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Abstract: Developing an efficient computational scheme for high-dimensional Bayesian variable

selection in generalised linear models and survival models has always been a challenging problem

due to the absence of closed-form solutions to the marginal likelihood. The Reversible Jump Markov

Chain Monte Carlo (RJMCMC) approach can be employed to jointly sample models and coefficients,

but the effective design of the trans-dimensional jumps of RJMCMC can be challenging, making it hard

to implement. Alternatively, the marginal likelihood can be derived conditional on latent variables

using a data-augmentation scheme (e.g., Pólya-gamma data augmentation for logistic regression) or

using other estimation methods. However, suitable data-augmentation schemes are not available

for every generalised linear model and survival model, and estimating the marginal likelihood

using a Laplace approximation or a correlated pseudo-marginal method can be computationally

expensive. In this paper, three main contributions are presented. Firstly, we present an extended

Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently

sample models directly from the marginal posterior distributions of generalised linear models and

survival models. Secondly, in light of the recently proposed approximate Laplace approximation, we

describe an efficient and accurate estimation method for marginal likelihood that involves adaptive

parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of

the PARNI proposal by replacing Rao-Blackwellised estimates with the combination of a warm-start

estimate and the ergodic average. We present numerous numerical results from simulated data and

eight high-dimensional genetic mapping data-sets to showcase the efficiency of the novel PARNI

proposal compared with the baseline add–delete–swap proposal.

Keywords: Bayesian computation; Bayesian variable selection; spike-and-slab priors; adaptive

Markov Chain Monte Carlo; generalised linear models; survival models

1. Introduction

Variable selection is an automatic method for finding a small subset of covariates that
explain most of the variation in the response of interest. In addition to identifying the
most predictive covariates, there is a growing interest in exploring the low-rank structure
between the covariates and the response, especially in genetic mapping problems where
the objective is to find the expressed genes that are associated with a specific disease the
most. In the frequentist framework, model selection is based on maximising the penalised
log-likelihood [1] or minimising information criteria such as AIC [2] and BIC [3]. Other
approaches, such as the deviance information criterion (DIC) [4] and widely applicable
information criterion (WAIC) [5], which are generalisations of the AIC, are also popular in
model selection.

A natural alternative to these frequentist approaches is Bayesian variable selection
(BVS). In the Bayesian approach, a prior is imposed on all candidate models, and the
resulting posterior distribution naturally captures model uncertainty. In this work, we
consider a spike-and-slab prior [6,7], which introduces indicator variables denoting the
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inclusion or exclusion of every covariate. Therefore, the spike-and-slab prior leads to a
model posterior distribution that lies in a lattice with the same dimension as the number
of covariates. We can understand the dependency between the importance of covariates
and response using natural measures of the posterior distribution such as posterior model
probability (PMP) and marginal posterior inclusion probability (PIP). The computation of
the exact posterior distribution requires a full search over the whole model space, which is
computationally infeasible when a high-dimensional data-set is analysed. In these settings,
Markov Chain Monte Carlo (MCMC) algorithms are often used to explore the model space
and estimate the posterior distribution. For “large n, large p” data-sets, which are now often
encountered in some problems in genetics/genomics (such as genetic mapping studies),
such algorithms must be carefully designed. In this work, we mainly consider Bayesian
variable selection in generalised linear models and survival models and focus on three
popular models: the logistic regression model [8,9], the Cox proportional hazards model
with partial likelihood [10–14] and the Weibull regression model [15]. In each case, we
illustrate how carefully designed algorithms can facilitate effective posterior computation.

A natural challenge of Bayesian variable selection methods in the above settings is that
the marginal likelihood (or the integrated likelihood in [16]) is not analytically available.
One set of solutions are Reversible Jump MCMC schemes (RJMCMC) [17], which sample
from the joint space of models and regression coefficients by jointly proposing moves
between models and regression coefficients. But it is often difficult to construct efficient
proposals for these trans-dimensional jumps and design an MCMC scheme that mixes
well [18]. For some specific models, data-augmentation methods [19] are available and
result in closed-form marginal likelihood conditioned on latent variables, for instance,
Pólya-gamma data augmentation [20] for logistic regression. For other models where no
suitable data-augmentation scheme exists, the most popular approaches are the Laplace
approximation and the correlated pseudo-marginal method [21], which rely on finding
the maximum a posteriori (MAP) estimate of the regression coefficients. A novel scalable
estimation method for marginal likelihood, approximate Laplace approximation (ALA),
is introduced in [16] and relies on defining an initial value for the coefficient parameters.
ALA can save computational time during the optimisation process of finding the MAP
estimate, but it does not yield an asymptotically consistent estimate. A detailed discussion
of these approaches will be given in Section 3.

Assuming that the marginal likelihood has been estimated, several MCMC algorithms
can be used for simulation starting from the posterior distribution of BVS. The widely used
add–delete–swap proposal [22] can be employed here. The add–delete–swap proposal gen-
erates a new model by randomly selecting one of three possible moves: addition/deletion
of a covariate into/from the model or swapping one covariate that is included with another
that is not. Although it has been proved in [23] that the add–delete–swap proposal can
produce a rapidly mixing Markov Chain, the chains may still converge slowly, particularly
when dealing with large-p problems. Adaptive MCMC schemes [24], which involve updat-
ing tuning parameters on the fly, are found to be valuable in addressing the issue of poor
convergence. Lamnisos et al. [25] describe an adaptive add–delete–swap proposal that
allows for simultaneous changes to multiple variables at a time. Griffin et al. [26] introduce
the Adaptively Scaled Individual adaptation proposal (ASI), which simulates a new model
with probability proportional to the product of PIPs. Wan and Griffin [27] extend the ASI
proposal to logistic regression and accelerated failure time models. Other popular MCMC
approaches include the Hamming ball sampler (HBS) [28], which proposes a new model
within a Hamming neighbourhood using the PMPs as proposal weights, and the tempered
Gibbs sampler [29,30], which uses tempering to efficiently sample from the multi-modal
posteriors that commonly arise due to highly correlated covariates.

The recent work of [31] provides useful insights into the design of efficient MCMC
schemes in discrete spaces. The work introduces the locally informed proposal, which re-
weights a given non-informed base kernel with a function of the PMPs. It is shown in [31]
that the locally informed proposal constructed with a balancing function that satisfies
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certain functional properties is asymptotically optimal compared with other choices of
function in terms of Peskun ordering. Building upon the idea of locally informed proposal,
Zhou et al. [32] show that the locally informed and thresholded (LIT) proposal can achieve
dimension-free mixing times under conditions similar to those mentioned in [23] for BVS
in linear regression models. Recent work in [33] introduces a Point-wise implementation of
the Adaptive Random Neighbourhood Informed proposal (PARNI), which combines the
advantages of both adaptive schemes and locally informed proposals. The PARNI proposal
outperforms other state-of-the-art algorithms in a wide range of high-dimensional data-sets
for BVS in linear regression models.

Other computational approaches are also available for estimating the BVS posterior
distribution. Hans et al. [34] introduce a novel Shotgun Stochastic Search (SSS) approach
that also explores the “local neighbourhood” idea and targets very high-dimensional model
spaces to find high-probability regions. The integrated nested Laplace approximations (IN-
LAs) [35] can solve latent Gaussian models including generalised linear models and approx-
imate the posterior marginals obtained from the continuous priors [36]. Sara et al. [37] view
survival models as latent Gaussian models and also approximate the posterior marginals
using INLAs. The posterior distribution can also be approximated using Variational Bayes
(VB) [38]. Ray et al. [39] describe a scalable mean-field variational family to approximate
the posterior distribution of BVS in linear regression and extended this VB approximation
to the logistic regression model in [40]. Komodromos et al. [41] apply the Sparse Variational
Bayes (SVB) method to approximate the posterior of proportional hazards models with
partial likelihood. Other works develop a sampling strategy based on simulating piece-
wise deterministic Markov processes (PDMPs) [42,43], which directly target the posterior
distribution obtained from a spike-and-slab prior.

