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Abstract. We study the problem of optimally managing an inventory with unknown demand
trend. Our formulation leads to a stochastic control problem under partial observation, in which
a Brownian motion with non-observable drift can be singularly controlled in both an upward and
downward direction. We first derive the equivalent separated problem under full information,
with state-space components given by the Brownian motion and the filtering estimate of its un-
known drift, and we then completely solve this latter problem. Our approach uses the transi-
tion amongst three different but equivalent problem formulations, links between two-dimensional
bounded-variation stochastic control problems and games of optimal stopping, and probabilistic
methods in combination with refined viscosity theory arguments. We show substantial regularity
of (a transformed version of) the value function, we construct an optimal control rule, and we show
that the free boundaries delineating (transformed) action and inaction regions are bounded globally
Lipschitz continuous functions. To our knowledge this is the first time that such a problem has
been solved in the literature.
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1. Introduction

In this paper, we consider the optimal management of inventory when the demand is stochastic
and partially observed. There exists an enormous literature on optimal inventory management (see,
e.g. [41] for an overview and the significance of inventory control in operations and profitability
of companies). The optimal singular/impulsive control literature of stochastic inventory systems
has so far assumed that the dynamics of the inventory is fully known to decision makers, see
e.g. [1, 6, 7, 26, 27, 28, 38, 39, 40], amongst many others. Some of the most celebrated results are
the optimality of (constant) threshold strategies determining (a) base-stock policies – maintaining
inventory above a fixed shortage level – and (b) restrictions on the size of inventory, in order to
manage storage-related costs. In this paper, we generalise the existing literature on the singular
control of inventories by assuming that the demand rate or the mean of the random demand
for the product is unknown to decision makers. This can be relevant to companies operating in
newly established markets or producing a novel good, for which there is limited knowledge about
the demand trend. In particular, we will show how the aforementioned optimal strategies are no
longer triggered by constant thresholds, but by functions of the decision maker’s learning process
of the unknown demand rate. We further note that the analysis and results in this paper can also
contribute to applications way beyond the inventory management literature; for instance, to cash
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balance management problems (see, e.g. [20]), when the drift of the cash process is unknown to
managers.

The model and general results. We consider decision makers who can observe in real time
the evolution of the level of a Brownian inventory system St, which represents the production minus
the stochastic demand for the product at time t (see [26, 38, 40]). The inventory has a “net demand”
rate µ, unknown to decision makers, and a stochastic part modelling the demand volatility. We
assume that the random variable µ ∈ {µ0, µ1}, for µ0, µ1 ∈ R, and the decision makers’ prior
belief is π := P(µ = µ1) ∈ (0, 1). This is continuously updated as new information is revealed
according to the natural filtration FS

t of S, and takes the form Πt := P(µ = µ1 | FS
t ) according to

standard filtering techniques (see [34] for a survey). Decision makers can control the inventory via
a bounded-variation process Pt = P+

t − P−
t , where P±

t are increasing processes defining the total
amount of increase/decrease of inventory up to time t. The controlled inventory level is therefore
given by Xt = x + µt + ηBt + P+

t − P−
t , for η > 0 and all t ≥ 0; positive values model the excess

inventory, while the absolute value of negative X models the backlog in production.
Both levels of excess inventory and backorder bear (non-necessarily symmetric) holding and

shortage costs per unit of time, modelled via a suitable convex function C(X). High holding/storage
costs for large X could suggest unloading part of excess inventory (e.g. start promotions, send
to outlets, donate, ship to another facility, or destroy) at a cost K− proportional to unloaded
volume P−. On the other hand, high shortage costs due to undesirable low X could suggest
placing inventory replenishment orders at a cost K+ proportional to the ordered volume P+.
However, there is a trade off due to the costs K± of controlling the inventory X to keep C(X) at
“reasonable” levels. The question we thus study is “What is the optimal inventory management
strategy that minimises the total expected (discounted) future holding, shortage and control costs,
when the demand rate is unknown?”. We allow the rate of increase/reduction dP± to be unbounded
and have an instantaneous effect on X, hence the question is mathematically formulated as a
bounded-variation stochastic control problem of a linearly controlled one-dimensional diffusion with
the novelty of a random (non-observable) drift µ.

Indeed, we prove the existence of an optimal control strategy P ⋆± and characterise it via two
boundary functions of the belief process Π, which split the space in three distinct but connected
regions: (a) An action region divided in the areas below or above the boundaries, so that when X
is relatively small or large, decision makers should increase or decrease X via P ⋆±, respectively, to
bring X inside the area between the two boundaries; and (b) an intermediate waiting (inaction)
region, which is precisely the area between the two boundaries. We further prove the monotonicity
of these boundaries and completely characterise them in terms of monotone Lipschitz continuous
curves solving a system of nonlinear integral equations. To the best of our knowledge, the study and
characterisation of the boundaries defining the solution of a bounded-variation stochastic control
problem under partial information on the underlying diffusion dynamics, has never been addressed
in the literature.

Our contributions, approach and overview of mathematical analysis. Our contribution
in this paper is twofold. From the point of view of its application, even though the literature on the
optimal management of inventory is extremely rich, as already discussed, there is no model where
the demand is assumed to be partially observed and lump-sum as well as singularly continuous
actions on the inventory are allowed. From the mathematical theory perspective, the literature on
the optimal policy characterisation in singular stochastic control problems with partial observation
is limited, and actually deals only with monotone controls [4, 12, 15, 35]. On the contrary, we
allow the decision maker to both decrease and increase the underlying process by using controls
of bounded-variation. Our paper thus provides a first example where partial observation features
have been considered in the setting of a bounded-variation control problem. By combining the
well-established connection to Dynkin games, probabilistic methods of free-boundary theory and
refined viscosity theory arguments, we present a methodology that allows to achieve the necessary
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regularity of the value function, leading to a characterisation of the optimal control rule. This is our
second main contribution, on which we elaborate in the remaining of this section. Note that, other
scenarios of partial information on the drift, considered for investment timing [14], asset trading
[8], optimal liquidation [19], contract theory [16], lead to different mathematical formulations.

By relying on classical filtering theory (see [34]), we first derive the equivalent Markovian “sepa-
rated problem”, which is a genuine two-dimensional bounded-variation singular stochastic control
problem V with diffusive state-space dynamics (X,Π). The traditional “guess and verify” approach
is not effective, since the associated variational formulation involves partial differential equations
(PDEs) with (gradient) boundary conditions, whose explicit solutions are not possible in general.
We instead use a more direct approach that allows for a thorough study of the value function V ’s
regularity and structure, eventually leading to the optimal control strategy’s characterisation.

Via changes of coordinates we first transform the original controlled process (X,Π) into (X,Φ)
with (degenerate) decoupled dynamics and later into (X,Y ) for the problem’s intrinsic parabolic
formulation (see also [12, 29]). We connect our resulting two-dimensional bounded-variation sto-
chastic control problems, under each formulation, to suitable zero-sum optimal stopping (Dynkin)
games with two-dimensional, uncontrolled dynamics. We manage to characterise each games’ op-
timal stopping strategies via interlinked pairs of monotone and bounded free boundary functions
a±(π), b±(φ) and c±(y), respectively. By using our probabilistic methodology in combination with
viscosity theory arguments1 and switching between these three equivalent formulations: (a) we
achieve the notable C1-global regularity of the transformed value function V (x, φ), and we deduce

that its version V̂ (x, y) is actually such that V̂ ∈ C1(R2;R) and V̂xx is bounded in its relative
continuation region; (b) we use these properties in order to construct an optimal control strategy
in terms of the likelihood ratio-dependent process t 7→ b±(Φt) according to a Skorokhod reflection;
(c) we obtain global Lipschitz continuity of the free boundaries c±(y), employed to show the global
C1-regularity of the Dynkin game’s value v̂(x, y) and obtain a system of nonlinear integral equa-
tions solved by c±. It is worth observing that backtracking the involved change of variables, the
characterisation of c± effectively turns into a characterisation of b± defining the optimal control
policy (and consequently of a± in the original (x, π)–coordinates).

The Lipschitz regularity result is of particular independent interest, given its importance in ob-
stacle problems (see the introduction of [10] for a detailed account on this and its related literature).
The simple argument of our proof, exploiting the geometry of the (x, φ)-plane and the particular
structure of its transformation into the (x, y)-plane, provides a method – alternative to the more
technical approach developed in [10] – for obtaining the Lipschitz regularity of the optimal stopping
boundaries.

Finally, note that by using our methodology, we manage to obtain the minimal (necessary)
regularity in order to construct an optimal control strategy and verify its optimality. As in multi-
dimensional singular stochastic control settings proving regularity properties of the control value
function can be very challenging, having a methodology that takes a different route by effectively
combining various techniques, can be helpful in studying other problems with similar structure.

Structure of the paper. The rest of this paper is organised as follows. In Section 2, we
present the model, formulate the control problem, and derive the separated problem V . In Section
3, we derive the first related optimal stopping game. Section 4 introduces the first useful change
of coordinates. Section 5 then studies the regularity of the control problem’s (transformed) value
function V . Section 6 presents the verification theorem and construction of an optimal control. Fi-
nally, in Section 7, we: introduce the last change of variables; obtain the Lipschitz-continuity of the

1It is worth noticing that the combination of viscosity arguments and probabilistic techniques of free-boundary
problems have been already employed for the study of bounded-variation control problems in [21], [23] and [24].
However, in those papers the dynamic programming equation takes the form of a parameter-dependent ODE with
gradient constraints, while in our paper it is a degenerate PDE with gradient constraints.
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corresponding (transformed) free boundaries c±; prove the smooth-fit property of the transformed
Dynkin game’s value function v̂; and derive the integral equations for c±.

2. Problem Formulation and the Separated Problem

On a complete probability space (Ω,F ,P), we define a one-dimensional Brownian motion (Bt)t≥0

whose P-augmented natural filtration is denoted by (FB
t )t≥0. Moreover, we define a random variable

µ which is independent of the Brownian motion B and can take two possible real values, namely
µ ∈ {µ0, µ1}, where µ0, µ1 ∈ R. Without loss of generality, we assume henceforth that µ1 > µ0 and
that π := P(µ = µ1) ∈ (0, 1).

In absence of any intervention, the underlying (stochastic inventory) process St as observed by
the decision maker, follows the dynamics dSt = µdt + ηdBt, with S0 = x ∈ R, for some η > 0.
Recall that the drift µ of the process S is not observable by the decision maker, who can only
monitor the evolution of the process S itself. In light of this observation, the decision maker select
their control strategy P based solely on their observation of the process S. By denoting the natural
filtration of any process Y by FY := (FY

t )t≥0, we can therefore define the set of admissible controls

A := {P : Ω× R+ → R such that t 7→ Pt is right-continuous, (locally) of bounded

variation and P is FS − adapted}.
To be more precise, we consider the minimal decomposition of the bounded-variation control P ∈ A
to be Pt = P+

t − P−
t , where P+ and P− are then nondecreasing, right-continuous FS–adapted

processes. From now on, we set P±
0− = 0 a.s. for any P ∈ A. Hence, the reference (controlled

inventory) process is given by

XP
t := St + Pt = x+ µt+ ηBt + Pt, where P ∈ A.

Note that, the uncontrolled inventory process (P ≡ 0) takes the form X0 = S.
Given the aforementioned setting, the decision maker’s goal is to minimise the overall (dis-

counted) cost of holding, shortage and controlling the inventory process. In mathematical terms,
the bounded-variation control problem of the decision maker is given by

(2.1) inf
P∈A

E

[∫ ∞

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
,

where E denotes the expectation under the probability measure P, ρ > 0 is the decision maker’s
discount rate of future costs, K+,K− > 0 are the marginal costs per unit of control exerted on XP ,
and C : R → R+ is a holding and shortage cost function which satisfies the following standing
assumption.

