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A Distributed Coordination Strategy for
Heterogeneous Building Flexible Thermal Loads in

Responding to Smart Grids
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Abstract—Air conditioning systems are promising energy flexi-
bility resources for smart grids. However, buildings with various
thermodynamics must be coordinated to utilize limited energy
flexibility effectively. This study proposes a distributed coor-
dination strategy to coordinate building flexible thermal loads
of different characteristics for optimized utilization of energy
flexibility in a scalable and distributed manner. It consists of two
components:1) an average consensus-based distributed sensing
scheme to estimate the average thermal state of charge (SoC) of
multiple zones, and 2) a weighted consensus-based distributed
allocation module to allocate the demand response (DR) tasks or
limited energy resources to multiple zones, proportional to their
thermal storage capacities and deviations to the average thermal
SoCs. Both algorithms achieve their goals respectively by fully
distributed means through a sparse network with neighbor-to-
neighbor communication. The sufficient condition for converging
the weighted consensus algorithm is also derived for the first time.
The proposed strategy is adopted for 1) weighted DR participa-
tion of residential inverter air conditioners and 2) weighted water
flow redistribution of the commercial building water heating
systems under urgent DR events. Simulation results show that
adopting the distributed coordination strategy avoids the early
depletion of demand flexibility resources and nonuniform thermal
comfort sacrifices under uncoordinated control.

Index Terms—smart grid, building flexible thermal loads, het-
erogeneous capacities and dynamics, average consensus, weighted
consensus, distributed coordination

I. INTRODUCTION

AS a significant electricity end-use, air conditioning sys-
tems are promising demand-side energy flexibility re-

sources for smart grid and renewable energy integration [1],
[2]. However, buildings may have different indoor air volumes,
structures, materials, internal activities, and external weather
disturbances [3]–[5]. These factors result in various thermal
storage capacities and thermal dynamics of buildings, which
must be appropriately coordinated to achieve optimized uti-
lization of limited building energy flexibility resources. For
example, an office building may have multiple thermal zones
of different functions, spaces, and materials. The zones with
higher thermal inertia should be prioritized in a DR event
for uniform thermal comfort sacrifices. The SoCs of multiple
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distributed battery storage systems should be balanced to
avoid the batteries’ early dropout in a DR event when the
SoCs exceed the limits [6]. The uncoordinated control of
demand flexibility (DF) resources with different capacities and
dynamics may induce ununiform comfort sacrifices and the
early depletion of DF resources [7]. The existing coordination
strategies of the heterogeneous building flexible thermal loads
can be categorized into centralized and distributed approaches.

The centralized approaches, including central optimization-
based [8]–[10] and central rule-based control [6], [11]–[14],
calculate control actions with the relevant information about
the networks and components and send back individual com-
mands through a star communication network. Jiang et al.
[8] developed a central building-to-grid (B2G) optimization
model to reduce grid loss and increase the voltage magnitude
through the flexible operation of air conditioners. Fontenot
et al. [9] proposed a centralized model predictive control
(MPC) for coordinated voltage regulation and energy man-
agement by integrating buildings, PV inverters, and batteries
into the power distribution network and jointly optimizing
all components. Zheng et al. [10] proposed a central MPC
to coordinate multiple thermal appliances for household peak
shaving. Vivian et al. [14] developed a centralized optimization
model to coordinate heat pumps for residential peak load
shaving that accounts for space heating and domestic hot water
demand. Though optimized control actions can be derived, the
above central optimization-based approaches rely on centric
communication networks with poor scalability and a high
information requirement on end-user devices and may face
a high computational burden that increases with problem size.

Central rule-based coordination approaches have less com-
putational complexity and data requirement. Lu et al. [11]
proposed a temperature priority control (TPC) to coordinate
building thermal loads for continuous regulation reserves by
a central controller. The central controller collects the state
information of each air conditioner in the network and selects
air conditioners to be turned on/off based on the difference
between real-time indoor temperatures and user setpoints. The
TPC method was further modified for commercial buildings’
peak load reduction [15], fast primary frequency regulation
[16], and load shaping [17]. Jin et al. [12] proposed a coor-
dination strategy by evaluating the relative thermal comfort
sacrifices and adjusting the indoor air temperature setpoints
stepwise to achieve a uniform indoor temperature rise of all
zones during urgent DR events. Tang et al. [6] proposed an
adaptive chilled water flow redistribution scheme to deal with
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the disordered water flow in commercial water cooling systems
in urgent DR events by continually updating the user utility
function. Song et al. [13] broadcasted the price adjustments by
the microgrid operators to coordinate the air conditioners for
eliminating the adverse impact of wind generation variabilities.
However, the above online updating processes of the user
utility function, indoor air temperature setpoints, and micro-
grid energy prices are challenging to determine the parameters
and face response delay issues [18]. Though the central rule-
based control methods are very effective, their performance
and reliability depend on costly fast communication links.

Distributed control strategies, relying on limited commu-
nication links for sharing data among neighboring agents,
have gained popularity for building thermal energy manage-
ment due to the plug-and-play feature and the robustness
to communication link failures. Depending on the decision-
making approach, the control strategies are divided into two
categories: distributed optimization and distributed rule-based
control. Distributed optimization is promising to relieve the
computational burden and users’ privacy concerns of central
optimization-based approaches, i.e., the alternating direction
method of multipliers (ADMM) algorithm. Kou et al. [19]
decomposed the original centralized optimization problem to
utility-level and house-level problems with the ADMM algo-
rithm to coordinate residential demand-side resources at scale
and protect the customers’ privacy. Li et al. [20] adopted the
ADMM algorithm for distributed optimal control of multi-zone
air conditioning systems by reformulating the central optimiza-
tion problem into multiple sub-problems that can be processed
in corresponding agents. However, these ADMM applications
still require a central coordinator for information exchanges
between hierarchical layers. Though fully distributed ADMM
algorithms with multi-agent communication topologies are
being developed [21], [22], there is a minimal application to
building automation and smart grid demand response.

Distributed rule-based control strategies avoid installing
long-distance fast communication channels between the central
station and the massive number of local controllers at the cost
of an increased computational burden than central rule-based
control strategies due to the iterative process. Meng et al. [23]
developed a consensus-driven distributed control approach to
coordinate multiple groups of aggregated building thermal
storages to manage network loading by sharing the required
real power curtailment among aggregators. Wang et al. [24]
also developed a two-level distributed control strategy to share
active power adjustments among air conditioner aggregators
for distribution network voltage and loading management.
However, the above only weighted the DR task allocations
among a few aggregators by their maximum amount of active
power that each aggregator can adjust. They ignored the
real-time thermal dynamics of individual ACs and the scal-
ability of multiple aggregators. Our previous work proposed
a distributed temperature priority control of air conditioner
clusters for electricity distribution network voltage regulation
by estimating the air conditioners’ relative cooling priorities
based on an average consensus algorithm [2]. Though the real-
time thermal dynamics of zones are inferred in a distributed
way, the DR tasks are still allocated among aggregators in a

centralized way. Zhang et al. [25] proposed a consensus con-
trol strategy for inverter air conditioners to share the adjusted
temperature interval ratios for renewable energy integration.
Though real-time thermal dynamics are considered, the dif-
ferent thermal storage capacities of zones are not considered,
and the overall network state information cannot be monitored.
More importantly, we found that the weighted consensus
algorithm cannot converge under some cases dependent on the
selection of weight parameters. However, none of the above
works discussed the sufficient condition for converging the
weighted consensus algorithm.

