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Abstract

In this thesis we propose a joint model for competing risks and longitudinal data.

Our joint model provides a flexible approach to handle longitudinal data with com-

plicated structures. Our model consists of a multi-state model for the competing

risks and a general mixed model for the longitudinal outcomes, linked together by

some latent random effects. For the joint model of one longitudinal outcome, we

obtain the estimates of the parameters by maximising the marginal likelihood. We

also extend the joint model to take into account multiple longitudinal outcomes si-

multaneously. To alleviate the ’curse of dimensionality’ in integration, we propose

to use Bayesian inference and use the posterior means as the estimates of the pa-

rameters. The joint models are applied to two datasets, the English Longitudinal

Study of Ageing (ELSA) and the clinical data from the PhysioNet/Computing in

Cardiology Challenge 2019. For the second dataset, we also propose a two-stage

framework for disease early diagnosis. We construct a time-dependent loss func-

tion, and make diagnosis by minimising the expected loss.



Impact Statement

Longitudinal data and time-to-event data are frequently collected in various medical

studies, and the joint modelling of longitudinal and time-to-event data is a topic of

increasing importance. In the standard analysis of time-to-event data, it is assumed

that there is only one event of interest. However, in practice, there usually ex-

ists events that compete with each other, and approaches specifically developed for

modelling competing risks are of great interest. Methods developed in this thesis are

suitable for the joint analysis of competing risks and longitudinal data with a great

variety of structures. Moreover, the disease early detection framework proposed in

this thesis provides a novel approach for dynamic prediction of disease. Compared

with the approaches developed based on machine learning and deep learning algo-

rithms, our method has better interpretability and can be extended and applied to

various diseases.

Longitudinal data provide information on how the quantity of interest changes

over time. The analysis of longitudinal data is a classic topic and has played an

important role in research across different fields. Time-to-event data have informa-

tion on whether an event occurs and the time till the event occurs. Joint models

provide tools to study the two processes simultaneously when they are correlated.

A joint model consists of a sub-model for longitudinal data i.e. time-dependent

covariates, and a sub-model for time-to-event data. In this thesis, we model the

time-dependent covariates by extending the linear mixed model. Instead of assum-

ing a normal distribution for the error term, we relax this assumption and employ

a skewed-normal distribution. Furthermore, we take into account the temporal vari-

ation in the variance of the error term. The model we proposed offers a flexible
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way to characterize the time-dependent covariates with non-normal error terms or

asymmetric distribution shapes. In addition, we discussed the extensions of the joint

model to incorporate multiple time-dependent covariates. To alleviate the numerical

problems when computing the marginal likelihood in high-dimensional space, we

propose to use simulation-based estimation to approximate the marginal likelihood.

The methods proposed in this thesis provide useful extensions for the joint analysis

of time-dependent covariates and competing risks.

Disease progression prediction is a research topic of huge potential. In this

thesis, a new framework for the early detection of disease was proposed based on

joint modelling of competing risks and time-dependent covariates. The disease pro-

gression was described using different states. The multi-state model was used as

the sub-model for competing risks. To achieve early detection of disease we pro-

posed to make predictions by minimizing the expected loss. The expected loss was

defined using a time-dependent loss function and the transition probabilities, which

can be calculated from the joint model. This framework provides a novel approach

for disease dynamic prediction.
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Chapter 1

Introduction

Joint models provide a valuable method for statistical analysis of biomedical studies

with longitudinal and time-to-event data. A joint model consists of a model describ-

ing the trajectories of longitudinal outcomes and a survival model for time-to-event

data, both models are linked by random effects. In this way, joint models are able

to take into account the association between the two processes.

In this thesis, we use the joint model to study the relationship between lon-

gitudinal outcomes and disease progression. For disease progression, we consider

different health statuses as discrete states and model them using a multi-state model.

For the modelling of the longitudinal data, in order to improve the model’s capabil-

ity to capture complex structures in the data, we propose to use the mixed model.

Our approach extends the linear mixed model by relaxing the normal assumption

of the error term and employs a skew normal distribution instead. Additionally, we

take into account the temporal variation in the variance of the error term. We re-

fer to this model as the general mixed model. The model parameters are estimated

using maximum marginal likelihood.

We apply the joint models to analyse the English Longitudinal Study of Ageing

(ELSA) dataset, which consists of longitudinal and time-to-event data related to

cognitive impairment in the elderly population. We also apply the joint models to

the dataset from the PhysioNet/Computing in Cardiology Challenge 2019, which

consists of the clinical data of sepsis disease.

Furthermore, we aim to explore joint models of competing risks and multiple
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longitudinal outcomes. By including more than one longitudinal outcomes, we an-

ticipate enhanced predictions for disease progression. To alleviate the numerical

problems when computing the marginal likelihood in high-dimensional space, we

propose to utilise simulation-based estimation to approximate the marginal likeli-

hood. However, it should be noted that this approach can introduce instability to

the optimisation process. In order to overcome this issue, we introduce Bayesian

inference and specify weakly informative priors. Therefore the posteriors converge

towards the maximum likelihood estimates (MLE). The details of this approach will

be presented in Chapter 6. It is important to note that this thesis remains focused on

the frequentist approach and does not involve a transition to the Bayesian paradigm.

In the study of disease progression, disease diagnosis is an important task. In

this thesis, we propose a framework for disease early diagnosis based on the joint

model. We construct a time-dependent loss function for the sepsis early diagnosis

problem, then perform diagnosis by minimising the expected loss. We apply the

joint model of competing risks and time-dependent covariates to the clinical data of

sepsis. Then we illustrate the disease early diagnosis framework using this model.

The rest of this chapter is organised as follows: In Section 1.1, we will first

introduce the concept of longitudinal data and time-to-event data in medical studies.

Then we will briefly discuss the disease diagnostic problem, with a specific focus

on the sepsis diagnostic problem. In Section 1.2, we will provide a brief introduc-

tion to the joint model used in this study. In Sections 1.3 and 1.4, we will introduce

competing risks and informative censoring. In Section 1.5, we will provide an

overview of various methods employed in disease diagnosis. Finally, in Section

1.6, we will introduce the scope of the research. We will also briefly describe the

joint model used in this study and our proposed disease early diagnosis framework.
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1.1 Background

Longitudinal data consists of repeated measurements of the quantity of interest,

therefore it has the information of how the quantity changes over time. In medical

studies, it is common to collect longitudinal outcomes that are associated with dis-

ease progression. Changes in the longitudinal outcomes can reflect the development

of disease over time. Time-to-event data tracks the time till the occurrence of the

event of interest, e.g. the time till death. It also provides information on the disease

progression. In some medical studies, both longitudinal and time-to-event data are

available, and there is growing interest in characterising the relationship between

both processes. For instance, in the English Longitudinal Study of Ageing (ELSA),

the cognitive functions are tested at each follow-up. The scores of the cognitive tests

are recorded, along with the time to death. With the information provided by both

longitudinal data and the time-to-event data, it can be investigated which cognitive

test is most relevant to cognitive functions. The trajectories of the cognitive tests

can also be taken into account with the presence of death, allowing for dynamic

predictions of an individual’s cognitive function based on their past observations.

Apart from the study of chronic diseases, many clinical datasets of acute illness

also consist of longitudinal data and time-to-event data. The dataset provided by

the PhysioNet/Computing in Cardiology Challenge 2019 consists of clinical data of

patients who have sepsis. Sepsis is a life-threatening condition caused by the body’s

overreaction to infections. When the body reacts to infection, white cells travel to

the infection site, and this will trigger inflammation. However, the inflammation can

become widespread in the body if the infection is severe or the immune system is

weak. It might interrupt the blood flow, resulting in a decrease in blood pressure and

stopping oxygen from reaching the organs and tissues, and it might further cause

severe organ damage and death. Sepsis is a global health crisis. The mortality of

sepsis is between 20% to 50%, recorded in Nasir et al. (2015). According to the

World Health Organization et al. (2020), it kills 11 million people around the world

each year. Everyone can get sepsis, but certain groups of people are at higher risk,

especially children, pregnant women, and people with chronic diseases. Sepsis can
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present itself with various symptoms, for example, fever or low temperature and

shivering, muscle pain, increased heart rate, weak pulse and low blood pressure,

etc.

Sepsis is often diagnosed by testing temperature, heart rate, breathing rate and

blood. Early detection of sepsis is very important. Studies found that during the

mandated emergency care for sepsis, each hour of delayed treatment is associated

with a 4% to 8% increase in mortality. To help diagnose sepsis as early as possible,

new clinical criteria were proposed. It was recommended to diagnose sepsis based

on the score named Sequential Organ Failure Assessment (SOFA), which assigns

a grade of abnormality to each organ system. More details about this score can

be found in Vincent et al. (1996) and Lambden et al. (2019). Other organ failure

scoring systems have also been developed and evaluated in the context of sepsis.

In a study conducted by Khwannimit et al. (2018), the authors compare the SOFA

score with two other sepsis criteria. The computation of the SOFA score requires

various clinical and laboratory variables, including but not limited to Pao2 (arterial

oxygen partial pressure), platelet count, creatinine level, and bilirubin level. How-

ever, despite the availability of scoring systems like SOFA, there is still a need for

early sepsis detection. Statistical models and machine learning methods can play

a crucial role in this regard, as they can simultaneously consider multiple variables

and provide a quantitative risk assessment for patients suspected of having sepsis.

In this study, our aim is to develop methods for analysing disease progres-

sion using longitudinal data. We focus on developing a predictive model that can

estimate an individual’s health status and assess the potential occurrence of the dis-

ease of interest based on their health records. Additionally, we aim for the model

to capture the correlation between the longitudinal data of interest and the disease

outcome, thereby providing explanatory insights.

We propose to use the joint model to analyse longitudinal data and time-to-

event data. We use discrete states to describe an individual’s health status and utilise

a multi-state model to capture the transitions between different states. For the longi-

tudinal data, we extend the linear mixed model by relaxing the normal assumption
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of the error term. Instead, we use a skew normal distribution to model the error

term. Additionally, our model allows for variance of the error term changes with

respect to time. These extensions enable our model for longitudinal data to cap-

ture more complex structures and offer broader applicability. We present the joint

models to the cognitive function data (ELSA) and the clinical data of sepsis.

For the problem of early diagnosis of sepsis, we propose a two-stage frame-

work. We consider the diagnosis of ’sepsis’ and ’non-sepsis’ as competing events.

In the first stage, we fit a joint model of competing risks and time-dependent co-

variates. To handle the early diagnosis, we propose a time-dependent loss function,

which encourages early diagnosis and penalises late diagnosis. In the second stage,

we predict the labels of sepsis by minimising the expected loss.

The joint model and sepsis early detection framework we proposed can be

applied to other datasets with both longitudinal and time-to-event data. Different

sub-models for the time-dependent covariates can be selected, and different time-

dependent loss functions can be designed based on different needs.

1.2 Joint Modelling of Time-dependent Covariates

and Time-to-Event Outcomes
Joint model, also known as shared-parameter model, is a popular statistical ap-

proach used in the analysis of longitudinal and time-to-event data. The main ad-

vantage of joint models is their ability to utilise longitudinal data to improve the

prediction or estimation of event occurrence. At the same time, the longitudinal

data can provide additional insights into the underlying disease progression or risk

factors that influence the event of interest.

The standard Cox model can be extended to take into account time-dependent

covariates when modelling the time-to-event data, but it has some limitations. One

of the main challenges is the assumption that the time-dependent covariates are

external, which are covariates that develop or exist independently of a patient’s

survival. For example, age and gender are external covariates. However, the time-
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dependent covariates that we are of interest in the disease diagnosis problem violates

this assumption. They are generated by the stochastic process of the individual,

i.e. they are internal covariates. In addition, it is unavoidable to have informative

dropouts, and this process should not be ignored (Rizopoulos, 2012). For above

situations, joint models provide a desirable solution.

The basic idea behind joint models is to model the relationship between lon-

gitudinal and time-to-event outcomes simultaneously, taking into account the fact

that these outcomes may be correlated. The joint modelling consists of using two

sub-models: a hazard model for the time-to-event outcome and a mixed model for

the time-dependent covariates. The two sub-models are linked by shared random

effects, see Rizopoulos (2012) for a detailed introduction to joint models.

The advantage of applying the joint model is two-fold. First of all, it provides

an approach to take into account a model for time-dependent covariates when the

primary interest is modelling the survival time. Secondly, it is able to model the

longitudinal data more accurately since it can take into account the effect of the

associated events. The use of joint modelling reduces the bias in the treatment

effects estimates (Ibrahim et al., 2010).

The earliest applications of joint models was in the field of HIV research, such

as works by De Gruttola and Tu (1994) and Faucett and Thomas (1996). Since

then, joint models have been applied in a wide variety of fields, including cancer

research, cardiovascular disease, and mental health. There is an extensive collection

of work on joint modelling, and there are several reviews on recent developments,

e.g. Papageorgiou et al. (2019) and Lawrence Gould et al. (2015). For the modelling

of time-dependent covariate, Diggle et al. (2002) summarised and discussed the

common models for different types of longitudinal data, for example, the linear

models and the generalised linear models.

Various extensions of the basic joint model are proposed. For example, the

extension of longitudinal and survival components to be multi-dimensional allows

for more information to be taken into account simultaneously, see Chi and Ibrahim

(2006) and Lin et al. (2002). The extension of the association structures between
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the time-to-event data and the time-dependent, see work by Mauff et al. (2017) and

Andrinopoulou et al. (2014). The extension of the time-to-event outcome with a

single event type to multiple recurrent or competing events, see work by Huang

et al. (2011) and Elashoff et al. (2008).

The extensions of the mixed-effects model of the time-dependent covariates

are of interest as well. Gibbons et al. (2010) explored the linear and nonlinear

generalised mixed-effects models and their alternatives for the longitudinal data.

The generalised linear model assumes that the outcome follows a distribution from

the exponential family. However, in practice, the outcome often has complicated

structures, and the distributions from the exponential family might not suit the data

well.

In addition, it is common to assume that the residuals have constant variance

in linear mixed models. However, in practice, this assumption can be violated.

When examining the trajectory of an outcome over time, we may observe that both

the mean and variance of the outcome vary with certain predictor variables. For

example, in the ELSA data, we find that the mean number of animal names people

can recall decreases as people age, while its variance also decreases. This suggests

that the variance of the error term in the outcome may not be constant over time

and may be influenced by the predictor variables of interest. Therefore, we take

into account the changes in variance over time to improve the generalisability of the

model we proposed for disease diagnosis. Accounting for changes in the variance

over time can lead to more robust and accurate diagnostic models because it allows

the model to capture the inherent variability in the disease progression over time.

By explicitly modelling the changes in the variance over time, the proposed method

can provide more accurate predictions for new patients or populations. It may also

help identify changes in disease progression that are not captured by diagnostic

models that assume constant variance.
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1.3 Competing Risks

In standard survival analysis, individuals under study are assumed to be at risk of a

single event. However, in practice, usually more than one event may occur, and the

occurrence of one of the events prevents other events from occurring. We refer to

these events as competing events. For example, in medical research, the deaths of

individuals due to different causes can be considered as competing events, and out

of these events, only the first is observable.

Models that consider the dependencies between competing risks are of great

interest. One approach proposed is to directly model the dependence between event

times by specifying a joint distribution using a copula. The details can be found in

Zheng and Klein (1995).

Another approach is to model the joint distribution of the event times and

the corresponding event using the cause-specific hazard function, see Austin et al.

(2016). In particular, this approach can be considered as a subclass of multi-state

models. In a multi-state model, an individual can move between several distinct

states over time, and the transitions can be affected by one or more predictor vari-

ables. With the presence of competing risks, an individual can experience different

types of events that prevent him or her from transitioning to other states. There-

fore, the competing risks can be modelled with a process that starts from an initial

state and transit to several different endpoints. In this study, we use the multi-state

model framework to fit a parametric competing risks model. This framework pro-

vides clear methods for selecting and estimating parametric models that describe the

transition probabilities between different states as a function of time and covariates.

Cox regression model can also be extended to accommodate dependent cen-

soring, using the Inverse Probability of Censoring Weighted (IPCW) approach, see

Collett and Kimber (2014). IPCW involves assigning weights to the censored ob-

servations based on the probability of the censoring time given the observed data.

These weights are used to adjust the analysis of the Cox regression. However, in

this thesis, we focus on modelling competing risks using multi-state models, which

have more flexibility than the Cox regression model, as they can handle interval-
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censored data. Additionally, our proposed method can be illustrated using a three-

state graph, which facilitates better understanding and interpretation by clinicians

and other audiences.

Ongoing research is currently being conducted in the field of developing

survival models for competing risks, such as work by Ishwaran et al. (2014),

Monterrubio-Gómez et al. (2022), and Sparapani et al. (2020), focuses on incor-

porating flexibilities in various aspects, such as non-linear effects of covariates,

time-dependent covariates, variable selection, and missing data.

1.4 Informative Censoring

Informative censoring is a common issue in survival analysis, where the censoring

process is related to the outcome of interest. There are multiple reasons why in-

formative censoring can arise, such as selective dropout from a study or competing

risks. Selective dropout can occur when certain participants are more likely to drop

out of a study in a non-random manner, such as those with more severe symptoms.

Competing risks, on the other hand, refer to events that prevent the observation of

the outcome of interest, such as death or other illnesses, and can lead to informative

censoring if they are related to the unobserved outcome. For example, in a study

examining the effect of cancer treatment on the time to cancer recurrence, patients

who die before experiencing a recurrence may be censored, which can result in in-

formative censoring. Addressing informative censoring is crucial to obtain accurate

and reliable estimates in survival analysis, and various statistical methods have been

developed to account for it. For a concise explanation of how dependent censoring

can be incorporated into survival data modelling, see Collett and Kimber (2014).

Additionally, Schluchter (1992) provides a comprehensive review of approaches

proposed for analysing longitudinal data with informative censoring.

The sepsis diagnosis problem involves analysing the time of onset for sep-

sis during a patient’s hospital stay, using data extracted from electronic medical

records. While it is possible for patients to develop sepsis after leaving the hospital,
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our main interest lies in detecting it as early as possible during their hospitalization.

Moreover, since sepsis is an acute disease, individuals in the sepsis problem are

observed on an hourly basis. It is unlikely for them to develop sepsis within the

timeframe of this study. The competing event of hospital discharge or change in

medical care can prevent the event of interest (onset of sepsis) from occurring as

the first event, resulting in informative censoring. To address the sepsis diagnosis

problem, we propose to use a competing risk model in the multi-state model frame-

work. This approach is consistent with the statistical methods reviewed by Putter

et al. (2007). This tutorial also covers practical scenarios in the medical field where

competing risks may occur.

1.5 Disease Diagnosis

Disease diagnosis has been an active research area in medical and healthcare com-

munities for decades. In recent years, there has been a growing interest in devel-

oping accurate and efficient models for disease diagnosis, leveraging the increasing

availability of electronic health records (EHRs), medical imaging data, and genomic

data.

Since disease diagnosis can be simplified as a classification problem, i.e. given

the historical observations, whether a patient has a certain disease or not, all classi-

fication methods have the potential to be used for disease diagnosis.

Using time series classification with EHRs is a commonly employed method

for disease diagnosis. EHRs contain a wide variety of medical data, such as patient

demographics, clinical notes, laboratory results, medication history, and diagnostic

codes. These data are typically recorded over time, which makes EHRs well-suited

for time-series analysis. Disease diagnosis can be achieved using time-series clas-

sification techniques. Papers that show the utilisation of time-series classification

for disease diagnosis include works such as Mansour et al. (2021) and Al-Hadeethi

et al. (2020).

It is possible to address the challenge of diagnosing sepsis using the time series
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classification method. This involves modelling the repeated observations of patients

over time as a time series. Relevant information, such as mean, variance, and auto-

correlation, can be extracted from the data to aid in the classification process. The

hourly diagnosis provided by clinicians can be used for classification at each corre-

sponding time point. One important benefit of this approach is its ability to capture

complex temporal dependencies within the data.

In the context of binary classification, individuals are categorised into two

groups: those who have sepsis and those who do not have sepsis. However, there

may be some individuals who are still under observation, and it is not yet clear

whether they have sepsis or not. These individuals have the potential to experi-

ence the onset of sepsis in the future and should be treated differently from those

who do not have sepsis. In survival analysis, this is referred to as ”right censored”

since the event of interest (i.e., the onset of sepsis) has not occurred at the time

of classification. Unfortunately, the time-series classification approach overlooks

this aspect. Moreover, time series classification methods focus on providing predic-

tions at predetermined time points, therefore the status of individuals between those

time intervals are neglected. However, in practice, it is common for the exact time

observation assumption to be violated, meaning that the exact occurrence time of

the event is unknown. This can introduce measurement errors, and the predictive

performance of time series classification methods may be affected.

We propose a solution to the sepsis diagnosis problem by using survival anal-

ysis. Instead of treating each diagnosis of an individual at each time point as an

independent binary outcome, we focus on predicting the time of onset of sepsis.