In this paper, we extend the PARNI proposal to sampling from the BVS posterior
distribution in generalised linear models and survival models. To avoid the overwhelming
computational costs of approximating the marginal likelihood in the locally informed
proposals and motivated by ALA [16], we introduce an ALA estimate of the marginal
likelihood with a novel initial value. In contrast to the suggestion in [16], which initialises
ALA at origin, the novel initial value is adaptively updated on the fly using previously
sampled models. The new method is computationally less complex than the Laplace
approximation or correlated pseudo-marginal scheme as a result of avoiding iterative
optimisation and provides a more accurate estimate than the original ALA approach
initialised at the origin. We also consider new approaches to adapt the tuning parameters in
the PARNI proposal. The new adaptation scheme replaces the Rao-Blackwellised estimates
of PIPs using the combination of a warm-start estimate and the ergodic average calculated
using previously sampled models.

To illustrate the performance of the new PARNI scheme in real-life high-dimensional
problems, we perform BVS on eight genetic mapping data-sets (four for the logistic regres-
sion model and four for survival analysis) and compare the output of the PARNI proposal
with the add–delete–swap proposal as a baseline. For the logistic model with binary out-
come, we consider the problem of finding expressed genes that are related the most to the
presence of Systemic Lupus Erythematosus in a case-control study with 10,995 observations
and various numbers of SNPs, from 5771 to 42,430, on four different chromosomes. In
survival analysis, we consider four cancer-related data-sets (two for breast cancer and
two for lung cancer), containing patients ranging from 130 to 1904 and genetic covariates
varying from 662 to 54,675.

This paper is organised as follows: In Section 2, we review the model setup and prior
specification for BVS in generalised linear models, Cox proportional hazards and Weibull
survival models. In Section 3, we introduce four computational methods to estimate the
marginal likelihood. Section 4 describes the PARNI proposal, highlighting the novelties
in the adaption of algorithmic tuning parameters and the calculation of the accurate and
efficient marginal likelihood estimates. We implement these MCMC algorithms in Section 5
and compare their performance with the add–delete–swap proposal on several real data-
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sets. We include a discussion in Section 6, highlighting some possible future research
directions.

2. Bayesian Variable Selection for Generalised Linear Models and Survival Models

2.1. Generic Model Setting

Suppose that p covariates are available in the data. Let X = (x1, . . . , xn)T ∈ R
n×p

be the full data matrix that contains n observations with rows xi = (Xi1, . . . , Xip) and let

Z = (z1, . . . , zn)T ∈ R
n×q be the full data matrix that contains q variables that must be

included in every model. Let binary vector γ = (γ1, . . . , γp) ∈ Γ = {0, 1}p be a model
indicator, where γj = 1 if the j-th variable is included in model Mγ and γj = 0 otherwise.

Let y = (y1, . . . , yn) be the vector of responses. The generalised linear model associated
with model Mγ can be specified as

yi ∼ F(µγ,i, φ) (1)

where F(µ, φ) is a distribution that belongs to the exponential family with mean µ and
dispersion φ. Linear predictor ηγ,i is defined as

ηγ,i = zT
i α + xT

γ,iβγ (2)

where xγ,i contains those variables j for which γj = 1. In addition, we define the size

of model Mγ as pγ = ∑
p
j=1 γj. Linear predictor ηγ,i is mapped to mean µγ,i using link

function g as
ηγ,i = g(µγ,i). (3)

We consider the following setup of survival models: For the i-th patient, given hazard
function hi(t) at time t, the probability that an event occurs at time Ti before a certain time
ti can be written as

FTi
(t) = P(Ti ≤ ti) = 1 − STi

(ti)

where STi
is called the survival function and is defined by

STi
(t) = exp

{

−
∫ t

0
hi(u)du

}

.

Data often involve censoring where the true time to event is not observed. Let t be the
vector of the observed times, where each ti denotes the minimum of censoring time Ci and
survival time Ti. In the case of “right-censored” data, we define an n-dimensional event
indicator vector d to denote, for each patient i, whether the event was observed during
their follow-up (di = 1) or was censored (di = 0). In the case where the event was observed
for patient i (di = 1), then ti denotes their time to event; otherwise, we observed the length
of their follow-up.

Given a model Mγ associated with linear predictor ηγ,i as in (2), we consider the
exponential hazard, λγ,i = exp(ηγ,i), and assume that the hazard function conditioned on
model Mγ has the form

hγ,i(t) = h(t, λγ,i, k) (4)

where k is an additional shape parameter if needed. We can conclude the following log-
likelihood on y = (t, d):

log p(y|α, βγ, γ) =
n

∑
i=1

di log(hγ,i(ti))− Hi(ti)
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where Hi is the cumulative hazard function for the i-th patient and is defined by

Hi(t) =
∫ t

0
−d log S(t)

dt

∣

∣

∣

∣

t=u

du = − log STi
(t).

2.2. Prior Elicitation

Recalling model indicator γ ∈ {0, 1}p, we consider the prior structure

p(α, βγ, φ, γ) ∝ p(α)p(βγ|φ, γ)p(φ|γ)p(γ). (5)

For generalised linear models in which the dispersion parameter is known (e.g., the
logistic regression model where φ = 1) or some survival models that do not involve a
dispersion parameter, the prior specification becomes

p(α, βγ, γ) ∝ p(α)p(βγ|γ)p(γ), (6)

which is equivalent to treating φ as a fixed parameter. In this work, we focus on the prior
structure described in (6), and we assume that there is no additional dispersion parameter
in the model.

We specify the following prior distribution for the coefficient parameters:

α ∼ Nq(0, σ2
α Iq)

βγ|γ ∼ Npγ(0, gIpγ)
(7)

where g is a positive scale parameter, σ2
α is the prior variance on the coefficients of the fixed

covariates, Ip denotes a p × p identity matrix and pγ = ∑
p
j=1 γj is the size of model Mγ.

We consider the choice of model prior

p(γ) = hpγ(1 − h)p−pγ (8)

where hyper-parameter h denotes the prior inclusion probability for each variable.
It is possible to construct a fully Bayesian hierarchical model based on the prior

specifications described above. We can impose the following hyper-priors on hyper-
parameters g and h: √

g ∼ C+(0, 1)

h ∼ Beta(a, b)

where C+(0, 1) denotes the standard half-Cauchy distribution and Beta(a, b) denotes the
Beta distribution with parameters a > 0 and b > 0. The half-Cauchy hyper-prior is a
generalisation of the horseshoe prior [44–46], employed on the global-scale parameter of a
continuous mixture of normal priors, to BVS problems. Liang et al. [47] note that fixing g
can lead to several paradoxes and problems of model mis-specification. For other possible
choices of hyper-priors on g, see [47,48]. In the context of prior inclusion probability h,
Ley et al. [49] advise against using a fixed h in the absence of strong prior knowledge about
the number of important variables. Kohn et al. [50] propose a Beta-binomial model prior in
which hyper-parameter h can be integrated out analytically, leading to

p(γ) =
B(a + pγ, b + p − pγ)

B(a, b)

where B(·, ·) denotes the Beta function.
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2.3. Logistic Regression

Assume that yi ∈ {0, 1}, with yi = 1 indicating the success of an event and yi = 0 in-
dicating failure. Logistic regression links the proportion of successes to the linear predictor
with a logistic link function g as

ηγ,i = log

(

µγ,i

1 − µγ,i

)

= zT
i α + xT

γ,iβγ, i = 1, . . . , n, (9)

and the response variable is modelled as yi ∼ Bern(µγ,i) under model Mγ.

