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Abstract 
 

In complex auditory scenes the brain exploits statistical regularities to group 

sound elements into streams. Previous studies using tones that transition from being 

randomly drawn to regularly repeating, have highlighted a network of brain regions 

involved during this process of regularity detection, including auditory cortex (AC) and 

hippocampus (HPC; Barascud et al., 2016). In this thesis, I seek to understand how 

the neurons within AC and HPC detect and maintain a representation of deterministic 

acoustic regularity. 

I trained ferrets (n = 6) on a GO/NO-GO task to detect the transition from a 

random sequence of tones to a repeating pattern of tones, with increasing pattern 

lengths (3, 5 and 7). All animals performed significantly above chance, with longer 

reaction times and declining performance as the pattern length increased. During 

performance of the behavioural task, or passive listening, I recorded from primary and 

secondary fields of AC with multi-electrode arrays (behaving: n = 3), or AC and HPC 

using Neuropixels probes (behaving: n = 1; passive: n = 1). 

In the local field potential, I identified no differences in the evoked response 

between presentations of random or regular sequences. Instead, I observed significant 

increases in oscillatory power at the rate of the repeating pattern, and decreases at 

the tone presentation rate, during regularity. Neurons in AC, across the population, 

showed higher firing with more repetitions of the pattern and for shorter pattern 

lengths. Single-units within AC showed higher precision in their firing when responding 

to their best frequency during regularity. Neurons in AC and HPC both entrained to the 

pattern rate during presentation of the regular sequence when compared to the 

random sequence. Lastly, development of an optogenetic approach to inactivate AC 

in the ferret paves the way for future work to probe the causal involvement of these 

brain regions.  
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Impact Statement 
 

Separating and extracting meaningful information from a complex auditory 

scene, known as auditory scene analysis, presents numerous challenges to a listener. 

To accomplish this, the nervous system must decode the incoming acoustic signals 

and extract useful cues, from low level features such as frequency content to high-

level features such as the predictability of the acoustic stimulus. How the brain is able 

to extract these high-level cues and use them to better perform auditory scene analysis 

is still unknown, with numerous studies trying to understand how the auditory system 

detects this regularity.  

Previous experiments trying to explore the circuit and cellular-level basis of 

auditory scene analysis have used very simple stimuli. In this thesis, I employed a 

more complex stimulus that is commonly used in human cognitive studies, pure tone 

sequences that transition from randomly selected frequencies to a regularly repeating 

pattern. In this work, I demonstrated for the first time that a non-primate model, the 

ferret, can accurately detect these changes in regularity within the stimuli. My findings 

confirmed that non-human animals are capable of true regularity detection and 

publication of these findings will add to the comparative neuroethology database and 

serve as a foundation for future studies exploring how the auditory system detects 

regularity. 

With this paradigm and model I performed a comprehensive study using 

microelectrode arrays spanning primary and secondary fields of auditory cortex that 

identified neural correlates of regularity detection in the local field potential bridging 

the gap in knowledge between meso-scale electrophysiology in animals and macro-

scale imaging in humans. In conjunction with analysis of the LFP, I analysed single 

and multi-unit activity in response to these random to regular sequences and how they 

are modulated by the behavioural response of the ferret. This measurement and 

understanding of central auditory processing that moves beyond pure tone 

assessment and into more high-level processing is rarely performed within animal 

models due to the complexity of the perceptual task. The knowledge of how the brain 

extracts regularities and processes these more complex stimuli is critical for the 

development of cortical prosthesis used to restore hearing and advances our 



5 
 

understanding into why certain listeners may struggle to perform effective auditory 

scene analysis.  

In this project I have developed numerous novel techniques.  Firstly, I devised 

a method for robustly and chronically recording neural responses in auditory cortex 

and hippocampus simultaneously using high-density linear probes (Neuropixels 2.0). 

The specialized tools developed for this technique have already been shared with 

other research groups. Secondly, I published the validated method for inactivating 

cortex using optogenetics with an mDlx promoter that targets the opsin 

Channelrhodopsin-2 to GABAergic neurons. This method has proven to be much more 

effective for cortical silencing, as it leverages the brains existing inhibitory network. 

This has opened up new possibilities for studying more complex auditory processing 

and behavioural tasks in non-rodent models, providing a novel avenue for causal 

research.  
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1 CHAPTER ONE: AN INTRODUCTION AND LITERATURE 

REVIEW 

1.1 INTRODUCTION 
The human brain continuously analyses the features of sounds within our acoustic 

environment to detect the emergence of new sources, extracting their meaning, and 

adjusting behaviour accordingly. Such features could involve loudness or pitch 

changes and emerging sources could be that of new speakers or even footsteps. This 

process is challenging as at first all auditory sources heard are condensed into one 

time-varying waveform that reaches the listener’s eardrum. This acoustic signal is 

separated into various frequency components via the cochlea, yet this alone is 

typically unable to perceptually separate different auditory sources. Instead the 

auditory system must use various cues within the stimulus and recruit several auditory 

regions in the nervous system to successfully analyse the acoustic scene (Bizley and 

Cohen, 2013). Despite the challenging nature of this process, it is necessary as the 

auditory system continuously monitors, in all directions, our environment and therefore 

acts as our best sensory early warning system. Uncovering the principles that govern 

a listeners’ ability to continuously analyse the acoustic scene has therefore been at 

the forefront of hearing research.  

One feature that humans and animals must be sensitive to is the regularity or 

predictability of sounds, as many sounds in nature contain repeating elements to 

create a statistically regular structure or pattern. Regularity can take form as a 

deterministic repeating predictable pattern, where for example the pattern of the 

frequency of tones or inter-tone onset intervals, are repeated (see Figure 1.1A). The 

repeated patterns can be repeatedly periodically, recurring at regular intervals as 

shown in Figure 1.1A. On the other hand, the pattern may be deterministic but 

aperiodic, such that identical patterns are presented with either the intervals between 

patterns occurring at irregular intervals (see Figure 1.1B), or the individual elements 

themselves may occur at irregular intervals, such as described in Asokan et al. (2021; 

see Figure 1.1C). Alternatively, regularity can have a more probabilistic form which 

rather than relying on direct repetition will contain some randomness where similar 

patterns will emerge based on the probability of one sound following another (see 

Figure 1.1D). These probabilities can be learnt and can take the form of simple rules 
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such as the mean and variance of the frequencies present in a tone cloud (Skerritt-

Davis and Elhilali, 2018) to more complex rules such as the statistical rules that govern 

language. 

  

Figure 1.1: Regularity as a function of frequency over time. A) An example of a 
deterministic regularity (purple) with a repeating pattern of frequencies (highlighted in grey) 
which then changes to a different pattern (blue). The regularity here is periodic, occurring over 
regular intervals. B) An example of an aperiodic pattern where the pattern repeats exactly but 
at non-regular intervals. C) An example of a pattern where the intervals between the elements 
are aperiodic. D) An example of a stochastic or probabilistic regularity where the probability is 
linked to the mean and variance of the frequency range which is higher and narrower in purple 
and then moves to a lower and wider range in blue.  

Regularity, both aperiodic deterministic and probabilistic, are features common to 

both human speech and animal vocalisations. During statistical learning of language, 

listeners become exposed to probability distributions that govern the transition 

between syllables, rather than encountering deterministic repeating patterns (e.g. in 

English, “pat” is not always followed by “tern” but sometimes by “io”) (Santolin and 

Saffran, 2018; Wilson et al., 2017). This is also true for vocalisations within animals, 

where  in one example zebra finches have been shown to learn and generalize 

dependencies between song elements (Chen and ten Cate, 2017; Petkov and Cate, 

2020). Regularity is heavily exploited within music both within the periodic tonal 

structure (Tillmann et al., 2001), and rhythmic structure (Large and Palmer, 2002), 

both deterministically and probabilistically. Deterministic periodic repetition of a 

spoken phrase can cause the perception of it being ‘sung’ (Deutsch et al., 2008), and 

the composition of music ubiquitously relies on the manipulation of predictability 
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throughout the piece (Temperley, 2014). Periodic and aperiodic deterministic 

regularities have both been shown to provide equal perceptual improvement in deviant 

tone discrimination when dissociated from behavioural motor responses, where 

periodic regularity accelerated motor responses which the authors suggest is due to 

sensorimotor synchronisation from the entrainment of the periodic regularity (Morillon 

et al., 2016; see for a review: Rimmele et al., 2018). Other naturalistic regularities may 

be imprecise, such as in a train of footsteps, each of which differs slightly in intensity 

and timing. Nevertheless, the auditory system can identify the considerable acoustic 

overlap across elements, generalising to predict the approximate continuation of the 

pattern despite this variability. 

In this review I highlight the importance of regularity in auditory perception during 

auditory scene analysis and change detection. I then give an overview of the various 

paradigms that have been used to study various aspects of regularity detection, from 

simple deterministic patterns to more complex probabilistic rules and finally paradigms 

that directly test regularity detection. With these paradigms in mind, I then review 

previous literature that has explored the cellular and circuits mechanisms that are likely 

involved during regularity detection. I review the overarching brain areas and networks 

that are implicated in this process, such as auditory cortex and hippocampus. Lastly, 

I outline how my thesis aims to elucidate the neural mechanisms underlying auditory 

regularity detection.  

1.2 REGULARITY AND NAVIGATING THE ACOUSTIC ENVIRONMENT 

1.2.1 Regularity facilitates organisation of the acoustic scene 

The acoustic environment is transparent to our auditory system where different 

sound sources are continuously presented simultaneously to our ears and arrive as 

an overlapping mixture. Despite this we can effortlessly segregate these sounds into 

their constituent sources. To answer how the auditory system solved this ‘cocktail 

party problem’ (Cherry, 1953),  Albert Bregman provided a model called auditory 

scene analysis (ASA). In this model he proposes that the auditory system extracts 

cues to integrate or segregate sound sources within an acoustic scene (Bregman, 

1994). A segregated sound source is one that can be identified as a distinct auditory 

‘object’ or ‘stream’. This perceptual entity is formed through the separation, analysis 

and abstraction of acoustic information to allow for generalisation across sensory 
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domains and experiences (Griffiths and Warren, 2004). Individual auditory objects that 

are grouped perceptually together in a temporal sequence, such as the grouping of 

individual footsteps, can be thought of as an auditory stream (Winkler et al., 2009). 

Accumulating evidence suggests that the auditory system relies on regularities to 

parse acoustic scenes into these discrete objects (Denham and Winkler, 2006; Winkler 

et al., 2012, 2009). Winkler et al (2009) proposed that sound segregation is aided by 

mechanisms which are continually assessing sounds for structured patterns or 

regularities to form models, or rules, about how auditory objects in the environment 

are expected to behave. These internal models can then be exploited to facilitate 

source segregation and perceptual selection by ‘drawing out’ components from the 

aggregate input that behave according to the predicted pattern (Winkler et al, 2012; 

see Figure 1.2). This proposal, which is changing the way we think about, and study 

hearing (Nelken, 2012), is motivated by demonstrations that listeners are sensitive to 

patterns in sound sequences and that regularity extraction often occurs independently 

of conscious involvement. 

 

Figure 1.2: Schematic of organisation of an auditory scene via regularity. The regular 
stream (a deterministic repeating pattern in purple) is stabilised into a separate stream 
(dashed outline) to that of the irregular stimulus. It is easier to ignore than the irregular stream, 
illustrated by the reduced opacity of the regular stream. 

In support of these accounts, Bendixen et al. (2010) provided the first evidence for 

an effect of regularity on auditory stream segregation. They employed a bi-stable ABA 

streaming stimulus (a sequence of two tones of two different frequencies, A and B, 

organized into repeating ABA triplets; Noorden, 1975) in which a variation in frequency 

and intensity was introduced to the A and B tones (see Figure 1.3A). In separate 

conditions, these modulations introduced a regular pattern (over frequency and/or 

intensity) to the A stream, B stream, or to both. Listeners were instructed to 

continuously indicate whether they perceived the sequence as integrated (one stream) 

or segregated (two streams). Measuring the duration of intervals during which the 
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participant perceived integration or segregation, Bendixen et al. (2010) demonstrated 

that within-stream regularity stabilised the segregated perceptual phases, increasing 

their duration. 

A further demonstration of the role of regularity in scene analysis, this time 

temporally, was reported by Devergie et al. (2010) who used a set of familiar melodies 

(‘targets’), temporally interleaved with random distracter sequences that shared the 

same pitch and timbre ranges spanned by the targets. Listeners were instructed to 

identify the target melodies from amidst the distractors. The authors compared 

conditions where both the target and distractor were temporally irregular to conditions 

where the distractor melodies were regular.  Target detection performance was 

enhanced when the distractor sequences were regular, suggesting that listeners were 

able to use predictable temporal structure to suppress the distractor stream, thus 

facilitating the identification of the melody. This finding was extended to arbitrary sound 

sequences by Andreou et al. (2011; see also Rimmele et al., 2012) who used 

independent, concurrent sequences of A and B tones which were either temporally 

regular or random (see Figure 1.3B). To evaluate segregation, they quantified 

listeners’ ability to selectively attend to one of the streams in the presence of the other 

and demonstrated that performance was affected by the regularity of the concurrent 

unattended sequence. This effect was explained by suggesting that, as hypothesized 

by Winkler et al (2009), the auditory system was able to discover the patterning within 

the to-be-ignored sequence and use this ‘predictive rule’ to pull the elements adhering 

to the regularity away from the aggregate mixture, thus facilitating the focusing of 

attention on the attended stream.  

 

Figure 1.3: Schematic of ABA paradigms that vary the regularity between auditory 
streams. A) ABA streaming paradigm where the A stream (orange) contains a frequency 
pattern (one cycle highlighted in grey) and irregularity in the B stream (grey). The A stream 
also contains a regularity in the form of tone level (black outline = louder tones; Bendixen et 
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al., 2010). B) ABA streaming paradigm where the A stream (orange) has the same inter-tone 
interval to create temporal regularity and the B stream has various inter-tone intervals and 
also contains the detection target (amplitude modulated tones, purple; Andreou et al., 2011).  

That regular sequences are easier to ignore was further confirmed in a study that 

quantified the extent to which task-irrelevant regular or random frequency patterns 

interfere with listening tasks (Southwell et al., 2017). Stimuli were rapid sequences of 

tone pips, arranged in regular (REG; repeating sequences of 10 frequencies) or a 

random (RAN) order. They were delivered to one ear, while participants performed a 

demanding detection task on sounds presented to the other ear.  The results revealed 

that RAN sequences were more detrimental to performance than matched REG 

sequences. Notably, these effects were observed despite new REG (and RAN) 

patterns being presented on each trial, suggesting that listeners rapidly acquired the 

regularity within the trial and used it to facilitate the suppression of the predictable 

patterns.  Therefore, in addition to the large body of work which demonstrates that it 

is easier to perceptually follow regular than random sequences (Drake et al., 2000; 

Jones et al., 2006, 2002, 1982; Large and Jones, 1999), accumulating research also 

reveals that regularity (across a range of acoustic features) plays an important role in 

supporting our ability to parse auditory scenes (see Figure 1.2). 

1.2.2 Regularity facilitates change detection in complex acoustic scenes 

As well as aiding scene segregation, the ability to exploit statistical structures 

in the sensory input allows listeners to rapidly detect new, unexpected (and thus 

potentially critical) events in their surroundings. To understand how change detection 

is shaped by the statistics of the unfolding sound context, Southwell and Chait (2018) 

used tone-pip sequences that varied in the predictability of frequency patterns. 

Sequences were either regular cyclical patterns (REG) or contained the same 

frequencies but arranged randomly (RAN). Therefore first-order statistics, such as the 

distribution of tone frequencies, were matched between REG and RAN sequences but 

the predictability of successive frequencies differed. The authors asked whether this 

predictability affects listeners’ sensitivity to brief ‘deviant’ sounds.  Deviants were 

designed to be equally outlying in frequency space and equally probable, as compared 

to the preceding tones, whether in the REG or RAN contexts (see Figure 1.4). The 

results demonstrated that even though patterns were unique on each trial, sequence 

regularity aided the detection of deviant events, expressed as increased sensitivity (d’) 

and shortened reaction times. A different, but not mutually exclusive account relates 
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to perceptual organization mechanisms: the tones in REG sequences are bound 

together through the underlying predictive rule (Winkler et al., 2012, 2009) such that 

events which do not conform to the rule are perceptually segregated as separate 

‘objects’ and are therefore easier to detect. These findings are also consistent with the 

notion that the brain continually maintains a detailed representation of ongoing 

sensory input and that this representation shapes the processing of incoming 

information: deviants within a highly predictable context evoke higher prediction errors 

than identical events in sequences characterized by low predictability. 

 

Figure 1.4: Schematic of change detection in a regular scene. Regularity within the 
acoustic scene, in the form of deterministic frequency patterns in purple, increase the saliency 
of new auditory objects (grey) in the scene. 

Aman et al. (2021; see also Sohoglu and Chait, 2016) extended the 

investigation to stimuli which contain multiple simultaneous sources. Sensitivity to 

regularity was examined in the context of a change detection task. Stimuli were 

‘scenes’ populated by up to 14 concurrent tone-pip sequences, each with a distinct 

frequency and temporal pattern that was either regular or random.  The listeners’ task 

was to detect occasional changes (appearance or disappearance of a source) within 

these ‘soundscapes’. Performance was facilitated when scene components were 

characterized by a regular fluctuation pattern. The regularity of the changing stream 

as well as that of the background (non-changing) streams contributed independently 

to this effect.  Notably, listeners benefited from regularity even when not consciously 

aware of it. These results are consistent with Southwell and Chait's (2018) explanation 

on deviance detection that: if the auditory system can discover the predictable 

temporal structure within each stream, it can rapidly detect the non-arrival of an 

expected tone, easier and faster in REG scenes relative to RAN scenes. Likewise, the 

ability to acquire the patterns of ongoing objects in REG scenes allows listeners to 

discount transients that obey this pattern, facilitating the detection of those that are 

associated with the onset of a new object.   
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Overall, these findings reveal that sensitivity to regularity plays a fundamental 

role in shaping our perception of crowded auditory scenes, even when listeners are 

not actively attending to that signal but tracking the scene as a whole. The auditory 

brain appears to extract and keep track of the patterning of each scene component 

and exploits this information while detecting new auditory events. However, the 

processing stages that are affected by predictability remain elusive. Does regularity 

affect the initial segregation stages of ASA or in the later stages where auditory 

streams compete or stabilise? Andreou et al (2011) reported that the effect of 

regularity was observed when the frequency separation between A and B streams was 

very small, hinting at an early (bottom-up) effect of regularity on segregation.  In 

contrast, in Bendixen et al (2010) regularity appeared to stabilize, but not affect the 

initial formation of streams.  Further research is required to elaborate on these 

processes, identify the computations which underpin sensitivity to regularity and 

uncover the processing stages on which they operate.  

1.3 PARADIGMS TO INVESTIGATE REGULARITY DETECTION 
To understand the neural machinery which underpins how the brain uses and 

discovers regularity within the acoustic environment we need to be able to manipulate 

the predictability of the stimulus parametrically and perform appropriate controls. The 

predictability of the stimulus can be probabilistic or deterministic, and the predictability 

may lie within different dimensions such as spectral or temporal. Each of these 

dimensions imposes different constraints on the interpretation of the impact of 

regularity on the measured signal, whether behavioural to neural imaging to 

electrophysiology. For example, for single-unit recordings in auditory cortex, neural 

responses are largely dictated by their frequency tuning and thereby the frequency of 

the stimulus.  What we have seen from the studies in the previous section is that there 

are many types of regularity and paradigms in which to test its effects. In this next 

section I will consider the paradigms that have allowed us to begin to understand how 

the brain extracts and processes regularities from simple repeated tones to complex 

vocalisations. 

1.3.1 Regularity detection: detecting deviations from regularity 

Oddball paradigms have been deployed to indirectly study regularity detection 

where a repeating pattern of sounds contains rarely occurring deviants (see Figure 

1.5A). In its simplest form it is a sequence of tones of two frequencies, one occurring 
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commonly and the second only rarely, and can vary in their probability of occurrence 

(i.e. 10% deviant / 90% standard; 30% deviant / 70% standard), though the oddball 

paradigm has also been extended to noise bursts (Nelken et al., 2013). Responses 

can be measured either to the standard or deviant, where commonly in humans 

mismatch negativity’s (MMNs) are elicited to the deviant. The MMN is the difference 

in the evoked potential in response to the standard compared to that of the deviant. 

The magnitude of the MMN can then be used as a proxy to measure deviance 

detection within the brain (see for a review: Näätänen et al., 2001).  

 

Figure 1.5: Schematic of oddball paradigms and SSA. A) Oddball paradigm, the standard 
(green) is repeated more often than the deviant (pink) which is presented at a different 
frequency. B) Schematic of neurons firing rate to the stimuli in panel A. Responses to the 
standard are in green and responses to the deviant are in pink. C) Paradigm where tones are 
repeated either 2 or 6 times before changing in frequency so that the first tone in a repetition 
is the deviant (pink) and the last is the standard (green) (Costa-Faidella et al., 2011). D) Many-
standards control with a descending sequence (left) and a random sequence (right) to control 
for effects of predictability and repetition suppression (Fishman and Steinschneider, 2012). 

In animal models, the firing rate of individual neurons are directly measured in 

response to the standard or deviant (see Figure 1.5B). Firing to a repetitive stimulus 

causes the neuron to adapt and thereby decreasing its firing rate (Dudai, 2002; Nelken 

et al., 2014). The decrease in firing in this paradigm only occurs to the standard tone 

frequency, and therefore is classed as stimulus-specific adaptation (SSA), as this 

reduction does not generalize to other, rare stimuli (Nelken et al., 2014). This 

adaptation has also been shown to occur over varying time courses (milliseconds to 
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tens of seconds), adapting to both short (within trial) and long (within block) stimulus 

statistics (Ulanovsky et al., 2004). Though similar, MMN and SSA differ in the latencies 

and neural structures involved, with MMN responsive to complex regularities, which 

have been rarely tested with SSA (see Ayala and Malmierca, 2013). It is still unclear 

the role of SSA within regularity detection or within MMN generation.  

Other than the frequency of the standard and deviant in relation to each other, 

increasingly complex parameters can be manipulated within the oddball paradigm. 

Global local paradigms have been used in which deviants could be local (e.g. the B’s 

in a sequence AAAAB AAAAB) or global (e.g. the AAAAA in a pattern AAAAB AAAAB 

AAAAB AAAAA; Bekinschtein et al., 2009; El Karoui et al., 2015; Nourski et al., 2018). 

The occurrence of standards and deviants can be manipulated such that they occur 

either randomly within a sequence (i.e., AABABAAAAB) or equiprobably but at a 

regularly repeating interval (i.e., AAABAAABAAAB; Yaron et al., 2012); or the inter-

deviant-interval can be adjusted to identify the contribution of repetition of the standard 

(i.e., AABAAAAAABAAAAAAAAAAAAB; Costa-Faidella et al., 2011; see Figure 

1.5C). The inter-tone-interval of the repeating standard can also be jittered to increase 

the irregularity of the standard (Costa-Faidella et al., 2011).  

As well as this reduction in firing to the standard, an enhanced response to the 

deviant can occur during SSA, which has been suggested as a correlate of prediction 

error (Polterovich et al., 2018; Taaseh et al., 2011). Studies have used controls, within 

the oddball paradigm, to disentangle the effects of repetition and predictability by 

manipulating the context in which the standard and/or deviant lies. A ‘many standards’ 

control has been used where the standard is presented in an ascending, descending 

or random tone sequence such that the frequency of the standard remains the same 

however its context, predictable or unpredictable, differs (Fishman and 

Steinschneider, 2012; Parras et al., 2017; Pérez-González et al., 2020; see Figure 

1.5D). The neural response to the standard within these different control conditions 

can be compared to the standard in the repeated oddball to identify the contribution of 

repetition suppression (the difference in response between the predictable control and 

repeating standard) and prediction error (the difference in response between the 

predictable control and deviant).   
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More complex sequences have recently been employed to understand 

regularity generated from concurrent sources and that of regularity generated from 

patterns over a larger range of frequencies (Sohoglu and Chait, 2016; Southwell and 

Chait, 2018). Using tone sequences provides the advantage of using wide-band and 

spectrally diverse signals to reduce the contribution of neural refractoriness and 

adaptation, enabling the investigation of more abstract aspects of regularity detection.  

Presenting concurrent tone sequences at various sequences such that the inter-tone-

interval remains the same within each tone sequence provides a statistically regular 

acoustic scene, where jitter within each sequence increases irregularity (Sohoglu and 

Chait, 2016). In this paradigm neural responses and behavioural performance are 

measured to the appearance and disappearance of tone sequences within these 

regular and irregular scenes (Aman et al., 2021; Sohoglu and Chait, 2016; see Figure 

1.6A). Consecutive tone sequences can also be presented where a frequency outlier 

is presented outside of the ‘standard’ frequency span in either a regular context (select 

frequencies are repeated to form a pattern) or a random context in which frequencies 

are randomly chosen  (Southwell and Chait, 2018; see Figure 1.6B). These paradigms 

have remained deterministic but have become more rapid (i.e., 20 tones per second) 

compared to that of the oddball (5 tones a second), to tap more into automatic 

deviance detection. 
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Figure 1.6: Schematic of complex paradigms to study the effects of regularity. A) 
Temporally regular concurrent tone sequences at various frequencies with a regular tone 
sequence that appears at a different frequency during the scene (green; Aman et al., 2021). 
B) Regular frequency pattern of 10 tones with an outlier target outside the frequency span of 
the pattern (Southwell and Chait, 2018). C) Sequence where the majority of tones were drawn 
from a distribution (shaded yellow area) and contained either a standard probe tone (green) 
in which the frequency was equal to the distribution centre or a deviant probe tone (pink) in 
which the frequency was 2 octaves above the centre of the distribution (Garrido et al., 2013).  

 

Garrido et al. (2016, 2013) revealed the flexibility of the auditory system in 

detecting probabilistic regularities, as well as deterministic, by varying the mean and 

variance of consecutive tone sequences in frequency with a smaller variance in 

frequency giving rise to higher predictability and narrower frequency context. Deviants 

would be presented at the same frequency in both narrow and broad contexts and the 

MMN and behavioural performance in deviant detection measured (Garrido et al., 

2013; see Figure 1.6C). Another complementary approach, jittered the standards (and 

therefore its regularity) around 1000Hz (e.g. 980 to 1020Hz in 5Hz steps; Daikhin and 

Ahissar, 2012). Deviants were embedded in either the sequence of fixed standard or 

jittered standards and an MMN measured to investigate the effects of the regularity of 

the standard on deviance detection. 
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1.3.2 Regularity detection: discovering regularity 

Though deviant detection, and the neural responses that correspond with it, 

gives us a looking glass into what the brain tracks in terms of predictability, exactly 

how the brain discovers regularity is still unknown. To focus on the process of pattern 

extraction, Barascud et al. (2016), developed a paradigm in which stimuli were 

constructed as sequences of random tone-pips that switched to a regularly repeating 

pattern comprised of the same frequencies (RAN-REG), or regularly repeating tones 

that switched to a randomly drawn pattern (REG-RAN; see Figure 1.7A). In 

behavioural experiments, participants were asked to detect the change (and catch 

trials were included which were entirely random or regular). This paradigm departs 

from previous investigations that mostly used simple regularities or were based on 

prolonged exposure to a single pattern (often hundreds of consecutive repetitions). 

The stimulus preserves a balance between pattern complexity, as required for the 

study of rich sensory phenomena, and simplicity, which is critical for detailed 

modelling.  The ability to model the information content of unfolding sequences is 

instrumental as a benchmark against which to compare human performance and for 

concretising hypotheses about computational underpinnings (Bianco et al, 2020; 

Harrison et al, 2020; Barascud et al, 2016). 

 

Figure 1.7: Schematic of complex paradigms to study the discovery of regularity. A) 
Tone sequences with randomly selected frequencies that transition to a repeated selection of 
frequencies (Barascud et al., 2016). B) Noise bursts that are either contain a repeating pattern 
of inter-noise burst intervals, or a random selection of inter-noise burst intervals (Asokan et 
al., 2021). 

Asokan et al. (2021) on the other hand, took the time between auditory events 

to encode regularity and irregularity. Taking advantage of broadband noise and its 

ability to evoke auditory responses across larger areas of the auditory pathway, they 

presented frozen 20ms noise bursts with variable silent intervals that where either 

repeated in their duration, or random to provide either a rhythmic sequence of noise 
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bursts or a random sequence (see Figure 1.7B; note the change from spectral to 

temporal domain in the y-axis). In their paradigm, the sequence switched from a 

baseline random sequence to the rhythmic sequence and then the random sequence 

to which the head-fixed mouse passively listened whilst neural recordings were taken 

of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC). 

Though in this study the transition between random to regular was examined, the 

reverse is possible within this paradigm.  

Overall, the role of regularity sensitivity in sensory perception has commonly 

been investigated using very simple stimuli, consisting of just one or two concurrent 

sequences - far from the complex multi-object scenes we face in the environment.  

Relatively little is understood about the role of sensitivity to predictable structure in 

complex scenes which contain multiple concurrent objects as only in recent years have 

these stimuli been used in human studies, and even less have used these within 

animal studies. In animals studies it is often unknown whether the animal can even 

perceive the changes in stimulus statistics that invoke regularity.  

1.4 CELLULAR AND CIRCUIT MECHANISMS: LESSONS FROM ANIMAL STUDIES 
Previously, the majority of animal work has employed simple oddball paradigms 

and repetitive stimuli with a focus on understanding the mechanisms behind stimulus 

specific adaptation (SSA) and the areas that contribute (see for a review: Nelken, 

2014). Understanding how neurons respond to standard tones (predictable stimuli) 

and to deviant tones (a departure from predictable stimuli), allows us to learn 

invaluable information on how the auditory system processes regularity and 

predictability within acoustic input. Furthermore, parametrically changing the 

predictability of the stimulus affects the neural responses to the acoustic deviants, and 

provides insight into what features of regularity modulate neural responses. The stimuli 

typically used allows for tight control of acoustic input that is needed when recording 

from single-units with individual response properties. This single-unit resolution 

provides a great amount of insight into response dynamics in both a spatially and 

temporally defined manner. 

By targeting individual areas such as MGB in the thalamus or subfields of AC, 

we garner a clearer understanding of how information is encoded, where it is encoded, 

and how it changes across the auditory processing hierarchy. In recent years there 
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has been a move away from simple repetitive oddball stimuli or noise bursts to tone 

sequences (Asokan et al., 2021; Barczak et al., 2018) and vocalisations (Perrodin et 

al., 2020). Coupled with recent advances in acquiring data from larger samples of 

single-units and more complex behavioural tasks they provide exciting new insight in 

to how neurons encode increasingly complex acoustic regularities.  

1.4.1 Cellular mechanisms 

A common observation in extracellular recordings in animals, is that responses 

to the standard sound within oddball paradigms change with repeated presentations. 

Since many of the investigated sequences have been very simple, often a repeated 

tone, neural adaptation or SSA, is likely a major contributor to this process (Grill-

Spector et al. 2006; Briley & Krumbholz 2013; Nelken 2014). During SSA, the neural 

adaptation from the repeating stimulus does not generalize to other rare stimuli, even 

if the rare stimulus yields the strongest response within that neuron (Nelken, 2014). 

SSA within a neuron can be quantified using a SSA adaptation index calculated as the 

difference in neuronal firing rates to the standard and deviant, normalised over the 

sum of responses to both standard and deviants (Ulanovsky et al., 2003). The 

magnitude of this effect scales with the probability mismatch between standards and 

deviants, such that the lower the deviant presentation probability, the greater the 

observed SSA (Ulanovsky et al., 2003). Therefore, SSA has been proposed to be a 

correlate of ‘deviance detection’, an important computational task of sensory systems 

and is ubiquitous in the auditory system: It is found both in cortex and in subcortical 

stations, and it has been demonstrated in many mammalian species (Anderson et al., 

2009; Antunes et al., 2010; Fishman and Steinschneider, 2012; Malmierca et al., 2009; 

Nelken, 2014; Taaseh et al., 2011; Ulanovsky et al., 2003).  

Neural adaptation itself can be considered from the view of a single neuron 

where, as described in the fatigue model, there is an internal ‘gain’ mechanism where 

the amplitude of firing of stimulus-responsive neurons decreases (Grill-Spector et al., 

2006). One mechanism that could induce this is an intrinsically generated 

hyperpolarisation of the membrane potential resulting in a reduced sensitivity to 

synaptic inputs (Sanchez-Vives et al., 2000a). In a complementary paper, Sanchez-

Vives et al. (2000b), identified that this long term hyperpolarisation is due to the 

increased intracellular concentration of sodium and calcium ions that occur during 

firing leading to the activation of calcium- and sodium-dependent potassium currents 
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causing potassium ions to move outside the cell initiating hyperpolarisation of the 

neuron. This tends to be short lived, decaying over hundreds of milliseconds but can 

potentially last tens of seconds (Schwindt et al., 1989). 

Yet, neurons do not operate in isolation, and the described intrinsic mechanism 

cannot account for all forms of adaptation, particularly SSA  (Sanchez-Vives et al., 

2000a). Synaptic depression, typically of pre-synaptic inputs, has been implicated in 

SSA (Nelken, 2014) and can be caused by a decrease in the presynaptic calcium influx 

and the depletion of vesicles containing neurotransmitters, lasting tens of seconds 

(Grill-Spector et al., 2006; Schneggenburger et al., 2002). Furthermore, studies have 

suggested that adaptation can occur through a tonic mechanism, by a decrease in the 

excitation received by a cell through an activity-dependent decrease in synaptic 

efficacy (Carandini, 2000; Carandini and Ferster, 1997). Overall, we see that both 

intrinsic, such as membrane conductance, and external factors, such as pre-synaptic 

inputs, can modulate a neurons response to a repeating stimulus. 

1.4.2 Circuit mechanisms 

Neurons can form various circuits with one another, creating feedforward or 

feedback inhibition or excitation, with many different configurations of inputs to each 

neuron. Animal studies provide a unique opportunity to understand the mechanisms 

underlying regularity detection and multiple studies have revealed a differential effect 

of different inhibitory neurons underlying regularity detection. Animal models allow 

targeting of precise neuronal subtypes, and spikes recorded by electrophysiology can 

be divided into putative excitatory broad-spiking or inhibitory narrow-spiking neurons 

by measuring spike width.  

  A study using this technique identified that putative inhibitory A1 neurons, 

rather than excitatory neurons, showed a larger index of neuronal mismatch (the 

difference in neural response between standard and deviant tones; Pérez-González 

et al., 2020). They suggested that these inhibitory neurons mostly contribute to 

deviance detection correlates in the lemniscal pathway, whereas both putative 

excitatory and inhibitory contribute to deviance detection in non-lemniscal areas  

(Pérez-González et al., 2020; see Figure 1.8 for a diagram of the lemniscal and non-

lemniscal auditory pathways). Emerging evidence suggest that it is these 

somatostatin-positive interneurons (SOMs) that contribute to the selective reduction  
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Figure 1.8: Simplified schematic of the lemniscal and non-lemniscal pathway of the 
auditory system. A diagram of the auditory pathway coloured by lemniscal (red) and non-
lemniscal (blue) regions. The cochlear nucleus projects via the lemniscal pathway to the CNIC 
of the midbrain, then to the MGV of the thalamus and then finally to layers III and IV of auditory 
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cortex. Projections descend (grey) from layers V and VI of auditory cortex to all regions of the 
medial geniculate body and non-lemniscal inferior colliculus. Non-lemniscal projections 
ascend up the pathway from the inferior colliculus to the medial geniculate body and to layers 
I to V of auditory cortex. MGD: dorsal division of the medial geniculate body; MGM: medial 
division of the medial geniculate body; MGV: ventral division of the medial geniculate body; 
DCIC: dorsal cortex of the inferior colliculus; CNIC: central nucleus of the inferior colliculus; 
LCIC: lateral cortex of the inferior colliculus; RCIC: rostral cortex of the inferior colliculus. 
Adapted from Carbajal and Malmierca, 2018.  

of excitatory responses to frequent tones in oddball paradigms, leading to more 

efficient processing of deviants (Natan et al, 2015; Wood et al, 2017). Whereas 

parvalbumin positive interneurons (PV+) are insensitive to tone repetition but 

contribute a reduction to excitatory responses to both standard and deviant tones 

(Natan et al., 2015; see for a model: Park and Geffen, 2020).  