Assumption 2.1. There exists constants p ≥ 2, α0, α1, α2 > 0 such that the following hold true:

(i) 0 ≤ C(x) ≤ α0(1 + |x|p), for every x ∈ R;
(ii) |C(x)− C(x′)| ≤ α1

(
1 + C(x) + C(x′)

)1− 1
p |x− x′|, for every x, x′ ∈ R;

(iii) 0 ≤ λC(x)+(1−λ)C(x′)−C(λx+(1−λ)x′) ≤ α2λ(1−λ)(1+C(x)+C(x′))

(
1− 2

p

)
|x−x′|2,

for every x, x′ ∈ R and λ ∈ (0, 1);
(iv) limx→±∞C ′(x) = ±∞.

Notice that Assumption 2.1.(iii) above implies that C is convex and locally semiconcave. Hence,

by [5, Corollary 3.3.8], we have C ∈ C1,Lip
loc (R;R+) (the class of continuously differentiable functions,

whose first derivative is locally Lipschitz), so that the derivative in (iv) exists. A classical quadratic
cost C(x) = (x− x)2, for some target level x ∈ R, clearly satisfies Assumption 2.1.

Given the feature of a non-observable µ, (2.1) is not Markovian and cannot be therefore tackled
via a dynamic programming approach. We derive below a new equivalent Markovian problem
under full information, the so-called “separated problem”. This will be then solved by exploiting
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its connection to a zero-sum game of optimal stopping and by a careful analysis of the regularity
of its value function.

2.1. The separated problem. In order to derive the equivalent problem under full information,
we use standard arguments from filtering theory (see, e.g. [34, Section 4.2]) and we define the
“belief” process Πt := P(µ = µ1 | FS

t ), t ≥ 0, according to which, decision makers update their
beliefs on the (true) value of the drift µ based on the arrival of new information via the observation
of the process S. Then, the dynamics of XP and Π can be written as

(2.2)

{
dXP

t = (µ1Πt + µ0(1−Πt))dt+ ηdWt + dPt, XP
0− = x ∈ R,

dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),

where the innovation process W is an FS-Brownian motion on (Ω,F ,P) according to Lévy’s charac-
terisation theorem (see, e.g., [34, Theorem 4.1]), and γ := (µ1 − µ0)/η > 0. The triplet (XP ,Π, P )
is an FS-adapted time-homogeneous process on (Ω,F ,P). In (2.2), the (unknown/non-observable)
drift µ of X in the original model is replaced with its filtering estimate E[µ | FS

t ]. Moreover, the
belief (learning) process Π = (Πt)t≥0 involved in the filtering is a bounded martingale on [0, 1] such
that Π∞ ∈ {0, 1}, due to the fact that all information eventually gets revealed at time t = ∞.

Then, for (XP ,Π) as in (2.2), with (x, π) ∈ O := R× (0, 1), we define

(2.3) V (x, π) := inf
P∈A

E

[∫ ∞

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
,

where all processes involved are now FS-adapted. By uniqueness of the strong solution to the belief
equation, a control P ⋆ is optimal for (2.1) if and only if it is optimal for (2.3), and the values in
(2.1) and (2.3) coincide.

Note that, in light of the dynamics of (XP ,Π) in (2.2), a high value of Π close to 1 would imply
that the decision maker has a strong belief in a high drift µ1, while a low Π close to 0 would imply,
on the contrary, a strong belief in a low drift µ0 scenario.

Remark 2.2 (Full information cases). In the formulation (2.1), the case of prior belief π := P(µ =
µ1) ∈ {0, 1} implies the certainty of the decision maker regarding whether µ = µ0 or µ = µ1. Hence,
in this case, there is no uncertainty about the value of the drift µ, which is not a random variable
any more. Respectively, in the formulation (2.3), the case of prior belief Π0 = π ∈ {0, 1} yields that
the belief process Π will actually remain constant through time, due to its dynamics which imply
that Πt = π for all t > 0. Therefore, we equivalently have that such values of π ∈ {0, 1} correspond
to the full information cases.

In these cases, the optimal control problem becomes a standard one-dimensional bounded-variation
stochastic control problem, for which an early study can be found in [26]. The resulting optimal
control strategy is triggered by two constant boundaries within which the process XP is kept (via a
Skorokhod reflection).

Given the convexity of C as in Assumption 2.1, and the linear structure of P 7→ XP in (2.2),
we can show the next result by following standard arguments based on Komlós’ theorem (see, e.g.,
[21, Proposition 3.4] or [31, Theorem 3.3]).

Proposition 2.3. There exists an optimal control P ⋆ for (2.3). Moreover, this is unique (up to
indistinguishability) if C is strictly convex.

3. The First Related Optimal Stopping Game

We now derive a zero-sum optimal stopping game (Dynkin game) related to V , and we provide
preliminary properties of its value function and of the geometry of its state space. In this section,
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the uncontrolled process X0 with Pt ≡ 0 for all t ≥ 0 becomes involved in the analysis, so we recall
from (2.2) that (X0

t ,Πt)t≥0 ≡ (St,Πt)t≥0 is the two-dimensional strong Markov process solving

(3.1)

{
dX0

t = (µ1Πt + µ0(1−Πt))dt+ ηdWt, X0
0 = x ∈ R,

dΠt = γΠt(1−Πt)dWt, Π0 = π ∈ (0, 1),

Proposition 3.1. Consider the process (X0
t ,Πt)t≥0 defined in (3.1) and define

(3.2) v(x, π) := inf
σ

sup
τ

E(x,π)

[ ∫ τ∧σ

0
e−ρtC ′(X0

t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
where the optimisation is taken over the set of FW -stopping times and E(x,π) denotes the expectation

conditioned on (X0
0 ,Π0) = (x, π) ∈ O. Consider also the control value function V (x, π) defined in

(2.3). Then, we have the following properties:

(i) x 7→ V (x, π) is differentiable and v(x, π) = Vx(x, π).
(ii) x 7→ V (x, π) is convex and therefore x 7→ v(x, π) is nondecreasing.
(iii) π 7→ v(x, π) is nondecreasing.
(iv ) (x, π) 7→ v(x, π) is continuous on R× (0, 1).

Proof. In this proof, whenever we need to stress the dependence of the state process on its starting
point, we denote by (X0;(x′,π′),Ππ′

) the unique strong solution to (3.1) starting at (x′, π′) ∈ O at
time zero. We prove separately the four parts.

Proof of (i). Thanks to Proposition 2.3, it suffices to apply [31, Theorem 3.2] upon setting G ≡ 0,
γt := e−ρtK+, and νt := e−ρtK−, for t ≥ 0, we get

H(ω, t, x) := e−ρtC
(
x+ ηWt(ω) +

∫ t

0

(
µ0 + (µ1 − µ0)Πs(ω)

)
ds

)
, (ω, t, x) ∈ Ω× R+ × R,

and noticing that the proof in [31] can be easily adapted to our infinite-time horizon discounted
setting with right-continuous controls (see also [21, Lemma A.1, Proposition 3.4] for a proof in a
related setting).

Proof of (ii). Denote by (XP ;(x,π),Ππ) the unique strong solution to (2.2) when (XP
0− ,Π0) =

(x, π). The convexity of V (x, π) with respect to x, can be easily shown by exploiting the convexity

of C(x) and the linear structure of (x, P ) 7→ XP ;(x,π), for any P ∈ A and (x, π) ∈ O. The
nondecreasing property of v(·, π) then follows from the fact that v = Vx from part (i).

Proof of (iii). Notice that X0
t = x + ηWt +

∫ t
0

(
µ1Πs + µ0(1 − Πs)

)
ds, t ≥ 0, and that π 7→ Ππ

is nondecreasing due to standard comparison theorems for strong solutions to one-dimensional sto-
chastic differential equations [30, Chapter 5.2]. Then, the claim follows from (3.2) and Assumption
2.1 according to which x 7→ C ′(x) is nondecreasing.

Proof of (iv). By [31, Theorem 3.1] and Proposition 2.3 we know that, for any (x, π) ∈ O, (3.2)
admits a saddle point. Take (xn, πn) → (x, π) as n ↑ ∞, and let (τ⋆, σ⋆) and (τ⋆n, σ

⋆
n) realise the

saddle-points for (x, π) and (xn, πn), respectively. Then, we have

v(x, π)− v(xn, πn) ≤ E

[ ∫ τ⋆∧σ⋆
n

0
e−ρt

(
C ′(X

0;(x,π)
t )− C ′(X

0;(xn,πn)
t )

)
dt

]
≤ E

[ ∫ ∞

0
e−ρt

∣∣∣C ′(X
0;(x,π)
t )− C ′(X

0;(xn,πn)
t )

∣∣∣dt].(3.3)

Without loss of generality, we can take (xn, πn) ⊂ (x − ε, x + ε) × (π − ε, π + ε), for a suitable
ε > 0 and for n sufficiently large. Then, by Assumption 2.1.(ii) and standard estimates using
Assumption 2.1.(i), the expression of X0 and the fact that Π is bounded in [0, 1], we can invoke
the dominated convergence theorem and obtain lim supn→∞(v(x, π) − v(xn, πn)) ≤ 0. In order to
evaluate the difference v(xn, πn) − v(x, π), we now employ the couple of stopping times (τ⋆n, σ

⋆)
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and employ the same rationale leading to (3.3) so to obtain lim supn→∞(v(xn, πn) − v(x, π)) ≤ 0.
Combining the last two inequalities, we obtain the desired continuity claim. □

In the rest of this section, we focus on the study of the optimal stopping game v presented in
(3.2), due to its connection to our stochastic control problem (cf. Proposition 3.1). To that end,
we define the so-called continuation (waiting) region

(3.4) C1 :=
{
(x, π) ∈ O : −K+ < v(x, π) < K−},

and the stopping region S1 := S1
+ ∪ S1

−, whose components are given by

(3.5) S1
+ :=

{
(x, π) ∈ O : v(x, π) ≤ −K+

}
, S1

− :=
{
(x, π) ∈ O : v(x, π) ≥ K−}.

In light of the continuity of v in Proposition 3.1.(iv), we conclude that the continuation region
C1 is an open set, while the two components of the stopping regions S1

± are both closed sets. We
can therefore define the free boundaries

a+(π) := sup
{
x ∈ R : v(x, π) ≤ −K+

}
, a−(π) := inf

{
x ∈ R : v(x, π) ≥ K−}.(3.6)

Here, and throughout the rest of this paper, we use the convention sup ∅ = −∞ and inf ∅ = +∞.
Then, by using the fact that v is nondecreasing with respect to x (see Proposition 3.1.(ii)), we can
obtain the structure of the continuation and stopping regions, which take the form

C1 =
{
(x, π) ∈ O : a+(π) < x < a−(π)

}
,(3.7)

S+
1 =

{
(x, π) ∈ O : x ≤ a+(π)

}
and S−

1 =
{
(x, π) ∈ O : x ≥ a−(π)

}
.(3.8)

Clearly, the continuity of v further implies that the free boundaries a± are strictly separated, namely
a+(π) < a−(π) for all π ∈ (0, 1).

We now prove some preliminary properties of the free boundaries π 7→ a±(π).

