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Abstract

Activity-based models offer the potential of a far deeper understanding of daily
mobility behaviour than trip-based models. However, activity-based models used
both in research and practice have often relied on applying sequential choice models
between subsequent choices, oversimplifying the scheduling process. Recent work
(Pougala et al., 2022) has established a new modelling approach for activity schedul-
ing which integrates the different choice dimensions (activity participation, ordering,
scheduling, etc) into a single optimisation framework, based on utility maximisation
principles. In this paper we introduce a complementary methodology for the esti-
mation of model parameters from historic data, allowing for the generation of realis-
tic and consistent daily mobility schedules. In combination, the optimisation-based
scheduling simulation and the parameter estimation framework, is hereby referred
to as OASIS (Optimisation-based Activity Scheduling with Integrated Simultaneous
choice dimensions). The estimation framework introduced in this paper consists of
two main elements: (i) choice set generation, where we generate a sample of compet-
itive alternative schedules by applying the Metropolis-Hasting algorithm to historic
schedules, and (ii) discrete choice parameter estimation, where the scheduling pro-
cess is formulated as a discrete choice problem, in which each individual chooses a
full daily schedule from a finite set of possible schedules. We validate our approach
by estimating parameters for a sample of individuals from the 2015 Swiss Mobil-
ity and Transport Microcensus (Office fédéral de la statistique and Office fédéral
du développement Territorial, 2017), and evaluating the output of the OASIS model
against realised schedules from the data. The results demonstrate the ability of the
new framework to estimate stable and significant parameters from historic data that
are consistent with behavioural theory. Furthermore, the schedules outputted by the
OASIS model are evaluated as being both feasible and realistic at a disaggregate
level, and correspond well to the aggregate trends in the historic data. This work
opens the way for future developments of activity-based models, where a great deal
of constraints can be explicitly included in the modelling framework, and all choice
dimensions are handled simultaneously.

Keywords: Activity-based modelling, discrete choice modelling, parameter estimation,
choice set generation, maximum likelihood estimation, simulation

1 Introduction
Activity-based models have been the focus of increasing research efforts in a variety of
domains, including transport research, energy demand, and epidemiology. In transporta-
tion, they provide a behaviourally realistic alternative to traditional trip-based models and
aggregate analyses.

In previous work (Pougala et al., 2022) we have introduced an activity-based model to
simultaneously estimate choices of activity participation, scheduling, travel mode and lo-
cation. The model is utility-based and uses mixed-integer optimisation to simulate realisa-
tions of feasible activity schedules. The major benefit of the simultaneous approach over
traditional sequential approaches (that describe the activity-travel process as a sequence of
individual choices, with varying degrees of interaction), is that the simultaneous approach
inherently captures trade-offs between activity scheduling decisions. This opens the way
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for a flexible integration of behavioural extensions, including complex context-specific
constraints and interactions.

A significant limitation and challenge of the simultaneous approach is the estimation of
stable and significant parameters. In Pougala et al. (2022), the parameters are not esti-
mated, instead a set of accepted values from the literature are used to illustrate the prin-
ciples of the framework. Parameter estimation is generally a challenging task in activity-
based models, due to the size of the problem, the complexity of the structure due to
the spatio-temporal constraints, and, often, the lack of appropriate data. In sequential
models, the set of parameters can be estimated in stages (e.g., Bowman and Ben-Akiva,
2001, Chen et al., 2020) which considerably simplifies the problem, but at the expense of
model flexibility and behavioural realism. Choice sets are also usually considered given,
or constructed with mostly arbitrary decision rules. Considering each choice dimension
simultaneously makes the estimation problem significantly more complex, as the result-
ing combinations cannot be fully observed or enumerated, and the correlations between
choice dimensions and between alternatives are difficult to properly account for within a
tractable mathematical process.

In this paper, we introduce a methodology to estimate the behavioural parameters of the
simultaneous model, consisting of two elements: (i) choice set generation, where we gen-
erate a sample of competitive alternative schedules by applying the Metropolis-Hasting
algorithm to historic schedules, and (ii) discrete choice parameter estimation, where the
scheduling process is formulated as a discrete choice problem, in which each individual
chooses a full daily schedule from a finite set of possible schedules.. We test different
model specifications and evaluate the quality of the parameter estimations and their im-
pact on the simulations for a sample of individuals of the Swiss Mobility and Transport
Microcensus (Office fédéral de la statistique and Office fédéral du développement Terri-
torial, 2017).

The integration of simultaneous activity scheduling simulation and the parameter estima-
tion form OASIS (Optimisation-based Activity Scheduling with Integrated Simultaneous
choice dimensions): a flexible activity-based framework able to accommodate the require-
ments and context-specific constraints of different application domains, and thus provide
tailored behavioural insights.

2 Relevant literature
Activity-based models originally emerged in the 1970s as a response to the shortcomings
of traditional 4-step models (Vovsha et al., 2005, Castiglione et al., 2014), namely:

1. trips are the unit of analysis and are assumed independent, meaning that correlations
between different trips made by the same individual are not accounted for properly
within the model;

2. models tend to suffer from biases due to unrealistic aggregations in time, space, and
within the population; and

3. space and time constraints are usually not included.
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The early works of Hägerstraand (1970) and Chapin (1974) established the fundamen-
tal assumption of activity-based models, that the need to do activities drives the travel
demand in space and time. Consequently, mobility is modelled as a multidimensional
system rather than a set of discrete observations. Rasouli and Timmermans (2014) and
Axhausen (2000) provide in-depth reviews of the state of research and practice in activity-
based modelling.

A significant challenge in activity-based modelling is the estimation of the model param-
eters. This is especially crucial for utility-based models: while the activity-based problem
can be solved taking advantage of random utility maximisation theory and econometric
concepts and properties, calibrating the model to data is not straightforward - often due to
the lack of available data. In addition, the methodology and assumptions of classical dis-
crete choice modelling cannot easily be transferred to an activity-based context. When the
scheduling of activities and travel across time and space is formulated as a choice between
discrete alternatives, the problem is multidimensional (involving continuous and discrete
choice dimensions such as activity participation, scheduling, mode, destination, route...)
and combinatorial. The full set of solutions cannot be enumerated or fully observed by
the modeller or the decision maker. In addition, while the schedules in the choice set
are overall distinct, they might present significant overlaps in their components. Finally,
the constraints further increase the complexity of the problem, limiting the derivation of
closed form probabilities (Recker et al., 2008). These issues are even more challenging
when the choice dimensions are considered simultaneously.

There are therefore two main issues to address: generating a choice set for the purpose
of parameter estimation, and formulating a tractable model specification which is able to
capture multidimensional correlations.

The combinatorial nature of the problem prevents a full enumeration of the possible al-
ternatives. There exist strategies to estimate parameters on subsets of alternatives (e.g.,
Guevara and Ben-Akiva, 2013), but the challenge is to form said set of alternatives to be
informative enough to estimate the parameters and varied enough to minimise bias.

Both deterministic and stochastic models exist for the generation of spatio-temporal choice
sets (Pagliara and Timmermans, 2009) for the purpose of parameter estimation. Models
that use a deterministic approach typically include a choice set predefined by the modeller,
or samples of alternatives obtained from decision rules reflecting the domain knowledge.
On the other hand, stochastic approaches do not assume that the choice set is universal
and known, but rather model the uncertainty associated with it. Deterministic choice sets
are used in early activity-based models (e.g., Bowman and Ben-Akiva (2001) enumerate
the feasible combinations of primary activity, primary tour type, and number and pur-
pose of secondary tours). In some rule-based models, the choice set generation process
involves generating a limited set of activities based on rules, and then enumerating the
combinations (e.g., Arentze and Timmermans, 2000).

