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Summary
Wavelets are widely used in various disciplines to analyse signals both in space and scale.
Whilst many fields measure data on manifolds (i.e., the sphere), often data are only observed
on a partial region of the manifold. Wavelets are a typical approach to data of this form, but
the wavelet coefficients that overlap with the boundary become contaminated and must be
removed for accurate analysis. Another approach is to estimate the region of missing data
and to use existing whole-manifold methods for analysis. However, both approaches introduce
uncertainty into any analysis. Slepian wavelets enable one to work directly with only the data
present, thus avoiding the problems discussed above. Applications of Slepian wavelets to
areas of research measuring data on the partial sphere include gravitational/magnetic fields in
geodesy, ground-based measurements in astronomy, measurements of whole-planet properties
in planetary science, geomagnetism of the Earth, and cosmic microwave background analyses.

Statement of Need
Many fields in science and engineering measure data that inherently live on non-Euclidean
geometries, such as the sphere. Techniques developed in the Euclidean setting must be
extended to other geometries. Due to recent interest in geometric deep learning, analogues
of Euclidean techniques must also handle general manifolds or graphs. Often, data are only
observed over partial regions of manifolds, and thus standard whole-manifold techniques may
not yield accurate predictions. Slepian wavelets are designed for datasets like these. Slepian
wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold
(Landau & Pollak, 1961, 1962; Slepian & Pollak, 1961): a set of bandlimited functions that
are maximally concentrated within a given region. Wavelets are constructed through a tiling
of the Slepian harmonic line by leveraging the existing scale-discretised framework (Leistedt, B.
et al., 2013; Wiaux et al., 2008). Whilst these wavelets were inspired by spherical datasets,
like in cosmology, the wavelet construction may be utilised for manifold or graph data.

To the author’s knowledge, there is no public software that allows one to compute Slepian
wavelets (or a similar approach) on the sphere or general manifolds/meshes. SHTools (Wieczorek
& Meschede, 2018) is a Python code used for spherical harmonic transforms, which allows
one to compute the Slepian functions of the spherical polar cap (Frederik J. Simons et al.,
2006). A series of MATLAB scripts exist in slepian_alpha (Frederik J. Simons et al., 2020),
which permits the calculation of the Slepian functions on the sphere. However, these scripts
are very specialised and hard to generalise.

SLEPLET (Roddy, 2023) is a Python package for the construction of Slepian wavelets in the
spherical and manifold (via meshes) settings. In contrast to the aforementioned codes, SLEPLET
handles any spherical region as well as the general manifold setting. The API is documented and
easily extendible, designed in an object-orientated manner. Upon installation, SLEPLET comes
with two command line interfaces - sphere and mesh - that allow one to easily generate plots
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on the sphere and a set of meshes using plotly. Whilst these scripts are the primary intended
use, SLEPLET may be used directly to generate the Slepian coefficients in the spherical/manifold
setting and use methods to convert these into real space for visualisation or other intended
purposes. The construction of the sifting convolution (Roddy & McEwen, 2021) was required
to create Slepian wavelets. As a result, there are also many examples of functions on the
sphere in harmonic space (rather than Slepian) that were used to demonstrate its effectiveness.
SLEPLET has been used in the development of (Roddy, 2022; Roddy & McEwen, 2021, 2022,
2023).

Whilst Slepian wavelets may be trivially computed from a set of Slepian functions, the
computation of the spherical Slepian functions themselves are computationally complex, where
the matrix scales as 𝒪(𝐿4). Although symmetries of this matrix and the spherical harmonics
have been exploited, filling in this matrix is inherently slow due to the many integrals performed.
The matrix is filled in parallel in Python using concurrent.futures, and the spherical harmonic
transforms are computed in C using SSHT. This may be sped up further by utilising the new ducc0

backend for SSHT, which may allow for a multithreaded solution. Ultimately, the eigenproblem
must be solved to compute the Slepian functions, requiring sophisticated algorithms to balance
speed and accuracy. Therefore, to work with high-resolution data such as these, one requires
high-performance computing methods on supercomputers with massive memory and storage.
To this end, Slepian wavelets may be exploited at present at low resolutions, but further work
is required for them to be fully scalable.
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