The sequence of diagnosis is transformed into time-to-event data, which reflects the

time of sepsis onset for each individual. Individuals who are non-septic are consid-

ered to be at risk of sepsis until their last diagnosis indicates that the individual does

not have sepsis. This approach takes into account the dependencies of diagnosis

within each individual, as well as the presence of right-censoring. Furthermore, our

proposed joint modelling framework accommodates interval censoring, eliminating

the need for exact transition times.
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Different from the time series classification approach, the proposed approach

in this thesis is to utilise a joint model for modelling both the time-dependent covari-

ates and the time-to-event data. The joint model is able to model multiple correlated

time-dependent covariates jointly with other individual-level covariates, such as de-

mographic information, clinical history, and other clinical measurements, to predict

the likelihood of a disease or event occurring. This approach allows for the captur-

ing of complex relationships between different covariates and the disease outcome,

accounting for individual-level variability and correlation structures within and be-

tween different time-dependent covariates.

Leveraging the benefits of modelling the longitudinal data as time-series, the

joint model can be further enhanced. For example, Yue and Kontar (2021) extend

the joint model by combining the Cox model and the multivariate Gaussian con-

volution process for time series modelling. Additionally, Recent developments of

applying joint models to personalised predictive modelling, such as the work by

Papageorgiou et al. (2018) and Rizopoulos (2011) shows that the joint models have

the potential to be used for disease early diagnosis.

Landmarking is another technique used in survival analysis for dynamically

predicting the risk of an event for an individual. The basic idea is to divide the

follow-up time into a series of landmark times and then compare the survival distri-

butions of individuals who have experienced the exposure of interest before a given

landmark time with those who have not. Examples of studies that demonstrate the

use of the landmarking approach for dynamic prediction include: Van Houwelin-

gen and Putter (2008); Van Houwelingen (2007). The landmarking approach relies

on exact observation of the transition time, but this may not always be feasible in

practice. In contrast, the joint modelling approach proposed in this thesis allows for

interval censoring and does not have strict requirements for exact transition time,

therefore offering more flexibility.

Apart from aforementioned methods, the application of machine learn-

ing offers advanced algorithms capable of analysing complex biomedical data.

Kononenko (2001) provided a thorough overview of the history of applying ma-
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chine learning methods to medical diagnosis. There are several machine learning

methods that are commonly used for disease diagnosis: Support Vector Machines

(SVM) is a binary classification algorithm that finds the optimal hyperplane in a

high-dimensional space to separate different classes. SVM has been successfully

applied to diagnose diseases such as breast cancer, diabetes, and heart disease,

see works such as Sartakhti et al. (2012) and Orru et al. (2012). Artificial neural

network (ANN) is a biologically inspired network of interconnected nodes that can

learn and make predictions on data. It is capable of learning non-linear relationships

between variables and can handle large datasets, see works such as Baxt (1995) and

Abiodun et al. (2018). In the context of sepsis early diagnosis, similar methods can

be employed. For instance, studies like Kok et al. (2020) and (Li et al., 2019) utilise

neural networks to address this problem.

Rajula et al. (2020) discussed and compared the use of machine learning al-

gorithms and statistical methods in medical problems. Compared with statistical

methods, machine learning algorithms are more data-driven. In order to use tra-

ditional statistical methods, strong assumptions are usually required, for instance,

the distribution of the error terms, the structure of the linear predictor, and the pro-

portional hazards. Machine learning algorithms can utilise all information, while

statistical methods usually require a priori selection of the variables.

In summary, both machine learning and statistical methods have been widely

used for disease diagnosis. Kononenko (2001) discussed the requirement for a

machine learning algorithm to be a satisfying medical diagnosis system. Including

good performance, dealing with missing data, reduction of the number of tests,

transparency of diagnostic knowledge and explanation ability. While machine

learning models can identify patterns and relationships that are not easily visible

to human experts, the lack of interpretability can limit their usefulness in certain

domains, such as healthcare, where interpretability and explainability are critical

for decision-making and trust-building. Joint modelling is a promising approach

for disease diagnosis, particularly for predicting the risk of dementia using longitu-

dinal data. However, further research is needed to evaluate the performance of joint
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modelling in other disease diagnosis scenarios.

1.6 Scope of Research

In this thesis, we aim to develop methods for analysing disease progression using

longitudinal data. We explore joint models of competing risks and multiple longi-

tudinal outcomes. In addition, we present a novel framework for disease diagnosis

utilising the joint model. In this section we provide a brief overview of our work,

focusing on explaining and clarifying key methodological choices inherent to our

research.

Based on GAMLSS proposed by Stasinopoulos and Rigby (2008), we extend

the sub-model for the longitudinal data by extending the distributions of response

variables to distributions controlled by three parameters: the location, scale, and

shape parameters. And we allow the parameters to be linked with other covariates

in any shape of the links. We further extend the joint model for competing risks and

one time-dependent covariate to multiple covariates by assuming that the random

effects of different response variables are correlated.

In this study, we focus on parametric models for the random effects model

because they are easy to specify and estimate. While nonparametric models could

be chosen to model more complicated structures, we limit ourselves to parametric

models for simplicity. As for the choice of error terms, we opt for the skew nor-

mal distribution. This distribution encompasses the normal distribution, allowing

for easy comparison with normal alternatives. In our analysis, we utilise two ran-

dom effects: the random intercept and random slope. These random effects have

relatively simple structures and can be easily interpreted. However, for future stud-

ies, more complex random effects models can be explored. For example, when

analysing clinical data on sepsis, we only consider individuals from a single hospi-

tal. In the Physionet Challenge 2019, data from different hospitals are available. To

increase the generalisability of the disease diagnosis model, we could incorporate

random effects to capture the variation at the hospital level.
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We demonstrate the application of a joint model incorporating a general mixed

sub-model, using both the ELSA data and clinical data for sepsis. Furthermore, we

illustrate the extension of joint models to accommodate multiple time-dependent

covariates using the clinical data for sepsis.

Given the continuous nature of disease progression, we utilised the continuous-

time multi-state model as the sub-model within the joint model framework. We

assume the transition intensities change continuously with respect to time. Due

to this assumption and the incorporation of time-dependent covariates in defining

these intensities, the Markovian assumption is violated. However, within the gen-

eral MSM framework, there is currently no established method to directly derive

transition probabilities P(t1, t2) for a changing transition intensity in time interval

(t1, t2). Therefore we adopt piecewise constant approximation to compute the transi-

tion probabilities. The piecewise constant approximation method involves dividing

a continuous time interval into smaller discrete time intervals, then it assumes the

transition intensities are constant within the time intervals. The approximation of

transition probabilities over a continuous time interval is achieved by multiplying

the transition probabilities corresponding to each time interval.

For the joint model with one time-dependent covariate using a general mixed

model, the parameter estimates are obtained by maximising the marginal likelihood.

The marginal likelihood is approximated using the Gaussian-Hermite quadrature

method. However, if we want to extend it to incorporate additional time-dependent

covariates, the number of random effects increases, and this requires the calculation

of integrals in a high-dimensional space. This is where the ’curse of dimension-

ality’ comes in. We propose to utilise simulation-based estimation to approximate

the marginal likelihood. However, this introduces instability to the computation of

likelihood, leading to unreliable results of the optimisation process. To alleviate this

problem, we introduce Bayesian inference and specify weakly informative priors.

Ideally, the posterior distributions should converge towards the maximum likeli-

hood estimates (MLE). The estimates of parameters can be obtained by calculating

the posterior mean. The data analysis is performed using the software WinBUGS
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1.4.

For the data pre-processing technique employed in this thesis, we applied the

rescaling technique to avoid potential numerical problems. In addition, we per-

formed forward imputation to the clinical data of sepsis. In the analysis of sep-

sis data, we have access to seven distinct time-dependent covariates: heart rate

(HR), systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood

pressure (DBP), respiration rate (Resp), pulse oximetry (O2Sat) and temperature

(Temp). However, it is important to note that these covariates exhibit varying de-

grees of missingness. The observations were recorded at an hourly frequency, but

there are missing records for some of the covariates. This could be due to constraints

in medical resources, limitations in the measuring technique, or clinical decisions

not to monitor certain covariates for specific individuals on an hourly basis. The

following table presents the missingness rate for each covariate. The missingness

rate is calculated by dividing the count of missing values by the total number of

observations in the dataset.

Covariates HR SBP MAP DBP Resp O2Sat Temp

Missingness Rate 0.077 0.152 0.102 0.481 0.097 0.120 0.662

In the variable selection/model selection process, we employ the Akaike Infor-

mation Criterion (AIC) to identify the optimal pair of time-dependent covariates for

prediction purposes. But it is important to acknowledge that AIC is based on the

likelihood function, therefore, is influenced by the sample size. Consequently, com-

paring AIC values across different sample sizes may lead to unfair comparisons.

To address this issue and maintain equivalent sample sizes, we performed for-

ward imputation for each covariate. However, it is crucial to recognise that this

imputation method introduces bias into the estimates. In order to minimise the im-

pact of the bias introduced, we conducted the data analysis solely on the covariates

heart rate (HR), mean arterial pressure (MAP), and respiration rate (Resp). These

specific covariates exhibit relatively lower missingness rates in comparison to the

other variables.
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1.7 Outline
The rest of this report is organised as follows. In Chapter 2, we will describe the

English Longitudinal Study of Ageing (ELSA) data and the clinical data of sepsis

provided by the PhysioNet/Computing in Cardiology Challenge 2019. We will also

introduce the task and the evaluation method used in sepsis early diagnosis problem.

Chapter 3 presents the competing risks, the multi-state model, the mixed model, and

the joint model. In Chapter 4, we present our joint model where the longitudinal

outcome is modelled by the general mixed model with skew normal distribution,

and allows for the time-dependent variances. We apply this model to the English

Longitudinal Study of Aging (ELSA) data. We show that this model outperforms

the model which assumes the error term follows normal distribution. In Chapter

5, we introduce the statistical decision theory. We define the time-dependent loss

function, and show that the diagnosis of sepsis can be made by minimising the

expectation of this loss function. Then we show that to calculate the expected loss,

the joint model of the competing risks and the time-dependent covariates is needed.

Chapter 6 presents the fundamental aspects of Bayesian inference. We illustrate

the joint model with the sub-model for multi-variate time-dependent covariates on

the clinical data of sepsis. Furthermore, we illustrate the early sepsis diagnosis

framework on the clinical data. Finally, in Chapter 7, we discuss challenges in this

study and potential future developments that can improve the predictive capabilities.



Chapter 2

Data

The extension of joint models has received considerable attention and has been

subject to extensive exploration. By relaxing the assumption of the error term of

the mixed model, the extension opens up new possibilities and potential for the

joint model. The combination of minimizing expected loss and survival analysis

represents a novel and innovative approach, combining two distinct methodologies

into one framework.

For clinicians, the extended joint model provides a valuable tool for studying

associations between covariates of interest and the specific disease under investiga-

tion. Furthermore, the proposed two-step sepsis early diagnosis framework can also

be applied to the diagnosis of various other diseases.

In this thesis, we demonstrate our method by applying it to two datasets: the

English Longitudinal Study of Ageing (ELSA) and the clinical data of sepsis from

Physionet Challenge 2019. With the ELSA data, We demonstrate the effectiveness

of the proposed joint model by illustrating its application with one time-dependent

covariate. Compared with the sepsis data, the ELSA study exhibits a lower fre-

quency of observations, resulting in reduced computational costs. Initially, we ap-

ply the joint models we have developed to the ELSA data and conduct simulation

studies to evaluate the model’s performance. Building upon this, we extend the joint

model to accommodate two time-dependent covariates simultaneously, and we il-

lustrate this on the clinical data of sepsis.

In this chapter, we will introduce each of the two datasets respectively.
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2.1 English Longitudinal Study of Ageing (ELSA)

The English Longitudinal Study of Ageing (ELSA) is a UK-based panel study of the

population aged ≥ 50 years. Individuals were followed up every two years, and in-

formation on economic status, cognitive function, and mental health was collected.

The dataset can be accessed online (www.esds.ac.uk). More information about this

study was introduced in Steptoe et al. (2013).

Wave 1 of the ELSA study involved recruiting 12,099 individuals, marking

the initial phase of data collection. This phase focused on gathering baseline infor-

mation from participants, encompassing demographic data, health status, lifestyle

factors, social networks, economic indicators, and psychosocial measures. Because

of the computational challenges of our methods, we use a random subsample of

1000 individuals for our current analysis. The same dataset was used in Van den

Hout and Muniz-Terrera (2016) as well.

In our study, the sample size was determined considering the limitation of

computation time. The data analysis on the ELSA data is conducted on a High-

Performance Computing (HPC) system, and as the model complexity increases,

the time required for model fitting also increases. To ensure that the model fitting

process can be completed within the allocated 72-hour usage limit, a sample size

of 1000 was chosen. This sample size strikes a balance between obtaining a suffi-

ciently large sample for meaningful analysis and accommodating the computational

constraints associated with more complex models.

The sample we used consists of 540 women and 460 men. The age of indi-

viduals ranges from 50 to 89 years. Table 2.1 shows the observation frequencies

in the provided sample. The number of individuals who have been observed 1, 2,

3, 4, 5, 6 times are 179, 141, 127, 467, 5 respectively. Table 2.2 displays the time

intervals between observations and their respective frequencies. It is obvious that

the majority of individuals have a follow-up time of two years.

In the ELSA study, cognitive performance was measured in several different
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ways. In this study, we have an interest in the outcomes of two tests: the number of

animal names the individual can write out within 1 minute, and the number of words

the individual can recall from a list of 10. The two graphs in Figure 2.1 demonstrate

the trajectories of both scores of 30 randomly selected individuals. The trajectories

show that the process of recalling animal names and words is subject to noise., but it

is obvious that both scores decline as the age of people increases, i.e. the cognitive

function declines when people grow old.

Our analysis focuses on investigating the association of a cognitive test with

the onset of cognitive impairment in the presence of death as a competing risk. We

define the states of cognitive impairment based on the number of words recalled: if

the number of words is greater than 0, then the state is s = 1 (healthy); if the number

of words is 0, then the state is s = 3 (severe cognitive impairment). The state s = 2

is defined as the death state. The three-state model is illustrated in Figure 2.2. In

this application, we consider the death state and the severe cognitive impairment

state as competing risks, and we model the number of animal names recalled as a

numerical longitudinal outcome. Table 2.3 displays the frequencies of transitions

from one state to another. From this table, it is clear that the number of individuals

who have experienced death is 131, while the number of individuals classified as

having severe cognitive impairment, according to our definition, is 111.

In the data pre-processing, we excluded 81 individuals who were interviewed

only once. As a result, we illustrate the joint models on a sample with size N = 919.

To mitigate numerical issues, in the data analysis, we rescale the age variable by

subtracting 49 years and dividing it by 10.

Observation Times 1 2 3 4 5 6
Number of Individuals 81 179 141 127 467 5

Table 2.1: The observation frequencies in the ELSA data, indicating the number of individ-
uals who have been observed 1, 2, 3, 4, 5, and 6 times.
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Observation Time Interval (Years) 1 2 3 4 5 6 7 8 9
Frequency 226 1987 384 65 18 17 13 6 4

Table 2.2: The time intervals between observations and their respective frequencies in the
ELSA data.

State Transition to State 1 Transition to State 2 Transition to state 3
1 3412 131 111

Table 2.3: Frequencies of transitions from one state to another in the ELSA data.
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Figure 2.1: Left graph: Trajectories of number of animal names recalled by 30 randomly selected individuals; Right graph: Trajectory of number of
words remembered by 30 randomly selected individuals.
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Figure 2.2: Three-state model for competing risks of death and severe cognitive impair-
ment.

2.2 Clinical Data for Early Prediction of Sepsis
In this section, we will describe the clinical data we used in the study of early pre-

diction of sepsis and the assessment of the performance of the models. In addition,

we will introduce the task of early sepsis diagnosis.

2.2.1 Data Description

The dataset used in this study is from the Physionet Challenge 2019, a competition

focused on developing algorithms for the early detection of sepsis. The data were

collected over the decades in the United States. The dataset consists of the clinical

records of 20,336 and 20,000 ICU patients from two distinct hospitals (hospital A

and B respectively). For all patients, the demographic data, vital signs and labora-

tory values were recorded hourly. More details about this competition and dtatset

can be found in Reyna et al. (2019a) and Reyna et al. (2019b). The dataset is acces-

sible online (https://physionet.org/content/challenge-2019/1.0.0/).

The clinical data consists of 6 demographic variables, including age, gender,

the types of ICU and the length of time staying in the ICU etc. The 20,336 patients

from hospital A are from age 18 to age 89. Out of all the individuals, 8952 are

female and 11384 are male. The individuals in the dataset were followed up for 27

hours on average.

For each individual, 7 vital signs were recorded respectively. The vital signs in-

clude Heart rate (HR), Pulse oximetry (O2Sat), Temperature (Temp), Systolic Blood

Pressure (SBP), Mean arterial pressure (MAP), Diastolic Blood Pressure (DBP),

https://physionet.org/content/challenge-2019/1.0.0/
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and Respiration rate (Resp). The trajectories of these vital signs are shown in Figure

2.4 and Figure 2.4. We present the trajectories of 5 individuals randomly chosen

from the dataset. Each of the vital signs characterize different features of the body,

therefore the ranges of each variables are different. In addition, the trajectories

are varied in the behaviours. For example, in general the heart rates of individuals

increase with time, while the pulse oximetry decrease with time. Furthermore, their

variances changes with respect to time in various ways.

To explore the relationships and dependencies among various vital signs, a

pairwise scatter plot matrix of the initial recordings of 7 vital signs for 500 randomly

selected individuals is shown in Figure. This visualisation highlights the strong

correlation between systolic blood pressure (SBP), diastolic blood pressure (DBP),

and mean arterial pressure (MAP).

For each individual, 26 laboratory values were recorded as well. However, the

measurement of these values are much more complicated than vital signs, and the

low-frequency of observations made it difficult to treat these values in the same way

as the vital signs. In Figure 2.6 and 2.7, we present the trajectories of 8 laboratory

signs of 5 randomly chosen individuals. It is obvious that compared with the vital

signs, the frequencies of observations of lab signs is much lower. There also exits a

lot of individuals that have no records of some of the laboratory values.

For each individual the time point tsepsis represent the onset time of sepsis. And

for septic individuals, there is sequence of binary labels is used to indicate whether

an individual has sepsis at a corresponding time point (SepsisLabel = 1) or does

not have sepsis at that time point (SepsisLabel = 0). For non-sepsic individuals, the

label sequence will always be 0. It is important to note that the status of whether an

individual has sepsis or not before the observation of the onset time of sepsis (tsepsis)

is unknown. Therefore, the definition of the SepsisLabel is artificially designed to

represent this information. Here we adopt the definition used in the PhysioNet

Challenge 2019, where an individual is considered to have sepsis starting from 6

hours before the onset of sepsis. We present the relationship between SepsisLabel

and tsepsis as follows:
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SepsisLabel = 1, if t ≥ tsepsis −6

SepsisLabel = 0, if t < tsepsis −6

The aim of the study is to diagnose septic individuals as early as possible, and

it is proposed that 6 hours earlier than the current diagnose time is the optimal time

(see Reyna et al. (2019a) and Reyna et al. (2019b)). We pre-possessed the labels

given in the dataset and the time to the onset of sepsis used to fit our joint model is

6 hours earlier than given in the dataset.

In this thesis we propose a new framework for the sepsis early diagnosis. We

investigate the associations between the value of covariates and the onset time of

sepsis with the presence of non-sepsis as the competing event. We define the disease

progression states according to the diagnosis provided by the sequences of labels in

the dataset: for observations during the follow-ups, all individuals with label 0 are

at the risk of having sepsis, then the state is s = 1 (under risk); if the label is 1, then

the state of the individual becomes s = 2 (sepsis onset). The state s = 3 (non-sepsis)

is defined for the last observation for individuals diagnosed to be non-sepsis in the

end (See Figure 2.3).

The data analysis in this study was only conducted using the clinical data col-

lected from hospital A. In particular, a randomly selected subsample of 1000 indi-

viduals is used for our analysis. The decision to limit the sample size is explained

in Section 5.5. The histogram in Figure 2.9 shows the observation frequencies of

the provided sample. It is obvious that the follow-up time for most of the individ-

Figure 2.3: Transitions in the three-state model for the sepsis early diagnosis.
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State Transition to State 1 Transition to State 2 Transition to state 3
1 36848 78 922

Table 2.4: Frequencies of transitions from one state to another in the sepsis data.

uals is around 25 hours. Table 2.4 displays the frequencies of transitions from one

state to another. This table shows that there are 78 individuals who experienced

the onset of sepsis, while 922 individuals did not have sepsis. The sample size was

determined based on the high requirement for computing the marginal likelihood.

In future studies, employing a larger sample size is recommended to enhance the

analysis further.

In this thesis, we consider the sepsis state and the non-sepsis state as compet-

ing risks, and we model the competing risks using a three-state model. We model

these vital signs as time-dependent covariates using the joint model. In Chapter

5, we fit joint models to the vital sign respiration rate. Different distributions and

common variance structures are used. In Chapter 6, we fit joint models for bivariate

covariates to the vital signs heart rate (HR), mean arterial pressure (MAP), and

respiration rate (Resp). We select the pair of vitals signs that has the best perfor-

mance, then illustrate the framework of sepsis early diagnosis based on joint model

for this specific pair of vital signs.
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(d) Systolic blood pressure

Figure 2.4: Trajectories of 4 (out of 7) vital signs of 5 randomly selected individuals.
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(a) Mean arterial pressure
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(c) Respiration rate

Figure 2.5: Trajectories of 3 (out of 7) vital signs of 5 randomly selected individuals.
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(d) Serum glucose

Figure 2.6: Lab sign trajectories of 5 randomly selected individuals. Lab signs include partial thromboplastin time, Leukocyte count, Hematocrit, and
Glucose Serum glucose.
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Figure 2.7: Lab sign trajectories of 5 randomly selected individuals. Lab signs include Blood urea nitrogen, partial thromboplastin time, Calcium, and
Phosphate.
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Figure 2.9: The distribution of follow-up times in the selected subsample.