Stochastic models for choice set generation have been thoroughly investigated in route
choice modelling (e.g., Flötteröd and Bierlaire, 2013, Frejinger et al., 2009). However,
these methods are not straightforward to apply to activity-based models because of their
multidimensionality. Danalet and Bierlaire (2015) adapt and apply the methodology pro-
posed by Flötteröd and Bierlaire (2013) to sample alternatives in an activity-based con-

3



text. The alternatives are activity schedules, which are represented as paths in a defined
network. The nodes of the network are activities potentially performed for a unit of time,
and the edges connecting them represent successful performance and succession between
activities. In order to include attractive alternatives in their choice set, the authors define
an attractivity measure for each node based on their frequency of observation and the fre-
quency of the length of activity-episodes in the network. They validate the method on a
synthetic network and on a real dataset describing pedestrian behaviour, and by calibrat-
ing the parameters of a discrete choice model with a utility associated with each activity
path. It is established that importance sampling with the Metropolis-Hastings algorithm
provides a better model fit than randomly sampling the choice model.

Nijland et al. (2009) estimate the parameters of a need-based model to predict multiday
activity patterns. The need-based model was first formulated by Arentze and Timmermans
(2009), under the assumption that utilities of activities are a function of needs of individu-
als and households, and that these needs grow over time following a logistic function.The
modelled choice is the choice of performing an activity on a specific day d, given that the
activity was last performed on day s. The utility function is composed of a term for the
satisfaction of needs which builds up between s and d and a term capturing the preference
for performing the activity on day d. Nijland et al. define a logit model. The parameters
include socio-economic characteristics (e.g. gender, household composition and income,
education level, needs).They fit a model for each of six groups of activities (daily and
non-daily shopping, social visits, going out, sports and walking/cycling), using the find-
ings of a purpose-designed survey. Arentze et al. (2011) also estimate the parameters
of the need-based model. They estimate a mixed logit model with error components to
capture randomness and unobserved factors in the need-building process and day-to-day
conditions. The duration of the activity is included implicitly through a utility threshold
constraint: an activity can only be selected when its associated utility reaches a given
threshold. The set-up of both models greatly simplifies the choice set considerations: as
only one choice dimension is considered (day of week of participation), the choice set can
easily be enumerated. In addition, as they do not model explicitly activity duration and
timing decisions, they do not consider the effect of activity-travel interactions (e.g. timing
trade-offs between activities).

Xu et al. (2017) propose a discrete choice estimation of the utility parameters of Recker’s
Household Activity Pattern Problem (HAPP). Similarly to our problem, the utility func-
tion of the HAPP defines the objective function of a maximisation problem subject to indi-
vidual spatio-temporal constraints. Xu et al. try to improve the behavioural interpretation
of the model simulations with estimated parameters while preserving the constraints of the
optimisation problem. They define a choice problem of representative activity patterns,
which they solve using a Path Size logit model. The representative patterns are obtained
with pattern clustering of the observed schedules (Allahviranloo et al., 2014). The choice
set is constructed by sampling one pattern from the unchosen clusters with a genetic algo-
rithm and adjusting the sampled patterns according to individual constraints. The final set
is the combination of alternatives that leads to the minimal D-error. They formulate and
estimate the parameters of 12 different model specifications. Their methodology is one
of the first applications of discrete choice estimation for an optimisation-based activity-
travel model, and shows the added behavioural value of their approach to the framework.
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However, it does not ensure unbiased estimators: indeed, they do not correct their maxi-
mum likelihood estimation to account for the calibration on a sample of alternatives and
not the full choice set. In addition, the methodology to generate choice sets creates en-
dogeneity and is biased towards alternatives with high probability of being chosen: the
unchosen alternatives are representative patterns from the observed sample, and the final
choice set maximises the information gain. This leads to overfitting, which would reduce
the ability of the model to be applied to different contexts and datasets.

Chen et al. (2020) estimate the parameters of their simulation-based activity-based model
by using gradient descent methods. The model is a nested logit model where each level
contains one or more choice models π. The choice models at lower levels interact with up-
per level models through logsum terms. They separate the population in mini-batches in
order to estimate the gradient of the objective function, which is the sum of the distances
between expected values of simulated aggregate statistics and the observed statistics, and
between the a priori values of the parameters and the calibrated ones, as obtained for each
choice model in the problem. The calibration procedure is a minimisation of the objec-
tive function, which converges when a maximum number of iterations is reached or the
objective function is below a given threshold. They illustrate their method on a sequen-
tial activity-based model with 3 levels (day pattern, tour, and intermediate stops). Each
level contains several choice models, and the models of the lower levels are dependent
on the decisions made at the upper levels. On the presented case study, their approach
outperforms traditional gradient descent methods such as the simultaneous perturbation
stochastic approximation (SPSA). However, the behavioural insights gained from their
method are limited to count aggregate statistics. In addition, the approach can be suited
to sequential ABMs to analyse single days and individuals but cannot easily be extended
to more complex interactions (simultaneous choices, multiday analyses, household inter-
actions, etc.). Finally, the choice set is assumed to be known and enumerable.

There are examples in the literature where authors use a method other than discrete choice
modelling. For instance, Recker et al. (2008) use a genetic algorithm to estimate the pa-
rameters of the utility function of their household activity-based model. They introduce
distance metrics to compute the errors between observed and predicted multidimensional
sequences (Euclidian norm for continuous values such as time variables and Levenshtein
distance for discrete components such as travel decisions). The fitness function of the
genetic algorithm is derived from these errors, and the vector of parameters is modified
at each iteration (through mating, crossover and mutations). The algorithm is run until an
optimal set of parameters is found. This set results in a population that is close enough to
the observed population. This heuristic approach enables the navigation of the complex
activity-travel solution space with relative efficiency. However, the general limitations of
the genetic algorithm not only do apply here, but they are actually exacerbated by the
nature of the problem: genetic algorithms are slow to converge due to the repeated evalu-
ations of the fitness function. At each iteration, the authors perform a multi-dimensional
sequence alignment to compute the respective distance between predicted and observed
schedules in both the continuous and discrete dimensions. This involves an enumeration
of element-wise combinations, which can be especially costly with increasing complex-
ity. Genetic algorithms are prone to convergence towards local optima, which emphasises
the importance of the fitness function for the quality of the solution. As the algorithm is
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searching for optimal solutions with respect to the fitness function, it is important to pur-
posefully ensure the diversity of the population (e.g. by modifying certain hyperparam-
eters such as the rate of mutations, or introduce random sequences in the populations) in
order to reduce the bias in the utility parameters estimated with this method. The estima-
tion of the parameters of the household activity pattern problem is also tackled by Chow
and Recker (2012). They formulate an inverse optimisation problem to find the combi-
nation of parameters for which the schedule is optimal. A limitation of this approach is
the one-to-many nature of the inverse problem which means that, as the problem is un-
deridentified, the found solutions and associated parameters might not be behaviourally
interpretable.

In this paper, we propose a parameter estimation procedure for the simultaneous activity-
based model presented in Pougala et al. (2021). The model simulates daily schedules of
activities for a given individual by maximising the utility they gain from participating to
activities. The output is a distribution of schedules conditional on the distribution of the
random error terms. The first iteration of the model demonstrated the ability of the ap-
proach to generate realistic activity schedules while explicitly accounting for scheduling
trade-offs. However, the parameters of the utility function were not estimated, and we
used instead values from the literature. The methodology we present here is based on
Maximum Likelihood Estimation (MLE). Similarly to other state-of-the-art approaches,
we take advantage of the theoretical robustness and flexibility of discrete choice models
for this task, but applied to a framework where all of the activity-travel choices are consid-
ered simultaneously. This allows to capture trade-offs and interrelations between choices,
but with the added cost of complex solution spaces and combinatorial choice sets. We ap-
ply here a methodology for choice set generation based on the Metropolis-Hastings based
on the works of Flötteröd and Bierlaire (2013) and Danalet and Bierlaire (2015).

Table 1 summarises the papers described in this section, and the methodologies developed
or applied by the authors for the generation of individual choice sets and for the estimation
of parameters.