Proposition 3.2. The free boundaries a± defined in (3.6) satisfy:

(i) a±(·) are nonincreasing on (0, 1).
(ii) a+(·) is left-continuous and a−(·) is right-continuous on (0, 1).
(iii) There exist constants x∗± ∈ R, such that x∗+ ≤ a+(π) < a−(π) ≤ x∗−, for all π ∈ (0, 1).

Moreover, letting (C ′)−1 be the generalised inverse of C ′, we have a+(π) ≤ (C ′)−1(−ρK+)
and a−(π) ≥ (C ′)−1(ρK−) for all π ∈ (0, 1).

Proof. Proof of (i). This is a consequence of the definitions of a±(·) in (3.6) and the fact that v(x, ·)
is nondecreasing for any x ∈ R; cf. Proposition 3.1.(iii).

Proof of (ii). This follows from part (i) above and the closedness of the sets S1
±.

Proof of (iii). The fact that a+(π) ≤ (C ′)−1(−ρK+) and a−(π) ≥ (C ′)−1(ρK−) follows by
noticing that S+

1 ⊆ {(x, π) ∈ O : x ≤ (C ′)−1(−ρK+)} and S−
1 ⊆ {(x, π) ∈ O : x ≥ (C ′)−1(ρK−)}.

These inclusions can be shown as follows.
Firstly, by [36, Theorem 2.1], the continuous process Z = (Zt)t≥0 with

Zt := e−ρtv(X0
t ,Πt) +

∫ t

0
e−ρsC ′(X0

s )ds, t ≥ 0,

is such that, under P(x,π), for any (x, π) ∈ O, (Zt∧σ⋆)t≥0 is an F-supermartingale, while (Zt∧τ⋆)t≥0

is an F-submartingale. In order to see this, set (using the notation of [36]) Xt := (t,X0
t ,Πt),

M(x, π) := E(x,π)[
∫∞
0 e−ρtC ′(X0

t )dt], G1(t, x, π) := e−ρt(−K+ −M(x, π)), G2(t, x, π) := e−ρt(K− −
M(x, π)), G3(t, x, π) := 0, and observe that

v(x, π) = M(x, π) + sup
τ∈T

inf
σ∈T

E(x,π)

[
G1(τ,X

0
τ ,Πτ )1{τ<σ} +G2(σ,X

0
σ,Πσ)1{σ<τ}

]
.

Here, E(x,π)[supt≥0 e
−ρt|M(X0

t ,Πt)|] < ∞, because (3.1) and standard estimates employing As-

sumption 2.1 yield that |M(x, π)| ≤ κ(1 + |x|p−1).
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Then, we let t > 0, (xo, πo) ∈ S+
1 and notice that, due to the F-supermartingale property of

(Zt∧σ⋆)t≥0 under P(xo,πo) and the fact that v ≥ −K+, we can write

−K+ = v(xo, πo) ≥ E(xo,πo)

[
e−ρ(t∧σ⋆)v(X0

t∧σ⋆ ,Πt∧σ⋆) +

∫ t∧σ⋆

0
e−ρsC ′(X0

s )ds

]
≥ E(xo,πo)

[
−K+e−ρ(t∧σ⋆) +

∫ t∧σ⋆

0
e−ρsC ′(X0

s )ds

]
= −K+ + E(xo,πo)

[ ∫ t∧σ⋆

0
e−ρs

(
C ′(X0

s ) + ρK+
)
ds

]
.

Hence,

0 ≥ E(xo,πo)

[
1

t

∫ t∧σ⋆

0
e−ρs

(
C ′(X0

s ) + ρK+
)
ds

]
,

which, by taking t ↓ 0 and invoking the integral mean-value theorem and the dominated convergence
theorem, yields 0 ≥ C ′(xo) + ρK+; that is, S+

1 ⊆ {(x, π) ∈ O : x ≤ (C ′)−1(−ρK+)}. Analogous
arguments, now employing the F-submartingale property of (Zt∧τ⋆)t≥0 and that v ≤ K−, show that
S−
1 ⊆ {(x, π) ∈ O : x ≥ (C ′)−1(ρK−)}.
In order to show the other bounds, we proceed as follows. Since µ1 > µ0 and Πt ∈ (0, 1), we have

P(x,π)-a.s., for any t ≥ 0, that X0
t ≥ x+ηWt+µ0t =: X0

t and X0
t ≤ x+ηWt+µ1t =: X

0
t . Therefore,

the latter two estimates yield that X0
t ≤ X0

t ≤ X
0
t for all t ≥ 0. Combining these inequalities with

the fact that C ′(·) is nondecreasing due to Assumption 2.1 and the definition (3.2) of the value
function v(x, π), we conclude that

(3.9) v0(x) ≤ v(x, π) ≤ v1(x), for all (x, π) ∈ O,

where we have introduced the one-dimensional optimal stopping games

v0(x) := inf
σ∈T

sup
τ∈T

Ex

[ ∫ τ∧σ

0
e−ρtC ′(X0

t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
v1(x) := inf

σ∈T
sup
τ∈T

Ex

[ ∫ τ∧σ

0
e−ρtC ′(X

0
t )dt−K+e−ρτ1{τ<σ} +K−e−ρσ1{τ>σ}

]
,

with the two expectations Ex being conditional on X0
0 = x or X

0
0 = x, respectively. Because both

v0(·) and v1(·) are nondecreasing on R, standard techniques allow to show that due to Assumption
2.1.(iv) there exists finite x⋆−, x

⋆
+ such that {x ∈ R : x ≥ x⋆−} = {x ∈ R : v0(x) ≥ K−} and

{x ∈ R : x ≤ x⋆+} = {x ∈ R : v1(x) ≤ −K+}. Hence, combining the latter two regions together
with the inequalities in (3.9), we eventually get that

{x ∈ R : x ≥ x⋆−} ⊆ {(x, π) ∈ O : v(x, π) ≥ K−} = S−
1 ,

{x ∈ R : x ≤ x⋆+} ⊆ {(x, π) ∈ O : v(x, π) ≤ −K+} = S+
1 .

(3.10)

Hence, S±
1 ̸= ∅ and the claim follows from (3.10). □

4. A Decoupling Change of Measure

In order to provide further results about the optimal control problem (2.3) and the associated
Dynkin game (3.2), it is convenient to decouple the dynamics of the controlled inventory process
XP and the belief process Π. This can be achieved via a transformation of state space and a change
of measure, as we explain in the following subsections.
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4.1. Transformation of process Π to Φ. We first recall from (2.2) (see also (3.1)), that for any
prior belief Π0 = π ∈ (0, 1), we have Πt ∈ (0, 1) for all t ∈ (0,∞). Hence, we define the process
Φt := Πt/(1−Πt), t ≥ 0, whose dynamics are given via Itô’s formula by

(4.1) dΦt = γΦt(γΠtdt+ dWt), Φ0 = φ := π
1−π .

Note that, the process Φ is known as the “likelihood ratio process” in the literature of filtering
theory (see, e.g. [29]).

4.2. Change of measure from P to QT , for some fixed T > 0. We begin by defining the

exponential martingale ζT := exp{−γ
∫ T
0 ΠsdWs − 1

2

∫ T
0 γ2Π2

sds}, and the measure QT ∼ P on
(Ω,FT ) by dQT /dP = ζT .

Then, the process W ∗
t := Wt + γ

∫ t
0 Πsds, t ∈ [0, T ], is a Brownian motion in [0, T ] under QT ,

and the dynamics of Φ in (4.1) simplifies to dΦt = γΦtdW
∗
t , t ∈ (0, T ], Φ0 = φ, hence Φ is

an exponential martingale under QT . Consequently, applying the same change of measure to the
process XP from (2.2), we obtain dXP

t = µ0dt+ ηdW ∗
t + dP+

t − dP−
t , t ∈ [0, T ], XP

0− = x.
In order to change the measure also in the cost criterion of our value function in (2.3), we further

define the process Zt := (1 + Φt)/(1 + φ), t ∈ [0, T ], which can be verified via Itô’s formula to
satisfy Zt = 1/ζt, for every t ∈ [0, T ]. Hence, denoting by EQT the expectation under QT , we have
that

E

[ ∫ T

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

) ]
=

1

1 + φ
EQT

[
(1 + ΦT )

∫ T

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
.(4.2)

Since the process (1+Φt)t≥0 defines a nonnegative martingale under QT , by an application of Itô’s
formula we can write

EQT

[
(1 + ΦT )

∫ T

0
e−ρtC(XP

t )dt

]
= EQT

[ ∫ T

0
e−ρt(1 + Φt)C(XP

t )dt

]
,

EQT

[
(1 + ΦT )

∫ T

0
e−ρtdP±

t

]
= EQT

[ ∫ T

0
e−ρt(1 + Φt)dP

±
t

]
.

Hence, combining together the above expressions of the expectations EQT we get that (4.2) can be
expressed in the form of

E

[ ∫ T

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
=

1

1 + φ
EQT

[ ∫ T

0
e−ρt(1 + Φt)

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
.(4.3)

4.3. Passing to the limit as T → ∞ and to the new measure Q. We firstly notice that
passing to the limit as T → ∞ cannot be performed directly to the latter expression in (4.3),
since the measure QT changes with T . Nevertheless, noticing that the right-hand side of (4.3) only
depends on the law of the processes involved we can introduce a new auxiliary problem.

To that end, first of all note that any P ∈ A has paths that are right-continuous and (locally)
of bounded variation QT -a.s. and it is FS-adapted since FS = FW = FW ∗

. Then, define a new
complete probability space (Ω,F ,Q) supporting a Brownian motion (W t)t≥0, let (Fo

t )t≥0 be the

raw filtration generated by W , and denote by F := (F t)t≥0 its augmentation with the Q-null sets.
Hence, introducing

A :=
{
P : Ω× R+ → R such that t 7→ P t is right-continuous, (locally) of bounded

variation and P is F− adapted
}
,
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by [13, Lemma 5.5] (adjusted to our setting with right-continuous controls), given P ∈ A there
exists P ∈ A that is Fo

t+−predictable and such that LawQT
(W ∗, P ) = LawQ(W,P ). This in turn

leads to (cf. [13, Corollary 5.6])

(4.4) LawQT
(W ∗, XP ,Φ, P ) = LawQ(W,X

P
,Φ, P ),

where (X
P
,Φ) is the strong solution on (Ω,F ,F,Q) to the controlled stochastic differential equation{

dX
P
t = µ0dt+ ηdW t + dP

+
t − dP

−
t , X

P
0− = x,

dΦt = γΦtdW t, Φ0 = φ := π
1−π ,

with P
±

denoting the nondecreasing processes providing the minimal decomposition of P ∈ A as

P = P
+ − P

−
.

Denoting now by E the expectation on (Ω,F) under Q, we have for every T > 0,

EQT

[ ∫ T

0
e−ρt(1 + Φt)

(
C(XP

t )dt+K+dP+
t +K−dP−

t

) ]
= E

[ ∫ T

0
e−ρt(1 + Φt)

(
C(X

P
t )dt+K+dP

+
t +K−dP

−
t

)]
,

due to (4.4). Therefore, combining the above equality with (4.3), we eventually get

E

[ ∫ T

0
e−ρt

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
=

1

1 + φ
E

[ ∫ T

0
e−ρt(1 + Φt)

(
C(X

P
t )dt+K+dP

+
t +K−dP

−
t

)]
,(4.5)

Thanks to (4.5), we can now take limits as T → ∞ and obtain, in view of the definitions (2.3)
of the control value function and (4.1) of the starting value φ, that

V (x, π) = (1− π)V
(
x, π

1−π

)
, or equivalently V (x, φ) = (1 + φ)V

(
x, φ

1+φ

)
,

where V (x, φ) := inf
P∈A

E

[ ∫ ∞

0
e−ρt(1 + Φt)

(
C(X

P
t )dt+K+dP

+
t +K−dP

−
t

)]
.