2.4. Cox Proportional Hazards (PHs) with Partial Likelihood

Starting with exponential hazard function λγ,i = exp(ηγ,i) associated with model Mγ,
in the Cox proportional hazard function, the hazards are assumed to have the form

hi(t) = h0(t)λγ,i (10)

where h0 is some baseline hazard function. In this proportional model, all covariate effects
are assumed to be multiplicative. The full likelihood is then given as

L(α, βγ, H0|y, γ) ∝
n

∏
j=1

(

exp(ηγ,i)H′
0(ti)

)di exp{− exp(ηγ,i)H0(ti)} (11)

where H0(t) =
∫ t

0 h0(u)du is the cumulative baseline hazard function. If we model the
prior of H0 with a prior process p(H0) on the cumulative hazard function, the resulting
posterior distribution of α and βγ is

p(α, βγ|y, γ) ∝

∫

L(α, βγ, H0|y, γ)× p(α)p(βγ|γ)p(H0)dH0. (12)

Alternatively, we can take the partial likelihood of Cox, which is given by

PL(α, βγ|y, γ) ∝
n

∏
i=1











exp(ηγ,i)

∑
s∈R(ti)

exp(ηγ,s)











di

(13)

where R(t) = {i : ti ≥ t} is the set of patients at risk at time t. Unlike the full likelihood
formulated in (11), partial likelihood does not rely on the specification and estimation
of baseline hazard function h0. Partial likelihood and its variants are, therefore, popular
alternatives to full likelihood in many survival studies [11,14,51]. It is highlighted in [52,53]
that partial likelihood can be obtained by integrating out the baseline hazard function
using a Gamma process prior. Bayesian inference with partial likelihood (13) relies on
approximate posterior pPL(α, βγ|y, γ), which can be expressed as

pPL(α, βγ|y, γ) ∝ PL(α, βγ|y, γ)× p(α)p(βγ|γ) (14)

where baseline hazard function h0 is eliminated.

2.5. Weibull Regression

In addition to the semi-parametric approach of Cox PHs with partial likelihood, we
consider another commonly used parametric model for survival analysis, namely, the
Weibull model. A Weibull model is obtained by extending the exponential model by raising
the survival rate to a positive power k, giving

Si(t) = exp
{

−(tλi)
k
}

. (15)
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Parameter k is the shape parameter of a Weibull random variable. When k < 1, the hazard
rate decreases over time. Conversely, when k > 1, the hazard rate increases over time. It is
possible to recover the exponential survival model when k = 1, and it represents a constant
hazard rate over time.

We can derive the hazard function

hi(t) = − d

dt
log(Si(t)) = λik(λit)

k−1 (16)

and the log-likelihood for parameters α, βγ and k as

log(L(α, βγ, k|y, γ)) =
n

∑
i=1

di[log(k) + k log(λi) + (k − 1) log(ti)]− (tiλi)
k. (17)

It should be noted that the Weibull distribution does not belong to the exponential
family, unless shape parameter k is assumed to be fixed. In the Bayesian framework, we
consider the prior p(log(k)) = N(0, σ2

k ) for some positive prior variance σ2
k as in [15]. To

perform MCMC, we alternatively update γ|k using the PARNI proposal and k|γ using an
adaptive random walk proposal as described in Appendix B.

3. Computation of Marginal Likelihood p(y|γ)

Let θγ = (α, βγ) be the collection of all coefficient parameters associated with model
Mγ. We are interested in simulating samples from the posterior distribution π(γ) ∝

p(y|γ)p(γ), where p(y|γ) represents the marginal likelihood, given by

p(y|γ) ∝

∫

p(y|θγ, γ)p(θγ|γ)dθγ. (18)

In generalised linear models and survival analysis, a closed-form solution to (18) is typically
not analytically available.

Assuming that an estimate of marginal likelihood p̂(y|γ) can be obtained, we consider
MCMC algorithms with random neighbourhood proposals as described in [33], which is
a sub-class of Metropolis–Hastings (MH) schemes [54,55]. The random neighbourhood
proposal consists of the following three stages:

1. Around the current model, γ, randomly generate a neighbourhood N ∼ p(·|γ).
2. Propose a new model, γ′, within random neighbourhood N according to qN (γ, ·).
3. Accept the new proposal, γ′, with the MH acceptance probability

α(γ, γ′) = min

{

1,
π(γ′)p(N ′|γ′)qN ′(γ′, γ)

π(γ)p(N |γ)qN (γ, γ′)

}

= min

{

1,
p̂(y|γ′)p(γ′)p(N ′|γ′)qN ′(γ′, γ)

p̂(y|γ)p(γ)p(N |γ)qN (γ, γ′)

} (19)

where N ′ is the neighbourhood used in the reverse move of the MH scheme.

In this section, we will describe four methods commonly used to estimate marginal
likelihood p(y|γ): data augmentation, Laplace approximation, correlated pseudo-marginal
and approximate Laplace approximation. Before introducing these methods, it is necessary
to define the following terms for convenience. Let Jγ be a n × (q + pγ) matrix which
contains all necessary covariates for model Mγ and is given by Jγ = (Z Xγ), and let Vγ be
the variance–covariance matrix of the prior distribution of θγ, defined by

Vγ =

(

σ2
α Iq 0
0 gIpγ

)

. (20)
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3.1. Data Augmentation

The data-augmentation scheme [19] introduces latent variables ω into the model such
that the posterior distribution of variables of interest becomes analytically tractable given ω.
The Pólya-gamma data-augmentation scheme [20] can be utilised for the logistic regression
model to evaluate the marginal likelihood. Given real numbers ψ ∈ R, a > 0, b > 0 and
a set of latent variables ω = (ω1, . . . , ωn), in which each individual ωi follows a Pólya-
gamma distribution PG(b, 0), the application of Pólya-gamma data augmentation exploits
the following identity:

(exp(ψ))a

(1 + exp(ψ))b
= 2−b exp(κψ)

∫ ∞

0
exp

(

−ωiψ
2/2

)

p(ωi)dωi (21)

where κ = a − b/2. The above identity implies that the posterior distribution of the
coefficients can be represented as a multivariate normal distribution:

θγ ∼ N
(

Λ−1
γ ξ, Λ−1

γ

)

(22)

where ξ = JT
γ κ, Λγ = JT

γ W Jγ +V−1
γ , κ is an n-dimensional vector with entries κi = yi − 1/2

and W is a diagonal matrix with ω appearing along its diagonal. By integrating out
coefficient θγ, analytically conditioned on Pólya-gamma random variables ω, we obtain
the conditional marginal likelihood

p(y|γ, ω) ∝ |Vγ|−
1
2 |Λγ|−

1
2 exp

{

1

2
ξTΛ−1

γ ξ

}

. (23)

In each iteration of the MCMC algorithm, we update γ and ω alternatively. To refresh
ω, we can perform a simulation directly from its posterior distribution, which also follows
a Pólya-gamma distribution given by

ωi ∼ PG(1, ηγ,i). (24)

where linear predictor ηγ,i involves coefficient θγ simulated from (22). Efficient samples
from the Pólya-gamma random variables can be simulated using the R package pgdraw
(version 1.1) [56]. In addition, Zens et al. described the ultimate Pólya-gamma sampler [57]
to address the slow mixing rate for categorical imbalanced data, as illustrated in [58].

In general, the data-augmentation schemes may not be applicable to all generalised
linear models and survival models. Specifically, for the Cox proportional hazards with
partial likelihood or the Weibull model, there is currently no suitable data augmentation to
directly yield a parametric posterior distribution for the regression coefficients.

3.2. Laplace Approximation

Assuming a unimodal posterior distribution of the regression coefficients, the Laplace
approximation estimates the marginal likelihood with a second-order Taylor approximation.
This method leads to a Gaussian integral, with the solution of the marginal likelihood being
given by

pLA(y|γ) = p(y|θ̂γ, γ)p(θ̂γ|γ)|Ĥγ|−
1
2 (2π)

pθγ
2 (25)

where θ̂γ is the posterior mode of θγ and Hγ is the negated Hessian of
log p(y|θγ, γ) + log p(θγ|γ) evaluated at mode θ̂γ. Additionally, the Laplace approxima-
tion provides a normal approximation to the posterior distribution of coefficient θγ as

πLA(θγ) = Npθγ
(θ̂γ, Ĥ−1

γ ). (26)

To incorporate the Laplace approximation in MH sampling, we replace marginal likelihood
p(y|γ) in (19) with the approximate pLA(y|γ) as described above.
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Laplace approximation has been shown to be asymptotically consistent for estimating
Bayes factors [59] and Bayesian variable selection on generalised linear models [60]. In
finite-sample problems, however, Laplace approximation introduces biases, so pLA(y|γ) is
not an unbiased estimate of true marginal likelihood p(y|γ). The resulting MCMC scheme,
which involves the step of Laplace approximation, targets a different distribution compared
with the true posterior π(γ). Instead, it targets the distribution πLA(γ) ∝ pLA(y|γ)p(γ).

