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Introduction
Outcomes in multiple sclerosis (MS) are well recog-
nized to be heterogeneous. This heterogeneity may 
also extend to therapeutic responses and adverse 
effects and can be accounted for by multiple factors 
including genetic differences, as well as age, sex, 
liver or renal function, health behaviors, and disease 
severity.1 For example, genetic variation influences 
the expression of thiopurine S-methyltransferase 
(TPMT) enzyme. Individuals with a homozygous 
deficiency of TPMT activity are at high risk of myelo-
suppression when treated with azathioprine at usual 
doses.2,3 Genetic variation in the CYP2 C9 gene influ-
ences metabolism of siponimod. The use of siponi-
mod is contraindicated in individuals with the *3/*3 
CPY2 C9 genotype due to dangerously prolonged 
metabolism, and reduction of the maintenance dose 
from 2 mg daily to 1 mg daily is required for individu-
als with *1/*3 or *2/*3 genotypes.4 Nevertheless, 
typically evidence from the overall results of clinical 
trials, which provide average effects in populations, is 
used to predict potential outcomes in an individual 
patient, who is assumed to be similar to patients 
treated in the trial.

Heterogeneity of treatment effect (HTE) refers to 
non-random variation in the magnitude or direction of 

the effect of treatment on a clinical outcome of inter-
est in different patient subgroups defined by one or 
more covariates.1 For example, the effect of a disease-
modifying therapy (DMT) might be larger for younger 
individuals with relapsing remitting MS who have 
multiple gadolinium-enhancing lesions than for older 
individuals with secondary progressive MS who do 
not have gadolinium-enhancing lesions. In epidemiol-
ogy, the equivalent concept is effect modification. 
HTE assessment is the cornerstone of precision medi-
cine, which seeks to predict the optimal treatments at 
the individual level according to patient-specific char-
acteristics. The most widely used, simple and most 
biased HTE assessment uses the one variable-at-a-
time subgroup analysis. Predictive approaches to 
HTE analyses provide individualized predictions of 
treatment benefit considering multiple relevant 
patient characteristics simultaneously and are founda-
tional to personalization in evidence-based 
medicine.5

In December 2022, a workshop was held by an inter-
national group sponsored by the European Committee 
on Treatment and Research in MS and the U.S. 
National MS Society. Participants included members 
of the International Advisory Committee on Clinical 
Trials, as well as external participants with expertise 
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in multiple areas relevant to clinical trials, including 
biostatistics. Herein, we describe HTE assessment 
methods in MS clinical trials as discussed in that 
workshop.

Subgroup analyses
Traditionally, clinical trials use pre-planned or post-
hoc subgroup analyses to address HTE, which may or 
may not be formally tested using a statistical interac-
tion term between treatment and the subgrouping 
covariate. These approaches have substantial limita-
tions, including limited power to detect true effects 
(type II error), and multiple comparisons (increasing 
type I error). Moreover, “these analyses are also 
incongruent with the way clinical decision-making 
occurs at the level of the individual patient, because 
patients have multiple attributes simultaneously that 
can affect the tradeoffs between the benefits and 
harms of the intervention.”5

To evaluate the methods used for subgroup analysis in 
MS trials, we used an existing systematic review6 
which examined racial and ethnic characteristics of 
participants in phase 3 trials of DMTs for relapsing-
remitting MS conducted between 1995 and June 
2006.6 We used a standardized form to extract study 
name, year, intervention, comparator, and subgroup 
analyses (subgroup definition, if a priori or post hoc, 
whether analyses involved stratification or interaction 
terms). We did not evaluate observational studies, 
although subgroup analyses are also relevant to those 
study designs, because the focus of the workshop was 
on clinical trials.

The primary systematic review identified 45 trials (44 
publications) of which 31 (68.9%) conducted sub-
group analyses; only 11 used interaction terms, and 
none used multivariable models (Supplementary 
Table e1). Most tested for statistical significance of 
treatment effects within strata (subgroup-specific 
analysis), rather than for the contrast in treatment 
effects between strata, thereby increasing false posi-
tive rates.7 The few that used formal tests of interac-
tion were likely underpowered. Moreover, even if the 
interaction test was correctly done, some studies 
reported subgroup-specific p values.8

In a simulation study, trials with 80% power to detect an 
overall treatment effect had power to detect an interac-
tion effect of similar magnitude as the overall effect of 
29%.9 A 2017 meta-analysis of 64 clinical trials report-
ing ⩾1 positive subgroup found that 46 subgroups (33 
trials) included an interaction test that supported statisti-
cally significant heterogeneity.10 Only 5 of 46 (10.9%) 

subgroups were tested for reproducibility, none success-
fully.10 These empirical results conform to what is 
expected theoretically: Weak theory and noisy data (i.e. 
exploratory analysis in a low power setting) are a recipe 
for generating false positive findings.11

Predictive HTE approaches
Importantly, HTE, effect measure modification, and 
statistical interaction are “scale-dependent” concepts; 
their presence or absence depends on the scale selected 
to measure treatment effect12 as discussed else-
where.5,12 Treatment effect estimates in randomized 
controlled trial (RCT) are usually described on a rela-
tive scale (i.e. odds ratios for binary outcomes, or haz-
ard ratios for time-to-event outcomes). The analysis of 
HTE is usually conducted on a relative treatment 
effect scale because of statistical convenience and 
because relative effects are understood to be the most 
transportable ones.12 However, for clinical decision-
making, it is most important to interpret variations in 
effects on the absolute risk difference scale.

