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ABSTRACT: Ras GTPases play a crucial role in cell signaling
pathways. Mutations of the Ras gene occur in about one third of
cancerous cell lines and are often associated with detrimental
clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61
cover 97% of oncogenic mutations, which impair the enzymatic
activity in Ras. Using QM/MM free energy calculations, we
present a two-step mechanism for the GTP hydrolysis catalyzed by
the wild-type Ras.GAP complex. We found that the deprotonation
of the catalytic water takes place via the Gln61 as a transient
Brønsted base. We also determined the reaction profiles for key
oncogenic Ras mutants G12D and G12C using QM/MM
minimizations, matching the experimentally observed loss of
catalytic activity, thereby validating our reaction mechanism.
Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras.
We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a
machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations.
This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design
protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D,
offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of
inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.

■ INTRODUCTION
The Ras protein isoforms are essential components of key
signaling networks to promote cell proliferation and survival.1

Ras is the most frequently mutated enzyme in all cancer. Ras
oncogenes are involved in more than 30% of all human
cancer,2−5 including 98% of pancreatic cancer,6 52% of
colorectal cancer7,8 as well as in melanoma,9−11 and lung
cancer.12,13 Additionally, the prognosis for Ras-positive cancer
cases is significantly worse than without Ras muta-
tions.7,11,14−16 Ras was previously called “undruggable”;17−19

it was only after three decades of extensive research that
approved drugs reached the clinic targeting the G12C
mutation specifically. New therapies, for more Ras mutations,
are therefore highly sought after.20

Ras is a small GTPase that binds GTP with very high,
picomolar affinity (Figure 1).17 In its GTP-bound form, Ras is
active and promotes signaling for cell proliferation.21 To turn
signaling off,22,23 Ras hydrolyses GTP to GDP with the help of
GTPase-activating proteins (GAPs), typically p120GAP or Ras
p21.24,25 GAP completes the environment around the active
site (Figure 1A); it contains key conserved motifs, including an
arginine finger (Figure 1B)26 to enable effective catalysis.
However, key oncogenic mutations render Ras catalytically
inactive, and thus, Ras stays in its active signaling, GTP-bound
form.27

In a recent experimental work, the RGS3 domain, which
serves as GAP for other G proteins, was found to recover
catalytic activity of G12C Ras compared with intrinsic or NF1-
catalyzed hydrolysis.28 This validates an approach that targets
oncogenic Ras by restoring its activity, instead of modulating
the signaling by the inhibition of downstream effectors. Nature
tailored enzymes to be highly efficient and selective;29

computational design principles are established to develop
catalysts and enzymes,30,31 exploiting structural32 and dynam-
ical33 information to optimize reactivity.
There are three principal isoforms of Ras: KRas, HRas, and

NRas.2 The differences between these are mainly related to the
localization and trafficking of the proteins to reach their
signaling partners, while their active sites are identical.
Importantly, the most frequent oncogenic mutations corre-
spond to only three active site residues: Gly12, Gly13, and
Gln61, totaling to over 97% of all Ras mutations.3 Here, we
focus on the key oncogenic mutation site, Gly12. G12D is
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overwhelmingly the most frequent Ras mutation, present in
half of the Ras positive cancers.2 We also investigated G12C,
which provides an option for covalent inhibition34,35 with two
drugs Sotorasib (AMG510) and Adagrasib (MRTX849)
currently approved by the FDA.36−40

Experimentally, Ras structures are well-characterized, and
transition state (TS) analogues are available in Ras.GAP bound
complexes.41 We used the Ras.p120GAP complex (PDB ID
1WQ1) as the starting structure for our simulations
(Supporting Information, section I).42 The active site of Ras
(Figure 1B) and the associative phosphate cleavage reaction
are also well established.43 An essential Mg2+ ion coordinates
the β- and γ-phosphates,44 Ser17, Thr35 of the RAS effector
lobe, and two water molecules.45 The nucleophilic water
molecule is positioned near the γ-phosphate via H-bonding to
Gln61:Oε and the Gly60 backbone. Lys16 and the important
arginine finger Arg789 of the GAP coordinate the GTP.
The catalytic mechanism, however, leaves many questions

unanswered. The main controversy involves the proton
transfer mechanism of the GTP hydrolysis reaction.46,47