Recent work by Yarden et al. (2022), performed two-photon targeted cell-

attached recordings to characterise and target PV+, SOM and  vasoactive intestinal 

polypeptide (VIP) interneurons in layer 2/3 and serotonin receptor 5HT3a-expressing 

interneurons of layer 1 of auditory cortex. They identified an early SSA response in all 

cell subtypes but interestingly identified a late response, typically stronger for the 

standard, in only the layer 2/3 interneuron subtypes, with PV+ interneurons 

contributing the majority of spikes for both standards and deviants. Through circuit 

dissection, by targeted optogenetic silencing of each subtype, they identified that the 

reduction of pyramidal neuron responses to the standard is driven mostly by the 

reduction in excitatory input they receive rather than through inhibition. Supressing 

PV+ neuron responses facilitated pyramidal responses to the deviant rather than the 

standard.  Therefore, it is the relative sizes of responses to standards, deviants that 

are modulated by the inhibitory network, therefore shaping SSA rather than creating 

it. 

Mehra et al. (2022) introduced periodicity to the oddball paradigm in which the 

deviant was periodic or random, to understand the role of long-term adaptation time 

scales, adaptation to entire stimulus structures, and the role of PV+ and SOM 

interneurons on this process. Extracellular single-unit and two-photon Ca2+ imaging 

recordings in layer 2/3 neurons of the mouse showed a preference for the random 

stimulus, yet a subset also showed preference for the periodic. When they examined 

the functional connectivity between excitatory neurons (EX) and the PV+ and SOM 

neurons, PV+ and SOM neurons showed differential control. EX-PV showed denser 
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functional connectivity for periodic stimuli and EX-PV and EX-SOM showed a strong 

role in long-term time scale context specific modulation.  

Circuit models have been created to attempt to model the phenomena of SSA. 

One simple model that has been used to explain SSA is the adaptation of narrowly 

tuned modules (ANTM; see for a review: Nelken, 2014). For example, a widely tuned 

neuron may integrate multiple narrowly tuned inputs, which if repeatedly stimulated 

adapts whilst other inputs remain unadapted, generating SSA. However, this does not 

explain deviance detection as regularity of the standard does not play a role in this 

model in shaping the responses to the deviant, with real neural responses larger than 

predicted by the model for deviants (Nelken, 2014; Taaseh et al., 2011). 

Now the decreased spike rate observed during SSA is thought to be due to a 

dual effect of an increased failure to spike to the standard tone, and an overall 

decreased firing rate due to synaptic depression and/or depression through recurrent 

networks (Yarden and Nelken, 2017). In the proposed recurrent network auditory 

cortex is split into ‘cortical’ columns (each column tuned to a specific frequency) where 

all neurons within the column are connected to all others, allowing spikes to propagate 

between columns (Loebel et al., 2007; Yarden and Nelken, 2017). This widens the 

tuning of cortical neurons due to cortico-cortical connections rather than through the 

receipt of multiple thalamic inputs. During activation of the ‘standard’ column, the 

column whose best frequencies was the standard frequency, responses of neurons in 

the column to the standard tones rarely propagated past the standard column due to 

resource depletion and thereby lay within a depressed state. Presentation of a deviant, 

however, can evoke a population spike in the deviant column, which can propagate to 

other parts of auditory cortex (Nelken, 2014). This model however cannot explain 

sensitivity to predictability or periodicity, where if a deviant or standard is presented in 

a regular context, neural responses to both standard and deviant are less than that if 

presented in a random context (Yaron et al., 2012). 

Generally, it seems that the effects of repetition suppression within excitatory 

neurons seem to be inherited from subcortical connection rather than through the 

inhibitory cortico-cortico network. The differential control of the various inhibitory 

subtypes such as PV+, SOM and VIP interneurons, through their circuit interactions, 

then modulate the response to the standard and deviant. Whether this modulatory 



41 
 

control is generated de novo in auditory cortex or is in itself modulated lower within the 

hierarchy is still unclear. Yet we can look to how SSA and prediction error is encoded 

and is changed along the auditory hierarchy, to give us insight into this process.  

1.4.3 Inferior colliculus and auditory thalamus 

SSA was first reported in neurons in A1 of the cat, where neuronal firing 

demonstrated stronger adaptation to the standard than the deviant, such that deviant 

responses were enhanced relative to the standard. However, targeting specific regions 

within the auditory pathway, studies have shown that neurons in subcortical stations 

exhibit SSA, both in IC (Malmierca et al., 2009; Pérez-González et al., 2005; Valdés-

Baizabal et al., 2021; Zhao et al., 2011) and thalamus (Anderson et al., 2009; Antunes 

et al., 2010). While weakly present in the ventral division of MGB, it is much stronger 

in medial and dorsal divisions raising the possibility that it is inherited via descending 

connections from auditory cortex. Evidence from cortical deactivation studies have 

suggested that rather than SSA being propagated from AC to subcortical stations that 

AC has more of a modulatory role on neurons exhibiting SSA (Anderson and 

Malmierca, 2013; Antunes and Malmierca, 2011). For example, reversibly silencing by 

cooling auditory cortex whilst recording in MGB revealed that mean SSA levels were 

not significantly changed but instead showed changes in scaling its sensitivity 

suggesting that auditory cortex performs gain modulation on SSA within MGB neurons 

instead of inheriting SSA directly from AC (Antunes and Malmierca, 2011). In addition, 

recording from IC during inactivation of AC revealed half of the neurons showed 

changes in SSA sensitivity in either direction with only a small number showing 

complete abolishment of SSA (Anderson and Malmierca, 2013). These studies 

suggest that SSA does arise de novo subcortically and, though may be weaker than 

in AC, it does suggests that local circuits in subcortical stations may generate SSA 

(Ayala and Malmierca, 2013). 

1.4.4 Auditory cortex 

SSA itself was first described in primary auditory cortex (Ulanovsky et al., 2003) 

and has been robustly reported across labs and species (Behrens et al., 2009; 

Szymanski et al., 2009; Taaseh et al., 2011; Ulanovsky et al., 2003). The magnitude 

of SSA in A1 scaled with the probability mismatch between standards and deviants, 

such that the lower the deviant presentation probability, the greater the observed SSA 

index (Ulanovsky et al., 2003). It has also been argued that SSA is generated de novo 
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within A1 as SSA subcortically is mostly confined to the non-leminscal pathway and 

A1 receives most of its thalamic input from lemniscal MGB (Yarden and Nelken, 2017). 

Furthermore current source density (CSD) analysis of laminar AC identified rapid SSA 

in all cortical layers which became more pronounced in infragranular layers, 

suggesting multiple sites for SSA in AC with intracortical mechanisms mostly 

contributing to the phenomenon rather than thalamic input (Szymanski et al., 2009).  

While adaptation is a key component of SSA, increased firing to the deviant can 

be observed, encoding a correlate of ‘surprise’ in the form of a prediction error signal 

(Parras et al., 2017; Taaseh et al., 2011; Yaron et al., 2012). Within primary auditory 

cortex studies have used a variety of approaches to attempt to tease apart the 

contribution of adaptation (i.e. repetition suppression) and enhancement of firing to 

rare stimuli (i.e. prediction error) to the difference in firing rate to the standard and 

deviant (Carbajal and Malmierca, 2018). For example, Fishman and Steinschneider 

(2012) recorded from A1 in monkeys and found that responses to rare deviant tones 

presented within a series of the same standard tones evoked similar responses as 

when embedded in a ‘many standards’ control condition, wherein the same tones 

evaluated in the oddball context were presented rarely but were not perceptually 

distinguishable as deviants. They concluded that the deviant response in A1 reflects 

adaptation rather than a prediction error signal. Contrastingly more recent work using 

laminar probe recordings, again in macaques, observed deviant-related activity in sites 

in A1 that were unresponsive to standards in the first place, ruling out adaptation as 

an explanation of the observed effects and suggesting that primary auditory cortex 

may be able track regularities and their violation (Lakatos et al., 2020).  

To further tease apart the contribution of repetition suppression vs. prediction 

error signalling, cascade’ sequences (a predictable increase or decreasing in 

frequency tone sequences; see Figure 1.5D) have been employed which enables the 

recording of the neural response to rare but predictable sounds to be compared to rare 

and unexpected sounds. A genuine prediction error signal can be identified by 

considering the difference in response to the same tone in a deviant context versus a 

cascade sequence, while repetition suppression (i.e. adaptation) can be identified by 

examining the difference in response to the same tone in a standard versus cascade 

context (Parras et al., 2017). Parras et al. (2017) identified repetition suppression in 

all recorded sites (IC, MGB and AC) but only prediction error signalling in the non-
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lemniscal (non-primary) AC. This prediction error signalling may change how we 

investigate the puzzle of SSA and how the auditory system encodes regularity but 

looking to how these change across the auditory hierarchy can give us more insight 

into its underlying process. 

Moving beyond SSA, recent studies have looked at the neural mechanisms 

supporting the detection of regularity. Barczak et al (2018) utilized pure tone 

sequences embedded in noise bursts which transitioned from randomly occurring 

tones to regular patterns. Recording in A1 of passively listening macaques identified 

oscillatory entrainments within A1 at the pattern repetition rate and a decrease in local 

field potential (LFP) and multi-unit activity. In addition, oscillatory entrainments to the 

pattern presentation rate were reported in A1, but not in MGB. Recordings in the 

medial pulvinar, a higher-order thalamic nucleus, demonstrated that neurons here also 

locked to the temporal structure of pattern repetition. This pattern-induced modulation 

of multi-unit activity occurred earlier in the pulvinar than in A1. Such a pattern would 

be consistent with a top down cortico-subcortico-cortical route, suggesting a top-down 

directionality of regularity detection via neuronal oscillations (Barczak et al., 2018). 

Within the pulvinar these oscillations also occurred at a similar timing to the correlates 

identified in previous human studies (Barascud et al., 2016) showing entrainment after 

the first repeat. However, it remains to be determined whether the pulvinar itself 

detects regularity or whether it is relaying a signal from one of the many higher cortical 

areas that project to the pulvinar such as parietal or prefrontal cortex (Cappe et al., 

2009; Romanski et al., 1997) and whether large changes in multi-unit activity or 

oscillations would be observed with shorter repeated sequences. 

Asokan et al., (2021) employed an elegant stimulus design where they 

presented noise tokens at either randomly drawn intervals or in a temporal pattern of 

repeating temporal intervals (see Figure 1.7B). Neurons in mouse A1 showed more 

rapid spike latencies and dampening to noise bursts presented in the regular context 

than in the random one. These effects were only observed for patterns of up to 8 

elements, in which they suggested the spiking dynamics in A1 in response to the 

regular stimuli are likely products of other circuits that respond directly to regularity 

such as cortical GABAergic neurons, as cortical spiking timescales are short at 

approximately 20ms whereas the timescale of repetition here is 800ms (Asokan et al., 

2021). These changes were not observed within IC but only marginally in MGB which 



44 
 

could suggest the involvement of an additional corticothalamic circuit (Asokan et al., 

2021).  

A handful of studies have investigated the neural correlates of regularity 

detection beyond auditory cortex. Just as the influence of regularity increases through 

the lemniscal auditory pathway, non-primary auditory cortex shows a yet stronger 

influence (Parras et al., 2017). Recordings in the auditory cortex, frontal gyrus and 

amygdala in macaques have indicated that oddball responses are present in all three 

areas but that the magnitude, latency and stimulus specificity varied. Auditory cortex 

responses were largest and earliest, but specific for the frequency of the stimulus, 

while those in prefrontal cortex (PFC) and basolateral amygdala were weaker and 

longer in latency, but stimulus independent (Camalier et al., 2019). In contrast, another 

study (Casado-Román et al., 2019) identified stronger prediction error signalling to 

oddball sequences in medial prefrontal cortex neurons compared to that of neurons in 

the auditory pathway (IC, MGB and AC; Parras et al., 2017). Additionally, the 

prediction error signalling in medial PFC neurons appears after approximately 100ms 

whereas in AC the response emerges just after a few milliseconds suggesting that the 

processing within these two regions occur in a sequential manner where spectral 

deviances are detected within AC and then PFC identifies more abstract deviations 

(Casado-Román et al., 2019). 

Across these studies there seems to be a consensus that as you ascend the 

lemniscal pathway to auditory cortex and then enter non-lemniscal regions and frontal 

areas that there is an increase in the amount of prediction error signalling, 

predominantly after non-primary regions of auditory cortex. However, it is hard to 

disentangle how the regions are involved due to the interconnectivity of non-primary 

regions with various auditory and non-auditory regions. Therefore it is unclear where 

this signal may initially be generated, or what networks are primarily responsible.       

1.5 BRAIN NETWORKS THAT CONTRIBUTE TO REGULARITY DETECTION: 

LESSONS FROM HUMAN STUDIES 
While brain imaging lacks the spatial resolution of invasive neurophysiology and 

cannot resolve the mechanistic details of the circuits responsible for detecting and 

representing acoustic regularities, they do provide an unmatched ability to determine 

the brain networks responsible. Looking across animal studies it seems apparent that 
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while simple phenomena such as deviant detection with oddballs might emerge within 

AC, there is considerable evidence for top-down involvement from other areas beyond 

the classic auditory cortex. Human imaging provides candidate regions for further 

study in animals, such as inferior frontal gyrus (IFG), parietal cortex and hippocampus 

(HPC). In this review, however, I will mainly be focusing on auditory cortex and 

hippocampus.  

1.5.1 Auditory cortex and frontal areas 

Research using simple oddball paradigms has consistently reported the 

involvement of temporo-frontal areas in the detection of any discriminable change in 

auditory stimulation (see for a review: Garrido et al., 2009; Heilbron and Chait, 2018; 

Näätänen et al., 2007).  Several magnetoencephalography (MagEG) and 

electroencephalography (EEG) studies, localised primary and secondary auditory 

areas and right IFG as major sources of MMN (Dietz et al., 2014; Garrido et al., 2008, 

2007; Kiebel et al., 2007). Functional magnetic resonance imaging (fMRI) (Molholm et 

al., 2005; Opitz et al., 2002; Schönwiesner et al., 2007; see also evidence from lesion 

studies: Alain et al., 1998) and intracranial EEG studies (Dürschmid et al., 2016; 

Nourski et al., 2018), which offer higher spatial resolution than EEG/ MagEG, have 

supported these findings, although the contribution of IFG is not always present (see 

fMRI: Lumaca et al., 2020.; MagEG: Quiroga‐Martinez et al., 2020).  

Moving on from simple oddball paradigms (see Figure 1.5A), Bekinschtein et 

al. (2009) introduced a ‘global/local’ paradigm, to distinguish between deviant effects 

occurring over a short time scale with a single stimulus change from those unfolding 

over many seconds. Deviants could be local (e.g. the B’s in a sequence AAAAB 

AAAAB) or global (e.g. the AAAAA in a pattern AAAAB AAAAB AAAAB AAAAA; see 

1.3.1 for discussion on these paradigms). Using EEG, intracranial recordings, and 

fMRI they found automatic local deviant effects in primary and non-primary auditory 

cortex, with global deviant effects occurring in frontal cortex. Within auditory cortex, 

some distinction between primary and non-primary auditory cortical processing of 

regularity was made by Nourski et al. (2018) when considering high gamma activity 

(70-150 Hz; thought to reflect local neuronal activity). Global deviant effects in the high 

gamma range were largely absent in primary auditory cortex, in posteromedial 

Heschl’s gyrus, but present in higher auditory areas such as the lateral superior 

temporal gyrus (STG).  
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Accordingly, another study using an oddball task indicated that responses to 

deviant sounds in the oddball context were mainly driven by tone-frequency 

differences between standard and deviant in primary cortex, but were dependent on 

inter-stimulus interval in non-primary auditory cortex (Kropotov et al., 2000). A recent 

study that used intracranial electroencephalography (iEEG), combined surface and 

depth electrodes, and recorded high gamma activity to functionally map the temporal 

integration window across auditory cortex (Norman-Haignere et al., 2022). They 

showed acoustic temporal integration widths increased from primary to non-primary 

regions (median: 74 to 274ms). These functional differences could aid in detecting 

predictability across many different time scales from to short oddball pattern to longer 

more complex repeating patterns across a range of frequencies. 

With the use of tone clouds that transition from a random to regular sequence 

(see Figure 1.7A), Barascud et al. (2016) identified increases in power in the fMRI 

signal over AC during the regular sequence compared to the random sequence. This 

was supported by their further MagEG experiments that revealed increases in the root 

mean square (RMS) amplitude in the MagEG signal (see Figure 1.9A), again localised 

to AC (bilaterally) but also HPC (bilaterally), and IFG (right hemisphere). This increase 

in power varied with the complexity of the pattern, with the smallest patterns of 5 tones 

eliciting the largest increase and the largest patterns tested of 15 tones creating the 

smallest increases power. The time point at which the signal to the regular sequence 

increases and diverges from the response to the random sequence, occurred 

approximately one cycle and three tones from onset of the pattern. This power 

increase, modulated by the length of the pattern, and the timing of onset was further 

confirmed with EEG experiments performed by Southwell et al. (2017, 2018, and 

2019). 
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Figure 1.9: Simplified schematic of neural responses to random tone sequences and 
random tone sequences that transition to regular tone sequences. A) Schematic of an 
MagEG signal to a random sequence (pink), a random to regular sequence, with a short 
pattern of five tones (dark green) and a long pattern of 15 tones (light green). Stimulus onset 
evoked an increase in power and then plateaus during the random sequence. At the transition 
from random to regular (onset of regularity), the MagEG signal increases power, larger for 
shorter patterns (Barascud et al., 2016). B) Schematic of the normalised EEG response to the 
offset of either the random (pink) or regular sequence (dark green). The offset is larger for the 
regular sequence (Southwell, 2019).  

Southwell et al. (2018) investigated the nature of this signal further, with similar 

random and regular sequences, and identified differences in the offset response to the 

regular and random sequences. REG sequences produced larger offset-responses in 

the EEG signal than RAN sequences, with the authors proposing that this is due to the 

offset of the sound being more ‘surprising’, as it violates the expected next tone, in a 

regular context compared to that of the more volatile random context (see Figure 

1.9B). Analysis of the oscillatory power in these EEG responses to RAN and REG 

sequences showed both larger oscillations in the pattern repetition rate in the REG 

sequences reflecting the periodicity of the REG sequences when compared to 

matched RAN sequences (Southwell, 2019). This oscillatory entrainment to the REG 

patterns could explain behavioural detection (Barascud et al., 2016; Southwell, 2019).  

As we move from auditory areas in the temporal lobe that are sensitive to 

changes in acoustic features, (Hofmann-Shen et al., 2020; Molholm et al., 2005) to 

more frontal areas, there is an increased sensitivity to statistics within the environment 

with some distinction of labour between temporal and frontal areas (Bekinschtein et 

al., 2009; El Karoui et al., 2015; Nourski et al., 2018; Wacongne et al., 2011). 

Dürschmid et al. (2016) showed clear deviant-related responses over both the 

temporal and frontal cortex, with temporal sites responding to any change in the 

immediate history, and IFG being exclusively sensitive to globally unpredictable 

changes. Using a similar paradigm, other electrocorticography (ECoG) work (El Karoui 
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et al., 2015; Nourski et al., 2018) found that  local deviant effects were focused mainly 

on auditory primary and non-primary  areas, while global deviant effects were more 

concentrated on higher-level regions (e.g., in Nourski et al 2018: insular cortex, 

superior temporal sulcus, middle temporal gyrus, supramarginal and angular gyrus) 

and frontal recording sites. 

The temporo-parietal network has also been implicated in analysis of temporal 

structure of sounds. Molholm et al. (2005) found that parietal cortices contributed to 

the generation of duration MMN response, as well as pitch MMN (see also Southwell 

and Chait, 2018). Sohoglu and Chait (2016) showed that, during (passive or active) 

listening, auditory and parietal areas showed greater activity when stimuli were 

characterised by regular than irregular rapid temporal structures. Similarly, parietal 

cortex has also been associated with bottom-up figure-ground processing when the 

figure is defined by temporally repeatable and fast evolving spectral components in an 

otherwise randomly structured background (Teki et al., 2016, 2011)  Thus, the parietal 

cortex may play an automatic role in the representation of information integrated over 

frequency-time features, thus contributing to the perceptual organization of auditory 

streams (Sohoglu et al., 2020). 

Largely these studies suggest that auditory cortex is not solely involved in 

regularity detection, but rather a large network of brain regions that recruit more frontal 

areas such as IFG, parietal cortex, that may work in a hierarchical system to learn 

higher order statistical rules. One brain region in this network that has been implicated 

in regularity detection (Barascud et al., 2016), and recently in auditory processing is 

the hippocampus.  

1.5.2 Hippocampus 

The hippocampus’ role in spatial navigation and episodic memory has already 

been established, but it also has an important role in auditory processing (see for a 

review: Billig et al., 2022). In a second study, Barascud et al. (2016) used MagEG 

recordings during the same sequences of regular and random tones. Due to higher 

temporal resolution, compared to fMRI, they were able to show the additional 

contribution of bilateral hippocampus during the early phase of regularity detection, 

consistent with recent suggestions of the role of the hippocampus in temporal 

integration of acoustic patterns (Geiser et al., 2014). While its most well-established 

roles relate to long-term memory and spatial navigation, the hippocampus has been 
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shown to be responsive to sounds in rodents and humans (Aronov et al., 2017; Başar-

Eroglu and Başar, 1991; Eidelberg et al., 1959; Green and Arduini, 1954; Halgren et 

al., 1980; Martorell et al., 2019; Vinogradova, 1975; Xiao et al., 2018) especially when 

they are to be associated with other stimuli (Berger et al., 1976; Logan and Grafton, 

1995; Olds and Hirano, 1969) or retained in working memory over several seconds 

(Ahmed et al., 2020; Kumar et al., 2021, 2016). This is the case despite somewhat 

indirect connections from auditory cortex, at least in primates (Munoz-Lopez et al., 

2010; Rocchi et al., 2021). 

In the visual domain, the hippocampus responds to novel stimulus 

configurations (Kumaran and Maguire, 2007) and indexes the uncertainty of stimulus 

streams (Harrison et al., 2006; Strange et al., 2005). Recent neuroimaging work has 

extended some of these findings to the audition, identifying that the hippocampal Blood 

oxygenation level dependent (BOLD) signal tracks the interaction between uncertainty 

and surprise associated with unfolding musical chord sequences (Cheung et al., 

2019). A role for the hippocampus in learning auditory associations is supported by 

neuropsychological studies in which patients with hippocampal lesions were impaired 

in learning statistical relationships between tones or syllables (Covington et al., 2018; 

Schapiro et al., 2014). There is also evidence that the hippocampus represents the 

content of auditory sequences, rather than simply learning the associations or 

computing statistics over them. Over long timescales, hippocampal representations of 

speech sounds develop such that items that routinely occur in temporal proximity are 

encoded by increasingly similar activity patterns (Henin et al., 2020; Kalm et al., 2013). 

Predicted visual content can also be decoded from hippocampal activity patterns (Kok 

et al., 2019; Kok and Turk-Browne, 2018), although this has not yet been 

demonstrated for sound, nor for stimuli presented at the fast rate of the Barascud et 

al. (2016) study. 

Nevertheless, there is reason to think that the hippocampus can also support 

predictive representations of such rapidly unfolding sound sequences. Hippocampal 

place cells (O’Keefe and Dostrovsky, 1971) and grid cells in adjoining entorhinal cortex 

(Hafting et al., 2005) fire selectively when an animal is in a particular physical location. 

These populations can also represent non-spatial dimensions of experience when 

behaviourally relevant (Bao et al., 2019; Constantinescu et al., 2016; MacDonald et 

al., 2011; Solomon et al., 2019; Umbach et al., 2020), including tone frequency 
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(Aronov et al., 2017). Importantly, the phenomenon of theta phase precession 

(O’Keefe and Recce, 1993; Qasim et al., 2020) allows temporally compressed 

sequences to be represented in hippocampus, with past, present, and future 

experience being encoded at successive phases of a theta cycle. This indicates that 

hippocampus has the capacity to learn and store representations of rapidly unfolding 

stimuli, which could form the basis for predictive activity during exposure to regular 

patterns of sound. 

A recent study, by Tzovara et al (2022), directly tested the responses of 

neurons within hippocampus to patterns within acoustic stimuli. They presented 

sequences of pure tones with predictable and unpredictable frequencies to epileptic 

patients with macro-contacts and micro-wires to record local field potentials and 

spiking activity in hippocampus. With these macro-contacts they identified larger 

responses in the 1-8Hz band to predictable sequences within hippocampus. Micro-

wire recordings showed the majority of hippocampal neurons responding selectivity to 

deviant sounds, with parahippocampal/entorhinal neurons responding to standard 

sounds (Tzovara et al., 2022). Tract-tracing studies in primates also suggest that 

auditory cortex projects directly to parahippocampal cortex (Munoz-Lopez et al., 

2010). 

How each of these areas, auditory cortex (primary and non-primary subfields), 

IFG, parietal cortex and HPC differ in their contribution to auditory regularity 

processing is not yet clear. However, there is increased evidence that hierarchical 

processing through the recruitment of these different brain regions is involved. Models 

such as dynamic causal modelling (DCM) studies (Garrido et al., 2009, 2008, 2007; 

Phillips et al., 2016, 2015) have found that simple regularities that produce an MMN 

response is best explained by the model updating at different hierarchical – 

intraregional and interregional – levels. 

1.6 MODELLING REGULARITY DETECTION 
Experimental studies provide us with invaluable data to understand how real 

behaviour and neurons behave when exposed to these acoustic patterns. However, 

models can provide a broader understanding of the cognitive and biological processes 

underlying this process and generate testable predictions for neural signals of 

regularity.  
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Models based on prediction by partial matching (Information Dynamics of Music 

(IDyOM), Prediction by Partial Matching (PPM);  (Pearce, 2018, 2005) – a Markov 

modelling method (Cleary and Witten, 1984) that represents the statistical structure of 

input sequence by segmenting them into sub-sequences (n-grams) of increasing order 

have been readily applied to understanding how the auditory system deals with 

processing regularity, particularly with music. In the case of deterministic frequency 

patterns, the model assumes that the auditory input can be represented as a sequence 

of symbols drawn from a discrete ‘alphabet’. IDyOM then statistically learns variable-

length sequential dependencies and while processing the sequence event by event 

(or symbol by symbol), generates expectations for the next event. The expectations 

are presented in the form of a probability distribution such that an event that followed 

a repeating pattern and was present in the previous repetition would have a high 

probability of occurring. This probability distribution can be represented as ‘information 

content’ which reflects how unexpected the model finds a given event in a particular 

context, such that event with a high probability of occurring will have low information 

content. The authors were successful in reproducing human behaviour in a variety of 

paradigms and therefore they suggested that listeners monitor the predictability of 

each incoming stimulus against the n-gram statistics stored in memory as a generative 

probabilistic model. The neural underpinnings for these various representations, and 

whether they engage overlapping machinery are critical questions for future work. 

Deterministic structure may draw on the formation of sensory memory traces whilst 

more stochastic patterns will involve more abstract representations and different 

computational architecture.  

Further considerations relate to the timescale over which evidence regarding 

the patterns is gathered. Some patterns occur over the course of milliseconds while 

others unfold over seconds, minutes or longer. This places different demands on 

evidence accumulation and memory mechanisms and may recruit different perceptual 

or neural processes (Cowan, 1984; Santolin and Saffran, 2018). An updated PPM 

model (PPM-Decay) was developed that introduced memory decay as a parameter, 

so that more weight is allocated to the most recent observations (Harrison et al., 2020). 

This decay parameter helps to explain why behaviourally, human subjects struggled 

detecting patterns of 15 to 20 tones in length, their reaction times longer than those 

predicted of the original PPM model (Barascud et al., 2016). The PPM-Decay model 
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identified that a 15-tone buffer, short and high-fidelity memory, seemed to describe 

this behavioural ‘lag’ for longer pattern lengths, suggesting that the human auditory 

system begins to fail at patterns of longer than 15 tones. The model is a powerful tool 

that can be used to model behavioural detection of patterns in human and animal 

models.  

One major disadvantage to the PPM model is that it can only consider a small 

set of discrete unordered events and therefore cannot generalise to continuous 

acoustic features such as pitch or sound level (Skerritt-Davis and Elhilali, 2018). 

Skerrit-David and Elhilali (2018) developed a Bayesian sequential prediction model to 

tackle this limitation and identify change points, or transitions from low to high entropy 

within the tone sequence (Adams and MacKay, 2007). At each time point the model 

builds a predictive distribution of what the next tone could be which weights different 

hypothesises of when the transition has occurred, if it has occurred (Skerritt-Davis and 

Elhilali, 2018).  This model, whilst building predictive distributions from higher-order 

statistics, such as the covariance between successive tone pitches, was able to 

capture all human behaviours tested in the detection of the transition from low to high 

entropy sequences and vice versa.  

Whether the process underlying regularity detection in the brain uses a 

Bayesian framework that holds onto multiple hypotheses, or a Markov model with 

memory decay parameters is unknown. However, what is known is that the brain can 

follow and form predictions based on the statistical rules it has learnt about the 

incoming acoustic stimulus.  

1.7 UNDERSTANDING THE NEURAL MECHANISMS UNDERLYING AUTOMATIC 

DETECTION OF DETERMINISTIC REGULARITIES 
Currently studies have focused on either computational models or human studies 

utilising psychophysics, EEG, MagEG or fMRI on the role of regularity within ASA and 

how regularity is detected and encoded within the brain. Due to the limitations of these 

techniques, it is still unclear how single neurons themselves encode regularity within 

the auditory pathway and especially within auditory cortex. The published studies 

discussed above have implicated areas within and beyond auditory cortex, such as 

hippocampus, in regularity detection but their functional role remains unknown. 

Thereby recording neural responses that target various subfields of AC and non-
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auditory areas such as hippocampus, will give a deeper insight into the neural 

networks underlying regularity detection. The effect of behaviour must also be 

considered to understand the perceptual limits of the model used and how they relate 

to human behaviour, and to distinguish whether regularity detection is completely pre-

attentive or if neural correlates are modulated by behavioural responses to regularity.  

In this thesis I aim to understand how the brain detects and maintains a 

representation of deterministic acoustic regularity. To do this I need to present stimuli 

that allows me to study automatic unconscious sequence processing and to probe 

how the predictability of the sequence modulates behaviour and neural correlates. The 

rapid random to regular tone clouds, used by Chait and colleagues (Barascud et al., 

2016; Southwell et al., 2017; Southwell and Chait, 2018), permits me to parametrically 

control the frequency content and length of the repeating patterns. With these stimuli 

in mind, I can examine the perceptual capabilities of the auditory system in detecting 

transitions from random to regular sequences with a behavioural task. Using an animal 

model, I can execute high density neural recordings from multiple subfields of auditory 

cortex, to understand the roles of primary and secondary areas in representing these 

acoustic patterns. Lastly, with high-density linear probes I can record from both 

auditory cortex and hippocampus simultaneously to understand the role of 

hippocampus in the statistical learning of these acoustic patterns.     

Ferrets are an ideal model to achieve these aims as they can be trained on 

complex auditory tasks and it has been shown that ferrets are behaviourally sensitive 

to repetitions of broadband noise samples, making them a good candidate for 

behavioural regularity detection tasks (Saderi et al., 2019). Unlike mice,  a ferrets 

hearing range overlaps that of humans (ferret range: approximately 20Hz to 44kHz; 

human range: approximately 20hz to 20kHz; Heffner and Heffner, 2007; Kavanagh 

and Kelly, 1988), and with larger cortical anatomy allows multiple large-scale implants 

that can perform electrophysiological recordings across multiple regions. Substantial 

literature on the ferret regarding the anatomy of neural structures in the form of an 

atlas (Radtke-Schuller, 2018) and the functional organisation of sensory areas such 

as the tonotopy of auditory cortex are also available (Bizley et al., 2005). 

1.7.1 Thesis outline 

To bridge the gap of regularity detection at a neuronal level, developing a 

behavioural paradigm using an animal model, in this case the ferret, is a first crucial 
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step. This will allow me to record the activity of single-units and the local field potential 

in multiple brain regions. Whilst neural signatures have been found in passively 

listening humans of regularity detection, currently it is unknown whether animals can 

detect regularity or their limits on detecting increasingly complex patterns. I 

hypothesise that ferrets, given their sensitivity to repetition as described previously, 

will be able to detect the transition from random tone sequences to regular tone 

sequences. Furthermore, performance will likely be perturbed with increasing 

complexity of the pattern. Regarding neural correlates, I hypothesise that there will be 

changes in spike timing and firing rate, predicting greater synchronous spike timing in 

the presence of regularity, and increased oscillatory power at the pattern rate in the 

local field potential. Previous human and animal studies investigating regularity 

detection provide conflicting predictions as to whether the firing rate will show 

adaptation or facilitation in the context of regularity. The aim of this thesis is to 

determine the relationship between regularity and neural firing.   

In chapter 2, I establish the ferret as a suitable animal model by assessing its 

ability to detect acoustic patterns through a behavioural task. I trained a total of six 

ferrets on a GO/NO-GO task to detect a transition from a random tone sequence to a 

regular tone sequence. I show that ferrets can consistently perform this task above 

chance, validating their use as an animal model for the behavioural and neural study 

of acoustic regularity detection. Having determined ferrets can detect regularity, I 

assessed how modulating the complexity of the pattern, by increasing the pattern 

length, affected their ability to perform this task. Ferrets showed perturbed 

performance and reaction time as the pattern length increased from 3, through to 7 

tones. To investigate the cues that the ferret uses to detect this transition from random 

to regular, I present control stimuli that evoke similar changes in frequency content but 

do not provide deterministic regularity as a cue, showing that ferrets are in fact using 

the deterministic patterns to perform the task. I also explore how the number of unique 

frequencies can also modulate behaviour, with less unique frequencies enhancing 

performance. I then describe their behaviour in the context of the PPM-Decay model, 

and why their behaviour may differ to that of human subjects due to memory 

constraints.  Lastly I perform control experiments in human subjects, to test the effects 

of an expanded frequency range (compared to that of previous human work) on 
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regularity detection showing no differences in performance but instead perhaps 

increases saliency due to reduced cross-frequency adaptation. 

In chapters 3, 4 and 5, I consider the neural responses recorded in these trained 

animals. Animals were either implanted with multi-electrode arrays (n = 3, WARP-32 

Neuralynx) to record from multiple subfields of auditory cortex, or high-density linear 

probes (n = 2, Neuropixels probes, 2.0) to record from multiple depths of auditory 

cortex and hippocampus itself. In chapter 3, I consider the local field potential, as this 

provides the best bridge to human imaging studies. I show that in comparison to the 

human studies that there is no change in the evoked LFP between random and regular 

sequences. However, oscillations at tone presentation rate are present and lower 

during regularity, whereas oscillations at the pattern rate are higher during regularity 

and are also modulated by the behavioural response of the animal. Analysis of the 

time course of these pattern rate oscillations show they occur almost immediately after 

the transition from random regular and continue on after the offset of the stimulus. 

In chapter 4, I ask whether single-units can differentiate between tones in a 

random vs. regular context using the animals’ behavioural performance to generate 

hypotheses about how responses to regularity should vary with pattern complexity. 

Analysis of the spike count across the population of units in the epoch after the 

transition to stimulus offset showed higher spike counts for shorter pattern lengths that 

then decreased with more complex patterns. Neurons also showed increased 

entrainment to the pattern rate but not the tone presentation rate. Analysis of neural 

responses to their best frequency (BF) revealed increased precision in firing to BF 

tones in regular contexts compared to random but also decreased firing. Lastly through 

modelling I show that across the population, neurons increase their firing with 

increasing repetitions of the pattern, and that units in auditory cortex show a 

multiplexed response to a variety factors rather than neurons encoding regularity 

singularly. In chapter 5, I leverage the high-density linear probes of the Neuropixels to 

assess how the identified neural correlates change which depth, and show that neural 

firing in hippocampus is modulated by the pattern length and its entrainment to the 

pattern and tone presentation rate is enhanced during the presentation of regular 

sequences. Lastly, in chapter 6, I develop a optogenetic method to reversibly silence 

regions of auditory cortex which I validate by showing decreases in the firing of 

neurons during photostimulation, and that this inactivation occurs to broad-spiking, 
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putative excitatory neurons. I then show behavioural impairment, during auditory 

cortical silencing, in a vowel discrimination in noise task. The development of the 

optogenetic method lays the ground work for future studies performing causal 

manipulation of auditory cortex to test its role in regularity detection. 

