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ABSTRACT 

We review our recent advances on the design of multimode fibres with hundreds of spatial pathways for reduced 

differential mode delay in the C-band and on the development of adaptable spatial multiplexing techniques to 

enable scalability of all data pathways.  
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1. INTRODUCTION 

Space-division multiplexing (SDM) has emerged as a solution to overcome the capacity limit of single-mode 

fibres (SMFs). Among the possible SDM approaches, multimode fibres (MMFs) offer the highest spatial 

information density followed by coupled-core multicore fibres (MCFs) and with bundles of SMFs and 

uncoupled-core MCFs on the other end. However, the multitude of spatial modes introduces new linear 

impairments, namely group delay (GD) spread [1] given the interplay between differential mode delay (DMD) 

and linear mode coupling (LMC), and mode dependent loss (MDL) [2]. The GD spreading can be overcome 

using MIMO equalisation but with complexity scaling linearly with the total time spread while MDL introduces 

a fundamental loss of throughput. Therefore, multimode SDM fibres are designed with a graded-index core [3] 

to reduce the DMD and with a cladding trench to increase the confinement of the higher-order mode groups and 

in this way reduce MDL [1]. However, as it is shown further on, higher DMD and MDL must be allowed to be 

able to scale the number of guided modes. Ultimately, MDL will introduce a bound to the throughput achievable 

and DMD will set equalisation complexity for mode division multiplexing to approach such throughput bounds.  

In the following, we review our recent progress on the scaling of the number of modes by increasing the fibre 

core diameter and core-cladding contrast while optimising all the parameters in a trench-assisted graded-core 

refractive-index profile [2]. For these optimised fibres, the throughput scaling is investigated taking into account 

all major loss sources, Rayleigh scattering loss, macro-bend and coating loss. Finally, we review the equalisation 

complexity scaling required to approach such throughput bound [3]. 

2. FIBRE DESIGN AND OPTIMISED DMD 

Fig. 1 shows the fibre profile considered. There are six design parameters available: the core graded exponent, , 

the core and trench relative refractive index, nco and ntr, respectively, the core radius w1, the trench to the core 

distance, w2,, and the trench width, w3. To optimise over this 6-D space, one can exploit the parameters 

interdependence and on how these impact key figures of merit, including the number of modes, DMD and/or 

MBL. The number of modes N scales with w1 and nco, and is approximately given by 2N ≈ V2/2∙[ /( + 2)] – 

where V is the normalised frequency V = 2πw1/λ∙[nco
2 – ncl

2]. However, increasing w1 and/or nco leads to a 

degradation of key transmission characteristics, such as MDL and DMD. The larger w1 becomes in a 125 m 

cladding diameter (wider claddings are mechanically unreliable), the larger the macro-bend loss [4] as the 

confinement of the higher-order mode groups reduces. And the larger nco, the larger the Rayleigh scattering loss 

– modes with greater core confinement and so greater overlap with Ge-dopants experience greater scattering. 

Moreover, the larger nco, the larger DMD – the spread of modes effective index scales with nco [5]. For a given 

nco, DMD is 1st determined by the core grading exponent α [1, 5, 6], and 2nd by the trench dimensioning. The 
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Figure. 1. GI profile with cladding trench. r is the polar 

radial coordinate. 

 

   

 



latter plays a particular role in the mode delay slope with wavelength for the higher-order modes, as show in [6]. 

The trench dimensions (w2, w3, Δntr) are particularly interdependent. For example, relatively speaking, a narrow 

and deep trench can have the same impact on DMD as a wider and shallower trench. Having previously shown that 

(α, Δntr) form a convex space (given w1, w2, w3, nco) [6], a finer search step is applied to Δntr while a coarser step is 

applied to (w2, w3). Moreover, it was found that w2 = 2 m and w3 = 6 m allow for (quasi-)optimum DMD for 

the w1 and nco of most interest. In the following, (w2, w3) are not optimised and simply hold at w2 = 2 m and 

w3 = 6 m. All parameter search constrains in (1). 