Upon hydrolysis, the nucleophilic water gets deprotonated,
while one of the oxygens of the formed inorganic
(dihydrogen)phosphate (Pi) gets protonated. Potential mech-
anisms were proposed to be (i) a direct transfer (substrate
assisted or 1 water, 1W mechanism, Figure 2A), (ii) via an
additional water molecule (solvent assisted or 2 water, 2W
mechanism, Figure 2B), or (iii) catalyzed by a basic protein
residue (general base assisted, Figure 2C).46

Despite multiple studies proposing reaction mechanisms for
wild-type (WT) Ras, very little is known about how

detrimental changes in enzyme activity are induced by
oncogenic mutations. Experimental evidence, including kinetic
rate measurements, are nevertheless available for WT and
mutant Ras proteins,12,24,48 pointing to the loss of catalytic
activity due to the impaired rate of hydrolysis. Computational
studies elaborated on the changes in the reactant state (RS,
Figure 3A) Ras.GTP complex structures upon Gly12, and
Gln61 mutations,49−55 including in-depth analysis of the
changes in atomic charges and the polarization of the active
site before the reaction.56 However, calculations to evaluate the
influence of the important oncogenic changes on the reaction
mechanism are missing.

■ RESULTS AND DISCUSSION
To assess the structural changes caused by the key oncogenic
mutations of Gly12, G12C, and G12D, we analyzed classical
molecular dynamics (MD) trajectories (Supporting Informa-
tion, section II). In general, the Cys12 substitution causes less
disruption in the active site conformations, while the Asp12
substitution induces more notable changes, such as weakening
the interaction of the GTP with the Switch I loop (Table S2−
3). Importantly, both mutations affect the contact with Gln61,
and the interactions with the side chain are about 50% present
during the simulations, while with Gly12, such interactions are
absent. Given the essential role of Gln61 in the hydrolysis, this

Figure 1. (A) Ras (gold cartoon)-GAP (blue cartoon) model based
on PDB ID 1WQ1. (B) GTP (white sticks) alongside with Mg2+-
coordinating residues. Arginine finger (blue sticks) from p120GAP
coordinates the GTP. Figure 2. (A−C) Proton transfer alternatives during GTP hydrolysis.

(D) Natural bonding orbitals during the phosphate cleavage. Solid
surfaces represent occupied NBOs (lone pairs), meshes depict the
virtual antibonding orbital of the Watnuc O−H bond. The electron
donation from the axial direction by Oε of Gln61 is more favorable
than the donation from the phosphate oxygen.
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interaction is likely to contribute to the diminishing activity.
The stabilizing role of Gln61 in the H-bonding pattern in the
RS was previously also highlighted.57 Accordingly, G12C and
G12D mutations were found to induce conformational changes
in Gln61.49 Rearrangements of water molecules were observed
at the active site, consistently with our MD simulations. The
disturbance of the water distribution was also observed in
many Gln61 mutants.58 Nevertheless, no major structural
changes were otherwise identified in the active site. Therefore,
these changes alone may not account for the major loss of
activity in the Gly12 mutants.
To reveal how these key oncogenic mutations act on the

catalytic pathway, we first explored the WT Ras.GAP reaction
mechanism, including the proton transfer steps using QM/
MM free energy calculations (Supporting Information, section
IV). We found that the substrate assisted transfer (1W) to the
phosphate (Figure 2A) has a large barrier (Figure S1) and it is
likely unfeasible due to the orbital orientation of the breaking
bond. Figure 2D depicts two lone pair Natural Bonding
Orbitals (NBOs) that may donate electron density toward the
unoccupied O−H anti-bonding orbital of the nucleophilic
water (Watnuc) to demonstrate the significant advantage of the
orientation provided by Gln61. The perturbation of the
Gln61:Oε lone pair is two orders of magnitude higher than
that of the lone pair of the O3γ (Table S5). We therefore
included additional water molecules (Figure S2) to facilitate
this proton transfer (Figure 2B); however, these attempts also
produced a high barrier (Figure S3).
The importance of Gln61 was recognized by early