 

 

 

 

 

 

 

 

  



57 
 

2 CHAPTER TWO: REGULARITY DETECTION IN THE 

BEHAVING FERRET 

2.1 STATEMENT OF CONTRIBUTION 
The online human psychophysics work in this chapter was undertaken with an 

MSc student (Afua Andam) under my supervision. I designed the experiment and 

wrote the code to present the experiment online. AA collected the data. I analysed and 

interpreted the data for inclusion in this chapter. 

2.2 INTRODUCTION 
As highlighted in chapter 1, the brain’s ability to detect repeating patterns and 

statistical regularities within the acoustic environment is important in analysing the 

auditory scene and making sense of incoming sensory information. Deterministic 

patterns and more complex stochastic regularities have been well studied in the field 

of cognitive neuroscience, and human imaging techniques such as EEG, MagEG and 

fMRI have highlighted multiple brain regions involved during regularity detection 

(auditory cortex, hippocampus, and frontal areas). Cognitive models have been 

developed to infer how the auditory system is able to detect these regularities rapidly 

and automatically. Despite this, few studies use complex predictable stimuli within an 

animal model. A handful of studies have presented stimuli to passively listening 

animals with the goal of exploring the neural correlates of regularity detection. Some 

examples are random and rhythmic sequences of noise bursts presented to the rat 

(Asokan et al., 2021), whereas another used pure tones and band passed noise bursts 

to create repeating patterns to study in the macaque (Barczak et al., 2018). Yet all of 

these were presented to passively listening animals and did not test their behavioural 

detection of these complex stimuli.  

Paradigms that have used behaviour are even fewer: using modified vocalisations 

as stimuli, showed mice demonstrate a preference for regularity within vocalisations 

(Perrodin et al., 2020). Figure-ground segregation behaviour (i.e. detecting a repeating 

pure tone chord ‘figure’ in a random chord mixture) has also been demonstrated in the 

macaque (Schneider et al., 2021, 2018). A few studies have demonstrated that ferrets 

have some capacity to detect statistical regularities. One study showed they can detect 

the onset of regularly repeating single frequency pure tones embedded in an otherwise 

random tone cloud (Ma et al., 2010) and another showed they could detect a repeated 
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frozen noise burst within a random noise mixture (Saderi et al., 2019). Together, these 

studies suggest that animals are sensitive to repetition and statistical regularities within 

acoustic stimuli. Nonetheless, a ferret’s, or any non-primate animal model’s, 

capabilities in detecting transitions from random to regular tone sequences has not yet 

been assessed through the parametric variation in the predictability of the stimulus. In 

this chapter, I aim to show that ferrets can detect these transitions, show enhanced 

performance for more predictable patterns, and have a similar detection strategy to 

humans, cementing their role as a suitable animal model for studying the neural basis 

of regularity detection. 

In this chapter, I present deterministic acoustic patterns, used in previous studies 

(Barascud et al., 2016; Southwell et al., 2017; Southwell and Chait, 2018), that are 

rapidly presented after a variable period of randomly presented (i.e. irregular) tones to 

study how the brain extracts acoustic patterns, using an animal model - the ferret. By 

presenting the acoustic patterns in the form of pure tone sequences rather than 

repeated noise samples or more ethological and naturalistic stimuli, I can maintain 

strict control over and parametrically vary the frequencies presented, stimulus 

statistics and complexity of the pattern. Previous work has also implemented models 

to cognitively explain the detection of this stimuli (IDyOM, PPM-Decay; Barascud et 

al., 2016; Harrison et al., 2020) which I can compare against animal performance. 

Though this behavioural task is based on the paradigm used by Barascud et al. 

(2016), some small changes were implemented to best take advantage of the ferret 

model. Firstly, to give the animals the best chance of performing the task, I chose 

shorter patterns, lengths of 3, 5 and 7 rather than 5, 10, 15 and 20, thus reducing the 

complexity of the regularity that was being presented. In human studies, the tones 

were spaced at 1/6th octaves. Given that cochlear filters are estimated to be roughly 

twice as wide in the ferret compared to that in humans (Alves-Pinto et al., 2016a; 

Sumner et al., 2018; Sumner and Palmer, 2012), I had tones spaced twice that width 

at 1/3rd octaves which consequently meant the frequency range doubled from 222Hz 

- 2kHz to 120Hz – 9.7kHz. This reduces the possibility of frequency-adjacent tones 

falling within the same cochlear filter. However, increasing the frequency range could 

increase the possibility of streaming out different tones changing the underlying 

detection strategy (Micheyl and Oxenham, 2010a; Noorden, 1975). To test if changes 

in frequency range could alter regularity detection by enabling listeners to use 
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alternative strategies, I performed parallel online psychophysics experiments in 

humans to identify if a wider frequency range could affect performance and reaction 

time in regularity detection. If there were to be a difference, I hypothesised that this 

could be due to enhanced stream segregation from the wider frequency range, which 

would be detected by a 2-alternative forced choice (AFC) temporal order detection 

task.  

In this chapter, I introduce a behavioural animal paradigm and demonstrate that 

ferrets can detect acoustic regularities and show key features of behaviour already 

described in humans; namely that as pattern length increases, performance decreases 

and their reaction time increases. I take a further look at the cognitive strategies 

underlying regularity detection in the ferret, and present control stimuli that has the 

same change in frequency content in the transition from random to regular sequences, 

but do not contain repeating patterns. This removes deterministic regularity as a cue, 

showing the ferrets are performing true regularity detection. Furthermore, I present 

evidence that ferrets have a shorter memory buffer compared to that in humans. 

Lastly, I perform control experiments in human subjects, to test the effects of an 

expanded frequency range (compared to that of previous human work) on regularity 

detection and I show no differences in performance but perhaps instead that 

increasing the frequency range increases saliency of the pattern due to reduced cross-

frequency adaptation. 

 

2.3 METHODS 

2.3.1 Animals 

Six adult female-pigmented ferrets (mustela putorius furo) were trained in the 

behavioural task (F1805, F1812, F1813, F2001, F2003, and F2103). Ferrets were 

supplied from Highgate Farm at eight weeks of age and behavioural training began 

when ferrets were at least 16 weeks old and weighed a minimum of 600g. Animals 

were housed in groups of two to eight and given free access to water and food pellets. 

Animals that were undergoing training/testing were housed in separate groups to be 

water restricted where at the beginning of each testing run (typically lasting five days), 

water was removed from animals to be on study on a Sunday afternoon and replaced 

the following Friday evening. Animals were tested twice a day, once in the morning 
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and once in the late afternoon so that none went longer than 12 hours without access 

to water.  Animals were housed in a light-dark cycle of 14:10 hours in the summer and 

10:14 hours in the winter and all went under regular otoscopic examinations to make 

sure ear canals were healthy and clear of any wax. 

Animals were water restricted less than 50% of the time from two weeks before 

the start date of when they went on study and were weighed daily to ensure that their 

body weight did not drop below 88% of the initial weight measured at the beginning of 

each testing run (typically a Monday morning). A minimum of 6% of their body weight 

in water was provided to the animal daily either through water rewards during the task, 

water manually supplemented by the experimenter, and mash (crushed food pellets 

mixed with water) provided to each water restricted ferret at the end of the day. All 

experimental procedures performed were first approved by a local ethical review 

committee. Procedures were carried out under license from the UK Home Office in 

accordance with the Animals (Scientific Procedures) Act (1986) and PPL: PP1253968. 

2.3.2 Stimuli 

Acoustic stimuli consisted of 50ms tone pips in either a random tone sequence 

(RAN) or random sequence which then transitioned to a regular tone sequence (RAN-

REG) 1.5 to 2.5s after stimulus onset (see Figure 2.1).These tones ranged from 

120Hz to 9.7kHz with third octave spacing, to give a frequency pool or random 

alphabet of 20 different frequencies (RAN20). Tones were played immediately one 

after another with 5ms raised cosine onset and offset ramps. The short tone duration 

and zero gap between the tones presented provided rapid tone sequences to tap in 

automatic sensory processing. The regular sequence was then generated by selecting 

n tones from the transition time to then be repeated, where n is the number of tones 

in the pattern (i.e. 3, 5 or 7), with the regular sequence lasting 2s. I presented three 

different pattern lengths of 3, 5 and 7 tones (see Figure 2.1B-D) and the time at which 

the random sequence transitioned to a regular sequence was randomised between 

each trial between 1.5 to 2.5 s (in 50ms steps) after stimulus onset. These entire 

sequences were randomly attenuated between the ranges of 54 to 60dBSPL at 1.5dB 

steps.  

To probe whether the animal uses the deterministic pattern during detection to 

perform the task, rather than other cues such as changes in spectral content, I tested 

two further conditions. Firstly, a condition where the random tone sequence only  
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Figure 2.1: Spectrograms of tone sequences. Sequences consisted of 50ms tone pips and 
ranged in length from 3.5 to 4.5s. A) Random tone sequence with an alphabet of 20 tones that 
does not transition to a regular sequence and in the behavioural task is used as a catch trial. 
B-D) Random sequence that then transitions to a regularly repeating pattern of 3 with the first 
three repetitions indicated. Other random sequences transitioning to a repeating pattern of 
(B), 5 (C) and 7 (D) tones. The transition time is shown with the white dashed line. The red 
dashed line shows the end of the next cycle of the repeating pattern. E) Sequences where the 
random alphabet consisted of 5 different frequencies and then transitioned to a repeating 
pattern of 5 tones generated from the previous same frequencies. F) Probe trials were 
presented where a random sequence was generated from 20 different frequencies but then 
transitioned to a random sequence generated from 5 frequencies at the transition time (white 
dashed line).  
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consisted of five randomly chosen frequencies (RAN5) that were followed by a pattern 

of 5 tones (REG5) using the same preceding frequencies (see Figure 2.1E). 

Accordingly preventing animals from using any information about the probability of 

occurrence of any one tone as a cue for detection. The second was a probe condition, 

tested only on 10% of trials within a testing session and randomly rewarded to avoid 

biasing trained behaviour. The probe stimuli contained a random sequence (RAN20) 

that transitioned to a random sequence of 3, 5 or 7 tones (RAN20-RAN3, RAN20-

RAN5 and RAN20-RAN7 respectively) (see Figure 2.1F). Thus, capturing the change 

in spectral statistics that occurred in the RAN20-REGN conditions, without introducing 

a regular pattern. 

Each sequence was generated a new for each trial apart from a subset of 

sessions where stimuli were repeated approximately 10 times within a session to 

provide reliable spiking responses for electrophysiological recordings in later 

experiments. In the repeated presentations the transition time was fixed at 2s and the 

level at 60dBSPL. Stimuli were generated in MATLAB and presented at a sampling 

frequency of 24414.0625Hz. All frequencies were individually level calibrated at the 

position of the animal’s head using a microphone (Brüel & Kjær ½” Microphone 4134), 

measuring amplifier (Brüel & Kjær 2610) and tone generator (Brüel & Kjær 4231), 

between a noise-floor of 30 to 40dBSPL to maximum presentation of 70dBSPL to 

minimise non-linearities in frequency presentation within the speaker. 

2.3.3 Apparatus 

Animals were trained in a double-walled sound attenuated booth in a semi-

circular arena encased in acoustically transparent plastic mesh (IAC Acoustics; see 

Figure 2.2A). The stimulus was presented from a free field central loudspeaker 

(Visaton SC 5.9) approximately 20cm from the subject’s head position.  A central spout 

on a post in the centre of the arena held an infrared (IR) sensor (Optek / TT Electronics 

OPB710) and IR beam breaker consisting of an emitter (Optek / TT Electronics 

OP165A) and phototransistor (Optek / TT Electronics OP506A) contained in a custom 

3D printed structure to detect when the animal was at the central spout to initiate trials 

or to hold (see Figure 2.2B).  When the IR sensor in the centre of the spout was 

activated through a nose poke the trial was initiated. The IR beam breaker, located on 

the wings of the central spout, was then used to detect whether the animal had left the 

central spout after a given length of time (e.g. 150ms) as the beam breaker was less 
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sensitive to small head movements that could otherwise log an unintended release 

from centre, compared to the centre IR sensor.  

 

Figure 2.2: Schematics of the behavioural apparatus and trial structure. A) The animal 
was housed in a double-walled sound attenuated booth and was required to initial the trial at 
the central spout. Once initiated the sound was then presented from a central speaker ~20cm 
from the animals head. If the animal heard a transition from random to regular they were 
required to leave the centre spout and nose poke at the left spout. B) A custom 3D printed 
structure was used to house the electronics and sensors to detect when the animal had 
initiated and was holding during a trial. An IR beam break (green dashed line) and IR reflecting 
sensor (black circle) were two of the sensors used during behaviour. A water outlet was also 
built into the structure to provide a water reward. This structure was then mounted on a post 
in the centre of the arena. C-D) The structure of a trial consisted of a pre-trial hold time where 
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the animal was required to hold their head at the spout to initiate the trial. The stimulus would 
then be presented and could either be a random sequence, a random to regular sequence or 
a probe trial. In a GO trial (random to regular sequence) the animal would be required to 
respond within 2s of the transition time at the left spout in order to receive a water reward. The 
animal had to remain at the central spout during a NOGO trial (random sequence) in order to 
receive a water reward from the central spout. 

The central spout also housed a channel that when a solenoid (Valeader 

B2B112.BVO 12VDC) was activated it allowed water from a reservoir to flow into the 

channel providing a water reward (approximately 0.25ml per reward). A secondary 

spout to the left-hand side of the central post (approximately 15cm away) was used 

as the response location for when the animal was required to respond after the 

transition from the random to regular sequence. This spout contained just an IR sensor 

and a channel for the water reward. The experiment was run on custom scripts written 

in MATLAB (The Mathworks) which communicated to the TDT signal processor (RX8) 

to control stimulus presentation and receive sensor information. One camera (Intel 

Realsense D435) was installed to observe the animal during the experiment. 

2.3.4 Training and testing 

At the beginning of training, ferrets were positively reinforced to associate the left 

and central spouts with reward by providing a water reward anytime the ferret 

approached the spout. Once they reliably minimised exploration in the arena and 

focused their attention on two spouts (approximately 3-4 sessions), they were then 

trained to respond in a pattern of going to the central spout then to the left spout. Once 

this pattern was adopted by the animal (2-4 sessions) the auditory stimulus was 

introduced with GO and NO-GO trials. These GO trials consisted of a random to 

regular tone sequence (RAN20-REG3), however the transition from random to regular 

was short (0.5s) whilst the regular sequence was long (10s). NO-GO trials consisted 

just of the random tone sequence (see Figure 2.1A) but only lasted a short time (0.5s). 

With this short duration until the transition, the animal was likely to already be moving 

to the left spout after initiation of the trial, and thereby associating the left spout with 

regularity.  If the animal let go too early from the central spout or didn’t respond at the 

left spout before the end of the response window, then they would be met with a noise 

burst, timeout and no water reward (see Figure 2.2C-D).  

As the subject’s performance increased after multiple training sessions the time 

between the transition and stimulus onset was gradually increased up until the testing 

conditions of the range 1.5 to 2.5s; thereby the response time was gradually 
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decreased from 10s to 2s. Once the animal was able to successfully detect the change 

from random to regular in the RAN20-REG3 condition with the testing parameters, 

increasingly longer pattern lengths, 5 and 7, were then introduced to the animal. These 

were initially presented separately in each session but then all pattern lengths were 

randomly interleaved within a session. This provided trials that varied in difficulty in a 

single session and the animals were tested on a variety of stimuli (see Table 2.1). The 

RAN5-REG5 condition was presented separately and only after the animal became 

competent detecting the other conditions. This stimulus was presented in its own 

training/testing sessions.  

Once the animal reached a consistent performance and stopped improving their 

performance across conditions during training, sessions before this point were 

excluded from analysis (see Figure 2.3). Once the animal was trained on all 

conditions, they were then implanted with microelectrode arrays at the next available 

opportunity for electrophysiological recordings (see chapter three). During testing 

animals were presented interleaved pattern lengths and on other sessions were 

presented the RAN5-REG5 condition. Probe trials (RAN20-RANX, where X = 3, 5 or 

7; see Figure 2.1F) were presented on selected sessions randomly on 10% of trials. 

To avoid inducing bias each probe trial was randomly assigned whether it was a GO 

trial or NO-GO trial. Implanted animals were presented repeating stimuli that was 

generated anew every 4 weeks to coincide with electrode movements of the animals’ 

implants. 

 

 Novel regularities Repeated regularities Novel 

RA 20 5 20 5 20 

Ferret/PL 3 5 7 5 3 5 7 5 X 

F1805 5292 1509 584 2499 - - - - - 

F1812 5277 4400 3214 5458 2021 1980 1034 1113 108 

F1813 4549 3670 1887 1940 988 794 341 411 100 

F2001 5280 4603 3035 6303 2344 2610 1206 1726 158 

F2003 4955 4941 2699 3601 1459 1132 300 403 181 

F2103 1933 2380 1787 2200 720 640 146 214 138 

 

Table 2.1: Table of the total number of trials each subject completed that contained 
regularity for each condition included in behavioural analysis.  
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Figure 2.3: Performance of each ferret in each condition in each week from the start of 
behavioural training. Each dot is the ferret’s performance each week and is coloured by the 
condition. The dashed grey line shows the date at which data is excluded from that ferret due 
to training/piloting. The purple dashed line shows the date of implantation.  
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2.3.5 Task development 

During piloting, random sequences (NO-GO trials) initially occurred 25% of the 

time and regular sequences (GO trials) contained transition times which varied from 

0.5 to 4.5 seconds. A binomial mixed effects regression on all trials (see Table 2.2 

and Figure 2.4A-B), with ferret as the random effect, show a main effect of transition 

time where an increase in transition time gave poorer performance. A binomial mixed 

effects regression also revealed a significant increase in the false alarm rate as the 

precursor increased (see Table 2.3) suggesting that the animals are less able to hold 

at the central spout as the transition time is increased in this task. To mitigate this 

effect I increased the percentage of NO-GO trials to 50% and reduce the range of 

transition times to 1.5 – 2.5s to balance a short enough hold period with a long enough 

presentation of the random sequence.  

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 1.075 0.270 3.982 < 0.001 0.543 1.608 

Precursor length -0.567 0.0114 -49.638 < 0.001 -0.589 -0.544 

 

Table 2.2: Estimates of each fixed effect in the binomial mixed effects regression model 
on performance to various precursor lengths. R2 = 0.834; Df = 216; random effect std. = 
0.457 
 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept -2.089 0.309 -6.768 < 0.001 -2.697 -1.481 

Precursor length 0.860 0.0130 66.21 < 0.001 0.834 0.885 

 

Table 2.3: Estimates of each fixed effect in the binomial mixed effects regression model 
on false alarm rate to various precursor lengths. R2 = 0.963; Df = 216; random effect std. 
= 0.524 
 

Adding a dual sensor system, one reflective IR sensor in the middle of the spout 

to be responsible for initiating the trial and a crossbeam that registered the presence 

of the ferret’s head, aided in reducing false alarms and thereby increased performance 

(mixed effects binomial regression, see Table 2.4 and Table 2.5 and Figure 2.4C-D). 
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Figure 2.4: Performance at various transition times and with the improved sensor 
system. A) Performance (percent correct of trials) of each ferret to each transition time binned 
in 1s bins (0.5s around each second) with the mixed effects binomial model (dashed line, 
shaded area = CI) on the unbinned transition time. B) Percentage of false alarms on trials for 
each ferret and mixed effects binomial model on the unbinned transition time. C-D) 
Performance and percentage of false alarms with the single and dual sensor systems for each 
ferret (error bar = s.e.). 

 

 



69 
 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.191 0.101 1.884 0.0616 -0.00938 0.391 

Sensor type 
(single = 0, dual = 1) 

0.286 0.0335 8.539 < 0.001 0.220 0.352 

 

Table 2.4: Estimates of each fixed effect in the binomial mixed effects regression model 
on performance to single and dual sensors. R2 = 0.126; Df = 146; random effect std. = 
0.154 
 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.308 0.118 2.607 0.0100 0.0745 0.542 

Sensor type 
(single = 0, dual = 1) 

-1.025 0.0409 -26.057 < 0.001 -1.106 -0.944 

 

Table 2.5: Estimates of each fixed effect in the binomial mixed effects regression model 
on false alarm rate to single and dual sensors. R2 = 0.433; Df = 146; random effect std. = 
0.182 
 

2.3.6 Behavioural analysis 

Each session’s behavioural data was logged during the experiment and then 

later extracted using custom Python scripts. A response was a hit if the trial was a GO 

trial and the animal responded at the left spout after the transition time and before the 

end of the response window (2s). A correct reject was logged if the animal held at the 

centre spout during a NO-GO trial but was logged as a missed if they responded this 

way during a GO trial. False alarms were logged when the animal either responded at 

the left before the transition time on a GO trial or at any time during a NOGO trial. 

Percent correct was calculated for each session as follows: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =  (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑡𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
) ∗ 100 

( 1 ) 

 

As equipment can and would fail, this would cause drops in performance, or 

cause the ferret to fail to trigger trials or the equipment may fail to record the animal at 

the central spout, sessions were excluded from further analysis if the animal had a 

score of less than 40% correct (on average 25.8% of sessions per ferret) or a false 

alarm rate of greater than 65% (on average 4.54% of sessions per ferret). 
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𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
 

( 2 ) 

Trials in which the animal responded within 500ms from stimulus onset were also 

excluded as this was typical of the animal triggering the trial by accident and failing to 

hold at the central spout. The first four trials from every session were also excluded as 

ferrets would initially explore the box and take a few trials to focus on the task. To 

assess reaction time, sessions where the ferret performed at greater than 60% correct 

only were included to avoid analysis on chance responses. 

To detect whether each animal was successfully able to perform above chance 

in each condition, I performed a permutation test to create a chance distribution for 

each individual ferret at each condition. To do this I grouped each ferret’s responses 

by condition and then shuffled their reaction time for each trial (including trials with no 

available reaction time due to the ferret remaining at the central spout). Performance 

was then calculated on the shuffled data, for example if there was a reaction time but 

the trial was a NO-GO trial, the trial would now be labelled as a false alarm, whereas 

if the trial was a GO trial and the shuffled reaction time was after the transition time 

then the trial would be labelled a hit. This process was iterated 1000 times for each 

condition and ferret to produce a chance distribution and a 97.5th percentile calculated 

for each ferret and condition (for violin plots of these chance distributions, see 

Appendix 9.2.1). 

Statistical analysis of effects of pattern length and effects of 

matched/unmatched alphabets and other conditions used general linear models and 

generalized linear mixed models fitted using fitglme in MATLAB (version 2022a). 

These models were also applied to the online psychophysics. The details of each 

model are outlined alongside the relevant results; however, in general, analysis of 

behavioural performance (correct vs. incorrect responses) was based on logistic 

regression in which the generalised linear model used binomial distribution and logit 

link function settings and analysis of reaction times was based on a general linear 

model. For each model, I used ferret as a random factor and reported the magnitude 

of coefficients (estimate) of fixed effects of interest, the t-statistic for a hypothesis test 

that the coefficient is equal to 0 (T) and its respective p-value (p). The 95% confidence 

intervals are also reported for each fixed-effect coefficient and the adjusted R2 value 
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of the model to assess model fit. All behavioural data extraction and analysis was 

performed offline using Python packages and MATLAB. 

 

2.3.7 Online human psychophysics 

Two online human psychophysics experiments were performed using the 

platform Gorilla (gorilla.sc) to present the experiment with the platform Prolific 

(prolific.co) to recruit and test participants online due to the COVID-19 pandemic 

where in person testing could no longer take place. Twenty participants aged 18-34 

years old participated in human experiment 1 (H1; mean age: 24.3 years) and in 

human experiment 2 (H2; mean age: 23.4). All participants were devoid of any history 

of auditory and/or neurological disorders and were fluent in English. Participants were 

excluded if they did not meet the screening criteria of the headphone check test (Milne 

et al., 2020) and pure tone assessment (see below). All stimuli were presented at a 

comfortable level to the listener and at a sample rate of 44.1kHz.  

Due to the lack of control of headphone frequency responses and any means of 

calibration through online testing, a pure tone assessment was performed.  The pure 

tone assessment was a 3AFC task where three intervals were presented with the tone 

only played in one of the intervals. The participant had to press the numbered key (1, 

2 or 3) that corresponded to the interval with the tone present. Four frequencies (0.1, 

1, 4, 10 kHz) were tested with five repeats. The intervals with the tones were played 

at the same level as that in the experimental stimuli to check if participants could 

perceive the range of tones necessary for H1 and H2. If the participant performed 3 or 

more trials incorrect for any frequency tested, they were excluded from the study.  

In order to identify whether participants listened to the experiment over 

headphones I used an assessment that we developed that utilised the Huggins Pitch 

phenomenon (Milne et al., 2020).  It is based on the perception of a dichotic percept, 

the Huggins pitch, that is audible over headphones but not free field loudspeakers. By 

presenting white noise stimulus to one ear and the same white noise to another but 

with a phase shift of 180° over a narrow frequency band (centred around 600Hz ±6%) 

to the other ear, an illusory pitch phenomenon is generated, but only when the left and 

right channels are fed individually to each ear (see Milne et al., 2020 for more details). 

The Huggins pitch was presented within a 3AFC task design where only one interval, 
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the target, contained the phenomenon and the other two contained diotic white noise. 

The subject was asked via a graphic user interface to select the interval in which they 

heard the tone and if they got less than five out of six trials correct, they were excluded 

from the study. 

For participants that passed the screening, they read and signed an online 

information sheet and informed consent was obtained from each participant (see 

Appendix 9.1). In H1 participants were also awarded a bonus payment based on the 

percentage of trials in which they responded in less than one second to motivate quick 

reaction times. In H2 participants were awarded a bonus payment based on their 

percentage of correct trials in order to motivate correct answers. Participants were 

additionally paid £10 per hour in both experiments with each experiment typically 

lasting 45 minutes. Experimental procedures were approved by the research ethics 

committee of University College London, project ID number: 3866/003. 

2.3.7.1 Human experiment 1 

To test the effects of changes in frequency range in regularity detection, I 

performed an online GO/NO-GO experiment where I tested two different frequency 

ranges (wide: 0.12kHz to 9.7kHz in 1/3 octave steps; narrow: 0.22kHz to 2kHz in 1/6 

octave steps)  of the frequency ‘alphabet’ and three different pattern lengths (3, 5 and 

10) and a condition with just a frequency change (STEP) to measure a basic reaction 

time without regularity detection (8 conditions in total; see Figure 2.5). To mimic the 

response measure of the animal experiment, participants were asked to hold down the 

‘spacebar’ on their keyboard to initiate the trial and release as quickly as possible 

within 2s, when they heard regularity, or a change in frequency in the STEP change 

trials. 

Ten repetitions were presented for each of the eight conditions, with each 

condition containing a corresponding NO-GO condition (catch trial) in which the 

regularity or STEP change was absent. These 160 trials in total were split equally into 

two eight-minute blocks, with an inter-stimulus interval (ISI) ranging from 250ms to 

750ms between trials, with a one minute break included after the first block of 80 trials 

to maintain attention during the online task. Prior to the experiment, just after 

screening, the participants completed a practice session of 12 trials which provided 

feedback based on their reaction time to the GO trials, asking them to react quicker if 
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their reaction time was slower than one second and/or telling them if they had missed 

the regularity or responded before the regularity had occurred.  The practice session 

 

Figure 2.5: Spectrograms of the stimuli used in experiment 1 (H1) of the online 
psychophysics. A) Wide frequency range of 0.12 to 9.7kHz with 1/3 octave steps between 
frequencies, that transitions to a pattern length of 3. B) Narrow frequency range of 0.22 to 
2kHz with 1/6 octave steps between frequencies, that transition to a pattern length of 3. Pattern 
lengths of 5 (C), and 10 (D), where also tested. Half of trials were catch trials in which there 
was no transition to regularity (E). A step function which contains one frequency that either 
continues throughout the trial or transitions to another frequency (F). Transitions are shown 
with a white dashed line and one complete pattern cycle is illustrated with the red dashed line. 
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contained one repeat of each condition and only tested the STEP change, and pattern 

lengths 3 and 10 in each frequency range. 21 participants were tested with one 

excluded for using a Macintosh (20 participants analysed in total). 

2.3.7.2 Human experiment 2 

With a wider frequency range, streaming is more likely to occur (van Noorden, 

1975; Micheyl & Oxenham, 2010) where one tone or group of tones becomes 

perceptually segregated from the other tones in the sequence. This could therefore 

change the underlying process in detecting the transition from random to regular, 

perhaps focusing on one frequency than the whole pattern. To identify whether 

enhanced stream segregation would occur in the regular period due to the wider 

frequency range, I designed a paradigm to investigate the subjects ability detect the 

temporal order of sounds, on the basis of the known effect that during stream 

segregation participants will struggle to accurately report the order of tones that are 

segregated into two separate perceptual streams (van Noorden, 1975; Micheyl & 

Oxenham, 2010).  

The stimulus began with a regular sequence of five cycles long (either a pattern 

length of 7 or 10) in either the narrow (0.22 to 2kHz) or wide (0.12kHz to 9.7kHz) range 

(see Figure 2.6). A 2s interval of silence followed and then the probe was presented, 

which was either one cycle of the regular sequence or one cycle of the regular 

sequence but two of the frequencies were swapped in order (see Figure 2.6C-D; white 

arrows identify swapped tones). It was presented in a 2AFC task in which the subject 

was asked whether the probe was the same as the presented regularity or different. 

Fifteen repetitions were presented for each of the eight conditions (two frequency 

ranges, two pattern lengths and whether they were the same or different). There were 

120 trials in total with an ISI range of 750 to 1250ms and the trials were split into two 

blocks with a minute break in between. There was an information screen that provided 

examples of a trial with the same order in the probe and a different order in the probe 

as well as a practice session of 12 trials (that they could repeat) where they could 

listen to and respond to all variations with feedback. 22 participants were tested with 

two excluded for using a Macintosh, leaving 20 to be analysed. 
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Figure 2.6: Spectrograms of the stimuli used in experiment 2 (H2) of the online 
psychophysics. A pattern of 7 or 10 was selected from a wide or narrow frequency range 
that repeated 4 or 5 times respectively. A 2s interval of silence followed and then a cycle of 
the same pattern was presented either in the same order (A-B) or with two tones swapped (C-
D) in order. The tones swapped are illustrated in the examples with white arrows. 

 

2.3.7.3 Analysis 

Each participant’s behavioural data was logged through Gorilla during the 

experiment and extracted offline with custom MATLAB scripts.  To analyse 

performance in H1 and H2, the percent correct over total trials was taken for each 

subject. For H1 the reaction time was baselined to each subject’s individual reaction 

time to the STEP condition. For H2 a d’, with the Stanislaw and Todorov (1999) 

correction on hit rate and false alarm rate, was calculated as a measure of 

performance, due to the 2AFC design, as follows:  

𝑑′ = 𝑍(𝐻𝑖𝑡 𝑅𝑎𝑡𝑒) − 𝑍(𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒) 

 

( 3 ) 
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Responses were labelled as follows for the 2AFC task based on whether the 

probe was the same or different to the preceding pattern and how the subject 

responded within the task: 

 Stimulus: Same Stimulus: Different 

Response: Same Hit False alarm 
Response: Different Miss Correct reject 

 

All behavioural data extraction and analysis was performed offline using Python 

packages and MATLAB. 

2.4 RESULTS 

2.4.1 Ferrets can detect transitions from random to regular sequences 

Ferrets (n = 6) were trained on a GO/NO-GO-task where they were required to 

respond at a peripheral spout when they heard a transition from a random sequence 

to a regular sequence. The NO-GO trials were random sequences of frequencies 

either selected from a pool of 20 (RAN20) or a pool of 5 (RAN5). GO trials were 

random to regular sequences that either went from a pool of 20 frequencies down to 

a repeating pattern of 3, 5 or 7 tones (RAN20-REG3, RAN20-REG5 and RAN20-REG7 

respectively); or a pool of 5 frequencies down to a repeating pattern of 5 tones (RAN5-

REG5). All ferrets successfully performed the task for all tested conditions (defined as 

performing greater than the 97.5th percentile of the randomly permuted chance 

distribution; range of 97.5th criterion across ferrets = 47.475 to 55.312). Mean 

performance (% correct) for each ferret in each condition can be seen in Table 2.6). 

Ferret       RAN20-REG3 RAN20-REG5 RAN20-REG7 RAN5-REG5 

F1805 83.14 74.02 63.51 65.08 

F1812 85.18 72.91 62.09 58.54 

F1813 83.33 70.35 62.99 61.39 

F2001 86.59 74.06 63.98 61.83 

F2003 81.46 74.77 66.03 61.44 

F2103 77.53 63.71 59.24 59.24 

 
Table 2.6: Mean performance (percent correct) of each ferret in each condition 

Having established that all ferrets are able to perform the behavioural task 

above chance levels for all conditions tested, I wanted to ask how the length of the 

pattern in the regular sequence affects behavioural performance. As can be seen in 
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Figure 2.7 performance for detecting regularity within the RAN20 condition appears 

best for the shortest pattern lengths. It is also apparent that the RAN5 condition elicited 

worse performance than trials with the same pattern length but drawn from an alphabet 

of 20 (RAN20-REG5). This was confirmed with a binomial mixed effects regression 

model (see Table 2.7) that shows a main effect of pattern length, decreasing 

performance as the pattern length increases (β = -0.270, p < 0.001) and a main effect 

of the random alphabet, increasing performance with increasing alphabet size (β = 

0.0406, p < 0.001). This evidence reveals that ferrets benefit from simpler repeating 

patterns in detecting the transition from random to regular but also benefit from a 

random sequence that selects from a larger pool of frequencies. 

 

Figure 2.7: Performance of ferrets to various pattern lengths and random alphabet 
sizes. A-B) Performance (all above chance) is calculated by computing the average percent 
correct from each session for each ferret (coloured circles) with the mean performance across 
all ferrets shown in grey (error = std.) for each pattern length and each random alphabet (A) 
RAN20 and (B) RAN5. Approximate chance is depicted as the dashed line. The binomial 
mixed effect model prediction is plotted in the dotted-dashed line with the 95% confidence 
intervals. 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 1.585 0.0554 28.622 < 0.001 1.476 1.693 

Pattern length -0.271 0.00423 -63.911 < 0.001 -0.278 -0.262 

Random alphabet 0.0406 0.000765 53.114 < 0.001 0.0391 0.0421 

 

Table 2.7: Estimates of each fixed effect in the binomial mixed effects regression 
model on performance. R2 = 0.529; Df = 5849; random effect std. = 0.121 
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2.4.2 Reaction times are faster for shorter pattern lengths 

Next, I aimed to assess how reaction times changed with each pattern length to 

understand if ferrets would take longer to detect longer patterns as can be seen with 

humans (Barascud et al., 2016). In Figure 2.8A-B, I show the kernel density estimate 

(KDE) of the mean reaction time for each ferret and condition at each testing session. 

The reaction time is baselined to the transition time which, is the time the first tone is 

repeated within the pattern. In the data, the reaction time distributions are generally 

shifted rightwards for each increasing pattern length (see Figure 2.8A). Interestingly 

the reaction times for pattern length 5 with a random alphabet 5 are quicker than that 

of the RAN20-REG5 condition (see Figure 2.8B). I ran a mixed effects linear 

regression (see Table 2.8) that confirmed a main effect of the pattern length, 

increasing reaction times with increasing pattern lengths (β = 0.0461, p < 0.001), such 

that an increase in the pattern by one tone increases the reaction time by 

approximately 46ms. The model also indicated a main effect of the random alphabet, 

increasing reaction times with increasing alphabet size (β = 0.00503, p < 0.001). 