2.2.2 Early Diagnosis of Sepsis

In order to assess the performance of the prediction models in terms of both the

accuracy and the capacity of early diagnose, a normalised utility score was proposed

in the Pysionet Challenge. Reyna et al. (2019b) mentioned the two advantages

of applying this utility score. First of all, this metric is specifically designed to

encourage early predictions, while penalising late or missed predictions as well

as false alarms. It takes into account the clinical utility of sepsis detection and

treatment, providing a comprehensive measure. Second of all, conventional scoring

metrics like the Area Under the Curve (AUC) do not offer explicit incentives for

early detection or penalties for false alarms or overtreatment.

The normalised utility score is defined as follows:

Unormalised =
Utotal −Unoprediction

Uoptimal −Unoprediction
, (2.1)



2.2. Clinical Data for Early Prediction of Sepsis 42

Utotal =
N

∑
i=1

Ti

∑
t=1

U(i, t). (2.2)

The term U(i, t) in equation (2.2) is the utility score for each prediction, i.e. the

score for the prediction of individual i at time point t, and Utotal is the total score for

a diagnosis model over N individuals. Unoprediction is the utility score for a diagnosis

model that returns only label 0. Uoptimal represents the utility score that the best

diagnosis model can obtain (i.e. model that can predict every observations for all

individuals correctly). Utotal −Unoprediction represents the ’distance’ in the utility

score between the diagnosis method and the method only predicts 0. Therefore the

closer Ttotal to Uoptimal , the closer Unormalised to 1. Unormalised is a measure of how

well a diagnosis model is compared with the best model.

It is clear that the utility score U(i, t) is a variable that depends on both the

individual i and the time t. It serves the purpose of quantifying the desirability or

utility associated with a specific outcome or decision. In our context, a function

quantifying the utility of a diagnosis made at each time points is needed. Given that

individuals have different sepsis onset times, the utility score should be formulated

as a function of the individuals i, reflecting their unique characteristics. Addition-

ally, it should also consider the perception of the ideal time for diagnosis, therefore

incorporating the time variable t.

When using a method that can diagnose sepsis for each individual at different

time points, the utility score for each prediction can be calculated. The total utility

score can serve as a metric that can capture the trade-offs between early and late

diagnoses, offers insight into the overall performance of the method.

The two graphs in Figure 2.10 illustrate the utility function proposed in the

PhysioNet Challenge 2019. The lower graph illustrates the utility score for an indi-

vidual without sepsis. The true diagnosis outcomes, indicated by the gray dots,

should consistently be negative (represented as 0). For an incorrect prediction

(where the predicted diagnosis is positive, represented as 1), the utility function

assigns a score of -0.05 to this prediction. Conversely, if the prediction is accurate,

the utility function assigns a score of 0.
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The situation becomes more complicated when considering septic individuals.

The upper graph depicts the utility function for an individual who experiences sepsis

onset at hour 48. According to the definition of Reyna et al. (2019b), the optimal

time for diagnosis is six hours prior to sepsis onset. At this specific time point, the

utility score for a correct prediction will reach its maximum value. However, any

false predictions made after this time point will be penalised. The red dots on the

graph represent the rewards assigned for correct predictions. On the other hand,

the blue dots represent the penalisation applied for incorrect predictions. it should

be noted that the upper plot of Figure 2.10 only depicts the utility score for a septic

individual with tsepsis = 48, different individuals will have different values for tsepsis.

This utility score serves to encourage early detection by rewarding correct pre-

dictions made closer to the optimal diagnosis time and penalising late detection,

thereby promoting hourly prediction of sepsis.
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Figure 2.10: Utility function proposed by PysioNet Challenge. Taken from Reyna et al.
(2019b)

Figure 2.10 illustrates that the utility function of each individual can be de-

scribed using four terms: UT P(s, t), UFN(s, t), UFP(s, t) and UT N(s, t). Let U(s, t)

denote the utility score of the prediction for each individual s at time point t. The

variable s in this function carries the same meaning as the previously defined i, both

representing the individual. The utility score U(s, t) equals:

UT P(s, t), positive prediction at time t for sepsis individual s,

UFN(s, t), negative prediction at time t for sepsis individual s,

UFP(s, t), positive prediction at time t for non-sepsis individual s,

UT N(s, t), negative prediction at time t for non-sepsis individual s.
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The term ’positive prediction’ refers to the diagnosis of sepsis, while the term

’negative prediction’ refers to the diagnosis of non-sepsis. It should be noted that the

utility function U(i, t) (or U(s, t)) is different for septic and non-septic individuals.

In order to address early diagnosis, in this thesis, we propose the utilisation of

a time-dependent loss function that promotes early detection and penalises delayed

detection. The sepsis is diagnosed by minimising the expected loss, and the ex-

pected loss can also encourage the early diagnosis and penalise the late diagnosis.

In order to accomplish this, it is necessary to establish a time-dependent loss func-

tion. Ideally, a method that attains the highest utility score should also minimise

the loss. In this thesis, we construct the time-dependent loss function based on the

utility score provided by the Physionet Challenge 2019.

By defining the loss function based on the utility score, we establish a direct

link to the decision-making process. Through the optimisation of the loss function,

our objective is to generate predictions that align with the desired outcomes and

preferences outlined by the utility function.

Based on the information provided in Figure 2.10, we write out the function of

the utility score explicitly.

First of all, we write out the utility score for non-septic individuals. According

the bottom graph in Figure 2.10 the utility score is:

U(i, t) =

 UFP(i, t) =−0.05 for false positive prediction,

UT N(i, t) = 0 for true negative prediction,
(2.3)

where UFP(i, t) is the utility score when a non-septic individual is misclassified to a

septic individual, and UT N(i, t) is the utility score for a correct non-septic diagnosis

for this individual. The utility scores for non-septic individuals are defined to be

constants. From Equation (2.3), it is clear that the misclassication of a non-septic

individual to be septic will be penalised. While on the contrary, correctly classify a

non-septic individual will neither be rewarded or penalised.

Now let us rewrite the utility score of septic individuals. The top graph in Fig-

ure 2.10 present the utility function of an individual who has tsepsis = 48. However,
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different individual will have different tsepsis. Therefore, the utility score of septic

individuals is a function defined with respect to the time of prediction and time of

diagnosis by the clinicians. Let tsepsis denote the time that the septic individual i

is diagnosed by clinicians (the index i is omitted for simplicity). As seen in Fig-

ure 2.10, it is considered to be ideal to diagnose the individual 6 hours before the

clinicians, denoted by toptimal = tsepsis −6. For the septic individuals, non-septic

prediction after toptimal is increasingly penalised, and the reward for correct diagno-

sis is peaked at toptimal . The utility score for septic individuals consists of

U(i, t) =

 UT P(i, t) for false positive prediction,

UFN(i, t) for true negative prediction,

where UFN(i, t) is the utility score for the prediction misclassified a septic individual

to be non-septic at time t, and and UT P(i, t) is the utility score when the individual is

correctly diagnosed. Therefore, we rewrite the functions of UT P(i, t) and UFN(i, t)

are follows:

UT P(i, t) =



−0.05 (t ≤ tsepsis −12)

1/6 (t = tsepsis −11)

2/6 (t = tsepsis −10)

... ...

1 (t = toptimal)

8/9 (t = toptimal+1)

7/9 (t = toptimal+2)

... ...

0 (t ≥ tsepis +3).

(2.4)

UFN(i, t) =



0 (t ≤ toptimal)

−2/9 (t = toptimal+1)

−4/9 (t = toptimal+2)

... ...

−2 (t ≥ tsepis +3).

(2.5)
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It should be noted that we directly adopted the settings in the Physionet Chal-

lenge that 6 hours before the clinicians is the optimal time of diagnosis. As an acute

disease, sepsis can progress rapidly, by diagnosing sepsis within 6 hours, patients

who are at a higher risk of developing severe complications can receive immediate

and appropriate care. As shown in Figure 2.9, the follow-up time for most of the

individuals is around 25 hours. Therefore, selecting a 6-hour optimal diagnosis time

is a reasonable choice considering the time-sensitive nature of sepsis and the need

for early intervention.

Additionally, we propose the use of a loss function as a framework for disease

diagnosis. This method can be further extended to incorporate utility scores of

different shapes tailored to specific situations as specified by clinicians and domain

experts.

In Chapter 5, we will propose a framework for sepsis early diagnosis. The

framework consists of two-steps. The first step is fitting a joint model, and the

second step is calculating an expected loss. The loss function we proposed is defined

based on Equations (2.3), (2.4) and (2.5).

2.2.3 Notation

The jth historical observations of each individual i till time j are denoted by

Hi j := [zi,yi1, . . . ,yi j], j = 1,2, . . . ,Ji, where zi ∈R6×1 represents the demographic

variables the individual i, and yi j ∈R34×1 is the time-dependent covariates observed

at jth time.

In ideal case, the time-dependent covariates are measured hourly, from time

t = 1 to t = Ti, the maximum observation time of individual i. Let u j denote the

time where the jth observation occurs. In addition, for each individual, a sequence

of label Di j provided by the clinicians indicates whether the individual is diagnosed

to be septic or not at the corresponding time. Di j = 1 indicates the individual i is

diagnosed to have sepsis at the jth observation. On the contrary, Di j = 0 indicates

the individual does not have sepsis.

The aim of this early diagnosis of sepsis is to develop a method such that for



2.2. Clinical Data for Early Prediction of Sepsis 48

a individual i at any time t,0 < t < Ti, the method is able to predict the label Di j

based on the historical data Hi j, where u j ≤ t.



Chapter 3

Competing Risks and General Mixed

Models

3.1 Competing Risks

In survival analysis, we often encounter situations where multiple events can occur,

and when one event happens, it prevents the occurrence of other events. These

competing events are common in fields like medical research, where individuals

may die from different causes. Recognizing and accounting for competing events is

important to fully grasp the complexity of the situation and accurately interpret the

data.

It is important to explore models that consider the relationship between com-

peting risks. The analysis of competing risks using multi-state models is discussed

in studies such as Putter et al. (2007) and Andersen et al. (2002).

Suppose that the total number of events is K, then the model of K+1 states can

be applied, where state 0 represents the initial state of each individual, and state 1

to state K represents the occurrence of each event. It is a special case of multi-state

models since the transition between states are simply governed by the transition

intensity matrix Q, where Q is equivalent to an square matrix with dimension K+1

with its first row equals the transition intensities q01, . . . ,q0K and all the rest ele-

ments equals to 0.
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3.2 Multi-State Model

3.2.1 Introduction

Multi-state models are commonly used in the analysis of a process in which indi-

viduals transit between various states. The information about the process usually

consists of the records of the change of state and other outcomes of the individuals

during the process. For instance, when modelling the disease progression, the dis-

ease stages can be considered as different states, and then the course of the disease

can be described by the multi-state model. A continuous-time multi-state model

is defined by the transition intensity functions, which describes the change of state

over time.

Suppose there are K different states r = 1, . . . ,K. Let ζ (t) denote the state

occupancy of an individual at time t, and let H(t) represents the history of state

occupancy over time interval [0, t). A multistate-state model in continuous-time

with K different states can be specified using transition intensity functions, which

is defined as:

qrs(t|H(t)) = lim
∆t→0

P
(

ζ (t +∆t) = s|ζ (t) = r,H(t)
)

∆t
, (3.1)

for transitions between state r and state s, where r ̸= s. The transition intensity (3.1)

is the instantaneous rate at which the individual will move from state r to state s at

time t. One important property of transition intensities is as follows:

qss(t) =−∑
r ̸=s

qrs(t). (3.2)

For convenience, the transition intensities are often presented in the form of a

matrix. Let Q denote the transition intensity matrix, the element of the matrix is

the corresponding transition intensity, i.e. [Q(t)]r,s = qrs(t). And according to the

property (3.2), all rows of Q(t) sum to zero.

For a multi-state process, it is often of interest to investigate how the transition

intensities are related to covariates. This can be achieved by specifying the transi-
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tion intensities as functions of covariates.

3.2.2 Modelling Effects of Covariates

Let Hi(t) := [zi,yi(1), . . . ,yi(t)] represents the covariates observed of an individual

over time period [0, t], where zi are the constant covariates and yi(1), . . . ,yi(t) are

the time-dependent covariates. For simplicity we omit the index i. In order to

take into account the covariates, it is common to define the transition intensities as

follows:

qrs(t|H(t)) = q0.rs(t)exp(α⊤
rsy(t)+λ

⊤
rsz). (3.3)

The term q0.rs(t) in equation (3.3) is the baseline intensity, which is the tran-

sition intensity at time t for individual with covariates y(t) = 0,z = 0. The second

term is a log-linear model of the covariates, where αrs and λ rs are the regression

coefficients of the corresponding covariates.

If the model follows the continuous-time assumption, i.e. time t ∈R≥0, con-

sequently the covariates change with respect to time should be defined on all non-

negative real numbers. However, in practice, the value of the covariates are only

available at the observation times, which makes it impossible to directly calculate

the transition intensities at the time apart from the observation time points.

To solve this problem, sometimes the piecewise-constant assumption is ap-

plied. Take the transition intensity (3.3) for example. Suppose covariates y(t) are

only available at time points t = u j, j = 1, . . . ,J. By applying the piecewise-constant

assumption, it is assumed that y remains constant within intervals [u j,u j+1). Then

the transition intensity at any time point t are:

qrs(t|H(t)) := q0.rs(u j)exp(α⊤
rsy(u j)+λ

⊤
rsz), ua < t < ub.

However, this assumption is less accurate if the trajectory of the time-

dependent covariates y is less smooth and the observation time points are sparse.

As shown in the data description in Chapter 2, the clinical data of sepsis

consists of time-dependent covariates which is highly fluctuated. The piecewise
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constant approximation does not apply to our situation. In this thesis, we utilise

the continuous-time multi-state model within the joint model framework. The

time-dependent covariates are modelled with mixed model, and their mean can

be estimated at any time point. Therefore we did not use the piecewise constant

assumption for the time-dependent covariates. However, as the covariates change

continuously with time, the transition intensities defined on it will change with time

as well. This introduces problems to the computing of the transition probabilities

as there is no established method to directly derive transition probabilities for a

changing transition intensity. A piecewise constant approximation for the transition

probabilities is needed. The details will be explained in Section 3.2.3.

3.2.3 Transition Probability

Apart from transition intensities, it is also of interest to investigate other charac-

teristics related to the multi-state process, for example, the transition probabilities.

The transition probabilities are also of importance because the likelihood function

of the multi-state model is based on them.

The transition probability of moving from state ζ (t) to state ζ (t +∆t) over

time-interval (t, t +∆t) is defined as:

prs(t, t +∆t|H(t)) = P
(

ζ (t +∆t) = s|ζ (t) = r,H(t)
)
. (3.4)

Similar to the transition intensities, a transition probability matrix is con-

structed with its elements represents corresponding transition probabilities between

different states. Let P(t1, t2) denote the transition probability matrix over time in-

terval (t, t+∆t), where [P(t1, t2)]r,s = prs(t1, t2). Then according to the properties of

the transition probabilities, all elements of matrix P are non-negative and all rows of

P sum to 1. The transition probabilities are calculated from the transition intensities.

Suppose the following assumptions hold for a multi-state model:

1. It is a continuous-time model, transition can take place at any t > 0.
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2. The Markovian property holds. Therefore the transition probabilities satisfies:

P
(

ζ (t +∆t) = s|ζ (t) = r,H(t)
)
= P

(
ζ (t +∆t) = s|ζ (t) = r

)
.

3. It is time-homogeneous, i.e. the transition probability P
(

ζ (t+∆t) = s|ζ (t) =

r
)

does not depend on the time t.

Then this multi-state model is a time-homogeneous continuous-time Markov

model (Ross (2014)), and the transition intensities can be simplified to:

qrs(t|H(t)) = qrs(t) = lim
∆t→0

P
(

ζ (t +∆t) = s|ζ (t) = r
)

∆t
.

Solving the matrix differential equations, the transition probability can be written as

a matrix exponential of the transition intensity matrix ( see Ross (2014) and Van den

Hout (2017)):

P(t, t +∆t) = exp
(

∆tQ
)

= I+∆tQ+
1
2!

(
∆tQ

)2
+ . . . ,+

1
n!

(
∆tQ

)n
. (3.5)

In practice when the size of the state space is large, it is computationally infea-

sible to evaluate equation (3.5) directly. Different techniques have been proposed

to approximate the transition probabilities and the matrix exponential. See, for in-

stance Sidje and Stewart (1999) and Reibman and Trivedi (1988) for more details.

Now consider a continuous-time multi-state model with transition intensities

depend on covariates, and the covariates are only available at time points u j, j =

1, . . . ,J. Suppose the transition intensities are defined as parametric functions of

the time-dependent covariates using equation (3.3). Since the Markovian property

and the time-homogeneous assumption are violated, the transition probability can

no longer be calculated with equation (3.5). Similar to Section 3.2.2, we can apply

the piecewise-constant approximation to the transition probabilities and assume it

remain constant within the time intervals [u j,u j+1). Therefore within the intervals
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[u j,u j+1) the equation (3.5) still holds:

P(u j,u j+1) = exp
(
(u j+1 −u j)Q(u j)

)
The transition matrix over any time interval [t1, t2) is then approximated by the

multiplication of a sequence of transition matrices:

P(t1, t2) = P(t1,ui+1|Q(ui))P(ui+1,ui+2|Q(ui+1)) . . .P(u j−1, t2|Q(u j−1)),

where ui ≤ t1 < ui+1 and u j−1 ≤ t2 < u j.

3.2.4 Parameter Estimation

The parameters of the model can be estimated by maximizing the likelihood func-

tion, which can be derived using the transition probabilities and transition intensi-

ties.

Let θ denote the set of all the parameters used to define the multi-state model.

For a dataset consists of N individuals, the total likelihood is:

L(θ) =
N

∏
i=1

Li(θ). (3.6)

Therefore according to the maximum likelihood estimation, the estimated parame-

ters are obtained by maximizing the joint likelihood of all individuals:

θ̂ = argmax
θ∈Θ

N

∏
i=1

Li(θ), (3.7)

where Li(θ) is the likelihood of individual i.

Assume that the the individual i transits from state r to state s exactly at time

points tik. The likelihood contribution of individual i is given by

Li(θ) = ∏
r ̸=s

[
∏
∀tik

qrs(tik|Hi(tik))
]

exp
(∫

∞

0
1{s(u)=r}qrr(u|Hi(u))du

)
. (3.8)

See more details about the deriving of the likelihood in, for instance, Cook and
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Lawless (2018).

The numerical methods used to estimate parameters θ are introduced in Sec-

tion 3.5. In addition, general multi-state models can be fitted using R packages such

as msm (Jackson et al. (2011)).

3.3 Mixed Models for Time-Dependent Covariates

As discussed in Section 3.2.2, the transition intensity of an individual is a function

of the covariates. Therefore to predict the transition intensities in the future, the

value of these covariates need to be predicted first. Therefore we need a model

to describe the changes in the covariates with respect to time. To achieve this the

linear mixed model is used in this study. In the following sections, the linear mixed

model will be introduced, and parameter estimation will be discussed.

3.3.1 Mixed Model

Regression models are used to predict the quantitative outcome yi given a set of

observations wi ∈ R1×p. For example the linear regression model with a single

covariate wi:

yi = β0 +β1wi + εi, (3.9)

where β0 is the intercept, β1 is the slope, and yi’s are assumed to be conditionally

independent given wi. In this model, εi is called the error term, and follows a normal

distribution εi
i.i.d∼ N(0,σ2), where σ is a constant.

In our study, the time-dependent covariates were measured repeatedly for each

individual, therefore there exists correlation between observations from the same

individual. The assumption of independence is violated. The mixed model is then

applied. Let yi j represents the j-th repeated observation of individual i. For exam-



3.3. Mixed Models for Time-Dependent Covariates 56

ple, the linear mixed model is a simple extension of the linear model above:

yi j = b∗i0 +b∗i1wi j + εi j,

b∗i0 = β0 +bi0,

b∗i1 = β1 +bi1

b⊤
i = (bi0,bi1)

⊤ ∼ N(0,Σ), εi j
i.i.d∼ N(0,σ2

e ), (3.10)

where σe is a constant. Similar to the linear regression model, β0 and β1 are the

population mean of the intercept and the slope, and εi j are the random noises. Terms

bi0 and bi1 are random effects that follow a bivariate normal distribution with mean

equals 0 and the variance-covariance matrix Σ.

By introducing the random effects bi, The linear mixed model allows for mod-

elling the between- and within-individual variations. From the equations (3.10) we

have:

E[Yi j|bi0,bi1] = (β0 +bi0)+(β1 +bi1)wi j, (3.11)

E[Yi j] = β0 +β1wi j.

It is clear that bi0 is the difference between the intercept of individual i and the mean

intercept, and bi1 is the difference between the slope of individual i and the mean

slope.

The general form of the mixed model can be obtained by extending the linear

mixed model above. For response variables Yi j violates the normality assumptions,

for instance, it follows a distribution from the exponential family. One can specify

a link function g(·) and assumes the relationship between the response variable and

the covariates as

E[Yi j] = g(β0 +β1wi j).