Paper Type of ABM Choice set generation Parameter estimation

Recker et al. (2008) HAPP - Genetic Algorithm
Nijland et al. (2009) Needs-based model Full enumeration Logit model
Arentze et al. (2011) Needs-based model Full enumeration Mixed logit
Chow and Recker
(2012)

HAPP - Inverse optimisation
problem

Danalet and Bierlaire
(2015)

Network-based Metropolis-Hastings
sampling

-

Xu et al. (2017) HAPP Pattern clustering and
importance sampling

Path Size logit

Chen et al. (2020) Sequential ABM - Nested logit model
Current paper Simultaneous ABM Metropolis-Hastings

sampling
Logit model

Table 1: Relevant literature
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Figure 1: Example of a daily schedule. The light gray patches between activities indicate
travel. Dawn and dusk are the first and last home activities of the day.

3 Methodology
We present a methodology to estimate the parameters of an activity-based model where
all scheduling choice dimensions (activity participation, timing decisions, mode, location,
etc.) are considered simultaneously within a mixed integer optimisation framework. The
estimation process consists of two elements: (i) choice set generation, and (ii) discrete
choice parameter estimation. The model, presented in Section 3.1, outputs a distribution
of feasible schedules for given individuals, each with socio-demographic characteristics
and timing preferences (desired start time and duration for each activity or group of ac-
tivities). These features impact the utility each individual gains from their daily schedule,
according to the estimates of the parameters. These estimates are obtained by defining
the scheduling process as a discrete choice problem, and deriving the parameters that
maximise the likelihood function. This procedure is explained in Section 3.2. The like-
lihood function, as defined by Train (2009), requires an enumeration of the alternatives
of the choice set. We present a methodology to generate an appropriate choice set in
Section 3.3.

3.1 Scheduling framework
We use the same definition of a schedule as Pougala et al. (2022): it is a sequence of
activities, starting and ending at home, over a time horizon T . An activity a is uniquely
characterised by a location ℓa, a start time xa, a duration τa, a cost of participation ca and
an outbound trip to the location of the next activity with a mode of transportation ma. The
boundary conditions (start and end of the schedule at home), are modelled as two dummy
activities “dawn” and “dusk”.

Figure 1 shows an example of schedule for one person, which includes 3 out-of-home
activities (escort, errands, and leisure). The trips between each location are made by car.

Each schedule S is associated with a utility function US, which captures the preferences
of the individual for the schedule. For example, time sensitivity is included through the
scheduling preferences: a desired start time x∗a and duration τ∗a(single values or time
intervals) for the activity.

As defined in Pougala et al. (2022), the schedule utility US is the sum of a generic utility U

associated with the whole schedule and utility components capturing the activity-travel
behaviour:
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US = U+

A−1∑
a=0

(Uparticipation
a +Ustart time

a +Uduration
a +

A−1∑
b=0

Utravel
a,b ). (1)

The components and the associated assumptions are defined as follows:

1. A generic utility U that captures aspects of the schedule that are not associated with
any activity (e.g. resource availability at the level of the household).

2. The utility U
participation
a associated with the participation of the activity a, irrespective

of its starting time and duration.

Uparticipation
a = γa + βcostca + εparticipation, (2)

where γa and βcost are unknown parameters to be estimated from data, and εparticipation

is an error term.

3. The utility Ustart time
a , which captures the perceived penalty created by deviations

from the preferred starting time.

Ustart time
a = θearly

a max(0, x∗a − xa) + θlate
a max(0, xa − x∗a) + εstart time, (3)

where θ
early
a ≤ 0 and θlate

a ≤ 0 are unknown parameters to be estimated from data,
and εstart time is an error term.

The first (resp. second) term captures the disutility of starting the activity earlier
(resp. later) than the preferred starting time.

4. The utility Uduration
a associated with duration. This term captures the perceived

penalty created by deviations from the preferred duration.

Uduration
a = θshort

a max(0, τ∗a − τa) + θlong
a max(0, τa − τ∗a) + εduration (4)

where θshort
a ≤ 0 and θ

long
a ≤ 0 are unknown parameters to be estimated from data,

and εduration is an error term. Similarly to the specification of start time, the first
(resp. second) term captures the disutility of performing the activity for a shorter
(resp. longer) duration than the preferred one,

5. For each pair of locations (ℓa, ℓb), respectively, the locations of activities a and b

with a ̸= b, the utility Ua,b
travel associated with the trip from ℓa to ℓb. irrespective of

the travel time. This term is composed of the penalty associated with the travel time
ρab, and other travel variables (including variables such as cost, level of service,
etc.) Here, we illustrate the framework with a specification involving travel cost. It
also includes an error term, capturing the unobserved variables.

Utravel
a,b = βt,timeρab + βt,costct + εtravel (5)

where βt,time and βt,cost are unknown parameters to be estimated from data, and
εtravel is an error term.
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The schedules generated by the simulator must be feasible, according to a set of con-
straints defined at the level of the individual or the household by the modeller. For exam-
ple, a schedule is feasible if:

• it does not exceed the maximum (time or cost) budget,

• each activity starts when the trip following the previous activity is finished,

• trips using mode m are only made if and when m is available,

• each activity meets its respective requirements (e.g. participation of other members
of the household, feasible time windows, follows/precedes another activity)

• ...

The parameters involved in the utility function are summarised in Table 3. Indices S, a,
and n denote respectively a schedule, an activity and an individual. The Logit model col-
umn indicates which parameters are estimated in the current study, with results presented
in Section 4.

Parameter Notation Associated variable Estimated

Alternative-specific constants γS,n -
Activity-specific constant γa,n - Yes
Cost of activity participation βcosta Cost ca
Penalty start time (early) θ

early
a Deviation start time δe,xa Yes

Penalty start time (late) θlate
a Deviation start time δℓ,xa Yes

Penalty duration (short) θshort
a Deviation duration δs,τa Yes

Penalty duration (long) θ
long
a Deviation duration δℓ,τa Yes

Travel cost βt,cost Cost ct
Travel time βt,time Time ρab

Table 2: Parameters of the utility function

3.2 Parameter estimation
The scheduling process can be defined as a discrete choice model where the alternatives
are full daily schedules, each associated with a utility.

In principle, maximum likelihood estimation requires complete enumeration of the alter-
natives in the choice set. It is possible, though, to estimate the parameters using only
a sample of alternatives. This is actually necessary in the activity-travel context, where
the full choice set Cn of alternatives is combinatorial and characterised by complex con-
straints. For each individual n in the sample, we consider a sample of alternatives C̃n. The
maximisation of the likelihood function yields consistent parameter estimates if a correc-
tion term lnPn(C̃n|i) is introduced to take into account sampling biases (Ben-Akiva and
Lerman, 1985):

Pin = Pn(i|C̃n) =
eµVin+ln Pn(C̃n|i)∑

j∈C̃n
eµVjn+ln Pn(C̃n|j)

(6)
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Parameter Notation Associated variable Logit model

Alternative-specific constants γS,n -
Activity-specific constant γa,n - Yes
Cost of activity participation βcosta Cost ca
Penalty start time (early) θ

early
a Deviation start time δe,xa Yes

Penalty start time (late) θlate
a Deviation start time δℓ,xa Yes

Penalty duration (short) θshort
a Deviation duration δs,τa Yes

Penalty duration (long) θ
long
a Deviation duration δℓ,τa Yes

Travel cost βt,cost Cost ct
Travel time βt,time Time ρab

Error term (participation) εparticipation -
Error term (start time) εstart time -
Error term (duration) εduration -
Error term (travel time) εtravel -

Table 3: Parameters of the utility function. The Logit model column indicates whether
the parameter is estimated in the logit specification

The alternative-specific correction term lnPn(C̃n|i) is the logarithm of the conditional
probability of sampling the choice set C̃n given that i is the alternative chosen by person
n. This value depends on the protocol used to generate the choice set.

Each component of the utility function (Equations 2-5) is associated with a random term.
This defines a mixed logit model with error components, by creating correlations between
alternatives which share the same values for each dimension. The model reduces to a
simple logit model if we assume the error terms to be i.i.d. and Extreme Value distributed,
meaning that there is no correlation between alternatives. This assumption is adopted in
the case study presented in Section 4.