Aiming at these shortcomings, we develop a fully distributed
rule-based coordination strategy for effectively utilizing the
limited building flexible thermal loads with different capacities
and dynamics in responding to the smart grid. The proposed
coordination strategy is adopted in two case studies for illustra-
tion, i.e., the residential inverter air conditioners and the com-
mercial primary constant-secondary variable building water
heating system in urgent DR events. The original contributions
of this study include:

1) We identify the problems of uneven thermal sacrifice and
early depletion of demand flexibility resources when en-
gaging heterogenous residential and commercial building
flexible thermal loads for demand response (DR) without
coordination, and propose a novel fully distributed rule-
based coordination approach that allocates the DR tasks or
limited energy resources to multiple building thermal zones
by weighting their thermal storage capacities and dynamics;

2) We develop an average consensus-based distributed sensing
scheme to estimate the average thermal state of charge (SoC)
for dispersed thermal zones through neighbor-to-neighbor
communications in the network; A weighted consensus-based
distributed allocation method of building thermal energy
flexibility is also developed by weighting the thermal storage
capacity and the deviations of real-time thermal SoCs to the
estimated average thermal SoCs;

3) We derive the sufficient condition for the first time to guar-
antee the convergence of the weighted consensus algorithm.
Numerical experiments validate the effectiveness of the
sufficient condition for converging the weighted consensus
algorithm and the scalability of the proposed distributed co-
ordination approach when the communication typologies are
appropriately selected and the number of connected agents is
reasonable. The convergence rate of the average consensus-
based distributed sensing scheme is analyzed and compared
with the ADMM-based method indicating the consensus-
based and ADMM-based distributed controls may have their
computational competitiveness under different situations;

II. BUILDING FLEXIBLE THERMAL LOADS FOR SMART
GRID DEMAND RESPONSE

A. Relationship between electric and heat energy of building
flexible thermal loads

Building thermal energy flexibility for power supply-
demand balance is a low-cost and effective means for deep
integration of renewable energy sources in the electric power
system. To fully use the heterogeneous building flexible ther-
mal loads for smart grid demand response without sacrificing
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the occupant comfort, it is necessary to understand the rela-
tionships between electric and heat energy of typical building
flexible thermal loads, as summarized in Table I.

TABLE I: Relationship between electric and heat energy of
building flexible thermal loads in responding to smart grid

Residential inverter air
conditioners (IACs)

Commercial primary
constant-secondary
variable building water
heating system

Heat
energy

The cooling supply of IAC
changes with the inverter
frequency adjustment,
inducing indoor
temperature variations.

The heating supply
suddenly reduces,
inducing thermal zones
competing for the limited
heat water

Coupling
equations

P
t
IAC = k1u

t
IAC + l1

Q
t
IAC = −

(
k2u

t
IAC + l2

)
T

t
air = F1

(
Q

t
IAC,Ua/m,Ca/m

Q
t
solar/internal, T

t
outdoor

)

where P t
IAC and ut

IAC are
the electric power and inverter
frequency of the air
conditioner, Qt

IAC is the
cooling output supplied to the
zone, and F1 is the dynamic
thermal model of the zone
[26], [27].

Php = n · P
k
hp

Qsup =
∑

P
k
hp · COP

k
=

Mw,pri · cρ · ∆Tw,pri

Qdem =
∑

M
i
w,sec · cρ · ∆T

i
w,sec

Tair,i = F2

(
Qdem,i, Ua/m,Ca/m

, Qsolar/internal, Toutdoor

)
where Pk

hp is the electric
power of kth heat pumps,
Mw,pri/sec are the heat
water flow rates of the
primary or secondary sides,
and F2 is the dynamic
thermal model of the zone
[28], [29].

Electric
energy

Operating electric power
changes with smart grid
signals by adjusting the
inverter frequency of air
conditioners.

Directly shut down some
heat pumps during urgent
smart grid demand
response periods.

B. Conventional uncoordinated control of building flexible
thermal loads for smart grid and associated problems

The heterogeneous building flexible thermal loads character-
ized by different thermal parameters may have diverse thermal
dynamics in responding to smart grid demand response signals
when adopting conventional uncoordinated control strategies.

For residential inverter air conditioners (IACs), when the
DR tasks were evenly allocated to the zones of different char-
acteristics without coordination, it led to non-uniform thermal
sacrifices. Fig. 1a shows the simulated indoor temperatures of
four residential houses with IACs operating in cooling mode
and responding to the load increment signals from 11:00 to
14:00 am. The thermal comfort of zones with small thermal
storage capacities will be sacrificed more. Fig. 1b shows the
thermal SoC profiles of four zones, and the thermal ‘SoC’ is
defined later in (2). It is observed that the thermal flexibility
of zone-1 is depleted in the middle of the DR period due to
violations of the lower temperature limit.

For commercial building HVAC systems, directly shutting
down some chillers or heap pumps can achieve immediate
demand reduction for peak shaving. However, it leads to the
disorder of the original air conditioning system and uneven
heat distribution among the spaces. Fig. 2 shows the simulated
water flow rates and associated temperature variations for a
primary constant-secondary variable building water heating
system in a cold area by shutting half of the heat pumps for

(a) (b)

Fig. 1: Unfair thermal sacrifices and early depletion of demand
flexibility of IACs by even DR tasks allocation (a) indoor air
temperature and (b) thermal SoC profiles.

(a) (b)

Fig. 2: Uncoordinated control of building water heating system
in a fast DR event (a) heat water flow rate of four zones and
(b) indoor air temperature profiles

peak limiting between 11:00 am and 12:00 am. It is observed
in Fig. 2a that during the DR event, the hot water distributed to
all zones increased significantly due to the valves of radiators
being fully open to compete for the limited heating supply
after half of the operating heat pumps were shut down. The
nearest zone (zone-1) obtained the highest water flow, and
the remotest zone (zone-4) obtained the least. Consequently,
the indoor temperature decreases of individual zones would
be non-uniform (indoor air temperature setpoints of all zones
are 21◦C), as shown in Fig. 2b. The indoor temperature of
zone-4 would reach below 16◦C, and the largest temperature
difference among zones was about 1.5◦C.

To avoid the early depletion of building energy flexibil-
ity and the non-uniform thermal sacrifices of uncoordinated
control, we develop a novel distributed control strategy for
coordinating the heterogeneous building flexible thermal loads
with different capacities and dynamics in Section III.

