data. Cyclically updated training breeds confidence with 
EHR interfaces and usability [11], and supports staff in 
driving ongoing optimisation of the EHR interface, with 
measurable, significant benefit of staff experience [12]. A 
data-literate clinical workforce also understands that the 
‘findable, accessible, interoperable and reusable’ (FAIR) 
principles and standards apply to all kinds of data [6, 8, 9, 
12]. These data types include lists of eligibility criteria for 
rare disease registries, or a database of local allied care 
centres with the capacity to co-manage rare and complex 
disease.

For large, complex and rapidly evolving datasets, the 
burden of implementing FAIR standards can be consid-
erable. There will be an increasing role of artificial intel-
ligence in making data findable (eg, through searches 
improved by natural language processing approaches), 
accessible (eg through adaptable interfaces for those with 
disabilities), interoperable (eg through algorithmic data-
set harmonisation) and reusable (eg by automating data 
cleaning or transformation for different purposes). This 
increasing role will still be reliant on stakeholders. Clini-
cians and researchers need to come together to consider 
what ‘FAIR’ looks like, and thus to define the value and 
utility of data and metadata.
Recommendation: All staff who interact with health 

data should receive ongoing training in the principles of 
the health data cycle, and the necessity of ensuring that 
data are findable, accessible, interoperable, and reusable 
(FAIR).

Capacity: increase the critical mass of subject 
matter experts trained in health informatics
Data literacy enables an individual to begin to under-
stand what it takes to ‘ask good questions’ of the data 
stored within their EHRs [13]. Patient-facing clinicians 
often originate these ‘good questions’ but answering 
them in rare disease using routinely collected clinical 
data requires datasets gathered across multiple centres 
which are sufficiently granular as to allow description and 
evaluation of complex phenotypes. This typically requires 
additional analytic and programming skills. EHRs contain 
highly structured data comprising quantitative or qualita-
tive variables such as age, body mass index, drug names, 
but may also contain ‘dirty’ or unstructured data, such as 
free text entries. Free text data within EHRs can hold val-
uable information on patient experience, disease severity, 
reported adverse events, or details on concordance with 
prescribed medication. However, without subject matter 
expertise, these data are a challenge to transform into a 
product that can be queried and analysed [14, 15]. The 

analyses of such data require individuals who understand 
both the clinical question and context and the capabili-
ties of analytical platforms and programming languages 
such as the open-source R, SPARQL and Python lan-
guages [16]. User-friendly interfaces for these program-
ming languages are available, allowing for intuitive use of 
these tools to analyse or visualise data, without the need 
for deep coding knowledge. Wide adoption of these skills 
may also improve the working experience, health, and 
wellbeing of the staff members themselves. The great 
promise of the digitisation of health care is the eventual 
‘gift of time’ for healthcare workers.[12] In some settings, 
eg those which lack the resource of data science staff to 
support the informed use of information, digitisation is 
more likely to contribute to physician stress and burnout 
[17]. Rather than the redirection of attention from the 
patient which is often noted by clinicians following their 
hospital’s adoption of HER [18], implementation of intel-
ligent EHR systems may free clinical staff to spend more 
time interacting with their patients. This will be par-
ticularly important during public health crises [19]. The 
‘artificial intelligence’ of the system will be dependent 
on the ‘good questions’ it has answered, and how it has 
answered them, and this depends in turn on the involve-
ment of the subject matter expertise of hospital staff.
Recommendation: The creation and expansion of a rare 

disease analyst workforce, with data skills present even in 
staff who lack the terms ‘coding’ or ‘analysis’ in their work 
title, and subject matter experts with health informatics 
experience, is urgently needed, and should be a priority 
across all health care settings.