Overall, it is apparent that ferrets are quicker at responding to shorter patterns and are 

also quicker when the random sequence contains less frequencies. 
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Figure 2.8: Reaction times of ferrets to various pattern lengths and random alphabet 
sizes. A-B) Kernel density estimates of reaction times, pooled across ferrets, to GO trials in 
sessions with > 60% correct separated by pattern length for RA20 condition (A) and separated 
by random alphabet for the PL5 condition (B). C-D) Average reaction time for each ferret and 
condition with the predicted values from the mixed effects linear regression shown (grey 
dashed line).   

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.626 0.0284 21.428 < 0.001 0.554 0.665 

Pattern length 0.0461 0.00238 19.366 < 0.001 0.0414 0.0508 

Random alphabet 0.00503 0.000678 6.554 < 0.001 0.00353 0.00654 

 

Table 2.8: Estimates of each fixed effect in the linear mixed effects regression model 
on reaction time. R2 = 0.0993; Df = 5107; random effect std. = 0.0514 
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2.4.3 Detection strategies: changes in stimulus statistics or pattern 

detection? 

The analysis above provides evidence that ferrets are able to detect transitions 

from random to regular sequences. However this task could potentially be solved by 

detecting the change from 20 frequencies down to 3, 5 or 7, rather than detecting the 

pattern. The previous data does show that they can detect the change when the 

number of frequencies stays the same (RAN5-REG5) however they perform 

significantly worse compared to the unmatched counterpart (RAN20-REG5). This 

raises the possibility that they could be picking out the change in stimulus frequency 

statistics rather than detecting the repeating pattern, and thereby not performing true 

regularity detection. To test more directly whether this is occurring I presented a 

stimulus in which there was a change in the number of frequencies at the transition 

but no pattern. These were presented as probe trials on 10% of trials within a session 

and randomly rewarded to avoid behavioural bias. I analysed the proportion of trials in 

which the animal responded as if they perceived regularity, by responding at the left 

spout (GO), and subsampled conditions in which there was a repeating pattern 

accordingly. 

As can be seen in Figure 2.9A the proportion of trials in which they responded 

GO was much lower than when they heard the repeating pattern (see Figure 2.9B). 

We see a slightly larger proportion of GO responses for pattern length 3 in the probe 

trials (RAN20-RAN3) but overall, these are much lower than the equivalent repeating 

pattern (RAN20-REG3). A mixed effects binomial regression (see Table 2.9) revealed 

main effects of probe vs. pattern (reference category: pattern), and pattern length as 

well as an interaction (p = 0.00126) between pattern length and whether a pattern was 

present. To determine the effect of pattern length on probe trial individually and to 

compare these to pattern trials, separate models were run on trials containing the 

probe and trials without. This revealed a smaller coefficient for pattern length in the 

probe condition (β = -0.154, p = 0.00459) compared to that of the pattern conditions 

(β = -0.334, p < 0.001). Therefore, if the stimulus just contained a drop in statistics and 

without a pattern the animal is significantly less likely to respond GO, suggesting that 

the ferrets are genuinely using the repeating pattern as marker to respond GO in the 

task. 
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To understand whether removing the cue of the repeating pattern would impact 

detection speed, I looked at the reaction time (see Figure 2.9C-D). We can see that 

the distributions between the different variations in drop in stimulus statistics (RAN-

REG3, 5 and 7) are overlapping. This is confirmed with a mixed linear regression that 

showed no effect of pattern length (p = 0.861) but did show a main effect of whether 

there was a pattern or a probe, where if it was a probe trial the reaction time 

significantly increased compared to when a regular pattern was present (β = 0.346, p 

< 0.001, probe = 1, pattern = 0, see Table 2.10). Therefore, this suggests that the 

animals do detect the transition quicker when additionally having the repeating pattern 

in the tone sequence. 

 

 

Figure 2.9: Performance and reaction time on trials with a change in stimulus statistics 
but no repeating pattern (probe trials). A) Proportion of probe trials in which the subject 
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responded to the left (GO). B) Proportion of trials containing a pattern in the same session in 
which the subject responded to the left. C) Kernel density estimate of all reaction times across 
ferrets split by alphabets. D) Reaction time from transition from random alphabet of 20 to 3, 5 
and 7 for each ferret. Error bars = std. Model predictions in grey dashed line with 95% 
confidence intervals. 

 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 2.412 0.111 21.818 < 0.001 2.184 2.639 

Probe vs pattern  
(ref = pattern) 

-2.200 0.257 -8.561 < 0.001 -2.727 -1.671 

Pattern length -0.331 0.0194 -17.112 <0.001 -0.371 -0.295 

Pattern length × probe 0.177 0.049 3.616 0.00126 0.0765 0.278 

Probe       

Intercept 0.212 0.235 0.900 0.385 -0.296 0.719 

Pattern length -0.154 0.045 -3.417 0.00459 -0.251 -0.0566 

Pattern       

Intercept 2.397 0.126 18.977 < 0.001 2.125 2.670 

Pattern length -0.334 0.0194 -17.213 < 0.001 -0.376 -0.292 

 

Table 2.9: Model output for mixed effects binomial regression on the p(go) after the 
transition on probe and pattern trials R2 = 0.932; Df = 26; random effect std. = 6.203×10-10. 
Separate model for probe (R2 = 0.384; Df = 13; random effect std. = 0.0844) and pattern (R2 = 
0.964; Df = 13; random effect std. = 0.135) underneath. 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.842 0.0339 234.818 < 0.001 0.775 0.908 

Pattern length -0.000618 0.00479 0.129 0.861 -0.00877 0.0100 

Probe vs pattern  
(ref = pattern) 

0.346 0.0831 4.167 < 0.001 0.183 0.509 

Pattern length × probe 0.0181 0.0165 1.108 0.273 -0.0143 0.0504 

 

Table 2.10: Model output for mixed effects linear regression on reaction time on probe 
and pattern trials. R2 = 0.0704; Df = 3768; random effects std. = 0.0512 

 

2.4.4 Detection strategies: unique elements within a pattern 

One factor that could modulate performance in pattern detection is the number 

of elements within the pattern. For example, a pattern length of 5 could contain five or 

fewer unique frequencies, depending on whether any frequencies were repeated 

within the pattern. We might expect that patterns with all unique frequencies could be 

more taxing on the auditory memory and therefore may be harder to detect when 
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compared to patterns with only a few unique elements. If this is the case, we would 

then predict performance to be higher for patterns with fewer unique frequencies, 

potentially independent of the length of the pattern. For example, a pattern length of 

3, comprised of three unique frequencies could generate similar performance to a 

pattern length of 5 with three unique frequencies. If the number of unique elements 

did not modulate performance, we would then observe similar performance across the 

number of unique frequencies, but only modulated by the pattern length. 

In Figure 2.10A we can see that performance decreases as the number of 

unique frequencies within the pattern increases, even within the same pattern length. 

For example, at pattern length 7 (navy) the performance at four unique frequencies is 

similar to that of pattern length 5 for four unique frequencies, but drops below chance 

(50%) at unique frequencies of 6 and more. The matched alphabet case of RAN5-

REG5 also shows a decrease in performance with increasing frequencies and overall, 

there is lower performance compared to that of the unmatched RAN20-REG5 

condition (see Figure 2.10B). A mixed effects logistic regression on the number of 

correct trials reveals a significant effect of unique frequencies, with performance 

decreasing as the number of unique frequencies increases (β = -0.366, p < 0.001). 

We also still see main effects of pattern length and random alphabet. This suggests 

that the number of unique frequencies are a significant factor in helping the ferret judge 

if there was a transition from random to regular, and they struggle to perform above 

chance with approximately five or more unique frequencies.  

As we see a modulation in performance with the number of unique frequencies, 

I wanted to see if the same is true for the ferret’s reaction time and if we would also 

observe delayed reaction times for patterns with more unique frequencies. In Figure 

2.10C we see that reaction time remains consistent, with perhaps a small delay, as 

the number of frequencies increases. In Figure 2.10D we see that there is almost no 

change in reaction time for patterns comprised of different numbers of unique 

frequencies within the RAN5-REG5 conditions. A mixed effect linear regression 

revealed a significant interaction between condition and unique frequency (p < 0.001; 

see Table 2.12 and Figure 2.10C; coloured dashed lines). Separating by condition we 

can see that for shorter pattern lengths, the larger number of unique frequencies the 

larger the difference in reaction time however this difference starts to decrease as you 

increase the pattern length. This may suggest that there is some delay in reaction time 
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as you increase the number of unique frequencies, but this is dependent on the 

condition. 

 

Figure 2.10: Performance and reaction time for patterns with various unique 
frequencies. A) Percentage of correct trials for each ferret for different unique frequencies in 
the pattern, coloured by pattern length (RAN20-REGX) for RAN20 sequences and B) RAN5 
sequences. Predicted values from the mixed effects logistic regression is shown with the 
dashed line and 95% confident intervals. C) Reaction time on all sessions for RAN20 
sequences for each ferret coloured by pattern length (RAN20-REGX) for RAN20 sequences 
and D) RAN5 sequences 
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   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.532 0.193 2.748 0.00560 0.152 0.911 

Pattern length (PL) -0.0843 0.0220 -3.834 < 0.001 -0.127 -0.412 

Random alphabet (RA) 0.126 0.00583 21.59 < 0.001 0.114 0.137 

Unique frequencies -0.366 0.0319 -11.458 < 0.001 -0.428 -0.303 

PL × Unique freqs 0.00695 0.00456 1.522 0.128 -0.00200 0.0158 

RA × Unique freqs -0.00967 0.00146 -6.634 < 0.001 -0.0125 -0.00681 

 

Table 2.11: Model output for mixed effects logistic regression on performance with 
regards to unique frequencies within the pattern. R2 = 0.186; Df = 104005; random effect 
std. = 0.311 

 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.686 0.0456 15.038 < 0.001 0.597 0.775 

Pattern length (PL) 0.0530 0.00604 8.770 < 0.001 0.0412 0.0649 

Random alphabet (RA) -0.0123 0.00169 -7.290 < 0.001 -0.0157 -0.00903 

Unique frequencies 0.0527 0.00999 5.279 < 0.001 0.0332 0.0723 

PL × Unique freqs -0.0156 0.00130 -12.026 < 0.001 -0.0182 -0.0131 

RA × Unique freqs 0.00418 0.000442 9.450 < 0.001 0.00331 0.00505 

RAN20-REG3       

Intercept 0.545 0.0340 16.03 < 0.001 0.479 0.612 

Unique frequencies 0.110 0.00731 15.044 < 0.001 0.0956 0.124 

RAN20-REG5       

Intercept 0.729 0.0265 27.529 < 0.001 0.677 0.781 

Unique frequencies 0.0523 0.00523 9.987 < 0.001 0.0420 0.0625 

RAN20-REG7       

Intercept 0.835 0.0440 18.966 < 0.001 0.748 0.921 

Unique frequencies 0.0229 0.00659 3.481 < 0.001 0.0100 0.0358 

RAN5-REG5       

Intercept 0.881 0.0237 37.108 < 0.001 0.835 0.928 

Unique frequencies -0.00448 0.00597 -0.750 0.453 -0.0162 0.00722 

 

Table 2.12: Model output for mixed effects linear regression on reaction time with 
regards to unique frequencies within the pattern. R2 = 0.0252; Df = 56525; random effect 
std. = 0.0394. RAN20-REG3: R2 = 0.0217; Df = 25462; random effect std. = 0.0655. RAN20-
REG5: R2 = 0.0217; Df = 15857; random effect std. = 0.0280. RAN20-REG7: R2 = 0.0113; Df 
= 5618; random effect std. = 0.0485. RAN5-REG5: R2 = 0.0034; Df = 9586; random effect std. 
= 0.0274. 
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2.4.5 Exploring ferret behaviour with a PPM-Decay model 

Overall, the above findings show that ferrets can detect all conditions above 

chance, pattern lengths ranging from 3 to 7 tones and the matched RAN5-REG5 

condition. Mirroring behavioural work in humans, decreases in performance as the 

pattern length increases and in the matched condition are observed. Additionally, the 

ferrets show longer reaction times for the longer pattern lengths. In humans we do not 

start to see a lag in reaction time (compared to the transition) until pattern lengths of 

15 tones and greater (Barascud et al., 2016). According to the PPM model, an ideal 

observer with perfect short- and long-term memory should detect the transition from 

random to regular within 3 to 4 tones (see Figure 2.11A). However by using a modified 

version of the PPM model in which short- and long-term auditory memory capacities 

can be varied (the PPM-Decay model), the authors were able to replicate the latency 

seen for longer pattern lengths (Harrison et al., 2020).   

Taking into account that ferrets, like humans (Harrison et al., 2020), may not 

act as ideal observers for all pattern lengths but instead contain memory constraints, 

and that these memory constraints are likely to be stricter than in humans, I explored 

whether I could recapitulate the reaction time differences in my ferret data using the 

PPM-Decay model. To manipulate memory constraints one can adjust the long-term 

memory phase half-life within the PPM-Decay model, thus limiting how long the 

previous events in the sequence are kept in memory. Calculating the information 

content with and without these constraints (see Figure 2.11A,B) and comparing the 

difference, we can see firstly that the variance of information content across the 

random sequences increases, but also the baseline information content after the 

transition also increases as the pattern length increases. This in turn reduces the 

separation in the distribution in information content between the random sequence 

(grey) and regular sequence (coloured) which could reduce detection and thereby limit 

performance with increasing pattern lengths.  

To examine reaction times we can assume that the ferret might rely on a 

particular value of information content as their threshold for detecting regularity. 

Examining the data from the PPM-Decay model with the memory constraint (with an 

arbitrary threshold of 2) we can compare the time at which the regular sequence 

reaches this threshold increases with increasing pattern lengths. Like the ferret data, 

the model predicts an increasing reaction time with increasing pattern length.  
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Figure 2.11: PPM-Decay model of random to regular tone sequences. A) Average 
information content (based on the PPM-Decay model without decay parameters) for each 
condition for the regular (coloured) and random (grey) sequence with the number of tones at 
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which the information content reaches baseline information content. B) Average information 
content (based on the PPM-Decay model with a long term memory half-life of 0.1) for each 
condition for the regular (coloured) and random (grey) sequence marked in purple when the 
information content of the regular sequence reaches an information content of 2, with the 
number of tones after the transition annotated. The transition (when the pattern first starts 
repeating) is marked with a black vertical dashed line. 

 

Interestingly we see that in the matched alphabet case (RAN5-REG5) it reaches this 

threshold quicker than in the unmatched case (RAN20-REG5) due to the overall lower 

information content in the matched case. This would lead to a shorter reaction time in 

the matched over the unmatched, which is what we see in the behavioural data.   

2.4.6 Human psychophysics: effects of frequency range on regularity 

detection 

To accommodate the wider cochlear filter widths in the ferret compared to that 

of humans, I increased the frequency range of the frequency pool each tone could be 

selected from, from 222Hz - 2.2kHz to 120Hz – 9.7kHz (Alves-Pinto et al., 2016a; 

Sumner et al., 2018; Sumner and Palmer, 2012). However, it is widely known that 

increasing the frequency separation between elements within a sequence of repeating 

tones can induce auditory streaming, whereby the sequence splits in two distinct 

auditory streams (Micheyl and Oxenham, 2010a; Noorden, 1975). Regularity could 

affect whether the sequence is perceived as a whole or segregated into separate 

streams, thus providing the subject with an additional or alternative strategy for 

detection. Therefore, I firstly wanted to test whether there would be any general 

changes to reaction time or performance in regularity detection for human subjects, 

given sequences with a narrow (222Hz – 2.2kHz; 1/6th octave spacing) and wide 

(120Hz – 9.7kHz; 1/3rd octave spacing) frequency range.  

To do this, we tested human participants online, in a similar GO/NO-GO task to 

that of the previous ferret experiments, such that the subject had to release a button 

when they heard the repeating pattern (H1). There were four different conditions: 

RAN20-REG3, RAN20-REG5, RAN20-REG10 and a STEP condition which contained 

just a frequency change from one to another to assess a baseline reaction time for 

each participant. Performance was calculated for each participant (n = 20) by taking 

the percentage of correct trials for each condition. As we can see in Figure 2.12A, 

performance for the STEP condition was near ceiling, with the detection of the patterns 

(REG3, 5 and 7) also near ceiling with an average performance of 95.78% ± SE 
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0.440%. However there does seem to be a small decrease in performance for the 

narrow frequency range compared to the wide frequency range. Taking the mean 

difference in performance between the wide and narrow condition for each participant 

reveals a small but insignificant difference in performance (see Figure 2.12B; mean = 

1.167; W = 313, p = 0.166, Wilcoxon). A mixed effects logistic regression also confirms 

no main effects of pattern length, or frequency range, or any interactions (see Table 

2.13). Therefore changing the frequency range from which tones are sampled from 

does not affect the ability for humans to detect regularity. 

 

Figure 2.12: Performance and reaction times to regularity detection with wide and 
narrow frequency ranges of tone sequences in H1. A) Average percentage of correct trials 
across subjects for each condition, split by frequency range (wide = yellow, narrow = purple). 
B) Difference in performance of each subject to each condition (excluding the STEP condition) 
where positive indicates a higher performance for the wide frequency range. C) Reaction time 
after the transition to the STEP condition for each subject and averaged across all subjects. 
Error bars = standard deviation. 
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Now that I’ve shown that increasing the range of frequencies over which tones 

are presented doesn’t change performance, I wanted to next investigate if reaction 

time would be affected due to any potential streaming from differences in the 

frequency range. The subjects mean reaction time was calculated for each condition 

and baselined against their mean reaction time to the change in frequency in the STEP 

condition. These data show that with on average participants had a reaction time of 

0.5s to the basic change in frequency and this was mostly the same between the wide 

and narrow frequency ranges (see Figure 2.12C). Looking at their ability to detect 

RAN20-REG3, RAN20-REG5 and RAN20-REG10 patterns, we see that their reaction 

time does increase with pattern length, which we expect for the narrow, but also 

behaves the same for the wide, with little difference between the two conditions.  A 

mixed effects linear regression confirmed this and showed a main effect of pattern 

length (p < 0.001) but no main effect of frequency range on reaction time (p = 0.187) 

or any interaction between the two (p = 0.358; see Figure 2.12E and Table 2.14). We 

can therefore conclude that changing the frequency range does not affect a 

participant’s time to detect a transition from a random to regular sequence for the 

pattern lengths tested. 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 3.513 0.670 5.019 < 0.001 2.126 4.899 

Pattern length -0.0237 0.0996 -0.238 0.813 -0.221 0.174 

Frequency range -0.261 0.417 -0.625 0.533 -1.086 0.565 

Pattern length × 
Frequency range 

0.00499 0.0613 0.0815 0.935 -0.116 0.126 

 

Table 2.13: Model output for mixed effects logistic regression on performance for 
human experiment 1. N = 20; R2 = 0.341; Df = 116; random effect std. = 0.732 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept -32.855 71.251 -0.461 0.646 -173.98 108.27 

Pattern length 84.385 10.475 8.056 < 0.001 63.637 105.13 

Frequency range 58.755 44.279 1.327 0.187 -28.945 146.45 

Pattern length × 
Frequency range 

-6.117 6.625 -0.923 0.358 -19.239 7.006 

 

Table 2.14: Model output for mixed effects logistic regression on reaction time (ms) for 
human experiment 1. N = 20; R2 = 0.831; Df = 116; random effect std. = 0.0592 
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No differences in performance were observed, which is suggestive but not 

definitive as to whether humans use the same strategy in detecting the transition from 

random to regular with a wide or narrow frequency range. Moreover, there remains 

some concern that the online methods may not be sensitive enough to pull out small 

differences in reaction time that might occur between the narrow and wide condition. 

Therefore I wanted to rule out if any streaming of the pattern in the wide frequencies 

occurred compared to that of the random. Several studies have shown that listeners 

are worse at identifying the temporal order of sounds if they segregate into separate 

auditory streams, than compared to within stream (Micheyl and Oxenham, 2010a, 

2010b; Noorden, 1975; Roberts et al., 2008). In this experiment (H2), I aimed to test 

this by testing the listener’s ability to detect if the target pattern is the same as the 

reference pattern. In 50% of trials the target had the order of two tones swapped 

compared to the reference. I hypothesised that an increased tendency to group the 

pattern into two distinct streams in the wide condition would be reflected in the listener 

being worse at detecting such changes in temporal order relative to the narrow 

condition. 

For H2 I calculated each subjects hit rate, false alarm rate and d’ for each 

condition (see Figure 2.13). We can see that performance (both in the percent correct 

and d’) is higher for the wide frequency range over the narrow, with a slight decrease 

in performance for the longer pattern length of 10. A two-factor (frequency range and 

pattern length) repeated measures ANOVA on performance (d’) revealed a significant 

effect of frequency range (F(1,19) = 13.252, p = 0.0017) but no effect of pattern length 

(F(1,19) = 3.815, p = 0.0657) or interaction (F(1,19) = 0.022, p = 0.8832). Analysis of the 

proportion of hits and false alarms show this decrease in performance for the narrower 

frequency range was due to a significant reduction of hits, where the subject correctly 

identified the probe as being the same as the preceding pattern, (F(1,19) = 27.335, p < 

0.001) rather than an increase in false alarms (F(1,19) = 0.809, p = 0.3797). Post-hoc 

pairwise analysis on d’, with Bonferroni correction, shows a significant decrease in 

performance between frequency ranges for pattern length 10 at the narrow frequency 

range (T(19) = 3.193, p = 0.0096), but no difference between frequency ranges for 

pattern length 7 (T(19) = 2.109, p =  0.097). So despite hypothesising that performance 

at the wider frequency range would be lower, I actually see the reverse at the longer 

pattern of 10. This may suggest that there may not be differences in streaming 
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between the frequency ranges but perhaps another mechanism such as increased 

saliency for tones that are more separated in frequency, but only for pattern length 10, 

when the task is more difficult. 

 

Figure 2.13: Performance of detection to the same/different patterns in experiment 2. A) 
Percent of correct trials (A), d’ (B), hit rate (C) and false alarm rate (D) for each subject split 
across condition and frequency range (wide = yellow, narrow = purple). Error bars show the 
average across conditions. Error = standard deviation. * = p < 0.05, ** = p < 0.01, *** = p < 
0.001. 

 

2.5 DISCUSSION 
The aim of this Chapter was to create and validate a behavioural paradigm in an 

animal model that will allow us to uncover the neural basis underpinning regularity 

detection. A GO/NO-GO task was developed to test the detection of a change from 
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random to regular tone sequences for a range of pattern complexities. The rapid tone 

sequences, initially used in the study by Barascud et al. (2016), allow me to probe the 

automatic processing of regularity whilst retaining tight control over the frequency 

content of the stimuli.  

The animal model used, the ferret (mustela putorius furo), is frequently used in 

auditory research as their hearing range, unlike other animal models such as the 

mouse (approximately 1kHz to 96kHz), overlap that of humans (ferret range: 

approximately 20Hz to 44kHz; human range: approximately 20hz to 20kHz; Heffner 

and Heffner, 2007; Kavanagh and Kelly, 1988). The access to low frequencies, 

typically absent in rodent models, allows study of vocalisation, sound localisation and 

pitch perception, and in this case stimuli with a frequency range that more closely 

resembles that used in previous human literature. Ferrets can be successfully trained 

on a wide variety of complex auditory cortex tasks (Bizley et al., 2013; Keating et al., 

2013; Ma et al., 2010; Nodal et al., 2008; Walker et al., 2009; Yin et al., 2010) and 

have been shown to be sensitive to repetitions of broadband noise samples (Lu et al., 

2018), and can separate acoustic repetitions into different auditory streams (Ma et al., 

2010; Saderi et al., 2019) making them a prime candidate for research into regularity 

detection. 

I chose a GO/NO-GO paradigm to assess the animal’s ability to detect regularity 

in which they were required to hold at a central spout during random tone sequences 

and respond at a peripheral spout when they heard the regular sequence emerge. 

This paradigm allows me to assess both performance in the task and the animal’s 

reaction time to identify any changes in the time they detect this change from random 

to regular. Overall, my results show that ferrets can successfully detect the change 

from random to regular in a tone sequence, previously only used in human behavioural 

and imaging studies (Barascud et al., 2016; Southwell, 2019; Southwell et al., 2017; 

Southwell and Chait, 2018). Analysis of performance within this paradigm consistently 

showed across every animal trained and tested that the ferret can detect changes from 

random to regular making them a good model for studying regularity detection. 

Changing the length of the pattern offers the opportunity to understand how 

responses change with increasing complexity of the regularity. We see that 

performance decreases from about 85% at RAN20-REG3 to approximately 65% at 
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RAN20-REG7 showing a systematic decrease, as you increase the pattern length, in 

the ferret’s ability to detect the regularity. In comparison to the human psychophysical 

experiment I implemented, humans performed at ceiling from pattern lengths of 3 to 

10. I also observed an increase in reaction time as I increased the pattern length, 

ranging from 0.85s at RAN20-REG3 to 1s at RAN20-REG7. This suggests that the 

animals are waiting for more elements in the pattern to be presented in the longer 

pattern lengths before they make their decision to respond. However an ideal observer 

should be able to detect these transitions within 3 to 4 tones once the pattern has 

repeated, which humans do, but only at pattern lengths of less than 15 tones. After 

this we see the same latency in response when looking at human behavioural data for 

pattern lengths of 15 tones and more (Barascud et al., 2016), which has been 

explained by adding memory constraints to the PPM-Decay model (Harrison et al., 

2020). This could suggest that the ferret auditory system behaves similarly to this 

model but has tighter or different memory constraints to that of humans. This would 

decrease their ability to differentiate the information content between the random and 

regular sequence in different conditions but also cause the point at which the 

information content drops below a detection threshold to be delayed in time, relative 

to the pattern length.  

Another factor that could explain the ferret’s ability to detect regularity is just 

detecting the change in stimulus statistics, i.e. the drop in frequencies present when 

moving from a random alphabet of 20 frequencies to a subset of 3, 5 or 7. Animals 

were trained and tested on a matched alphabet stimulus (RAN5-REG5) where the 

frequencies in the random and the regular sequence were the same and therefore the 

only way to detect the change is by detecting the repeating pattern. The animals were 

able to detect this change above chance and were also quicker in the matched 

condition (RAN5-REG5) compared to the equivalent unmatched condition (RAN20-

REG5). In addition to the matched alphabet condition, we also presented probe trials 

which only contained a change in stimulus statistics (i.e. a drop in random frequencies 

from 20 to 3, 5 or 7) and we show that the animals are significantly less likely to 

respond at the periphery to the probe in comparison to the regular patterns.   

Interestingly, we also observe that the number of unique frequencies in a pattern 

modulates the ferret’s behaviour, where the higher number of unique elements, the 

poorer the ferret performs and the slower the reaction time (at conditions RAN20-
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REG3 and RAN20-REG5). This could be indicative of perhaps the stricter memory 

constraints or may hint at the use of another detection strategy such as detection of a 

rhythm instead elicited by fewer unique frequencies (i.e. the rhythmic A in ABACA, 

over ABCDE). This has yet to be tested in humans and could be an interesting avenue 

for work as it is still not clear if the whole pattern is represented, or just a few salient 

frequencies that stream out in which the auditory system responds.  

The spacing (1/3 octaves) using in this paradigm is double that of the spacing of 

that used in human literature (approximately 222Hz to 2 kHz at 1/6 octaves; Barascud 

et al. 2016) thereby spanning a larger range of frequencies. We chose to present a 

wider frequency to the ferrets as due to their wider auditory filters than humans (Alves-

Pinto et al., 2016b; Sumner et al., 2018) as it avoided presenting two tones within the 

same auditory filter. It also maximises the likelihood of responsive neurons during 

extracellular electrophysiological recordings in later chapters as the microelectrodes 

span large areas of auditory cortex, giving a recording range of at least 120Hz to 19.2 

kHz. The online psychophysics experiments demonstrated no difference between 

frequency ranges in performance or reaction time in an equivalent online GO/NOGO 

task for humans.  

Interestingly in the 2AFC task designed to assess listeners’ strategy we see the 

opposite effect of what we hypothesised. In the wider frequency range people 

performed significantly better in detecting changes in the temporal order of the pattern. 

This suggests that the wider frequency separation is not eliciting greater streaming 

than in the ‘standard’ frequency range and is therefore consistent with subjects 

perceiving the pattern as a whole. Furthermore, the performance advantage for the 

wider frequency range may be a result of leveraging the saliency and decrease of any 

cross-frequency adaptation that could be occurring in the narrow frequency range. 

Widening the spacing between frequencies does not appear to change the strategy 

for regularity detection in humans. While we cannot be certain what strategy the ferrets 

are using, these data suggest that a wider frequency range alone does not alter the 

strategy for detecting regularity and is consistent with similar detection strategies 

between the two species. Even if streaming was contributing to ferrets’ ability to detect 

regularity, we cannot be sure that streaming does not occur in humans. Secondly, if 

streaming does occur and causes increased attention to a certain bandwidth of 

frequencies, it may not affect the detection of the pattern as regularity detection has 
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been shown to occur automatically during passive listening despite attention 

(Barascud et al., 2016; Southwell, 2019). However, to further probe this question, the 

same paradigm in which the frequency range is widened for ferrets and testing their 

ability to differentiate between the same and different order of tones could give insight 

into whether they are streaming. 

Therefore overall, we can conclude that ferrets make an excellent model who 

likely are applying similar strategies to humans in regularity detection. The following 

chapters will now leverage this model with extracellular electrophysiology to uncover 

the neural processes underlying regularity detection both passively and during this 

behaviour.  
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3 CHAPTER THREE: CORRELATES OF REGULARITY IN THE 

LOCAL FIELD POTENTIAL OF AUDITORY CORTEX 

3.1 INTRODUCTION 
In chapter 2, I show that the ferret can detect transitions from random to regular 

tone sequences in a GO/NO-GO paradigm. Using this animal model and task, I aim to 

find whether neural correlates of regularity detection are present in auditory cortex in 

the recorded local field potential (LFP), where these correlates are localised, the time 

course of these oscillations, and how they change with the length of the pattern and 

behaviour. By analysing the LFP, I can bridge earlier MagEG, EEG and fMRI 

experiments in humans with microelectrode recordings in animals as the LFP, unlike 

single-unit recordings, is a measure of the dynamics of the local neural network. 

Previous work in humans have revealed neural correlates of regularity detection 

when presented random to regular sequences, like that used in chapter 2 (Barascud 

et al., 2016; Southwell et al., 2017). MagEG recordings revealed an increase in power 

at the onset of the random sequence which continues to rise and then plateaus. When 

the sequence transitions to a regular sequence the power then increases further, 

before once again plateauing at this higher level (Barascud et al., 2016). The authors 

suggest that this increase in power is the upweighting of salient sensory evidence used 

to update the predictive model of the incoming stimulus. EEG recordings have 

identified that this increase in power varies with the pattern length of regular sequence; 

smaller patterns and therefore more predictable stimuli elicit larger increases in power 

in the neural signal (Southwell et al., 2017). This increase in power has been shown 

to occur at the time at which an ideal observer model, IDyOM, detects the change from 

random to regular based on the information content from the previous tones (Barascud 

et al., 2016).  

In addition to DC modulation of the EEG signals, oscillations at the tone 

presentation rate and pattern rate were identified (Southwell, 2019). Analysis of the 

EEG signal revealed larger oscillations at the tone presentation rate for regular 

sequences compared to random sequences, with the difference decreasing with 

increasing length of the pattern (Southwell, 2019). These oscillations are seen as a 

proxy for the tone-onset response and show stronger or more synchronised responses 

in the regular condition despite any low-level adaptation that may occur through the 
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repetition of the patterns. An increase in oscillatory power at the pattern rate was also 

revealed for each pattern length with larger increases for shorter patterns (Southwell, 

2019).  

Source localisation revealed that these signals were found over auditory cortex, 

hippocampus and the inferior frontal gyrus (Southwell, 2019). This was supported by 

fMRI recordings that showed increased activation in Heschel’s gyrus and the planum 

temporal (PT) for the regular sequences over random sequences (Barascud et al., 

2016). However, EEG and MagEG are large-scale measures of neural activity and 

attempts to identify source locations of neural correlates are subject to unknown 

effects of volume conduction and are typically limited to superficial areas of the brain 

(Srinivasan, 2006). This can be aided with the addition of fMRI recordings however 

BOLD signals do not necessarily correlate with the neural signals captured via EEG 

(Nunez and Silberstein, 2000).  

In this chapter I present similar deterministic acoustic patterns as those used in 

earlier human studies and aim to compare the neural correlates observed with meso-

scale LFP recordings to those observed previously with macro-scale signals in 

humans. LFP signals were recorded from animals whilst they performed a GO/NO-GO 

task as described in chapter 2, from microelectrode arrays implanted over auditory 

cortex. Firstly, I assess the power in the evoked LFP during the presentation of random 

and regular sequences and how this varies with the length of the pattern. Secondly, I 

aim to identify any changes in oscillatory power at the tone presentation rate (20Hz) 

or pattern repetition rate for each pattern length: 3, 5 and 7 tones, at rates: 6.67, 4.0 

and 2.86Hz respectively, and how these change over the course of regularity 

presentation. Furthermore, with the increased spatial resolution from the 

microelectrodes compared to that of EEG or MagEG recordings, I compare how these 

signals differ across the major subdivisions of AC in the ferret: primary (medial 

ectosylvian gyrus, MEG) and secondary (posterior ectosylvian gyrus, PEG; anterior 

ectosylvian gyrus, AEG) fields and approximate depth. 

In contrast to work in humans, analysis of the LFP showed no significant 

differences in the average evoked power between random or regular sequences in 

any pattern length presented. Nonetheless, strong oscillations at the tone presentation 

rate (20Hz) were present which differed across conditions, although in contrast to 
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humans, the oscillatory power was weaker for regular sequences when compared to 

random sequences. As predicted from human work, oscillatory power at the pattern 

repetition rate (6.67, 4.0 and 2.86Hz for pattern lengths 3, 5 and 7 respectively) 

revealed significant increases in the SNR for all pattern lengths tested in the regular 

condition. 

3.2 METHODS 

3.2.1 Surgical procedure 

Three trained adult female pigmented ferrets (F1812, F1813, F2001) were 

implanted with WARP microelectrode arrays once they reliably performed above 

chance on all conditions (see Figure 3.1A). Microdrives were surgically implanted 

under sterile conditions whilst the ferret was under anaesthesia. Local injections of 

Marcaine were injected subcutaneously around the temporal muscle. The temporal 

muscle was then exposed through an incision and removed. The underlying skull was 

cleaned with citric acid (1%) and covered with dental adhesive (Supra-Bond C&B, Sun 

Medical).  

Two ground screws were embedded in the skull in each hemisphere 

approximately 5mm from the midline and either side of the craniotomy placement. To 

expose auditory cortex, I used the coordinates: 12mm from the midline and 11mm 

from the rear fissure, to target the top corner of auditory cortex in the ferret. Due to 

variation between animals, typically an initial craniotomy was performed and extended 

once the brain was exposed to reveal landmark sulci. Once the craniotomy exposed 

a large enough portion of brain tissue for microdrive implantation over target auditory 

areas (MEG, AEG, and/or PEG), the microelectrode array was positioned and then 

embedded within inert silicone elastomer in the craniotomy (Kwik-Sil, World Precision 

Instruments; see Figure 3.1B-C). The array was then affixed to the skull via dental 

cement (Palacos R+G, Heraeus) and the ground wires that were attached to the 

ground contact of the array were secured to the ground screws, electrically grounding 

the array to the subject.  

Dental cement was then applied to encase the ground screws, to act as another 

anchor point, and custom 3D printed implant wells (see Figure 3.1D) that I designed 

and printed from durable resin (Formlabs, Form 3) were secured around the 

microelectrode array with dental cement to protect the array from physical damage. 
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The custom wells allowed attachment of custom barriers (see Figure 3.1E) to protect 

the headstages, when connected for recording, from physical contact caused by the 

animal, minimising motion artefacts. A head bolt was attached at the midline to aid 

head fixation during electrode moving and attachment of recording equipment such as 

recording cable supports. Excess skin was removed to secure the rest of the skin 

smoothly around the edges of the implant. Animals were then allowed to recover for a 

week post-surgery before the microelectrodes were advanced into auditory cortex. 