We can further extend this model by assuming the distribution of the response

variable does not follow any distributions from the exponential family, e.g. the
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skew normal, skew t distributions (Azzalini (1985)).

3.3.2 Mixed Model for Location, Scale, and Shape

The common linear model assumes the residuals follows a conditional normal dis-

tribution with a constant. However, in practice, the residuals always violate this

assumption because the response variables always have much more complicated

structures and are difficult to be described by the family of the most popular linear

mixed models. For instance, in the ELSA data, we observe a decline in the mean

number of animal names recalled as individuals age, accompanied by a decrease

in variance. This suggests that the variability in the outcome may not remain con-

stant over time and could be influenced by the predictor variables. Accounting for

changes in variance over time improves the robustness and accuracy of the model.

In addition, we want to further extend the generalisability of our joint model by

relaxing the normal assumption of the residuals.

It is very common that in the study of clinical data that the observed records

usually have special meanings and are often positive, for example the number of

words recalls, the heart rate, the blood pressure, etc. And they can have complicated

distributions such as positive skewed, zero-inflated, multi-modal, etc. Mihaylova

et al. (2011) summarised different methods to tackle these difficulties. In our study,

we adopted the framework from Rigby et al. (2019) to model the time-dependent

covariates.

GAMLSS is proposed for the univariate regression. In this framework the

response variables and the explanatory variables can be linked not only by linear

functions, but also can be non-linear or even non-parametric. The GAMLSS ap-

proach improved the common GLM in two ways. First of all, the response variable

is allowed to follow any distribution, rather than distributions from the exponential

family. Secondly, not only the location parameter, but any parameter controls the

distribution, e.g. the parameter for the scale and shape can be linked to the ex-

planatory variables with any kind of links. This framework provides much more

flexibility compared with the common LMs, GLMs, and GAMs.
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In our study, for simplicity we only consider the parametric models. The exten-

sions to the non-parametric models could be a valuable improvement in the future.

Based on the framework of GAMLSS, we assume the error term follows a dis-

tribution controlled by three parameters: the location, scale, and shape parameters.

For example, a skew t distribution is controlled by the parameters for the location,

sclae, and the skewness. The parameters can be modelled by a constant, for a func-

tion of the linear predictor. For example, in the study of ELSA data, we assume the

error term of the number of animal names people can recall follows a skew normal

distribution, and the variation of it decrease as age grows:

yi j = µi j + εi j, εi j ∼ SN(0,ν ,σ i j)

µi j = β0 +b0i +(β1 +b1i)agei j,

log
(
σi j

)
= γ0 + γ1agei j,

(3.12)

In particular we considered to use the skew t distribution and the skew normal

distribution to model the response variables. For comparison, we also fitted our

model with the normal distribution.

In this study we use the Type 1 skew normal distribution from the GAMLSS

package. This distribution is controlled by three parameters: µ , σ and ν . Parameter

µ is the parameter for the location, it describes the center of the distribution. The

parameter σ is for the scale parameter, describes the the spreadness or the variability

for the distribution. The parameter ν describes the shape of the parameter. Notice

that when ν = 0, we re-obtain the normal distribution. The density function for the

Type 1 skew normal distribution is as follows:

f (y|µ,σ ,ν) =
2
σ

φ(
y−µ

σ
)Φ(ν

y−µ

σ
), (3.13)

where the range of the parameters are(−∞< µ <+∞), σ > 0, and (−∞< ν <+∞).

The range of y is (−∞ < y < +∞). Notations φ(·) and Φ(·) represents the density

function and the cumulative density function for the standard normal distribution.

The Type 1 skew t distribution is controlled by 4 parameters. Apart from the
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parameters µ , σ and ν for location, scale, and shape, there is also a parameter τ

controls the degree of freedom for the t-distribution. The distribution is given by:

f (y|µ,σ ,ν) =
2
σ

fZ1(
y−µ

σ
)FZ2(ν

y−µ

σ
), (3.14)

where Z1 and Z2 have Student t-distribution with degrees of freedom greater than

0. More details about the distributions can be found in Rigby et al. (2019).

3.3.3 Parameter Estimation

Various methods can be applied for parameter estimation. The maximum likelihood

estimation using the EM algorithm and restricted maximum likelihood estimation

(RMLE). See, for instance Fitzmaurice et al. (2012). In this section, we will intro-

duce the parameter estimation via maximizing the marginal likelihood.

Consider the model given by equation (3.10). Since yi j, j = 1, . . . ,ni are in-

dependent condition on wi j and Bi0 = bi0,Bi1 = bi1. The likelihood function of

individual i is given by:

ni

∏
j=1

f (yi j|wi j,Bi0 = bi0,Bi1 = bi1). (3.15)

The marginal likelihood is given by marginalizing over the random variables

Bi0,Bi1, given by:

Li(β ,θ) =
∫ ni

∏
j=1

f (yi j|wi j,Bi0 = bi0,Bi1 = bi1)dG(bi0,bi1), (3.16)

where β is the set of fixed coefficients for the linear mixed model, and θ is the set

of parameters govern the distribution G(bi0,bi1). Then both β and θ are estimated

by maximizing the total marginal likelihood
N
∏
i=1

Li(β ,θ).

Apart from parameter estimation, it is also of interest to estimate the individual-

specific random effects bi0,bi1 for individual i after the linear mixed model is fitted.
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The conditional probability of the random effects given the data is given by:

f (Bi0 = bi0,Bi1 = bi1|yi j,wi j) =
f (Bi0 = bi0,Bi1 = bi1,yi j|wi j)

f (yi j|wi j)
(3.17)

=
Li(β̂ , θ̂)g(bi0,bi1|θ̂)∫
Li(β̂ , θ̂)dG(bi0,bi1|θ̂)

(3.18)

Then the individual-specific random effects bi0,bi1 can be estimated by calculating

the posterior mean or via the maximum a posteriori, i.e. the mode of the posterior

distribution.

3.4 Joint Modelling of Competing Risks and Time-

Dependent Covariates

In studies with both time-to-event data and repeatedly measured covariates, it is of

interest to study the associations between them. The study of the joint modelling

of longitudinal data and time-to-event data was greatly developed by Wulfsohn and

Tsiatis (1997) and Faucett and Thomas (1996). In Rizopoulos (2012) and Tsiatis

and Davidian (2004) the joint model for the time-to-event data and the longitudinal

data was discussed in detail. Shared random effect models are one of the most

commonly used joint models. It was mentioned that the advantage of applying the

joint model is two-fold: (i) it provides an approach to take into account the time-

dependent markers with noise when the primary interest is modelling the survival

time; (ii) it is able to model is longitudinal data more accurately since it can take

into account the effect of the associated events. In Ferrer et al. (2016) a shared

random effects joint model for the longitudinal outcomes and multi-state process

was discussed.

In this section, we present an example of the joint model consists of a the

multi-state sub-model for the time-to-event data and a linear mixed model for the

time-dependent covariate.

Suppose yi j is the value of a time-dependent covariate observed at time j of
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individual i. The linear mixed model for yi j is given by:

yi j = µi j + εi j

µi j = b∗i0 +b∗i1wi j + εi j

b∗i0 = βi0 +bi0,

b∗i1 = βi1 +bi1,

(bi0,bi1)
⊤ ∼ G(bi0,bi1), εi j ∼ N(0,σ2

e ),

(3.19)

where bi0 and bi1 are random effects jointly follows distribution G(·). For simplicity

we assume the distribution G(·) is a bivariate normal distribution with mean 0 and

variance-covariance matrix Σ. Notice that according to the model above, the term

µi j is considered as the unobservable true value of the covariates. Suppose that

j = 1, . . . ,Ti, the likelihood contribution from the sub-model for the time-dependent

covariates is then given by:

Ti

∏
j=1

f (yi j|wi j,Bi0 = bi0,Bi1 = bi1). (3.20)

For the modelling of the time-to-event data, instead of defining the transition in-

tensity as a function of the value of the covariates, µi j is used. We build this

model based on the established methods discussed in Ferrer et al. (2016). The

two processes are therefore linked by the shared random effects. Recall the multi-

state model described in Section 3.2.2, here for simplicity we assumed that time-

dependent covariate yi j is univariate, then the intensities of individual i at time t is

therefore given by:

qrs(t|µi j) = q0.rs(t)exp(αrsµi j +λ
⊤
rszi), (3.21)

where j ≤ t < j+1. The likelihood contribution from the submodel for competing

risks is

∏
r ̸=s

[
∏
∀tik

qrs(tik|µi(tik))
]

exp
(∫

∞

0
1{s(u)=r}qrr(u|µi(u))du

)
. (3.22)
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Similar to Section 3.3, the marginal likelihood of individual i is given by:

Li(θ) =
∫

∏
r ̸=s

[
∏
∀tik

qrs(tik|µi(tik))
]

exp
(∫

∞

0
1{s(u)=r}qrr(u|µi(u))du

)
.

×
Ti

∏
j=1

P(yi j|wi j,Bi0 = bi0,Bi1 = bi1)dG(bi0,bi1). (3.23)

All parameters θ of the joint model are estimated by maximizing the total marginal

likelihood function.

3.5 Numerical Methods
The maximum likelihood estimates of the parameters can be obtained by maximiz-

ing the likelihood function numerically. In R software (R Core Team (2016)), this

can be achieved using the general-purpose optimisation function like optim and

nlminb.

The standard errors can be estimated using the results obtained from the opti-

misation. The Hessian matrix can be at the estimated parameters, and the standard

errors can be obtained by taking the square root of the diagonal elements of the

inverse of the Hessian matrix.

For likelihood functions which involve integral, there are many numerical in-

tegration functions in R software can be used. For example, function integrate is

for the one-dimensional integration, functions int2 (Swihart and Lindsey (2016))

and integral2 (Borchers (2019)) can perform two-dimensional integration. In ad-

dition, the Monte Carlo integration can be used to approximate the integration.

For marginal likelihood functions like equation (3.16) and equation (3.23), if

we assume that the random effects (Bi0,Bi1) follows a multivariate normal distribu-

tion, then the integral can be approximated using the Gaussian-Hermite quadrature

method.

The performance of Gaussian-Hermite quadrature approximation depends on

the choice of the number of nodes. The value of the integrand are calculated on the

grids. The approximation will be more accurate if more nodes are used. Through



3.5. Numerical Methods 63

out the data analysis in this thesis, we use 30 nodes for the Gaussian-Hermite

quadrature. In Chapter 8 we present an example code for calculating the marginal

likelihood using two-dimensional Gaussian-Hermite quadrature approximation.

In the current model we assume there are two random effects. However when

the number of random effects increases, the time cost to calculate the integration by

Gaussian-Hermite quadrature approximation will grow exponentially. For the pa-

rameter estimation of joint models, there exist different frameworks. In Ferrer et al.

(2016) and Murray and Philipson (2022), the EM algorithm was used to alleviate

the numerical problems. In Chapter 6 we will discuss this problem in detail. We

use Bayesian inference instead to alleviate this problem. The Bayesian inference of

joint model is presented in Chapter 6 as well.



Chapter 4

Joint Model for Cognitive Function

Data

In this chapter we present a joint model of competing risks and longitudinal out-

comes. The health status are considered as competing risks and modelled with

a multi-state sub-model. The longitudinal outcome is modelled by a generalised

linear mixed model, where the error term is modelled by a skew normal distribu-

tion with time-dependent variance. Two sub-models are linked by shared random

effects. Parameters of the joint model are estimated by maximising the marginal

likelihood. The proposed method extends the Gaussian assumption for errors, and

provides a flexible method which could be easily applied to disease progression

modelling problem with complex longitudinal outcome structures. We apply the

joint model we proposed to the English Longitudinal Study of Ageing data.

4.1 Joint Model
The joint model consists of two sub-models: a multi-state model for competing risks

and a regression model for the longitudinal data. The two sub-models are linked by

shared random effects.

Suppose there are N individuals in the study. For each individual i, let

[zi,yi j,si j] denote all the observations recorded at time ti j, where j = 1,2, . . . ,ni.

zi ∈ Rp×1 represents the demographic variables of the individual i, yi j is value of

the longitudinal outcome measured at each time point, and si j ∈ {1,2,3} denote the
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state observed at time ti j.

4.1.1 Longitudinal Sub-model

We assume that the longitudinal outcome yi j at time ti j consists of the unobserved

true value µi j and the error term εi j. We assume both the unobserved true longitudi-

nal outcome and the error term changes with time, and the error term follows a skew

normal distribution: εi j ∼ SN(0,ν ,σ2
i j), where ν is the parameter of skewness, σi j

is the standard deviation at time ti j. The generalised linear mixed model is given by

µi j = β0 +b0i +(β1 +b1i)ti j +ω
⊤zi,

log
(
σi j

)
= γ0 + γ1ti j,

(4.1)

where the random effects are assumed to follow a bivariate normal distribution:

b⊤
i = (b0i,b1i)

⊤ ∼ N (0,Σ), where the mean is 0 = (0,0)⊤ and Σ is the variance-

covariance matrix.

We assume that the longitudinal outcome is continuous, and modelled with

skew normal distribution with time-dependent mean and variance. In the applica-

tions in Section 4.3, the longitudinal outcome is the number of animals individuals

can name in the interviews, which is discrete, but we show that our model is appli-

cable to it as well.

4.1.2 Competing-Risk Sub-model

Assume there are three states: 1,2,3, and let qrs(ti j), ti j > 0 be the transition inten-

sity of individual i from state r to state s at time ti j. We use the transition-specific

hazard regression models to describe the dependency of the transition intensities on

the covariates:

qrs(ti j|µi j) = q0.rs exp
(
ηrsti j +αrsµi j +λλλ

⊤
rszi

)
, (4.2)
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where (r,s) ∈ {(1,2),(1,3)}; ηrs,αrs, and λλλ
⊤
rs are regression coefficients corre-

sponding to the time, the unobserved true value of the longitudinal outcome, and the

demographic covariates. The term q0.rs in equation (4.2) is interpreted as the base-

line transition intensity at time t = 0 for individual with covariates µi j = 0,z = 0.

It is clear from the Equation (4.2) that the random effects were included in

the competing-risk sub-model through the term µi j and the coefficient ηrs. The

sub-models for the longitudinal outcome and the competing risks are independent

conditionally on the random effects. The marginal likelihood is obtained by inte-

grating out the random effects, the details are in Section 4.2.2.

4.2 Estimation

4.2.1 Exact and Interval Censored Event Times

In Andersen and Keiding (2002) different patterns of the observation of states

were discussed. In the application of the English Longitudinal Study of Ageing in

Section 4.3, the three states are: s = 1 (healthy), s = 2 (death) and s = 3 (severe

cognitive impairment), and there is a mixture of states observation patterns. For the

death state, the observation is exact, the age of death of the individual is recorded.

On the contrary, the transition to the severe cognitive impairment state is interval

censored, because it happens between the follow-ups. This feature can be taken

into account by defining different likelihood contributions, the details is in Section

4.2.

4.2.2 Maximum Likelihood

The parameters of the joint model are estimated by maximising the likelihood func-

tion, which are derived using the transition probabilities and transition intensities.

For individual i, the likelihood contribution condition on the random effect of the

longitudinal sub-model is:
Ti

∏
j=1

f (yi j|bi), (4.3)
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where f is a generic notation for the density of yi j defined by the model, e.g.

the model defined by Equation (4.1). For the multi-state sub-model, we assume that

the transition from state s = 1 to state s = 2 is exact, and the transition from state

s = 1 to state s = 3 is interval censored. For the time-interval formed by a pair of

successive time points (ti j, ti( j+1)], the conditional likelihood contribution from this

time-interval is of the form:

L(ti j|µi j) = psi j,si( j+1)(ti j, ti( j+1))qsi j,si( j+1)(t1( j+1)), if si( j+1) = 2

L(ti j|µi j) = psi j,si( j+1)(ti j, ti( j+1)), if si( j+1) = 3
(4.4)

We assume the time-dependent covariates and the transition intensities are in-

dependent conditional on the random effects, the complete likelihood of individual

i given by marginalising over the random variables is:

Li(θθθ) =
∫ Ti

∏
j=1

f (yi j|bi)
Ti−1

∏
j=1

L(ti j|µi j)dG(bi), (4.5)

where θθθ is the collection of all the parameters define in Equations (4.1) and (4.2).

Individuals who died before the start of the study are not observed and the data

is therefore left-truncated. By using the Markovian assumption, the likelihood is

defined conditioned on the first observed state, and in this way the left truncation

was taken into account. In Van den Hout (2017) more details about modeling left-

truncation is discussed.

The parameters θθθ of the joint model in Equation (4.5) are estimated by max-

imising the logarithm of the total marginal likelihood ℓ= log
( N

∏
i=1

Li(θθθ)
)

.

The maximisation of the likelihood is implemented using the R software (R

Core Team (2016)). The general purpose optimiser optim is used. To have a more

robust result the Nelder-Mead method was chosen for the optim function. The pa-

rameters with constraints were transformed so that the likelihood function is max-

imised over the unbounded parameter space. For example the standard deviations

τ0,τ1 are estimated over log(τ0), log(τ1). We present an example code for calculat-

ing the marginal likelihood using ELSA data in Chapter 8.
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To assess the convergence of the optimisation results, we examined the impact

of different initial values. By fitting initial values with small variations to the same

model, we evaluated the convergence. Additionally, we employed various optimisa-

tion methods, such as Nelder-Mead and BFGS, starting from the same initial value,

to determine if the results converged.

4.3 Data Analysis

4.3.1 Joint Models for ELSA data

Our joint model starts with defining the competing-risk sub-model:

qrs(ti j|µi j) = q0.rs exp
(
ηrsti j +αrsµi j +λrsgenderi

)
, (4.6)

and the sub-model for competing risks:

yi j = µi j + εi j, εi j ∼N (0,σ2)

µi j = β0 +b0i +(β1 +b1i)agei j,

log(σ) = γ0,

(4.7)

where the error term of the longitudinal outcome is modelled by normal distribution

with mean 0 and a constant variance (Model 4). For simplicity we also assume

the random effects b0i and b1i are independently normal distributed with standard

deviations τ0 and τ1 respectively.

Then we extended the distribution of the error terms to a normal distribution

with time-dependent variance (Model 5):

yi j = µi j + εi j, εi j ∼N (0,σ2
i j)

µi j = β0 +b0i +(β1 +b1i)agei j,

log
(
σi j

)
= γ0 + γ1agei j,

(4.8)

We extended above model further by extending the distribution of the error
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terms to a skew normal distribution with skewness parameter ν (Model 6):

yi j = µi j + εi j, εi j ∼ SN(0,ν ,σ2
i j)

µi j = β0 +b0i +(β1 +b1i)agei j,

log
(
σi j

)
= γ0 + γ1agei j,

(4.9)

We compared these models and their counterparts: Model 1, 2, and 3, where

only one random effect was used when modelling the longitudinal outcome, i.e.

b1i = 0. The results are presented in Table 4.1. It shows that Model 6 performs

better than the rest with AIC = 11853.89.
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Model p -log-likelihood AIC
(1) 1 random effect, Normal 12 11889.46 23790.92
(2) 1 random effect, Normal, sigma 13 11884.50 23782.00
(3) 1 random effect, SN, sigma 14 11861.71 23737.42
(4) 2 random effects, Normal 13 11884.52 23782.04
(5) 2 random effects, Normal, sigma 14 11878.35 23770.70
(6) 2 random effects, SN, sigma 15 11853.89 23722.78
(7) 2 random effects, gender, educ, SN, sigma 17 11797.89 23612.78
(8) 2 correlated random effects, gender, educ, SN, sigma 18 11792.92 23603.84
(1’) 1 random effect, gender , educ, Normal 14 11846.49 23706.98
(2’) 1 random effect, , gender , educ, Normal, sigma 15 11833.55 23682.10
(4’) 2 random effects, gender, educ, Normal 15 11823.71 23662.42
(5’) 2 random effects, gender, educ, Normal, sigma 16 11818.51 23653.02
(8’) 2 correlated random effects, gender, educ, Normal 16 11821.97 23659.94
(8”) 2 correlated random effects, gender, educ, Normal, sigma 17 11817.55 23652.10

Table 4.1: Comparison between joint models for ELSA data (N=919). SN is the abbreviation of skew normal. p is the number of parameters of the
model.
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Then based on this model, we include demographic variables gender and educ

to the linear mixed model of the longitudinal outcome (Model 7):

µi j = β0 +b0i +(β1 +b1i)agei j +ω1genderi +ω2educi,

log
(
σi j

)
= γ0 + γ1agei j,

(4.10)

where gender = 0 for women (1 for men) and educ = 0 for education fewer than

ten years (1 for more than ten years).

Table 4.1 shows that Model (7) perform much better compared to Model (6),

as the AIC greatly decreased from 23722.78 to 23612.78. To make a more compre-

hensive comparison and observe the effect of modeling the error term using a skew

normal distribution, we conducted a comparison between Model (7) and a series

of alternative models. The alternative models, namely Model (1’), (2’), (4’), and

(5’), were constructed by introducing two demographic coefficients, gender and ed-

ucation level, to the existing Model (1), (2), (4), and (5). The performance of the

alternative models is summarized in Table 4.1 as well. The results demonstrate that

Model (7) outperformed the other models.