(4.6)

Therefore, in order to obtain the value function V (x, π) from (2.3), we could instead solve first the
above problem to get V (x, φ) and then use the equality in (4.6). However, in order to simplify
the notation, from now on in the study of V we will simply write (Ω,F ,F,Q,EQ,W,X,Φ, P,A)
instead of (Ω,F ,F,Q,E,W ,X,Φ, P ,A).

4.4. The optimal control problem with state-space process (XP ,Φ) under the new mea-
sure Q. Summarising the results from Sections 4.1–4.3, we henceforth focus on the study of the
following optimal control problem

V (x, φ) := inf
P∈A

EQ

[ ∫ ∞

0
e−ρt(1 + Φt)

(
C(XP

t )dt+K+dP+
t +K−dP−

t

)]
=: inf

P∈A
J x,φ(P ).

(4.7)

under the dynamics

(4.8)

{
dXP

t = µ0dt+ ηdWt + dP+
t − dP−

t , XP
0− = x ∈ R,

dΦt = γΦtdWt, Φ0 = φ := π
1−π ∈ (0,∞),

for a standard Brownian motion W . In light of the equality in (4.6), this will lead to the original
value function V (x, π) from (2.3). In the remaining of Section 4, we expand our study – beyond
the values of the control problems – to the relationship between the free boundaries in the two
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formulations, since these boundaries will eventually define the optimal control strategy (see Section
6).

4.5. The optimal stopping game associated to (4.7)–(4.8) under the new measure Q. The
next result is concerned with properties of the value function defined in (4.7) and its connection to
an associated optimal stopping game. The first existence claim follows from Proposition 2.3, since
existence of an optimal control is preserved under the change of measure performed in the previous
section. The second claim can be proved by employing arguments similar to those used in the proof
of Proposition 3.1 above. Hence, the proof is omitted for brevity.

Proposition 4.1. Consider the problem defined in (4.7)–(4.8).

(i) There exists an optimal control P ⋆ solving (4.7). Moreover, P ⋆ is unique (up to indistin-
guishability) if C is strictly convex.

(ii) x 7→ V (x, φ) is convex and differentiable, such that V x(x, φ) = v(x, φ) on R× (0,∞), for

v(x, φ) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0
e−ρt(1 + Φt)C

′(X0
t )dt−K+(1 + Φτ )e

−ρτ1{τ<σ}

+K−(1 + Φσ)e
−ρσ1{τ>σ}

]
,(4.9)

over the set of FW -stopping times and state-space process given by

(4.10)

{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dΦt = γΦtdWt, Φ0 = φ := π
1−π ∈ (0,∞).

It further follows from the previous analysis, namely Sections 4.1–4.3, that the value function
v(x, π) of the optimal stopping game in (3.2) is connected to the value function v(x, φ) of the new
game introduced above in (4.9), according to (see also (4.6) for the control value functions) the
following equality

(4.11) v(x, φ) = (1 + φ) v
(
x, φ

1+φ

)
.

In view of the above relationship, the value function v(·, ·) inherits important properties which have
already been proved for v(·, ·) in Section 3. In particular, we have directly from Proposition 3.1.(ii)
and (iv) the following result.

Proposition 4.2. The value function v defined in (4.9) satisfies:

(i) (x, φ) 7→ v(x, φ) is continuous over R× (0,∞);
(ii) x 7→ v(x, φ) is nondecreasing.

Following similar steps as in Section 3 to study the new game (4.9), we define below the so-called
continuation (waiting) region

(4.12) C2 :=
{
(x, φ) ∈ R× (0,∞) : −K+(1 + φ) < v(x, φ) < K−(1 + φ)

}
,

and the stopping region S2 := S2
+ ∪ S2

−, whose components are given by

S+
2 :=

{
(x, φ) ∈ R× (0,∞) : v(x, φ) ≤ −K+(1 + φ)

}
,

S−
2 :=

{
(x, φ) ∈ R× (0,∞) : v(x, φ) ≥ K−(1 + φ)

}
.

(4.13)

Moreover, in light of the continuity of v in Proposition 4.2.(i), we conclude that the continuation
region C2 is an open set, while the two components of the stopping regions S2

± are both closed
sets. We can therefore define the free boundaries

b+(φ) := sup
{
x ∈ R : v(x, φ) ≤ K+(1 + φ)

}
,

b−(φ) := inf{x ∈ R : v(x, φ) ≥ K−(1 + φ)}.
(4.14)
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Then, by using the fact that v is nondecreasing with respect to x (see Proposition 4.2.(ii)), we can
obtain the structure of the continuation and stopping regions, as

C2 =
{
(x, φ) ∈ R× (0,∞) : b+(φ) < x < b−(φ)

}
,

S+
2 =

{
(x, φ)∈R×(0,∞) :x≤ b+(φ)

}
, S−

2 =
{
(x, φ)∈R×(0,∞) : b−(φ)≤x

}
.

(4.15)

Clearly, the continuity of v implies that these free boundaries b± are strictly separated, namely
b+(φ) < b−(φ) for all φ ∈ (0,∞).

Moreover, observe that the relationship in (4.11) together with the definitions (3.4) and (4.12)
of C1 and C2, respectively, imply that the latter two regions are equal under the transformation
from (x, π)- to (x, φ)-coordinates. To be more precise, for any (x, π) ∈ R × (0, 1), define the
transformation T := (T 1, T 2) : R × (0, 1) → R × (0,∞), by (T 1(x, π), T 2(x, π)) = (x, π

1−π ), which

is invertible and its inverse is given by T
−1

(x, φ) = (x, φ
1+φ), for (x, φ) ∈ R × (0,∞). Hence,

T : R× (0, 1) → R× (0,∞) is a global diffeomorphism, which implies together with the expressions
of (3.4)–(3.5) and (4.12)–(4.13) that C2 = T (C1) and S±

2 = T (S±
1 ). Taking this into account together

with the expressions (3.7)–(3.8) of C1 and S±
1 , we can further conclude from the expressions (4.15)

of C2 and S±
2 that

(4.16) b±(φ) = a±
( φ
1+φ

)
.

Hence, in light of the previously proved results for a± in Proposition 3.2, we also obtain the
following preliminary properties of the free boundaries φ 7→ b±(φ).

Proposition 4.3. The free boundaries b± defined in (4.14) satisfy:

(i) b±(·) are nonincreasing on (0,∞).
(ii) b+(·) is left-continuous and b−(·) is right-continuous on (0,∞).
(iii) b±(·) are bounded by x∗± as in Proposition 3.2: x∗+ ≤ b+(φ) < b−(φ) ≤ x∗−, for all φ ∈

(0,∞). Moreover, we have b+(φ) ≤ (C ′)−1(−ρK+) and b−(φ) ≥ (C ′)−1(ρK−) for all
φ ∈ (0,∞).

Notice that the explicit relationship (4.16) between the free boundaries a± and b± that we
proved above, is not only crucial for retrieving the original boundaries a± from b±, but it is also
particularly useful in the proof of Proposition 4.3.(i) and (iii). In fact, proving the monotonicity
and boundedness of b± by directly working on the Dynkin game (4.9) is not a straightforward task.

Up this point, we managed to obtain the structure of the optimal stopping strategies and prelim-
inary properties of the corresponding optimal stopping boundaries associated with these strategies,
for both Dynkin games (3.2) and (4.9) connected to the optimal control problems (2.3) and (4.7),
respectively. Moreover, we managed to obtain some regularity results for the latter control value
functions (see Propositions 3.1, 4.1 and 4.2). In Sections 5 and 6 below, building on the aforemen-
tioned analysis, we show that the control value function V has the sufficient regularity needed to
construct an optimal control strategy. This will involve the boundaries b±.

5. HJB Equation and Regularity of V

In this section, we introduce the Hamilton-Jacobi-Bellman (HJB) equation (variational inequal-
ity) associated to the control value function V defined in (4.7) and state-space process (XP ,Φ)
given by (4.8). First, let D ⊆ R2 be an open domain and define the space Ck,h(D;R) as the space
of functions f : D → R which are k-times continuously differentiable with respect to the first vari-
able and h-times continuously differentiable with respect to the second variable. When k = h we
simply write Ch.

We begin our study with the following ex ante regularity result for V . Its technical proof can be
found in the extended version of this paper [22].
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Proposition 5.1. The control value function V defined in (4.7) is locally semiconcave; that is,
for every R > 0 there exists LR > 0 such that for all λ ∈ [0, 1] and all (x, φ), (x′, φ′) such that
|(x, φ)| ≤ R and |(x′, φ′)| ≤ R, we have

λV (x, φ) + (1− λ)V (x′, φ′)− V (λ(x, φ) + (1− λ)(x′, φ′)) ≤ LRλ(1− λ)|(x, φ)− (x′, φ′)|2.

In particular, by [5, Theorem 2.1.7], we conclude that V is locally Lipschitz.

Given the locally Lipschitz continuity proved in the previous result, we now aim at employing the
HJB equation to investigate further regularity of V . To that end, we define on f ∈ C2(R×(0,∞);R)
the second order differential operator

Lf(x, φ) := µ0fx(x, φ) +
1

2

(
η2fxx(x, φ) + γ2φ2fφφ(x, φ) + 2γηφfxφ(x, φ)

)
.

By the dynamic programming principle, we expect that V solves (in a suitable sense) the HJB
equation (in the form of a variational inequality)

(5.1) max
{
(ρ− L)u(x, φ)− (1 + φ)C(x),−ux(x, φ)−K+(1 + φ), ux(x, φ)−K−(1 + φ)

}
= 0,

for (x, φ) ∈ R × (0,∞). In particular, we now first show that the value function V of the control
problem defined in (4.7) is a viscosity solution to (5.1); refer to [21, Definition 4.5] for the formal
definition in a similar setting and references related to the validity of the dynamic programming
principle. Following the arguments developed in [25, Theorem 5.1, Section VIII.5], and using the a
priori regularity obtained in Proposition 5.1, one can show the following classical result.

Proposition 5.2. The value function V defined in (4.7) is a locally Lipschitz continuous viscosity
solution to (5.1).

Recall definition (4.12) of the continuation region C2 of v(x, φ) in (4.9) and the relationship
V x(x, φ) = v(x, φ) on R× (0,∞) from Proposition 4.1.(ii), to see that

(5.2) C2 =
{
(x, φ) ∈ R× (0,∞) : −K+(1 + φ) < V x(x, φ) < K−(1 + φ)

}
.

This implies that C2 identifies also with the so-called “inaction region” of V , as suggested also by
the HJB equation (5.1). Combining the latter fact with Proposition 5.2 clearly implies the following
result.

Corollary 5.3. The value function V defined in (4.7) is a locally Lipschitz continuous viscosity
solution to (ρ− L)u(x, φ)− (1 + φ)C(x) = 0, for all (x, φ) ∈ C2.

The result in Corollary 5.3 will be used in the forthcoming analysis to upgrade the regularity
of the value function in the closure of its inaction region which is the main goal of Section 5.
Before reaching this (final) step of our analysis in this section, we prove that V is actually globally
continuously differentiable.

Proposition 5.4. The value function in (4.7) satisfies V ∈ C1(R× (0,∞);R).