III. PROPOSED DISTRIBUTED COORDINATION STRATEGY

Fig. 3 shows the overall diagram of the proposed distributed
coordination approach to coordinate the building zones with
different thermal storage capacities and dynamics in respond-
ing to the smart grid. It relies on the multi-agent modeling and
the thermal battery modeling of multiple thermal zones and
consists of two components: 1) the average consensus-based
distributed sensing module and 2) the weighted consensus-
based distributed allocation module. In the first step, the
average consensus-based distributed sensing module estimates
the average thermal SoC of total zones by distributed means,
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which is mixed with the estimated thermal storage capacities to
derive the weight factors necessary in the weighted consensus-
based distributed allocation module. In the second step, the
distributed allocation module enables each agent to make local
decisions with global coordination by distributed means based
on the mixed weight factors. As a result, the DR tasks or
the limited heat water are allocated to each zone by fully
distributed means and neighbor-to-neighbor communications.

Average consensus-based 

distributed sensing

Thermal storage capacity 

estimation

(omitted in this study)

Weighted consensus-based 

distributed allocation

Deviations between the 

average SoC and 

individual SoCs

Multi-agent modeling of 

dispersed thermal zones

Each agent makes its local 

decisions with global coordination

Distributed & iterative 

neighbor-to-neighbor 

communications

Mixed 

weighting 

factors

SoC

Fig. 3: Overall diagram of the proposed distributed coordina-
tion strategy

A. Multi-agent and thermal battery modeling of thermal zones

First, this subsection presents the multi-agent modeling and
thermal battery modeling of multiple thermal zones to cope
with the proposed distributed coordination strategy.

1) Multi-agent and networked modeling of multiple dis-
persed thermal zones: Consider multiple air conditioning
zones that are geographically dispersed. Each zone is viewed
as an agent with a local controller that adjusts the inverter
frequency of IACs or valve opening of radiators to respond
to external DR requests. We assume a communication net-
work links these zones or agents with specific typologies
(e.g., Fig. 4). The operations distributed at different agents
are coordinated through neighbor-to-neighbor information ex-
changes in the communication network. Assuming the adjacent
nodes can communicate with each other bidirectionally, the
communication network for creating links among zones can
be expressed by a graph G(ϑ, ζ), where ϑ = {v1, . . . , vr} is a
set of nodes, and ζ ⊆ ϑ×ϑ is a set of edges. A link (i, j) ∈ ζ
entails information access of node j by node i.

(a) (b)

(c) (d)

Fig. 4: Communication network typologies of multiple zones
(a) linear, (b) ring, (c) rectangle grid, and (d) cube grid

2) Thermal battery modeling of thermal zones: the passive
thermal storage of building zones can be modeled and dis-
patched as a ‘thermal battery’ model [27], [30]. Consider a
thermal zone with a space cooling system, the thermal storage

capacity and the thermal ‘state of charge (SoC)’ of the zone
are defined in (1) and (2) by [27], [30], where Ca,i is the
heat capacity of the air in the ith zone, Tupper

i and T lower
i are

the indoor temperature range to guarantee the users’ thermal
comfort, and T t

i is the real-time zone temperature.

Ecap,i = Ca,i(T
upper
i − T lower

i ) (1)

SoCi =
Ca,i(T

upper
i − T t

i )

Ca,i(T
upper
i − T lower

i )
=

Tupper
i − T t

i

Tupper
i − T lower

i

(2)

B. Average consensus-based distributed sensing of the aver-
age thermal states of charges (SoC)

Second, a distributed sensing scheme is developed to esti-
mate the average thermal SoC of multiple zones based on the
average consensus (AC) algorithm by distributed means and
neighbor-to-neighbor communications only.

1) Mathematics of the average consensus algorithm: Av-
erage consensus algorithm is a fully distributed information
discovery process. The main idea is to share each agent’s local
thermal SoC information with its neighbors in a distributed and
iterative manner through which each agent can estimate the av-
erage thermal SoC of a multi-agent network. The information
exchange law is defined as (3)

xi[k + 1] = xi[k] +
∑
j∈Ni

aij(xj [k]− xi[k]) (3)

where i, j ∈ {1, . . . , r} are the indices of r zones, xi[k] and
xi[k + 1] are the network state information discovered by the
agent i at the k and k+1 iteration, respectively, aij is the
communication coefficient between the neighbor agents i and
j and Ni is the set of neighbor agents connected to agent i.
The information exchange for the network can be written in
matrix form (4).

x[k + 1] = Dx[k] (4)

where x[k] = [x1[k], . . . , xn[k], . . . , xr[k]]
T and x[k + 1] are

the state vectors at the k and k+1 iteration, respectively, and
D is a weight matrix (5) with the sparsity pattern specified by
the communication graph G.

D =



1−
∑

j∈N1

a1j · · · a1i · · · a1r

· · · · · · · · · · · · · · ·
ai1 · · · 1−

∑
j∈Ni

aij · · · air

· · · · · · · · · · · · · · ·
ar1 · · · ari · · · 1−

∑
j∈Nr

arj


(5)

If the sums of D’s rows and columns are equal to one and
the eigenvalues of D satisfy λD ≤ 1, we have (6) based on
the Perron-Frobenius Lemma [31] with 1

′
= {1, 1, ..., 1}

′
.

J = lim
k→∞

Dk =
1 · 1′

r
(6)

This property of the D matrix implies that the system will
reach average consensus (7) as the iteration number k ap-
proaches infinity. The average values of global network state
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information (x[0]) can be obtained by each agent in a dis-
tributed and iterative manner.

lim
k→∞

x[k] = lim
k→∞

Dkx[0] =
1 · 1′

r
x[0] (7)

Here, the D is determined by the mean metropolis method [32]
with the following law (8) due to the properties of stability,
adaptivity, and fast convergence speed.

aij =


2/(gi + gj + 1)

1−
∑

i∈Ni

2/(gi + gj + 1)

0

j ∈ Ni

i = j
otherwise

(8)

where gi and gj are the number of agents connected to agents
i and j, respectively. According to (7), the average quantities
(x) can be obtained by each agent in a distributed and iterative
manner. Since the iterations cannot go to infinity, a user-
defined error tolerance (Eac) is used to reach a consensus.
The required number of iterations for convergence (Kac) can
be approximately determined by (9) [33]

Kac = min

{
k | ∥x[k]− x∥

∥x[0]− x∥
≤ Eac, k > 0

}
(9)

where Eac is the error tolerance, x is the vector with averaged
values and Kac is the minimum number of iterations for
convergence under termination criteria.

1 2 3 4 5

1 0.8 0 0 0 0 0 0 0 0

0 0 1 0.4 0 0 0 0 0 0

[0] , [0] , [0] , [0] , [0]0 0 0 0 1 0.6 0 0 0 0

0 0 0 0 0 0 1 0.1 0 0

0 0 0 0 0 0 0 0 1 0.9

A A A A A

         
         
         
         = = = = =
         
         
                  

3. Final converged matrices:
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Fig. 5: Illustration of the distributed SoC sensing algorithm
for a network of five zones with a ring graph

2) Application of the average consensus algorithm for dis-
tributed SoC sensing: Fig. 5 demonstrates the application of
the average consensus algorithm for distributed average SoC
sensing of five thermal zones. The number of connected ther-
mal zones and their individual SoCs are required to calculate
the average SoCs of the network. To obtain this information,
each zone agent is initialized with an A5×2[0] matrix. In matrix
A[0], only the rows corresponding to the agents’ number can
have nonzero elements. A[0](i, 1) is equal to either 1 or 0 to
represent whether the agent can provide a demand response
or is eligible for energy resources, and A[0](i, 2) is equal to
its thermal SoC.