To optimise for miminum DMD, the optimization function chosen is given by the maximum DMD (maxDMD) 

among the guided modes (here, linearly polarised modes, LP) over the C-band: 

maxDMD(p) = max(max|DMD(,)|), where p = [, nco, ntr, w1, w2, w3], and DMD(,) is the group delay 

difference between mode LP and the reference mode chosen (e.g., LP01). The objective function is subject to the 

constrains given in (1) over which exhaustive search is performed. The constraints in (1) aim to reflect the 

knowledge that near-parabolic are optimal (i.e., ), the limitations in fabrication, and the asymmetric capabilities in 

Ge- and in F-doping (i.e., for greater nco and |ntr|) [7]. The solutions to the waveguide defined by p are found 

using the vector finite difference solver developed in [8] – a grid step of 0.2m and grid size of 4∙(w1+w2+w3) is 

used (twice finer grids led to negligible change). The dispersion properties of pure, Ge-doped or F-doped silica have 

been modelled using the Sellmeier coefficients provided in [9].  

Fig. 2 shows maxDMD as a function of N-modes for several nco values – considering for optimum (, ntr) 

pair in each w1 case. For each nco there is a maxDMD plateau along which a N-modes increase without a 

maxDMD degradation. But note that for small N-modes (w1) the fixed trench position and width are no longer 

near optimum (instead closer, narrower and deeper trenches would be necessary). In any case, we seek to 

maximise N-modes, thus the results for smaller w1 are disregarded. Fig. 2 shows that higher nco allows an 

increasingly higher N-modes (bounded by the 125m cladding) but at the cost of a higher maxDMD – as 

expected. It scales from N = 210 (20 mode groups) with maxDMD ≈ 50 ps/km at nco
.102 = 1, through N = 630 

(35 mode groups) with 355 ps/km at nco
.102 = 2.5, and all the way up to N = 1128 (47 mode groups) with 

1014 ps/km at nco
.102 = 3. The practical impact of DMD on SDM throughput is well understood in terms of 

conventional MIMO equalisation complexity – fibres with maxDMD >150ps/km in Fig. 2 are potentially suited 

for mode group multiplexing exploiting the reduced intra-mode group DMD. 

3. CHANNEL THROUGHPUT  

The channel transfer function H[f] (for each optimised fibre) is a 2N×2N matrix calculated for a single span of 

100 km using the multi-section model in [10]. A 128-point frequency vector is considered to account for the 

frequency dependent response along the C-band (1530-1565 nm, 5 THz). The calculation of H considers all main 

linear impairments, this is Rayleigh scattering, MBL, DMD and LMC – along 100 fibre sections. The MBL 

corresponding to one 30 mm radius turn is applied in every fibre section. And finally, random LMC is 

introduced every fibre section given a core-cladding boundary displacement of 0.06m and a uniformly 

distributed azimuthal displacement (a stronger radial offset does not change the conclusions). Such core-cladding 

imperfections are typical of manufactured MMF fibres [7]. Fig.  3 shows a typical |H|2 in dB scale, where |.|2 is 

applied element-wise. As expected, the LMC strength is significantly higher between neighbouring mode groups 

– given closer mode effective index and stronger mode overlap. 

Using MIMO theory [11], information throughput is computed by decomposing H[f] into a set of parallel, 

independent scalar Gaussian sub-channels through a singular value decomposition (SVD). This is, 

 

Figure. 2. maxDMD [ps/km] as a function of N-modes for different nco. The last point in each line corresponds 

to w1 = 50m. Note that: w1 given N workable via N ≈ V2/4∙[ /( + 2)]. 
 



H[f] = U[f]S[f]V[f]H, where U and V are unitary matrices and S is a diagonal matrix whose diagonal elements 

1
[f], …, 2N

[f] are non-negative real numbers and whose off-diagonal elements are zero. Each non-zero 

eigenmode i
[f] can support a data tributary, i = 1, …, nNZ. In this way, a throughput bound T, assuming full 

channel state information, is given by: T = ∑f = -64:63 (5 THz / 128) ∑i = 1 : nNZ
 log(1 + Pi

[f]i
[f]2 / N0) bits/s, where 

P1
[f], …, PnNZ

[f] are the waterfilling power allocations Pi
[f] = ( + N0 / (i

[f])
2
)+ for frequency channel f, with  

chosen to satisfy the total power constraint ∑Pi
[f] = P, and (.)+ is zero if its argument is negative. We choose N0 

such that the lowest loss mode has a signal-to-noise (SNR) of 17 dB which is compatible with 100 km transmission 

in a power-limited scenario. 