Proof. In order to prove that V ∈ C1(R × (0,∞);R), we need to prove that both (classical)
derivatives V x(x, φ), V φ(x, φ) of V (x, φ) in the directions x and φ, respectively, are continuous
on R× (0,∞). We thus split the proof in two steps.

Step 1. Continuity of V x. We already know from Proposition 4.1.(ii) that V x = v exists and
from Proposition 4.2.(i) that (x, φ) 7→ v(x, φ) is continuous over R × (0,∞). Hence, we conclude
that (x, φ) 7→ V x(x, φ) is continuous on R× (0,∞).

Step 2. Continuity of V φ. Let us now show that the (classical) derivative V φ exists at each
(xo, φo) ∈ R× (0,∞).
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We assume, without loss of generality2, that V is actually concave in a neighborhood I of (xo, φo).
Then, by concavity of V in I, the right- and left-derivatives of V exist in the φ-direction at (xo, φo).

We denote these derivatives by V
+
φ (xo, φo) and V

−
φ (xo, φo), respectively, and due to concavity they

satisfy V
−
φ (xo, φo) ≥ V

+
φ (xo, φo). Then, in order to show that V φ exists, it suffices to show that

the strict inequality V
−
φ (xo, φo) > V

+
φ (xo, φo) cannot hold. Aiming for a contradiction, we assume

henceforth that V
−
φ (xo, φo) > V

+
φ (xo, φo) does hold true.

It follows from [37, Theorem 23.4] and the fact that V x exists and is continuous (cf. Step 1 above)
that there exist vectors

ζ := (V x(xo, φo), ζφ), η := (V x(xo, φo), ηφ) ∈ D+V (xo, φo) such that ζφ < ηφ ,

where we denote by D+V (xo, φo) the superdifferential of V at (xo, φo). For any (x, φ) ∈ I, we then
define

g(x, φ) := V (xo, φo) + V x(xo, φo)(x− xo) + ηφ(φ− φo) ∧ ζφ(φ− φo)

and notice that V (xo, φo) = g(xo, φo), while we also get by concavity that V (x, φ) ≤ g(x, φ), for
all (x, φ) ∈ I. Next, we consider the sequence of functions (fn)n∈N ⊂ C2(R× (0,∞);R) defined by

fn(x, φ) := g(x, φo) +
1
2(ηφ + ζφ)(φ− φo)− n

2 (φ− φo)
2, ∀ n ∈ N.

Such a sequence satisfies the following collection of properties, for any n ∈ N:
fn(xo, φo) = g(xo, φo) = V (xo, φo),

fn ≥ V in a neighborhood of (xo, φo),

fn
x (xo, φo) = V x(xo, φo), fn

xx(xo, φo) = 0 = fn
xφ(xo, φo), fn

φφ(xo, φo) = −n.

Then, using the viscosity subsolution property of V at (xo, φo) yields

0 ≥ (ρ− L)fn(xo, φo)− (1 + φo)C(xo)
n→∞−→ +∞,

which gives the desired contradiction. Hence, by arbitrariness of (xo, φo), we have that V is differ-
entiable in the direction φ.

In view of the aforementioned differentiability in the direction φ and the semiconcavity of V (cf.
Proposition 5.1) we conclude from [37, Theorem 25.5] that V φ is continuous on R× (0,∞). □

We are now ready to show the final result of this section, namely to upgrade the regularity of
the control value function to the minimal required regularity for constructing a candidate optimal
control policy and verify its optimality in Section 6.

To this end, we define for any (x, φ) ∈ R× (0,∞) the transformation

(5.3) T := (T1, T2) : R× (0,∞) → R2, (T1(x, φ), T2(x, φ)) =
(
x, x− η

γ log(φ)
)
,

which is invertible with inverse given by T−1(x, y) = (x, e
γ
η
(x−y)

), for (x, y) ∈ R2. Using the latter

inverse transformation, we introduce the transformed version V̂ (x, y) of the value function V (x, φ)
defined in (4.7) by

(5.4) V̂ (x, y) := V (x, e
γ
η
(x−y)

), (x, y) ∈ R2.

Moreover, direct calculations yield that

(5.5) V̂x(x, y) + V̂y(x, y) = V x(x, e
γ
η
(x−y)

), (x, y) ∈ R2.

2This can be done by replacing the (locally) semiconcave V (x, φ) by W (x, φ) := V (x, φ)− C0|(x− xo, φ− φo)|2 for
suitable C0 > 0 in the subsequent argument.
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Given that T : R× (0,∞) → R2 is a global diffeomorphism, we have from (5.2) and (5.5) that the
open set

(5.6) C3 :=
{
(x, y)∈R2 :−K+(1 + e

γ
η
(x−y)

)<
(
V̂x + V̂y

)
(x, y)<K−(1 + e

γ
η
(x−y)

)
}
=T (C2).

Finally, define the second-order linear differential operator on f ∈ C2,1(R2;R) by

(5.7) LX,Y f(x, y) :=
1
2η

2fxx(x, y) + µ0fx(x, y) +
1
2(µ0 + µ1)fy(x, y)

Proposition 5.5. The transformed value function V̂ defined in (5.4) is such that V̂ ∈ C1(R2;R)
and V̂xx ∈ L∞(C3;R). In addition, V̂ is a classical solution to

(5.8)
(
ρ− LX,Y

)
u(x, y) = C(x)(1 + e

γ
η
(x−y)

), for all (x, y) ∈ C3.

Proof. First of all, due to Corollary 5.3 and the expression of the transformed value function in

(5.4), one can easily verify that V̂ is a viscosity solution to (5.8) on C3 due to (5.6). Then, in light

of Proposition 5.4 and the above smooth transformation, we also obtain that V̂ ∈ C1(R2;R).
By a standard localization argument based on the fact that V̂ is a continuously differentiable

viscosity solution to (5.8) on C3 and results for Dirichlet boundary problems involving partial

differential equations of parabolic type (see [33]), we have that actually V̂ ∈ C2,1(C3;R) and solves
(5.8) on C3 in a classical sense. Hence,

1
2η

2V̂xx(x, y) = −C(x)(1 + e
γ
η
(x−y)

) + ρV̂ (x, y)− µ0V̂x(x, y)− 1
2(µ0 + µ1)V̂y(x, y),

for all (x, y) ∈ C3. However, since we know that V̂ ∈ C1(R2;R) and the right-hand side of the

above equation only involves continuous functions on R2, we conclude that V̂xx admits a continuous

extension on C3 (where C3 denotes the closure of C3), so that V̂xx ∈ L∞(C3;R). This completes the
proof of the claim. □

6. Verification Theorem and Optimal Control

Given the regularity of V̂ obtained in Proposition 5.5 and the relation (5.4) between V̂ and
V defined in (4.7), we are now able to prove a verification theorem. Namely, in what follows,
we provide the optimal control for V in terms of the boundaries b± defined in (4.14). Before we
commence the analysis, recall also the properties of b± proved in Proposition 4.3.

6.1. Construction of control P̂ for state-space process (X P̂ ,Φ). For any given (x, φ) ∈
R× (0,∞), we define the admissible control strategy P̂ := P̂+ − P̂− such that the following couple
of properties hold true Q-a.s:

(6.1)


b+(Φt) ≤ X P̂

t ≤ b−(Φt), for almost all t ≥ 0;

P̂+
t =

∫
[0,t]
1{XP̂

s−≤b+(Φs)}
dP̂+

s , P̂−
t =

∫
[0,t]
1{XP̂

s−≥b−(Φs)}
dP̂−

s , ∀t ≥ 0;∫ ∆P̂+
t

0
1{(XP̂

t−+z,Φt)∈C2}
dz +

∫ ∆P̂−
t

0
1{(XP̂

t−−z,Φt)∈C2}
dz = 0, ∀t ≥ 0,

where ∆P̂±
t := P̂±

t − P̂±
t−.

In practice, according to the aforementioned strategy, a lump-sum increase or decrease of the
inventory processX may be required, whenever the inventory levelXt− happens to be either strictly
below the boundary b+(Φt) or above b−(Φt), respectively. The purpose of these jumps of at most

one of the controls P̂±
t at each such t ≥ 0, of size either (b+(Φt) −X P̂

t−)
+ or (X P̂

t− − b−(Φt))
+, is

to bring immediately the inventory level Xt inside the interval [b+(Φt), b−(Φt)]. Mathematically,

these are the actions caused at any time t ≥ 0, by the jump parts ∆P̂±
t of the controls P̂±. The

strategy further prescribes taking action (increase or decrease the inventory) when the inventory
process Xt approaches, at any time t ≥ 0, either boundary b+(Φt) from above or b−(Φt) from
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below. The purpose of these actions now is to make sure (with a minimal effort) that the inventory
level Xt is kept inside the interval [b+(Φt), b−(Φt)]. Mathematically, these actions are caused by

the continuous parts of the respective controls P̂± and are the so-called Skorokhod reflection-type
policies.

The nonincreasing property of b±(·) (see Proposition 4.3.(i)) further implies that, the stronger
the decision makers’ belief is about a high average inventory level µ (i.e. higher φ, cf. (4.1)), they
tend to unload part of excess inventory more often so that inventory is kept below the optimal level
b−(φ), and delay placing replenishment orders by setting a lower optimal base-stock level b+(φ).

In multi-dimensional settings, the construction of a solution to a Skorokhod reflection problems
is usually a delicate task, that is intimately related to the regularity of the reflection boundary (see
[17] and [32] for a discussion and literature review). In our case, given that the dynamics of XP

and Φ are decoupled and that XP = X0 + P (cf. (4.8)), the solution triplet (X P̂
t ,Φt, P̂t)t≥0 to the

Skorokhod reflection problem at the boundaries b± can be constructed by adapting the iterative
procedure developed in [21, Section 4.3]. In particular, with reference to the notation adopted in
[21], we define τ+0 := inf{t ≥ 0 : x < b+(Φt)−µ0t−ηWt}, τ−0 := inf{t ≥ 0 : x > b−(Φt)−µ0t−ηWt}
and τ0 := τ+0 ∧ τ−0 . Notice that, because inft≥0

(
b−(Φt) − b+(Φt)

)
> 0 by Proposition 4.3.(iii), we

have {τ+0 = τ−0 } = {τ0 = ∞}. Then, we set Ω∞ := {τ0 = ∞}, Ω+ := {τ+0 < τ−0 }, Ω− := {τ−0 < τ+0 }
and C0

t := x, for all t ≥ 0, and recursively introduce:

If k ≥ 1 is odd, Ck
t :=


x, on Ω∞,

x+maxs∈[τk−1,t]

(
b+(Φs)− µ0s− ηWs − x)+, on Ω+,

x+mins∈[τk−1,t]

(
b−(Φs)− µ0s− ηWs − x)−, on Ω−,

with τk :=


∞, on Ω∞,

inf{t ≥ τk−1 : C
k
t > b−(Φt)− µ0t− ηWt}, on Ω+,

inf{t ≥ τk−1 : C
k
t < b+(Φt)− µ0t− ηWt}, on Ω−.

If k ≥ 2 is even, Ck
t :=


x, on Ω∞,

x+maxs∈[τk−1,t]

(
b+(Φs)− µ0s− ηWs − x)+, on Ω−,

x+mins∈[τk−1,t]

(
b−(Φs)− µ0s− ηWs − x)−, on Ω+,

with τk :=


∞, on Ω∞,

inf{t ≥ τk−1 : C
k
t > b−(Φt)− µ0t− ηWt}, on Ω−,

inf{t ≥ τk−1 : C
k
t < b+(Φt)− µ0t− ηWt}, on Ω+.