3.3. Correlated Pseudo-Marginal Method

We can alternatively make use of normal approximation πLA(θγ) to derive an impor-
tance sampling estimate of marginal likelihood p(y|γ). This estimator is unbiased and
given by

p̂(γ|y) = 1

N

N

∑
i=1

p(y|θ(i)γ , γ)p(θ
(i)
γ |γ)

πLA(θ
(i)
γ )

(27)

where θ
(1)
γ , . . . , θ

(N)
γ are N samples from πLA(θγ). As in Laplace approximation, we can

replace marginal likelihood p(y|γ) in (19) with estimated marginal likelihood p̂(y|γ). This
leads to the pseudo-marginal scheme in [61,62]. Andrieu and Roberts [62] show that the
resulting Markov Chain preserves π-reversibility as long as estimated marginal likelihood
p̂(y|γ) is an unbiased estimator of the true marginal likelihood, p(y|γ).

It is possible to extend a pseudo-marginal method to a correlated pseudo-marginal
method [21], with the aim of reducing the estimation variance of the ratio of estimated
marginal likelihoods p̂(y|γ′)/ p̂(y|γ). The correlated pseudo-marginal method is applied
to Bayesian variable selection for the logistic regression model in [27], which provides an
implementation that we also adopt in this work.

3.4. Approximate Laplace Approximation

The above Laplace approximation and correlated pseudo-marginal methods are com-
putationally intensive due to the optimisation process required to obtain the normal ap-
proximation in (26), especially for dealing with large-n data. To avoid the overwhelming
computational cost associated with the optimisation process, Rossell et al. [16] introduce
the approximate Laplace approximation method (ALA), which is more computationally
tractable for large-n problems. In this work, we consider the alternative formula described
in supplementary material S.1. of [16], as it offers better computational stability when
inverting the Hessian under the independent prior in (7).

In ALA, a Taylor expansion of log-posterior density log p(y|θγ, γ) + log p(θγ|γ) is
performed at initial value θ0

γ. Solving the resulting Gaussian integral leads to

pALA(y|γ) = p(y|θ0
γ, γ)p(θ0

γ|γ)(2π)
d
2 |H0

γ|−
1
2 exp

{

1

2
g0T

γ (H0
γ)

−1g0
γ

}

(28)

where g0
γ and H0

γ are the gradient and Hessian of the negative log-posterior density evaluated

at θ0
γ, respectively. It is suggested in [16] to set initial value θ0

γ to θ0
γ = 0 for convenience.

By applying ALA to the MH acceptance probability in (19), we obtain an MCMC
algorithm that targets the ALA posterior distribution πALA(γ) ∝ pALA(y|γ)p(γ) as the
equilibrium distribution. Although Ref. [16] shows that ALA can recover the optimal model
with respect to a mean squared loss, it is important to note that ALA is not consistent with
respect to the marginal likelihood (in contrast to the classical Laplace approximation) and
pALA(y|γ) is not an unbiased estimator of the true marginal likelihood, p(y|γ).

4. Point-Wise Implementation of Adaptive Random Neighbourhood
Informed Proposal

4.1. The PARNI Proposal

The PARNI proposal belongs to the class of random neighbourhood informed pro-
posals, which typically involve the following two steps: (i) sampling a neighbourhood
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N ∼ p(·|γ) and then (ii) proposing a model γ′ within this neighbourhood N according
to the informed proposal of [31]. In the PARNI proposal, we assume that the random-
ness in neighbourhood generation is characterised by an auxiliary variable k ∈ K, with
conditional distribution p(k|γ), which leads to neighbourhood N = N (γ, k), such that
p(k|γ) = p(N |γ). By defining K = {0, 1}p, the value of k indicates whether the change in
the corresponding position in γ is included in neighbourhood N . Specifically, for those
positions j such that k j = 1, the neighbourhood consists of models obtained by varying
some or all of these positions in the current model, γ.

The conditional distribution of k takes the product form p(k|γ) = ∏
p
j=1 p(k j|γj), where

each k j depends on the corresponding component γj in γ. This probability distribution is
driven by a set of tuning parameters (A1, . . . , Ap, D1, . . . , Dp), where Aj, Dj ∈ (ǫ, 1 − ǫ) for
a small value of ǫ ∈ (0, 1/2). The probabilities of event k j = 1 are then defined by

p(k j = 1|γj = 0) = Aj, p(k j = 1|γj = 1) = Dj, (29)

and the consequent neighbourhood is constructed as

N (γ, k) =
{

γ∗ ∈ Γ | γ∗
j = γj ∀j s.t. k j = 0

}

. (30)

Neighbourhood N (γ, k) contains 2pk , models where pk denotes the number of 1s in k.
Performing a full enumeration over the entire neighbourhood is, therefore, computationally
expensive when pk is large. In fact, it becomes computationally infeasible to explore the
whole neighbourhood when pk is beyond 30. Liang et al. [33], therefore, consider a point-
wise approximate implementation of this algorithm that dramatically reduces the number
of model probability evaluations from O(2pk ) to O(2pk).

The point-wise implementation proceeds by constructing a sequence of smaller neigh-
bourhoods {Nr} such that each Nr is a subset of N . A proposed model γ′ is sequen-
tially simulated from these neighbourhoods {Nr} according to locally informed pro-
posals qNr

. This procedure requires us to define a sequence of intermediate models
γ = γ(0) → γ(1) → · · · → γ(pk) = γ′. We collect positions j such that k j = 1 and
define them as j1, . . . , jpk

(the order is random). Small neighbourhood Nr is then defined as
follows:

Nr = N (γ(r − 1), jr) =
{

γ∗ ∈ Γ | γ∗
j = γ(r − 1)j ∀j 6= jr

}

. (31)

Each small neighbourhood Nr only consists of two models, γ(r − 1) and γ∗, which only
differ with γ(r − 1) at position jr. The resulting proposal mass function is

qk(γ, γ′) =
pk

∏
r=1

qNr
(γ(r − 1), γ(r)) (32)

where qN is the locally informed proposal over neighbourhood N and is defined by

qN (γ, γ′) ∝







g
(

π(γ′)p(k|γ′)
π(γ)p(k|γ)

)(

ζ
1−ζ

)dH(γ,γ′)
, if γ′ ∈ N

0, otherwise.
(33)

Tuning parameter ζ ∈ (ǫ, 1 − ǫ) denotes the non-informative jumping probability. Two
different methods for adapting ζ are provided in [33]. One of the key factors influencing
the performance of the informed proposal in (33) is the choice of weighting function g.
Given a positive real number x > 0, a balancing function is defined as a function g that
satisfies the condition g(x) = xg(1/x). The locally informed proposal constructed with a
balancing function is locally optimal in terms of Peskun ordering under mild conditions [31].
For the comparisons between different balancing functions, see Supplement B.1.3 of [31].
In this work, we exclusively focus on the Hastings’ choice of balancing function given



Entropy 2023, 25, 1310 11 of 23

by gH(x) = min{1, x}, as gH has demonstrated better empirical performance in many
problems (e.g., [33]).

To construct a π-reversible chain in the MH scheme, we define a collection of neigh-
bourhoods {N ′

r} for the reverse moves, where {N ′
r} are identical to {Nr} but with

reverse order. For a more detailed explanation of the PARNI proposal, we refer to
Section 4.2.1 of [33]. The MH acceptance probability of the PARNI proposal is given by

α(γ, γ′) = min

{

1,
π(γ′)p(k|γ′)qk(γ

′, γ)

π(γ)p(k|γ)qk(γ, γ′)

}

= min

{

1,
p̂(y|γ′)p(γ′)p(k|γ′)qk(γ

′, γ)

p̂(y|γ)p(γ)p(k|γ)qk(γ, γ′)

}

. (34)

Remark 1. The concept of a neighbourhood is also used in other schemes designed to estimate
discrete posterior distributions, including the Shotgun Stochastic Search (SSS) approach [34] and
Hamming ball sampler (HBS) [28]. The SSS method works on the same neighbourhood as that
constructed with the add–delete–swap proposal [22]. Given the current model, γ, SSS constructs a
neighbourhood N (γ) that comprises three disjoint sub-neighbourhoods: Na(γ), Nd(γ) and Ns(γ).
The “addition” neighbourhood, Na(γ), is formed by adding a covariate into the model, and similarly,
the “deletion” neighbourhood, Nd(γ), is formed by deleting a covariate from the model. Lastly,
Ns(γ) is obtained by swapping an included covariate with an excluded one. On the contrary, the
HBS constructs neighbourhoods based on the Hamming ball, Hd(γ), consisting of models that
differ from γ by at most d positions. The typical example is the 1-Hamming ball, denoted by H1(γ).
It is worth mentioning that the SSS and HBS approaches construct neighbourhoods with sizes of
(pγ + 1)p and p, respectively. By contrast, the PARNI proposal constructs neighbourhoods that
are typically approximately of size pγ∗ , where γ∗ denotes the true underlying model. Assuming
that the size of the true underlying model is much smaller than p, as is typical in many applications,
pγ∗ ≪ p, and PARNI exhibits a higher level of scalability in handling the large-p data in comparison
to SSS and HBS.