The parameter estimates and 95% confidence interval of Model (7) are shown

in Table 4.2. The estimated value of baseline transition intensities are q̂0.12 = 0.010

and q̂0.13 = 0.196, indicating transition intensities to state 3 is higher than the

transition intensities to state 2 at baseline age (age = 50). The estimated value

exp(η̂12) = 1.080, exp(η̂13) = 1.050, both are greater than 1, and have confidence

intervals that exclude 1. This indicates that as age increases, there will be higher

hazards for transitioning out of state 1. Their confidence intervals are overlapping,

suggests that the effect of time on the intensities of transition 1 → 2 and 1 → 3 are

relatively similar.

The parameters α12 and α13 establish the connection between the time-

dependent covariate ’number of animal names’ and the multi-state model. The

estimated values exp(α̂12) = 0.940 and exp(α̂13) = 0.842 are both smaller than 1,

and both have confidence intervals that exclude 1. This indicates that for individual

who obtain higher scores in the test for remembering animal names, the individual
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will have lower hazard to transit into state 2 or state 3. In addition, the confidence

intervals of exp(α12) and exp(α13) are not overlapping, therefore exp(α̂12) is sig-

nificantly greater than exp(α̂13). Hence for individual who can remember more

animal names, the hazard of transitioning to state 3 (severe cognitive impairment)

is smaller than state 2 (death).

Furthermore, exp(λ̂12)= 1.658 is greater than exp(λ̂13)= 1.374, and their con-

fidence intervals are non-overlapping, This implies that men have a higher hazard

for transitioning out of state 1 than women.

Coefficients β0 and β1 are in the mixed model. The estimated value of the slope

for age β̂1 < 0 shows that when individual getting older, the cognitive function will

decline. In addition, γ̂1 < 0 shows that the scale parameter of the skew normal distri-

bution decreases as age increases. This might show the effect that when individual

getting old, they are likely to memorize fewer animal names therefore the variation

of the error terms decreases with time as well.

The estimated value of the skewness parameter for the skew normal distribu-

tion is ν̂ =−1.447, the confidence interval is (−1.773,−1.247). In Rubio and Gen-

ton (2016), the Bayesian linear regression models incorporating skew-symmetric

error distributions are investigated, and a detailed discussion on the shape parame-

ter can be found. In this study they mentioned that when the absolute value of the

shape parameter is less than or equal to 1, the skew normal distribution can be well

approximated by a normal distribution. In Table 4.2, the point estimate ν̂ is close

to the range (−1,1). Therefore this skew normal distribution is close to symmetric

and a normal distribution can be used to approximate it. However, the confidence

interval of ν̂ is outside the range (−1,1), therefore it suggests that the estimate

of the shape parameter can be smaller than estimates, making it a more pronounced

skewness than expected. In addition, Table 4.1 shows that the skew normal distribu-

tion provides a better fit to the data compared to the normal alternative distributions,

this implies that the skew normal distribution has the ability to capture the unique

characteristics in the ELSA data more effectively in comparison with the normal

error model.
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For Model (7), a fit to 16 randomly selected individuals is shown in Figure

4.1. The horizontal axis is the age of the individual corresponding to each time of

the observation. It is obvious that the trajectory of the number of animal names

recalled is fitted well. The parameter estimates and the confidence intervals of the

model are shown in Table 4.2. The estimates of the slope for age β̂1 < 0 shows

that when individual getting older, the cognitive function will decline. It also shows

the effect that when people getting old, they are likely to memorise fewer animal

names therefore the variance of the noise decreases with time as well, i.e. γ̂2 < 0.

(women=0, men=1).

Longitudinal sub-model Multi-state sub-model
Value 95% CI Value 95% CI

τ0 3.972 (4.017; 4.802) q0.12 0.010 (0.003; 0.036)
τ1 0.100 (0.070; 0.144) q0.13 0.196 (0.048; 0.797)
β0 25.225 (25.800; 27.414) exp(η12) 1.080 (1.057; 1.104)
β1 -0.148 (-0.183; -0.114) exp(η13) 1.050 (1.025; 1.076)
ω1 0.290 (-0.364; 0.944) exp(α12) 0.940 (0.898; 0.984)
ω2 3.808 (3.147; 4.469) exp(α13) 0.842 (0.797; 0.890)
γ1 1.833 (1.721; 1.874) exp(λ12) 1.658 (1.172; 2.344)
γ2 -0.005 (-0.007; -0.001) exp(λ13) 1.374 (0.941; 2.007)

ν -1.447 (-1.703; -1.190)

Table 4.2: Parameter estimates and 95% confidence intervals in the joint model on the
ELSA data (N=919). Results of Model (7).

To relax the assumption that the random effects are independent. We fitted

Model (8) by assuming the random effects b0i and b1i follow a bivariate normal

distribution. The parameter estimates and 95% confidence interval of Model (8) are

shown in Table 4.3.

According to Table 4.1, it gives the smallest AIC among all models we fitted.

Additionally, we have conducted a comparison between Model (8) and its counter-

parts with a normal distribution, namely Model (8’) and Model (8”). The perfor-

mance of the alternative models is summarized in Table 4.1 as well. The results

demonstrate that Model (8) outperformed the other models.
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Longitudinal sub-model Multi-state sub-model
Value 95% CI Value 95% CI

τ0 4.262 (3.443; 5.275) q120 0.015 (0.004; 0.055)
τ1 0.130 (0.077; 0.220) q130 0.253 (0.060; 1.069)
β0 24.414 (23.497; 25.331) exp(η12) 1.068 (1.045; 1.092)
β1 -0.151 (-0.186; -0.116) exp(η13) 1.057 (1.033; 1.083)
ω1 0.387 (-0.260; 1.034) exp(α12) 0.931 (0.889; 0.974)
ω2 3.800 (3.149; 4.452) exp(α13) 0.851 (0.807; 0.897)
γ1 1.806 (1.730; 1.882) exp(λ12) 1.716 (1.213; 2.429)
γ2 -0.004 (-0.007; -0.001) exp(λ13) 1.253 (0.863; 1.819)
ρ -0.228 (-0.627;0.267) ν -1.510 (-1.773; -1.247)

Table 4.3: Parameter estimates and 95% confidence intervals in the joint model on the
ELSA data (N=919). Results of Model (8)



4.3.
D

ata
A

nalysis
75

74 76 78 80 82

0
5

15
25

35

an
im

al
 n

am
in

g

66 68 70 72

0
5

15
25

35

64 66 68 70 72

0
5

15
25

35

66 68 70 72 74

0
5

15
25

35

74 75 76 77 78 79

0
5

15
25

35

an
im

al
 n

am
in

g

80 82 84 86 88

0
5

15
25

35

66 68 70 72 74

0
5

15
25

35

70 72 74 76

0
5

15
25

35

52 54 56 58

0
5

15
25

35

an
im

al
 n

am
in

g

62 64 66 68

0
5

15
25

35

78 80 82 84

0
5

15
25

35

56 58 60 62 64

0
5

15
25

35

54 56 58 60

0
5

15
25

35

age

an
im

al
 n

am
in

g

64 66 68 70

0
5

15
25

35

age

63 65 67 69

0
5

15
25

35

age

80 82 84 86 88

0
5

15
25

35

age

Figure 4.1: The number of animal names recalled (denoted by the dots:”o”) and the fitted trajectories (presented by the lines) for 16 randomly selected
individuals.
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4.3.2 Prediction

In practice, there is need to predict the risk of server cognitive impairment for in-

dividuals with different follow-up times. Compared with the parameter estimates

and the transition intensities, the estimated transition probabilities are sometimes a

more straightforward depiction of the disease progression of interest.

In this section we show how the transition probability matrix can be estimated

given the historical observations of a random individual. To illustrate this process

we consider the following example generated randomly: a man with more than

10 years education. Using his 2 records of number of animal names recalled: 30

at age 65, and 25 at age 67, the joint model can be used to predict the transition

probabilities with the 95% confidence intervals till age 89. First of all, using the two

records of the longitudinal outcome, we can estimate the posterior expected value

of the random variables (b̂0i, b̂1i) = (3.35,0.14). Now assuming that the transition

probabilities are constant within a year, the transition probability estimated at age

68 is
P̂(t1 = 18, t2 = 19|gender = 1,educ = 1,age = 68)

=


0.981 0.016 0.003

0 1 0

0 0 1

 ,
(4.11)

where t represents age shifted by −49 years. It is clear that at early age, the prob-

abilities of moving to both state 2 and state 3 are very small. We can estimate

1-year transition probabilities at any time between age 65 and 89. Then we can esti-

mate the transition probability matrix P(t1, tn) by multiplying together the transition

probability matrices over each years:

P̂(t1, tn) = P̂(t1, t2)P̂(t2, t3) · · · P̂(tn−1, tn). (4.12)

The estimated transition probabilities with 95% confidence intervals were illustrated

in Figure 4.2. The confidence intervals were constructed from simulation with 1000

replicas. The estimated transition probabilities shown in Figure 4.2 agree with the
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expectations. For male with higher educations, as age grows, the probability of

having severe cognitive impairment is less, but the probability of death is growing

quickly with respect to age.

Figure 4.2: The transition probabilities of transitions from state 1 to state 1, 2, 3 are esti-
mated for a woman aged 65 and has fewer than 10 years education. The dashed
lines shows the 95% confidence intervals.

4.4 Simulation Study
For the simulation study, we employed the ADEMP structure as a frame-

work. The ADEMP structure comprises the following components: Aims, Data-
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generating mechanism, Methods, Estimands, and Performance measures.

1 The Aims of our simulation studies are:

(i) Verify the code in order to ensure the absence of any significant errors.

(ii) Check the correctness of the formulas and the estimation methods.

(iii) Investigate the performance of the joint model in various sample sizes.

(iv) Investigate the performance of the joint model when the correlation be-

tween the random effects are taken into account.

2 The Data-generating mechanism is introduced below:

Two sets of simulation studies were performed. For simulation study A, lon-

gitudinal data and multi-state data for each individual were generated based

on Equations (4.6) and (4.9), assuming that the error term follows a skew

normal distribution. The random effects for the intercept and the slope of the

time-dependent covariates were assumed to be independent.

For simulation study B, data were generated using equations (4.6) and

(4.9) as well, but with the assumption that the random effects follow a bi-

variate normal distribution. Let ρ denote the correlation between the random

effects.

The parameter values used for data generation were chosen based on the

estimates of Model (6), Model (7), and Model (8). For example, for bothe

simulation studies A and B we set the parameter of skewness ν = −1.447,

which matches the estimate of ν in Model (7). For Simulation study B, we

want to investigate the effect of modelling the correlation between the random

effects. And we found that introducing the correlation between the random

effects is making it much difficult to estimate the variance terms. There-

fore we selected a relatively large correlation of ρ = −0.462 to examine the

method’s performance when the correlations between random intercepts are

substantial. Additionally, to assess the impact of the value of τ0 on the model,

we chose two values: τ0 = 1 and τ0 = 4.392 respectively.
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In both simulation studies A and B, the time scale used is the age, the

longitudinal outcome is the number of animal names remembered in a recall,

and the competing events are death and severe cognitive impairment. We

assume the baseline age is 65 for all individuals. The follow-up time is 2

years. For each individual, we first simulate the two random effects b0i,b1i,

then generate the longitudinal trajectories from the skew normal distribution

with time-dependent variance. To make sure the longitudinal outcomes are

representative of the number of animal words recalled in the ELSA data, the

generated value out of the bounds (0,60] are rounded to 0 and 60. Then the

survivor functions to state 2 and state 3 at each time point are computed, and

the transition times T12,T13 can be generated using the inversion method.

It is typical to vary the sample size when examining the data generation

mechanism. As such, we incorporated diverse sample sizes into the design of

our simulation study. For simulation studies A and B, we set the sample sizes

as N = 100,200,400 respectively.

In particular for simulation study B, based on the specified parameters

and follow-up intervals, we simulate the corresponding random effects for

each individual by generating data from bivariate normal distribution. We use

the package mvtnorm in R software to generate bivariate normal samples.

3 Estimands:

In the two simulation studies, the parameters that is intended to be estimated

are the model parameters.

4 Methods:

In the parameter estimation process, The maximum likelihood estimates of

the parameters can be obtained by maximising the likelihood function nu-

merically. optimization function optim in R software was used.

The calculation of the marginal likelihood involved the use of the Gauss-
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Hermite quadrature method to approximate the integration. We set the num-

ber of nodes to 30 in this method. The simulation study was conducted on

a parallel High-Performance Computing (HPC) system. The choice of the

number of nodes was made to restrict the optimisation process and ensure its

completion within 72-hour usage limit.

The results of simulation A and B are based on 1000 replicates and 500

replicates, respectively. The reason for this choice is also influenced by the

usage limit of the HPC.

5 Performance measures: The results of the simulation studies are assessed by

bias, relative bias (%) and root-mean-square-deviation (rMSE).

Table 4.4 shows the results of the simulations results obtained through 1000

replicates of sample sizes N = 100,200,400 respectively. In this table we present

the value of the parameter used for simulation in the first column. For each sam-

ple size, we present the bias, the percentage of the bias and the root-mean-square

respectively. Comparing the percentage of bias for N = 100 and N = 400, all of

them decrease as N increases. In addition, the root-mean-square error consistently

reduces when the sample size N increases. The results of the simulation study show

that sample size N = 400 is large enough for the implemented method to have esti-

mates with the percentage of bias is 5% or less.

Table 4.5 and 4.6 present the estimates of the parameters obtained from the two

datasets. Table 4.5 shows that when the standard error of the random intercept is

small, i.e. τ0 = 1, the bias and the percentage of the bias decreases when the sample

size N increases. However, when the random effects are highly correlated, larger

sample sizes might be needed to obtain precise estimates. Furthermore, compared

with τ0 = 1, Table4.5 shows that when the random intercept has a large variance,

i.e. τ0 = 4.392, it is relatively difficult to obtain precise estimates as small sample

sizes. The bias and the percentage of the bias decrease much slower compared with

the two previous experiments. To conclude, time-dependent covariates outcomes

that huge population-level variances might increase the difficulties in estimating the

model parameters. The modelling of the correlation between random effects also
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increases the need for the sample sizes for precise estimation.



4.4.
Sim

ulation
Study

82

Parameter N = 100 N = 200 N = 400
Value Bias %bias rMSE Bias %bias rMSE Bias %bias rMSE

log(τ0) 1.480 0.034 0.023 0.087 0.014 0.009 0.061 0.010 0.007 0.042
log(τ1) -2.303 -0.117 0.051 0.216 -0.091 0.040 0.124 -0.096 0.042 0.073
β0 26.607 -0.216 0.008 0.810 -0.124 0.005 0.536 -0.151 0.006 0.331
β1 -0.165 0.009 0.055 0.025 0.004 0.024 0.018 0.004 0.024 0.012
γ1 1.798 -0.024 0.013 0.076 -0.012 0.007 0.055 -0.012 0.007 0.039
γ2 -0.004 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.001
log(q0.12) -4.200 -0.028 0.006 0.864 -0.010 0.002 0.470 0.037 0.009 0.288
log(q0.13) -1.374 0.415 0.302 0.616 0.058 0.042 0.527 0.029 0.021 0.371
α12 -0.062 -0.004 0.066 0.024 0.001 0.016 0.010 0.001 0.016 0.007
α13 -0.172 -0.024 0.140 0.018 -0.003 0.017 0.022 -0.001 0.006 0.015
η12 0.077 0.006 0.078 0.025 0.001 0.013 0.017 0.000 0.000 0.010
η13 0.049 -0.003 0.061 0.013 0.002 0.041 0.013 0.002 0.041 0.010
ν -1.447 0.077 0.053 0.217 0.033 0.023 0.144 0.033 0.023 0.093

Table 4.4: Simulation study for N = 100, 200, 400. 1000 replicates. Column Value displays the true value of the parameters. Bias, percentage of bias
is measured with respect to mean. rMSE represents the root mean square error.
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Parameter N = 100 N = 200 N = 400
Value Bias %bias rMSE Bias %bias rMSE Bias %bias rMSE

τ0 1.000 -0.008 0.008 0.231 0.007 0.007 0.095 0.006 0.006 0.079
τ1 0.100 0.001 0.010 0.011 0.000 0.000 0.007 -0.001 0.010 0.005
β0 26.607 0.003 0.000 0.250 0.005 0.000 0.147 0.009 0.000 0.106
β1 -0.165 0.000 0.000 0.011 0.000 0.000 0.009 0.000 0.000 0.007
γ1 0.500 0.024 0.048 0.083 0.018 0.036 0.060 0.021 0.042 0.041
γ2 -0.004 0.000 0.000 0.003 0.000 0.000 0.002 0.000 0.000 0.001
q0.12 0.015 0.003 0.200 0.009 0.003 0.200 0.007 0.002 0.133 0.005
q0.13 0.253 0.058 0.229 0.164 0.030 0.119 0.103 0.037 0.146 0.084
exp(α12) 0.940 0.000 0.000 0.011 0.000 0.000 0.007 0.001 0.001 0.006
exp(α13) 0.842 0.001 0.001 0.010 0.000 0.000 0.006 0.000 0.000 0.004
exp(η12) 1.080 -0.001 0.001 0.021 -0.002 0.002 0.015 -0.002 0.002 0.011
exp(η13) 1.050 0.000 0.000 0.013 -0.001 0.001 0.009 -0.001 0.001 0.007
ν -1.447 0.056 0.039 0.276 0.060 0.041 0.153 0.053 0.037 0.085
ρ -0.462 0.020 0.043 0.151 0.014 0.030 0.091 -0.001 0.002 0.063

Table 4.5: Setting τ0 = 1. Simulation study for N = 100, 200, 400. 500 replicates. Column Value displays the true value of the parameters. Bias,
percentage of bias is measured with respect to mean. rMSE represents the root mean square error.
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Parameter N = 100 N = 200 N = 400
Value Bias %bias rMSE Bias %bias rMSE Bias %bias rMSE

τ0 4.392 -0.335 0.076 0.367 -0.324 0.074 0.367 -0.324 0.073 0.322
τ1 0.100 -0.010 0.100 0.009 -0.011 0.110 0.009 -0.014 0.140 0.007
β0 26.607 0.366 0.014 0.402 0.413 0.016 0.402 0.375 0.014 0.358
β1 -0.165 0.001 0.006 0.012 0.001 0.006 0.012 0.001 0.006 0.007
γ1 0.500 0.016 0.032 0.066 0.018 0.036 0.066 0.015 0.030 0.044
γ2 -0.004 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.001
q0.12 0.015 0.002 0.133 0.005 0.002 0.133 0.005 0.002 0.133 0.003
q0.13 0.253 0.050 0.197 0.108 0.042 0.166 0.108 0.028 0.111 0.062
exp(α12) 0.940 0.001 0.001 0.009 0.002 0.002 0.009 0.000 0.000 0.004
exp(α13) 0.842 0.000 0.000 0.009 -0.003 0.004 0.009 0.000 0.000 0.008
exp(η12) 1.080 -0.001 0.001 0.009 -0.002 0.002 0.009 -0.002 0.002 0.005
exp(η13) 1.050 -0.001 0.001 0.008 0.000 0.000 0.008 -0.001 0.001 0.005
ν -1.447 0.136 0.094 0.235 0.134 0.093 0.235 0.133 0.092 0.112
ρ -0.462 0.414 0.896 0.189 0.409 0.885 0.189 0.394 0.853 0.165

Table 4.6: Setting τ0 = 4.392. Simulation study for N = 100, 200, 400. 500 replicates. Column Value displays the true value of the parameters. Bias,
percentage of bias is measured with respect to mean. rMSE represents the root mean square error.



Chapter 5

Early Sepsis Diagnosis Using Joint

modelling of Competing Risks and

Covariates

The task of early diagnosis of disease is to make predictions on the disease progres-

sion based on the health records of individuals. For the sepsis early diagnosis task

introduced in Chapter 2, the aim is to find out sepsis patients as early as possible, in

order to gain a higher utility score.

It is straightforward to solve the sepsis early detection problem as a classi-

fication problem. With the development of devices, the speed of computing is

getting faster, therefore it is more convenient to apply the machine learning and

deep-learning algorithms to real-world problems. Since classification problem is an

important topic in supervised learning, lots of algorithms to can be chosen.

However directly applying the methods for classification, some important char-

acteristics of this dataset were neglected: (i) the labels are not consistent. Both

non-septic patients and septic patients have labels ”0”, but the changes of their

biomarkers are different, and these labels should not be treated equally. (ii) There

are uncertainties in the label of sepsis. Since labels are given by the clinicians, the

diagnosis time is always after the sepsis onset time. Therefore directly using the

training set with these labels will lead to the methods failed to diagnose sepsis at

the optimal time. In previous studies the label was preprocessed, the diagnosis time
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was moved forward for 6 hours. However, this method lacks justification and will

introduce extra noise.

Ripley and Ripley (2001) discussed the relationship between the classification

problem and survival analysis. In our approach, we show that the two events diag-

nosed to be ’septic’ and ’nonseptic’ can be modelled as two competing events. To

penalize the late prediction, we design a time-dependent loss function and propose

to make diagnoses by minimizing the expected loss.

The framework we proposed for the early diagnosis consists of two steps.

First of all, the individual-specific time-to-event distribution is estimated by joint

modelling the survival data and the time-dependent covariates. In the second step,

the label minimizing the expected loss is chosen. The competing risks and the

covariates are modelled using a joint model based on multi-state model and a mixed

model.