In light of these definitions, one can then proceed as in [21, Section 4.3] in order to conclude the
existence of a solution to the reflection problem (6.1).

It then follows from (6.1) above together with the definitions (4.14) of boundaries b±, the region
C2 from (4.15) and the fact that v = V x from Proposition 4.1.(ii), that the nondecreasing processes

P̂± are such that the state-space process (X P̂ ,Φ) and the induced (random) measures dP̂± on R+

satisfy:

(6.2)


(X P̂

t ,Φt) ∈ C2, for Q⊗ dt-a.e., with C2 as in (4.15);

dP̂+ has support on
{
t ≥ 0 : V x(X

P̂
t ,Φt) ≤ −K+(1 + Φt)

}
;

dP̂− has support on
{
t ≥ 0 : V x(X

P̂
t ,Φt) ≥ K−(1 + Φt)

}
.

6.2. Transformation of controlled process (X P̂ ,Φ) to (X P̂ , Y P̂ ). We now use the transfor-
mation (5.3) from (x, φ)- to (x, y)-coordinates, in order to define the controlled process

(6.3) Y P̂
t := X P̂

t − η
γ log(Φt), t ≥ 0.
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Recalling the transformed value function (5.4) and the relation in (5.5), we have

V̂ (X P̂
t , Y P̂

t ) := V
(
X P̂

t , e
γ
η
(XP̂

t −Y P̂
t ))

, (V̂x + V̂y)(X
P̂
t , Y P̂

t ) = V x

(
X P̂

t , e
γ
η
(XP̂

t −Y P̂
t ))

,

under the dynamics

(6.4)

{
dX P̂

t = µ0dt+ ηdWt + dP̂+
t − dP̂−

t , X P̂
0− = x ∈ R,

dY P̂
t = 1

2(µ0 + µ1)dt+ dP̂+
t − dP̂−

t , Y P̂
0− = y := x− η

γ log(φ) ∈ R.

Hence, we can express the control P̂ defined in Section 6.1 in terms of the state-space process

(X P̂ , Y P̂ ) via

(6.5)


(X P̂

t , Y P̂
t ) ∈ C3, for Q⊗ dt-a.e., where C3 is defined in (5.6);

dP̂+ has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y P̂
t ) ≤ −K+

(
1 + e

γ
η
(XP̂

t −Y P̂
t ))}

;

dP̂− has support on
{
t ≥ 0 :

(
V̂x + V̂y

)
(X P̂

t , Y P̂
t ) ≥ K−(1 + e

γ
η
(XP̂

t −Y P̂
t )

)
)}

.

6.3. Optimality of control P̂ . In this section we prove the optimality of the control P̂ defined

through (6.1), which is equivalently expressed by (6.2) in terms of the state-space process (X P̂ ,Φ)

and by (6.5) in terms of the state-space process (X P̂ , Y P̂ ), see Sections 6.1–6.2.

Theorem 6.1 (Verification Theorem). The admissible control P̂ ∈ A defined through (6.1) (see

also (6.2) and (6.5)) is optimal for Problem (4.7). Actually, P̂ is the unique optimal control (up to
indistinguishability) if C is strictly convex.

Proof. Let (X P̂
0−, Y

P̂
0−) = (x, y) ≡ (x, x− η log(φ)/γ) ∈ C3 be given and fixed. Define τn := inf{t ≥

0 : |(X P̂
t , Y P̂

t )| > n} ∧ n, for n ∈ N, with state-space process (X P̂ , Y P̂ ) as in (6.4), and recall that

(X P̂
t , Y P̂

t ) ∈ C3, Q-a.s. for all t ≥ 0. In particular, Lemma A.1 in Appendix A yields that for any

t ≥ 0, Q
(
(X P̂

t ,Φt) ∈ C2
)
= 1, and therefore Q

(
(X P̂

t , Y P̂
t ) ∈ C3

)
= 1. Then, given the regularity of

V̂ (cf. Proposition 5.5), we can employ the approximation argument via mollifiers developed in the
proof of [25, Theorem 4.1, Chapter VIII], in order to conclude that

V̂ (x, y) = EQ

[
e−ρτn V̂ (X P̂

τn , Y
P̂
τn)

]
− EQ

[ ∫ τn

0
e−ρs

(
LX,Y − ρ

)
V̂ (X P̂

s , Y P̂
s )ds

]
− EQ

[ ∫ τn

0
e−ρs

(
V̂x + V̂y

)
(X P̂

s , Y P̂
s )dP̂ c

s −
∑

0≤s≤τn

e−ρs
(
V̂ (X P̂

s , Y P̂
s )− V̂ (X P̂

s−, Y
P̂
s−)

)]
,

where P̂ c denotes the continuous part of P̂ and the final sum is non-zero only for (at most countably

many) times s such that ∆P̂s := P̂s − P̂s− ̸= 0. Clearly, ∆P̂s = ∆P̂+
s − ∆P̂−

s , where ∆P̂±
s :=

P̂±
s − P̂±

s− and notice that

∑
0≤s≤τn

e−ρs

{(
V̂ (X P̂

s , Y P̂
s )− V̂ (X P̂

s−,Y
P̂
s−)

)
−

∫ ∆P̂+
s

0

(
V̂x + V̂y

)
(X P̂

s− + u, Y P̂
s− + u)du

+
∫ ∆P̂−

s

0

(
V̂x + V̂y

)
(X P̂

s− − u, Y P̂
s− − u)du

}
= 0.
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Hence, plugging the last formula into the penultimate one and using (5.8), the nonnegativity of V̂ ,

the second and third property of control P̂ in (6.5), we see that

V̂ (x, y) ≥ EQ

[ ∫ τn

0
e−ρs

(
1 + e

γ
η
(XP̂

s −Y P̂
s ))

C(X P̂
s )ds

]
+ EQ

[ ∫ τn

0
e−ρsK+

(
1 + e

γ
η
(XP̂

s −Y P̂
s ))

dP̂+
s +

∫ τn

0
e−ρsK−(1 + e

γ
η
(XP̂

s −Y P̂
s ))

dP̂−
s

]
.

Then, we take limits as n ↑ ∞ and we invoke Fatou’s lemma (given the nonnegativity of all the
integrands above) to find that

V̂ (x, y) ≥ EQ

[ ∫ ∞

0
e−ρs

(
1 + e

γ
η
(XP̂

s −Y P̂
s ))

C(X P̂
s )ds

]
+ EQ

[ ∫ ∞

0
e−ρsK+

(
1 + e

γ
η
(XP̂

s −Y P̂
s ))

dP̂+
s +

∫ ∞

0
e−ρsK−(1 + e

γ
η
(XP̂

s −Y P̂
s ))

dP̂−
s

]
.

Given now that X P̂ −Y P̂ = η log(Φ)/γ by definition (6.3), and that (5.4) yields V̂ (x, y) = V̂ (x, x−
η log(φ)/γ) = V (x, φ), we further conclude from the latter inequality that for any (x, φ) ∈ C2 (as
we assumed (x, y) ≡ (x, x− η log(φ)/γ) ∈ C3)

(6.6) V (x, φ) ≥ EQ

[ ∫ ∞

0
e−ρs

(
1 + Φs

)
C(X P̂

s )ds+

∫ ∞

0
e−ρs

(
1 + Φs

)(
K+dP̂+

s +K−dP̂−
s

)]
.

Combining this inequality with definition (4.7), i.e. V (x, φ) ≤ J x,φ(P̂ ), we prove that P̂ is an

optimal control, for any (x, φ) ∈ C2.
Suppose now that (x, φ) is such that x < b+(φ), so that (x, φ) ∈ S+

2 . Then, according to (6.1)
(see also (6.2)), and using (6.6), we have that

J x,φ(P̂ ) = K+(1 + φ)
(
b+(φ)− x) + J b+(φ),φ(P̂ )

≤ V (b+(φ), φ)−
∫ b+(φ)

x
V x(z, φ) = V (x, φ).

Proceeding similarly also for (x, φ) such that x > b−(φ), we conclude that P̂ is indeed optimal for
any (x, φ) ∈ R2. □

7. Refined Regularity of the Free Boundaries and their Characterization

In this section we will obtain substantial regularity of the value v(x, φ) of the Dynkin game (4.9),
as well as an analytical characterisation of its corresponding free boundaries b±, and consequently

the optimal control rule P̂ (see Theorem 6.1).

7.1. Parabolic formulation and Lipschitz continuity of the free boundaries. In view of a
further change of variables, in line with (6.3), we define Y 0

t := X0
t −

η
γ log(Φt), t ≥ 0, with X0 as in

(4.10). Then, by Itô’s formula, we have

(7.1)

{
dX0

t = µ0dt+ ηdWt, X0
0 = x ∈ R,

dY 0
t = 1

2(µ0 + µ1)dt, Y 0
0 = y := x− η

γ log(φ) ∈ R,

and (4.9) rewrites in terms of the new coordinates (x, y) = (X0
0 , Y

0
0 ) as

v̂(x, y) := inf
σ

sup
τ

EQ

[ ∫ τ∧σ

0
e−ρt

(
1 + e

γ
η
(X0

t −Yt)
)
C ′(X0

t )dt− e−ρτ
(
1 + e

γ
η
(X0

τ−Yτ )
)
×

K+1{τ<σ} + e−ρσ
(
1 + e

γ
η
(X0

σ−Yσ)
)
K−1{τ>σ}

]
= v

(
x, e

γ
η
(x−y)

)
(7.2)
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for (x, y) ∈ R2. In view of the relationship in (7.2), the value function v̂(·, ·) inherits important prop-
erties which have already been proved for v(·, ·). To be more precise, we first conclude immediately
from Proposition 4.2.(i) the following result.

Proposition 7.1. The value function (x, y) 7→ v̂(x, y) defined in (7.2) is continuous over R2.

Moreover, since v(x, exp{γ(x−y)/η}) = V x(x, exp{γ(x−y)/η}) by Proposition 4.1.(ii), it follows

from (5.5) that v̂(x, y) = V̂x(x, y) + V̂y(x, y) for all (x, y) ∈ R2, and consequently the open set C3
defined in (5.6) takes the form

C3 =
{
(x, y) ∈ R2 : −K+

(
1 + e

γ
η
(x−y))

< v̂(x, y) < K−(1 + e
γ
η
(x−y))}

= T (C2).(7.3)

Hence, by also defining the closed sets

S+
3 :=

{
(x, y) ∈ R2 : v̂(x, y) ≤ −K+

(
1 + e

γ
η
(x−y))}

,

S−
3 :=

{
(x, y) ∈ R2 : v̂(x, y) ≥ K−(1 + e

γ
η
(x−y))}

,
(7.4)

the global diffeomorphism T from (5.3) implies that S±
3 = T (S±

2 ) as well, where C2 and S±
2 are the

continuation and stopping regions (4.12)–(4.13) for the Dynkin game v in (4.9). Combining these
relationships with the structure of the latter regions in (4.15) yields that C3 and S3

± are connected.
In order to obtain the explicit structure of the regions C3 and S3

±, we now define the generalised
inverses of the nonincreasing b± (cf. Proposition 4.3) by

(7.5) b−1
+ (x) := sup{φ∈ (0,∞) : b+(φ)≥x}, b−1

− (x) := inf{φ∈ (0,∞) : b−(φ)≤x}.
Since the map φ 7→ T2(x, φ) in (5.3) is decreasing for any given x ∈ R (cf. the functions b± are
nonincreasing due to Proposition 4.3.(i)), we have

(x, y) ∈ C3 ⇔
(
x, e

γ
η
(x−y)) ∈ C2 ⇔ x− η

γ log(b−1
− (x)) < y < x− η

γ log(b−1
+ (x)),

while similar relations hold true for the characterisation of S±
3 . Then, by defining

(7.6) c−1
± (x) := x− η

γ log(b−1
± (x)),

we can obtain the structure of the continuation and stopping regions of v̂, as

C3 = {(x, y) ∈ R2 : c−1
− (x) < y < c−1

+ (x)},
S+
3 = {(x, y) ∈ R2 : y ≥ c−1

+ (x)} and S−
3 = {(x, y) ∈ R2 : y ≤ c−1

− (x)}.
(7.7)

The next lemma can be proved thanks to (7.5), (7.6) and Proposition 4.3.