By applying the average consensus law (7) to each initial
matrix, all the information matrices converge to the same final
matrix A∗. Each element of A∗ is the average summation
of the corresponding elements in the five initial matrices.
The number of agents is revealed by counting the number
of nonzero elements in the first column of A∗. The average
SoCs of all zones (SoC) are discovered by taking the ratios
of the second-column summation to the first column by (10).

SoC =
1

r

r∑
i=1

SoCi ≈
∑r

i=1 A
∗(i, 2)∑r

i=1 A
∗(i, 1)

(10)

C. Weighted consensus-based distributed allocation

Next, a weighted consensus (WC) based distributed
tasks/resource allocation scheme is developed for demand
flexibility coordination.

1) Modeling of the distributed DR tasks/resources allo-
cation problem: Consider a DR task allocation or limited
energy resources allocation problem, multiple thermal zones
are coordinated to participate in the demand response program
or obtain the limited energy sources proportional to their
capacities and real-time dynamics. We assume the total amount
of resources and tasks are known, and the goal is to allocate
the issued DR tasks or limited energy resources (Y t) to r

agents in the network, denoted as yt = [yt1, . . . , y
t
i , . . . , y

t
r]

′
.

Consequently, we have the constraint (11). For notation con-
venience, the timestep superscript is omitted in the following
content, i.e., yt ⇔ y = [y1, . . . , yi, . . . , yr]

′
.

r∑
i=1

yti = Y t (11)

The target of the WC-based distributed tasks/resource al-
location scheme is to allocate the DR tasks/resources pro-
portional to the weight factors by distributed means through
iterative neighbor-to-neighbor communications, i.e., yi

γi →
α, i = 1, . . . , r, where γi is the corresponding weight factor,
yi is the task/resource allocation variable of ith zone, and α
is some constant value.

Let Γ = [γ1, . . . , γr]
′

be the weighting vector of thermal
zones, Ψ be the diagonal matrix diag[ 1

γ1 , . . . ,
1
γr ], and 1 be

the column vector of all ones. Together with constraint (11),
we can write the target of the WC-based distributed allocation
scheme in matrix form: Ψy → α1 subject to 1

′
y = Y . It

follows from Γ
′
Ψ = 1

′
that α = Y

Γ′1
= Y

γ1+···γr . As the iter-
ations go on, the weighted allocation value of the ith agent will
converge: lim

k→∞
yki → αγi, guaranteeing fair tasks/resource

allocation. For the matrix form at the network level, the
allocation vector will converge: lim

k→∞
yk → Γ1

′

Γ′1
y0,1

′
y0 = Y .

2) Mathematics of the weighted consensus algorithm: The
main formulas of the WC algorithm are described below. For
each control interval t, the WC algorithm is run for several
iterations k ∈ {1, ...,K} to achieve convergence. In each
iteration step, the allocation variable of ith agent is updated
from yi[k] to yi[k + 1] by the amount ui[k] (12).

yi[k + 1] = yi[k] + ui[k] (12)
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Then, the ui[k] can be calculated using the link control
signal, θij [k], considering the information from neighbor units
[34], [35].

ui[k] = −
∑

(i,j)∈ζ

θij [k] +
∑

(j,i)∈ζ

θji[k] (13)

The control signal θij [k], is calculated by (14), which
reflects the difference between weighted allocation variables
of agents i and j at both sides of the communication link
(vi, vj) [35].

θij [k] =
yi[k]

γi
− yj [k]

γj
(14)

For a better presentation of the above process, (12)-(14) can
be written in the following compact matrix form [35]:

y[k + 1] = y[k] + u[k]
Θ[k] = H2Ψy[k]−ΨH1y[k] = Hy[k]

u[k] = −(H2 −H1)
′Hy[k]

y[k + 1] = My[k],M = (E− (H2 −H1)
′H)

(15)

where E is the identity matrix, H1 and H2 are ls×r matrices
and ls is the total number of communication links in ζ. If the
communication link (vi, vj) is the mth link in ζ, then all the
elements of mth row in H1 are zero except the jth element,
which is one. All the elements of the mth row in H2 are zero
except the ith element, which is one. Ψ is diag[ 1

γ1 , . . . ,
1
γr ]

and Ψ is a ls×ls diagonal matrix whose mth diagonal element
is 1

γj , if the mth link in the ζ set is (vi, vj).
It is proved [34], [35] that the sum of allocation adjust-

ment values (1
′
u[k]) always equals zero for all iterations

k ∈ {1, . . . ,K}. Therefore, the summation of allocation values
at each iteration remains unchanged in the WC algorithm (16).

r∑
i=1

yi[1] = ... =

r∑
i=1

yi[k] = ...

r∑
i=1

yi[K]=... = Y (16)

Similar to the average consensus algorithm, the state tran-
sition matrix of the weighted consensus algorithm M is
convergent: B = limk→∞ Mk = Γ1′

Γ′1 . Since the iterations
cannot go to infinity, a user-defined error tolerance (Ewc)
is used to reach a consensus. The required iterations for
convergence can be approximately determined by (17) [33]:

Kwc = min

{
k | ∥y[k]− yinf ∥

∥y[0]− yinf ∥
≤ Ewc, k > 0

}
(17)

where Ewc is the error tolerance, yinf is the ideal converged
vector, and Kwc is the minimum number of iterations for
convergence under termination criteria.

3) Sufficient condition for converging the weighted con-
sensus algorithm: In our numerical experiments, it is found
that the weighted consensus algorithm cannot converge when
the weight factors were normalized within the range of [0,1].
While none of the current research discussed the sufficient
condition for the convergence of the weighted consensus
algorithm. This subsection derives a sufficient condition for
selecting weight factors to ensure the convergence of the
weighted consensus algorithm - if the minimum weighting
factor of nodes is greater than two times the maximum

node degree of communication graphs, the convergence of the
weighted consensus algorithm is guaranteed (18).

min(Γ) ≥ 2 · deg (18)

where Γ is the weighting vector, deg is the maximum node de-
gree of the communication graph, representing the maximum
number of edges connected to a node. The detailed derivation
process of (18) is given in the Appendix A.

D. Weighted control by the thermal storage capacity and
thermal ‘SoC’ of zones

Finally, the proposed distributed coordination strategy is
adopted in two case studies for DF coordination.