5.1 Statistical Decision Theory

Decision theory involves the rational process of decision-making, providing a

framework to make choices in the face of uncertainty and various outcomes. It

aims to optimize decisions by evaluating the associated risks, rewards, and proba-

bilities of different actions. Peterson (2017) offers a comprehensive introduction to

decision theory. The book introduces the concept of utility, which represents the

value of an outcome as perceived by decision-makers. One widely used decision

rule for making choices under risk is to maximize expected utility. In the case of

the sepsis early diagnosis problem, the utility score for each diagnosis result of ev-

ery patient at each time point is defined by the utility functions 2.4 and 2.5. In the

framework for disease early diagnosis we proposed, we define a loss function based

on the utility function, and the minimizing of the expected loss is equivalent to the

maximizing of the expected utility.

More detailed introduction can be found in, for instance Berger (2013), which

focuses on statistical decision theory and its connection to Bayesian analysis, and
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Parmigiani and Inoue (2009) which offers an introduction to various decision-

making frameworks.

In this section, we present an introduction to statistical decision theory, fol-

lowing the approach outlined in Bishop and Nasrabadi (2006). We show that the

classification problem can be solved by minimizing the loss function. We will de-

fine a time-dependent loss function specific to the sepsis early diagnosis problem.

Suppose that D∈R and Y∈Rp×1 are random variables with joint distribution

fY,D(y,d). In many applications, the goal is to predict the corresponding values of

D given values of Y. The prediction is achieved by finding a function f where the

difference between f (Y) and D is minimized. To measure the loss generated, a loss

function L(D, f (Y)) is introduced. Given Y = y, it is ideal to choose the f (y) which

minimizes the loss function. However, the loss function L(v, f (y)) depends on d,

which value is unknown and we aim to predict. Therefore, instead of minimizing

the loss function directly, we can minimize the conditional expectation given y:

ED[L(D, f (Y))|y] =
∫

v
L(v, f (y)) fD|Y(v|y)dv. (5.1)

Consider a classification problem, where D is a random variable which can

only take value 0 or 1. Therefore two types of loss could arise in the decision-

making procedure: L01 loss stands for the loss incurred when misclassified an ob-

servation x from class 0 to class 1, and vise versa for L10. Then using the method

above, the classification of x is given by minimizing the equation below:

L01P(D = 0|Y = y)+L10P(D = 1|Y = y). (5.2)

See more detailed discussion on statistical decision theory in, for instance

Bishop and Nasrabadi (2006) and Friedman et al. (2001).
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5.2 Prediction and Evaluation

The diagnosis of sepsis is usually considered as a classification problem. According

to Section 5.1, it can be solved by minimizing the expected loss. In practice, the

clinicians can only make diagnosis many hours later than the sepsis onset time.

Therefore applying the classification methods directly with the labels provided by

the clinicians are less likely to provide early diagnosis. To tackle this challenge, we

propose to use a time-dependent loss function that penalizes late predictions. In this

section, we first define this loss function then derive the expected loss.

Recall the utility score function introduced in Chapter 2. For patients that

eventually have sepsis (i.e., with at least one SepsisLabel entry of 1), the classifiers

is rewarded if it predict sepsis onset between 12 hours before and 3 hours after tsepsis,

where the maximum reward is 1. We penalize classifiers that do not predict sepsis

or predict sepsis more than 12 hours before tsepsis, where the maximum penalty for

very early detection is a −0.05 and the maximum penalty for late detection is −2.0.

For patients that do not eventually have sepsis (i.e., all SepsisLabel entries

equals 0), we penalize classifiers that predict to be sepsis onset, where the maxi-

mum penalty for false alarms is a parameter (0.05; equal to the very early detection

penalty). We neither reward nor penalize those that do not predict sepsis.

For the prediction, according to the definition of the utility score, it is clear

that the reward of the prediction depends on whether a patient is a septic patient

or not, furthermore, it is related to the onset time of the sepsis. Therefore to make

predictions at time points t = 1,2, . . . ,Ti given the historical data updated hourly, it

is natural to introduce a time-dependent loss. Similar to the utility score, we define

the loss as a function of t and tsepsis as well. The value is chosen based on the utility

score in equations (2.3), (2.4) and (2.5).

In line with equation (5.2), term L01 is the false positive loss, i.e. the loss

incurred if a non-septic patient is misclassified to be septic. We define L01 to be a

constant: L01 = 0.05.

Similarly, the term L10 is the false negative loss generated while the septic

patient is classified to be nonseptic. Since we want the algorithm to classify the
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septic patient as early as possible, we assume the loss incurred varies with respect

to the differences between t and tsepsis. To be more specific, when t ≤ tsepsis − 12,

there will be no penalty if the algorithm is failed to correctly diagnose septic patients

12 hours before the clinicians and L10 will be zero. For tsepsis−12 < t, there will be

a slight penalty if the algorithm cannot diagnose the septic patient and the loss will

increase as time t increases. L(t)
10 (tsepsis) is given by:

L(t)
10 (tsepsis) =



0 (t ≤ tsepsis −12)

1/6 (t = tsepsis −11)

... ...

1 (t = tsepsis)

... ...

2 (t ≥ tsepsis +9).

(5.3)

Notice that the loss function L10 is different for each individual since the tsepis

of each septic patient is different. Therefore it is natural to consider the time of

diagnosis as a random variable Tsepis.

Therefore to predict the label of patient i at time t, provided the historical

observations H(t) (for simplicity the index i is omitted), the expected loss is given

by:

EL

[
L(t)(D,Tsepsis)|t,H(t)

]
= ETsepsis

[
EL|tsepsis

[
L(t)(D, tsepsis)| T sepsis = tsepsis, t,H(t)

]]
= ∑

v

∫
∞

tsepsis=1
L(t)(D = v, tsepsis)P(D = v|Tsepsis = tsepsis, t,H(t)) f (tsepsis|t,H(t)).

(5.4)

In our case, the label D can only take value 0 or 1. Now consider the conditional

probability P(D = v| T sepsis = tsepsis, t,H(t)) in equation (5.4). It is natural to de-
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fined that:

P(D = 0|Tsepsis = tsepsis, t,H(t)) =

 1 (t ≤ tsepsis −12)

0 (otherwise),

P(D = 1|Tsepsis = tsepsis, t,H(t)) =

 1 (t > tsepsis −12)

0 (otherwise),

since we will only classify an individual to be septic when t > tsepsis−12. Therefore

equation (5.4) is simplified to:

∫ t+12

tsepsis=1
L(t)

10 (tsepsis) f (tsepsis|H(t))︸ ︷︷ ︸
(a) false negative loss

+
∫

∞

tsepsis=t+12
L(t)

01 (tsepsis) f (tsepsis|H(t))︸ ︷︷ ︸
(b) false positive loss

. (5.5)

When making a diagnosis, we classify the individual to class 0 (non-septic) if the

value of term (a) is smaller than term (b), and vise versa.

To calculate the two terms in equation (5.5), we need to estimate the con-

ditional distribution of tsepsis. We propose to achieve this by joint modelling the

competing risks and the time-dependent covariates. Then the transition probability

P12(t j, t j+1|H(t j+1)) can be used to approximate the distribution of tsepsis. The

details will be discussed in the next section.

5.3 Joint Model of Competing Risks and Covariates

In the context of early sepsis diagnosis, individuals were excluded from the study

once they received a non-septic diagnosis. Furthermore, the study involved hourly

measurements due to the acute nature of sepsis. As a result, the diagnoses of ”sep-

sis” and ”non-sepsis” can be regarded as competing events, given that individuals

diagnosed as non-septic will not develop sepsis during the study’s timeframe.

In our multi-state model we defined three states (displayed in Figure 2.3): State

1 - under risk; State 2 - onset of sepsis; State 3 - diagnosed to be non-septic/dropout.

Transitions are permitted are from State 1 to State 2, and State 1 to State 3. y(t)
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are the values of the time-dependent covariates at time t, z are the demographic

covariates. This multi-state model is governed by two transition hazards q12 and

q13, defined as:

qrs = q0.rs exp
(

α
⊤
rsy(t)+λ

⊤
rsz+ηrst

)
.

The parameters of the joint modelling of competing risks and time-dependent co-

variates are estimated by maximising the marginal likelihood function or using

Bayesian inference (see Chapter 6).

After obtaining the parameters for the joint model, the transition probability

P1,2(t1, t2) of an individual over any time-intervals can be estimated. Then the equa-

tion (5.5) can be approximated by:

EL[L(t)(D, tsepsis)|t,H(t)] =
τ

∑
tsepsis=t+1

L01[P1,2(0, tsepsis)−P1,2(0, tsepsis −1)]

+
t

∑
tsepsis=1

L(t)
10 (tsepsis)[P1,2(0, tsepsis)−P1,2(0, tsepsis −1)],

(5.6)

where τ is a large number, and τ > max
i
(Ti) for this method to valid. In the

data analysis, we let τ = 300 hours.

5.4 Data Analysis
In this section, we present the results of the joint models using the clinical data

of sepsis. We fitted four different joint models to the time-dependent covariate

respiratory rate. We start defining the joint models with the competing-risk sub-

model:

qrs(ti j|µi j) = q0.rs exp(ηrsti j +αrsµi j +λ
(1)
rs agei +λ

(2)
rs genderi),

where agei and genderi are the demographic variables for the gender and age. The

variable ti j is the corresponding time the covariates are recorded. We assume the

transition intensity only depend on one time-dependent covariate, and the term µi j
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is the mean of the covariate. From Model (i) to Model (iv), we kept the structure of

the competing-risk sub-model unchanged, and apply 4 different structures to model

the time-dependent covariates. Now we define the sub-model for time-dependent

covariate.

Model (i). General mixed model with normal distribution.

yi j = µi j + εi j, εi j ∼N (0,σ2) (5.7)

µi j = β0 +b0i +(β1 +b1i)ti j, bi = (b0i,b1i)∼N (0,Σ).

In this mixed model we assume the error terms ei j follows a normal distri-

bution with mean 0 and variance σ2. The term yi j represents the observed

value of the time-dependent covariates. For the true value of the time-depen-

dent covariates µi j, we assume it changes linearly with respect to the time ti j.

To describe the individual-level intercept and slope we introduced two ran-

dom variables b0i and b1i, and assume they jointly follows a bivariate normal

distribution with mean (0,0) and the variance-covariance matrix Σ.

Model (ii). General mixed model with normal distribution, variances of error

terms changes over time.

yi j = µi j + εi j, εi j ∼N (0,σ2
i j) (5.8)

log(σi j) = γ0 + γ1ti j,

µi j = β0 +b0i +(β1 +b1i)ti j, bi = (b0i,b1i)∼N (0,Σ).

Model (ii) is an extension of Model (i). We assume the variance of the normal

error term is no longer a constant but changes over time ti j.
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Model (iii). General mixed model with skew normal distribution, variances

of error terms changes over time.

yi j = µi j + εi j, εi j ∼ SN(0,ν ,σi j) (5.9)

log(σi j) = γ0 + γ1ti j,

µi j = β0 +b0i +(β1 +b1i)ti j, bi = (b0i,b1i)∼N (0,Σ).

We extend Model (ii) by extending the distribution of the error terms from the

normal distribution to a skew normal distribution. The parameter controls the

skewness is denoted by ν .

Model (iv). General mixed model with skew t distribution, variances of error

terms changes over time.

yi j = µi j + εi j, εi j ∼ ST (0,ν ,τ,σi j) (5.10)

log(σi j) = γ0 + γ1ti j,

µi j = β0 +b0i +(β1 +b1i)ti j, bi = (b0i,b1i)∼N (0,Σ).

We extend Model (ii) by extending the distribution of the error terms from

the normal distribution to a skew t distribution. The parameter controls the

skewness is denoted by ν , and the parameter of the degree of freedom is τ .

Before we fit the models above, the records of the respiratory rate were pre-

processed. The missing values of each patient were imputed with the nearest avail-

able observation before the missing value. To avoid numerical problems, the mean

of the observations was shifted to 0. The models were fitted to a subset of N = 1000

patients, which were randomly sampled from the whole dataset from one hospital.

The number of repeated observations of each patient is between 20 to 300.

Since in the four models above we assumed the random effects follow the nor-

mal distribution, the Gauss-Hermite quadrature method was applied to approximate

the integrals in the marginal likelihood function. Then the function optim in R
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software was used to obtain the maximum likelihood estimates of parameters.

The -log-likelihood and AIC of the above models are shown in table 5.1. It

shows that the model (iv) has the smallest AIC value.

5.5 Numerical Problem
It is important to notice that the estimation process is sensitive to the approxima-

tion of the marginal likelihood. In this study the Gaussian-Hermite approxima-

tion method was applied, which accuracy depends on the number of nodes. It is

straightforward that the more number of nodes we use, the more accurate marginal

likelihood we can obtain. However more number of nodes requires longer comput-

ing time. For example, when we model the covariate respiratory rate using Model

(i), we can fix a set parameters and compare the differences in the approximated

marginal likelihood using different number of nodes respectively. Figure 5.1 present

the changes in the approximated value of log-likelihoods using different number of

nodes. It is clear that the approximation of the log-likelihood have not converge yet

when number of nodes equals 60. However, to limit the computing time we cannot

choose as many nodes as possible. And to balance the time computing time and the

accuracy, we set the number of nodes to be 30.

Furthermore, In Table 5.2 we compare the estimates of a subset of parameters

in Model (iv) obtained using maximum marginal likelihood and Bayesian inference

(this will be discussed in Chapter 6). It is clear that marginal likelihood tends to

underestimate the variance terms, which is expected based on the features of maxi-

mum marginal likelihood estimation. Therefore, despite increasing the sample size,

the underestimation of variance terms still exists. The estimates of σe,σb1 and σb2

Model Covariate p -log-likelihood AIC
(i) Resp 16 22810.84 45637.68
(ii) 17 22223.03 44462.06
(iii) 18 22184.97 44385.94
(iv) 19 21270.06 42556.12

Table 5.1: Comparison between joint models for Sepsis data (N=1000). The time-depen-
dent covariate is the respiratory rate. p is the number of parameters for the
corresponding model.
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Figure 5.1: Value of minus log-likelihood computed using different number of nodes.

Marginal Likelihood Bayesian Inference
Value 95% CI Value 95% CI

σe 0.362 0.359 0.364 1.182 1.176 1.188
σb1 0.348 0.337 0.360 0.392 0.373 0.410
σb2 0.111 0.107 0.115 0.125 0.117 0.134
β1 1.796 1.780 1.813 1.812 1.796 1.834
β2 0.050 0.047 0.052 0.035 0.031 0.039
ρ -0.427 -0.473 -0.378 -0.458 -0.612 -0.343

Table 5.2: Comparing the estimates of parameters of Model (iv) using Maximum marginal
likelihood and Bayesian inference. L and U are the boundaries of the 95% con-
fidence interval.

using maximum marginal likelihood are smaller than the estimates obtained using

Bayesian inference.

To solve above problems different approximation method can be used. In

Chapter 6 we will show that by using Bayesian inference this numerical problem

can be alleviated.



Chapter 6

Bayesian Inference for Joint Models

In Chapter 5 we illustrated the joint model using the ELSA data, where only one

time-dependent covariate was modelled with the general mixed sub-model for the

longitudinal outcome. In that general mixed model, there were two random effects,

and the Gauss-Hermite quadrature approximation was applied to numerically es-

timate the value of the double integral. This joint model can be extended to take

into account multiple time-dependent covariates simultaneously. However, as the

number of random effects increases, integration in higher dimensions is needed.

In this case, using the Gauss-Hermite quadrature becomes less efficient, since the

number of evaluation points will grow exponentially. This is known as the ”curse

of dimensionality”, a term first used by Bellman (1966).

There are various ways to overcome the computational complexity of inte-

gration in high-dimensional space, and among them, the Monte Carlo method dis-

cussed by Jerrum and Sinclair (1996) is often the primary choice. However, as a

method based on sampling, it introduces randomness to the approximation of the

integrals. therefore it is problematic to apply the general purpose optimiser as we

did in the previous chapter. The Bayesian inference can help us to alleviate the

difficulties. Within the Bayesian framework, we estimate the parameters using the

posterior expectations.

This chapter consists of two sections. First of all we will briefly explain the

methods for Bayesian inference, including the concepts of the Bayesian inference,

and the Bayesian model comparison criteria. Then we will introduce the Bayesian
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inference for joint models. Finally, we will apply the joint models to the clinical

data of sepsis, and then present the early prediction of sepsis based on the joint

models.

6.1 Bayesian Inference

Both the Bayesian and frequentist approaches are important in statistical inference,

and over the years people have been debating which approach is better. Briefly

speaking, the frequentist approach is purely data-driven. On the contrary, the

Bayesian inference considers probability as a measure of the belief, and incorpo-

rates the prior beliefs into the data analysis. In most of the statistical books intro-

ductions to both approaches can be found. Books written by Bolstad and Curran

(2016); Gelman et al. (1995) and Hoff (2009) focus on Bayesian inference only,

provide information from theory to practice. Bayesian inference is also a very pop-

ular technique in areas such as artificial intelligence, engineering, etc. Hastie et al.

(2009) systematically introduces the statistical learning methods and discusses the

model inference methods including both maximum likelihood and Bayesian infer-

ence. Bishop and Nasrabadi (2006) focuses on the Bayesian viewpoint of the pat-

tern recognition and machine learning methods, presenting a profound understand-

ing of the Bayesian inference. In particular, the Bayesian inferential procedure for

the multi-state model can be found in Welton and Ades (2005) and Van den Hout

(2017). In Van den Hout (2017), the Bayesian inference of a frailty model was

discussed and illustrated with the ELSA data.

As summarised in Bayarri and Berger (2004), the debate over the superiority

of one approach to the other should continue, as the philosophies underlying the

frequentist and Bayesian inference are different. Let us denote the data and the

parameter of interest by x and θθθ respectively. The probability mass function and the

probability density function are denoted by p(·). For simplicity we use notation x to

denote the probability distribution p(X = x) = p(x). In the world of the frequentist,

the unknown parameter θθθ is considered to be fixed, and the inference of them only
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depends on the data x, i.e. this approach only focuses on the distribution p(x|θθθ).

On the contrary, in Bayesian statistics, θθθ is considered as a random variable, and a

prior distribution is given to it based on the knowledge or the belief. The Bayesian

inference is based on the Bayes Rule:

p(θθθ |x) = p(x|θθθ)p(θθθ)
p(x)

, (6.1)

where the term p(x|θθθ) is the likelihood function. Notice that the marginal distribu-

tion p(x) is a constant with respect to θθθ , therefore can be considered as a normal-

ising constant of the posterior distribution. The Equation (6.1) expresses that after

observing data, the prior distribution p(θθθ) can be updated by the likelihood and we

obtain the posterior of the parameters of interest, i.e.

posterior ∝ likelihood∗prior. (6.2)

When there is little prior knowledge available for the parameters, weakly in-

formative priors can be used, then the posterior is dominated by the likelihood. And

it was mentioned in Ghosh et al. (2006); Lemoine (2019) that assigning the uniform

prior will lead to inference similar to the frequentist approach. In this thesis, we

will not discuss whether the Bayesian or frequentist approach is more appropriate

to be applied to our problem. Instead, we only want to use the Bayesian inference

as a technique to alleviate the high-computational complexity when calculating the

marginal likelihood. Therefore, we utilise the property that using the weakly infor-

mative prior will produce results that coincide with the maximum likelihood estima-

tion, assign vague prior distributions, and finally make inference of the parameters

which control the joint model from their posterior distributions. In the analysis of

the clinical data of sepsis, we use the Normal distribution N(0,1002) as the weakly

informative prior for the fixed effect coefficients and uniform distributions such as

U(−10,10) as priors for the standard deviation of the normally distributed residual

error.
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6.2 High-dimensional integration
In this section we will briefly discuss the high-dimensional integration and introduce

the Markov Chain Monte Carlo methods. Let f (θθθ) denote any transformation of the

parameter θθθ . Now consider the integral:

E[ f (θθθ)|x] =
∫

f (θθθ)p(θθθ |x)dθθθ . (6.3)

The computation of this integral is usually a complex problem, especially in high-

dimensional space. For example, in Chapter 5, we applied the general mixed model

to the number of animal names the individual can recall from a list. Two random

effects were specified to account for the individual level intercept and the slope

with respect to age. The two-dimensional Gaussian-Hermite quadrature approxi-

mation was applied to numerically approximate the marginal likelihood. If we set

the number of nodes to 20, then for a two-dimensional Gaussian-Hermite quadra-

ture approximation, the integrand function will be calculated 400 times. If we want

to extend the general mixed model, allow it to model two time-dependent outcomes

simultaneously and specify two random effects for each time-dependent outcome,

the marginal likelihood will be a four-dimensional integration. If we still set the

number of nodes to 20, then the integrand function will be calculated for 204 times.

This will make the maximisation of the marginal likelihood very inefficient. There-

fore we need a different method to approximate the marginal likelihood.

The Monte Carlo integration can be used to approximate the integration:

E[ f (θθθ)|x]≈ 1
N

N

∑
i=1

f (θθθ (i)), (6.4)

where θθθ
(1),θθθ (2), . . . ,θθθ (N) are samples drawn from the posterior distribution p(θθθ |x).

The naive Monte Carlo integration performs poorly in high dimensions as well.

As the dimension grows, the range of the integral will be too large to be sampled

from. However, it is not necessary for the samples to be independent. The Markov

Chain Monte Carlo (MCMC) methods draw samples from a Markov chain having

equilibrium distribution p(θθθ |x). This provides an efficient method to calculate the
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high-dimensional integration efficiently.