studies,59,60 by activating the Watnuc. The amide-imide
tautomerization of the Gln61 side chain was suggested by
Nemukhin et al.61,62 and Warshel et al.63 The tautomerization
was backed with vibrational spectroscopy results, although for
a photocatalytic reaction.64 We used constrained QM/MM
minimizations to explore the mechanism to form the

phosphate product by tautomerizing Gln61 into an imide.
Our attempts to establish an intermediate with the imide form
of Gln61 failed, and the Nε regained the proton from the
phosphate.65 Instead, we obtained the lowest barrier energy
minimized path via a transient proton transfer to the key Gln61
residue via Gln61:Oε (Figure 2C). In our simulations, the rate-
determining step is the protonation of the inorganic phosphate
by the transient GlnH+. The tautomerization and the base
catalysis was also compared using QM/MM umbrella sampling
simulations for the related GTPase, Arl3, whereby the GlnH+

intermediate was found to be more stable than the imide.66 A
similar mechanism was proposed recently by Nemukhin et al.
for the catalytic mechanism of Ran GTPase65 and was also
listed as one of the possible options for the Rho GTPase
mechanism by Blackburn et al.67 Previous calculations based
on the PM3 semiempirical method suggested that the Gln61 is
not basic enough,68 which underlines the need for high-level
QM methodology. In an NMR study of differently protonated
intermediates, it was suggested that even the GDP can be
transiently protonated.69 Gln61 was suggested to serve as a
base in very early studies,70 although we find that the proton
transfer is tightly coupled to the phosphate cleavage and does
not take place a priori as a separate step.
The five stationary points of our proposed mechanism are

depicted in Figure 3. The first transition state (TS1)
corresponds to the nucleophilic substitution on the phospho-
rus and the proton transfer from Watnuc to the Gln61 (Figure
3B). The obtained intermediate (Figure 3C), characterized by
the protonated Gln61, is in strong H-bonding interaction with
the newly formed inorganic phosphate. This interaction breaks
during the second, rate-limiting transition state (TS2, Figure
3D), whereby the phosphate rotates to enable the proton
transfer from the Oε of the Gln61 sidechain. In the direct
product complex (PS, Figure 3E), the Pi remains in
coordination with the Mg2+.

Figure 3. Stationary points along the wild-type Ras.GAP GTP hydrolysis. Breaking and forming bonds (black dashes) and hydrogen bonds (yellow
dashes) are depicted. (A) Reactant state. (B) First transitions state. (C) Intermediate with protonated Gln61. (D) Second transition state. (E)
Product state of a bound GDP + Pi. For clarity, nonpolar hydrogens are omitted.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c04330
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04330/suppl_file/ja3c04330_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04330/suppl_file/ja3c04330_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04330/suppl_file/ja3c04330_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04330/suppl_file/ja3c04330_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04330/suppl_file/ja3c04330_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04330?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04330?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04330?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c04330?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c04330?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The optimized reaction profile was used as the starting point
for the finite-temperature string method (Supporting Informa-
tion, section VII). The free energy profile is reconstructed
using WHAM,71 and it is depicted, along with the estimated
uncertainty, in Figure 4A. The overall barrier that corresponds
to the second, rate-determining step is 18.1 ± 1.6 kcal/mol, in
good agreement with experimental rates (Table 1). It is worth
to point out, however, that experimental assays measure the
enzymatic reaction rate in tandem with other steps, such as
complex formation or product release. For this comparison, it
is generally assumed that the chemical step is rate determining.
Nevertheless, despite that the current mechanism seems highly
likely, we cannot exclude larger structural changes that might
accompany, or prelude, the second proton transfer. This is also
possible, considering available structural data, as GDP-bound
Ras has a distinct switch I-II domain conformation,27 and such
a conformational change must take place after the cleavage of
the γ-phosphate. However, the current QM/MM-based
methods would not be able to capture such significant
structural rearrangements, even if the timescale is fast, and
future work will be needed to evaluate this mechanism.
Subsequently, using our WT mechanism as the starting

point, we also investigated the reaction paths for the G12D and
G12C replacements. Reaction barriers from constrained QM/
MM minimizations along the reaction path, then the final
QM/MM energies were recalculated with the ωB97M-V
functional (Figure 4B, green and red, respectively). The
obtained potential energy barriers are in good agreement with
experimental rates (Table 1); however, the accuracy could be
further improved by performing free energy calculations.