1) Weighted DR participation of IACs by distributed co-
ordination strategy: As shown in equation (19), consider a
total power adjustment signal (dP ) derived by subtracting the
forecasted base load of total IACs (P base

L ) from the utility
load following signals (PLF ) [2], [11], the DR tasks are
allocated to each IAC proportional to their weight factors
(
[
γ1, γ2, . . . , γr

]
).

dP = PLF − P base
L ,

r∑
i=1

dpi = dP,
dp1

γ1
=

dp2

γ2
= · · · =

dpr

γr
(19)

Next, the weight factors are determined by (20) based on
the zones’ thermal storage capacities (Ecap,i), the deviation
between the average thermal SoC of all zones and the indi-
vidual real-time SoCs (si = SoC − SoCi), and the tunable
parameters (k1, k2). Assume the IACs operate at the cooling
mode, and lower temperatures mean higher SoC values by (2).
Zones that have higher SoCs than the average SoC of total
zones are prioritized for down-regulation reserve (dP < 0).
Zones that have lower SoCs than the average SoC of total
zones are prioritized for up-regulation reserve (dP > 0).

γi =

{
Ecap,i · k1 (1 + si)

3 dP > 0

Ecap,i · k2 (1− si)
3 dP < 0

, si = SoC − SoCi (20)

Then, the power adjustment signal of each IAC is translated
into inverter frequency adjustment values proportional to the
weight factors (21).

dui =
dpi
k3

,
du1

γ1
=

du2

γ2
= · · · = dur

γr
(21)

where Ecap,i is the thermal storage capacity of ith zone, which
can be modeled by the lumped thermal parameter [27] and the
details are omitted here. du is the IACs’ frequency adjustment
value, and k3 is a tunable parameter.

2) Weighted heat redistribution of primary constant-
secondary variable building water heating system by dis-
tributed coordination strategy: As shown in Fig. 6, the hot
water flow redistribution scheme employs a distributed coor-
dinator to continuously adjust the setpoints of hot water flow
rates of individual zones during DR periods. The valves before
and after the DR period are controlled through conventional
demand feedback controls to maintain the initial indoor tem-
perature setpoints. During the DR period, a designed water
flow distributor directly controls the radiators’ water flow rates
at the real-time updated setpoints by modulating the flow
control valves. The given water flow setpoints of individual
zones (mi) are determined by (22), where M is the constant
primary-loop water flow rate, si is the deviation between the
estimated average thermal SoC (SoC) of the network with
individual zones’ SoCs (SoCi), Ecap,i is the estimated thermal
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Fig. 6: Application of distributed coordination strategy to the
primary constant-secondary variable building water heating
system in urgent DR requests

storage capacity, γi is the weight factor related to the thermal
storage capacities and real-time dynamics and k4 is a tunable
parameter.

r∑
i=1

mi = M, m1

γ1 = m2

γ2 = · · · = mr

γr

γi = Ecap,i · k4(1− si)
2
, si = SoC − SoCi

(22)

IV. SIMULATION TEST AND VERIFICATION

In this section, we verified through numerical exam-
ples the performance of distributed sensing and distributed
task/resource allocation schemes, the sufficient condition for
converging the weighted consensus algorithm, and the scalabil-
ity to large network sizes of different communication graphs.
The communication graphs are ring unless otherwise stated.

A. Performance of the distributed sensing scheme for estimat-
ing the average thermal SoCs

Fig. 7a shows the simulated indoor temperatures of five
zones and their average. Fig. 7b shows the actual (blue) and
estimated (red) thermal SoC profiles of five zones by the
distributed sensing scheme. It is observed in Fig. 7b that the
estimated average SoC profile is almost the same as the actual
average SoC profile, which verified the performance of average
consensus algorithm for distributed sensing of average SoC for
zones in the network.

B. Performance of the distributed tasks/resources allocation
scheme based on the weighted consensus algorithm

Fig. 8 shows the verification results of the weighted consen-
sus algorithm for distributed DR tasks allocation of five zones.
Let’s assume the requested DR amount by the grid operator at
a certain timestep is 50 kW, and there are five zones to respond
to the DR signals. The weighting factors of five zones are
set as Γ = [10, 20, 30, 40, 50], respectively, and the distributed
allocation scheme is utilized for DR task allocation. The initial
allocation vector is assigned as random values summed to
50kW. As the iterations of the weighted consensus algorithm
go on, the allocation vector will approach the consensus

(a) (b)

Fig. 7: (a) indoor temperatures of five simulated zones and
their average profile and (b) a comparison between actual and
estimated average thermal SoCs of five zones

(a) (b)

Fig. 8: Verification of distributed tasks/resources allocation
scheme: (a) trajectories of power adjustments; (b) trajectories
of power adjustment ratios;

allocation vector with values proportional to their weight
factors. Fig. 8a shows the actual power adjustments made by
each zone. It is seen that the DR allocations always sum to
the initial total value (i.e., 50 kW ), and the agents quickly
achieve consensus within one hundred iterations. The power
adjustments are also proportional to their weighting factors.
Fig. 8b shows that the five zones approach the same power
adjustment ratios (dpi

γi ) after iterative communications.

TABLE II: weight factors selection for converging the
weighted consensus algorithm

communication
graphs

path ring rectangular
grid

cube
grid

deg 2 2 4 6
min(Γ) 4 4 8 12

C. Verification of the sufficient condition to converge the
weighted consensus algorithm

We found that if the weight factors are normalized within
[0,1] or taken as [1,2,3,4,5] for the five zones in the simulation
of IV-B, the WC algorithm cannot converge. Thus, we derive
the sufficient condition in (18) for converging the WC algo-
rithm. Table II lists the maximum node degree (deg) of four
types of communication graphs in Fig. 4 and the corresponding
minimum weight factors to guarantee the convergence of WC.
For example, the maximum node degree of the ring graph
is two. If we scale the weighting factors by ten to satisfy:
min(Γ) ≥ 4 (i.e., [10,20,30,40,50]), the convergence of the
WC algorithm is guaranteed in the simulation of IV-B.
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D. Scalability to large network sizes of different communica-
tion typologies

This section presents the required iterations of distributed
sensing and allocation schemes for different communication
graphs in Fig. 4 with increasing network sizes. The iterations
numbers are obtained based on (9) and (17) for the same error
tolerance (Ewc = Eac = 1E − 5) by randomly assigning the
initial states of agents with a summation of 50 and the weight
factors satisfying the condition (18).

Table III shows the required iterations of the distributed
sensing scheme under the termination criteria. It is observed
that the required iterations of linear and ring graphs signifi-
cantly increase with network sizes and become unacceptable
when the number of agents exceeds 64. While the required
iterations of the rectangular and cube graphs increase at a
much smaller rate with the network sizes, and they are ac-
ceptable even for 1000 zones. Table IV shows a similar pattern
for the distributed DR tasks/resources allocation scheme. The
convergence speed of the distributed sensing scheme is slightly
better than the distributed allocation scheme when comparing
Tables III and IV. We concluded that the required iterations for
linear and ring graphs increase dramatically with the network
sizes, and they only apply to small networks with less than
one hundred zones due to the graphs’ poor connectivity. The
graphs with rectangle and cube grid typologies have smaller
iteration numbers, increasing slowly with the network sizes.
Due to the graphs ’ good connectivity, they can apply to larger
networks with nearly 1000 zones.