Lemma 7.2. The functions c−1
± (·) defined in (7.6) are strictly increasing, while c−1

+ (·) is left-

continuous and c−1
− (·) is right-continuous on R.

In light of Lemma 7.2, for y ∈ R, we may define the functions

(7.8) c+(y) := inf{x ∈ R : y ≤ c−1
+ (x)} and c−(y) := sup{x ∈ R : y ≥ c−1

− (x)}.
In the following result, we prove that y 7→ c±(y) identify with the optimal free boundaries of
the Dynkin game v̂ in (7.2) and provide some important properties such as their global Lipschitz
continuity.

Proposition 7.3. The free boundaries c± defined in (7.8). Then,

(i) c±(·) are nondecreasing on R and we have x∗+ ≤ c+(y) < c−(y) ≤ x∗− for all y ∈ R (with
x∗± as in Proposition 3.2). Moreover, c+(y) ≤ (C ′)−1(−ρK+) and c−(y) ≥ (C ′)−1(ρK−)
for all y ∈ R;

(ii) c±(·) are Lipschitz-continuous on R with Lipschitz constant L = 1, namely 0 ≤ c±(y) −
c±(y

′) ≤ y − y′, for all y ≥ y′.



20 FEDERICO, FERRARI, AND RODOSTHENOUS

(iii) The structure of the continuation and stopping regions for (7.2) take the form

C3 = {(x, y) ∈ R2 : c+(y) < x < c−(y)},
S+
3 = {(x, y) ∈ R2 : x ≤ c+(y)} and S−

3 = {(x, y) ∈ R2 : x ≥ c−(y)}.

Proof. Proof of (i). The first part of the claim follows from Lemma 7.2, together with the definition
(7.8) of c±. The second and third parts of the claim are due to the fact that T1 as in (5.3) is the
identity.

Proof of (ii). Using the definitions (7.6) of c−1
± and the monotonicity of b−1

± (see proof of Lemma
7.2) we get

(7.9) c−1
± (x)− c−1

± (x′) = x− η
γ log(b−1

± (x))− x′ + η
γ log(b−1

± (x′)) ≥ x− x′, ∀ x ≥ x′.

Combining this with definitions (7.8) and part (i), we obtain the desired claim.
Proof of (iii). This is again due to the definitions (7.8) of c±, their monotonicity from part (i)

and the expressions of the sets in (7.7). □

7.2. Global C1-regularity of v̂. For any (x, y) ∈ R2 given and fixed, we consider the strong

solution to the dynamics in (7.1), denoted by X0,x
t = x + µ0t + ηWt and Y 0,y

t = y + 1
2(µ1 + µ0)t,

t ≥ 0 and we define

(7.10) τ⋆(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t )∈S+
3 }, σ⋆(x, y) := inf{t ≥ 0 : (X0,x

t , Y 0,y
t )∈S−

3 }.

Notice that, in light of the one-to-one and onto transformations T and T , the pair (τ⋆(x, y), σ⋆(x, y))
realises a saddle point for the Dynkin game with value v̂(x, y) in (7.2) if and only if, by setting

π := e
γ
η
(x−y)

/(1 + e
γ
η
(x−y)

), the stopping times τ̃(x, π) := inf{t ≥ 0 : (X0,x
t ,Ππ

t ) ∈ S+
1 } and

σ̃(x, π) := inf{t ≥ 0 : (X0,x
t ,Ππ

t ) ∈ S−
1 } form a saddle point for the game with value v(x, π) in

(3.2). In order to prove the latter claim, one can apply [36, Theorem 2.1] (see also [18, Theorem
2.1]) by proceeding as in the proof of item (iii) in the proof of Proposition 3.2.

In the sequel, we aim at deriving the global C1-regularity of v̂(·, ·). In order to accomplish that,
we need the following result about the regularity (in the probabilistic sense) of (τ⋆, σ⋆).

Lemma 7.4. Suppose that (xn, yn)n∈N∗ ⊂ C3 is such that (xn, yn) → (xo, yo), where yo ∈ R and
xo := c+(yo) (resp., xo := c−(yo)), then τ⋆(xn, yn) → 0 (resp., σ⋆(xn, yn) → 0), Q-a.s..

Proof. We prove the claim for τ⋆(xn, yn), since the proof for σ⋆(xn, yn) can be performed analo-
gously. Fix ω ∈ Ω and assume (aiming for a contradiction) that lim supn→∞ τ⋆(xn, yn)(ω) =: δ > 0.

Namely, there exists a subsequence, still labelled by (xn, yn), such that X0,xn
t (ω) > c+(Y

0,yn
t ), for

all n ∈ N∗ and t ∈ [0, δ/2], that is,

(7.11) xn + µ0t+ ηWt(ω) > c+
(
yn + 1

2(µ1 + µ0)t
)

∀ n ∈ N∗, ∀ t ∈ [0, δ/2].

Hence, taking the limit as n → ∞ and considering that c+ is continuous (see Proposition 7.3.(ii)),
ηWt(ω) ≥ c+(yo +

1
2(µ1 + µ0)t) − xo − µ0t, for all t ∈ [0, δ/2]. Using now the Lipschitz continuity

of c+ (see again Proposition 7.3.(ii)), we further obtain ∀ n ∈ N∗ and ∀ t ∈ [0, δ/2] that

ηWt(ω) ≥ c+(yo)− 1
2(µ1 + µ0)

−t− xo − µ0t = −1
2

(
(µ1 + µ0)

− + µ0

)
t.(7.12)

However, by the law of iterated logarithm, we have that (7.12) can only happen for ω belonging to
a Q-null set and the proof is complete. □

Remark 7.5. From the previous proof one can easily observe that, by replacing the strict inequality
with the large one in (7.11), we can actually prove that τ̌⋆(xn, yn) → 0 and σ̌⋆(xn, yn) → 0, Q-a.s.,
where

τ̌⋆(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ Int(S+
3 )},(7.13)

σ̌⋆(x, y) := inf{t ≥ 0 : (X0,x
t , Y 0,y

t ) ∈ Int(S−
3 )}.(7.14)
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We now show that the value function v̂(x, y) of the Dynkin game (7.2) is smooth across the
topological boundary ∂C3 of the continuation region C3 from (7.3) in both directions x and y. The
proof borrows ideas from [11] and exploits the probabilistic expressions of the derivatives of v̂,
Lemma 7.4 and Remark 7.5. Full details can be found in the extended version of this paper [22].

Proposition 7.6 (Smooth-fit). Let yo ∈ R and set xo := c±(yo). Then the value function v̂ defined
in (7.2) satisfies

lim
(x,y)→(xo,yo)

(x,y)∈C3

v̂x(x, y) = ∓γ

η
K±e

γ
η
(xo−yo), lim

(x,y)→(xo,yo)

(x,y)∈C3

v̂y(x, y) = ±γ

η
K±e

γ
η
(xo−yo).

We are now ready to derive the global C1-regularity of v̂ as well as the local boundedness of its
second derivative in x.

Proposition 7.7. The value function v̂ defined in (7.2) satisfies v̂ ∈ C1(R2;R) and v̂xx ∈ L∞
loc(R2;R).

Proof. By standard arguments based on the strong Markov property and Dirichlet boundary prob-
lems involving second-order partial differential equations of parabolic type, one can show that v̂ in

(7.2) is a classical C2,1-solution to (ρ − LX,Y )u(x, y) −
(
1 + e

γ
η
(x−y))

C ′(x) = 0, for all (x, y) ∈ C3,
where LX,Y is the second-order differential operator defined in (5.7) and C3 is given by (7.3) (see

also Proposition 7.3.(iii)). Also, v̂ ∈ C∞ in the interior of S±
3 . Hence, by Proposition 7.6 we have

that v̂ ∈ C1(R2;R).
Arguing now as in the proof of Proposition 5.5, we have that v̂xx admits a continuous extension to

C3, and is therefore bounded therein. Hence, for y ∈ R, we have that v̂x(·, y) is Lipschitz continuous
on [c+(y), c−(y)], with Lipschitz constant K(y) which is locally bounded on R. Combining this with
the fact that v̂x(·, y) is infinitely many times continuously differentiable in S±

3 , thus locally bounded
therein, we conclude that v̂xx ∈ L∞

loc(R2;R). □

7.3. Integral equations for the free boundaries. By Proposition 7.7, and by using standard
arguments based on the strong Markov property (cf. [18] and [36]), we have that the value function
v̂ defined in (7.2) and the free boundaries c± satisfy

(
LX,Y − ρ

)
v̂(x, y) = −(1 + e

γ
η
(x−y)

)C ′(x), c+(y) < x < c−(y), y ∈ R(
LX,Y − ρ

)
v̂(x, y) = ρK+(1 + e

γ
η
(x−y)

), x < c+(y), y ∈ R(
LX,Y − ρ

)
v̂(x, y) = −ρK−(1 + e

γ
η
(x−y)

), x > c−(y), y ∈ R

−K+(1 + e
γ
η
(x−y)

) ≤ v̂(x, y) ≤ K+(1 + e
γ
η
(x−y)

), (x, y) ∈ R2

We recall that LX,Y is the second-order differential operator defined in (5.7), v̂ ∈ C1(R2;R),
v̂xx ∈ L∞

loc(R2;R) and v̂ ∈ C2,1 inside C3 (cf. Propositions 7.3.(iii) and 7.7). Hence, via the above
results and a suitable application of (a week version of) Itô’s lemma (see, e.g., [2, Lemma 8.1,
Theorem 8.5] and [3, Theorem 2.1]), we firstly obtain an integral representation of v̂; since this
result is nowadays somehow classical, we omit details.

Proposition 7.8. Consider the free boundaries c± defined in (7.8) and (X0, Y 0) from (7.1). Then,
for any (x, y) ∈ R2, the value function v̂ of (7.2) can be written as

v̂(x, y) = EQ
(x,y)

[ ∫ ∞

0
e−ρs

(
1 + e

γ
η
(X0

s−Y 0
s ))

C ′(X0
s )1{c+(Y 0

s )<X0
s<c−(Y 0

s )}ds

]
+ EQ

(x,y)

[ ∫ ∞

0
e−ρsρ

(
1 + e

γ
η
(X0

s−Y 0
s ))(

K−1{X0
s≥c−(Y 0

s )} −K+1{X0
s≤c+(Y 0

s )}
)
ds

]
,

where EQ
(x,y) is the expectation under Q(x,y) such that (X0, Y 0) starts at (x, y) ∈ R2.
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The previous representation of v̂ allows us to determine a system of integral equations for c±
(see (7.8) for their definition and Proposition 7.3 for their properties), which is the main aim of
this section. To this end, denote by G(z;m, ν) the density function of a Gaussian random variable
with mean m and variance ν2.