Pre-operative, peri-operative and post-operative analgesia and anti-inflammatory 

drugs were provided to animals under veterinary advice.  

 

Figure 3.1: Diagrams of equipment and surgical implantation of arrays. A) Photo of the 
WARP 32 microdrive array that houses the tungsten microelectrodes. B) Microscope photo of 
a craniotomy exposing MEG and PEG in ferret auditory cortex with the footprint of the 
microdrive outlined (dashed line). C) Schematic of a coronal slice of the brain and implant. It 
illustrates the positioning of the microelectrode array, ground screws and implant well which 
is encase in dental cement. D) 3D models of the custom well to encase the microdrive (right) 
and lid (left) that screws on to protect the microdrive when not in use. E) Custom barrier than 
screws on the well to protect headstages plugged into the microdrive from outside physical 
contact. 
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3.2.2 Neural recordings 

WARP microdrives were hand assembled with tungsten microelectrodes with 

the ends manually stripped of electrical insulation and bent to ensure good electrical 

contact to the cannula of the drive. The tips and surface of the guide tubes were 

covered in antibiotic gel and the surface of the implant was then coating in silicone 

and the join between the connector and PCB was strengthened with epoxy. WARP 

drives were placed over the cortical surface to target primary and secondary areas of 

auditory cortex (see Figure 3.2 for anatomical locations). 7 to 11 days post-surgery 

the electrodes were advanced out of the drive, through the silicone and towards the 

surface of the cortex. The impendence of each electrode was measured during this 

initial advancement and once the impedance dropped to a lower value between 0 to 8 

Ohms then this was measured as putative cortical surface as this drop in impedance 

signifies the electrode had passed through the silicone of the implant. The electrode 

was then advanced by approximately 0.3mm. Electrodes were further advanced every 

3-4 weeks by 0.3 to 0.1mm to sample multiple units with recordings made over a period 

of approximately 12 to 18 months. On average 11 sites were recorded with each 

electrode (see Table 3.1). Electrodes that did not penetrate cortical tissue, did not 

have good electrical contact with the array, or were not localised to auditory cortex as 

confirmed by histology were removed from the dataset.  

The neural signals from the WARP 32 drives were collected using headstages 

that digitized the signal (RHD 32-channel headstage C3314, Intan Technologies, 

which was passed to a preamplifier (PZ5, Tucker-Davis Technologies) that amplified 

and high passed the signal at 0.1Hz. Recordings were digitally acquired at a sample 

rate of 24414.0625Hz by a data acquisition system (RZ6, Tucker-Davis Technologies). 

Recordings were on average 20 minutes in length and occurred twice a day between 

Monday and Friday during behaviour. 
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Figure 3.2: Schematic of the locations of electrodes over each hemisphere, for each 
subject covering primary and secondary fields of auditory cortex. A) Left - Picture of the 
left hemisphere of a ferret brain with labelled auditory subfields. Right - Schematic of ferret 
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auditory cortex (left hemisphere) with primary (MEG: orange) and secondary fields (AEG: 
purple; PEG: blue) highlighted. Electrodes outside of these areas were excluded. B-D) 
Schematics of electrode placement (filled circles) coloured by estimated location (MEG, AEG, 
PEG or outside of auditory cortex; excluded = green). Electrode placement is shown for F1812 
(B), F1813 (C) and F2001 (D). E) Nissl-stained coronal section through auditory cortex of 
F2001 with the arrows indicating electrode tracts, dashed line indicated approximate edge of 
auditory cortex, and MEG (orange) and PEG (blue) highlighted. 

 

  Mean no. of trials per site: 

Subject 
no. 

Total no. 
recordings 

Sites 

Proportion 
of sites 

aud. 
evoked 

(%) 

Across 
conditions 

RAN20
-REG3 

RAN20-
REG5 

RAN20-
REG7 

RAN5-
REG5 

F1812 367 354 12.4 3,834 467 607 497 723 

F1813 287 492 21.6 2,198 270 328 300 374 

F2001 349 567 39.1 3,793 374 542 457 802 

Total 1,003 1,413 - 9,825 1,111 1,477 1,254 1,899 

 

Table 3.1: Number of recordings sites per animal and average number of trials of each 
condition at each site. Total number of recordings are the number of recording sessions 
completed per animal. Individual sites are defined as individual microelectrodes at individual 
recording depth, not including excluded sites (outside of auditory cortex). 

 

3.2.3 Histology 

To confirm electrode location and position, at the end of the experiment the 

animal was transcardially perfused with 0.9% saline and 4% paraformaldehyde (PFA) 

under anaesthesia. The brain was then removed for storage in PFA, before 

cryoprotecting in 30% sucrose for 4-5 days prior to cryosectioning. Coronal sections 

(50μm) were taken through the full extent of the ectosylvian gyrus. Slices were then 

mounted on slides in 0.5% gelatine and dried for at least 14 days. Slices were Nissl 

stained to identify electrode tracts and major structures within the brain to localise the 

position of these tracts. Sections were then stained with cresyl violet and washed with 

chloroform and acetic acid. The sections then went through a series of increasing 

concentrations of ethanol solutions to dehydrate the slides. Sections were then cleared 

with Histoclear, and cover slipped with a mounting agent (Omnimount). Slices were 

imaged using the Zeiss AxioScan Z1 at 10x magnification. 

3.2.4 Neural analysis 

All neural data analysis was performed offline in MATLAB (MathWorks) and 

Python through a custom data analysis pipeline. To extract the neural data from the 
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proprietary TDT file formats a TDT SDK was used. To remove large motion artefacts, 

a moving standard deviation was calculated along the trace with a window length of 

10ms. Any points that were continuously larger than 80s.d. for ≥ 50ms or ≥ 5% of the 

trial, excluded the trial from further analysis. Any trials where a disconnection from the 

headstage lasting ≥ 50ms occurred were removed. Trials in which the animal false 

alarmed (left the central spout when no regularity was present) were also removed 

from further analysis as sound presentation was immediately terminated and followed 

by a noise burst. To extract out the LFP from the raw broadband neural signal, each 

trace was passed through a low-pass Butterworth filter (300Hz, filter order of 6). All 

filtering, unless stated otherwise, was zero-phase digitally filtered with the filtfilt 

function in MATLAB. The data was then down sampled to a sample rate of 

approximately 1kHz. After filtering and down sampling, any trials that had a signal > 

350µV or a moving s.d. (window = 50 samples) of > 300 µV were also excluded from 

further analysis.  

To eliminate poor quality sites and channels, or those outside of auditory cortex, 

each individual recording session site was assessed on whether it was ‘auditory 

evoked’. Responsiveness was statistically determined via the use of the ZETA test for 

time series data, zetatstest (Montijn et al., 2021). For each site, this test compared the 

evoked activity of the trial-averaged LFP from the first 300ms after sound onset, across 

all trials within a session, to a null hypothesis distribution by running multiple 

bootstraps on 300ms epochs selected using jittered stimulus-onset times. A ZETA p-

value of < 0.05 indicated significant auditory evoked onset activity for that recording 

session and site. A site was then classed as ‘auditory evoked’ if it had significant 

responsiveness in > 50% of recording sessions.  

Sites were binned at approximate recording depths by assigning sites to one of 

three depth bins: upper, middle and lower (0.3 to 0.75, 0.75 to 1.5 and 1.5 to 2.25mm 

from putative cortical surface respectively). Any sites below 2.25mm were estimated 

to be below the cortex and excluded from analysis, based on histology (see Figure 

3.2). To calculate the LFP power, I filtered the LFP with a low-pass Butterworth filter 

(30Hz, filter order of 6). Either the root-mean-square (RMS) was calculated across 

time points for each site and with the mean taken across all sites, or the filtered LFP 

was averaged across trials for each site and then averaged across sites. 
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To assess the oscillatory power within the LFP at specific frequencies of interest 

(FOIs), a power spectral density estimate (PSD) was performed and the power at 

these frequencies calculated for each individual site. Two second epochs of trials, 

starting from the onset of the transition from random to regular, across sessions from 

the same site were concatenated. Sites and conditions that contained < 9 epochs in 

the concatenation were excluded from analysis. A Welch’s power spectral density 

estimate, pwelch (MATLAB), was then performed on these concatenated trials with a 

window length of approximately 6s (8192 samples) to achieve high frequency 

resolution at the lower frequencies needed to assess the pattern repetition rate. The 

RMS of the PSD at the FOI (± two frequency bins either side of the signal frequency 

bin) was then calculated and then divided by the RMS at neighbouring frequencies (± 

5 frequency bins either side of the signal frequency bins) giving the signal-to-noise 

ratio (SNR) at the FOI (see Figure 3.3). This method mitigated any overall increases 

in power, such as an increase in 1/f neural noise, from interfering with the assessment 

of the change in power at the given FOI.  

 

Figure 3.3: Power spectral density estimates of concatenated local field potential 
epochs post-transition. A) Power spectral density estimate calculated for an example 
recording site when presented random (blue) or regular (pink) sequence with a pattern length 
of three. There is a peak at the tone presentation rate (20Hz) for both random and regular 
sequences, but only a peak at the pattern rate (6.67Hz) in the random sequence. A peak at 
theta (~4Hz) is also present in both conditions. B-C) The SNR at frequencies of interest (FOIs) 
are calculated by taking the RMS of five points around the FOI (green) and diving it by the 
surrounding noise points (grey) to give a signal to noise ratio (SNR) at various FOIs such as 
the pattern rate (6.67Hz; A) and the tone presentation rate (20Hz; B). 
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To calculate the time course of the change in amplitude of these oscillations I 

decomposed the LFP using Morlet wavelets (width of 14 cycles) at various FOIs on 

epochs that were 1s before the transition from random to regular and 3s after the 

transition. The amplitude at each frequency for each condition was averaged across 

trials for each site. To identify significant differences in the amplitude of specific FOIs 

between random and regular conditions and the latency at which this change occurred, 

I performed nonparametric cluster statistical analysis that calculates a test-statistic 

from clusters of adjacent time samples (Maris and Oostenveld, 2007).  

A modulation index was calculated for the SNR to identify differences between 

the random and regular conditions such that: 

𝑆𝑁𝑅 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = (𝑆𝑁𝑅𝑅𝐸𝐺 − 𝑆𝑁𝑅𝑅𝐴𝑁)/(𝑆𝑁𝑅𝑅𝐸𝐺 + 𝑆𝑁𝑅𝑅𝐴𝑁) 

( 4 ) 

Statistical analysis of effects of pattern length and effects of the tone repetition 

number and other predictors used general linear models and generalized linear mixed 

models fitted using fitglm or fitglme in MATLAB (version 2022a). Only two-way 

interactions or less were modelled. The details of each model are outlined alongside 

the relevant results; however, in general, analysis of the SNR modulation index was 

based on a normal distribution. For each model, I report the magnitude of coefficients 

(estimate) of fixed and random effects, the t-statistic for a hypothesis test that the 

coefficient is equal to 0 (T) and its respective p-value (p) in full in the tables in the 

appendix. The 95% confidence intervals are also reported for each fixed-effect 

coefficient and the adjusted R2 value of the model to assess model fit. Post-hoc 

analysis was performed in Python with the scipy.stats and scikit_posthocs modules 

with the appropriate pairwise comparisons stated in text. 

3.3 RESULTS 

3.3.1 Sequence-evoked response in the local field potential 

Studies in humans showed that regular sequences elicited a higher sustained 

response compared to that of random sequences. In MagEG and EEG recordings, this 

manifested as a slow DC shift in amplitude from the transition from random to regular, 

ending in a plateau localised to auditory cortex (Barascud et al., 2016; Southwell, 

2019; Southwell et al., 2017). Here I aimed to identify whether the local field potential 
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(LFP) recorded from microelectrodes in the ferrets over auditory cortex would also 

display this increase in power and DC shift. 

To do this I recorded neural signals from microelectrode arrays placed over 

ferret auditory cortex whilst the animals took part in the GO/NO-GO task described in 

chapter 2. Ferrets were presented with tone sequences which, for ‘regular trials’ where 

random sequences transitioned to regular patterns, patterns could either be novel, or 

were repeated across trials. The evoked LFP was taken from the repeated regular 

trials to be able to average across all trials with the same transition time (2s). The LFP 

was low-pass filtered at 30Hz (Butterworth, filter order 6) and then windowed at -0.4 

to 4.5s from stimulus onset and each trial was baselined to the median LFP in 0.4s 

preceding stimulus onset. I averaged the evoked LFP response over auditory evoked 

sites and across ferrets for the random and regular sequences of each condition 

(RAN20-REG3, RAN20-REG5, RAN20-REG7 and RAN5-REG5; see Figure 3.4).   

The mean LFP shows a clear onset response to sound, as well as responses 

at the tone presentation rate for the duration of the stimulus. However, cluster-based 

permutation testing revealed no significant differences at any time point between the 

mean LFP in the random or regular conditions for any of the pattern lengths or random 

alphabet size. I calculated the RMS across time points for each site and averaged 

across auditory evoked sites and ferrets to measure the absolute power in the LFP 

and to equate to earlier human work (see Figure 3.5). Nonetheless, cluster-based 

permutation testing also revealed no significant differences between the random and 

regular sequences for any of the conditions evaluated. 
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Figure 3.4: Regularity elicits no difference in the mean evoked local field potential. The 
mean evoked local field potential across all auditory evoked sites for entire duration of 
repeated regular (pink) and random (blue) sequences for A) pattern length 3 and random 
alphabet 20 (RAN20-REG3; n = 317 sites), B) RAN20-REG5 (n = 317 sites), C) RAN20-REG7 
(n = 280 sites) and D) RAN5-REG5 (n = 266 sites). Shaded area = standard error. The dashed 
line indicates the transition from random to regular during the regular sequence. 
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Figure 3.5: Regularity elicits no difference in the RMS of the evoked local field potential. 
The mean RMS of the local field potential for entire duration of repeated regular (pink) and 
random (blue) sequences for A) pattern length 3 and random alphabet 20 (RAN20-REG3; n = 
317 sites), B) RAN20-REG5 (n = 317 sites), C) RAN20-REG7 (n = 280 sites) and D) RAN5-
REG5 (n = 266 sites). Shaded area = standard error. The dashed line indicates the transition 
from random to regular during the regular sequence. 

 

3.3.2 Regularity decreases oscillations at the tone presentation rate 

The mean evoked and RMS of the LFP revealed no differences in power 

between the random and regular sequences, however evoked responses at the tone 
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presentation rate are easily observable. Previous work identified a small increase in 

power at the tone presentation rate for regular over random sequences, with the 

largest increase with a pattern length of 1 (a repeating tone), and the difference 

decreasing with increasing pattern lengths (3 and 5; Southwell, 2019). The oscillatory 

power at the tone presentation rate is an indicator of how responsive the local neural 

network is to individual tones within the stimulus, where a decrease in the oscillatory 

power at the tone presentation rate may indicate a drop in responsiveness due to 

adaptation or repetition suppression. It could also likely indicate an increase in 

synchrony of responses to the individual tones. To identify any differences in the 

oscillatory power at the tone presentation rate the spectral component of the LFP from 

auditory evoked sites was analysed by performing a Welch's power spectral density 

estimate (PSD) on concatenated 2s epochs of the trial post-transition at each 

recording site. The signal-to-noise ratio (SNR) was calculated at 20Hz where an SNR 

of > 1 indicates increased power at 20Hz compared to the side frequency bands 

between 19 and 21Hz.  

The mean SNR across all sites and conditions showed strong tone locked 

responses with an SNR of 3.07 for the random (n = 296 sites) and 2.76 (n = 291 sites) 

for the regular condition. A Mann-Whitney U test revealed no significant difference 

between the conditions (U = 46995, p = 0.0560, see Figure 3.6A). Analysis by pattern 

length and random alphabet showed that the tone locked response remained 

consistent between all pattern lengths at a random alphabet 20 during the random 

sequence (see Figure 3.6B). However, the tone locked response was significantly 

decreased in the RAN20-REG5 condition in the random (U = 43632, p < 0.001; Mann-

Whitney U, Bonferroni) but not the regular condition (U = 39253, p = 0.116; Mann-

Whitney U, Bonferroni). We see also observe a significant decrease in the tone locked 

response in the regular condition for RAN20-REG3 compared to that of the random 

condition (U = 49690, p = 0.00285; Mann-Whitney U, Bonferroni). This shows that in 

RAN20-REG3 we see a significant decrease in the power at the tone presentation rate 

in the regular condition which is likely due to the reduction in frequencies present, 

which is highest in the RAN20-REG3 condition, as this difference disappears in the 

matched alphabet condition (RAN5-REG5).   
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Figure 3.6: Differences in power at the tone presentation rate between random and 
regular sequences. A) The signal to noise ratio at 20Hz across sites for random and regular 
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conditions. The SNR split by condition (B), location (C) and depth (D). E) The SNR of only 
regular conditions that were either novel for each trial (purple) or repeated within and across 
sessions (cyan). Error = standard error. * = p < 0.05, ** = p < 0.01, *** = p < 0.001; Mann-
Whitney U, Bonferroni. 

To understand whether this difference may be stronger in primary (MEG) or 

non-primary (AEG and PEG) subfields, or in upper layers compared to lower layers, I 

split the data by location and depth. No differences between random and regular 

conditions at different auditory subfields (see Figure 3.6C) or depths (see Figure 

3.6D) were observed, but overall stronger tone locked responses can be seen in MEG 

and PEG compared to that of AEG and in the “middle” depth bin of auditory cortex. 

Though there are differences in the absolute values of the tone presentation rate, there 

is no subdivision of differences between random and regular conditions between 

subfields or layers. 

I presented regularities that were novel to each trial, and regularities that were 

repeated multiple times within a session and across session. To see how this would 

affect the tone presentation rate for repeated regularities, I took the SNR at 20Hz for 

trials that contained a repeating pattern and split them by novel and repeated (see 

Figure 3.6D). This revealed significant increases in the tone presentation rate in the 

LFP for all conditions for the repeated regularities over the novel (RAN20-REG3: U = 

40815, p < 0.001; RAN20-REG5: U = 39524, p = 0.00128; RAN20-REG7: U = 34109, 

p = 0.00101; RAN5-REG5: U = 33932, p < 0.001; Mann-Whitney U, Bonferroni). This 

shows that repeated regularities give a higher SNR at the tone presentation rate, which 

is likely due to the higher signal to noise ratio by repeating neural responses to the 

same stimuli, compared to that of the novel regularities. 

As the absolute values of oscillatory power at the tone presentation rate can vary, 

likely due to the frequency tuning of neurons in different subfield and layers, I took a 

more sensitive approach to understanding how the difference in oscillatory power 

between random and regular sequences at this oscillatory rate changes with various 

factors. I calculated a modulation index (REG-RAN/REG+RAN), such that a negative 

index indicates a stronger response at the tone presentation rate for the random 

sequence over the regular, and entered it into a mixed effect linear regression to 

identify any significant contributing factors (see Figure 3.7A and Table 9.1 in the 

Appendix). Subfields (AEG, MEG and PEG) are referenced to the primary subfield 

(MEG), and layers (lower, middle and upper) are referenced to the upper layer, with  
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Figure 3.7: Difference in the SNR at the tone locked response between random and 
regular sequences across conditions and location. Mixed effects linear model on the 
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modulation index of the tone presentation rate. Each predictor (and two way interactions) and 
its coefficient, upper and lower confidence intervals are displayed with significance displayed 
with a filled black circle. B) Modulation index split by condition (each circle is a recording site) 
with the average and standard error shown across sites in grey. C) Modulation index split by 
location and D) split by layer. * = p < 0.05, **, p < 0.01 and *** p < 0.001. Errors bars = standard 
error. 

the novelty of the regularity represented as 1 for novel, and 0 for repeated.  

The model revealed a main effect of pattern length on the difference in oscillatory 

power at the tone presentation rate between random and regular sequences, with the 

difference decreasing with increasing pattern length (β = -0.012, p = 0.005; see Figure 

3.7B). Pairwise comparisons between conditions show that RAN5-REG5 has 

significantly smaller differences in the power at the tone presentation rate compared 

to that of the unmatched alphabet conditions (RAN20-REG3, 5 and 7), as well as 

RAN20-REG3 showing a significantly larger difference in power at the tone 

presentation rate in comparison to RAN20-REG7. Together, this demonstrates that 

shorter pattern lengths result in a stronger suppression of power at the tone 

presentation rate than longer pattern lengths during regularity. I also observe that the 

matched alphabet (RAN5-REG5), elicits even smaller differences compared to the 

unmatched alphabet (RAN20-REG5) despite the same pattern length.  

No difference between subfields is present in the modulation index (see Figure 

3.7C) with all subfields still showing smaller differences between the random and 

regular sequences as you increase the pattern length and match the alphabet. 

However, I do observe a significant main effect of depth that reveals the upper layer 

behaving differently to that of the lower and middle layers (see Figure 3.7D). I observe 

less change in the tone presentation rate as the pattern length is increased in upper 

layers compared to that of middle and lower layers, with pairwise comparisons 

revealing that the lower layers show the largest difference between conditions. This 

shows that there are larger differences in the tone presentation rate between random 

and regular sequence in the middle and lower layers. 
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3.3.3 Pattern rate locked responses are present during regularity  

Now that I’ve identified that oscillations at the tone presentation rate are smaller 

for regular sequences with shorter pattern lengths, I wanted to understand if the rate 

of the whole pattern can be observed within the LFP. For example, a pattern length of 

3 would repeat 6.67 times a second and would potentially elicit a peak at 6.67Hz in 

the PSD; with pattern lengths 5 and 7 predicted to elicit peaks at their pattern rates of 

4.0 and 2.86Hz respectively. I therefore followed the same analysis performed for the 

tone presentation rate, this time taking the SNR at each pattern rate in the 2s epoch 

after the transition in auditory evoked sites. Only trials where the animal was stationary 

at the central spout (either a miss for the regular trials or a correct reject for the random 

trials were included), as some of the pattern rates and their harmonics lie close to the 

range of theta (4-7Hz) in the ferret, which is strongly modulated by movement (Dunn 

et al., 2022).   

I calculated the SNR at a range of frequencies of interest (FOI) including the 

pattern rate of each pattern length and its first harmonic (see Figure 3.8). For RAN20-

REG3 I see significant increases in power at 2.86Hz (U = 24312, p < 0.001, Mann 

Whitney U, Bonferroni) and at the pattern rate (6.67Hz: U = 18917, p < 0.001) and the 

first harmonic (13.33Hz: U = 9028, p < 0.001) during regularity compared to the 

random sequence (see Figure 3.8A). For RAN20-REG5 I only see increases in power 

at the pattern rate and its first harmonic (4.0Hz: U = 24204, p < 0.001; 8Hz: U = 13696, 

p < 0.001; see Figure 3.8B). For RAN20-REG7 I see increases at the pattern rate and 

its first harmonic (2.86Hz: U = 17895, p < 0.001; 5.71Hz: U = 27647, p < 0.001; see 

Figure 3.8C). Significant decreases are also present at 8Hz (U = 44729, p < 0.001) 

and 13.33Hz (U = 46170, p < 0.001). For our matched alphabet condition, RAN5-

REG5, I see significant increases at the pattern rate (4.0Hz: U = 20587, p < 0.001) 

and first harmonic (8Hz: U = 8455, p < 0.001) and a significant decrease at 13.33Hz 

(U = 37346, p = 0.00186; see Figure 3.8D). Overall, I observe increases in power at 

the pattern rate and first harmonic for every pattern length and condition during 

regularity. Typically, the SNR in the random condition sits at 1 at the various FOIs, 

apart from 4 and 5.71Hz, which sits within the range of ferret theta oscillations. 
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Figure 3.8: Increases in the signal to noise ratio during regularity at the pattern rate and 
its next harmonic for all conditions. The SNR shows largest increases during regularity at 
the pattern rate (PR, highlighted in green) and the pattern rates next harmonic (2PR, 
highlighted in purple) compared to during a random sequence for each condition: (A) RAN20-
REG3 (B), RAN20-REG5, (C) RAN20-REG7, (D) and RAN5-REG5. A Wilcoxon test was 
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performed between the random and regular condition for each FOI to identify significant 
differences in the SNR (Bonferroni corrected: * = p < 0.05, **, p < 0.01 and *** p < 0.001). 
Errors bars = standard deviation. 

To understand how the oscillations at the pattern rate are modulated by pattern 

length, random alphabet, novelty, location, and depth, I calculated a modulation index 

on the SNR at random and regular conditions (REG-RAN/REG+RAN) where a value 

of greater than 0 indicates a stronger oscillation at the pattern rate in the regular 

condition compared to that of the random. A mixed effects linear model revealed main 

effects of pattern length, the random alphabet and novelty and significant interactions 

between novelty and pattern length and random alphabet as well as the lower bin 

depth on pattern length on differences in the pattern rate between random and regular 

conditions (see Figure 3.9A and Table 9.2 in the appendix). 

Overall, I demonstrate that for all pattern lengths the modulation index remains 

above 0, showing that the oscillations at the pattern rate are stronger in the regular 

condition over the random for all conditions as expected. We also see that the as you 

increase the pattern length the oscillations at the pattern rate decrease significantly 

between RAN20-REG7 and the shorter pattern lengths of RAN20-REG3 and RAN20-

REG5 and only a small difference between conditions with matched and unmatched 

alphabets (RAN20-REG5 and RAN5-REG5; see Figure 3.9B). When I split this by 

whether the pattern has repeated or not I observe that novel patterns elicit smaller 

differences in the pattern rate compared to that of repeated patterns in the shorter 

pattern lengths. Additionally the pattern length only seems to modulate the pattern rate 

oscillation in the patterns that are repeated (see Figure 3.9C). Analysis by depth 

reveals that only the deeper layers seem to show a modulation by pattern length with 

the RAN20-REG3 condition eliciting larger increases in the pattern rate over RAN20-

REG7 (see Figure 3.9D, and a significant deeper layer and pattern length interaction 

in A). However, I see the largest modulation index in upper layers. In summary, the 

data show that firstly: an oscillation at the pattern rate for each condition is observed, 

with shorter patterns eliciting stronger pattern rate oscillations. Secondly, for shorter 

pattern lengths pattern-rate oscillations are stronger for patterns that are repeated as 

compared to novel ones. Finally, the modulation of oscillatory activity at the pattern 

rate, by pattern length, may be occurring most strongly in the lower layers, but does 

not vary by cortical subfield (MEG, AEG or PEG). 



118 
 

 

Figure 3.9: Modulation of the pattern rate oscillations within the local field potential. A) 
Mixed effects linear model on the modulation index of the oscillatory rate at each pattern 
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lengths respective pattern rate. Each predictor (and two way interactions) and its coefficient, 
and upper and lower confidence intervals are displayed with significance displayed with a filled 
black circle. B) Modulation index split by condition (each circle is a recording site) with the 
average and standard error shown across sites in grey. C) Modulation index split by novel and 
repeated patterns and D) split by depth. * = p < 0.05, **, p < 0.01 and *** p < 0.001. Errors 
bars = standard error. Dunn test, Bonferroni. 

3.3.4 Pattern rate oscillations are modulated by behaviour 

Neural recordings were presented during a behavioural task, and now that I 

provided evidence for oscillations at the pattern rate, I wanted to investigate how these 

are modulated by the animal’s behaviour. So far the analysis has been performed on 

hit, miss and correct reject trials (false alarms were excluded, as the stimulus was 

terminated as soon as the animal left the central spout). However, how do these 

correlates change dependent on whether the animal was able to detect the regularity 

or not? For example, do we see enhancement or suppression of the pattern rate 

oscillation when the animal successfully detected regularity and how does this change 

with the complexity of the regularity, as neurons in auditory cortex can be modulated 

by behaviour. To do this I took the trials with just the regular sequences presented and 

then split them by trials in which the animal successfully detected the pattern (hit) and 

trials in which the animal failed to detect the pattern by remaining at the central spout 

(miss). I then calculated a modulation index such that an index of greater than 0 would 

indicate larger pattern rate oscillations in trials where the animal had a correct 

response.  

The modulation index across all conditions and sites is significantly positive 

(mean: 0.0237, Z = 11956, p < 0.001, Wilcoxon) revealing that there is an increase 

oscillation at the pattern rate for hit trials over missed trials (see Figure 3.10A). 

However, when investigating each pattern length (and thereby pattern rate) 

individually, we can see that pattern length 5 is the only condition to show a positive 

modulation index, with pattern lengths 3 and 7 showing significantly decreased 

modulation indices (see Figure 3.10B; RAN20-REG3: Z = 7124, p < 0.001; RAN20-

REG5: Z = 3937, p < 0.001; RAN20-REG7: Z = 6504, p < 0.001; RAN5-REG5: Z = 

3937, p < 0.001; Wilcoxon, Bonferroni). This is likely due to pattern length 5’s pattern 

rate of 4.0Hz proximity to theta oscillations (4-7Hz), which in the ferret are closely 

linked to movement (Dunn et al., 2022). Pairwise comparisons (Dunn test, Bonferroni) 

revealed that the modulation index for pattern length 5 was significantly different to 

that of pattern length 3 and 7 (p < 0.001). Clearly, I observe that the behaviour of the 
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animal, whether the trial was a hit or a miss, modulates the power at the pattern rate 

within the local field potential, but that the direction of modulation is dependent on the 

pattern rate itself (e.g. 6.67Hz or 4.0Hz). Particularly, modulation at 4.0Hz is 

confounded by the change in theta power from movement within the ferret. 

 

Figure 3.10: Behavioural modulation index (hit-miss) of the pattern rate oscillation SNR. 
A) The modulation index (where > 0 mean larger oscillations at the pattern rate in hit trials 
compared to miss trials) across sites and conditions where each dot is a recording site and 
the blue error bar is the mean and std. across all sites (Wilcoxon test). B) The modulation 
index split by condition with the grey error bars are the mean and std. across sites for each 
condition (Dunn test, Bonferroni). * = p < 0.05, **, p < 0.01 and *** p < 0.001. Errors bars = 
standard deviation 
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3.3.5 Emergence of pattern rate oscillations over time 

As described above, oscillations at the pattern rate are present in the local field 

potential, though despite the previous method being sensitive to changes in power at 

specific frequencies, it does not give any information on how the pattern rate oscillation 

changes over time. It is unknown whether the representation of the pattern rate in the 

LFP could increase over repetitions due to increased entrainment, or whether the 

power at the pattern rate stays constant during presentation of the regular sequence. 

Likewise the timing of the emergence of the pattern rate representation could vary, 

emerging at different times as the signal moves through the auditory pathway. If the 

pattern rate increases earlier in primary subfields such as MEG, the increases in AEG 

and PEG may be inherited from MEG. To investigate this, I performed Morlet wavelet 

decomposition on the local field potential, with an example displayed in Figure 3.11.  

In this example we can see in the spectrogram for the random condition the 

presence of strong theta related activity (approximately 4.5Hz) from onset (0s) to offset 

(4s). During presentation of the regular sequence, I observe a strong increase at the 

pattern rate (6.67Hz) and a strong harmonic structure (highlighted with dashed red 

lines) that occurs mostly 2s from stimulus onset (i.e. the time of the transition from 

random to regular) and abruptly ends at 4s (stimulus offset). There also appears to be 

modulation of oscillatory power in the theta band. In addition to examining the entire 

frequency range I can pull out individual frequencies of interest such as 6.67Hz 

(pattern rate for RAN20-REG3; see Figure 3.11F) and 20Hz (the tone presentation 

rate; Figure 3.11G) and perform cluster-based permutation testing to identify 

significant differences in power between the random and regular sequences. In this 

example, I observe significant increases in power at 2s from stimulus onset to just after 

5s (1s from stimulus offset) at 6.67Hz, and a small but significant increase at 20Hz in 

the regular case, limited to between approximately 3.2 to 4.2s after stimulus onset.  
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Figure 3.11: Example of Morlet wavelet decomposition of the local field potential for 
random and regular sequences. A) Trial averaged local field potential to a RAN20-REG3 
random sequence. B) Trial averaged local field potential to a RAN20-REG3 regular sequence. 
C) Spectrogram using Morlet wavelet decomposition of LFP response to the random (left) and 
regular (right) sequence. D-E) Zoomed in spectrogram at frequencies 10 to 40Hz (D) and 0 to 
8Hz (E). The dashed red lines highlight the pattern rate (6.67Hz) and its 2nd, 3rd and 4th 
harmonic. F-G) Power at 6.67Hz (F) and 20Hz (G) from Morlet wavelet decomposition of the 
LFP in response to a RAN20-REG3 sequence in the random (blue) and regular (pink) 
condition. The grey line detonates time points at which the power between the random and 
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regular sequences are significantly different from each other (p < 0.05, cluster permutation 
based statistics). Error = s.e. 

  

Due to the trade-off between time and frequency resolution, I focused the 

analysis on RAN20-REG3 conditions to analyse the pattern rate of 6.67Hz and tone 

presentation rate of 20Hz with a fine enough time resolution to observe any changes 

as the regular sequence emerges. I also only examine, correct trials, due to noise 

bursts that are presented in incorrect trials at the end of stimulus presentation. At the 

pattern rate, I demonstrate that across all sites there is a large significant change in 

power by about 1mV at the peak starting 197ms from transition onset and ending at 

3.07s, 1.07s after stimulus offset (p = 0.0099; see Figure 3.12A, left). When I separate 

sites by location, AEG (see Figure 3.12B, left) and MEG (see Figure 3.12C, left) show 

significant increases in the pattern rate in the regular sequence with oscillations in 

MEG starting earlier and lasting longer than that of AEG (AEG: 661ms to 2.72s, p = 

0.0495; MEG: 211ms to 3.05s, p = 0.099). Surprisingly, we see that PEG is the only 

subfield to not show significant changes between random and regular sequences (see 

Figure 3.12D, left).  

When I split the regular trials by hit and miss responses, I show that any 

divergence in the pattern rate oscillation occurs after the regular sequence has 

finished (see Figure 3.12, right). Across all sites I observe a significant increase in 

power at the pattern rate in the miss trials (2.13s to 3.11s, p = 0.0297; see Figure 

3.12A, right) and that this significant difference is only significantly maintained within 

MEG (2.16s to 3.12s, p = 0.0396; see Figure 3.12B-D, right), however there does also 

seem to be an increase, albeit insignificant, within AEG. In conclusion, I demonstrate 

that the pattern rate oscillations, begin almost immediately after the transition in MEG, 

followed by AEG, up to a similar magnitude before starting to decrease at 

approximately 1.5s after the transition and continuing even after stimulus offset (2s 

after the transition).  Interestingly I also see an increase in power in miss trials after 

stimulus offset at 6.67Hz, but this only reached statistical significance in MEG. 
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Figure 3.12: Oscillatory power over time at the pattern rate (6.67Hz) in the local field 
potential for the RAN20-REG3 condition. A) Left - Mean power at 6.67Hz across all sites 
for random sequences (blue) and regular sequences (pink), with the x axis denoting the start 
of the transition from random to regular, and 2s from the transition as the offset. Right – Mean 
power at 6.67Hz across all sites for regular sequences on hit trials (dark pink) and miss trials 
(dashed light pink). B-D) Mean power across sites at AEG (B), MEG (C) or PEG (D). Error = 
standard error. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 



125 
 

 

Figure 3.13: Oscillatory power over time at the tone presentation rate (20Hz) in the local 
field potential for the RAN20-REG3 condition. A) Left - Mean power at 20Hz across all sites 
for random sequences (blue) and regular sequences (pink), with the x axis denoting the start 
of the transition from random to regular, and 2s from the transition as the offset. Right – Mean 
power at 20Hz across all sites for regular sequences on hit trials (dark pink) and miss trials 
(dashed light pink). B-D) Mean power across sites at AEG (B), MEG (C) or PEG (D). Error = 
standard error. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Switching our attention to the tone presentation rate (see Figure 3.13A, left), I 

observe that although I do see some increase in power in the random condition 

compared to that of the regular condition from approximately 1s after the transition, 

this is not significant. Looking at locations individually (see Figure 3.13B-D, left) also 

revealed no significant differences in oscillatory power. However, when I looked at the 

difference in tone presentation rate between hit and miss trials (see Figure 3.13A, 

right), across all sites we see a significant decrease in miss trials compared to that of 

hit trials after the trials has ended (2.51s to 3.12s; p = 0.0496). Overall, this method is 

not sensitive enough to pick up the significant times at which the tone presentation 

rate decreases in power during regularity compared to the random sequence (as I 

demonstrated in section 3.3.2). However, this method does show a continuation of the 

oscillations at the tone presentation in hit trials compared to miss trials, but this could 

be due to an interaction with the noise burst given at the end of miss trials. 