However, since the MCMC methods approximate the integral by sampling,

it introduces randomness when approximating the marginal likelihood. Using the

general purpose optimiser as we did in Chapter 5 might lead to problematic results.

To alleviate the problems above, we specify weakly informative priors to the

parameters of the joint model. We then make inferences based on the posterior

distributions, which ideally converge towards the maximum likelihood estimates

(MLE). The data analysis is performed directly using the program WinBUGS 1.4.

WinBUGS is a statistical software developed in the 1990s (Lunn et al. (2000)).

WinBUGS implements MCMC algorithms, such as the Gibbs sampler and the

Metropolis-Hastings algorithm, to obtain posterior samples from Bayesian mod-

els. Although WinBUGS may be outdated and less efficient for more complicated

models, it is powerful enough for the joint model with multi-state model and general

mixed model and is robust in estimation.

By incorporating Bayesian inference, our objective is to leverage simulation-

based estimation for approximating the marginal likelihood. This thesis stays ded-

icated to the frequentist approach and does not involve a transition to the Bayesian

paradigm.

6.3 Model Comparison Criteria

The deviance information criterion (DIC) is a Bayesian version generalisation of

the model comparison criteria Akaike information criterion (AIC). It measures the

adequacy of a model and also penalise if the model complexity increases. The

deviance is defined based on the posterior distribution of the likelihood:

D(x,θθθ) =−2log p(x|θθθ). (6.5)

The DIC is defined as

DIC = D(x,E[θθθ ])+2pD, (6.6)
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where θθθ is the set of all model parameters. The term D(x,E[θθθ ]) is known as the

plug-in deviance, which is evaluated using the posterior means of the model param-

eters. The model complexity is described using the effective number of parameters

pD, which is defined as

pD = E[D(x,θθθ)]−D(x,E[θθθ ]), (6.7)

where E[D(x,θθθ)] is the expected deviance. The model with a smaller DIC is pre-

ferred. However, there exists a limitation for using the DIC, it is only valid when

the posterior distribution is asymptotically normal.

6.4 Bayesian Inference for Joint Models
In this section we will introduce the Bayesian inference for the joint model, then

we will illustrate our method using the clinical data for sepsis from the PysioNet

challenge Reyna et al. (2019b). The joint model consists of a sub-model for the

longitudinal data and a sub-model for the competing risks. We extend the gen-

eral mixed model so that it can model multiple time-dependent covariates simul-

taneously. For computational simplicity, in this study we only take into account

two time-dependent covariates. Due to the low observing frequencies, there are no

enough information to fit mixed models to the lab signs. In addition, due to the high

missingness rate in the vital signs, we apply the general mixed model only to the

three vital signs heart rate (HR), mean arterial pressure (MAP), and respiration

rate (Resp)

To model the disease progression of sepsis, the competing-risk sub-model is a

three-state multi-state model. As we discussed in Chapter 2, the three states are: s

= 1 (under risks of sepsis), s = 2 (sepsis onset) and s = 3 (non-sepsis/dropout). The

transitions are allowed from state 1 to state 2, and from state 1 to state 3. Though we

have labels provided by clinicians which indicate whether an individual has sepsis

or not, because we consider the labels as imprecise and want to generate labels that

allow for early diagnosis, we assume both the transitions to the state 2 and state 3 are
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interval censored, because it can happen between the follow-ups. On the other hand,

since the follow-up time is 1 hour, modelling the transition as interval-censored or

exact censored should be very similar.

The dependencies of the transition intensities on the covariates are modelled

by the transition-specific hazard regression models, given by:

qrs(ti j|µ(1)
i j ,µ

(2)
i j )= q0.rs exp

(
ηrsti j +α

(1)
rs µ

(1)
i j +α

(2)
rs µ

(2)
i j +λ

(1)
rs genderi +λ

(2)
rs agei

)
,

(6.8)

where the time-scale t is time in hours, re-scaled by 1/10, and gender = 0/1 for

women/men. The term age represents the age of each individual. Since the clinical

data of sepsis is observed on the scale of hours, the covariate age is a constant for

each individual. µ
(1)
i j and µ

(2)
i j are expected values of two different time-dependent

covariates for individual i at time point j.

Now we construct the sub-model for the time-dependent covariates. We start

with the sub-model for time-dependent covariates with no random effects (Model

A):

y(k)i j = µ
(k)
i j + ε

(k)
i j , ε

(k)
i j ∼N (0,σ (k)2

)

µ
(k)
i j = β

(k)
0 +β

(k)
1 ti j,

(6.9)

where k = 1,2. The error terms of the longitudinal outcomes are modelled by nor-

mal distribution with mean 0 and a constant variance.

Based on the Equation (6.8), the transition probabilities moving from state 1 to

state 2 or state 3 over the 1 hour time interval (tip, tip +1) are given by:

P1,2(tip, tip +1) =
(

1− exp(−q1,1(tip))
) q1,2(tip)

q1,2(tip)+q1,3(tip)
,

P1,3(tip, tip +1) =
(

1− exp(−q1,1(tip))
) q1,3(tip)

q1,2(tip)+q1,3(tip)
.

(6.10)

To make inference on the posterior distributions using WinBUGS, the prior dis-

tributions needed to be specified. For each of the 14 fixed-effects parameters β ’s,

η’s and λ ’s, weakly informative prior densities are specified by p(·)∼ N(0,1002).
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For the standard deviations σk’s, we specify vague priors U(−10,10). Van den

Hout (2017) presents the implementation of the Bayesian multi-state continuous-

time survival model in BUGS. Since we have a three-state sub-model for the com-

peting risks, we adopt a similar model implementation. It is proposed that the sur-

vival data observed in each time-intervals (ti1, ti2],(ti2, ti3], . . . ,(ti,N−1, tiN ] should be

modelled independently. Let Si, j denote the state of individual i at time j, and the

transitions to state si j given state si, j−1 should be modelled with multinomial distri-

bution, where the corresponding probabilities equal to the transition probabilities at

time point j. For convenience, we code the state transitions in each hourly interval

as (1,0,0),(0,1,0) and (0,0,1), and denote the observed code at each time point as

S̄i, j. Then we specify the likelihoods as

Si, j|si, j−1,θθθ ∼ Multinomial(p,1), (6.11)

where θθθ is the vector with the parameters in equations (6.8),(6.9) and (6.10), and

p = (P1,1(ti j),P1,2(ti j),P1,3(ti j)).

Now we extend the sub-model for the time-dependent covariates based on

Equation (6.9) in Model A. For each of the time-dependent covariates, we intro-

duce two random effects to take into account the individual-level intercept and slope

(Model B). The equations are as follows:

y(k)i j = µ
(k)
i j + ε

(k)
i j , ε

(k)
i j ∼N (0,σ (k)2

)

µ
(k)
i j = β

(k)
0 +b(k)0 +(β

(k)
1 +b(k)1 )ti j.

(6.12)

We assume that all the random effects B = (B1
0,B

1
2,B

2
1,B

2
2) follows a multivariate

normal distribution with mean 0 and the variance-covariance matrix Σ. The corre-

lations between two time-dependent covariates are also taken into account by the

variance-covariance matrix Σ.

The implementation of this model is similar to the Model A. In addition, we

need to specify priors for the four-dimensional random effects B:
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Model Vital Signs p DIC
Model A 1-3 HR and MAP 24 615386.7

HR and Resp 24 565218.0
MAP and Resp 24 554004.5

Model B 1-3 HR and MAP 28 218099.6
HR and Resp 28 140700.5
MAP and Resp 28 169099.4

Table 6.1: Comparison between joint models for sepsis data (N=1000). p is the number of
parameters used in the model.

B ∼ N(0,Σ),

Σ
−1 ∼W4(R, p),

(6.13)

where W4 represent a four-dimensional Wishart distribution, R > 0 is the scale ma-

trix and p is the degree of freedom. In Bayesian statistics, the Wishart distribution

is used as the conjugate prior for the precision matrix of the multi-variate normal

distribution.

We fit both Model A and Model B to pairwise combinations of three vital signs.

The values of the observed vital signs and the time t were rescaled to 1/10 to avoid

numerical problems. We generate the initial values using the package lme4. For all

the models, the MCMC consists of two chains with each 10,000 sample iteration.

Among them, the first 4000 iterations are in the burn-in procedure and therefore

discarded. The DIC of the models are displayed in Table 6.1.

According to the Table 6.1, joint model fitted time-dependent covariates heart

rate and respiration rate (Model B (2)) gives the smallest DIC among all models

we fitted.

The posterior mean and the 95% credible intervals are shown in Table 6.2. The

estimates q̂0.12 = 0.0003 and q̂0.13 = 0.053 indicating transition intensity to state 3

is much higher than the transition intensities to state 2 at baseline (t = 0). The order

of magnitude of q̂0.12 is smaller than q̂0.13, and this in line with our observation in

Table 2.4 that it is 10 times more likely to move to state 3 (non-sepsis) than state 2

(onset of sepsis).
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The parameters α
(1)
12 , α

(1)
13 and α

(2)
12 , α

(2)
13 establish the connection between the

multi-state model and the time-dependent covariates heart rate and respiratory rate

respectively. The credible interval of α̂
(1)
12 includes 0, indicating that α̂

(1)
12 is not

significantly different from 0. The estimated value α̂
(1)
13 = −0.005 has a credible

interval excluding 1, indicating that α̂
(1)
13 is significantly smaller than 0. Hence for

individuals who have higher heart rate will have lower hazard to transit to state

3. Similarly, the credible interval of α̂
(2)
13 includes 0, and the credible interval of

α̂
(2)
13 =−0.205 excludes 0, indicating that individuals who have a higher respiratory

rate will have a lower hazard to transit to state 3 (non-sepsis). This is in line with

the syndrome of sepsis.

Furthermore, the estimate λ̂
(1)
13 =−0.166 is smaller than 0, implying that men

have a lower hazard for transitioning from state 1 to state 3 compared to women.

The estimate λ̂
(2)
13 = 0.403 is greater than 0, implying that older individuals have a

higher hazard for transitioning from state 1 to state 3. The estimate η̂12 = 0.161 and

η̂13 = 1.051 are greater than 0, indicating that as time increases, individuals will

have a higher hazard for transitioning out of state 1. The credible intervals of η̂12

and η̂13 both exclude 0, and are non-overlapping, indicating that the difference be-

tween η̂12 and η̂13 is significant, as time increases, individuals have higher hazards

to transit in to state 3.

It should be noted that for parameters describing transitions from state 1 to

state 2, the credible intervals of their estimates are relatively large, especially the

credible intervals for α̂
(2)
12 , λ̂

(1)
12 and λ̂

(2)
12 , this might due to there are relatively fewer

individuals transit to state 2 than state 3.

Coefficients β
(1)
0 ,β

(1)
1 and β

(1)
0 ,β

(2)
0 are in the mixed model. The estimated

values of the slopes for time β̂
(1)
1 < 0 and β̂

(2)
1 < 0 show that when time increases,

the heart rate and respiratory rate will decline. The parameters σ (1) and σ (2) are

standard deviations of the residual errors of covariates heart rate and respiratory

rate. The estimates σ̂ (1) = 1.972 indicating that the variations in the heart rate is

quite large.

The variance-covariance matrix Σ describes the correlations between the ran-
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dom effects of the two time-dependent covariates as specified in Equation (6.13).

Σ̂11 = 2.499, Σ̂22 = 0.196, Σ̂33 = 0.154 and Σ̂44 = 0.016 are the estimated val-

ues of the variances of the random effects b(1)0 ,b(1)1 ,b(2)0 and b(2)1 . The estimated

covariance between the random intercept and slope of the covariate heart rate is

Σ̂34 = −0.022 < 0, implying that the two random effects are negatively corre-

lated. The estimated covariances Σ̂13 = 0.183, Σ̂23 = −0.036, Σ̂14 = −0.019 and

Σ̂24 = 0.020, captures the dependencies between the two time-dependent covari-

ates. Σ̂13 > 0 implying that b(1)0 and b(2)0 are positively correlated. This implies

that individuals with higher baseline heart rates are likely to have higher baseline

respiratory rates. Similarly, Σ̂24 implies the slope that the heart rate and respiratory

rate changes with respect to time are positively correlated.

Longitudinal sub-model Multi-state sub-model
Value 95% CI Value 95% CI

β
(1)
0 8.532 (8.486; 8.569) q0.12 0.0003 (0.0001; 0.0009)

β
(1)
1 -0.741 (-0.085; -0.061) q0.13 0.053 (0.035; 0.087)

β
(2)
0 1.812 (1.796; 1.834) η12 0.161 (0.120; 0.200)

β
(2)
1 -0.151 (-0.186; -0.116) η13 1.057 (1.033; 1.083)

σ (1) 1.972 (1.920; 2.027) α
(1)
12 0.001 (-0.010; 0.012)

σ (2) 0.700 (0.697; 0.702) α
(1)
13 -0.005 (-0.008; -0.002)

Σ11 2.499 (2.294; 2.732) α
(2)
12 -0.079 (-0.531; 0.401)

Σ12 -0.293 (-0.348; -0.243) α
(2)
12 -0.205 (-0.338; -0.083)

Σ13 0.183 (0.140; 0.226) λ
(1)
12 0.078 (-0.054; 0.1951)

Σ14 -0.019 (-0.034; -0.005) λ
(1)
13 -0.166 (-0.196; -0.123)

Σ22 0.196 (0.174; 0.218) λ
(2)
12 0.357 (-0.380; 0.891)

Σ23 -0.036 (-0.049; -0.024) λ
(2)
13 0.403 (0.218; 0.579)

Σ24 0.020 (0.016; 0.026)
Σ33 0.154 (0.140; 0.168)
Σ34 -0.022 (-0.027; -0.019)
Σ44 0.016 (0.014; 0.018)

Table 6.2: Model B (2) for the sepsis data (N=1000), fitted with time-dependent covariates
heart rate and respiratory rate simultaneously. This table illustrates posterior
means and 95% credible intervals for the parameters in the joint model.
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For Model B (2), a fit to 9 randomly selected individuals is shown in Figure

6.1 and 6.2. The individual-specific random effects are estimated by the posterior

expectation of the random effects. Let θθθ
∗ denote the posterior mean of the param-

eters obtained from the Model B (2). The historical observations of the individuals

for prediction are represented by yi. Then the posterior expectation of the random

effects is given by Equation (6.14).

E[Bi|yi] =
∫

bi p(bi|yi,θθθ
∗)dbi =

∫
bi

p(yi|bi,θθθ
∗)

p(yi)
dbi. (6.14)

Due to the high rate of missing data, we did not present the fitting of joint

models for other time-dependent covariates in this study. However, it should be

noticed that the time-dependent covairates systolic blood pressure (SBP), diastolic

blood pressure (DBP), and mean arterial pressure (MAP) are all blood pressure

measurements, which means they are highly correlated. When the covariates in a

prediction model exhibit high correlation, it can significantly influence the model’s

performance. This correlation often leads to collinearity, make it difficult to assess

the individual effects of each covariate. Moreover, it can lead to unstable coefficient

estimates and inflated standard errors, affecting the reliability of the model. To avoid

these problems, dimension reduction methods and be applied.

However, the primary focus of this study is on the joint model and disease di-

agnosis, which rely on the utilisation of a joint model and a time-dependent loss

function. Hence we conduct our analysis on pairs of covariates to demonstrate the

effectiveness of the joint model for multiple time-dependent covariates and com-

peting risks. Additionally, when using the proposed joint model for prediction pur-

poses, it becomes essential to predict the mean of the time-dependent covariates at

each time point. The inclusion of multiple covariates, even when they are correlated,

contributes to improving covariate prediction.



6.4.
B

ayesian
Inference

forJointM
odels

108Figure 6.1: The observed heart rate (denoted by the dots:”o”) and the fitted trajectories (presented by the blue lines) for 9 randomly selected individuals.
The scales of the x and y axis in the plot is 1/10 of the original data.
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Figure 6.2: The observed respiratory rate (denoted by the dots:”o”) and the fitted trajectories (presented by the red lines) for 9 randomly selected
individuals. The scales of the x and y axis in the plot is 1/10 of the original data.
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Figure 6.3: The estimated cumulative state transition probabilities for 8 randomly selected individuals. The colour black represents the transition prob-
ability from state 1 → 1, red represents the transition probability from state 1 → 3, and blue represents the transition probability from state
1 → 2. Subtitles septic/non-septic of each plot indicate whether the individual has sepsis or not. The time scale is in hours. The cumulative
state transition probabilities are estimated till the end of the follow-up.
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Figure 6.4: The estimated cumulative state transition probabilities for 8 randomly selected individuals. The colour black represents the transition prob-
ability from state 1 → 1, red represents the transition probability from state 1 → 3, and blue represents the transition probability from state
1 → 2. Subtitles septic/non-septic of each plot indicate whether the individual has sepsis or not. The time scale is in hours. The cumulative
state transition probabilities are estimated for 300 hours.
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6.5 Prediction

In this section, we illustrate the sepsis early diagnosis framework we proposed,

applied to the clinical data of sepsis based on Model B (2) mentioned above. Ad-

ditionally, we compare our method with a logistic regression model. The aim of

this analysis is to explain and clarify the concept of the sepsis diagnosis framework

we developed. By comparing it with a model based on logistic regression, we can

better understand the unique aspects and benefits of our framework.

We estimated the parameters of Model B (2) and logistic regression using the

same subsample of 1000 randomly selected individuals from the clinical data of

sepsis. The details about this subsample can be found in Section 2.2.1. The pa-

rameter estimates for Model B (2) were presented in Table 6.2, and we will directly

utilise the results in this section.

To evaluate the performance, both models were applied to a validation set with

sample size 1000, which consists of a different subsample of the clinical data of

sepsis. This evaluation allows us to assess how well the statistical models perform

on previously unseen data. In this subsample, there are 64 sepsis individuals and

936 non-sepsis individuals. To better evaluate the performance of each model, we

examine the prediction results at each time point. For convenience, if, at a certain

time point, an individual is predicted to have sepsis based on the corresponding

observation (and historical observations), we label the corresponding observation

as positive. This subsample consists of a total of 39269 observations, according

to the information provided by clinicians in the dataset, among them there are 934

observations have positive diagnosis results and 38335 observations have negative

diagnosis results.

Now we explain how the sepsis early diagnosis framework works. Recall Equa-

tion (5.6), to predict the value of the label D for each individual we need to estimate

the transition probabilities at each time interval then calculate the weighted sum-

mation. To be more specific, given the historical data of a random individual, we

need to first estimate the individual-specific random effects given the historical ob-

servations. Based on that, we can further estimate the mean of the time-dependent
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covariates, calculate transition intensities and transition probabilities, and finally

use these values to make the diagnosis.

Figure 6.1 and 6.2 illustrate that for each individual, given the historical data,

our method can provide reasonable estimates of the individual level random effects

for the two longitudinal outcomes heart rate and respiratory rate included in Model

B (2). The mean of the time-dependent covariates estimated reflects the trend of the

change in the longitudinal outcomes.

Figure 6.3 illustrates the estimated transition probabilities of 8 randomly se-

lected individuals. 4 of the individuals are septic indiviudals and 4 of them are

non-septic indiviudals. For any individual at any time point, the estimates of the

transition probabilities from state 1 to state 2 are small compared to the transition

probabilities to state 3. This result is expected, since the proportion of septic indi-

viudals in the whole data set is relatively small. However, we can still observe that

for indiviudals finally end up in state 3 (i.e. nonseptic) the transition probabilities

to state 3 are significantly larger compared with septic individuals.

Figure 6.4 also illustrates the estimated transition probabilities for 300 hours

for 4 septic individuals and 4 non-septic individuals. In general, transition probabil-

ities to state 2 increases faster for the septic indiviudals compared with non-septic

indiviudals.

At each time point, given the observed historical data, we are able to estimate

the individual-level intercepts and slopes for the two time-dependent covariates,

then we are able to estimate the averages of the two covariates from time point t = 0

to t = 300. Based on this we can estimate the hourly transition probabilities P12.

We can finally apply Equation (5.6) to predict the labels, and use the utility function

described in Section 5.2 to compute the utility Score Utotal .

The choice of the loss function has a significant impact on the predictions. We

perform predictions by rescaling L01 using a rescale parameter. For each rescaled

L01 value, we compute the true positive rate (TPR) and false positive rate (FPR).

Note that the TPR is the proportion of actual positive will test positive, while the

FPR is the proportion of negative events wrongly categorised as positive. We use
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different values of L01 from 5× 10−4 to 10, to obtain the corresponding TPR and

FPR respectively. The resulting receiver operating characteristic curve (ROC) is

illustrated in Figure 6.5.

The reason we only rescale L01 is that, unlike L10, it is a scalar and therefore

easier to manipulate. In addition, by only modifying L01 we can still maintain the

shape of the function L10 which could encourage early diagnosis of sepsis.

It should be noted that the ROC curve visually represents the trade-off between

the true positive rate (TPR) and false positive rate (FPR) at different threshold val-

ues. In our method, the loss functions L01 and L10 serve as thresholds. Generally,

a ROC curve that is closer to the point (0,1) indicates better overall performance.

However, selecting the optimal threshold depends on the specific problem, the de-

sired trade-off between false positives and false negatives, and the associated costs

or consequences of misclassification. In our case, if we use the utility score intro-

duced in Section 2.2.3 as an assessment of performance, it is crucial to note that

the penalty for falsely classifying a septic individual as non-septic (false negative)

is much more severe than falsely classifying a non-septic individual as septic.