In the remaining parts of this section, we will describe a novel scheme to estimate
tuning parameters A and D, and a new method for efficiently estimating the marginal
likelihood in the locally informed proposal of (33).

4.2. New Adaptation Scheme on Algorithmic Tuning Parameters

The performance of the PARNI proposal is largely dictated by the choice of algorithmic
tuning parameters A and D. Griffin et al. [26] consider the informed proposal of the form

Aj = min

{

1,
πj

1 − πj

}

, Dj = min

{

1,
1 − πj

πj

}

(35)

where πj denotes the PIP for the j-th covariate and is defined by πj = π(γj = 1). In their
ASI scheme for BVS in the linear regression model, tuning parameters π are adaptively
updated based on a Rao-Blackwellised estimate of the PIP given in Equation (10) of [26].
Wan and Griffin [27] extend ASI to the logistic regression model, in which they derive
Rao-Blackwellised estimates of PIPs conditioned on the Pólya-gamma latent variables.
Generalising this method to other generalised linear models and survival models that lack
a suitable data-augmentation scheme is challenging. As the analytic marginal likelihood is
inaccessible, it becomes intractable to derive Rao-Blackwellised estimates of PIPs. As an
alternative, a simple Monte Carlo average over the output {γ(l)}L

l=1 can be taken, where L
is the current iteration number. This ergodic average is calculated as

π̃
(L)
j =

1

L

L

∑
l=1

I

{

γ
(l)
j = 1

}

. (36)
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The ergodic average tends to be broad and biased, and it often downweights the importance
of highly correlated covariates. Using the ergodic average directly in the PARNI proposal,
however, results in a feedback effect, wherein a poor ergodic average leads to inadequate
exploration over the sample space, leading to a subsequent bad ergodic average. To combat
this phenomenon, we consider the following composition of two measures: a “warm-start”
approximation, π̃(0), and the ergodic average, π̃(L), obtained from the first L samples. This
composite estimate is adaptively updated using the formula

π̂
(L)
j = φLπ̃

(0)
j + (1 − φL)π̃

(L)
j (37)

where {φl}L
l=1 is a set of weights that control the trade-off between the warm-start approxi-

mation and the ergodic average.

Warm-start approximation π̃
(0)
j is computed in the following way: Given the initial

model of the Markov Chain, γ(0), and two related models, γj↑ = (γj = 1, γ
(0)
−j ) and

γj↓ = (γj = 0, γ
(0)
−j ), for the j-th component, the Rao-Blackwellised estimate of the j-th PIP

at model γ(0) is given by

P(γj = 1|γ−j = γ
(0)
−j , y) =

π(γj↑)
π(γj↑) + π(γj↓)

=

p(y|γj↑)p(γj↑)
p(y|γj↓)p(γj↓)

1 + p(y|γj↑)p(γj↑)
p(y|γj↓)p(γj↓)

.

We consider the ALA in (28) initialised at the origin to estimate the intractable Bayes factor,
p(y|γj↑)/p(y|γj↓), for including the j-th covariate. Let ηi be the i-th linear predictor, η0

i be
the i-th linear predictor evaluated at the origin (i.e., η0

i = 0), Xj denote the j-th column
of data matrix X, ỹ be a vector with i-th component equal to ∂p(y|θγ, γ)/∂ηi evaluated at
ηi = η0

i and W be a matrix such that Wil = −∂2 p(y|θγ, γ)/∂ηi∂ηl evaluated at ηi = η0
i and

ηl = η0
l . Thanks to the Schur complement, we can facilitate the computation of p Bayes

factors as in [26,27]: when γ(0) = γj↓,

p̃(y|γj↑)
p̃(y|γj↓)

= d
↑− 1

2
j g−

1
2 exp







1

2d↑j
(ỹTXγΛ−1

γ XT
γ WXj − ỹTXj)







(38)

where Λγ = XγWXγ + V−1
γ and d↑j = XT

j WXj + 1/g − XT
j WXγΛ−1

γ XT
γ WXj;

when γ(0) = γj↑

p̃(y|γj↑)
p̃(y|γj↓)

= d
↓− 1

2
j g−

1
2 exp

{

−1

2
d↓j
(

ỹTXγ(Λ
−1
γ )·,q+pj

)2
}

(39)

where d↓j = 1/(Λ−1
γ )q+pj ,q+pj

and pj is the ordered position of the j-th variable. When

working with data that involve a high level of collinearity, it is also possible to increase the
number of the ALA Rao-Blackwellised estimates.

The last building block of adapting π̂
(L)
j is defining weight φl . We employ a straight-

forward construction of φl given by

φl =

{

1 − 1
2 (Nb − l + 1)−0.5 if l ≤ Nb

1
2 (l − Nb)

−0.5 if l > Nb.
(40)

where Nb denotes the length of the burn-in period. This choice results in a weight that ex-
ceeds 1/2 during the period of burn-in and drops below 1/2 afterwards. Consequently, the
PARNI proposal initially relies on the warm-start approximation to explore the model space.
As the chain converges to the high-probability region and the ergodic average stabilises, the
PARNI proposal gradually uses more information from the ergodic average. After running
for a longer time, the PARNI proposal completely relies on the ergodic average.
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4.3. The Adaptive ALA Informed Proposal

In each iteration of the PARNI proposal, the locally informed proposal in (33) relies
on computing the posterior model probabilities. Using the estimates from the Laplace
approximation or correlated pseudo-marginal scheme in PARNI can be computationally
intractable in “large-p, large-n” situations due to the use of an optimisation algorithm
that most run many times in one iteration. It should be noted, however, that the model
probabilities in the locally informed proposal do not need to precisely match the true
posterior model probabilities, and the PARNI proposal can still generate samples that
preserve π-reversibility as long as the correct (or proper estimate) π is used in the MH
acceptance probability of (34). In the locally informed proposal, one can incorporate
the approximate Laplace approximation initialised at the origin to design the proposal
distribution. In the MH acceptance probability, we can then use the estimates obtained from
the Laplace approximation or correlated pseudo-marginal method. Based on empirical
observations, however, this ALA informed proposal may not always mix well. One reason
for this is the phenomenon of downweighting the model probabilities of non-null models
in favour of the null model, resulting in an informed proposal that is less informative than
the true likelihood. The simulated chain is, therefore, more likely to get stuck and becomes
less effective in exploring the model space.

Alternatively, we can note that the ALA estimate coincides with the Laplace ap-
proximation when the initial value is chosen to be posterior mode θ̂γ under model Mγ.
Therefore, the accuracy of the ALA estimate is crucially influenced by the choice of initial
value θ0

γ. We employ the ALA informed proposal with an adaptive initial value for ALA
(adaptive ALA), which aims to reduce the estimation errors and thus improve the overall
performance of the MCMC algorithm.

For each model in the neighbourhood, the adaptive ALA starts with an initial guess of
linear predictor η and proceeds with the following steps:

1. Calculate a “guess” estimate from linear predictor η:

θ0
γ = (JT

γ Jγ)
−1 JT

γ η. (41)

2. Perform one step of Newton’s method and obtain an updated estimate of the coefficient:

θ̃γ = θ0
γ −

(

H0
γ

)−1
g0

γ (42)

where g0
γ and H0

γ are the gradient and Hessian of the negated log-posterior density

evaluated at θ0
γ, respectively.