3.3 Choice set generation
The estimation of parameters using maximum likelihood estimation requires an evalua-
tion of the likelihood function for each alternative of the choice set C̃n. If C̃n is a subset
of the universal choice set of alternatives Cn, the likelihood function must be corrected
with the probability of sampling the choice set C̃n given the chosen alternatives (6). This
probability depends on the generation protocol for the sample. The procedure must there-
fore be able to produce tractable probabilities, while ensuring the generation of a pertinent
choice set for the estimation of parameters.

More specifically, the choice set should contain alternatives with high probability of being
chosen, to represent a choice set that the individual would actually consider. However,
estimating a model with such a choice set would lead to biased model parameters, which
would, in turn, decrease the accuracy and realism of the model predictions. On the other
hand, the size of the solution space requires a strategic procedure to sample alternatives,
to avoid only selecting non-informative, or low probability, schedules. The strategy to
build the choice set must therefore generate an ensemble of high probability schedules,
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to estimate significant and meaningful parameters, while still containing low probability
alternatives to decrease the model bias. (Bierlaire and Krueger, 2020).

The importance sampling of alternatives with the Metropolis-Hastings algorithm (Flöt-
teröd and Bierlaire, 2013, Danalet and Bierlaire, 2015) is a good strategy to achieve this
objective, while keeping tractable probabilities to derive the sample correction for the
likelihood function.

The Metropolis-Hastings algorithm (Hastings, 1970) is a Markov Chain Monte-Carlo
method used to generate samples from a multidimensional distribution, using a prede-
fined acceptance/rejection rule. The procedure is summarised in algorithm 1.

Algorithm 1 Metropolis-Hastings algortihm (Gelman et al., 1995)

Choose starting point X0 from starting distribution p(X0)
for t = 1, 2, ... do

Sample a candidate point X∗ from a transition distribution q(X ∗ |Xt−1)

Compute acceptance probability α(Xt−1, X
∗) = min

(
p(X∗)q(Xt−1|X

∗)
p(Xt−1)q(X∗|Xt−1)

)
With probability α(Xt−1, X

∗), Xt ← X∗, else Xt ← Xt−1

Each iteration of the random walk is therefore composed of two main steps:

1. Generation of a candidate point,

2. Acceptance or rejection of the candidate point.

In the context of the activity-based framework, each point (or state) is a schedule, and the
target distribution is the schedule utility function (Equation (1)).

3.3.1 Generation of a candidate point

We define Xt the state(or point) at time t. Xt is a 24 hour schedule, discretised in blocks of
duration τ ∈ [τmin, 24− τmin] (with τmin the minimum block duration). The new candi-
date point is a neighbouring schedule X∗, i.e. a schedule that only differs in one dimension
(time, space, or activity participation - see fig. 2). We define heuristics (operators) ω ∈ Ω

to create X∗ by modifying the current state. X∗ is then accepted or rejected with a given
acceptance probability.

Each operator ω can be selected with a probability Pω, decided by the modeller.

Each schedule Xt is characterised by one or more anchor nodes ν, at the start of a block,
indicating the position of the operator changes. In this context, each block corresponds to
the temporal magnitude of the change.

Each operator must generate a feasible schedule, as defined in Section 3.1. In addition,
the following conditions must be satisfied by the algorithm:

• Each iteration of the Metropolis-Hastings algorithm must be irreducible, meaning
that each state of the chain can be reached in a single step:
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Figure 2: Example of neighbouring schedules. The schedules differ in the duration of the
time spent at home during lunch time.

Q(Xt|Xt−1) > 0 ∀Xt, Xt−1 (7)

For this reason, each operator should apply single changes, or the combination of
operators should lead to a state that can only be reached with this combination.

• Each iteration of the Metropolis-Hastings algorithm must be reversible, i.e. the for-
ward probability (probability to do the change) and backward probability (probabil-
ity to undo the change and go back to the previous state) must be strictly positive.

Q(Xt|Xt−1) > 0 ∀Xt, Xt−1 (8)
Q(Xt−1|Xt) > 0 ∀Xt, Xt−1 (9)

Defining single change operators enables to derive tractable probabilities.

The following list describes examples of operators that meet these requirements. Other
operators can be created according to the modeller’s needs and specifications. We illus-
trate their effect on an example schedule, shown in Figure 3. In its initial state, we assume
time to be discretised in 24 blocks of length δ = 1h. We consider two activities: work and
leisure, each associated with a start time xw and xl, a duration τw and τl, and locations
ℓw, ℓl. Considering that home is at location ℓh (and ℓh ̸= ℓw ̸= ℓl), the individual travels
to the other activities using modes mw and ml.

Anchor The anchor operator ωanchor adds an anchor node ν in the schedule. This change
does not affect the activity sequence, but allows to change the position of the potential
modifications of the other operators.

The transition probability associated with this change is the probability of selecting one
of the existing blocks as anchor node.

Assign The assign operator ωassign assigns an activity j ∈ A to a block of duration δ at
position ν, which was previously assigned to activity i. A is a set of N possible activities.
The assignment is done with replacement, which means that P(i = j) > 0. To respect
validity requirements, the resulting schedule must always start and end at home.
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Figure 3: Initial schedule

Figure 4 illustrates an example of modification applied by the assign operator on the initial
schedule.

Figure 4: Change applied by the assign operator

Swap The operator ωswap randomly swaps two adjacent blocks. A block at position ν,
bν, is randomly selected, then is swapped with the following block. In order to respect
the validity requirements, the resulting schedule must always start and end at home.

Figure 5 illustrates an example of modification applied by the swap operator on the initial
schedule.

Figure 5: Change applied by the swap operator

Inflate/Deflate The inflate/deflate operator ωinf/def allows to perform a shift of the sched-
ule by randomly inflating the duration (i.e. adding one block of length δ) of the activity
i at position ν and deflating the duration (i.e. removing one block of length δ) of an ac-
tivity j of the schedule. The direction of the inflation and deflation (affecting the previous
or following block of the selected one) is randomly chosen. If i = j, the operator only
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shifts the start time of the activity, while maintaining its duration. This operator modifies
durations without generating infeasible schedules (e.g. schedules with a total duration
that is different than the time budget). In order to ensure the validity constraint that the
schedule must start and end at home, the first and last time block of the schedule cannot
be modified.

Figure 6 illustrates an example of modification applied by the inflate/deflate operator on
the initial schedule.

Figure 6: Change applied by the inflate/deflate operator

Location The location operator ωloc changes the location ℓi of a randomly selected ac-
tivity i at position ν, with probability Ploc. The new location is selected from a set of
locations L that is considered known. The travel times following this change are recom-
puted, and any excess or shortage of time as compared to the available time budget is
absorbed by the time at home. For this reason, and to remain compliant with validity
constraints, the resulting change cannot go over the time budget by more than the mini-
mum time at home (i.e. 2δ). In addition, the home location ℓh cannot be changed. The
selection of a location must therefore be done according to a distribution Pℓ(ρ) which is
conditional on the travel times ρ. We assume that this distribution is exogenous to the
choice-set generation algorithm.

Figure 7 illustrates an example of modification applied by the location operator on the
initial schedule.

Figure 7: Change applied by the location operator

Mode Similarly to the location operator, the mode operator ωmode changes the mode m
of the outbound trip of a randomly selected activity i at position ν.. The new mode is
selected from a set of modes M that is considered known. The travel times following this
change are recomputed, and any excess or shortage of time as compared to the available
time budget is absorbed by the time at home. For this reason, and to remain compliant
with validity constraints, the resulting change cannot go over the time budget by more
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than the minimum time at home (i.e. 2δ). The selection of a mode must therefore be done
according to a distribution Pm(ρ) which is conditional on the travel times ρ. We assume
that this distribution is exogenous to the choice-set generation algorithm. As the last home
activity is not linked to an outbound trip, it cannot be selected for a mode change.

Figure 8 illustrates an example of modification applied by the mode operator on the initial
schedule.