We found that the loss functions defined in Chapter 5 tend to penalise false neg-

ative predictions too much, resulting in a high number of false positive predictions.

When we used L01 = 0.05 in the prediction procedure, out of 39269 observations,

only 348 were false negatives, but 13721 observations were false positives. The

true positive rate was 0.627, and the false positive rate was 0.358. This indicates a

trade-off where a higher true positive rate is achieved at the cost of a higher false

positive rate.

To address this imbalance, we tuned the value of the loss function from

L01 = 0.05 to L∗
01 = 0.5. With this adjustment, 544 observations were false neg-

atives, while only 1,579 observations were false positives. The number of false

positive observations decreased significantly compared to the previous case. This

demonstrates that the choice of the loss function value, such as L01 = 0.05, has a

substantial impact on the prediction performance. By increasing the penalty for

false positives, the false positive rate will be effectively reduced.
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We compare our method with a logistic regression model. Logistic regression

is a widely used model for predicting binary outcomes based on predictor variables.

In addition, performing logistic regression is straightforward using R programming.

For simplicity, when fitting the logistic regression, the correlation within individu-

als were ignored. Each observation are assumed to be independent. The binary

response variable in this context is defined as whether or not an individual is di-

agnosed with sepsis based on the observations recorded at the corresponding time

points. Similar to our method, we include covariates heart rate, respiratory rate.

In addition, we take into account the individual’s gender and age, as well as the

corresponding observation time ti j. The relationship between the covariates and the

response Di j can be specified as follows:

p(Di j = 1) =
1

1+ exp−(β0+β1y(1)i j +β2y(2)i j +γ1genderi+γ2agei+ηti j)
, (6.15)

where y(1) and y(2) are longitudinal outcomes of heart rate and respiratory rate.

After obtaining the predicted probabilities for each individual in the validation

set, we can predict whether the individual has sepsis or non-sepsis by selecting a

threshold value. Individuals with predicted probabilities above this threshold will

be classified as septic individuals, while those with probabilities below it will be

classified as non-septic.

For example, if we set the threshold to be 0.05, meaning we classify Di j as

1 when p(Di j = 1) > 0.05, the resulting TPR and FPR will be 0.169 and 0.013,

respectively. In this case, there are 776 observations classified as false negatives,

while only 489 observations are classified as false positives.

On the other hand, if we lower the threshold to 0.025, the number of false neg-

ative observations decreases to 634, but the number of false positive observations

increases to 1,089.

For different threshold values between 0 and 1, we calculate the TPR and FPR

respectively, which are illustrated in Figure 6.5.

As discussed earlier, our proposed method demonstrates that the choice of loss
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Figure 6.5: ROC of prediction based on method we proposed and the logistic regression.

function affects the prediction results. Similarly, when employing a logistic regres-

sion model, the selection of different thresholds leads to variations in the prediction

outcomes. Therefore to better evaluate the performance of both methods using the

normalised utility score defined in Equation (2.1), for both methods, we computed

the normalised utility scores using different loss functions/thresholds. We illustrate

the normalised utility score with the corresponding TPR and FPR. The results are

illustrated in Figure 6.6.

It is clear from the Figure 6.6 that, as both TPR and FPR increase from 0 to

1, the normalised utility score initially rises and then declines. This trend suggests

that initially increasing the number of correctly identified positive instances (higher

TPR) and minimising false positive predictions (lower FPR) positively impacts the

normalised utility score. When both TPR and FPR are 0, it indicates that no indi-

viduals are classified as sepsis. In this case, the total utility score is equivalent to
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the utility score when all predictions are 0, resulting in a normalised utility score

of zero. When both TPR and FPR approach 1, it implies that most individuals are

predicted as sepsis. Although the utility score penalises false positive predictions

less in this scenario, the cumulative penalty on the entire dataset remains substan-

tial since the majority of individuals are non-sepsis. Consequently, the normalised

utility score decreases as a result.

By comparing the two plots in Figure 6.6, it can be observed that our proposed

method consistently achieves higher normalised utility scores compared to the

method based on logistic regression. Starting from an initial value of Unorm = 0.237,

our method reaches its peak at Unorm = 0.348 with a true positive rate (TPR) of 0.418

and a false positive rate (FPR) of 0.041. On the other hand, the logistic regression

method starts at Unorm = 0.008 and reaches its highest point at Unorm = 0.286 with

a TPR of 0.321 and an FPR of 0.028. Overall, our method consistently outperforms

the logistic regression method in terms of normalised utility scores.

This result suggests that our method captures and utilises the available infor-

mation more effectively, leading to better predictions and decision-making. The

higher normalised utility scores achieved by our proposed method implies that our

method has the potential to be used in sepsis-early diagnosis problem. With further

extensions, it can be applied to other disease diagnosis problems.
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(a) Method we proposed (b) Logistic regression

Figure 6.6: Relationship Between Normalised Utility, True Positive Rate (TPR), and False Positive Rate (FPR) for both methods.



Chapter 7

Conclusion

In many medical research, it is common that both longitudinal and time-to-event

data are available. Simultaneously modelling the longitudinal data and the time-

to-event data is important. This can be achieved by applying a joint model that

consists of a sub-model for the longitudinal data and a sub-model for the survival

data, where the two sub-models are linked by random effects.

In this study, we proposed to use a general mixed model for the modelling of

the longitudinal outcomes. It allows for a more flexible assumption of the shapes of

the longitudinal outcomes. In addition, we proposed an extension of the sub-model

for the longitudinal outcomes, which allows us to model the correlated longitudi-

nal outcomes simultaneously. Furthermore, we proposed a new framework for the

early diagnosis of sepsis based on the joint model. The joint model combining a

three-state sub-model and a general mixed sub-model was used to model the sur-

vival data and the longitudinal data simultaneously. For the prediction procedure,

to achieve early diagnosis, we proposed a time-depending loss function to penalise

late prediction. The diagnosis of each individual at each time point was made based

on the expected loss.

However, there remain more challenges. For instance, longitudinal data usu-

ally have high-dimensional and complicated structures in practice, which imposes

difficulties on the model choice and variable selections. It also increases the time

needed to fit the model. Additionally, in this study, when fitting the joint model,

we directly use the diagnosis outcomes provided by the clinicians, which might be
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imprecise. We created an ad hoc time-dependent loss function to achieve early di-

agnosis and made predictions based on it. However, this might introduce undesired

artifacts. In this section, we will discuss the potential improvements of our proposed

method.

Extending joint models to accommodate complex data structures has been the

subject of extensive research. As we introduced in Section 1.2, many examples of

such extensions can be found in the literature. For instance, incorporating associa-

tion structures between time-to-event data and longitudinal data, as well as extend-

ing time-to-event data to handle competing risks. In particular, there has been a lot

of research on modelling time-dependent covariates.

In this study, we extended the mixed model for the longitudinal data by relax-

ing the normal assumption of the error term and proposed to use the skew normal

distribution for the error term. Additionally, we took into account the variability

in the variance of the error term over time. We applied our model to the ELSA

data and observed consistently lower AIC values compared to the alternatives using

normal error assumptions. This result highlights that our model fits the data better

and performs better overall. It demonstrated that the proposed joint model effec-

tively captures the underlying patterns in the data compared to existing approaches.

As a result, it can provide reliable coefficient estimates and accurate predictions

for disease progression. To conclude, the joint model we proposed demonstrates

its ability to handle longitudinal data with complex error distributions, showing its

generalizability and practicality.

In our study, our primary focus was on extending the distribution of the error

term while specifying the linear effects of covariates. We restricted our methods to

parametric linear prediction functions due to limitations in computation resources

and time. Section 7.1 will provide a more detailed discussion of potential future

research regarding the modelling of time-dependent covariates within joint models.

In addition, we have proposed a joint model that considers competing risks

and multiple time-dependent covariates. However, as the number of random effects

increases within the joint model, integration in a high-dimensional space becomes
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necessary, leading to numerical challenges. To tackle this issue, we have proposed

to use the simulation-based integration to approximate marginal likelihoods. How-

ever, this approach makes the optimisation process unstable, which makes it diffi-

cult to obtain reliable estimates. To overcome this problem, we introduced Bayes

inference and specified weakly informative priors, therefore the posteriors converge

towards the maximum likelihood estimates (MLE). The application of this method

to clinical data on sepsis has demonstrated its effectiveness in accurately estimating

the model parameters.

For the sepsis early diagnosis problem, the approach we proposed involves

using a joint model to simultaneously model the time-dependent covariates and

time-to-event data. This enables us to predict the value of the time-dependent

covariates at any given time point and estimate the transition probabilities over

any given time interval. Based on the transition probabilities, we can compute the

expected loss and make predictions. In contrast to machine learning algorithms

introduced in Section 1.5, our method offers good interpretability. Within this

framework, the loss function we used for minimising the expected loss is specifi-

cally tailored for the sepsis early diagnosis problem. However, it is worth noting

that the method can be generalised by adapting the loss function to other diseases,

based on the knowledge of clinicians. We will discuss the potential improvement

of the framework we proposed for the disease diagnosis problem in Section 7.2.

7.1 Modelling Time-Dependent Covariates

The modelling of longitudinal outcomes is an important part of the joint model.

Based on the types of the longitudinal outcomes, there are various types of regres-

sion models can be chosen from. The most commonly used sub-models are linear

regression models and generalized linear regression models. However, applying

these always requires rigorous assumptions. For example, the error terms of lon-

gitudinal outcomes should follow a normal distribution, or distributions from the

exponential family. However, this assumption can be easily violated, since in many
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research the longitudinal outcomes usually have complicated structures. In this

study, we proposed a general mixed sub-model for the longitudinal data based on

the GAMLSS method. In the data analysis sections, for simplicity, we only fitted

parametric models to the ELSA data and the Sepsis data. However, compared to the

parametric approach, non-parametric models have more flexibility. The regression

curves can be estimated without making strong assumptions about the shape of the

true regression function. Detailed discussions about the non-parametric regression

can be found in Härdle (1990). Since the GAMLSS are semi-parametric regression

models, based on it we can extend the current model to the semi-parametric and

even the non-parametric models.

Another challenge in using joint modelling for the diagnosis of sepsis is im-

posed by the large number of outcomes with different characteristics. In the study of

the early diagnosis for sepsis, the dataset consists of 6 time-invariant demographic

variables and 34 time-varying markers, where 26 of them are sparse longitudinal

data. The complex structure makes it difficult to correctly specify the dependence

of the transition intensities on the markers and the trajectory of the markers. In ad-

dition, a heavy computational burden will be imposed by incorporating all markers

into the joint model. Furthermore, it was discussed that the high dimensionality has

an adverse impact on both classification and regression problems, for instance in

Fan and Fan (2008) and Fan and Lv (2010).

One way to solve this problem is to incorporate variable selection into the

multi-state model. In Fan and Lv (2010) a detailed literature review on variable

selection methods is provided. In particular, the penalty-based variable selection

schemes, for instance, the LASSO (Tibshirani (1996)) can be applied. By imposing

constraints on the coefficients, this parameter estimation of the regression model

and the variable selection can be done simultaneously.

Apart from variable selection, there are other ways to incorporate high dimen-

sional covariates. In Ferrer et al. (2019) and Suresh et al. (2017), two approaches

for dynamic predictions: joint modelling and landmarking were compared and dis-

cussed. It was suggested that if the model is correctly specified, the joint model has
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better performance. But when it is difficult to estimate the stochastic process of the

time-varying markers, for example when the longitudinal data are sparse and the

dimension of the longitudinal data is high, the landmark approaches can provide a

good approximation.

7.2 Modelling the Uncertainty in Labels

In this thesis, a multi-state model is used for the modelling of the time-to-event

data. Currently, in the multi-state model, we assumed that the transitions between

states are exactly observed. However, for septic patients, the time of diagnosis

by clinicians is always later than the real onset time of sepsis. Therefore there

exists uncertainty in the label provided in the dataset, and the assumption that the

transitions are exactly observed is violated.

In order to take into account this uncertainty, we introduced a time-depending

loss function, therefore in the prediction step, the diagnosis after the true sepsis

onset time will be penalized. However, this will produce undesired artefacts, since

the choice of the value of the loss function only depends on the utility score. To

alleviate the problem above, methods that can take into account the uncertainties in

the labels should be investigated in the future.

Since it is already known that true sepsis onset time is always earlier than the

diagnosis time, it is reasonable to model the event time of ”onset of sepsis” as left

censored. And by modelling the left-censoring in the data, we can take into account

the uncertainty of the labels provided by clinicians and achieve higher classification

accuracy.

To sum up, in this thesis, we extended the commonly used sub-models for the

longitudinal outcomes. Using general mixed model for location, scale, and shape. It

allows for the longitudinal outcomes that have much more complicated structures.

We further extend it by imposing random effects that follow multivariate normal

distribution, therefore it allows us to fit multiple correlated longitudinal outcomes

simultaneously. We fitted the sepsis data using sub-models for two correlated lon-
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gitudinal outcomes. It can be extended to higher dimensions if needed. In addition,

we proposed a two-stage framework for sepsis diagnosis, and it can be extended to

any disease diagnosis.



Chapter 8

Appendix

8.1 Code for Joint Modelling of Competing Risks and

Covariates
In this section, we present an example code for the marginal likelihood of a joint

model based on the three-state multi-state model and the general mixed model for

the ELSA data. The transition intensities are:

qrs(ti j|µi j) = q0.rs exp
(
ηrsti j +αrsµi j +λrsgenderi

)
,

and the general mixed model for the time-depending covariate number of animal

names individuals can recall:

yi j = µi j + εi j, εi j ∼N (0,σ2
i j),

µi j = β0 +b0i +(β1 +b1i)agei j +ω1genderi +ω2educi,

log
(
σi j

)
= γ0 + γ1agei j.

We assume the random effects b0i and b1i follows a bivariate normal distri-

bution. The extension to models with more covariates and more random effects is

straightforward. The integral is approximated using the Gauss-Hermite quadrature

method. In addition, to avoid underflow problems, the log-sum-exp trick is applied

when computing the marginal likelihood.

The coding of the marginal likelihood is:
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# generate gauss.hermite
library (statmod)
nnodes <- 25
quad <- gauss.quad(nnodes, "hermite")
print("quad")
print(quad)
nodes <- quad$nodes
print("nodes")
print(nodes)
wi <- quad$weights

# redefine weights
weights <- expand.grid(b1=wi, b2=wi)
weights <- weights$b1 * weights$b2
weights <- log(weights)

#====== margllk.R =======
marg.all <- function(Mydata_all, params){

# read in parameters
sigma.b1 <- exp( params[1] )
sigma.b2 <- exp( params[2] )
beta1 <- params[3]
beta2 <- params[4]
beta3 <- params[5] # longi: gender
gamma1 <- params[6] # for sigma.e
gamma2 <- params[7]
q120 <- exp(params[8])
q130 <- exp(params[9])
alpha11 <- params[10] # competing: # of animal name
alpha12 <- params[11]
alpha21 <- params[12] # competing: age
alpha22 <- params[13]
alpha31 <- params[14] # competing: gender
alpha32 <- params[15]
rho <- 2*exp(params[16])/( 1+ exp(params[16])) - 1 # correlation

# define integration grids (order important !)
# b2
b2 <- sqrt(2) * sigma.b2 * nodes # dim = nnodes
# b1|b2
# mu.1c2 <- rho*( sigma.b1/sigma.b2) * b2 # dim = nnodes * nnodes
# sigma.1c2 <- sigma.b1^2*(1-rho^2) # constant
mu.b1 <- 0
mu.b2 <- 0
b.grids <- expand.grid(b1=nodes, b2=b2)
# b1 is actually b1|b2
b.grids$b1 <- sqrt(2) * sigma.b1 * sqrt(1-rho^2) * b.grids$b1 +

mu.b1 + rho* sigma.b1/sigma.b2 * (b.grids$b2-mu.b2)

# function-marg.single
marg.single <- function( id.k ){

singleData <- subset(Mydata_all, id==id.k)
n.row <- nrow(singleData)
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# define function integrand ===
integrand <- function(bi1, bi2){

#---- llk.lm -----
mu.cfani <- beta1 + bi1 + (beta2 + bi2) * singleData$age +

beta3 * singleData$sex
sigma.e <- exp(gamma1 + gamma2 * singleData$age)
llk.lm <- dnorm( x=singleData$cfani, mean = mu.cfani,

sd = sigma.e, log=TRUE)

#---- llk.comp ----
llk.comp <- 0
q12 <- q120 * exp( alpha11 * mu.cfani + alpha21 * singleData$age +
alpha31 * singleData$sex )
q13 <- q130 * exp( alpha12 * mu.cfani + alpha22 * singleData$age +
alpha32 * singleData$sex )
q11 <- -q12-q13

time.interval <- singleData$age[2: n.row] -
singleData$age[1: (n.row-1)]

p11 <- q11[-length(q11)] * time.interval

l = max(singleData$state)
# state 3 = dementia = interval
if (l==3){
# P13 = [1-P11 ] * q13/ q12 + q13
llk.comp <- sum( p11[-length(p11)] ) #log of P11(t1, t_n-2)
p13 <- log( 1-exp(p11[length(p11)]) ) + log(q13[length(q13)-1])

-log( q12[length(q12)-1] + q13[length(q13)-1] )
llk.comp <- llk.comp + p13
}
# state 2 = death = exact
if (l==2){ llk.comp <- sum( p11) + log( q12[n.row-1] ) }
if (l==1){ llk.comp <- sum( p11) }
# ---------------------------

return( llk.comp + llk.lm )
}
# =============================

approx <- mapply(integrand, bi1=b.grids$b1, bi2=b.grids$b2 )
approx <- weights + approx
approx <- max(approx) + log( sum( exp(approx-max(approx)) ) )
approx <- log(1/pi) + approx
return(approx)

}

all.likelihood <- lapply(unique(Mydata_all$id), marg.single )
all.likelihood <- unlist( all.likelihood )
all.likelihood <- sum( all.likelihood)
print(-all.likelihood)
return( -all.likelihood)
}
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At the end of this code, the function returns -logarithm marginal likelihood. In

some extreme cases, it is possible that some joint probabilities are too small that the

arithmetic underflow occurs. To avoid these cases, instead of computing the log-

arithm after integrating the marginal likelihood, we calculate the logarithm of the

likelihood functions before the integration. Furthermore, we can consider the inte-

gration as a summation problem in programming. As a matter of fact, the Gaussian-

Hermite quadrature approximation is exactly a summation problem. Therefore we

adopted the log-sum-exp trick to the Gaussian-Hermite quadrature approximation

and derived a new method to approximate the 2-dimensional logarithm marginal

likelihood.

8.2 Code for Bayesian Inference of Joint Model
In this section we present an example code for the Bayesian inference of the joint

model in the WinBUGS. The model was introduced in Section 6.4.

# BUGS code used for CR and LME
# Model specification:
model
{

# Three-state model:
#::#rows of data, for sepsis N=1000 is 37848
for(i in 1:37848) {

#: x1 and x2 (two time varying covariates)
x1[i] ~ dnorm(mu1[i], prec1)
mu1[i] <- alpha[1] + ( alpha[3] )*t[i]
x2[i] ~ dnorm(mu2[i], prec2)
mu2[i] <- alpha[2] + ( alpha[4] )*t[i]
# Transition intensities:
log(q[i,1,2]) <- beta[1] + beta[3]*t[i] + beta[5]*x3[i] + beta[7]*x4[i] +

beta[9]*mu1[i] + beta[11]*mu2[i]
log(q[i,1,3]) <- beta[2] + beta[4]*t[i] + beta[6]*x3[i] + beta[8]*x4[i] +

beta[10]*mu1[i] + beta[12]*mu2[i]
# Transition probabilities for observed interval:
P[i,1,1] <- exp( -(q[i,1,2]+q[i,1,3])*time[i] )
P[i,1,2] <- (q[i,1,2]/(q[i,1,2]+q[i,1,3]))*

( 1-exp( -(q[i,1,2]+q[i,1,3])*time[i] ) )
P[i,1,3] <- (q[i,1,3]/(q[i,1,2]+q[i,1,3]))*

( 1-exp( -(q[i,1,2]+q[i,1,3])*time[i] ) )
P[i,2,1] <- 0 ; P[i,2,2] <- 1 ; P[i,2,3] <- 0
P[i,3,1] <- 0 ; P[i,3,2] <- 0 ; P[i,3,3] <- 1

# Move out of state 1 or not:
r[i,1:3] ~ dmulti(P[i,current[i],1:3],1)
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}

# In Use:
# beta[1] + beta[3]*t[i] + beta[5]*x4[i] + beta[7]*x1[i]
# Not using:
for(i in 1:37848){

id[i] ~ dnorm(0.0,0.001)
x5[i] ~ dnorm(0.0,0.001)
x6[i] ~ dnorm(0.0,0.001)
x7[i] ~ dnorm(0.0,0.001)

}

# Residual precision and sd:
log.prec1 ~ dunif(-10,10)
log(prec1) <- log.prec1;
sd1 <- 1/sqrt(prec1)
# Residual precision and sd:
log.prec2 ~ dunif(-10,10)
log(prec2) <- log.prec2;
sd2 <- 1/sqrt(prec2)

# Priors for intensities parameters:
for(f in 1:12){ beta[f]~dnorm(0.0,0.001) }

# Priors for LME:
for(f in 1:4){ alpha[f] ~ dnorm(0.0,0.001)}

}
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