Proposition 7.9. Let q(x, y) := 1 + e
γ
η
(x−y)

. The free boundaries c± defined in (7.8) solve the
system of integral equations

∓K±q(c±(y), y) =

∫ ∞

0
e−ρs

(∫
R
q(z, Y 0

s )

{
C ′(z)1{c+(Y 0

s )<z<c−(Y 0
s )}

+K−1{z≥c−(Y 0
s )} −K+1{z≤c+(Y 0

s )}

}
G(z; c±(y) + µ0s, η

2s)dz

)
ds.

Moreover, (c+, c−) is the unique solution pair belonging to the set D+ ×D−, where

D+:=
{
g : R → R : g is continuous, nondecreasing, s.t. x∗+ ≤ g(y) ≤ (C ′)−1(−ρK+)

}
D−:=

{
g : R → R : g is continuous, nondecreasing, s.t. (C ′)−1(ρK−) ≤ g(y) ≤ x∗−

}
.

Proof. The integral equations follow by taking x = c±(y) in Proposition 7.8, employing the value
function’s continuity (i.e. v̂(c±(y), y) = ∓K±(1 + exp{γ(c±(y) − y)/η}

)
, for any y ∈ R), and

finally noticing that Y 0 is a deterministic process and that X
0,c±(y)
s is Gaussian under Q with mean

c±(y) + µ0s and variance η2s.
The fact that c± belong to the classes D± follows from their continuity, monotonicity, and

boundedness in Proposition 7.3.
Finally, we can proceed as in [9, Lemmata 3.15, 3.16, Proposition 3.17, Theorem 3.18] to prove

the uniqueness. Notice that the problem in [9] has a finite time-horizon T and the free boundaries
satisfy suitable terminal conditions at T . However, a careful investigation of the proof of [9, Lemma
3.15] reveals that such terminal conditions can be replaced in our problem by the transversality
condition (already satisfied by v̂3)

(7.15) lim
T↑∞

EQ
(x,y)

[
e−ρTuα(X

0
T , Y

0
T )

]
= 0,

imposed on a candidate value function uα (cf. [9, Eq. (3.56)]). The arguments in the proofs of [9,
Lemma 3.16, Proposition 3.17, Theorem 3.18] do not exploit the terminal conditions of the free
boundaries, so that they can be adapted to the present setting. □

Remark 7.10. The complete characterisation of the boundaries c± provided by Proposition 7.9 to-
gether with (7.6), yield a complete description of the free boundaries b±, at which the optimal control

rule P̂ constructed in (6.1)–(6.2) (see Section 6.1 for details) commands the process (X P̂
t ,Φt)t≥0 to

be reflected.
Indeed, once c± are determined by solving (numerically) the system of integral equations in

Proposition 7.9, we can use (7.6) to obtain b−1
± , and consequently determine b± by inverting (7.5).

However, such a numerical treatment is non trivial and outside the scopes of the present work, we
do not address it in this paper.

3Using the relationship (7.2) between v̂ and v and the definition (7.1) of (X0, Y 0), we obtain

EQ
(x,y)

[
e−ρT |v̂(X0

T , Y
0
T )|

]
= EQ

(x,y)

[
e−ρT

∣∣∣v(X0
T , e

γ
η
(X0

T−Y 0
T )
)∣∣∣]

≤ (K+ ∨K−)EQ
(x,exp{ γ

η
(x−y)})

[
e−ρT

(
1 + ΦT

)]
= (K+ ∨K−)

(
1 + e

γ
η
(x−y))

e−ρT ,

where the last step is due to the martingale property of the process Φ.
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Appendix A. Technical Result

Lemma A.1. Let W be a one-dimensional Brownian motion on the complete filtered probability
space (Ω,F ,F,Q), {τk}k≥1 be a strictly increasing sequence of F-stopping times diverging a.s.,
ζ, β, c > 0, α ∈ R, f : R → R be nonincreasing, and g : R → R be Lipschitz-continuous. Then, for
each t > 0,

Q
(⋃∞

k=1

{
t ∈ (τk−1, τk]

}
∩
{
t ∈ argmaxs∈[τk−1,t](f(ce

αs+βWs)− ζWs + g(s))
})

= 0

Q
(⋃∞

k=1

{
t ∈ (τk−1, τk]

}
∩
{
t ∈ argmins∈[τk−1,t](f(ce

αs+βWs)− ζWs + g(s))
})

= 0.

Proof. We show the claim only for the argmax. Fix t > 0 and set Ωk :=
{
t ∈ (τk−1, τk]

}
. The proof

can be concluded by showing that for each k ≥ 1,

Q
(
t ∈ argmaxs∈[τk−1,t]

(f(ceαs+βWs)− ζWs + g(s)) | Ωk

)
= 0.

With a change of measure, the above is equivalent to

Q̂
(
t ∈ argmaxs∈[τk−1,t]

(f(ceβW
∗
s )− ζW ∗

s + h(s)) | Ωk

)
= 0,

for another F-Brownian motion W ∗ and h : R → R Lipschitz-continuous. Now, for each τk−1 <
s ≤ t, we have(

f(ceβW
∗
t )− ζW ∗

t

)
−
(
f(ceβW

∗
s )− ζW ∗

s

)
≤ −ζ(W ∗

t −W ∗
s ), if W ∗

t −W ∗
s ≥ 0.

By the path-properties of the Brownian motion, we have Q̂
(
· |Ωk

)
-a.s.

lim sup
s→t−

W ∗
t −W ∗

s
t−s = +∞.

In particular, Q̂
(
· |Ωk

)
-a.s., there exists a sequence sn → t− (possibly depending on ω) such that

W ∗
t −W ∗

sn ≥ 0 ∀n and lim sup
n→∞

W ∗
t −W ∗

sn
t−sn

= +∞.

Hence, the claim follows by observing that, Q̂
(
· |Ωk

)
-a.s., we have

lim inf
s→t−

1

t− s

[(
f(ceβW

∗
t )− ζW ∗

t + h(t)
)
−
(
f(ceβW

∗
s )− ζW ∗

s + h(s)
)]

≤ lim inf
n→∞

1

t− sn

[(
f(ceβW

∗
t )− ζW ∗

t + h(t)
)
−

(
f(ceβW

∗
sn )− ζW ∗

sn + h(sn)
)]

≤ lim inf
n→∞

(
− ζ

W ∗
t −W ∗

sn
t−sn

)
+ lim sup

n→∞

|h(t)−h(sn)|
t−sn

= −ζ lim sup
n→∞

W ∗
t −W ∗

sn
t−sn

+ lim sup
n→∞

|h(t)−h(sn)|
t−sn

= −∞.

□
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24 FEDERICO, FERRARI, AND RODOSTHENOUS

[6] Dai, J.G., Yao, D. (2013). Brownian inventory models with convex holding cost, part 1: Average-optimal
controls. Stoch. Syst. 3(2) 442–499.

[7] Dai, J.G., Yao, D. (2013). Brownian inventory models with convex holding cost, part 2: Discount-optimal
controls. Stoch. Syst. 3(2) 500–573.

[8] Daley, B., Green, B. (2012). Waiting for news in the market for lemons. Econometrica 80(4) 1433–1504.
[9] De Angelis, T., Ferrari (2014). A stochastic partially reversible investment problem on a finite time-horizon:

Free-boundary analysis. Stoch. Process. Appl. 124 4080–4119.
[10] De Angelis, T., Stabile, G. (2019). On Lipschitz continuous optimal stopping boundaries. SIAM J. Control

Optim. 57(1) 402–436.
[11] De Angelis, T., Peskir, G. (2020). Global C1 regularity of the value function in optimal stopping problems.

Ann. Appl. Probab. 30(3) 1007–1031.
[12] De Angelis, T. (2020). Optimal dividends with partial information and stopping of a degenerate reflecting

diffusion. Finance Stoch. 24 71–123.
[13] De Angelis, T., Milazzo, A. (2021). Dynamic programming principle for classical and singular stochastic

control with discretionary stopping. ArXiv. 2111.09608.
[14] Décamps, J.-P., Mariotti, T., Villeneuve, S. (2005). Investment timing under incomplete information.

Math. Oper. Res. 30(2) 472–500.
[15] Décamps, J.-P., Villeneuve, S. (2020). Dynamics of cash holdings, learning about profitability, and access

to the market. TSE Working Paper, n. 19-1046, September 2020.
[16] De Marzo, P.M., Sannikov, Y. (2016). Learning, termination, and payout policy in dynamic incentive

contracts. Rev. Econom. Stud. 84(1) 182–236.
[17] Dianetti, J., Ferrari, G. (2021). Multidimensional singular control and related Skorokhod problem: Suffi-

cient conditions for the characterization of optimal controls. ArXiv. 2103.08487
[18] Ekström, E., Peskir, G. (2008). Optimal stopping games for Markov processes. SIAM J. Control Optim. 47

684–702.
[19] Ekström, E., Vaicenavicius (2016). Optimal liquidation of an asset under drift uncertainty. SIAM J. Financ.

Math. 7(1) 357–381.
[20] Eppen, G.D., Fama, E.F. (1969). Cash balance and simple dynamic portfolio problems with proportional

costs. Int. Econ. Rev. 10(2) 119–133.
[21] Federico, S., Pham, H. (2014). Characterization of the optimal boundaries in reversible investment problems.

SIAM J. Control Optim. 52(4) 2180–2223.
[22] Federico, S., Ferrari, G., Rodosthenous, N. (2022). Two-sided singular control of an inventory with

unknown demand trend (Extended version). ArXiv. 2102.11555.
[23] Federico, S., Ferrari, G., Schuhmann, P. (2020). A singular stochastic control problem with interconnected

dynamics. SIAM J. Control Optim. 58(5) 2821–2853.
[24] Federico, S., Ferrari, G., Schuhmann, P. (2021). Singular control of the drift of a Brownian motion. Appl.

Math. Optim. 84 561–590.
[25] Fleming, W.H., Soner, H.M. (2005). Controlled Markov processes and viscosity solutions. 2nd Edition.

Springer.
[26] Harrison, J.M., Taksar, M.I. (1983). Instantaneous control of Brownian motion. Math. Oper. Res. 8(3)

439–453.
[27] Harrison, J.M., Taylor, A.J. (1978). Optimal control of a Brownian storage system. Stoch. Process. Appl.

6(2) 179–194.
[28] He, S., Yao, D., Zhang, H. (2017). Optimal ordering policy for inventory systems with quantity-dependent

setup costs. Math. Oper. Res. 42(4) 979–1006.
[29] Johnson, P., Peskir, G. (2017). Quickest detection problems for Bessel processes. Ann. Appl. Probab. 27(2),

1003–1056.
[30] Karatzas, I., Shreve, S.E. (1991). Brownian motion and stochastic calculus. Second Edition (First Edition

1988) Springer-Verlag.
[31] Karatzas, I., Wang, H. (2005). Connections between bounded-variation control and Dynkin games in Optimal

Control and Partial Differential Equations; Volume in Honor of Professor Alain Bensoussan’s 60th Birthday
(J.L. Menaldi, A. Sulem and E. Rofman, eds.) 353–362. IOS Press, Amsterdam.

[32] Kruk, L. (2000). Optimal policies for n-dimensional singular stochastic control problems part I: The Skorokhod
problem, SIAM J. Control Optim. 38, 1603–1622.

[33] Liebermann, G.M. (2005). Second order parabolic differential equations. World Scientific.
[34] Liptser, R.S., Shiryaev, A.N. (2001). Statistics of random processes I. Second Edition (First Edition 1977).

Springer-Verlag.
[35] Øksendal, B., Sulem, A. (2012). Singular stochastic control and optimal stopping with partial information
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