Collaboration: maintaining metadata
Health service delivery for rare disease involves care 
across and within different tiers, from primary care to 
super-specialised tertiary team structures, to links with 
national or international disease registries, and links with 
external regulatory authorities (e.g., tissue and transplant 
authorities). Communication across these settings is neg-
atively impacted by the siloed approach to data collection 
which characterises most health care settings [15]. Whilst 
the structure of the data generated within the EHR of 
individual care settings may meet the metadata-related 
requirements necessary to establish FAIR use, this is not 
always true of the other datasets, particularly those data-
sets lacking metadata, ie descriptive information on data 
elements, dataset structure, location of data storage, and 
provenance [20]. An illustrative example is absence of 
uniform adoption of the Digital Imaging and Communi-
cations in Medicine, or DICOM metadata standards [15, 
16]. Imaging is particularly important for objective cap-
ture of phenotype in rare diseases, which tend to be char-
acterised by heterogeneity and complexity. The DICOM 
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metadata standards ensure documentation of the 
descriptive data (image type, mode of acquisition, image 
machine settings) needed to ensure that the images are 
accessible to and usable by other clinicians and research-
ers [15, 16]. Meta-data capture and data cataloguing thus 
reduce the risk of ‘health data entrapment’, where critical 
data are less accessible or interoperable [21, 22].
Recommendation: Clinical and clinical research teams 

should ensure the creation of detailed metadata (such 
as modes of data acquisition, authorship details, times-
tamps) for rare disease study datasets, registries or other 
data item, to ensure dataset re-use.

Standardization: medical terminology, coding 
and cataloguing
Prompt identification of specific populations of patients 
allows for redirection of care, audit of clinical outcomes, 
and can support recruitment to time-sensitive research. 
These forms of data utilisation are reliant on a high 
degree of clinical terminology harmonization among 
EHR users. During the pandemic, multi-centre collabora-
tive networks of researchers worked together to develop 
COVID-related projects, with subject matter experts (cli-
nicians) and health informaticians co-developing search 
algorithms within the EHR to generate lists of eligible 
individuals for inclusion within the studies. Clinical data 
have also been used for pragmatic and adaptive ran-
domised controlled trials [5]. Terminology on key clinical 
elements such as clinical condition is based on the World 
Health Organization’s International Classification of Dis-
eases (ICD) taxonomy.

The words terminology, taxonomy and ontology are 
often used interchangeably but have different meanings 
(Fig. 2). Ontologies provide context for data, by ensuring 
representation of the relationships between concepts and 

entities. This supports the complexity needed to integrate 
and standardise data on related concepts from different 
sources, and supports the logical reasoning needed to 
make inferences, conclusions or decisions about data. 
The Systematized Nomenclature of Medicine Clinical 
Terms (SNOMED CT) is now, internationally, the lead-
ing clinical and healthcare ontology [23]. For example, it 
supports the multiple synonyms typically associated with 
distinct concepts. Examples of this include pneumonia, 
which has over 1000 synonyms including ‘bronchitis’ or 
chest infection’, or concepts such as ‘body weight’, which 
can be considered a clinical finding, a disorder in indi-
viduals with clinical obesity, and an entity seen in context 
with medications prescribed by body weight. This grow-
ing granularity of the EHR environment allows richer 
capture of concepts such as findings, interventions, 
pharmaceutical or biologic products, geographical loca-
tion or social context. However, it can become an obsta-
cle to data utilisation without the involvement of subject 
matter experts to identify and report associative rela-
tionships. Progress requires clinicians / subject matter 
experts to collaborate to create consensus-based librar-
ies of SNOMED CT-defined conditions, which can then 
be shared or accessed more widely for clinical or analytic 
purposes [5, 24].