Figure 8: Change applied by the mode operator

Block The block operator ωblock modifies the time discretisation by changing the length
δ of the schedule blocks (e.g. from δ = 30 to δ = 15 minutes). This change does not
affect the activity sequence, but allows to change the scale of the potential modifications
of the other operators.

The transition probability associated with this change is the probability of selecting one
of the possible discretisations.

Figure 9 illustrates an example of modification applied by the block operator on the pre-
viously introduced initial schedule.

Figure 9: Change applied by the block operator

Combination This meta-operator ωmeta combines n distinct operators from the full set
of operators Ω. n is an arbitrary number such that n ∈ 2, ...,Nop, with Nop the number of
available operators. The transition probabilities of the change are the combined forward
(resp. backward) probabilities of the selected operators. Combining operators through a
meta-operator instead of randomly selecting them “on the fly" during the random walk
process offers the advantage of making it easier for the modeller to track the behaviour of
the process. Specifically, the impact of each operator, whether applied individually or in
conjunction with others, can be evaluated.
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We summarise the previous list in Table 4. As previously mentioned, this list is not
exhaustive: other operators can be created or combined to fit the requirements of the
intended applications, or simply to improve the performance of the MH algorithm.

Name Choice dimen-
sion

Description Probability

Anchor - Adds or deletes an anchor node Panchor

Assign Activity partici-
pation

Assigns activity to a given block Passign

Swap Activity partici-
pation, Time

Swaps the activities of two adjacent
blocks

Pswap

Inflate, De-
flate

Time Inflates or deflates the duration of a
given activity

Pinf, def

Mode Mode of trans-
portation

Changes the mode of transportation as-
sociated with activity

Pmode

Location Location Changes the location associated with ac-
tivity

Ploc

Block - Modifies time discretisation of the
schedule

Pblock

Meta-
operator

All Combines two or more operators Pmeta

Table 4: Example of operators

More details on the operators and the derivations of the transition probabilities can be
found in Pougala et al. (2021).

3.3.2 Acceptance of candidate points

The target distribution of the MH algorithm is the schedule utility function (Equation (1)),
conditional on the distribution of the error terms, and with unknown parameters to be
estimated. The acceptance probability is defined by:

α(Xt−1, X
∗) = min

(
p(X∗)q(Xt−1, X

∗)

p(Xt−1)q(X∗, Xt−1)

)
(10)

where X∗ is the candidate state, p(i) is an unnormalised positive weight, proportional to
the target probability (Flötteröd and Bierlaire, 2013) and q(i, j) is the transition probabil-
ity to go from state i to state j.

Similarly to Danalet and Bierlaire (2015), for each state Xt, the target weight p(Xt) is
defined by:

p(Xt) = ŨS(Xt) (11)

where ŨS is a schedule utility function with the same specification as the target (Equa-
tion (1)) but with parameters calibrated on a randomly generated choice set.
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The transition distribution q is directly obtained from the working operator.

Therefore, the general algorithm (algorithm 1) can be adapted to the ABM context, as
summarised in Algorithm 2.

Algorithm 2 Choice set generation for the ABM with Metropolis-Hastings
t← 0, initialise state with random schedule Xt ← S0

Initialise utility function with random parameters ŨS

for t = 1, 2, ... do
Choose operator ω with probability Pω

X∗, q(Xt, X
∗)← ApplyChange(ω,Xt)

function APPLYCHANGE(ω, state X)
return new state X ′, transition probability q(X, X ′)

Compute target weight p(X∗) = ˜US(X∗)

Compute acceptance probability α(Xt, X
∗) = min

(
p(X∗)q(Xt|X∗)
p(Xt)q(X∗|Xt)

)
With probability α(Xt, X

∗), Xt+1 ← X∗, else Xt+1 ← Xt

Following Ben-Akiva and Lerman (1985), we define for each individual n the alternative
specific corrective term for a choice set Cn of size J+ 1 with J̃ unique alternatives (Equa-
tion (12)). Each alternative j is sampled from the target distribution of the Metropolis-
Hastings algorithm with probability qjn, such that qjn = 0 if j /∈ Cn.

q(Cn|in) =
1

qin

∏
j∈Cn

(∑
j∈Cn

qjn

)J+1−J̃

(12)

3.3.3 Implementation notes

Selection probabilities for operators The probabilities of selecting and applying an
operator are arbitrary and to be defined by the modeller. An iterative approach to the
choice set generation might highlight an imbalance in the rate of accepted schedules per
generating operator. In this case, an equilibrium can be achieved by fine-tuning the oper-
ator choice probabilities, e.g. by selecting fewer times the operators that are more likely
to produce accepted changes.

Schedule feasibility The states generated by the process must meet validity criteria
such as starting and ending at home, or having consistent timings between consecutive
activities. One risk when defining operators is that they change a current feasible schedule
into an infeasible state. For example, changing the duration of an activity may lead to a
total duration that differs from the available time budget. One solution, as done in this
paper, is to define operators that do not inherently induce infeasibility. This provides the
advantage of making the transition probabilities easier to compute, but limits the possible
changes that can be applied. On the other hand, allowing for infeasibility in the operators
results can lead to more varied results. An operator that restores feasibility at the end
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of the process (e.g. modifying the time spent at home to absorb timing gaps or excesses
in the schedule). However, as these changes would be dependent on the current state,
computing the associated transition probabilities would prove more difficult.

Target weights The target weights for each state Xt are defined as the utility function
evaluated at Xt. However, the function evaluation is conditional on the values of its pa-
rameters, that we attempt to estimate with the random walk. Lemp and Kockelman (2012)
proposes an iterative process to compute the weights in importance sampling, by updat-
ing the weights with models estimated at the previous iterations. For example, Danalet
and Bierlaire (2015) use parameters calibrated on a randomly generated choice set as a
starting point for their Metropolis-Hastings process.

Initial schedule The methodology requires the initialisation of starting point, which
is arbitrarily chosen. A randomly generated schedule can be used for this task, but for
the sake of model efficiency and realism of the resulting choice, starting with a known
high-probability schedule (e.g. a daily schedule that was recorded in a travel survey)
can be considered. This allows to select more efficiently alternatives that are likely to
be considered by the individual. However, as discussed previously, one must be careful
to also include lower probability alternatives. The parameters of the random walk (e.g.
acceptance ratio) must thus be adjusted to avoid such biases.

4 Empirical investigation
The objective of the empirical investigation is to apply the methodology on a real-life
case study to illustrate the parameter estimation procedure. We use the Mobility and
Transport Microcensus (MTMC), a Swiss nationwide survey gathering insights on the
mobility behaviours of local residents (Office fédéral de la statistique and Office fédéral
du développement Territorial, 2017). Respondents provide their socio-economic charac-
teristics (e.g. age, gender, income) and those of the other members of their household.
Information on their daily mobility habits and detailed records of their trips during a ref-
erence period (1 day) are also available. The 2015 edition of the MTMC contains 57’090
individuals, and 43’630 trip diaries. In order to illustrate a real-life application of the
simulator, we focus on the sample of full-time students residing in Lausanne (236 indi-
viduals).

We start by generating the choice sets of daily schedules for each individual in the sample.
Each choice set is composed of 10 alternatives, including the chosen (recorded) schedule.

The second step, once the choice sets have been generated, is to estimate the parameters
of the utility function for the sample. For each individual and each alternative in their
respective choice sets, we evaluate the sample correction term (eq. (12)) to be added to
the utility function.
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4.1 Choice sets
For each person in the train dataset, we generate a choice set of 10 alternatives (including
the observed schedules) following the methodology presented in Section 3.3. The initial
state X0 of the random walk is the observed schedule.

We implement 6 operators: Block and Anchor, which influence the impact of the other
operators, and Assign, Swap, Inflate/Deflate which modify the schedule directly. A Meta-
operator is implemented to combine the actions of two or more operators. Each operator
can be chosen with a uniform probability Poperators.

The target distribution of the random walk is the utility function of the activity-based
model (Equation (1)), with a set of parameters β0 that were estimated using randomly
sampled choice sets. The target weights are evaluations of this utility function for the
current state.