3.4 DISCUSSION 
The primary purpose of this chapter was to observe if the increases in power 

present during regular sequences, compared to that of the random sequences in 

MagEG and EEG recordings in humans are also present in the LFP from 

microelectrode recordings in ferret auditory cortex (Barascud et al., 2016; Southwell, 

2019; Southwell and Chait, 2018). The recorded LFP from microelectrodes and signal 

from EEG and MagEG are similar but do have important differences which can make 

comparison between two non-trivial. The EEG signal is a spatiotemporally smoothed 

version of the LFP integrated over an area of 10cm2  or more, MagEG on the other 

hand has a spatiotemporal resolution of 2-3mm and ~1ms (Buzsáki et al., 2012; 

Hämäläinen et al., 1993). Where EEG and MagEG mainly sample electrical activity 

from superficial areas of cortex, microelectrodes can sample at any depth, and the 

increased spatial precision of microelectrodes, means that depth can affect the LFP 

drastically (Buzsáki et al., 2012). Furthermore, the contributors to each signal may 

vary, for example dendritic calcium spikes in superficial pyramidal neurons have been 

shown to provide a positive surface potential (Suzuki and Larkum, 2017). These 

dendritic calcium spikes are relatively slow acting compared to action potentials and 

can last up to several seconds which could contribute to sustained responses 

observed in the EEG signal.  
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In this chapter I performed microelectrode recordings in auditory cortex of the 

ferret and did not observe any differences, in either the RMS power or average evoked 

LFP, between random and regular sequences. One reason for this difference could be 

due to the different sampling ranges between EEG and microelectrode recordings, 

where EEG records the surface potential, whereas the microelectrodes used here 

sample various depths and have a more precise spatial resolution. This precise spatial 

resolution could reduce the influence from larger networks of neurons from higher 

order areas that may be encoding this sustained response, as lower frequency 

oscillations in MagEG and EEG signals tend to engage larger spatial domains 

compared to higher frequency oscillations (Lopes da Silva, 2013).  

Despite the lack of difference in the evoked response in the LFP, I observed clear 

oscillations at the tone presentation rate (20Hz). The oscillatory power at the tone 

presentation rate could be indicative of the responsiveness of the local neural network 

to the individual tones in the sequence. In my results I observed significant decreases 

at the tone rate during regularity which could reflect adaptation or repetition 

suppression as the neurons responsiveness to the individual tones or tone-locked 

response is reduced. The largest decrease, between random and regular sequences, 

was observed at pattern length three, which repeats the most of all conditions tested 

during the 2s. Therefore, the increased repetition could be enhancing the effects of 

adaptation decreasing the neural responsiveness which is elicited in the LFP as 

decreased oscillatory power at the tone presentation rate of 20Hz.   

Another possible explanation for this decreased tone-locked response is likely 

that the smaller number of frequencies in the regular pattern, due to the tonotopy of 

auditory cortex, do not evoke as many frequency-tuned neural populations. In fact, we 

see in the RAN5-REG5 condition that the absolute oscillatory power is reduced in both 

the random and regular case significantly compared to that of the unmatched 

counterpart (RAN20-REG5). Also supporting this argument is that I don’t observe 

significant differences in the tone presentation rate between random and regular 

sequences in the RAN5-REG condition. Interestingly the absolute power at the tone 

rate in the regular sequence is smaller in the RAN5-REG5 than the RAN20-REG5, 

which is not what we would expect if it was only the number of frequencies present 

that contributes to the power at the tone rate during sequence presentation, and 

therefore there may be some interaction from the predictability of the stimulus. 
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When I investigated this effect by location, the highest oscillatory power at the 

tone presentation rate was observed in MEG, then PEG and finally AEG which is what 

we might expect regarding the tuning properties of neurons within each region 

(neurons in MEG being highly frequency tuned compared to that of AEG; Bizley et al., 

2005). The differences in the tone presentation rate response between random and 

regular sequences remained consistent between subfields which could suggest that 

this difference is likely inherited from lower or higher order areas rather than being 

generated within auditory cortex. Investigation of how this correlate changes across 

layers revealed that the biggest difference was present in the middle to lower cortical 

layers. Middle to deeper layers are more likely to contain lemniscal projections with 

upper regions containing more cortico-cortico and non-lemniscal projections 

(Malmierca et al., 2015). This pattern of modulation might be expected if the oscillatory 

power at the tone presentation rate is modulated by adaptation that is inherited from 

lemniscal lower-order areas in the thalamus and/or colliculus. Further work using high-

density linear probes may be able to provide insight with more accuracy if there is a 

laminar effect of the change in tone locked response in the LFP. 

Due to the repetitive nature of the deterministic patterns present during the 

regular sequences, I expected to see oscillations at the pattern rate of each pattern 

length, which has been observed in previous EEG work (Southwell, 2019). I show that 

this effect is present in microelectrode recordings in the ferret with the LFP eliciting 

pattern rate oscillations, and at its first harmonic, for each pattern length tested. The 

power at these oscillations does seem to be modulated by pattern length (smaller 

patterns eliciting larger oscillations) however this seems to be limited to patterns that 

were repeated within a session. This could be due to the reduction of noise by 

averaging across neural responses evoked by the same stimulus. Interestingly I 

observe that the largest difference between random and regular sequences in pattern 

rate oscillations is in the upper layers of auditory cortex. This could suggest that 

perhaps instead of completely being inherited from lower layers or areas, that 

entrainment to the pattern rate could occur, enhanced by neighbouring cortical 

regions.  

If the oscillation at the pattern rate could be encoding the regularity in some form, 

we may expect during behaviour that increased oscillations may give rise to an 

increased likelihood of a correct response. Since the ferrets I am recording from are 
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performing a behavioural task simultaneously I was able to observe how the 

oscillations change if the ferret is able to correctly identify the regularity (a hit trial) or 

fails (a miss trial). Interestingly the data show that modulation of oscillatory power at 

the pattern rate is dependent on the pattern rate itself. For example, for pattern lengths 

5, the pattern rate is 4.0Hz and we see in these conditions that if the ferret correctly 

identifies the regularity the oscillatory power in the LFP is increased. This is the 

opposite for pattern lengths 3 and 7 (pattern rates 6.67Hz and 2.86Hz respectively). 

This could be due to firstly the pattern rate of 4.0Hz being influenced by oscillations 

from hippocampus at the theta band (4 – 7Hz; Dunn et al., 2022), where movement to 

the peripheral spout causes an increase in theta band activity which is picking up by 

the electrodes in auditory cortex. Therefore I focused analysis just on conditions 

RAN20-REG3 and RAN20-REG7, in which hit trials showed weaker pattern rate 

modulation compared to miss trials. In both cases the behavioural modulation did not 

depend significantly on auditory subfield but do show stronger oscillations in the miss 

trials for lower and middle layers. This is surprising, as we might expect more 

oscillatory power for trials in which the animal was able to detect the target, but coupled 

with the lack of difference in power between pattern lengths, when we know the animal 

performed much worse for longer pattern lengths, it suggests that this oscillation may 

not be correlated with the ability to detect regularity. It also seems likely that there 

might be some suppression due to movement in rates outside of the theta band, which 

may limit our ability to correlate behavioural outcome. Further work in comparing the 

pattern rate oscillation in a two alternative forced choice task, may allow us to unpick 

this problem by decoupling movement and regularity detection.  

Lastly, I wanted to investigate how these oscillations might emerge across time. 

Morlet wavelet decomposition of the RAN20-REG3 condition was not sensitive 

enough, due to the width of wavelets used, to reveal any significant differences 

between random and regular sequence at the tone rate. It, however, did reveal 

significant suppression at the tone rate in miss trials after stimulus offset. This is likely 

due to interaction of the noise burst presented during and incorrect trial after the 

stimulus had ended. Analysis at the pattern rate for RAN20-REG3 revealed a 

significant increase 197ms from transition onset and continuing after stimulus offset. 

This suggests that there may be entrainment that remains even after the end of the 

pattern, i.e. a genuine oscillation, rather than simply a consequence of frequency 



130 
 

tuned neurons responding to elements of the pattern. This entrainment could serve to 

sharpen neural responses or increase neural synchronisation to aid in the encoding of 

regularity.  

In conclusion, in humans a sustained response has been associated with the 

predictability of the sequence: higher predictability (i.e. regular over random, or shorter 

vs. longer pattern lengths) producing larger responses, with changes in the sustained 

response thought to reflect the process of learning and representing the new statistics 

(Southwell, 2019). Therefore, future work is needed to understand what is contributing 

to the sustained response seen in the EEG and MagEG and whether changes in 

oscillatory power is various bands could contribute. ECoG studies could aid in bridging 

the gap as they record from a resolution between that of microelectrodes and EEG 

and can be applied to both human and animal models to potentially identify if this 

neural correlate is human-centric. However, perhaps the answer is within the action 

potentials of neural firing that reflects the outputs of auditory cortical neurons, rather 

than the LFP, that predominantly reflects synaptic inputs. In the next chapter I focus 

my analysis on the firing of single and multi-unit activity, and how the amount and 

timing of firing changes in regular and random contexts. 
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4 CHAPTER FOUR: SINGLE AND MULTI-UNIT RESPONSES OF 

AUDITORY CORTEX DURING REGULARITY 

4.1 INTRODUCTION 
In chapter two, I showed that ferrets can detect transitions from random to regular 

tone sequences in a GO/NO-GO task. Using this animal model and task, in chapter 

three I revealed neural correlates in the local field potential, in the form of oscillations 

in the tone presentation rate and the pattern rate. However, I saw no increase in 

sustained power within the evoked local field potential during regularity as seen in 

previous EEG and MagEG work (Barascud et al., 2016; Southwell, 2019; Southwell et 

al., 2017). In this chapter, I leverage the use of microelectrode recordings in auditory 

cortex in the ferret to extract single and multi-unit activity to understand whether the 

amount of firing or timing of individual spikes change during the presentation of regular 

sequences and whether this could be contributing to the sustained response observed 

within human EEG and MagEG studies and how regularity might be extracted and 

represented in auditory cortex. 

So far, very little is understood of how neurons and their firing change in 

response to tones presented in regular sequences compared to tones in a random 

context. Specifically, the majority of studies using these complex random and regular 

sequences have been conducted in humans using techniques with broad spatial 

resolution such as EEG and MagEG. In contrast, animal studies have commonly used 

simple oddball paradigms with only recent work using complex predictable acoustic 

stimuli. Studies that have used more complex stimuli while recording neural firing have 

shown conflicting evidence. Focusing on studies that record from auditory cortex, Lu 

et al. (2018) identified habituation in secondary areas of auditory cortex, not A1, to 

familiar complex sounds (sounds that had previously been repeated). Barzack et al. 

(2018) recording responses from A1, to pure tone patterns within band passed noise 

bursts, showed an overall decrease in multi-unity activity in A1. These data have 

typically been viewed from the context of SSA, where repetition of the same stimulus 

induces lower firing. However, Saderi et al. (2019) showed global decrease in firing 

during repetition but an enhancement of the repeated stream that was more prominent 

in secondary areas of AC (PEG) than in A1. 
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On the other hand, spike rate is not the only manner in which neurons can 

encode acoustic features as spike timing plays an important role in encoding the fine 

temporal structure of the incoming sound. Barzack et al. (2018) identified entrainment 

to the repeating pure tone patterns, embedded in noise bursts, in AC, where this 

entrainment could aid in the parsing and grouping of repeating patterns into auditory 

streams. Asokan et al. (2021) most recently used noise bursts either in a random or 

regular rhythm and observed only within auditory cortex that the timing of spikes 

became more precise in the regular context, when compared to other subcortical 

auditory structures, with no changes in the amount of firing between contexts in AC. 

This was not observed in MGB or IC, leading them to suggest that the longer 

integration windows present in AC facilitate the encoding of slower contextual 

changes. In summary therefore it is likely that responses to sounds presented in a 

regular context may differ in their temporal precision as well as firing rate, in AC. 

Therefore, AC is a prime target for understanding how the brain may encode the 

detection of auditory patterns. It has a longer integration window compared to that of 

subcortical structures, which is likely needed to encode the longer repeating patterns 

I present that range from 3 tones (150ms) up to 7 tones (350ms). Recording within 

AC, I can investigate how single-units (SUs) and multi-units (MUs) are encoding 

regularity through changes in firing or spike timing. Though there is some literature on 

the firing of neurons within complex predictable contexts, they are all performed within 

passively listening animals, and attention through a behavioural task may boost the 

sensory signal (Kok et al., 2012). In addition, there is a lack of consensus in whether I 

should observe facilitation or adaptation within the firing of SU and MU activity, as 

some studies show increases, decreases or no change at all with predictable stimuli. 

It is also uncertain what areas, whether primary and/or secondary areas of AC will be 

influenced by regularity in the context of these tone sequences. It is also unclear how 

spike timing may be influenced in the context of pure tone sequences and whether the 

regularity of frequency presentation will induce increasing precision of firing and/or 

entrainment to the tone presentation rate or pattern rate.  

In this chapter, I present the same deterministic acoustic patterns as used in 

previous chapters, to ferrets performing a behavioural task to detect regularity as 

described in chapter two. I extract out MU and SU activity and analyse their responses 

to the regular sequences compared to random and investigate how the response 
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changes as the pattern repeats.  To do this I firstly performed spike sorting and 

clustering to split and merge single-unit clusters and record pure tone response to 

collect the frequency response area of units and recordings sites. Then I presented 

repeated patterns of lengths 3, 5 and 7 (RAN20-REG3, RAN20-REG5, RAN20-REG7 

and RAN5-REG5) to understand how the spiking changes after the transition to 

random to regular.     

With these data I highlight the heterogeneity of responses in auditory cortex and 

assess the overall spiking activity to uncover whether there are overall changes in 

firing that could be contributing to the sustained response seen in humans, or if there 

are overall decreases in firing due to adaptation. Furthermore, I evaluated the 

entrainment of spikes, using vector strength as a metric, to show that firing synchrony 

to the pattern rate increases during regularity, but is unchanged at the tone 

presentation rate (20Hz). Focusing on the firing of the SUs to best frequency tones 

that occur within the sequences, I observed a significant decrease in firing across the 

population, and an increase in precision during regularity. Furthermore, using a 

Poisson GLM across the population of SUs, with the response to each tone as an 

observation, I could pull out an effect of behaviour and identified that overall, neurons 

increased their firing with more repetitions of the pattern. To understand which units 

are influenced by regularity, behaviour or just the frequency of the tone, I performed a 

GLM on each unit individually. This revealed the largest proportion of units responsive 

to the number of pattern repetitions lay within MEG and that units that were responsive 

to regularity were also influenced by other factors such as behaviour and frequency 

rather than regularity in isolation. 
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4.2 METHODS 

4.2.1 Spike extraction, sorting and clustering 

The same animals and microelectrode placements were used in this analysis 

from chapter three (F1812, F1813 and F2001). All neural data analysis was performed 

offline in MATLAB (MathWorks) and Python through a custom data analysis pipeline 

as described in chapter three up until extraction of the local field potential. Each trial 

was then subsequently split into epochs to remove noise that was correlated across 

channels with principle component analysis (PCA; CleanData, Musial et al., 2002). 

Neural data was spike sorted by filtering the data through a band passed Butterworth 

filter (filter order 10) between 300Hz and 5kHz using a zero-phase digital filter (filtfilt) 

to minimise any latency induced by filtering. Putative spikes where then extracted with 

a threshold at -4 s.d. of the signal. 

The filtered waveforms were then collected, and then PCA was run to cluster 

these narrowband waveforms into putative SUs. Spike clusters were merged based 

on assessment of waveform similarity and classed as a SU using waveform size, 

consistency, and inter-spike interval distribution (all SUs had ≤2% of spikes within 

2ms). Any clusters not classed as SUs were classed as MUs. Spike clusters without 

negative deflections in the waveform, which were primarily noise artefacts (identified 

as sharp peaks in the waveforms) were discarded from the analysis. Only a subsample 

of total neural recordings were spike sorted and only these spike sorted recordings 

were included in the following analysis to avoid introducing any noise from multi-unit 

activity through basic thresholding (see Table 4.1 and Table 4.2 for total number of 

MUs and SUs for each animal). 

 Mean no. of trials per MU site: 

Subject no. 
Total no. 
recordings 

MU 
sites 

Across 
conditions 

RAN20
-REG3 

RAN20-
REG5 

RAN20-
REG7 

RAN5-
REG5 

F1812 35 54 204 35 28 80 16 

F1813 39 106 287 44 40 102 26 

F2001 39 94 411 77 35 141 48 

Total 113 - - - - - - 

 
Table 4.1: Number of multi-unit sites and average number of trials for each condition 
at each site. Average number of trials, across MU sites, across all conditions, and for each 
condition presented are shown. 
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 Mean no. of trials per SU site: 

Subject no. 
Total no. 
recordings 

SU 
sites 

Across 
conditions 

RAN20-
REG3 

RAN20-
REG5 

RAN20-
REG7 

RAN5-
REG5 

F1812 25 149 44 14 67 5 25 

F1813 102 157 26 20 52 17 102 

F2001 91 331 57 33 118 36 91 

Total 218 - - - - - - 

 
Table 4.2: Number of single-units and average number of trials for each condition for 
each unit. Average number of trials, across SUs, across all conditions, and for each 
condition presented are shown. 

 

Spike times were used to extract the waveforms from the broadband neural 

trace of each spike and the average waveform within a recording session was taken 

of each SU assigned during spike sorting. As SUs could be held across multiple 

sessions (Town et al., 2017),  or different units could contact the electrode due to drift 

or gliosis, I clustered SUs across sessions that were likely to be the same SU. To do 

this I performed PCA on the average broadband waveforms from single units from the 

same electrode site, only on sites that had single units for ≥ 4 recording sessions (see 

Figure 4.1). Sites with < 4 recording sessions with SUs were labelled as individual 

SUs as I needed more than three recording sessions to perform the PCA. K-means 

clustering was then performed on the first three principal components. I identified the 

appropriate number of clusters for each set of SU waveforms at each site by 

comparing the sum of point-to-centroid distances for k = 1 to 10 and finding the knee-

point using vector bisection (Dmitry Kaplan 2022, Knee Point, MATLAB Central File 

Exchange; see Figure 4.1A). For MU activity, all spikes classed as MUs were collated 

across recording blocks that recorded at the same site to give MU activity for that site.    

4.2.2 Frequency response measurements and analysis 

Frequency response areas (FRAs) of units were collected by recording 

responses to a 100ms pure tone at various frequencies (120Hz to 19.3kHz with 1/3 

octave spacing) and sound levels (20 to 70dBSPL in 10dBSPL spacing) after every 

electrode movement, approximately 100 micron movements down every 4 weeks (see 

Figure 4.2, Figure 4.3 and Figure 4.4). To calculate the tuning curves, the 

spontaneous spike rate was calculated by taking the mean spike rate (bin width: 10ms) 

in the 100ms window preceding tone onset and the evoked spike rate in the 100ms 

window from tone onset. This was calculated for each frequency/level combination 
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(161 combinations in total). The FRA matrix was then smoothed with a nine-point 

running Hamming window (Bizley et al., 2005).  

 

 

Figure 4.1: Clustering of single-units across recording sessions. A) The sum of point-to-
centroid distances for K = 1 to 10, with the knee-point (via vector bisection), circled in red. B) 
First three principal components of the mean broadband waveform for SUs recorded from an 
example site. Dots are coloured by the cluster number calculated by k-means. C) Example 
waveforms overlapped and coloured by the separate clusters as identified by k-means 
clustering. 
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Figure 4.2: Frequency response area of each recorded channel that contained spiking 
activity in F1812 in the left (top) and right (bottom) hemispheres. Normalized heat maps 
are arranged in the WARP array configuration for each hemisphere (WARP array anatomy 
locations are shown in the middle), with yellow areas showing higher neural responses for the 
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frequency-level combination and lower in blue. Tuning curves are shown (white line) and the 
Q10 and Q30 (red lines). The characteristic frequency (CF) is shown below each heat map.  

 

Figure 4.3: Frequency response area of each recorded channel that contained spiking 
activity in F1813 in the left (top) and right (bottom) hemispheres. Normalized heat maps 
are arranged in the WARP array configuration for each hemisphere (WARP array anatomy 
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locations are shown in the middle), with yellow areas showing higher neural responses for the 
frequency-level combination and lower in blue. Tuning curves are shown (white line) and the 
Q10 and Q30 (red lines). The characteristic frequency (CF) is shown below each heat map.  

 

Figure 4.4: Frequency response area of each recorded channel that contained spiking 
activity in F2001 in the left (top) and right (bottom) hemispheres. Normalized heatmaps 
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are arranged in the WARP array configuration for each hemisphere (WARP array anatomy 
locations are shown in the middle), with yellow areas showing higher neural responses for the 
frequency-level combination and lower in blue. Tuning curves are shown (white line) and the 
Q10 and Q30 (red lines). The characteristic frequency (CF) is shown below each heatmap. 

The frequency and level combinations of 120Hz, 151.19Hz at 70dBSPL were excluded 

due to clipping in the speaker system at these levels. Units that elicited an evoked rate 

that exceeded the spontaneous rate plus 20% of the peak spike rate were judged to 

be responsive to that frequency-level combination (Bizley et al., 2005; Sutter and 

Schreiner, 1991). This criterion was used to generate the tuning curve in which the 

characteristic frequency (CF), and tuning widths: Q10 and Q30 where extracted. The 

CF divided by the frequency range that evoked a significant response at 10 dBSPL 

and 30 dBSPL above threshold respectively (Bizley et al., 2005). 

 FRAs were usually gathered immediately following electrode movements 

(which were performed under sedation), with typically a total of 30 to 40 recording 

sessions in between (not all recording sessions were included for MU and SU 

analysis). Frequency tuning characteristics were combined with post-mortem histology 

in order to allocate electrodes to either MEG, AEG, PEG or outside of auditory cortex. 

Electrodes that showed broad tuning curves were most likely in PEG, sharp tuning 

curves in MEG and minimal frequency tuning where typically in AEG. Reversals in 

frequency tuning across electrodes indicated a boundary between auditory fields. 

Electrodes outside of AC, confirmed through histology and lack of auditory evoked 

responses, were excluded from further analysis. 

Despite analysis of the FRAs, due to electrode drift, the CF derived from the 

FRAs may not represent the tuning of the unit in a particular recording session. 

Therefore, I calculated the best frequency (BF) for units within a recording session 

using the tone sequences that were presented during behaviour. The frequency that 

elicited the highest mean spike rate in the tone sequence, including only random trials 

and excluding the first 8 and last 2 tones to avoid onset/offset responses, was taken 

as the units BF within that session. 

4.2.3 Neural analysis 

4.2.3.1 Spike count analysis for random vs. regular sequences 

To calculate the difference in overall spike count during regularity compared to 

the random sequence I calculated a modulation index. For each trial, the number of 



141 
 

spikes was summed from the transition to the end of the stimulus (2s). Trials that were 

a correction trial, contained a training reward at centre, contained a false alarm before 

the transition or were the first four trials of a recording session were excluded from 

analysis. To calculate the change in spike count between random and regular 

sequence modulation index, for each unit and condition the difference between the 

mean spike count (SC) of random and regular trials were taken and divided by the 

sum.  

𝑆𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑆𝐶) 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥

= (𝑚𝑒𝑎𝑛  𝑆𝐶 𝑅𝐸𝐺 − 𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐴𝑁)/(𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐸𝐺 + 𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐴𝑁) 

( 5 ) 

4.2.3.2 Firing rate and precision analysis of single tone responses 

To calculate the modulation indices to asses firing and timing for each SU in 

regular and random contexts (Asokan et al., 2021), I calculated each SUs BF for each 

recording session. I then took each presentation of the SUs BF in the random and 

regular sequence in the 2s window after the transition and randomly subsampled to 

match the number of presentations in the random and regular context for each 

condition and SU. I used the number of spikes across presentations to calculate the 

post-stimulus time histogram (PSTH). To assess differences in the SUs firing during 

each tone, I took the average of the spike rate across the 50ms window of the tone 

presentation in the random and regular contexts and used these to calculate the mean 

firing modulation index: 

𝑀𝑒𝑎𝑛 𝐹𝑅 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥
= (𝑚𝑒𝑎𝑛 𝐹𝑅𝑅𝐸𝐺 − 𝑚𝑒𝑎𝑛 𝐹𝑅𝑅𝐴𝑁)/(𝑚𝑒𝑎𝑛 𝐹𝑅𝑅𝐸𝐺 + 𝑚𝑒𝑎𝑛 𝐹𝑅𝑅𝐴𝑁) 

( 6 ) 

Additionally, I calculated a precision modulation index to assess the temporal 

precision of firing of SUs to individual tones (Asokan et al., 2021). For each unit and 

condition, I autocorrelated the PSTH for various time lags and fit a decaying 

exponential curve ( (𝑡)  = 𝑎𝑒−𝑏𝑡 , where a = 1) to the autocorrelation function. The 

decay time constant (𝜏) was calculated as τ =  
1

𝑏
 as the time it takes to decrease by a 

factor of e. The decay time constant was calculated for random and regular contexts 

and used to calculate the precision modulation index: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = (τ𝑅𝐸𝐺 − τ𝑅𝐴𝑁)/(τ𝑅𝐸𝐺 + τ𝑅𝐴𝑁) 

( 7 ) 

4.2.3.3 Vector strength analysis for neural entrainment 

Vector strength was calculated to measure the amount of entrainment of the 

spikes of SUs to the tone presentation rate and to the rate of the pattern. To calculate 

the vector strength of units I calculated the cosine and sine vector strength for each 

frequency of interest (FOI) for each SU at each trial: 

𝑉𝑆𝑐𝑜𝑠 = 𝑠𝑢𝑚(cos(2𝜋 × 𝐹𝑂𝐼 × 𝑠𝑝𝑖𝑘𝑒 𝑡𝑖𝑚𝑒𝑠 (𝑠))) 

𝑉𝑆𝑠𝑖𝑛 = 𝑠𝑢𝑚(sin(2𝜋 × 𝐹𝑂𝐼 × 𝑠𝑝𝑖𝑘𝑒 𝑡𝑖𝑚𝑒𝑠 (𝑠)))  

( 8 ) 

To calculate the vector strength of the unit at each FOI I took the sum of VScos and 

VSsin individually across trials and the total number of spikes across those trials and 

entered it into the equation below:   

𝑉𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑉𝑆) =  
√𝑉𝑆𝑐𝑜𝑠2 + 𝑉𝑆𝑠𝑖𝑛2

# 𝑠𝑝𝑖𝑘𝑒𝑠
 

( 9 ) 

4.2.3.4 Modelling sensory and non-sensory influences on neural spiking 

To model spike count to consider behavioural factors such as movement and 

reward as well as regularity and stimulus content I used a generalized linear model 

(Poisson). Each trial was separate into 50ms bins to encompass one tone within the 

stimulus and the first four tones (200ms) was removed to mitigate any stimulus onset 

effects. At each bin I took the total number of spikes, whether regularity was present 

(0 or 1), whether the animal was given a reward (i.e. at the left spout after a correct 

trial), movement (i.e. whether the animal was not at either the central or left spout), 

how many times the pattern has repeated and the frequency of the tone in that 50ms 

bin expressed as a distance from the units best frequency (see Figure 4.12 for a 

schematic). To calculate frequency distance, I calculated the SUs BF, then labelled 

the frequency of each tone as an index from the whole frequency pool (e.g. 120Hz 

would have an index of 1, 1210Hz an index of 11 and 9676 an index of 20) as well as 

the SUs BF. I then took the absolute difference in the indices between the tone 

frequency and the SUs BF that gave me the distance in frequency from the SUs BF 

as an index. For example, if the SU had a BF of 151Hz and the tone presented had a 

frequency of 120Hz the distance would 1. 
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Statistical analysis of effects of pattern length and effects of the tone repetition 

number and other predictors used general linear models and generalized linear mixed 

models fitted using fitglm or fitglme in MATLAB (version 2022a). The details of each 

model are outlined alongside the relevant results; however, in general, analysis of the 

spike count of each multi or single unit was based on Poisson regression and for other 

measures (such as modulation indices) was based on a normal distribution. For each 

model, we reported the magnitude of coefficients (estimate) of fixed and random 

effects, the t-statistic for a hypothesis test that the coefficient is equal to 0 (T) and its 

respective p-value (p) (see appendix for full tables). The 95% confidence intervals are 

also reported for each fixed-effect coefficient and the adjusted R2 value of the model 

to assess model fit. Post-hoc analysis was performed in Python with the scipy.stats 

and scikit_posthocs modules. 
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4.3 RESULTS 

4.3.1 Heterogeneity of firing to random and regular tone sequences 

Whilst the ferrets performed the behavioural GO/NO-GO task to detect regular 

tone sequences as described in chapter two, I simultaneously recorded neural firing 

in auditory cortex. Neurons within auditory cortex are typically frequency tuned with 

tuning curves narrower in MEG, broader in PEG and with minimal tuning to pure tone 

frequencies in AEG. In comparison to the local field potential, which represents local 

presynaptic activity and the more distant activity of large numbers of neurons 

(Kajikawa and Schroeder, 2011), spiking activity reflects the outputs of one neuron 

(SU activity) or a small cluster of neurons in the immediate vicinity of the recording 

electrode (MU activity). Given the frequency tuning of individual neurons it is 

reasonable to assume that this frequency tuning has a much larger influence on the 

firing activity recorded for spiking data compared to that of the LFP which likely 

integrates over neurons encoding a range of sound frequencies. Figure 4.5 describes 

the tuning for example units (top right of each panel) and metrics of the single unit 

activity (middle right: mean broadband waveform; bottom right: the proportion of 

different inter-spike intervals; ISI). On the left hand side of the figure, the stimulus 

spectrogram, peristimulus time histogram (PSTH) and raster plot show the actions 

potentials of each example unit and how they respond to that specific stimulus.  

When examining the neural responses to the regular sequences I observed a 

variety of responses. Typically, neurons with narrow tuning showed quite precise 

locking to individual tones at the neuron’s BF (see Figure 4.5A). The example unit 

shown in Figure 4.5A exhibits narrow tuning around its BF of 1210Hz and shows an 

evoked response to the 4th tone in the pattern. On the other hand, the example unit 

shown in Figure 4.5B shows broader tuning around its BF of 240Hz and shows a 

reduced tone locked response but an overall increase in firing towards the end of the 

regular sequence. In Figure 4.5C, this unit doesn’t exhibit tight tuning but does exhibit 

some tone locked responses which become less evident towards the end of the 

regular sequence. Therefore, aspects such as the firing rate, whether it is to the 

neurons best frequency or an overall increase as the sequence emerges, or spike 

timing, where firing may become less or more tone locked, are important factors when 

understanding how random and regular contexts in the sequence may influence a  
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Figure 4.5: Heterogeneous spiking responses to regularity. A-C) Top – spectrogram of 
the auditory stimulus presented and (right) the mean Z-scored firing rate to each frequency 
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during all tone presented in the recording session before transition. The frequency which 
elicited the maximum firing (circled in green) was identified as the neurons best frequency 
(BF). Middle – Spike rate, binned at 25ms, of the single unit in response to the above 
spectrogram with the standard error shaded in grey and (right) the broadband waveform of 
the unit. Bottom – Raster plot of the spikes of the single unit to the above spectrogram and 
(right) inter-spike-interval histogram (ISI) of the unit. Spike count modulation indices: A = 
0.0240, B = 0.0784, C = 0.195.  

neurons response. Here I will consider both individual units as well as the population 

as a whole. 

 

4.3.2 Spike count decreases during regularity with increasing pattern lengths 

During the presentation of regular tone sequences to humans, a sustained 

increase in power within the MagEG and EEG signal is present compared to that 

during the presentation of random sequences (Barascud et al., 2016; Southwell, 

2019). Such a power increase was not observed in the LFP but whether an 

enhancement in neural firing will be present is unknown. Broad analysis of the spike 

count during the presence of regularity in the microelectrode recordings from auditory 

cortex in the ferret might shed light on this phenomena. To do this, I assessed the 

change in MU and SU firing in ferret auditory cortex during presentation of random 

and regular sequences. 

I looked at the activity for each trial/condition for each MU site (n = 240 MU 

sites) and SU (n = 172 single units) for trials in which the pattern was repeated multiple 

times within a session (unlike novel patterns that were generated anew each trial). I 

then calculated the average spike count per condition for each site for the 2s epoch 

following the transition from random to regular, contrasting this with the spike rate 

calculated over an equivalent time point from catch trials in which the sequence 

remained randomly generated. To mitigate differences in overall spiking between SUs 

and MUs, a modulation index was calculated for each MU site and SU where a positive 

index indicates higher firing during regularity. 

Analysis was split between MU and SU activity and when all pattern lengths 

and alphabet sizes were considered I observed no significant difference in activity 

between regular or random sequences in MU (mean = -0.00410; p = 0.352, W = 7923. 

Wilcoxon) or SU activity (mean = -0.00936; p = 0.216, W = 6550. Wilcoxon). 

Nonetheless when I investigate the modulation index as a function of pattern length 

(see Figure 4.6A-B) the population mean reveals a positive index for pattern length 3  
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Figure 4.6: Changes in multi and single unit firing during the presence of regular 
sequences compared to random sequences. A-B) Modulation index for each MU (A) and 
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SU (B) for each condition (coloured circles). The grey error bars indicate the mean and 
standard deviation across units for that condition. Significance bars between conditions from 
a pairwise Dunn test are indicated. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. Coefficients and 
limits for one and two-way factors in a mixed effects linear regression; (C) MU: R2 = 0.469; Df 
= 1526; random effect std. = 0.0622. (D) SU: R2 = 0.448; Df = 1482; random effect std. = 
0.0705. 

in both SU and MU activity. The modulation index decreases with increasing pattern 

length such that a negative modulation index is observed on average for pattern length 

7. This is confirmed with a mixed effects general linear model for both SU and MU 

revealing a main effect of pattern length with negative coefficients (see Figure 4.6C- 

D). Pairwise comparisons on MU activity reveal significant differences between 

RAN20-REG3 and RAN20-REG7 (p < 0.001) and RAN20-REG5 with RAN20-REG7 

(p < 0.001). In the SU activity I observe a greater difference between conditions with 

the modulation index for RAN20-REG3 significantly higher than RAN20-REG5 (p < 

0.001) and RAN20-REG7 (p < 0.001). In both SU and MU activity no significant 

difference is present in the modulation index between RAN5-REG5 and RAN20-REG5 

in the modulation index. This all suggests that pattern length seems to be a driver in 

the firing activity during regularity, with shorter pattern lengths, which the animals’ 

easily detect, eliciting higher firing rates compared to that of longer pattern lengths, 

where behavioural performance is more modest. 

The GLMMs revealed that location significantly influenced spike count during 

regularity. Focusing analysis on the SU activity, a Kruskal Wallis confirmed a 

significant difference between modulation indices (χ2 = 8.067, p = 0.0177), but 

pairwise comparisons identified no significant differences between locations though 

the mean modulation index is higher in MEG than the other subfields (see Figure 

4.7A). Depth was also noted as an influence on spike count, with the GLMM 

suggesting units in lower and middle layers showing adaptation to regularity, with 

facilitation being concentrated in the upper layers (see Figure 4.7B). A Kruskal Wallis 

confirmed significant differences between layers (χ2 = 10.177, p = 0.00617), and 

pairwise comparisons revealing a significant difference between upper and lower 

layers (p = 0.0363; Dunn test, Bonferroni). This suggests that there is differentiation 

between layers in how neurons respond to regular and random sequences, with upper 

layers producing stronger firing to regular sequences compared to that of random. 
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Figure 4.7: Changes in spike count during random and regular sequences by condition, 
cortical field and depth. A) Modulation index across conditions and single units separated 
by cortical field (AEG, MEG and PEG) and (B) approximate depth from cortical surface. C) 
Modulation index across single units separated by condition and location; and (D) condition 
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and depth. Pairwise comparisons using a Dunn test are indicated with significance bars. Error 
= standard error. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 

To investigate whether modulation index values were influenced by cortical field 

I considered modulation indices for each stimulus condition in turn, according to where 

the SUs were recorded. A Kruskal Wallis test on each condition was used to identify 

any differences in the modulation index between locations and depths at each 

condition. A significant difference in the modulation index was only found for RAN5-

REG5 between cortical subfields (RAN20-REG3: χ2 = 4.050, p = 0.528; RAN20-

REG5: χ2 = 3.413, p = 0.728; RAN20-REG7: χ2 = 0.954, p = 1; RAN5-REG5: χ2 = 

16.231, p = 0.00120. Bonferroni). Pairwise comparisons at RAN5-REG5 revealed that 

MEG showed significantly larger modulation indices compared to that of AEG (p = 

0.0263; Dunn test, Bonferroni) and PEG (p < 0.001; Dunn test, Bonferroni). 