G12C presents a smaller change of 2.5 kcal/mol in the
activation barrier of the Ras.GAP reaction in accordance with
the smaller structural changes observed during the MD
simulations. It mainly increases the barrier of the second
step, required to complete the proton transfer to the inorganic
phosphate. G12C was found to slow down both p120GAP-
activated48 and NF1-activated28 hydrolysis rates.74 On the
other hand, the G12D barrier is higher than the WT for both
steps, increasing the barrier by 5.7 kcal/mol. The comparison
of the NBO charges reveals the modest changes. In the first
reaction step, the electron at the attacking oxygen is slightly
reduced by the G12D mutation (+0.008), and it is not
observed for G12C (−0.001). This lowers its nucleophilicity
and is thereby a possible explanation for the observed barrier
increase. At the same time, the NBO charge of the γ-
phosphorus decreases by 0.011, making it a worse electrophile.
In the case of the G12C mutation, this change is smaller
(−0.007) and the barrier does not change significantly
compared with the WT (Table S8). While experimental
measurements of the hydrolysis rate are challenging, and a
coupled enzyme is typically needed to assess the forming Pi
concentration, our results have a good agreement with the
reported changes in the rates (Table 1). Wey et al. used a
comprehensive kinetic model parameterized by measurements,
and they found that the hydrolysis step is more effected by the
G12D replacement than by G12C.72

The general base-assisted mechanism is also supported by
experimental findings that the Q61E mutant Ras has an
increased intrinsic GTPase activity.68,75 Furthermore, Gln61 of
the switch II loop is conserved (Figure S4) among small
GTPases, and these are often linked to disease. Similarly to

Figure 4. (A) Free energy reaction profile from string calculations projected along reaction coordinate, as defined in the Supporting Information,
section VII. Shades depict the estimated variation of the profile along the energy axis. Stationary structures are drawn schematically. (B) QM/MM
energy from constrained minimizations of the WT (blue), G12C (red), and G12D (green) Ras using the reaction coordinate, as defined in the
Supporting Information, section VII. TS2 for the G12D mutant path is depicted in the inset. Final single point energies are calculated at the
ωB97M-V/cc-PVTZ level of theory.

Table 1. Computational and Experimental Activation Barriers and Reaction Rates of GTP Hydrolysis Catalyzed by Ras.GAP

activation barrier (kcal/mol) reaction rate (s−1)

method/source WT G12C G12D WT G12C G12D

QM/MM free energy calculationsa 18.1 1.1
QM/MM minimization and SPb 18.5 21.0 24.1 0.6 9.5 × 10−3 7.0 × 10−5

Wey et al.72 16.4 23.1 24.3 1.8 × 101 3.2 × 10−4 5.0 × 10−5

Hunter et al.48 19.0 22.1 21.2 4.3 × 10−2 2.0 × 10−4 8.9 × 10−4

Johnson et al.73 21.4 24.4 5.1 × 10−3 3.7 × 10−5

aFinite temperature string free energy calculations. bPotential energies obtained from constrained optimizations, followed by higher lever single
point calculations. Rates and barriers were interconverted assuming first-order kinetics at 310 K, except for the experiments by Hunter et al, which
were done at 293 K.
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NRas, in which Q61 mutations are the most frequent in
melanoma, Q209P mutants of GNAQ are also associated to
melanoma.76 The Q64L mutation was found to activate Rheb
identified in tuberous sclerosis complex disease.77,78 Arl2 and
Arl3 are known to have leucine replacements in the
corresponding Gln positions 70 and 71, respectively, causing
vision impairment.79,80 RhoH, a Rho isoform, is expressed in
hematopoietic cells, and its altered expression levels were
observed in lymphomas and leukemias. RhoH lacks Gln61 and
Gly12, and it is known to have no GTPase activity.81 Rab25,
also known as Rab11c, of the Rab family, is found at high levels
in epithelial tissue; its altered expression and mislocalization
are associated with aggressively metastatic cancer.82 Compared
to other Rab11 isoforms, it includes a Gln-to-Leu mutation
(Figure S4), rendering Rab25 proteins GTPase deficient.83 In
Rap1a, the conserved glutamine residue was found to be
replaced by an asparagine from its GAP to enable catalytic
activity.84