The random walk (Algorithm 2) is performed for a number of iterations niter. We discard
nwarm-up of these iterations to sample from a stabilised distribution. To create the choice
set, we draw 9 alternatives by only keeping 1 out of nskip schedules.

Feature Definition Value

Ω Set of operators Block, Assign,Anchor,
Swap, Inf/Def, Meta

Noperators Number of operators 6
Poperators Operator selection probability 1/Noperators

niter Number of iterations 100’000
nwarm-up Warm-up iterations 50’000
nskip Skipped iterations 20

Table 5: Experimental set up of the random walk

The algorithm was run on a server (2 Skylake processors at 2.3 GHz and 192GB RAM,
with 18 CPUs each, running in parallel) for each of the 236 students in the sample, for a
total runtime of 2.22 minutes.

4.2 Logit specification
In this paper, we test the parameters resulting from three model specifications:

1. Model 0: A generic utility function with parameters from the literature (not esti-
mated).

2. Model 1: A generic utility function, where we classify activities according to two
levels of flexibility, and estimate the corresponding parameters for both categories.

3. Model 2:. An activity-specific utility function, where we estimate all activity-
specific parameters and constants.

Both Model 0 and Model 1 are used as benchmarks for the estimates of Model 2.
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We consider 5 different activities: home, work, education, leisure and shopping.

Following the definition of Pougala et al. (2022), travel is not considered as a standalone
activity, but is always associated with the origin activity of the trip, if applicable.

We make the following additional simplifications:

• We do not estimate travel parameters, and consider them null in eq. (1),

• The scheduling preferences (desired start time and durations) are derived from the
dataset. For each activity, we fit a distribution (either normal or log normal) across
the student population. The calibrated parameters are reported in table 6. For each
person, we draw values of desired start times and durations from these distributions.

Activity Start time Duration

Home - N (17.4, 3.4)
Work Log-N (0.65, 4.2, 3.4) N (7.6, 3.7)
Education Log-N (0.4, 6.2, 1.7) N (6.7, 2.1)
Leisure N (14.3, 3.5) N (3.5, 2.7)
Shopping Log-N (0.3, 4.6, 9.0) Log-N (1.3, 0.15, 0.32)

Table 6: Desired times distributions in sample

Therefore, the utility function defined in eq. (1) can be written as follows for model 1:

U1
S = γa +

∑
f

λa
f [θ

early
f max(0, x∗a − xa) + θlate

f max(0, xa − x∗a)

+ θshort
f max(0, τ∗a − τa) + θ

long
f max(0, τa − τ∗a)] + εS

with f a category of flexibility f ∈ {Flexible, Not Flexible}. λa
f is an indicator variable

that is 1 if activity a belongs to category f, and is an input to the model. In this case
study, education and work are considered not flexible, while leisure, shopping and home
are considered flexible.

For model 2, the utility function can be written:

U2
S = γa +

∑
a

[θearly
a max(0, x∗a − xa) + θlate

a max(0, xa − x∗a)

+ θshort
a max(0, τ∗a − τa) + θlong

a max(0, τa − τ∗a)] + εS

Both models are estimated with PandasBiogeme (Bierlaire, 2020). The estimation process
is done using 70% of observations in the sample data, where one observation is the daily
schedule of one individual.

Finally, we simulate daily schedules for the Lausanne sample. In order to visualise the
behaviour of the simulator conditionally upon the input parameters, we test three differ-
ent sets of coefficients: (i) parameters from the literature (ii) generic parameters estimated
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on 70% of Lausanne data (estimation model 1) (iii) and activity-specific parameters esti-
mated on 70% of Lausanne data (estimation model 2). We compare the schedule distribu-
tions and distributions of start times and durations resulting from these 3 configurations
with the observed distribution from the dataset.

4.2.1 Parameters

Literature parameters The parameters from the literature were used in the first im-
plementation of the framework, as described in Pougala et al. (2022). Values from the
departure time choice literature (e.g. ratios from Small (1982)) were used to derive the
parameters defined in table 7. The penalty parameters are specific to each flexibility cat-
egory (flexible (F) or non flexible (NF) activities). In this set of parameters, we do not
consider activity-specific constants (γa = 0 ∀a ∈ A). The assumption behind this is
that, all else being equal, there is no inherent preference to perform any activity (home
included). Any effect of this nature is therefore fully included in the random term of the
schedule εS.

Param.
Parameter estimate

1 F early 0.0
1 F late 0.0
2 F long -0.61
2 F short -0.61
3 NF early -2.4
4 NF late -9.6
5 NF short -9.6
6 NF long -9.6

Table 7: Parameters from the literature

Model 1 The home activity is used as a reference, such that γhome = 0. The magnitudes
and signs of the other constants are relative to the baseline behaviour which is staying
at home. The estimated parameters are summarised in table 8. For flexible activities,
the parameters indicate a similar behaviour to what is found in the literature: being late is
more penalised than being early (approximately by a factor of 2). The penalties associated
with duration have comparable magnitudes, although they are not statistically significant
(p > 0.05). On the other hand, for non flexible activities, being early seems to be more
negatively perceived than being late. The duration penalties are symmetrical.

Model 2 We consider both activity-specific constants and schedule deviation penalties.
For all parameters, the home activity is set as a reference, such that γhome = 0. As for
model 1, the magnitudes and signs of the other coefficients are therefore relative to the
home baseline. We estimate 20 parameters for this model (5 per activity), which are
summarised in table 9.
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Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

1 F: early -0.175 0.12 -1.46 0.145∗

2 F: late -0.333 0.14 -2.38 0.0171
3 F: long -0.105 0.0722 -1.45 0.146∗

4 F: short -0.114 0.194 -0.585 0.559∗

5 NF: early -1.14 0.367 -3.10 0.00191
6 NF: late -0.829 0.229 -3.61 0.0003
7 NF: long -1.20 0.393 -3.05 0.00231
8 NF: short -1.19 0.468 -2.54 0.0011
9 Education: ASC 16.0 2.46 6.49 8.63e-11
10 Leisure: ASC 8.81 1.7 5.17 2.28e-07
11 Shopping: ASC 6.85 1.80 3.80 0.000146
12 Work: ASC 16.0 2.58 6.18 6.57e-10

Table 8: Estimation results for Model 1 on student population. The asterisk (*) indicates
parameters that are not statistically significant based on their p-value.

For education, all of the parameters are statistically significant. Being early is slightly
less penalised than being late, although the penalties are almost symmetrical. The same
observation can be made for the penalties associated with duration. For work, the penalty
for being late is not statistically significant (p-value > 0.05), while being early is signif-
icantly penalised. The penalties associated with duration have a more negative impact
on the utility function; in particular, the activity running for longer than desired is highly
penalised.

Interestingly, most of the parameters associated with leisure are not statistically signifi-
cant. This could indicate that leisure is not a particularly time constraining activity for
students, in the sense that it is less likely to trigger trade-offs in the scheduling process
than the other activities.

On the other hand, shopping displays high penalties for scheduling deviations, especially
with respect to start time. This behaviour does not support the assumption used in the
previous model that shopping is a flexible activity.

Figure 10 illustrates some schedules generated with activity-specific parameters.