3. Use the ALA estimate in (28) with θ̃γ as the initial value to estimate marginal likelihood
p(y|γ).
Practically speaking, we can skip step 1 with the matrix inverse operation in (41) and

obtain θ̃γ directly from the initial guess of linear predictor η. This simplification is followed
by [63] and is given in Appendix C. This approach leads to a coherent computational
scheme that is easy to implement. We adaptively update the initial-guess η according to

η̂
(L)
i =

1

L

L

∑
l=1

η̂γ(l) ,i (43)

where η̂γ,i = Jγ θ̂γ is the “optimal” i-th linear predictor obtained from MAP estimate θ̂γ

under model Mγ. By storing the MAP estimate obtained from the Laplace approximation
or correlated pseudo-marginal scheme, we can compute the linear predictor without
introducing additional computational costs.

In addition, we experimented with adapting coefficients β̂ from the posterior samples
and using the coefficients of the covariates selected by γ to navigate the ALA. This approach
did not work well, however, because the posterior distribution of β differs significantly from
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the posterior distribution of β conditioned on model γ. In contrast, the linear predictors
offer more stability, in the sense that they do not vary as much across different models.

Combining all of the above components, we have the PARNI proposal. The complete
algorithm is outlined in Algorithm 1.

Algorithm 1 The algorithmic pseudo-code of the Point-wise Adaptive Random Neighbo-
urhood Sampler with Informed proposal (PARNI)

Initialise the chain at γ(0) and compute {π̃
(0)
j }p

j=1;

for i = 1 to i = N do
Sample k ∼ p( · |γ(i−1)) as in (29);

Set γ(0) = γ(i−1), pk = ∑
p
j=1 k j and define j1, . . . , jpk

;

for r = 1 to r = pk do
Construct Nr as in (31) and estimate p(y|γ∗) for all γ∗ ∈ Nr as in Section 4.3;
Sample γ(r) ∼ qNr

(γ(r − 1), · ) as in (33);
end for
Set γ′ = γ(pk), estimate p(y|γ′) by LA or CPM and sample U ∼ Unif(0, 1);

If U < α(γ(i−1), γ′) as in (34), then γ(i) = γ′, else γ(i) = γ(i−1);
for j = 1 to j = p do

Update π̃
(i)
j as in (36) and π̂

(i)
j as in (37);

Update A
(i)
j = min

{

1, π̂
(i)
j /(1 − π̂

(i)
j )

}

;

Update D
(i)
j = min

{

1, (1 − π̂
(i)
j )/π̂

(i)
j

}

;

end for
Update ω(i) using the selected adaption scheme and η̂(i) as in (43);

end for

5. Experiments

5.1. Simulated Data-Sets with Adaptive ALA Informed Proposal

In this subsection, we study the mixing behaviour of different versions of the PARNI
proposal for the logistic regression model, Cox PHs and Weibull survival models. We simu-
late two data-sets with 500 covariates and 500 observations as described in Appendix D
and compare the following four algorithms:

• PARNI-adaptiveALA: The PARNI proposal with adaptive approximate Laplace ap-
proximation in the informed proposal and the correlated pseudo-marginal scheme in
the MH acceptance probability.

• PARNI-LA: The PARNI proposal with Laplace approximation in the informed pro-
posal and the correlated pseudo-marginal scheme in the MH acceptance probability.

• PARNI-ALA: The PARNI proposal with approximate Laplace approximation in the
informed proposal and the correlated pseudo-marginal scheme in the MH accep-
tance probability.

• ADS (thinned): The PARNI proposal with approximate Laplace approximation in the in-
formed proposal and the correlated pseudo-marginal scheme in the MH acceptance prob-
ability.

The first three algorithms were run for 10,000 iterations, with the first 2000 iterations
being discarded as burn-in, whereas the ADS (thinned) proposal was run for a CPU time
similar to that of PARNI-adaptiveALA and PARNI-ALA, with all collected samples being
thinned to 10,000 values.

Figure 1 presents trace plots of the log-posterior model probability and bar plots
of CPU time for the PARNI-adaptiveALA, PARNI-LA, PARNI-ALA and ADS (thinned)
proposals in the logistic model, and the Cox PHs and Weibull models. In all three models,
the PARNI-adaptiveALA proposal mixes as well as the PARNI-LA proposal and performs
much better than the PARNI-ALA proposal. The result of the ADS (thinned) proposal
provides the benchmark performance of a simple add–delete–swap MCMC scheme on
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these data-sets for comparison purposes. As illustrated in Figure 1, the adaptive ALA
informed proposal is computationally much cheaper than the LA informed proposal. In
comparison to the ALA informed proposal, the adaptive ALA informed proposal is also
computationally competitive, and it only introduces the additional computational costs of
updating linear predictor η̂(L) and computing initial value θ̃γ from the estimate of linear

predictor η̂(L) as in (42). In addition, the PARNI-adaptiveALA proposal demonstrates
improved mixing behaviour in comparison to the baseline add–delete–swap proposal in all
three models with similar CPU time. Therefore, we conclude that the PARNI-adaptiveALA
proposal is more computationally efficient than the informed proposals constructed using
Laplace approximation or ALA initialised at the origin.

PARNI−adaptiveALA PARNI−LA PARNI−ALA ADS (thinned)
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Figure 1. Left four columns: Trace plots of the log-posterior model probability from runs of the

PARNI-adaptiveALA, PARNI-LA, PARNI-ALA and ADS (thinned) algorithms on simulated data-sets.

Right column: Bar plots of the CPU time of simulating 10,000 samples on simulated data-sets with

the PARNI-adaptiveALA, PARNI-LA, PARNI-ALA and ADS (thinned) algorithms.

5.2. Logistic Regression: Genetic Mapping for Systemic Lupus Erythematosus

Genetic mapping is a process of locating a specific gene or genetic variant within
a particular genomic region and has the objective to find the precise genetic elements
responsible for a particular trait or disease phenotype. One common application is to
study whether an individual has a particular disease. In this scenario, one can use a
logistic regression model with the response variable based on the case/control design and
explanatory variables consisting of single-nucleotide polymorphisms (SNPs).

We consider a problem of identifying the SNPs that play a crucial role in predicting
Systemic Lupus Erythematosus using a case/control study. It consists of genotypes from a
genome-wide genetic case/control association study involving 4035 cases and 6959 controls,
where the cases are SLE patients and the controls are from a public repository of European
ancestry. These data were previously studied in [64] using step-wise logistic regression in a
meta-analysis. In Chapter 5 of [65], Griffin and Steel apply Bayesian variable selection to
analyse these SLE data but only focus on exploring the relationship between disease and
SNPs on Chromosome 1. In addition to their work, we extend the study by including a
total of four chromosomes. We consider a different number of SNPs for each chromosome,
with Chromosome 1 having 5771 SNPs, Chromosome 3 having 42,430 SNPs, Chromosome
11 having 32,290 SNPs and Chromosome 21 having 9306 SNPs. We consider the prior
specification in Section 2.2 with hyper-parameter g = 1/4, σ2

α = 1 and assume the hyper-
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prior of h ∼ Beta(1, (p − 5)/5), where p denotes the number of SNPs. The full details of
the data-set are provided in Table 1, including the five fixed covariates (gender and top
four principal components of expressed genes) that are mandatory in all models.

Table 1. Details of Systemic Lupus Erythematosus data on Chromosomes 1, 3, 11 and 21.

Data-Set Observations Cases Fixed Covariates Genetic Covariates

Chromosome 1

10,995 4036 Gender, PC1–PC4

5771
Chromosome 3 42,430

Chromosome 11 32,290
Chromosome 21 9306

We implement the following four algorithms:

• PARNI-DA: PARNI proposal with Pólya-gamma data augmentation in both the in-
formed proposal and the MH acceptance probability.

• PARNI-CPM: PARNI proposal with adaptive ALA informed proposal and correlated
pseudo-marginal method in the MH acceptance probability.

• ADS-DA: Add–delete–swap proposal with Pólya-gamma data augmentation in the
MH acceptance probability.

• ADS-CPM: Add–delete–swap proposal with the correlated pseudo-marginal method
in the MH acceptance probability.