In other phosphatases, a stronger Brønsted base is often
used. For example, the GTPases hGBP185 and FeoB86 as well
as the ATP dependent myosin motor domain87 use glutamate
as a base, accessed through a proton relay. Analogous roles for
sidechain-assisted proton transfer also involves aspartate (e.g.,
for dUTPase88) or histidine residues (for RNase H, RNase T,
or RuvC)89 in other phosphate cleaving enzymes. Never-
theless, the identification of the base is often a challenge for
mechanistic studies.
With the optimized reaction pathway available to model the

loss of Ras activity, we next investigated the possibility to
reactivate oncogenic Ras G12D by redesigning selected GAP
residues. We focused on the G12D mutant, as it is the most

frequent mutation among all Ras isoforms and, unlike G12C,
there are no approved targeted therapies. We identified 10
mutation sites for GAP that are closest to the active site and
mutated Ras Asp12 residue, not including the Arg finger
(Figure 5A, Supporting Information, section X). To reduce the
high computational costs for full reaction pathway optimiza-
tion of the 190 possible single GAP mutants, we developed a
simplified screening protocol (Supporting Information, section
X) to estimate the barrier height with the modified GAP chains
(Table S9). This approach uses the initial pathway from our
QM/MM optimized mechanism for G12D Ras. For every
point along the path, we optimize the geometry using a
simplified QM/MM energy evaluation, where the QM atoms
involved in the reaction are held in place, and all MM atoms
are allowed to be reoptimized. Finally, the energies of the
highest TS and the RS are calculated via QM/MM single point
calculations. We evaluated the accuracy of this protocol by
calculating the reaction profile for selected 45 GAP mutants in
complex with G12D Ras (Figure 5B, Table S10 and
Supporting Information, section XI) resulting in a 0.36
correlation and average error (RMSE) of 4.8 kcal/mol for
the barrier height. Considering the reasonable correlation and
that the barrier heights can change over 15 kcal/mol, these
calculations are useful to reduce the number of potential
mutants, significantly decreasing the computational costs. The
best predicted GAP mutants are subsequently fully QM/MM
minimized for better accuracy.
Ultimately, we created a machine learning model using

extreme gradient-boosting regressor to further enable large-
scale screening (model details in Table S11). Every GAP
variant was represented by a sequence of the 10 selected

Figure 5. (A) Selected GAP mutation sites (cyan surface, black labels) around the GTP (sticks) pocket in the G12D (red surface) Ras (gold
cartoon).p120GAP(blue cartoon) complex. The arginine finger (green surface) is also highlighted. (B) Validation of the barrier estimation protocol
against full QM/MM reaction path scans. (C) Gradient boosting regression performance trained on the values from the screening protocol: 70%
training data (blue dots) and the 30% validation set (red circles).

Table 2. Top GAP Mutants Obtained for G12D Ras Activation Using QM/MM Minimizationsa

Ras GAP ΔE‡
ωB97M‑V ΔΔE‡

ωB97M‑V ΔΔE‡
opt, b3lyp ΔΔE‡

scr, b3lyp

WT WT 18.5 N/A N/A N/A
G12D WT 24.1 0.0 0.0 0.0
G12D R903E 17.4 −6.7 −5.4 −8.1
G12D L902D 17.7 −6.4 −5.6 −2.1
G12D R903D 18.4 −5.7 −5.4 −6.2
G12D L902E 18.5 −5.6 −5.3 −7.3
G12D T785D 19.3 −4.8 −5.3 1.2

aRelative barriers (in kcal/mol) are compared with the G12D Ras/WT GAP complex from minimizations (ΔΔE‡
opt) and from the screening