For the average consensus algorithm, one agent needs to cal-
culate 3Ni floating-point operations (FLOPs) for one iteration,
i.e., equation (3), where Ni is the number of neighbor agents
connected to the agent. For the weighted consensus algorithm,
one agent needs to calculate 6Ni FLOPs for one iteration, i.e.,
equations (12)-(14). The total FLOPs of 1E + 3 iterations of
one agent are estimated as (18 ∼ 54)×1E+3 for the commu-
nication graphs in Fig. 4, which are far less than the floating-
point operations per second (FLOPS) of typical embedded
micro-controllers. For example, the TMS320F28335 (a real-
time micro-controller of TEXAS INSTRUMENTS) operates
at speeds up to 150 megahertz (MHz) and can perform 300
million FLOPS (3× 1E8 FLOPs per second) [36].

TABLE III: Scalability of distributed SoC sensing scheme for
graphs with increasing network sizes

Network sizes 8 64 125 1000
Required
number of
iterations for
one
consensus

Linear 148 9669 34865 1.89E+06
Ring 36 2319 7267 4.75E+05

Rectangle
Grid 45 266 2282 5043

Cube Grid 24 71 129 492

E. Convergence speed comparison between the average con-
sensus algorithm and the Alternating Direction Method of
Multipliers (ADMM) method

For comparing the convergence speeds between the aver-
age consensus method and the ADMM method, the ADMM
method is also used to solve the same distributed averaging
problem and cast into a similar matrix form to the average

TABLE IV: Scalability of distributed DR tasks/resources al-
location scheme for graphs with increasing network sizes

Network sizes 8 64 125 1000
Required
number of
iterations for
one
consensus

Linear 554 26525 79236 6E+06
Ring 117 8023 28284 3E+06

Rectangle
Grid 133 483 3042 9746

Cube Grid 36 124 180 672

consensus algorithm so that the convergence properties can be
easily analyzed and compared, as summarized in Table V. The
derivation details are given in Appendix B.

TABLE V: The application of ADMM and average consensus
methods for distributed sensing and their matrix forms

Average consensus ADMM

State
transition
matrix

x[k + 1] = D · x[k]
D is given in (5)



[
x[k + 1]

x[k]

]
=

[
M−H
Ir 0r

]
︸ ︷︷ ︸

F

[
x[k]

x[k − 1]

]

x[0] = 0, x[1] = (Ir − P) θ

k ≥ 1,M = Ir + P + 2U,H = P + U

P := diag (W1r) diag (A + W1r)
−1

U := diag (A + W1r)
−1

W ·

diag
(
1r

T
W

)−1
W

T − P

A = [a1, a2, . . . , ar ]
T

,W = µD, µ > 0

Convergence
rate

ρD ρF

The convergence rates of the average consensus and ADMM
algorithms are determined by the essential spectral radius of
the graphs’ state transition matrix (ρD,ρF), which corresponds
to the absolute value of the matrix’s eigenvalue with the second
largest magnitude (ρ = max {|λ2, λN |} , λ1 = 1 > λ2 ≥
· · · ≥ λN > −1). Graphs with a large number of agents and
sparse communication edges have ρ close to one, while for
dense graphs have ρ close to zero. Higher values of essential
spectral radius mean higher iterations for convergence. By
plotting the convergence rates of ADMMs and the average
consensus algorithms as a function of the convergence rates
of the average consensus algorithm (i.e., Fig. 9 and 10), it
is convenient to compare the theoretical convergence speed
between ADMMs and average consensus. For the simulations
in Fig. 9, the ring graphs with increasing agents from three
to 100 are considered for the distributed averaging problem.
The ring graph with three agents is complete and has ρ = 0,
while the ρ of ring graphs quickly increases close to one
with the increasing number of agents. For the simulations
in Fig. 10, the cube graphs are comprised of 1000 agents,
which are evenly distributed in a cube environment with
unit length edge, and the distance threshold (thre) for two
agents to be connected varies between 1

9 and
√
3. Note that

the cube graph is the same as Fig. 4d when the distance
threshold is 1

9 , and the essential spectral radius ρD reduces
with the increased distance thresholds and equals zero when
the distance threshold exceeds

√
3.

In Fig. 9 and 10, the colored curves above the black dotted
line mean the ADMM-based methods have slower convergence
rates than the average consensus-based methods and vice
versa. It is observed that the ADMM-based method’s perfor-
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Fig. 9: Theoretical convergence
rate of the ADMM solution as a
function of the convergence rate
of the average consensus solution
for ring graphs with increasing
network size from the bottom left
(r=3) to the top right (r=100)

Fig. 10: Theoretical convergence
rate of the ADMM solution as a
function of the convergence rate
of the average consensus solution
for cube grid graphs with increas-
ing distance thresholds from the
bottom left (thre= 1

9
) to the top

right (thre=
√
3)

Fig. 11: Demand response sig-
nals for case study I

Fig. 12: Outdoor temperature
profiles for case study II

mance is sensitive to the algorithm parameter selection (µ). A
poor choice of the ADMM algorithm parameter could result
in worse performance than the average consensus algorithm
(i.e., the green curves in Fig. 9 and 10 with µ=0.5). For ring
graphs with small edge density, ADMM is a better choice for
networks with a large number of agents when the ADMM
algorithm parameter is selected correctly (i.e., the sky-blue
curve on the top right of Fig. 9 with µ=1 ). When the network
size is large, i.e., 1000 zones, and the ADMM algorithm
parameter is appropriately selected, ADMM is an excellent
algorithm to apply in graphs with small edge densities (i.e.,
the sky-blue curve on the top right of Fig. 10 with µ=1). How-
ever, it becomes less competitive than the average consensus
algorithm when the edge densities are increased (i.e., the sky-
blue curve on the bottom left of Fig. 10).

V. RESULTS OF APPLICATION CASE STUDIES

This section illustrates the results of applying the distributed
coordination strategy to two application case studies.

A. Case study I: distributed coordination of multiple IACs

For case study I, five IAC units with thermal mass ratios
of 1:2:3:4:5 are modeled in MATLAB by ETP models with
heterogeneous parameters and shifted and scaled solar and
internal heat gains. They are coordinated to respond to the
load following (LF) signals in Fig. 11.

Fig. 13 shows the consensus control performance by only
weighting the thermal storage capacities. Fig. 13a and Fig. 13b
show the inverter frequencies and the inverter frequency ad-
justments of five IACs, and Fig. 13c and Fig. 13d show the
indoor temperatures and associated thermal SoC profiles of
five zones. It is observed that the inverter frequencies increase
with the same ratios as the thermal storage capacities during

the DR period from 11:00 am to 14:00 am. The corresponding
indoor temperatures quickly decrease at different rates. The in-
door temperatures of zone-4 and zone-5 drift outside the lower
temperature limits, which may sacrifice the users’ comfort and
induce the drop out of the DR program for zone-4 and zone-5.
Zone-1 and zone-2 still have enough flexible resources when
the temperatures of zone-4 and zone-5 decrease below the
lower temperature limit and deplete their thermal flexibility.