Fig. 4 shows throughput as a function of the number of modes for several nco – same optimum fibres of 

Fig. 2. A maximum throughput around 35 Petabit/s can be observed (given the profile constraints in (1) and SNR 

conditions considered). Moreover, the spatial multiplexing gain significantly deviates from a 1-to-1 linear gain 

given the increase in MDL – driven mostly by Rayleigh scattering loss. Therefore, it might be more efficient 

(e.g. energy wise) to design for a lower nco and so lower number of modes. To reach the throughputs discussed, 

receiver memory (and so complexity) must accommodate the delay spread in the channel.  

4. EQUALISATION COMPLEXITY 

Conventional MDM transmission requires all guided modes to be detected for successful MIMO equalisation, 

otherwise outage probability becomes unpractical. Having the number of transceiver front-ends following that of 

fibres modes prevents the installation of many mode MMFs, since at begin-of-life it would not be economically 

viable to deploy transceivers with as many front-ends – a pay as you grow model similar to WDM systems 

would be desirable. We have recently proposed a transceiver architecture based on principal modes (PMs) which 

allows for the number of spatial tributaries and that of transceivers front-ends to scale equally [3]. Using PMs 

requires the exchange of channel state information (CSI) between the transmitter and receiver, making this 

architecture vulnerable to environment induced channel drift. In [3], we numerically investigate the use of PMs for 

a much larger number of spatial and polarisation modes, M = 342, under mode dependent loss and modal dynamics, 

and a varying rate of perturbations, while accounting for delay in the CSI feedback.  

In theory, PMs should allow for crosstalk free transmission within a given coherence bandwidth. However, mode 

dependent loss (arising from Rayleigh scattering, macro-bend and coating loss) and environmental induced 

channel drift reduce the orthogonality of the PMs. Therefore, channel equalisation will be required even when using 

PMs. To translate XT into the required multiple-input-single-output (MISO) array size per tributary, we count the 

interfering terms that need compensation to achieve a given target signal-to-noise ratio (SNR) – the weaker 

interfering terms are neglected. This is done by neglecting the smallest group of interfering terms that amounts 

to a XT below a certain threshold. In [3], the threshold was set to XT ≤ -20 dB such that after applying the 

required MISO, an SNR of 20dB is achievable should the channel additive noise allow. Fig. 5 shows the MISO 

array size for each PM pair in a group of NT-PM pairs, for a channel with a characteristic timescale of change 

env = 48s – this is, after env the fibre transfer matrix is fully decorrelated (simulation considers a 10km fibre with 

10m sections, applying drift to all sections [12]). In the figure, it can be seen that for groups with 22, 42, 82, 122 

and 182 PM pairs, single-input single-output (SISO) equalisation is sufficient for recovering the transmitted 

signals under the assumptions made in terms of XT and SNR. And, for groups with more than 182 PM pairs, 

MISO equalisation is necessary, although the maximum array size required for a given group, is at least an order 

of magnitude smaller than NT. Note that, a linear scaling of the MISO array size would be for every PM pair in a 

group of NT to require a MISO array size of NT, i.e. NT × NT MIMO.  

  
Figure. 3. Example H (at f = 0) for a fibre with 25 

mode groups. 

 

Figure. 4. Throughput as a function of N-modes 

for several nco – same fibres of Fig. 2. 

 

 



5. CONCLUSIONS 

We review advances on the design of graded-index trench-assisted multimode fibres supporting over 1000 LP 

modes (and twice as many polarizations modes) for minimum differential mode delay in the C-band. It was 

shown that over 400 LP modes can be supported within a maximum differential mode delay of 250 ps/km, 

typical of OM fibres at 850 nm. And that, for a given core-cladding contrast, the number of modes can be scaled 

by increasing the core radius without significant degradation of the differential mode delay.  

We have quantified how throughput scales with the number of modes taking into account the impact of 

Rayleigh scattering, macro-bend and coating loss, as well as linear mode coupling. It was shows that as much as 

35 Petabits/s over 100 km can be achieved assuming SNR ~17dB. However, for refractive-index contrasts 

beyond 0.04, throughput scaling was shown to enter a strong diminishing returns regime. 

The MISO array size requirements to approach such throughputs were also reviewed making clear the 

advantages of a principal modes-based approach. This architecture opens pathways to a transceiver architecture 

with the number of front ends following that of tributaries even when using a subset of the total number of 

modes available in the fibre. Importantly, with the total MISO complexity accounting for only a fraction of the 

equalisation complexity for full NxN-MIMO. 
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Fig. 5. MISO array size required per PM pair to detect all data tributaries in a NT-group, for an increasing 

number of tributaries NT. Results are sorted in ascending order for visualization purposes.  
 