protocol (ΔΔE‡
scr, b3lyp).
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residues, and every residue was described by three simple
descriptors, including the charge, dipole moment, and the
number of heavy atoms (see Table S12). With k-fold cross-
validation, the regression model performs excellently on
unseen data (correlation: 0.76, RMSE: 1.75 kcal/mol, Figure
5C) enabling ultrafast prediction of the modified reaction
barriers.
Our results suggest that the effects of oncogenic G12D

mutations can be overcome by appropriate GAP mutations,
and over 6 kcal/mol changes in the barrier height are possible
(Table 2). The most apparent patterns among the favorable
GAP mutants are observed with ionic residues (Table S9).
Close to the phosphate end of the active site and the Switch II
loop, the removal of the positive charge of Arg903 or the
introduction of a negative charge at Leu902 or Pro907 is highly
beneficial for decreasing the reaction barrier. Interestingly, if
the modeled Ras.RGS3 complex28 is aligned to the
Ras.p120GAP, the approximate positions of Arg903 and
Pro907 are taken up by an Asp and Asn residue, respectively
(Figure S6). In the region near Glu783 and Thr785, the
opposite trend is observed; more positively charged sub-
stitution is favorable to promote GTP hydrolysis.
The best predicted three single mutants using our simplified

MM optimization + QM single point scheme are glutamates, at
positions Leu902, Arg903, and Pro907 (Table S9). After QM/
MM optimization, the Glu and Asp replacements in the 902
and 903 positions remained to be the most beneficial for the
reaction (Table 2), including the costly ωB97M-V calculations.
While the full optimization changes some of the results from
the simplified protocol significantly, the single point correction
does not. Overall, we concluded that, although full
minimization is required for better accuracy, the QM level is
satisfactory for screening. Importantly, while the G12D Ras
mutation slows down the hydrolysis rate by several orders of
magnitude (Table 1), in our calculations, optimal GAP
mutations can exert an opposite effect.
Our protocol can be further extended to double and multiple

mutations. Selected double mutations were also explored.
While electrostatic effects are well described in our models,
sampling of the conformational space is important and scales
poorly. We furthermore assume that binding to Ras is not
diminished by the mutations. After QM/MM minimizations of
the most promising double mutants, the R903E mutants stand
out as the main driver of the effect on the barrier (Table S13).
We also trained a regression model based on the single GAP
mutants, which can predict the effects of the double mutants
very accurately (Figure S7).
In conclusion, we present a novel mechanism for Ras.GAP-

catalyzed reaction using QM/MM free energy calculations. We
considered alternative proton transfer mechanisms coupled to
the phosphate cleavage and identified a transient protonation
of Gln61 as the most favorable, in accordance with analogous
GTPases.65,66 Importantly, the obtained mechanism also
allows us to compare reaction rates for two key oncogenic
mutations: G12C and G12D. The agreement observed with
experimental rates validates the detailed proton transfer steps
that involve the crucial Gln61 residue as the transient proton
acceptor.
Our mechanism provided a starting point for computational

screening to reactivate oncogenic Ras, focusing here on G12D,
for which no approved treatment is currently available. To this
aim, we designed GAP variants using a stepwise QM/MM-
based protocol on 10 selected residues. We explored over 200

sequences, including 190 single point mutations and identified
top GAP mutants. Importantly, our obtained barrier heights
suggest that re-activation of G12D oncogenic Ras by GAP
mutants is a viable approach. We suggest that R903E and
L902D GAP are the most promising to decrease the activation
barrier in the G12D Ras.GAP complex.
This work is a proof of principle in establishing an approach

that can be extended toward designing multiple GAP
mutations or even to drug molecules that are capable of
restoring the lost catalytic activity due to the oncogenic Ras
mutations. Our machine learning models furthermore
demonstrate excellent prediction accuracy and can offer a
high-throughput screening option to molecular design aiming
catalytic re-activation. The multiple layers of the outlined
screening approach, from free energy calculations to machine
learning regression, enable an affordable scale-up for computa-
tional screening, while maintaining the accuracy of the final
predictions.
Using our protocol, we also open up novel high-throughput

methodologies to aid the computational prediction of small
molecule ligands that, instead of inhibiting an enzyme reaction,
restore the catalytic activity of disease-causing loss-of-function
mutant enzymes.
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