(a) (b)

(c) (d)

Fig. 13: Consensus control weighted by only thermal storage
capacities (a) inverter frequency of five IACs, (b) inverter fre-
quency adjustments proportional to thermal storage capacities,
i.e., du1 : du2 : du3 : du4 : du5 = Ecap,1 : Ecap,2 : Ecap,3 :
Ecap,4 : Ecap,5 = 1 : 2 : 3 : 4 : 5), (c) indoor temperatures of
five zones, (d) thermal SoCs.

Fig. 14 shows the consensus control performance by weight-
ing the thermal storage capacities and the real-time thermal
SoCs. Fig. 14a and Fig. 14b show the inverter frequencies and
the inverter frequency adjustments of five IACs, and Fig. 14c
and Fig. 14d show the indoor temperatures and associated
thermal SoC profiles of five zones. It is observed that the
increases in inverter frequencies vary a lot with the real-time
thermal SoCs instead of being proportional to their thermal
storage capacities only. Thus, the indoor temperatures of the
five zones are decreasing in a more concentrated manner. The
indoor temperatures of zone-4 and zone-5 still fall within
the users’ thermal comfort zone when the same DR requests
are fulfilled. The thermal flexibility of zone-1 and zone-2 is
prioritized for usage as the temperatures of the other three
zones approach the lower temperature limits.

B. Case study II: weighted water flow redistribution

For case study II, a commercial primary constant-secondary
variable building water heating system in Fig. 6 is simulated
in MATLAB/Simulink to solve the redistribution problem of
limited hot water during urgent DR periods. The assumed
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(a) (b)

(c) (d)

Fig. 14: Consensus control weighted by both thermal storage
capacities and thermal SoCs (a) inverter frequency of five
IACs, (b) inverter frequency adjustments proportional to ther-
mal storage capacities and thermal SoCs, i.e., du1

γ1 = du2

γ2 =
du3

γ3 = du4

γ4 = du5

γ5 , γi = F
(
Ecap,i, SoCi, SoC

)
, (c) indoor

temperatures of five zones, (d) thermal SoCs.

weather data is a typical winter day in a cold area in Fig. 12.
We assume half of the central heat pumps are shut down during
the DR periods between 11:00 and 12:00am. The proposed
distributed coordination strategy is used to redistribute the
hot water flow during urgent DR events and achieve uniform
temperature variations.

(a)

zoom in

(b)

Fig. 15: Water flow rate profiles of four zones for (a) conven-
tional control strategy and (b) proposed coordination strategy

Fig. 15 compares the hot water flow rates distributed to
individual zones using conventional and coordinated control
strategies. Under the conventional control strategy, all thermal
zones compete for the limited hot water supply when half
of the heat pumps are shut down for fast demand response.
Each radiator opens the flow control valve to the maximum,
dramatically increasing hot water flow rates. In contrast, the
proposed coordination strategy redistributes the limited hot
water resources based on the four zones’ thermal storage
capacities and real-time thermal SoCs. There are no water

flow surges during the DR period, and the limited hot water
resources are allocated to four zones proportional to their
weight factors.

(a) (b)

Fig. 16: Indoor air temperature profiles of zones in DR peri-
ods using (a) conventional control strategy and (b) proposed
distributed coordination strategy

Fig. 16 shows the indoor temperature profiles of four zones
using conventional and proposed distributed coordination con-
trol strategies. In Fig. 16a, the indoor temperature profiles of
the four zones are different during the DR period due to their
different pressures and water flow rates in the water heating
system. While the temperatures of the four zones using the
proposed distributed coordination strategy are almost the same
during the DR period in Fig. 16b.

Fig. 17 shows the water flows in the bypass pipe using the
conventional and proposed control strategies. The distributed
coordination strategy could eliminate the disordered flow and
keep the water flow rate in the bypass pipe at about zero during
the DR period. Fig. 18 compares the power consumption of
secondary water pumps using two control strategies. It is seen
the power is further reduced by about 2kW (17.9%) using the
proposed control strategy, due to the significantly reduced hot
water flow rates.

VI. CONCLUSION

This study develops a novel fully distributed rule-based
coordination strategy to coordinate thermal zones with differ-
ent thermal ‘storage capacities’ and ‘state of charges (SoCs)’
in responding to the smart grid for efficient and effective
utilization of their limited energy flexibility. It relies on the
multi-agent and thermal battery modeling of multiple ther-
mal zones and coordinates the demand flexibility resources

Fig. 17: Water flow rates in
bypass pipes using conven-
tional and proposed control
strategies

Fig. 18: Power consumption
of secondary water pumps
using conventional and pro-
posed control strategies
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by fully distributed means through a sparse communication
network with affordable communication costs, plug-and-play,
and privacy protection features. We also derive the sufficient
condition for the first time to guarantee the convergence of
the weighted consensus algorithm and compare the conver-
gence rates of the average consensus-based and ADMM-based
distributed sensing schemes. Numerical experiments validate
the effectiveness of the sufficient condition for converging
the weighted consensus algorithm and the scalability of the
proposed distributed coordination approach when the com-
munication typologies are properly selected and the number
of connected agents is reasonable. It is also indicated the
consensus-based and ADMM-based distributed control meth-
ods may have their computational competitiveness under dif-
ferent situations. Finally, the distributed coordination strategy
is adopted in two application case studies in DR events.
Simulation results illustrated that the proposed distributed
coordination strategy could avoid the early depletion issue of
thermal demand flexibility and non-uniform thermal comfort
sacrifices in uncoordinated control.

APPENDIX

A. Derivation of the sufficient condition for converging the
weighted consensus algorithm

According to (15), the update of the allocation vector for
the whole network can be expressed as (23), where M =
E− (H2 −H1)

′H, E is the identity matrix and (H2 −H1)
′

means the transpose of H2 −H1.

y[k + 1] = My[k] (23)

Given that H = H2Ψ−ΨH1, ΨH1Ψ
-1=H1, we have (24),

with A = (H2 −H1)
′(H2 −H1).

M = E−AΨ (24)

If the weighted consensus algorithm converges, the state
transition matrix M must be a convergent matrix satisfying
the following condition

lim
k→∞

Mk =
Γ1

′

Γ′1
= B ⇔ lim

k→∞
Mk −B = 0 (25)

The necessary and sufficient condition for the M−B matrix
that converges to the zero matrix is: |λmax| = ρ(M−B) < 1,
where |λmax| is the eigenvalue of M − B with the largest
magnitude, and ρ is the spectral radius of M−B. The proof
is omitted here for space concerns.