Significant differences in the modulation index across layers (upper, middle and 

lower at 0.3 to 0.75, 0.75 to 1.5 and 1.5 to 2.25mm from putative cortical surface 

respectively), were found for all conditions apart from RAN20-REG5 (RAN20-REG3: 

χ2 = 18.741, p < 0.001; RAN20-REG5: χ2 = 3.215, p = 0.801; RAN20-REG7: χ2 = 

11.556, p = 0.0124; RAN5-REG5: χ2 = 12.191, p = 0.00901. Bonferroni). Pairwise 

comparisons revealed a higher modulation index in upper layers for RAN20-REG3 

(upper & middle: p = 0.00174; upper & lower: p = 0.00681; Dunn test, Bonferroni); in 

middle layers compared to that of upper in RAN20-REG7 (p = 0.00203; Dunn test, 

Bonferroni); and higher in upper and middle layers compared to that of lower in RAN5-

REG (upper & lower: p = 0.00192; upper & middle: p = 0.0201 Dunn test, Bonferroni). 

Overall, we see that location may play a differential role in encoding regularity for the 

matched condition RAN20-REG5. Depth, on the other hand, seems to vary in its 

influence depending on condition, with upper layers showing the strongest increase in 

spike count for regularity in RAN20-REG3 and RAN5-REG5; and middle layers in 

RAN20-REG7. 

 

4.3.3 Neurons entrain to the pattern rate during regularity 

In chapter three I show that oscillations in the local field potential at the tone 

presentation rate and pattern rate are present during the presentation of regular tone 

sequences. This oscillation may reflect local firing synchrony at the pattern rate and 

the spiking activity of neurons can entrain to these oscillations (Wilson et al., 2018). 
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Here I aim to investigate whether I see a reduced entrainment of spike times to the 

tone presentation rate (20Hz) in the regular conditions, as we see reduced oscillatory 

activity at this rate in the LFP during regularity, and/or whether there is increased 

entrainment at the pattern rate during regularity for pattern lengths 3, 5, and 7 (pattern 

rates: 6.67Hz, 4.0Hz and 2.86Hz respectively). To do this I calculated the vector 

strength at these frequencies of interest (FOIs) in the 2s window after the transition for 

each single unit where 1 indicates exact phase locking of spike times to the FOI and 

0 indicates no phase locking.  

Firstly, when focusing on the tone presentation rate (see Figure 4.8), I found 

no significant differences in the level of entrainment during the random or regular tone 

sequence for any condition (RAN20-REG3: W = 4687, p = 0.740; RAN20-REG5: W = 

3753, p = 1; RAN20-REG7: W = 3188, p = 1; RAN5-REG5: W = 1767, p = 1. Wilcoxon, 

Bonferroni). A Kruskal Wallis test also revealed no significant differences between 

condition (W = 1.709, p = 0.635). Nonetheless, when I investigated entrainment at the 

pattern rate (see Figure 4.9), significant increases in vector strength at each 

conditions pattern rate during regularity was found across all conditions (RAN20-

REG3: W = 2733, p < 0.001, RAN20-REG5: W = 2478, p = 0.00301; RAN20-REG7: 

W = 1983, p < 0.001; RAN5-REG5: W = 683, p < 0.001. Kruskal Wallis, Bonferroni).  

A Kruskal Wallis test revealed no significant difference in vector strength between 

condition either (W = 2.560, p = 0.464). Overall, this suggests that the timing of the 

spikes remains stable between random and regular conditions to individual tones, but 

at the pattern rate the timing becomes more entrained during regularity than during 

the random sequence. 
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Figure 4.8: Vector strength of single unit firing to the tone presentation rate (20Hz) for 
each condition. Vector strength at 20Hz for each SU in the REG and RAN condition (coloured 
circle) for each condition (A = RAN20-REG3; B = RAN20-REG5; C = RAN20-REG7; D = 
RAN5-REG). A red cross denotes the centroid of the cluster. Equality line (dashed line). 
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Figure 4.9: Vector strength of single unit firing to the pattern rate for each pattern 
length. Vector strength at the pattern rate for each SU in the REG and RAN condition 
(coloured circle) for each condition (A = RAN20-REG3 (6.67Hz); B = RAN20-REG5 (4.0Hz); 
C = RAN20-REG7 (2.86Hz); D = RAN5-REG (4.0Hz)). A red cross denotes the centroid of the 
cluster. Equality line (dashed line).  

 

4.3.4 Single units show decreased mean firing and more precise temporal 

coding during regular contexts 

The previous analysis has looked at the response of units to all tones within the 

sequence, however neurons in auditory cortex are typically frequency tuned and are 

more likely to respond to just a few tones within the sequence. The increased 

entrainment could therefore be a reflection of frequency tuned neurons responding at 

periodic intervals in the sequence. Therefore in this case I chose to investigate how 

the firing of units to their best frequency change whether it is in a random context (in 
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the random sequence) or in a regular context (during the regular sequence; see 

Figure 4.10).  

In auditory cortex (but not MGB or IC) neuronal responses to identical noise 

bursts were influenced by whether the noise bursts were presented rhythmically or at 

randomly timed intervals (Asokan et al., 2021). SU spike rates were unmodulated but 

the temporal profile of the spiking responses differed such that in the rhythmic context 

responses were more temporally compact or precise. Here I take the analytic 

approach developed by Asokan et al. (2021) to determine whether the responses of 

each SU to BF tones differed between random and regular contexts and how both 

spike rate and timing might be impacted by regularity. To calculate the firing rate 

modulation index I took the average firing rate of the unit to its BF tone in the sequence, 

defined as the tone frequency in the random sequence preceding the transition that 

elicited the strongest response. I then measured a mean firing modulation index where 

a positive index indicated a higher mean firing for the regular context over random 

(see Figure 4.10, third row). I calculated a precision modulation index to indicate how 

precise or temporally compact the evoked spikes were. This was calculated from the 

decay time constant (t) of an exponential fit (solid line) to the temporal spike count 

autocorrelation (dashed line) such that a negative index indicated more precise 

temporal coding during the regular context over the random context (see Figure 4.10, 

last row).  

Across the SUs I observed heterogeneous modulation in both the mean firing 

and the temporal precision of the firing. Figure 4.10A displays a SU that showed no 

difference in its mean or temporal firing, whereas Figure 4.10B shows a unit with 

similar mean firing across the window but much less precise temporal coding in the 

regular context. Figure 4.10C shows a larger increase in firing in the regular context 

and increased temporal precision. Across the population of SUs the mean firing rate 

modulation index was significantly below 0 (mean = -0.0205; W = 6573, p = 0.0328; 

Wilcoxon) and as was the precision modulation index (mean = -0.0348; W = 5945, p 

= 0.00237; Wilcoxon). These data suggest that neurons when responding to their BF 

decrease their firing in the regular context compared to the random and that their firing 

also becomes more precise, and time locked during regularity.  
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Asokan et al (2021) had also identified increased precision for spiking in a 

regular context for shorter pattern lengths. To test if and which conditions showed 

significant changes in the mean firing rate modulation index between random and 

regular contexts, the index was calculated for each condition separately and a 

Wilcoxon test was performed (Bonferroni; see Figure 4.11). Only RAN20-REG5 

showed significant decrease in the mean firing rate index (RAN20-REG3: W = 1700, 

p = 0.0870; RAN20-REG5: W = 2173, p = 0.0237; RAN20-REG7: W = 2088, p = 0.209; 

RAN5-REG5: W = 900, p = 0.542. Bonferroni). The same tests were performed on the 

precision modulation index and again the only significant decrease was identified in 

the RAN20-REG5 condition (RAN20-REG3: W = 1748, p = 0.136; RAN20-REG5: W 

= 2281, p = 0.0415; RAN20-REG7: W = 2248, p = 0.629; RAN5-REG5: W = 769, p = 

0.0833 Bonferroni). This suggests that the firing rate and precision of firing is 

modulation by condition, specifically RAN20-REG5.  
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Figure 4.10: Mean firing rate and precision modulation indices for neural responses to 
their best frequency in random and regular contexts. Top – Raster plot of an example 
single unit responding to its best frequency tone presented in a random sequence (blue) or a 
regular sequence (pink). Middle – Smoothed mean spike rate of the single-units response to 
the tone in the random or regular contexts, with the individual units firing rate modulation index 
labelled above. Bottom – Autocorrelation function (dashed line) for the example units and fitted 
exponential decay function (solid line). 
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Figure 4.11: Modulation index of firing rate and firing precision over the population of 
single units and between conditions. A) Modulation index of firing rate (left) and precision 
(right) across the population of single units and conditions and separately for RAN20-REG3 
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(B), RAN20-REG5 (C), RAN20-REG7 (D) and RAN5-REG5 (E). Dashed line indicates the 
mean. 

4.3.5 Unpicking sensory and non-sensory effects: population level analysis 

As seen in the data above, multiple factors can affect the firing, from the 

frequency tuning of the neuron to whether the sequence is regular or random, and 

considering the whole 2s sequence post-transition from random to regular (see Figure 

4.6) or just BF tones (see Figure 4.11) yields different conclusion about the impact of 

regularity on spike rates. Moreover, the animals are performing a GO/NO-GO task, 

and movement which is known to affect cortical firing (Schneider et al., 2021; Town et 

al., 2017), is highly correlated with the presence of regularity. To pull apart the 

influences of frequency tuning and regularity on neural firing throughout the entire 

sequence, and include additional non-sensory effects such as movement and reward, 

I used a generalized linear mixed effects model (Poisson) to model spike count in 

50ms time bins (i.e. the length of a single tone pip). I recorded the frequency distance 

of the tone to the neurons BF, the number of times the pattern had repeated, whether 

there was regularity and the behavioural state of the animal (stationary or moving, 

receiving a reward or not receiving a reward; see Figure 4.12 for a schematic) as fixed 

effects. In order to visualise the effects that were consistent across the population, 

while allowing the overall spike rate to vary across units, SU identity was considered 

as a random effect in a random intercept model. This analysis was performed across 

the population of SUs, for each condition separately as not all SUs were presented 

every condition. 

The Poisson GLMM (see Figure 4.13 and see Table 9.5 for the full model), 

revealed that most of these factors produced significant effects in the spike counts of 

SUs. Firstly, and reassuringly, the frequency distance of a tone from the units’ BF was 

a strong significant main effect in all conditions, with a larger frequency distance to the 

neurons best frequency inducing lower spiking. Secondly, the model identified a 

significant main effect of regularity in RAN20-REG3, RAN20-REG5 and RAN5-REG5, 

where regularity significantly decreased the spike count in these conditions. In RAN20-

REG7 (estimated with different units) the trend was in the same direction, but the 

confidence intervals for the coefficient included zero. In contrast, the number of times 

a pattern repeated showed significantly positive effects in all conditions but RAN20-

REG7, where the more the pattern repeated the higher the number of spikes. Non-

sensory effects also influenced firing; movement showed significant effects in all 
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conditions, with positive coefficients in all but one condition (RAN20-REG5), and 

significant main effects of reward in RAN5-REG5 (with a large negative coefficient). 

This model suggests that multiple factors influence spiking in AC neurons, with 

regularity overall supressing spiking, but with facilitation increasing through the trial. 

 

Figure 4.12: Modelling neural responses with stimulus and behavioural predictors. A 
schematic of example trial showing how each predictor is coded for the generalized linear 
model. 
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Figure 4.13: Mixed effect Poisson regression on the spike count across single-units for 
each condition. Coefficients and limits for one-way factors in a mixed effects Poisson 
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regression where a positive coefficient is indicative of increased spiking during the observed 
time bin. RAN20-REG3: R2 = 0.111; Df = 964000; random effect std. = 0.789. RAN20-REG5: 
R2 = 0.103; Df = 461000; random effect std. = 0.715. RAN20-REG7: R2 = 0.0860; Df = 269000; 
random effect std. = 0.717. RAN5-REG5: R2 = 0.0990; Df = 459000; random effect std. = 0.629 

4.3.6 Unpicking sensory and non-sensory effects: single unit analysis 

The previous analysis gives an overall picture of the neural population, but as 

seen before, the neural response is heterogeneous. Therefore it is necessary to 

understand whether the adaptation for regularity and the facilitation for the increasing 

repeats of the pattern are carried by separate neural populations or within the same 

neuron. Firstly, to understand what proportion of neurons are responsive to each of 

these factors and where they lie within the cortical subfields, I performed an equivalent 

GLM (Poisson) on each SU individually and looked at the proportion of SUs influenced 

by each factor in relation to location. Based on our understanding of auditory cortex, I 

predicted that the largest proportion of SUs to be influenced by frequency distance to 

be located within MEG (A1) and perhaps any SUs affected by behaviour to be present 

in secondary areas (AEG and PEG). Of great interest was whether effects of regularity 

differed across primary and secondary AC. 

In Figure 4.14A we can observe the proportion of SUs that showed significant 

effects of each factor (regularity, reward, movement, pattern repetitions and frequency 

distance) separated by the cortical subfield each SU belongs to. The largest 

proportions of SUs are significantly affected by frequency distance, with the highest in 

MEG followed by that of PEG. Pattern repetitions influence a higher proportion of SUs 

compared to that of regularity; 56.5% in MEG, followed by AEG (48.7%) and PEG 

(43.2%). Movement is most strongly represented within AEG with 56% of SUs in AEG 

showed significant effect of movement. 26.4% of SUs in MEG and 32.8% of SUs in 

PEG were sensitive to reward and 35.1% in MEG and approximately 28% of SUs in 

AEG and MEG were sensitive to whether the sequence was regular.  

To investigate whether the relationship between these predictors and the 

location of SUs varies, I assessed the coefficient for each factor per location (see 

Figure 4.14). MEG and PEG show negative coefficients for regularity whereas AEG 

has SUs that strong increases and decreases in spike count during regularity (see 

Figure 4.14B). Interestingly, SUs in MEG and AEG overall show close to 0 or negative 

coefficients for the number of pattern repetitions, however most SUs in PEG show 

positive coefficients, meaning that SUs in PEG increase their firing as the pattern  
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Figure 4.14: Proportion of single-units showing significant main effects of each 
predictor from the Poisson GLM. A) Bar chart showing the proportion of SUs per cortical 
subfield that show main effects for each predictor. B-F) Coefficients for each SU separated by 
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predictor and coloured by cortical subfield. Error bars show mean and standard deviation 
across SU coefficients for each subfield. 

is repeated, unlike SUs in MEG and AEG (see Figure 4.14C). Movement is fairly 

equivalent across subfields with units in MEG showing a more positive trend (see 

Figure 4.14D) and reward showing mostly negative coefficients (see Figure 4.14E). 

Frequency distance showed the most negative coefficients in MEG and PEG (see 

Figure 4.14F). In conclusion, it suggests that MEG and PEG are most affected by the 

frequency of the tone, which is unsurprising. However, PEG shows mostly positive 

main effects of pattern repetitions, in comparison to MEG and AEG. 

Neurons are not solely affected by only one factor, showing main effects of 

multiple predictors. To determine whether certain combinations occur more frequently 

than chance, I calculated the intersection size for each combination of predictors. For 

example, one set of units may show main effects for only the frequency distance 

whereas another set may show main effects of both movement and reward. Some 

combinations may occur by chance, so to identify significant intersections between 

predictors for single units, I performed a permutation test, independently shuffling the 

significance value for each effect and then I recalculated the intersection size for each 

intersection/combination. I then computed the 95th percentile across 1000 iterations 

for each combination and remove intersection sizes smaller than this percentile for the 

corresponding combination (see Figure 4.15 for the resulting intersections and Figure 

9.2 for the full categorisation plot). This analysis shows that the most significant 

common portfolio of main effects represented in individual SUs is frequency tuning in 

isolation, followed by movement. Next is a combination of pattern repetitions, 

regularity, movement, and frequency distance and lastly all the effects in conjunction. 

This suggests that in this population of SUs in AC that there is no cluster of neurons 

that solely encoding regularity or the number of times a pattern has been repeated. 

Instead we see these SUs are responsive either to just frequency, or movement, or to 

a large combination of factors. 
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Figure 4.15: Categorisation plot of significant effects for each single-unit. Each factor is 
represented in each row, with a black circle indicating if that factor is present within that 
intersection, with lines joining factors in the same intersection/combination. The histogram 
above shows the number of SUs that belong to each intersection/combination, and the 
histogram on the left show the number of SUs that are significantly influenced by that factor. 
Only intersections that occurred above chance (95th percentile of shuffled data) were included. 

 

4.4 DISCUSSION 
The motivation behind this chapter was to advance the research towards 

understanding the neural mechanisms behind regularity detection. Previous work that 

has used these random to regular tone sequences have focused on conducting non-

invasive recordings in the human brain (MagEG, EEG and fMRI), providing a 

macroscopic perspective on the neural computations underlying this process. 

However, it is unclear how the firing of neurons contributes to the effects seen at this 

larger scale. In contrast, studies using more invasive techniques such as extracellular 

electrophysiology in animal models have employed different paradigms that don’t 

directly test the encoding of these deterministic frequency patterns. For example, 

simple oddball paradigms, repeating noise bursts, or tone patterns embedded within 

noise bursts, either lack the complexity, parametric control or direct comparison with 

the tone sequences used in the mentioned human studies. Therefore, with these data 
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I can begin to elucidate the neural mechanisms that underlie detection of these 

random to regular sequences. 

In this chapter I analysed the SU and MU activity of neurons in auditory cortex, 

both in primary and secondary cortical subfields. One main theme that has ran through 

the chapter is the heterogeneity of responses to the stimuli, with some neurons 

showing strict tone locked responses to its BF or others showing less frequency tuning 

and a more overall decrease or increase in firing as the sequence emerges. This 

heterogeneity was present in the firing of units to their BF in random or regular contexts 

with some increasing or decreasing their firing or enhancing or reducing their firing 

precision. This is why a two-fold analysis was needed, examining across the 

population but also assessing individual units to how they respond and where they 

might be located. This can help us to infer whether their property is inherited from 

specific thalamic or cortical connections or whether it is inherent in primary or 

secondary areas of AC. 

As a first pass, across the population of SU and MU activity I observed significant 

differences in the overall spike count between random and regular sequences, and 

these differences were modulated by the pattern length of the stimulus. Shorter 

patterns of 3 elicited larger responses in the regular sequences compared to the 

random, whereas longer patterns of 7 produced less spiking in the regular sequences 

compared to the random. This is unexpected given the view on SSA where a repeating 

stimulus should produce a reduced response due to adaptation; a pattern length of 3 

provides repetition of tones at an increased rate compared to that of a pattern length 

7. This suggests that repetition suppression does not seem to be driving the reduction 

of responses, at least not in the majority of neurons. From the context of human 

cognitive studies, they observed increased responses in the neural signals for 

sequences with increased predictability. Whether the increase in spike count I observe 

in pattern length 3 corresponds to what is observed in the increase in sustained power 

in EEG and MagEG data is unlikely, given that for longer pattern lengths, there are 

less spikes in the regular sequence compared to the random and that in MagEG and 

EEG the neural response always increases for regular sequences despite the pattern 

length.  
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Entrainment was observed in the spike timing at the pattern rate for all conditions, 

but not the tone presentation rate. Whether this is a property inherited from subcortical 

regions due to the induction of these oscillations by the inherent properties of repeating 

a frequency within a pattern is unknown. However studies indicate that this 

entrainment occurs earlier in A1 (and the medial pulvinar) than the thalamus, which 

supports the idea that this entrainment is from top-down connections rather than 

subcortical (Barczak et al., 2018). This entrainment of spikes was evident in the vector 

strength measures and when using a measure of how temporally precise or compact, 

spiking was in response to BF tones in regular over random sequences. This increase 

in precision potentially allows AC to become more primary-like, allowing bottom-up 

information to pass through the ascending auditory system more easily and increasing 

processing efficiency. This entrainment could be generated by frequency separated 

neuronal populations firing periodically inducing an oscillation that in turn causes 

further entrainment. One could predict that the more frequency tuned the SU, the 

greater the entrainment. On the other hand, in a predictive-coding framework this 

entrainment or increase in firing precision could be due to ‘negative prediction-error 

neurons’ that are excited by an enhancement of an internal model, or predictability of 

the incoming stimulus (Keller and Mrsic-Flogel, 2018). These ‘negative prediction-

error neurons’ could modulate the precision of neurons in AC via local or long-range 

inhibitory network that decrease the latency of their output to excitatory neurons within 

AC, sharpening neural firing  (Lee et al., 2020). 

 Using a Poisson GLMM on individual time bins allowed me to tease apart the 

effects on firing rate of the ferret’s behaviour from those of regularity. Negative main 

effects of regularity were identified across RAN20-REG3, RAN20-REG5 and RAN5-

REG5, with no effect in RAN20-REG7, the least predictable of the four conditions. This 

fits within the view of SSA and predictive coding, in which predictable stimulus should 

elicit smaller neural firing due to incoming stimulus already matching the internal 

model. In contrast, I did find that the number of repeats of a pattern showing significant 

positive effects, again in all these conditions apart from RAN20-REG7, suggesting that 

spiking increases with more repeats of the pattern.  Furthermore, I identified 

movement as a significantly positive main effect in RAN20-REG3, RAN20-REG7 and 

RAN5-REG. This is consistent with primate work which showed elevated firing in AC 

during arm movements (Schneider et al., 2021) and a study in ferrets which identified 
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units in AC either increasing and decreasing their firing in relation to movement speed 

in a sound localisation task (Town et al., 2017). This is in contrast to studies in rodents 

that commonly identify a net decrease in  stimulus-related firing by excitatory neurons 

in AC during movement (Bigelow et al., 2019; Schneider et al., 2014; Zhou et al., 

2014).  

As highlighted by Asokan et al. (2021), the temporal integration window of A1 is 

approximately 20ms which is much shorter than the duration of the patterns used in 

this study (ranging from 150 to 350ms), and their study (800ms). The authors suggest 

it is likely that this sensitivity to these pattern features are from other local or long range 

circuits that respond more directly to the acoustic patterns. In my work, I recorded from 

secondary areas of auditory cortex (AEG and PEG), that are likely to have longer 

integration windows (Norman-Haignere et al., 2022); though future work could directly 

test the integration windows of these areas in the ferret model. Consistent with a role 

for secondary areas in extracting acoustic regularities, SUs in PEG showed increase 

firing to increasing pattern repetitions compared to that of MEG and AEG. Saderi et 

al. (2019) had also found enhancement in firing to the repeated target stream (frozen 

noise bursts), in a ferret animal model. However, through analysis of the combination 

of factors that influence the firing of individual SUs, I did not find significant 

intersections that solely coded for regularity or the pattern repetitions, instead neurons 

were significantly more likely to encode multiple factors, including behaviour, if they 

did not encode frequency tuning in isolation. 

In summary a variety of neural responses are observed. Analysis of spike timing 

revealed enhanced entrainment to the respective pattern rate of each pattern length 

during the regular tone sequence and when observing the neurons response to its 

best frequency, an enhanced precision of firing is evident in the regular context when 

compared to random. Investigating the overall spike count during the regular 

sequence, I show the majority of neurons demonstrate an increased number of spikes 

to the regular sequence for pattern length 3 which then decreases such that the 

random sequence elicits higher spikes than the regular sequence for pattern length 7. 

When mitigating against behavioural effects such movement and reward, I revealed 

that spiking decreases during regularity as a whole but increases with every 

subsequent repetition of the pattern. Neurons that are sensitive to regularity and the 

number of repetitions are not responsive to each factor in isolation but are rather 
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multiplexed and additionally sensitive to other factors such as frequency and 

behavioural factors. However, it is unclear the origin of neurons that are responding 

directly to the predictable stimulus, and whether it may be a region that is more adapt 

at learning statistical structure, unlike AC. One such structure is the hippocampus 

(HPC), which has also been implicated in previous human imaging studies (Barascud 

et al., 2016). In the following chapter I will use high-density linear probes to 

simultaneously record from multiple depths of AC and HPC to understand the potential 

role of HPC and laminar structure of AC on regularity detection.  
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5 CHAPTER FIVE: NEURAL RESPONSES IN HIPPOCAMPUS 

AND AUDITORY CORTEX 

5.1 INTRODUCTION 
In chapters 3 and 4 I examined the local field potential and SU/MU activity of 

auditory cortex in response to random and regular tone sequences. In the LFP, I 

observed decreases in oscillatory power at the tone presentation rate and increases 

in the pattern rate during the presence of regular sequences when compared to 

random sequences. Moreover, SU and MU responses showed increased spiking to 

regularity for shorter pattern lengths whilst also increasing with more repetitions of the 

pattern. Notably, SU firing entrained to the pattern rate and became more precise 

when the unit fired to its best frequency during the regular sequence.  

Auditory cortex exhibits both tonotopic structure and columnar organisation, 

which results in neurons across AC having distinct response properties. AC has a well-

defined laminar structure of six layers: layer IV contains strong thalamic input, layer V 

is populated by large excitatory pyramidal neurons, whereas upper layers such as II 

and III contain major cortico-cortical connections (Linden and Schreiner, 2003; Winer, 

1992). Furthermore, acoustic features such spectral integration range, minimum 

latency, binaural interaction and intensity threshold vary in their representation as you 

move orthogonally from the cortical surface (see for a review: Linden and Schreiner, 

2003). The predictive coding framework, in which the brain generates predictions 

based on previous input and encodes unexpected sensory inputs to update its internal 

model, has been modelled using a laminar basis of hierarchy (Bastos et al., 2020; 

Shipp, 2016). In this case units encoding prediction error are thought to be in the 

superficial layers of II and III with units encoding expectation in deep layers V and VI 

(Heilbron and Chait, 2018). However the literature supporting this theory is 

inconclusive; one study has shown attenuation to predicted sounds in deeper layers 

of auditory cortex (Rummell et al., 2016) whereas another study identified no clear 

difference between layers to expected stimuli (Szymanski et al., 2009). Largely it is 

unclear how units in different layers of auditory cortex may respond during regularity 

detection of random to regular sequences. 

The neuronal mechanisms underlying the detection of changes in sound 

statistics that indicate a random to regular transition are not solely attributed to AC. In 
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recent years the hippocampus, though not usually described as auditory brain region, 

has continuously been associated with the wider networks that support auditory 

cognition and specifically auditory processing that requires statistical learning (see for 

a review: Billig et al., 2022). Patients with hippocampal lesions are impaired when 

learning probabilistic relationships between successive pure tones and syllables 

(Covington et al., 2018; Schapiro et al., 2014) and fMRI recordings in healthy subjects 

showed a positive correlation between bilateral hippocampal BOLD activity during 

exposure to tone sequence regularities in a sensorimotor task (Jablonowski et al., 

2018). Hippocampus has also been implicated in the role of temporal integration of 

acoustic patterns (Geiser et al., 2014) and in sending auditory predictions to auditory 

cortex (Recasens et al., 2018, 2018). Furthermore, direct projections from secondary 

areas of auditory cortex to subdivision of hippocampus have been identified in the 

macaque and rodents (Amaral et al., 1983; Burwell and Amaral, 1998; Munoz-Lopez 

et al., 2010; Suzuki and Amaral, 1994; Yi et al., 2022) and subcortical auditory 

projections in rodents (Bordi and LeDoux, 1994; LeDoux et al., 1985; Wahlstrom et 

al., 2018; Xiao et al., 2018).   

The hippocampus has been directly implicated in regularity detection as 

evidenced by MagEG and fMRI recordings of hippocampus during the presentation of 

these sequences (Barascud et al., 2016). In this study, the hippocampus showed 

increased activation during presentation of the regular sequence compared to that of 

the random sequence. A more recent study testing responses of neurons in 

hippocampus in epileptic patients to predictable and unpredictable pure tone 

sequences observed larger responses in the 1-8Hz band to predictable sequences 

(that had deviants presented at 0.29Hz and individual tones at 1.43Hz) with 

hippocampus neurons responding selectivity to deviant sounds, and 

parahippocampal/entorhinal neurons responding to standard sounds (Tzovara et al., 

2022). However, few studies have examined the response of hippocampus to 

predictable pure tone sequences, as used in this in thesis, and therefore it remains to 

be determined how neurons, or oscillations within the LFP of hippocampus respond to 

these random to regular sequences in a behaving animal model. 

In this chapter I use Neuropixels probes (2.0; Steinmetz et al., 2021) and 

leverage the linear high-density electrodes to record neural responses across all 

cortical layers of AC and HPC simultaneously. The aim is to investigate whether the 
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neural correlates identified in chapters 3 and 4 can be identified in HPC and if there is 

any variation by depth in AC. Neuropixels probes are a recent advancement in 

technology that allow the recording of a significantly greater number of electrodes, 384 

recording sites, compared to the previous equipment used in this thesis (i.e. WARP 

microelectrode arrays contains 32 recording sites at a time). The acute and chronic 

recording of neural responses using Neuropixels (1.0) has now been well documented 

in rodent species (Durand et al., 2023; Juavinett et al., 2019; Luo et al., 2020), with 

acute recordings very recently performed in human cortex (Paulk et al., 2022). 

However, chronic recordings in awake and behaving ferrets have not yet been 

reported, with only acute recordings documented in the ferret in recent years (Gaucher 

et al., 2020; Town et al., 2023). 

In this chapter I demonstrate the ability to target and chronically record from both 

AC and HPC simultaneously, with Neuropixels (2.0). I employ metrics such as the 

theta power (an indicator of HPC oscillations in the ferret; Dunn et al., 2022), the 

correlation in the LFP between channels, and assessing whether sites are auditory 

evoked to confirm the location of these brain regions. I present the same deterministic 

acoustic patterns in the form of random to regular sequences as used in the previous 

chapters, to two ferrets, one listening passively and one performing the GO/NO-GO 

task as described in chapter 2. I analyse the changes in spike count in response to 

random and regular sequences in both AC and HPC and with the increased spatial 

resolution down the cortical column, I then examine how the response of units change 

in accordance with depth. Additionally, I compare the entrainment of spikes between 

random and regular sequences in HPC, and whether I observe greater or reduced 

entrainment to either the tone presentation rate (20Hz) or pattern repetition rate for 

each pattern length: 3, 5 and 7 tones, at rates: 6.67, 4.0 and 2.86Hz respectively. 

Finally, I examine the oscillatory power at the tone presentation rate and pattern rate 

in sites in HPC to gain insight into whether regularity modulates oscillatory power in 

the LFP. 

Supporting the evidence in chapter 4, analysis of spike count revealed higher 

spiking activity for regular sequences over random in AC, with this enhancement 

decreasing with increasing pattern length. Sites that showed the greatest difference in 

spike count between random and regular sequences tended to cluster around putative 

layers V and VI. In HPC, I observed modulation in the spike count to pattern length 
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and increased entrainment to both the tone presentation rate and pattern rate during 

the presentation of regular sequences when compared to random sequences. In the 

LFP of hippocampus, I revealed changes in power at the tone presentation rate 

dependent on both pattern length and regularity of the stimulus, and increases in the 

pattern rate during regularity for RAN20-REG5 and RAN5-REG5.  

 

5.2 METHODS 

5.2.1 Surgical procedure 

One trained adult female-pigmented ferret (F2003), once they reliably performed 

above chance on all conditions (see Figure 2.3), and a naïve passively listening 

animal (F2101) were implanted unilaterally with a 4-shank (type 24) Neuropixels 2.0 

probes (Steinmetz et al., 2021) in the left hemisphere. I pre-sharpened the probes 

using the Narishige EG-45 grinder at an angle of 30⁰, to aid insertion through the pia 

of the brain once the dura was removed. To assist the affixation of the probe to the 

dental cement during implantation, and to add a mounting point to attach a sliding rail, 

I designed and 3D printed an enclosure (see Figure 5.1A) which was affixed with 

epoxy to the circuit board of the probe. In addition, I designed and 3D printed custom 

implant wells from durable resin (Formlabs, Form 3), to encase the probe and ribbon 

cable and protect from physical damage during chronic implantation and after recovery 

from surgery in the animals’ home cage (see Figure 5.1B). This minimised motion 

artefacts and safeguarded the probe, enabling recordings from the probe for > 1 year 

after implantation. 
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Figure 5.1: Chronic Neuropixels implantation and recording. A) 3D model both sides of 
the Neuropixels enclosure with the rail attachment on the right. B) 3D model of cap (left) and 
implant well (right) used to house the probe. C) Schematic of Neuropixels implantation, 
illustrating position of ground screws, probe, implant well and the location of the silicone and 
bone cement. D) 3D model of the recording assembly (right) and the cover (left). E) Picture of 
the recording assembly whilst the probe is plugged into the headstage. F) Picture of the 
recording assembly with the cover on. 

Neuropixels probes were surgically implanted under sterile conditions whilst the 

ferret was under anaesthesia. Implantation protocol followed that as described in 

chapter three with some modifications for the Neuropixels probes (see Figure 5.1C). 

To implant the Neuropixels probes to target both AC and HPC, an atlas was used to 

approximate the location, angle and depth of implantation  (Radtke-Schuller, 2018). 

As the hippocampal structure lies underneath but on the dorsal end of AC, to target 

both, I aimed for the posterior edge of AC, either in the top corner of MEG or a more 
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ventral position towards PEG (see Figure 5.3 and Figure 5.2 for anatomical 

positions). The depth of the probe was then measured with a micromanipulator during 

implantation to ensure the tips of the probe did not contact the skull. A small 

craniotomy was created and the dura, and in some cases the pia, was removed. The 

probe was then attached to a custom probe holder and then driven slowly into the 

brain tissue.  

After implantation the probe was embedded within inert silicone elastomer in the 

craniotomy (Kwik-Sil, World Precision Instruments). The probe was then affixed to the 

skull via dental cement (Palacos R +G, Heraeus). After a small initial layer, the copper 

ground wires (attached to the external ground of the probe) were attached to the 

ground screws connected to the skull. The custom wells where then secured around 

the probe with additional dental cement. Once secured the chamber within the wells 

were backfilled with dental cement to provide additional stability to the probe. The 

ribbon cable of the probe could then be gently folded and stored within the well ready 

for recording. A head bolt was attached at the midline to aid head fixation during 

maintenance of the implant. Excess skin was removed to secure the rest of the skin 

smoothly around the edges of the implant. Animals were then allowed to recover for a 

week post-surgery before recordings commenced. Pre-operative, peri-operative and 

post-operative analgesia and anti-inflammatory drugs were provided to animals under 

veterinary advice. 

 

5.2.2 Neural recordings 

To record from the Neuropixels chronically, I designed, and 3D printed a 

removable assembly that attached to the custom implant wells via a small 3mm in 

diameter screw (see Figure 5.1D). The assembly housed the headstage (Neuropixels, 

IMEC, version 2.0) and the cable (Neuropixels, IMEC) which was protected with heat 

shrink and supported by a metal wire that attached to the assembly to minimise any 

tensile forces on the Neuropixels cable itself (see Figure 5.1E). A custom cover that 

slid onto the assembly protected the components during recording (see Figure 5.1F). 

From the headstage, the cable connected to a PXIe data acquisition card (IMEC), this 

in turn connected to a PXI chassis (PXIe-1071 and PXI-6132 I/O module, National 

Instruments) connected to the PC via a MXI cable and PCIe-8381 card (National 

Instrument). Recordings were digitally acquired at a sample rate of approximately 
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30kHz (with some small variation between headstages) via SpikeGLX (version 3.0., 

billkarsh. github.io/SpikeGLX). To sync the neural signals with the stimulus 

presentation, an I/O module (PXI-6132, National Instruments) was connected to the 

chassis and received a sync pulse from the Neuropixels via the PXIe data acquisition 

card at trial onset from the signal processor (RX8, Tucker-Davis Technologies). 