The standardisation of nomenclature is particularly 
important for the future ‘intelligent’ (ie, data-driven) use 
of EHR data. The healthcare workforce has been under 
considerable strain during the COVID-19 pandemic, 
and now faces the burden of rebuilding non-COVID 
related care to avoid reversing the earlier gains made in 
rare disease. Artificial intelligence-based predictive ana-
lytics, embedded into EHR systems, and able to person-
alise treatment by modelling prognosis and treatment 
response, may be able to release clinician time [12]. The 

Fig. 2  Terminology, taxonomy and ontology
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development and maturity of such AI assistance will, 
to a great extent, be dependent on the development of 
large, carefully coded and ontologically annotated data-
sets. Without these datasets, we will lack the domain 
specific and contextual understanding needed to train 
AI efficiently. The annotation of these datasets is time-
consuming, and resource intensive with regards to the 
hours needed from clinical subject matter experts. Future 
‘hybrid’ AI approaches will enable the use of unannotated 
or unstructured data for the training of assistive health 
care AI, providing the adaptability necessary to meet 
novel or unforeseen challenges such as the emergence of 
new diseases or significant shifts in health care delivery 
structures. Until then, the harnessing of supportive AI 
health tech will depend on datasets which are annotated 
with explicit definitions of the meanings and relation-
ships contained within them, and those annotations must 
be anchored within subject matter expertise.
Recommendations: Health care professionals who man-

age rare disease must take up leadership roles in data 
science and establish collaborative networks to develop 
consensus led data libraries.

Inclusivity: equitable patient access to health care 
information
International differences in implementation of EHR 
systems are well-documented, with adoption of EHRs 
being much lower on average in the lower-middle (35% 
of whom have adopted EHRs) and low-income coun-
tries (15%), compared with > 50% in upper-middle- and 
high-income countries [25]. However, data poverty, 
where families are unable to access online services due 
to educational, financial or geographical limitations 
is not necessarily predictable by national GDP (gross 
domestic product). One in six adults in the majority of all 
Organization for Economic Co-operation and Develop-
ment (OECD) countries are at the lowest level of literacy 
(Level 1, basic vocabulary only, unable to make low-level 
inferences, and unable to make matches between the 
text, either digital or printed, and information) [26]. The 
importance of the individual’s right of access to a com-
putable version of their medical record is widely recog-
nised [7, 27], but although EHR implementation has been 
associated with improved health outcomes, that associa-
tion is weakest for those in their country’s lowest socio-
economic strata [28], and there is under-ascertainment 
of families with low data literacy [29, 30]. Addition-
ally, data governance will be an important considera-
tion when communicating the importance of data use to 
communities, especially in the context of disengagement 
from health care professionals, issues around trust, or 
health misinformation. Transparency around ownership, 
use and protection of data will be of great importance, 

particularly where patients are being asked to share data 
they have generated and which, as with all the data gen-
erated about them as patients or service users, they own.

Although EHRs bring many advantages for rare dis-
ease patients, empowering them as they receive care 
from multi-disciplinary teams across multiple centres, 
or as they transition to different models of complex care, 
care must be taken to avoid exacerbating existing health 
and disease outcome disparities. Those who design and 
implement EHR systems must address how they can 
maintain patient trust, support wide and equitable acces-
sibility for patients to their health care data [31, 32], and 
avoid widening the existing disparities in health care 
access and health outcomes [33].
Recommendation: The system-level, rather than 

patient-level drivers behind inequitable EHR impact 
must be considered during EHR implementation, and 
clinical teams must also consider whose data are, and 
whose data are not being collected within the EHR.

Conclusion
Mature EHR systems are those which address the opti-
misation of care processes and patient health outcomes, 
through prediction and prevention of unwanted patient 
experience or health outcomes [25]. The success of these 
systems is dependent on their implementation, and the 
delivery of such systems are critical national and inter-
national goals [7, 20, 25]. Future responses to national 
health care emergencies will be driven by data [25, 34], 
and therefore will require robust, unbiased transparent 
data collection and management methods in place. With-
out this, data-based diagnostic and prediction models, 
especially those using artificial intelligence approaches, 
will be at high risk of amplifying bias, with resultant over-
optimistic estimates of accuracy and performance [35]. 
Beyond the pandemic, well designed and implemented 
EHR will enable alignment of clinical data with a broad 
range of national and international rare disease health 
policies. The success of such policies aimed at ‘build-
ing back better’ will rests on the strength of our ‘analyst 
workforce’, our terminology harmonisation, our meta-
data, and the accessibility of patients and families to their 
health data.
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