Since B = Γ1
′

Γ′1
is element-wise positive, M−B is element-

wise bounded below by the matrix M, and (M−B)
k is

element-wise bounded below by Mk for every positive integer
k. By using Gelfand’s formula (ρ(M) = lim

k→∞

∥∥Mk
∥∥ 1

k ), it
follows that ρ(M−B) < ρ(M). If we select weighting factors
satisfying the condition: ρ(M) = ρ(E−AΨ) ≤ 1, the M−B
matrix is guaranteed to converge to the zero matrix because
ρ(M−B) < 1. According to (26), if the weighting factors are
selected to satisfy 0 ≤ λ(AΨ) ≤ 2, the convergence of the

weighted consensus algorithm is guaranteed, where λ(AΨ)
denotes the eigenvalues of AΨ.

ρ(M) = ρ(E−AΨ) ≤ 1
⇕

−1 ≤ λ(E−AΨ) ≤ 1
⇓ λ(E) = 1

0 ≤ λ(AΨ) ≤ 2

(26)

Next, we derive the sufficient condition for selecting weight
factors to satisfy: 0 ≤ λ(AΨ) ≤ 2. First, it is easy to prove
A is a positive definite matrix. Thus, A has a positive definite
symmetric square root A1/2. Given that Ψ is a diagonal matrix
with positive entries, A

1
2ΨA

1
2 is symmetric and positive

definite. Then, it can be proved that AΨ = A
1
2 (A

1
2Ψ) and

A
1
2ΨA

1
2 have the same eigenvalues by applying Lemma 1

below. Since A
1
2ΨA

1
2 is a positive definite matrix, AΨ and

A
1
2ΨA

1
2 always has the nonnegative eigenvalues only if the

weighting factors are positive.

λ(AΨ) ≥ 0 (27)

Second, let v be an eigenvector of the eigenvalue µ of A
matrix, and vk is the element of v with the largest absolute
value (|vk| ≥ |vi| , i ∈ {1, ..., r}, i ̸= k). Then, the upper
bound of the spectral radius of A can be determined as
max(

∑
j |Aij |) by (28).

Av = µv ⇒
∑
j

Akjvj = µvk

|µvk| = |µ| |vk| =

∣∣∣∣∣∣
∑
j

Akjvj

∣∣∣∣∣∣ ≤
∑
j

∣∣Akj

∣∣ |vk| ≤ (
∑
j

∣∣Akj

∣∣) |vk|
|µ| ≤

∑
j

∣∣Akj

∣∣ ⇒ µ ≤
∑
j

∣∣Akj

∣∣
(28)

It is easy to derive from (28) that the spectral radius of A
must satisfy (29)

ρ(A) ≤ max(
∑
j

|Akj |) (29)

It is also noted that the max(
∑

j |Akj |) in (29) always
equals deg × 4, where deg is the maximum node degree of
communication graphs. If we scale the weighting factors to
satisfy (18), we could derive λ(AΨ) ≤ 2 in (30).

ρ(Ψ) = λΨ
max =

1

min(γ)
≤

1

2 · deg
ρ(A) ≤ max(

∑
j

|Aij |) = 4 · deg

ρ(A) · ρ(Ψ) ≤ 2 ⇒ λ(AΨ) ≤ ρ(AΨ) ≤ ρ(A) · ρ(Ψ) ≤ 2

(30)

Equations (26), (27), and (30) conclude the proof of the
sufficient condition in (18).

Lemma 1: If S and T are n×n matrices, ST and TS have
the same nonzero eigenvalues.

Proof : If u is an eigenvector of ST for the eigenvalue w:
STu = wu, then TS(Tu) = T (STu) = T (wu) = w(Tu).
Thus, ST and TS have the same eigenvalues.
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B. The application of ADMM for distributed averaging and
associated matrix form

First, the distributed averaging problem is equivalent to the
following constrained convex optimization problem that can
be decomposed and solved by the ADMM method

argmin
{x}

r∑
i=1

fi(x)

subject to fi(x) =
1

2
ai (x− θi)

2
,∀i ∈ {1, . . . , N}

x ∈ Ω1 ∩ Ω2 ∩ · · · ∩ Ωr

(31)

where the global cost function is the sum of the cost
function of each agent (fi(x)), and the aim of the agents is
to collaborate to find the minimizer x∗ ∈ R of the global
cost function in a distributed way, communicating with their
respective neighbors defined by graph G. The above optimiza-
tion problem has a closed-form solution:x∗ =

∑r
i=1 aiθi∑r
i=1 ai

.
When the coefficients of the agents’ cost functions are the

same (ai = a), the optimizer of the optimization problem
reduces to x∗ = 1

2

∑r
i=1 θi . This corresponds to distributively

finding the average of r numbers θi, the same to the average
consensus-based distributed sensing module. To solve the
above problem using ADMM, an auxiliary vector z ∈ Rr is
introduced, and the problem is recast in the following form

x∗ = argmin
x

r∑
i=1

fi (xi)

subject to fi (xi) =
1

2
ai (xi − θi)

2

xi = zj ,∀i, and j ∈ Ni

(32)

ADMM exploits the augmented Lagrangian with La-
grangian multipliers λij ∈ R and penalty parameters wij >
0, i, j = 1, . . . , r, (i, j) ∈ ζ

L(x, z,Λ) =
r∑

i=1

1

2
ai

(
xi − θi

)2
+

r∑
i=1

∑
j∈Ni

λij

(
xi − zj

)
+

1

2

r∑
i=1

∑
j∈Ni

wij

(
xi − zj

)2
(33)

The standard updates of ADMM are obtained from the
Lagrangian imposing first-order optimality condition on the
xi’s and zi’s in (33) and using an ascent step for variables
λij’s

xi[k + 1] =

ai +
∑
j∈Ni

wij

−1 aiθi +
∑
j∈Ni

(wijzj [k]− λij [k])


(34)

zj [k + 1] =

∑
i∈Nj

wijxi[k + 1] +
∑

i∈Nj
λij [k]∑

i∈Nj
wij

(35)

λij [k + 1] = λij [k] + wij (xi[k + 1]− zj [k + 1]) (36)

Second, the above application of ADMM to the optimization
model is cast into a matrix form in (36) where analytical
properties of matrices can also be assessed [37]. Like matrix
D of the average consensus algorithm, matrix F determines
the convergence rate of ADMM-based distributed averaging
through its second-largest eigenvalue in absolute value. In this
paper, we select matrix W as W = µD, with µ > 0 as a
tunable algorithm parameter and D as a symmetric stochastic
matrix consistent with the communication graph G of the
average consensus algorithm. This choice for matrix W allows

a comparison with the average consensus algorithm built
using matrix D. It is seen the theoretical convergence rate of
ADMM-based distributed averaging is related to the network
topology (D), the properties of local objective functions (ai),
and the algorithm parameter (µ).


[

x[k + 1]
x[k]

]
=

[
M −H
Ir 0r

]
︸ ︷︷ ︸

F

[
x(k)

x(k − 1)

]
, k ≥ 1

x[0] = 0,x[1] = (Ir −P)θ

M = Ir +P+ 2U,H = P+U

P := diag (W1r) diag (A+W1r)
−1

U := diag (A+W1r)
−1 W diag

(
1r

TW
)−1

WT −P

A = [a1, a2, . . . , ar]
T ,W = µD, µ > 0

(37)
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