These MCMC algorithms all simulate samples from the exact posterior distribution,
π. We treat the ADS-DA proposal as the baseline to showcase the rapid mixing of the
PARNI proposals. Each algorithm was run for 1 h with 10 repetitions, and we recorded
the estimates of PIPs. Firstly, we calculated the mean squared errors of the estimates of p
PIPs compared with the “gold standard” estimates taken from the PARNI-CPM proposal,
which was run for roughly 12 h. Then, we took the average over p mean squared errors
to obtain the average mean squared error (average MSE). To compare the computational
efficiency of the PARNI proposals with the baseline ADS-DA proposal, we provide the
relative efficiency (in brackets) as the ratio of their average MSE.

The average MSEs and relative efficiency values are presented in Table 2. The PARNI
proposals consistently outperform the ADS proposals in terms of the average MSE. The
PARNI proposals show at least twofold improvements over the add–delete–swap proposal
and lead to much larger improvements in most cases, such as in Chromosome 21, where the
PARNI proposals perform 78 times better than the add–delete–swap proposal. On the other
hand, both the PARNI-DA and ADS-DA proposals consistently result in smaller average
MSEs compared with the PARNI-CPM and ADS-CPM proposals due to their computational
advantages. Firstly, data augmentation can evaluate the conditional marginal likelihood
without finding the posterior mode using iteratively re-weighted least squares. Secondly,
the Pólya-gamma latent variables are drawn using the R package pgdraw (version 1.1) [56]
implemented using Rcpp (version 1.0.10) [66].

Table 2. Systemic Lupus Erythematosus data: The average mean squared errors of the ADS-DA, ADS-

CPM, PARNI-DA and PARNI-CPM proposals in estimating the posterior inclusion probabilities of all

SNPs (smaller is better). The relative efficiency as the ratio of the average MSE between algorithm A and

the ADS-DA proposal presented in brackets (larger is better). The best performance is presented in bold.

Data-Set
Algorithms

ADS-DA ADS-CPM PARNI-DA PARNI-CPM

Chromosome 1 1.84 × 10−5 (1) 4.29 × 10−5 (0.43) 5.14 × 10−6 (3.58) 7.34 × 10−6 (2.51)
Chromosome 3 2.01 × 10−4 (1) 2.37 × 10−4 (0.85) 8.76 × 10−5 (2.30) 5.11 × 10−5 (3.94)

Chromosome 11 7.09 × 10−5 (1) 1.07 × 10−4 (0.66) 9.73 × 10−6 (7.29) 9.89 × 10−6 (7.15)
Chromosome 21 1.18 × 10−5 (1) 1.67 × 10−5 (0.71) 1.51 × 10−7 (78.08) 1.79 × 10−7 (65.93)
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5.3. Survival Analysis: Variable Selection for Five Large Cancer-Related Gene Expression
Data-Sets

We consider a total of four cancer-related real data-sets, where the first two data-sets
are for breast cancer and the remaining data-sets are for lung cancer. NKI Breast Cancer Data
(https://data.world/deviramanan2016/nki-breast-cancer-data, accessed on 4 September
2023) contain patient info, treatment, survival time and the 1554 most varying genes of
272 breast cancer patients. These data were analysed in [67,68] with the aim of reducing
the mortality rates from this disease. The METABRIC breast cancer data-set is derived from
the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database.
The METABRIC data-set was analysed in [69,70] and is publicly available in [71] (https:
//www.cbioportal.org/study/summary?id=brca_metabric, accessed on 4 September 2023).
The data contain 1907 patients with the gene expression for 331 genes and mutations for
175 genes. Gene mutation variables are encoded as 1 if a mutation exists and 0 otherwise.
For both data-sets, we include some clinical covariates, including the age of the patients and
the stage of the cancer, as suggested by [72]. We also consider the treatment variables (such
as chemotherapy and surgery type), which also influence survival time. The last two lung
cancer data-sets, “GSE31210” and “GSE4573”, were previously studied in [72], and they
are publicly available in the Gene Expression Omnibus repository [73]. See Figure 1 in [72]
for the estimated survival functions of these three data-sets. We provide the full details of
these four real data-sets in Table 3.

Table 3. Details of 4 real data-sets for survival analysis.

Data-Set Cancer Type Observations Events Fixed Covariates
Genetic

Covariates

NKI Breast 272 77 Age, chemo, hormone, surgery, stage 1554
METABRIC Breast 1903 622 Age, chemo, hormone, radio, surgery, stage 662
GSE31210 Lung 226 30 Age, gender, smoker, stage 54,675
GSE4573 Lung 130 63 Age, gender, stage 22,283

We consider two computational algorithms used in previous studies for logistic
models, the PARNI-CPM and ADS-CPM proposals, as a data augmentation scheme
is not available for the Cox PHs or Weibull model. We consider the hyper-prior of
h ∼ Beta(1, (p − 5)/5), where p denotes the number of genetic covariates, and impose
a half-Cauchy hyper-prior on

√
g, where a Gibbs update is taken on g conditioned on the

model (see Appendix A for more details). In addition, we assume σ2
α = 105 and σ2

k = 105

(only for the Weibull model).
The average MSEs and relative efficiency values of the PARNI-CPM and ADS-CPM

proposals on these four survival data-sets are shown in Table 4. For the Weibull model,
the PARNI proposal consistently exhibits better computational efficiency compared with
add–delete–swap on all four data-sets. In the case of the NKI and METABRIC data-sets,
which have a relatively small number of covariates, the PARNI-CPM proposal produces
PIP estimates that are seven times more accurate compared with ADS-CPM. For high-
dimensional data-sets, we can obtain PIP estimates from the PARNI-CPM proposal that are
two times better than ADS-CPM. The lesser improvement observed in the high-dimensional
examples can be attributed to the increasing number of unimportant covariates, where both
algorithms are good at excluding these unimportant covariates from the models.

The Bayesian variable selection in the Cox PHs model with partial likelihood is
generally more challenging compared with the Weibull model. The primary reason is that
the inclusion of the non-parametric setup introduces additional complexities in evaluating
the log-likelihood functions and its Hessian matrices. The PARNI-CPM proposal provides
roughly two times better estimates on the NKI and GSE4573 data-sets compared with ADS-
CPM. However, the ADS-CPM proposal shows better performance on the remaining two
data-sets. In the “small-p, large-n” METABRIC data, the add–delete–swap proposal shows
greater computational efficiency compared with the PARNI proposal, as the informed

https://data.world/deviramanan2016/nki-breast-cancer-data
https://www.cbioportal.org/study/summary?id=brca_metabric
https://www.cbioportal.org/study/summary?id=brca_metabric
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proposal needs to evaluate many computationally expensive Hessian matrices. In fact, the
computation of evaluating the Hessian matrix scales with the order of O(n2), in contrast
with parametric models, where the computation of the Hessian matrix scales linearly with
n. In the GSE31210 data with few strong signals, the posterior distribution on model space
is relatively flat, and both algorithms have smaller average MSEs compared with the other
data-sets. In particular, the add–delete–swap proposal can run for more iterations; it is,
therefore, more computationally efficient compared with the PARNI-CPM proposal.

Table 4. Survival analysis data: The average mean squared errors of the ADS-CPM and PARNI-CPM

proposals in estimating posterior inclusion probabilities of all genetic covariates (smaller is better). The

relative efficiency as the ratio of the average MSE between algorithm A and the ADS-CPM proposal

presented in brackets (larger is better). The best performance is presented in bold.