4.3 Mixed logit specification
We relax the IIA assumption of the logit model by estimating an error components spec-
ification of the model. We create correlations between the utilities of the alternatives by
estimating the error terms included in each component of the utility function (eqs. (4)
to (5)). For practicality, we consider the following assumptions for the distributions of
these error terms:

• Participation: for each activity a, the error term εaparticipation ∼ N (µpart,a, σ
2
part,a) is in-

cluded in the utility term related to the participation to a (Equation (2)) and captures
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Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

1 Education: ASC 18.7 3.17 5.89 3.79e-09
2 Education: early -1.35 0.449 -3.01 0.00264
3 Education: late -1.63 0.416 -3.91 9.05e-05
4 Education: long -1.14 0.398 -2.86 0.00428
5 Education: short -1.75 0.457 -3.84 0.000123
6 Leisure: ASC 8.74 1.94 4.50 6.79e-06
7 Leisure: early -0.0996 0.119 -0.836 0.403∗

8 Leisure: late -0.239 0.115 -2.07 0.0385
9 Leisure: long -0.08 0.0617 -1.30 0.195∗

10 Leisure: short -0.101 0.149 -0.682 0.495∗

11 Shopping: ASC 10.5 2.20 4.78 1.74e-06
12 Shopping: early -1.01 0.287 -3.51 0.000443
13 Shopping: late -0.858 0.237 -3.63 0.000284
14 Shopping: long -0.683 0.387 -1.76 0.0779∗

15 Shopping: short -1.81 1.73 -1.04 0.297∗

16 Work: ASC 13.1 2.64 4.96 7.16e-07
17 Work: early -0.619 0.217 -2.85 0.00438
18 Work: late -0.338 0.168 -2.02 0.0438
19 Work: long -1.22 0.348 -3.51 0.000441
20 Work: short -0.932 0.213 -4.37 1.23e-05

Table 9: Estimation results for Model 2 on student population. The asterisk (*) indicates
parameters that are not statistically significant based on their p-value.
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the unobserved correlations between schedules which include a,

• Start time: for each activity a, we define the error term εastart time = ξa
AMδ

a
AM +

ξa
PM(1 − δaAM), with ξa

AM and ξa
PM two normally distributed random quantities, re-

spectively associated with a start time in the first half of the day (xa ∈ [00:00,
12:59]) and in the second (xa ∈ [13:00, 23:59]). δaAM is an indicator variable that is
equal to 1 if a starts in the first half of the day.

• Duration: we consider the error term εduration = ξeduδedu+ξother(1−δedu), where ξedu

is a normally distributed term that captures the correlations between alternatives
for which a significant amount of the available duration is spent doing a primary
activity (education or work). δedu is an indicator variable that is equal to 1 if τa ≥
4h ∀a ∈ [education, work].

Each error component ξX is assumed to follow a normal distribution N (µX, σ
2
X). For

practicality, we assume that all the components have a zero mean (µX = 0), and therefore
only estimate the standard deviations σX.

Equation (1) can therefore be rewritten:

US = γa

+
∑
a

[θearly
a max(0, x∗a − xa) + θlate

a max(0, xa − x∗a)

+ θshort
a max(0, τ∗a − τa) + θlong

a max(0, τa − τ∗a)ε
a
participation + εastart time]

+ εduration + νS

where νS is iid Extreme Value distributed.

Similarly to the logit model specification, we consider a generic (Model 3) and an activity-
specific (Model 4) specification. The assumptions for the other parameters are the same
as for the simple logit specification.

4.4 Simulation results
Using the parameters described in the previous section, we simulate schedules for the test
dataset. The simulation procedure is described in detail in Pougala et al. (2022): at each
iteration i ≤ nmax, we draw a random term εi from a known distribution. We solve the
utility maximisation problem for this error instance to obtain a draw from the underlying
schedule distribution. We draw nmax = 100 schedules for each individual in the sample.

To compare the results of each model with the original data, we analyse the simulated
frequencies of activity participation per hour of the day, simulated durations and start
times for each activity. We compute the Kolmogorov-Smirnov statistic between the orig-
inal and simulated distributions for a quantitave evaluation of the goodness-of-fit of these
distributions.
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Figure 10: Examples of simulated schedules (Model 2)
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4.4.1 Simulated statistics

We compare some descriptive statistics of the simulated sample with those observed in
the dataset. These statistics are daily averages of: the time spent out-of-home (total and
for each activity) and proportion of schedule containing each activity. These statistics are
derived exclusively for schedules which contain at least one activity out-of-home. It is
worth noting that all three models generate significantly more fully-at-home days (about
5 times more than what is observed in the MTMC data).

The results are summarised in Table 10 and Table 11 respectively. The two estimated
models (generic and activity-specific) generate average durations that are closer to the
observed ones than the model with parameters from the literature. They are especially
accurate for the average total time, but the proportions across activities are not as well
captured. For example, the average durations spent in education are underestimated by
about 1h, while the time spent in leisure is overestimated (by 2h in the case of the activity-
specific model).

Activity Data Literature Generic Activity-specific

Total 04:53 02:54 04:10 05:19
Education 03:32 01:11 02:25 02:29
Leisure 00:39 00:58 01:17 02:32
Shopping 00:08 00:22 00:21 00:10
Work 00:26 00:05 00:07 00:08

Table 10: Average out-of-home duration, in hh:min

Regarding the proportion of schedules containing each activity (table 11) the activity-
specific model significantly underestimates the frequency of each activity. This is likely
due to the approximation of the desired start times, which are computed for only one
instance of the activity, and do not properly account for bimodality or asymmetry in timing
preferences (e.g. different desired start times for doing work in the morning or in the
afternoon). This point in discussed further in Section 4.5.1.

Activity Data Literature Generic Activity-specific

Education 0.86 0.56 0.60 0.37
Leisure 0.98 0.52 0.56 0.75
Shopping 0.28 0.21 0.19 0.11
Work 0.09 0.06 0.05 0.02

Table 11: Proportion of schedules containing each activity

4.4.2 Time of day participation

Figure 11 shows the typical distribution of activities in the course of a day, for schedules
including at least one activity out of home. The height of each bar represents the propor-
tion of the sample that is participating in each activity at a given moment of time. Before
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Figure 11: Observed time of day activity frequency. The height of the bars is the
proportion of people participating in each activity at a given moment.

7:00, almost all of the individuals in the sample are home. The proportion of people un-
dertaking their main education activity steadily increases during the morning, to reach a
peak at 11h (50%). The proportion decreases at lunch time (40% to 25% between 12:00
and 13:00) and goes up again in the afternoon. The leisure activity is the second most
frequent activity from 10:00 to 15:00. From 16:00 onward, it surpasses education. Work
is the third most frequent activity, although in much smaller proportions than the previous
two. Its profile is similar to education.

Figure 12 shows the distributions for out-of-home schedules1 resulting from the simula-
tor framework with the 3 mentioned configurations: with parameters from the literature
(fig. 12a), generic schedule deviation penalties (fig. 12b), and activity-specific penalties
and constants (fig. 12c). All three configurations are able to capture the importance of
education relative to the other activities in the schedule. However, as mentioned in the
previous section, for all models, the majority of generated schedules are full days at home
(i.e. no out-of-home activity scheduled).

The original profile of the education activity, with a distinct peak period, is best captured
with the estimated parameters, both generic and activity specific. In both cases, the peak
is reached before 9:00, as opposed to the observed 11:00 peak. This discrepancy is likely
due to the assumption of a unimodal desired start time; a multimodal distribution (closer
to the observed one) would improve the fit of the simulated distribution.

Interestingly, the leisure activity — and by extension, all activities previously defined as
flexible — has very different simulated profiles from the observed one. With the literature
parameters, the share of leisure is constant for most of the day, and comparable to the
share of education. On the other hand, with the activity-specific parameters, the activity

1Out of the 20 simulated schedules for each individual in the sample.

27



is overrepresented during the night (midnight to 7:00), as compared to the other simulated
activities, and the leisure observations in the data for this time period. The rest of day, the
profile is similar to the real one.

(a) Parameters from literature

(b) Generic parameters (estimation model 1)

Figure 12: Simulated time of day activity frequency

4.4.3 Start time

We compare the simulated start times for each activity and each model, by visualising the
kernel density estimations of the models with parameters from the literature, generic and
activity-specific parameters (fig. 13), and respective Kolmogorov-Smirnov (KS) statistic
compared to the observed dataset (a lower KS indicates a better fit).
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(c) Activity-specific parameters (estimation model 2)

Figure 12: Simulated time of day activity frequency (cont.)

With the exception of education the activity-specific model is the model that better repro-
duces the distributions of start time (lowest KS). The observed distribution of education
is truly bimodal, which is not properly captured by either of the estimated models. This
is likely due to the approximation of desired times to a unimodal distribution. The model
with parameters from the literature produces a relatively good fit, but this distribution
varies very little from one activity to another.