The PATH (Predictive Approaches to Treatment effect 
Heterogeneity) statement5 was created to encourage and 
guide predictive HTE analysis and describes two dis-
tinct approaches to predictive HTE analysis. With a 
“risk-modeling” approach, a multivariable model that 
predicts risk for an outcome is identified from external 
sources (an “external model”) or developed directly on 
the trial population without a term for treatment assign-
ment (an “internal model”). This prediction model is 
applied to disaggregate patients within trials to examine 
risk-based variation in treatment effects. It takes advan-
tage of the fact that the risk of the outcome is a determi-
nant of the treatment effect and that the absolute risk 
difference varies across strata even when the relative 
treatment effect is the same (Supplementary Figure e1). 
With the “effect modeling” approach, a model is devel-
oped on RCT data that include a term indicating treat-
ment assignment and interaction terms between 
treatment assignment and ⩾1 covariate (e.g. sex).5 The 
advantage of risk modeling is that subgroup identifica-
tion is “blinded” to treatment assignment and thus sepa-
rate from treatment effect estimation. Effect modeling, 
in contrast, uses treatment effect estimation to identify 
patients who benefit most. It may thus be more prone to 
overfitting and bias, unless precautions such as rigorous 
internal validation approaches are undertaken.13

HTE assessment in MS trials
Despite the evidence that treatment responses are het-
erogeneous in MS, few specific biomarkers exist to 
guide treatment choice; these are more often related 
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to safety than efficacy. Thus, it is challenging to iden-
tify drug responders or non-responders. Post-hoc sub-
group analyses of clinical trials in MS have not found 
specific markers of response to approved drugs; a 
meta-analysis2 including all published post-hoc sub-
group analyses of clinical trials in relapsing remitting 
MS (RRMS) indicated generic predictors of higher 
response to DMTs, like younger age, lower Expanded 
Disability Status Scale, and presence of Gadolinium-
enhancing lesions at baseline.

Recently, predictive HTE approaches have been applied 
to MS trials. A proof-of-concept study used data from 
the pivotal studies of dimethyl-fumarate in RRMS (the 
DEFINE and CONFIRM trials).14 A treatment effect 
modeling approach15 allowed calculation of a patient-
specific score derived from a linear combination of the 
baseline variables to predict the individualized size of 
treatment effect. This model indicates that a subgroup 
of “super-responders” to dimethyl-fumarate can be 
identified, with a relapse rate reduction higher than the 
average effect in the trials. A subsequent testing/valida-
tion procedure on three clinical trials successfully pre-
dicted a subgroup of RRMS patients that was responsive 
to laquinimod,16 a drug for which the average treatment 
effect in the original phase 3 studies was insufficient to 
obtain approval (Supplementary Table e2). This 
approach was also applied to an active controlled study 
(the CombiRx study17), comparing interferon-beta to 
glatiramer-acetate. The ability of the combination of 
patients’ characteristics to discriminate responders to 
interferon-beta and glatiramer-acetate was replicated 
using real-world data.17 The same methodology was 
applied to enable short proof-of-concept trials in pro-
gressive MS by using a deep-learning predictive 
model18 to predict those more likely to progress, allow-
ing enrichment of study populations, thereby increasing 
statistical power. A recent study19 classified MS sub-
types using an unsupervised machine learning algo-
rithm on brain magnetic resonance imaging (MRI) 
scans acquired in clinical trials; the results suggested 
that MRI-based subtypes predict not only MS disability 
progression but also response to treatment, indicating a 
potential method to define groups of patients in clinical 
trials albeit requiring validation.

Recently, a paper applied a risk modeling approach in 
a network meta-analytic setting20 to estimate the ben-
efit of alternative treatment options for individual 
patients with MS. First, a prognostic model was 
developed to predict the baseline risk of the outcome. 
Second, the baseline risk score from the first stage 
was used as a single prognostic factor and effect mod-
ifier in a network meta-regression model and was 
found to modify treatment effects.

Conclusions
The need to identify “responders” to therapies is 
urgent in MS, since many treatments are available, 
and the response to each drug is highly heterogene-
ous. To personalize the use of DMT, we must ensure 
that we capture and share standardized demographic, 
clinical, and biomarker-based characteristics that may 
influence outcomes, including comorbidities and 
social determinants of health (Supplementary Table 
e3). Many studies erroneously try to characterize 
responders to therapies by examining the disease 
course during treatment, yet identification of differen-
tial treatment effects requires that HTE assessment be 
based on trial data; the PATH statement provides rel-
evant guidelines that should be followed.
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