Data-Set
Cox PHs Weibull Model

ADS-CPM PARNI-CPM ADS-CPM PARNI-CPM

NKI 5.54 × 10−4 (1) 3.19 × 10−4 (1.74) 3.21 × 10−5 (1) 4.33 × 10−6 (7.40)
METABRIC 1.27 × 10−3 (1) 3.80 × 10−3 (0.33) 1.36 × 10−3 (1) 1.73 × 10−4 (7.89)
GSE31210 1.26 × 10−6 (1) 3.56 × 10−6 (0.35) 3.91 × 10−5 (1) 2.16 × 10−5 (1.81)
GSE4573 4.57 × 10−5 (1) 2.54 × 10−5 (1.83) 3.56 × 10−5 (1) 8.37 × 10−6 (4.26)

6. Discussion

In this work, we apply the PARNI proposal to Bayesian variable selection problems
in generalised linear models and survival models. We find that the informed proposal
obtained from the approximate Laplace approximation with our new adaptive initial
point yields improved efficiency and accuracy in posterior sampling. We compare the
performance of the PARNI proposal with the baseline add–delete–swap proposal in numer-
ous “large-p, large-n” real-world data-sets, and the PARNI proposal with the correlated
pseudo-marginal method provides PIP estimates with smaller mean squared errors than
the add–delete–swap proposal in most of the problems. The numerical results from the
Cox PHs also provide useful insights to improve the PARNI proposal in the future. Code
to run the PARNI proposal on the logistic regression model, and the Cox PHs and Weibull
models is available at https://github.com/XitongLiang/The-PARNI-scheme.git (accessed
on 4 September 2023).

In addition to the three models described in the paper, the proposed technique can
be extended to other generalised linear models and survival models. Two possible exten-
sions are the Gamma generalised linear model [74] and various Bayesian non-parametric
approaches to survival analysis [75]. It is still a challenging problem to reduce the computa-
tional cost of simulating samples when a data-set contains a large number of observations.
As highlighted in [76], simple sub-sampling strategies may not lead to a substantial im-
provement in the computational efficiency of posterior sampling. It would be interesting,
therefore, to design an efficient PARNI scheme specifically tailored for large-n data-sets.
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Abbreviations

The following abbreviations are used in this manuscript:

ALA Approximate Laplace approximation

BVS Bayesian variable selection

Cox PHs Cox proportional hazards

CPM Correlated pseudo-marginal

DA Data augmentation

HBS Hamming ball sampler

INLAs Integrated nested Laplace approximations

LA Laplace approximation

MCMC Markov Chain Monte Carlo

MH Metropolis–Hastings

PARNI Point-wise implementation of Adaptive Random Neighbourhood Informed proposal

PDMP Piece-wise deterministic Markov process

PIP Posterior inclusion probability

RJMCMC Reversible Jump Markov Chain Monte Carlo

SSS Shotgun Stochastic Search

SVB Sparse Variational Bayes

VB Variational Bayes

Appendix A. Updating g in Hierarchical Model

We impose a standard half-Cauchy hyper-prior on
√

g, which defines the following
density with s =

√
g:

ps(s) =
2

π

1

1 + s2
. (A1)

As s can only take the non-negative and is defined on (0,+∞), we consider an MH update on
the projection ν = log(g) = 2 log(s), which is defined on R. The transformed density on ν is

pν(ν) =
2

π

1

1 + exp(ν)
× 1

2
exp

(

1

2
ν

)

. (A2)

We can express pν in terms of g as

pν(g) =
1

π

√
g

1 + g
. (A3)

Given that ν = log(g) is the current value, we consider a random walk Metropo-
lis with variance σ2

g . By sampling Z ∼ N(0, 1), we propose ν′ = ν + σgZ (equivalent to
g′ = g exp(σgZ)). The MH acceptance probability of accepting this new proposal
ν′ = log(g′) is given by

α(g, g′) = min

{

1,
p(y|γ, g′)pν(g′)
p(y|γ, g)pν(g)

}

. (A4)

At the i-th iteration, the variance of the random walk Metropolis proposal is adaptively
updated according to the formula

log((σ2
g)

(i+1)) = log((σ2
g)

(i)) + i−0.7 × (α(g, g′)− τ) (A5)

where τ is the optimal acceptance probability and is often set to 0.234.
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Appendix B. Updating k in Weibull Model

Recall from Section 2.5 that a normal prior N(0, σ2
k ) is assigned to log-transformed

scale parameter k in the Weibull model. Let s = log(k); we have

ps(s) =
1

√

2πσ2
k

exp

{

− s2

2σ2
k

}

. (A6)

We consider a Gaussian random walk Metropolis with variance σ2
rw on s. After

sampling Z ∼ N(0, 1), we propose s′ = s + σrwZ. The MH acceptance probability of
accepting this new proposal s′ = log(g′) is given by

α(s, s′) = min

{

1,
p(y|γ, g′ = exp(s′))ps(s′)
p(y|γ, g = exp(s))ps(s)

}

. (A7)

Similar to Appendix A, at the i-th iteration, the variance of the random walk Metropolis
proposal is adaptively updated according to the formula

log((σ2
rw)

(i+1)) = log((σ2
rw)

(i)) + i−0.7 × (α(s, s′)− τ) (A8)

where τ is the optimal acceptance probability and is often set to 0.234.

Appendix C. From Newton’s Method to IRLS in Bayesian Modelling

Under model Mγ, Newton’s method leads to the update on the coefficients

θ
(n+1)
γ = θ

(n)
γ −

(

XT
γ W

(n)
γ Xγ + V−1

γ

)−1(

XT
γ ỹ

(n)
γ + V−1

γ θ
(n)
γ

)

(A9)

where η(n) = Xγθ
(n)
γ is the linear predictor; W

(n)
γ is the negative second derivative of

log-likelihood with respect to the linear predictor, (W
(n)
γ )il = −∂2/∂ηγ,i∂ηγ,l(p(y|θγ, γ)),

evaluated at η
(n)
γ,i and η

(n)
γ,l ; and ỹ

(n)
γ is the negative first derivative of log-likelihood with

respect to the linear predictor, (ỹ
(n)
γ )i = −∂/∂ηγ,i(p(y|θγ, γ)), evaluated at η

(n)
γ,i .

Multiplying both sides by (XT
γ W

(n)
γ Xγ + V−1

γ ) yields

(

XT
γ W

(n)
γ Xγ + V−1

γ

)

θ
(n+1)
γ =

(

XT
γ W

(n)
γ Xγ + V−1

γ

)

θ
(n)
γ − XT

γ ỹ
(n)
γ − V−1

γ θ
(n)
γ . (A10)

We can simplify the RHS as

(

XT
γ W

(n)
γ Xγ + V−1

γ

)

θ
(n+1)
γ = XT

γ W
(n)
γ Xγθ

(n)
γ − XT

γ ỹ
(n)
γ (A11)

⇒
(

XT
γ W

(n)
γ Xγ + V−1

γ

)

θ
(n+1)
γ = XT

γ W
(n)
γ

(

η
(n)
γ − (W

(n)
γ )−1ỹ

(n)
γ

)

(A12)

as η
(n)
γ = Xγθ

(n)
γ . We multiply both sides by

(

XT
γ W

(n)
γ Xγ + V−1

γ

)−1
and obtain the update

in the form of IRLS and linear predictor

θ
(n+1)
γ =

(

XT
γ W

(n)
γ Xγ + V−1

γ

)−1
XT

γ W
(n)
γ

(

η
(n)
γ − (W

(n)
γ )−1ỹ(n)

)

. (A13)

Appendix D. Data Simulation

We take the same strategy as in [23,27] to simulate logistic regression data. Assume
that the linear predictor is defined by η = Xβ, where X are generated from the multivariate
normal distribution; we map mean value µi with linear predictor ηi using a logistic link
function given by µi = exp(ηi)/(1 + exp(ηi)) and simulate yi ∼ Bern(µi). We conduct the
same AR design for the covariates, where each observation (row) of data design matrix X
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follows a multivariate normal distribution with mean zero and covariance Σ, with entries
Σij = 0.6|i−j|. In terms of coefficient β, only the first 10 values are taken to be non-zero, and
β is defined by

β = (2,−3, 2, 2,−3, 3,−2, 3,−2, 3, 0, . . . , 0)T ∈ R
p.

For the survival model, we take the same construction on data design matrix X,
coefficient β and linear predictor η = Xβ as in the logistic model. The survival time of each
individual is simulated from a flexible generalised gamma parametric survival model [78]
as suggested in [15]. The generalised gamma parametric survival model encompasses
four commonly used survival models, the exponential, Weibull, log-normal and gamma
survival models, as special cases. We adopt a similar hyper-parameter specification for
the generalised gamma parametric survival model as presented in [15] with σ = 0.8 and
q = −2. In addition, we consider hyper-parameters σ2

α = 100, g = 1 and h = 10/500 for all
these three models.
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