4.4.4 Duration

Similarly, we compare the simulated durations for each activity and each model, by visual-
ising the kernel density estimations of each model (fig. 14) and computing their respective
KS statistic.

For all activities, the model with parameters from the literature tends to generate short
activities (τa ≤ 2 hours) more frequently, and in smaller proportions activities with a
duration of about 8 hours (for education, leisure and shopping). The two models with
estimated parameters generate more diverse patterns with respect to duration: the generic
model seems to capture well the bimodality of education. On the other hand, the activity-
specific model generates better distributions for work and leisure. All three models tend
to generate short instances of the shopping activity, although there is a non negligible
number of schedules with very long shopping activities (8 hours), which is not close to
what was observed nor particularly realistic. This limitation is also reflected by the high
value of the KS statistic.
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(a) Education (b) Work

(c) Leisure (d) Shopping

Figure 13: Simulated start times, per model and activity
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(a) Education (b) Work

(c) Leisure (d) Shopping

Figure 14: Simulated durations, per model and activity
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4.5 Distance metrics
We quantify the performance of the three specifications by analysing the distance of the
respective solutions (distributions of schedules as illustrated in fig. 12. The distributions
are compared on the basis of several metrics:

1. Inspired by the work of Recker et al. (2008), we measure the error in the discrete
components (activity participation/sequence) with the edit distance (the minimum
number of changes required to make two sequences equal2, where the changes can
be the insertion, deletion or substitution of an element. Higher values for the edit
distance indicate increasingly different sequences. Here, we consider a unidimen-
sional edit distance and only measure the differences in the order of activities. To
do so, we transform the schedule into a sentence where the words are activities, and
compute the Levenshtein distance from the original sentence to each draw.

2. The continuous temporal components (start time, duration), are compared by deriv-
ing the average time overlap between the observed schedule and the simulated one,
for a given activity. The time overlap is defined as the duration for which a given
activity is taking place at the same time in both schedules. The average is computed
over all simulated activities.

3. The Hellinger distance is computed to measure the similarity of the discretised time-
of-day distributions of each activity. The Hellinger distance between two finite
distributions P and Q is defined as:

h(P,Q) =

√√√√1

2

k∑
i=1

(
√
p−

√
q)2 (13)

For the sake of illustration, we measure the similarity for the distributions of home,
work, and education.

Table 12 gives the average values of the edit distance and the time overlap for the three
configurations, as well as the bootstrap 95% confidence intervals. There are no significant
differences in the edit distance, and the solutions drawn with all three models require on
average 5 edit changes (considering equal costs for all possible operations) to retrieve the
original sequence. In terms of time overlap, the activity-specific model appears to be the
best performing specification.

Table 13 gives the Hellinger distance for the home, education and work time-of-day dis-
tributions and each model specification (parameters from the literature, generic flexibility
parameters, and activity-specific parameters). The results are coherent with the visual
analysis: none of the three models perfectly reproduces the observed distributions, espe-
cially for education. The generic model displays higher distances than the model with
parameters from the literature. The chosen classification does not appear to be adequate,
as there seems to be a loss of information. On the other hand, the distributions generated
with the activity-specific parameters are overall (on average and total), closer to the data.

2Here, a sequence refers to the order in which the activities are scheduled. It does not include the
temporal dimension.
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Metric Model
Literature Generic Act. specific

Edit distance 5.23 [4.77, 5.78] 5.42 [4.98, 5.89] 5.69 [5.12, 6.30]
Time overlap [h] 5.78 [5.48, 6.01] 4.92 [4.62, 5.21] 6.83 [6.36, 7.29]

Table 12: Average edit distance and time overlap per model, with 95% confidence
intervals

The improvement over the parameters from the literature is encouraging given the sim-
plicity of the specified model. More significant gains can be expected by a refinement of
the specification.

Activity Model
Literature Generic Act. specific

Home 0.718 0.745 0.716
Education 0.940 1.131 0.977
Work 0.356 0.427 0.238

Average 0.671 0.768 0.644
Total 2.014 2.303 1.931

Table 13: Hellinger distance per activity and model

4.5.1 Discussion

This empirical investigation using the MTMC has demonstrated the added value of esti-
mating the parameters for the accuracy and realism of the simulated schedules, as opposed
to using generic parameters. Removing a layer of abstraction by estimating activity-
specific parameters instead of generic parameters aggregated over the set of activities has
shown to provide results fitting the observed distribution better.

The application of the methodology has also highlighted some limitations: the simplifying
assumptions formulated to estimate the problem have a significant impact on the quality
of the solutions. For instance, the distributional assumptions of the desired times are too
restrictive in this case. More specifically, multimodal distributions for the activity start
times seem more appropriate and reflective of the observations. This change requires to
reconsider the definition of activities, as it implies that the behaviour towards an activity
of the same type (e.g. work) would differ depending on when it is scheduled.

Another finding is that, while the simulated profiles are close to the observed ones, all
three tested models simulate significantly more schedules with no out-of-home activities
than what is actually observed. The fact that this phenomenon is also observed with pa-
rameters from the literature suggests that the specification itself does not appropriately
model the reality. Indeed, because of its restrictive assumptions on the independence of
alternatives the logit model does not account for the correlations, interactions and unob-
served behaviour who clearly impact the scheduling decisions (and specifically, the deci-
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sion to travel out of home). More complex specifications must be investigated, starting
with mixed logit models which relax the IIA assumption.

5 Conclusion and future work
We have presented a procedure to estimate the parameters of the OASIS framework,
which includes the optimisation-based simulator introduced in Pougala et al. (2022). The
estimation process includes: (i) the generation of a choice set for parameter estimation,
with a sufficiently high variety of alternatives to ensure unbiased and stable parameter
estimates, with tractable sample probabilities, and (ii) the discrete choice estimation of
the parameters for different model specifications. We have applied our methodology on
a simple case: a time-dependent and linear-in-parameters utility function, and a small
dataset. The resulting parameters are mostly statistically significant and behaviourally
interpretable, even with a relatively small number of alternatives in the choice set. Using
the parameters as input for the activity-based simulator, we can demonstrate that the sim-
ulated distribution is closer to the observed one with the estimated parameters as opposed
to a benchmark from the literature, with respect to the simulated activity participation and
duration.

In this paper, we have focused on demonstrating the feasibility and added value of the
methodology. This is a necessary foundation for the framework to be able to solve prob-
lems of higher complexity, including social interactions or multi-day behaviour. Method-
ological improvements such as relaxing the linear-in-parameter assumption for the utility
specification, or choosing appropriate model structures to manage the high correlations
(e.g mixtures of logit, latent class models) are expected to significantly improve the qual-
ity of the estimation and the associated simulation results.

Other simplifying assumptions, such as the distribution of desired times which is assumed
unimodal in this paper, can significantly impact the quality of the estimations and must
therefore be carefully investigated. For desired times specifically, they could be included
as parameters to be estimated. Depending on the chosen model specification, this could
require an iterative process to be solved.

Regarding validation, we will investigate in future work a multidimensional distance met-
ric to compare observed and simulated schedules, similarly to the multidimensional se-
quence alignment technique used by Recker et al. (2008) or Joh et al. (2002). In addition,
the calibration of parameters on a synthetic population would allow to evaluate the esti-
mation quality against known control variables.

Regardless, the results of this paper open the way for significant contributions in activity-
based modelling: the methodology to estimate the parameters allows researchers to ex-
plicitly consider behaviour in the activity-based analysis, which is usually a limiting factor
in econometric models. An important contribution is that the methodology remains the
same for any change of context-specific constraints and features (e.g. adding or removing
a choice dimension, extending the analysis to include multiple people or multiple days,...)
or change in utility specification. Modellers can therefore develop flexible and tailored
models for a variety of applications to integrate in the framework in a straightforward
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way. The parameters can then be estimated, even with limited data, with positive impact
on the realism the resulting simulations.
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