Recordings were on average 20 minutes in length and occurred twice a day between 

Monday and Friday. To perform passive recordings, a custom-built syringe pump 

delivered a constant flow of water at the central spout (see Figure 9.3), keeping the 

animals head in the centre of the arena during the presentation of the stimulus.  

The Neuropixels probe itself can record from a possible 5120 electrode sites 

(1280 sites per shank). However only a subset of 384 sites can be recorded from at 

once and the location of these sites are limited by electronic mapping of digital 

channels across the shanks. Therefore, I generated custom maps to indicate which 

sites to record from, that initially contained broad coverage of the shanks to identify 

sites of interest (i.e. in AC and HPC) and then different maps to focus in on regions of 

interest. Typically, only one shank out of four on the Neuropixels 2.0 probes was 

recorded at a time during each recording session. This maximised the density of 

recording sites within a region of interest to increase spike yield, whilst maintaining 

simultaneous recording of both auditory cortex and hippocampus. During recording I 

used the external ground, attached to the screws embedded in the skull, as the 

electrical reference. 

5.2.3 LFP and spike extraction, sorting and clustering 

All neural data analysis was performed offline in MATLAB (MathWorks) and 

Python through a custom data analysis pipeline. To extract the local field potential, I 

used the CatGT tool (version 3.0., billkarsh. github.io/SpikeGLX) to filter the 

broadband signal with a band-passed Butterworth filter (0.1 to 300Hz, filter order of 6) 

and down sampled to a sample rate of 2.5kHz. To extract the spike times from the 

neural signal I used the CatGT tool (version 3.0., billkarsh. github.io/SpikeGLX) to filter 

the broadband signal with a band-passed Butterworth filter (300 to 5000Hz) and 

putative action potentials were then extracted and sorted in Kilosort (version 3.0., 

www.github.com/MouseLand/Kilosort), and manually curated to identify single (n = 38) 

or multi-unit (n = 182) activity. Spike clusters were merged based on assessment of 

waveform similarity and classed as a single unit using waveform size, consistency, 
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and inter-spike interval distribution (all single units had fewer than 2% of spikes within 

2ms). Any clusters not classed as single units were classed as multi-units. Each 

recording session was spike sorted individually, and therefore for MU and SU activity, 

all units recorded from the same shank and depth at the Neuropixels probe across 

recording blocks were classed as the same MU or SU across recording sessions (see 

Table 5.1 for total number of MUs and SUs for each animal in each region). 

Subject 
no. 

Total no. 
recordings 

MU sites 
(AC) 

MU sites 
(HPC) 

SU sites 
(AC) 

SU sites 
(HPC) 

F2003 29 73 57 19 13 

F2101 12 33 19 5 1 

Total 41 106 76 24 14 

 

Table 5.1: Number of multi-unit sites and single-units for each ferret in auditory cortex 
(AC) and hippocampus (HPC) 
 

5.2.4 Neural analysis 

To identify the location of sites within the brain, sites were firstly assessed on 

whether they were ‘auditory evoked’. Responsiveness was statistically analysed via 

the use of the ZETA test for time series data, zetatstest (Montijn et al., 2021). This test 

compared the evoked activity of the averaged LFP from the first 300ms of sound onset 

of a site across all trials within a session, to a null hypothesis distribution by running 

multiple bootstraps on jittered stimulus-onset times. A ZETA p-value of < 0.05 

indicated significant auditory evoked onset activity for that recording session and site. 

Frequency response areas were measured as described in 4.2.2 to identify whether 

the shanks were in high or low frequency auditory cortex. To identify the theta power 

I performed a Welch’s power spectral density estimate (PSD), pwelch (MATLAB), on 

the LFP on the first 2 minutes of the recording with a window length of approximately 

1.6s (4096 samples). I then normalised and averaged the power between the range 

of 3-7Hz, known to be the range of theta within the ferret (Dunn et al., 2022). To 

calculate the correlation matrix, I took the first second of recording and calculated the 

correlation coefficient, corrcoef (MATLAB), between each of the channels. 

To calculate the difference in overall spike count during regularity compared to 

the random sequence I calculated a modulation index. For each trial, the number of 

spikes was summed from the transition to the end of the stimulus (2s). Trials that were 

a correction trial, contained a manual training reward at centre, contained a false alarm 

before the transition or were the first four trials of a recording session were excluded 
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from analysis. To calculate the change in spike count between random and regular 

sequence modulation index, for each unit and condition the difference between the 

mean spike count (SC) of random and regular trials were taken and divided by the 

sum.  

𝑆𝑝𝑖𝑘𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑆𝐶) 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥

= (𝑚𝑒𝑎𝑛  𝑆𝐶 𝑅𝐸𝐺 − 𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐴𝑁)/(𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐸𝐺 + 𝑚𝑒𝑎𝑛 𝑆𝐶𝑅𝐴𝑁) 

( 10 ) 

To examine the location of different layers in auditory cortex I calculated the 

current source density (CSD) profile of the LFP along the probe, of sites within putative 

AC, using the Delta-Source iCSD method with spatial smoothing (Pettersen et al., 

2006) and spacing of 91μm. This was calculated on the mean LFP across trials in 

response to pure tones 100ms in length and at various frequencies (120Hz to 19.3kHz 

with 1/3 octave spacing) and sound levels (20 to 70dBSPL in 10dBSPL spacing). 

To assess the oscillatory power within the LFP at specific frequencies of interest 

(FOIs) as in chapter 3, a power spectral density estimate was performed and the power 

at these frequencies calculated for each individual site. Two second epochs of trials, 

starting from the onset of the transition, across sessions from the same site were 

concatenated. Sites and conditions that contained < 10 epochs in the concatenation 

were excluded from analysis. A Welch’s power spectral density estimate (PSD), 

pwelch (MATLAB), was then performed on these concatenated trials with a window 

length of approximately 12s (17,824 samples) to achieve high frequency resolution at 

the lower frequencies needed to assess the pattern repetition rate. The RMS of the 

PSD at the FOI (± two frequency bins either side of the signal frequency bin) was then 

calculated and then divided by the RMS at neighbouring frequencies (± 5 frequency 

bins either side of the signal frequency bins) giving the signal-to-noise ratio (SNR) at 

the FOI (see Figure 3.3).  

A modulation index was calculated for the SNR to identify differences between 

the random and regular conditions such that: 

𝑆𝑁𝑅 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 = (𝑆𝑁𝑅𝑅𝐸𝐺 − 𝑆𝑁𝑅𝑅𝐴𝑁)/(𝑆𝑁𝑅𝑅𝐸𝐺 + 𝑆𝑁𝑅𝑅𝐴𝑁) 

( 11 ) 
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Statistical analysis of effects of pattern length, random alphabet and shank 

used a general linear mixed model fitted using fitglme in MATLAB (version 2022a). 

Only two-way interactions or less were modelled. The details of each model are 

outlined alongside the relevant results. For each model, I report the magnitude of 

coefficients (estimate) of fixed and random effects, the t-statistic for a hypothesis test 

that the coefficient is equal to 0 (T) and its respective p-value (p) in full in the tables in 

the Appendix. The 95% confidence intervals are also reported for each fixed-effect 

coefficient and the adjusted R2 value of the model to assess model fit. Post-hoc 

analysis was performed in Python with the scipy.stats and scikit_posthocs modules 

with the appropriate pairwise comparisons stated in text. 

5.2.5 Histology 

To confirm electrode location and position, at the end of the experiment only 

F2101 was transcardially perfused, as F2003 is still undergoing experimentation, with 

0.9% saline and 4% paraformaldehyde (PFA) under anaesthesia. The brain was then 

removed for storage in PFA, before cryoprotecting in 30% sucrose for 4-5 days prior 

to cryosectioning. Coronal sections (50μm) were taken through the full extent of the 

ectosylvian gyrus. Slices were then mounted on slides in 0.5% gelatine and dried for 

at least 14 days. Slices were Nissl stained to identify electrode tracts and major 

structures within the brain to localise the position of these tracts. Sections were then 

stained with cresyl violet and washed with chloroform and acetic acid. The sections 

then went through a series of increasing concentrations of ethanol solutions to 

dehydrate the slides. Sections were then cleared with Histoclear, and cover slipped 

with a mounting agent (Omnimount). Slices were imaged using the Zeiss AxioScan Z1 

at 10x magnification. 
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5.3 RESULTS 

5.3.1 Localisation of auditory cortex and hippocampus on Neuropixels probes 

In this chapter, I used Neuropixels 2.0 probes to simultaneously record neural 

activity from AC and HPC in the ferret. With 5120 densely spaced possible recording 

sites covering a 1 x 10 mm plane, with 384 being recorded from at any one time, the 

probes offer a powerful means to sample neural activity across multiple depths, 

including regions beneath AC such as HPC. However, accurately determining the 

location of each recording site relative to specific brain regions can be challenging due 

to the large sampling area, anatomical variations and histological limitations (such as 

shrinkage). To address this, I employed three key metrics: correlation between 

channels to identify connected regions, theta power in the LFP to pinpoint the location 

of HPC, and the ZETA test to identify auditory cortex and its cortical surface by 

assessing whether sites were ‘auditory evoked’. The combination of these metrics 

allowed for approximate identification of recording sites in relation to these brain 

regions.  

In order to capture neural responses from primary and secondary areas of AC 

whilst also passing through CA1 of the hippocampus, I placed the probe in a coronal 

orientation, targeting the boundary between MEG and PEG in F2003 (see Figure 

5.2A). The acute angle, in relation to cortical surface, allowed the electrodes to pass 

through CA1 of hippocampus (see Figure 5.2B) whilst keeping the probe in a position 

that minimised ear occlusion after implantation. In Figure 5.2C I present a schematic 

of the approximate probe placement within the brain, based on a coronal section from 

a ferret atlas (Radtke-Schuller, 2018), with the theta power (3-7Hz) of the local field 

potential in red aligned to the probe in purple. Sites that were classed as ‘auditory 

evoked’ based on the LFP are indicated with black squares aligned to their position on 

the probe. 

I identified the hippocampal region from which the theta power began to 

increase and at where the power stopped decreasing after reaching its peak along the 

depth of the probe. AC was identified between the maximum and minimum depth of 

sites that were ‘auditory evoked’. In the case of F2003, putative AC sat across 

approximately 2mm of the probe. FRAs highlight that the ventral shank (shank 1) has 

a wider tuning curve, and is therefore more secondary-like, compared to the dorsal 

shank (shank 4) which has a narrower tuning curve with both shanks showing that the 
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probe is in low to mid frequency AC. Correlation matrices of the LFP between channels 

(see Figure 5.2D) further confirm sites that are outside of the brain due to reduced 

correlation in activity to putative AC.  

 

Figure 5.2: Neuropixels probe location in F2003. A) Schematic of the approximate probe 
position (purple) on the surface of auditory cortex, positioned between MEG and PEG. B) 
Schematic of the approximate probe position through a coronal slice of auditory cortex, 
showing the four shanks of the probe passing through MEG/PEG and CA1 (red) of 
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hippocampus. C) Zoomed in and rotated (left) to vertically align the probe with the theta power 
(red) for each shank along its depth, and whether the site at that depth was auditory evoked 
(black squares indicate p < 0.05). Putative AC and HPC are highlighted in blue and grey 
respectively. Example FRAs are shown from sites marked with the grey circles. The FRA is a 
normalized heat map with yellow areas showing higher neural responses for the frequency-
level combination and lower in blue. Tuning curves are shown (white line) and the Q10 and 
Q30 (red lines). The characteristic frequency (CF) is shown above each heat map. D) 
Correlation matrices for the correlation between the LFP at each site, bottom left indicating 
sites at the tip of the probe, and top right indicating sites towards the base of the probe. Sites 
that are likely to be outside of the brain tissue are highlighted. 

 

To target A1, the probe was implanted in a transverse orientation and centrally 

within MEG for F2101 (see Figure 5.3A). The probe was positioned perpendicular to 

the surface of AC and passed through CA3 of the hippocampus and the lateral 

geniculate nucleus (LGN) of the midbrain (see Figure 5.3B). Figure 5.3C illustrates 

the approximate placement of an example shank (purple) aligned with the theta power 

(red) of the LFP and ‘auditory evoked’ sites. In F2101, shank 4, the most anterior 

shank, appears to pass through the edge of hippocampus as theta power starts to 

increase in this region as you move posteriorly across the probe. Due to the more 

perpendicular angle of implantation, the region of AC in F2101 was smaller than that 

in F2003. FRAs reveal that the probe was situated in the high frequency region of A1, 

and correlation matrices show two large, correlated regions and less correlated sites 

to AC that indicate they are outside of the brain (see Figure 5.3D). With these two 

animals, I show that I can target various regions of HPC, specifically CA1 and CA3, 

and auditory cortex simultaneously in the ferret and I can mark these regions putatively 

based on numerical metrics. Table 5.2  summarizes the sites in each region by their 

depth from the tip of the probe. 

 

 Probe depths in AC Probe depths in HPC 

Subject 
no. 

Shank 1 Shank 2 Shank 3 Shank 4 Shank 1 Shank 2 Shank 3 Shank 4 

F2003 
4005 to 
6015 

4365 to 
6195 

4290 to 
6210 

4380 to 
6390 

1590 to 
3068 

1545 to 
3201 

1545 to 
3332 

1485 to 
3368 

F2101 
5240 to 
6450 

4960 to 
6490 

4810 to 
6370 

4920 to 
6310 

2850 to 
4635 

2910 to 
4485 

2910 to 
4375 

2955 to 
4320 

 
Table 5.2: Location of electrode sites, marked by depth from probe tip (μm) in auditory 
cortex and hippocampus for each ferret. 
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Figure 5.3: Neuropixels probe location in F2101. A) Schematic of the approximate probe 
position (purple) on the surface of auditory cortex, positioned at MEG. B) Nissl stained coronal 
slice through auditory cortex showing the position of shank four of the Neuropixels probe which 
passes through MEG and CA3 (red) of hippocampus. C) Schematic of the probe position 
through the tissue aligned with the theta power (red) for each shank along its depth, and 
whether the site at that depth was auditory evoked (black squares indicate p < 0.05). Putative 
AC and HPC are highlighted in blue and grey respectively. Example FRAs are shown from 
sites marked with the grey circles. The FRA is a normalized heat map with yellow areas 
showing higher neural responses for the frequency-level combination and lower in blue. 
Tuning curves are shown (white line) and the Q10 and Q30 (red lines). The characteristic 
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frequency (CF) is shown above each heat map. D) Correlation matrices for the correlation 
between the LFP at each site, bottom left indicating sites at the tip of the probe, and top right 
indicating sites towards the base of the probe. Sites that are likely to be outside of the brain 
tissue are highlighted. 

 

Figure 5.4 and Figure 5.5 display the responses of four example units in F2003 

during behaviour, two in AC and two in HPC, respectively, in a manner similar to that 

presented in section 4.3.1 across trials in which there was a hit, miss or correct reject 

(no false alarms were included). In Figure 5.4A, I show a MU in AC that exhibits a 

strong period of firing in the random sequence and towards the end of the regular 

sequence, while Figure 5.4B shows a MU with robust tone-locked firing to the low 

frequency tone of the sequence. The units I observed in AC using the Neuropixels 

probe had similar profiles to that observed in chapter 4, some tone locked responses 

and some responses that were modulated by the regularity of the sequence. In HPC I 

did not observe tone locked responses but instead I observed some responses that 

seemed to be modulated by specific periods of the sequence. Figure 5.5A shows a 

MU in HPC with a gradual increase in firing towards the end of the regular sequence, 

whilst Figure 5.5B appears to ramp firing on before and during the stimulus onset and 

a marked suppression of activity from 3 to 4s after stimulus onset. Overall, the 

Neuropixels probe allow for the recording of spiking activity of neurons within AC and 

HPC, revealing a variety of responses. To understand the differences or similarities in 

how these two regions encode regularity detection through firing rate and/or spike 

timing, I pursue similar analysis to that used in chapters three and four. 
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Figure 5.4: Example units in auditory cortex in F2003. A-B) Two example units from 
auditory cortex recorded by the Neuropixels probe in F2003. Top – spectrogram of the auditory 
stimulus presented and (right) the mean Z-scored firing rate to each frequency during all tone 
presented in the recording session before transition. The frequency which elicited the 
maximum firing (circled in green) was identified as the neurons best frequency (BF). Middle – 
Spike rate, binned at 25ms, of the unit in response to the above spectrogram with the standard 
error shaded in grey and (right) the broadband waveform of the unit. Bottom – Raster plot of 
the spikes of the unit to the above spectrogram and (right) inter-spike-interval histogram (ISI) 
of the unit. Spike count modulation indices: A = 0.0275, B = -0.00836.  

 



185 
 

 

Figure 5.5: Example units in hippocampus in F2003. A-B) Two example units from 
hippocampus recorded by the Neuropixels probe in F2003. Top – spectrogram of the auditory 
stimulus presented and (right) the mean Z-scored firing rate to each frequency during all tone 
presented in the recording session before transition. The frequency which elicited the 
maximum firing (circled in green) was identified as the neurons best frequency (BF). Middle – 
Spike rate, binned at 25ms, of the unit in response to the above spectrogram with the standard 
error shaded in grey and (right) the broadband waveform of the unit. Bottom – Raster plot of 
the spikes of the unit to the above spectrogram and (right) inter-spike-interval histogram (ISI) 
of the unit. Spike count modulation indices: A = 0.119, B = -0.0124. 
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5.3.2 Spike count decreases during regularity with increasing pattern lengths 

for auditory cortex and hippocampus 

Developing the technique to record from AC and HPC simultaneously in a 

behaving ferret now allows me to expand on my data from my previous WARP 

recordings in chapters 3 and 4. In chapter 4, I observed that the spike count of neurons 

in auditory cortex of the ferrets were modulated during the presentation of regular 

sequences compared to random and that these changes were affected by the pattern 

length: increased spiking for shorter pattern lengths during regularity. I can test 

whether this effect is maintained in the Neuropixels recording, but more importantly, 

previous research has implicated hippocampus in the detection of regularity, as 

evidenced by increased hippocampal activity in MagEG recordings (Barascud et al., 

2016). Therefore I aim to investigate whether firing changes in response to random 

and regular sequences in AC and HPC. In this section, spike counts of neurons in 

auditory cortex and hippocampus were recorded in two animals (F2003, behaving; 

and F2101, passive) and the activity of the neuronal population in both regions were 

assessed during the presentation of random and regular sequences. 

For this analysis, I took the MU activity for each trial/condition for each site (n = 

106 MU sites in AC and n = 76 MU sites in HPC) and SU activity (n = 24 SUs in AC 

and n = 14 in HPC) for trials in which the pattern was generated anew each trial. This 

approach differs slightly from chapter 4, in which I took trials in which the pattern was 

repeated across trials, as it enables the presentation of multiple conditions to the same 

units, despite a reduced number of analysed recordings with the Neuropixels probes. 

Next, I determine the average spike count per condition for each site during the 2s 

epoch following the transition from random to regular, with an equivalent time point in 

the random sequence. To account for differences in overall spiking between SUs and 

MUs, I calculated a modulation index for each SU and MU, where an index greater 

than 0 indicating higher firing during the regular sequence. 

Analysis was split between MU and SU activity and region (AC or HPC). First, 

in AC I observed a significant difference in activity between regular or random 

sequences in MU activity (mean = 0.0298; p < 0.001, W = 1668. Wilcoxon) but no 

significant difference in SU activity (mean = -0.00439; p = 0.406, W = 120. Wilcoxon) 

in AC. When describing spiking activity in the form of a modulation index (indices 

greater than 0 indicating a higher spike count for regular sequences over random 
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sequences), I observe across the population of MUs a positive index for all RAN20 

conditions (see Figure 5.6A). Across the SUs, I observe a positive index for RAN20-

REG3 which then decreases for increasing pattern lengths, ending negatively for 

RAN20-REG7 (see Figure 5.6B). Within HPC I observed no significant difference in 

activity between regular or random sequences in the MU activity (mean = -0.00775; p 

= 0.154, W = 1188. Wilcoxon) and the SU activity (mean = 0.0402; p = 0.0676, W = 

23. Wilcoxon). The modulation index of MU activity remained close to 0 for all 

conditions apart from RAN20-REG7 (see Figure 5.6C) but is positive for SUs for 

RAN20-REG3 and RAN20-REG5 and RAN5-REG5 (see Figure 5.6D).  

A mixed effects general linear model for SU and MU activity individually in both 

AC and HPC (see Table 5.3) revealed a main effect of pattern length on the 

modulation index for both SU and MU in both regions, with the modulation index 

(spiking during the regular sequence compared to the random sequence) decreasing 

with increasing pattern length. Pairwise comparisons revealed only a significant 

increase in the modulation index for MUs in HPC for the RAN20-REG5 over the 

RAN20-REG7 condition (p = 0.00534, Dunn test, Bonferroni). These data (which are 

likely underpowered to detect population-wide differences) suggest that neurons 

within HPC are in fact modulated by the number of tones within a pattern, decreasing 

their firing during the regular sequence when compared to the random sequence for 

increasing pattern lengths. 
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Figure 5.6: Changes in multi and single-unit firing during the presence of regular 
sequences compared to random sequences in auditory cortex and hippocampus. A-B) 
Modulation index for each MU (A) and SU (B) for each condition (F2003 (behaving): colour 



189 
 

filled circles; F2101 (passive): grey filled circles) for auditory cortex. C-D) Modulation index for 
each MU (C) and SU (D) for each condition (coloured circles) for hippocampus. The grey error 
bars indicate the mean and standard deviation across units for that condition. Significance 
bars between conditions from a pairwise Dunn test are indicated. * = p < 0.05, ** = p < 0.01, 
*** = p < 0.001. 

 

 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

AC (MU)       

Intercept 0.052 0.025 2.114 0.035 0.004 0.1 

Random alphabet 0.001 0.001 0.929 0.354 -0.001 0.003 

Pattern length -0.008 0.003 -2.239 0.026 -0.014 -0.001 

AC (SU)       

Intercept 0.102 0.099 1.029 0.307 -0.096 0.299 

Random alphabet 0.001 0.004 0.333 0.74 -0.007 0.01 

Pattern length -0.025 0.012 -2.067 0.042 -0.048 -0.001 

HPC (MU)       

Intercept 0.032 0.022 1.439 0.151 -0.012 0.076 

Random alphabet 0.000 0.001 -0.197 0.844 -0.002 0.002 

Pattern length -0.007 0.003 -2.134 0.034 -0.013 -0.001 

HPC (SU)       

Intercept 0.126 0.065 1.946 0.060 -0.006 0.258 

Random alphabet 0.001 0.003 0.25 0.804 -0.005 0.006 

Pattern length -0.019 0.009 -2.202 0.035 -0.037 -0.001 

 
Table 5.3: Mixed effect linear regression on the spike count modulation index (spike 
count during regular sequences – spike count during random sequences) for multi and 
single unit activity in auditory cortex (AC) and hippocampus (HPC). AC (MU): R2 = 0.223; 
Df = 319; random effect std. = 0.0589. AC (SU): R2 = 0.105; Df = 72; random effect std. = 
0.0696. HPC (MU): R2 = 0.0219; Df = 236; random effect std. = 0.0190. HPC (SU): R2 = 0.187; 
Df = 33; random effect std. = 0.0399. 
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5.3.3 Spike count as a function of depth down auditory cortex 

In chapter 4, to analyse the impact of cortical depth on regularity encoding, I 

grouped sites into lower, middle and upper bins (0.3 to 0.75, 0.75 to 1.5 and 1.5 to 

2.25mm from putative cortical surface respectively). I observed upper layers exhibiting 

higher spiking for regular sequences compared to random sequences, in contrast to 

middle and lower layers.  Yet, as the electrodes moved in 0.1 to 0.2mm jumps, the 

depth resolution I obtained was coarse and I could not obtain simultaneous recordings 

down the depth of a cortical column. Moreover our estimate of the cortical surface is 

based on measuring an impedance drop which may not equate precisely with cortical 

surface. Using Neuropixels probe I can leverage the recording sites that target down 

the entire depth of auditory cortex and approximate the location of each of the cortical 

layers and how spiking is modulated in response to random and regular sequences. 

The auditory cortex of the ferret is comprised of several distinct layers: layer I, 

layer II/III, layer IV, layer V, and layer VI (Bajo et al., 2007), and each of these layers 

receives a unique profile of inputs with varying projections. In the ferret, layer I, the 

most superficial layer, is located within 100μm from the surface of the cortex  (Bajo et 

al., 2007). The subsequent layers, II/III and IV, are situated between 100μm and 

650μm from the cortical surface, while layer V is found at approximately 650μm to 

875μm. The deepest layer, layer VI, is located between 975μm and 1200μm beneath 

the cortical surface. Though anatomy varies with individual ferrets I can combine this 

with this with current source density (CSD) analysis on the tone evoked LFP across 

the sites on each shank of the probe of F2003. Laminar CSD profiles that have been 

evoked by pure tones (100ms; see 5.2.4 for methods) can provide insight into the 

laminar organisation by its structure of sources and sinks, where the earliest source is 

indicative of afferent thalamocortical projections that terminate in layers III and IV 

(Happel et al., 2010).  

In F2003, I analysed the CSD profile in response to pure tones (0 to 100ms) 

between the four shanks of the probe (see Figure 5.7). Notably, I observed a clear 

onset response across all shanks, characterized by a large sink shortly after tone 

onset that spans approximately 1mm of the probe at stimulus onset. In shank 1, there 

is a clear source which is earliest at approximately 500μM which is likely to be layers 

III and IV. Though the laminar structure is not well defined given the CSD profiles for  
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Figure 5.7: Modulation of spike count as a function of depth and shank with 
corresponding current source density plots. A-D) Shanks 1-4 respectively of the 
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Neuropixels probe of F2003. Left – Scatter plot of the modulation index for spike count during 
the regular sequence compared to random (REG-RAN) for each condition and MU/SU 
(coloured circles). Right – CSD profile of the mean LFP across trials in response to pure tones 
100ms in length and at various frequencies (120Hz to 19.3kHz with 1/3 octave spacing) and 
sound levels (20 to 70dBSPL in 10dBSPL spacing).  

each shank, and that the probe is not perpendicular to cortical surface, given previous 

ferret anatomy I can make some approximations on how spike count is modulated with 

depth. There appears to be an increase in modulation index in putative layer V and VI 

(approximately 1250μM from surface and below; see Figure 5.7A). Shanks 2 and 3 

also present larger modulation indices at approximately 1250μM (see Figure 5.7B-C), 

whereas it is less clear with shank 4. Overall, qualitatively there does seem to be 

difference in the number of spikes dependent on whether the sequence is random or 

regular, with deeper layers more likely containing units that increase their firing to 

regular sequences compared to that of random. However this analysis is preliminary 

and currently limited by the lack of sampling of units across the whole probe. 

 

5.3.4 Entrainment of neurons within hippocampus to the tone presentation 

rate and pattern rate 

In chapter four, I presented evidence that neurons in auditory cortex exhibit 

stronger entrainment to the pattern rate during regular vs. random sequences, but no 

difference in entrainment to the tone presentation rate in random vs. regular contexts. 

Neural entrainment to auditory stimuli is not limited to just AC, but has been shown in 

other brain regions such as the HPC, where 40Hz click trains entrained neurons in 

CA1 (Martorell et al., 2019). However it remains unclear how neurons in ferret 

hippocampus respond to stimuli that unfold over slower rates such as the tone 

presentation rate of 20Hz, or even the pattern repetition rates of 6.67Hz, 4.0Hz, and 

2.86Hz (for pattern lengths of 3, 5, and 7, respectively). Therefore I computed the 

vector strength at these frequencies of interest (FOIs) in the 2s window after the 

transition from random to regular, and the corresponding time period in the random 

sequence, for each MU and SU. The vector strength value ranges between 0 and 1, 

with 1 indicating exact phase locking of spike times to the FOI and 0 indicating no 

phase locking. 

When assessing the entrainment of neurons in hippocampus to the tone 

presentation rate (see Figure 5.8), I found significant increases in entrainment to 

regular sequences over random for all conditions (RAN20-REG3: W = 490, p < 0.001; 
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RAN20-REG5: W = 989, p = 0.0152; RAN20-REG7: W = 1210, p = 0.0273; RAN5-

REG5: W = 265, p = 0.0291. Wilcoxon, Bonferroni), suggesting that regularity 

enhances tone-locking in the HPC. A Kruskal Wallis test revealed significant 

differences between these conditions (W = 12.959, p = 0.00473) with pairwise 

comparison revealing RAN20-REG3 showing significantly increased entrainment at 

the tone presentation rate when compared to RAN20-REG7 (p = 0.00407, Dunn test, 

Bonferroni). Entrainment at the pattern rate was also observed (see Figure 5.9), with 

significant increases in vector strength at each conditions pattern rate during regularity 

across all conditions apart from RAN20-REG7 (RAN20-REG3: W = 652, p < 0.001, 

RAN20-REG5: W = 673, p < 0.001; RAN20-REG7: W = 1268, p = 0.0536 ; RAN5-

REG5: W = 204, p < 0.001. Wilcoxon, Bonferroni). A Kruskal Wallis test revealed no 

significant differences between conditions (W = 7.170, p = 0.0667), suggesting that 

the change in vector strength, increasing for the tone presentation rate during the 

presence of regularity, remains consistent across conditions. These data suggests that 

neurons within hippocampus are entraining their firing to the tone presentation rate 

and pattern rate when the sequence is regular, when compared to presentation of a 

random sequence. 
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Figure 5.8: Vector strength of MU and SU firing in hippocampus to the tone presentation 
rate (20Hz) for each condition. Vector strength at 20Hz for each SU in the REG and RAN 
condition (coloured circle = F2003, grey circle = F2101) for each condition (A = RAN20-REG3; 
B = RAN20-REG5; C = RAN20-REG7; D = RAN5-REG). A red cross denotes the centroid of 
the cluster. Equality line (dashed line). 
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Figure 5.9: Vector strength of MU and SU firing in hippocampus to the pattern repetition 
rate for each condition. Vector strength at 20Hz for each SU in the REG and RAN condition 
(coloured circle = F2003, grey circle = F2101) for each condition.  A = RAN20-REG3 (6.67Hz); 
B = RAN20-REG5 (4.0Hz); C = RAN20-REG7 (2.86Hz); D = RAN5-REG (4.0Hz)). A red cross 
denotes the centroid of the cluster. Equality line (dashed line). 
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5.3.5 Power at the tone presentation rate and pattern rate are modulated by 

regularity in hippocampus 

In chapter 3, I demonstrated that the local field potential in auditory cortex, 

contained oscillations at the tone presentation rate (20Hz) and the pattern repetition 

rate (6.67Hz, 4.0Hz and 2.86Hz for pattern lengths 3, 5 and 7 respectively). The data 

showed that regular sequences evoked smaller oscillations in the tone repetition rate 

compared to that of random, but larger oscillations at the pattern rate. In HPC, theta 

(3-7Hz; Dunn et al., 2022) and gamma (30-100Hz; Bragin et al., 1995) are the most 

prevalent oscillations. Theta oscillations have been linked to spatial navigation but also 

memory and higher-cognitive tasks (see for a review: Nuñez and Buño, 2021), 

however it is unknown whether oscillations at different rates could be induced and 

modulated through the presentation of random and regular acoustic sequences. Given 

that I demonstrated that neurons in HPC entrain both to the tone presentation rate and 

pattern rates during regularity, I would predict increases in oscillatory power for both 

rates during regular sequences as well. 

To test this, I performed some preliminary analysis of the LFP. Spectra of single 

sessions (akin to Figure 3.3 for AC; see Figure 5.10) did not reveal the same clear 

peaks that were evident in AC, possible due to the dominance of theta oscillations. To 

explore this further, I performed similar analysis to that in chapter 3, in which I firstly 

took trials that did not contain a false alarm or hit (therefore only including misses and 

correct rejects where the animal was stationary at the central spout) to avoid any 

movement confounds as theta frequency in HPC is strongly modulated by movement 

(Dunn et al., 2022). Therefore I only included conditions: RAN20-REG5, RAN20-REG7 

and RAN5-REG5 as they included enough miss trials for analysis, unlike RAN20-

REG3. Next I performed a Welch's power spectral density estimate (PSD) on 

concatenated 2s epochs of the trial post-transition at each recording site in HPC. The 

signal-to-noise ratio (SNR) was calculated at each FOI where an SNR of > 1 indicates 

increased power at the FOI compared to the side frequency bands.  
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Figure 5.10: Power spectral density estimates of concatenated local field potential 
epochs post transition. A) Power spectral density estimate calculated for an example 
recording site in hippocampus when presented random (blue) or regular (pink) sequence with 
a pattern length of seven (RAN20-REG7). Unlike AC, where peaks were evident at the tone 
presentation rate and pattern rate, the spectrum shows a predominantly 1/f shape with theta 
being the only clear peak, with possibly an increase in low frequency power during regularity 
and a weak peak at 20Hz. B-C) The SNR at frequencies of interest (FOIs) are calculated by 
taking the RMS of five points around the FOI (green) and dividing it by the surrounding noise 
points (grey) to give a signal to noise ratio (SNR) at various FOIs such as the pattern rate 
(2.86Hz; B) and the tone rate (20Hz; C). 

 

Analysis of the oscillatory power at the tone presentation rate of recording sites 

in hippocampus revealed that the mean SNR across all sites and conditions showed 

weak tone locked responses with an SNR of 0.994 for the random and 0.969 for the 

regular condition (n = 304 sites). A Mann-Whitney U test revealed a significant 

difference between the conditions (U = 55399, p < 0.001; Mann-Whitney U, Bonferroni; 

see Figure 5.11A). Analysis by pattern length and random alphabet, showed that the 

tone locked response was significantly lower in the regular sequence for RAN20-

REG5 (U = 42492, p < 0.001) and RAN5-REG5 (U = 59805, p < 0.001) but higher for 

RAN20-REG7 (U = 31979, p < 0.001; see Figure 5.11B). This reveals that power 

during the presentation of regular sequences modulate the power at the tone 

presentation rate. However, the direction of this modulation, increasing or decreasing 

is not consistent across pattern lengths, and the size of the effect is very small, with 

most SNRs being < 1, providing little evidence of any true tone-evoked oscillation. 
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A mixed effects linear regression (with recording site as a random intercept) on 

the modulation index (REG-RAN/REG+RAN; positive index indicates a stronger 

response at the tone presentation rate for the regular sequence), revealed main effects 

of pattern length, random alphabet, shank, and significant interactions between shank 

and random alphabet (see Table 5.4). Pairwise comparisons revealed that the 

modulation indices for pattern length 7 were significantly larger than that of RAN20-

REG5 (p < 0.001; Dunn test, Bonferroni) or RAN5-REG (p < 0.001; see Figure 5.11C). 

Running the model separately by condition reveals significant effects of shank in all 

conditions, with RAN20-REG5 and RAN5-REG5 showing a decrease in the 

modulation index as shank number increases and therefore as the position of the 

shank moves dorsally through HPC, whereas in RAN20-REG7 the opposite is true.  
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Figure 5.11: Differences in power in HPC at the tone presentation rate between random 
and regular sequences. A) The signal to noise ratio at 20Hz across sites for random and 
regular conditions. B) The SNR split by conditions RAN20-REG5, RAN20-REG7 and RAN5-
REG5. C) Modulation index split by condition (each circle is a recording site) with the average 
and standard error shown across sites in grey. Error = standard error for A-B, error = standard 
deviation for C. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 
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   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 
0.651 0.053 12.192 < 0.001 0.546 0.756 

Pattern length (PL) 
-0.106 0.011 -9.677 < 0.001 -0.127 -0.084 

Random alphabet (RA) 
-0.004 0.001 -2.861 0.004 -0.007 -0.001 

Shank 
-0.364 0.022 -16.885 < 0.001 -0.406 -0.322 

PL × Shank 
0.062 0.005 13.545 < 0.001 0.053 0.07 

RA × Shank 
0.001 0.001 1.276 0.202 0.000 0.002 

RAN20-REG5       

Intercept 0.04 0.018 2.15 0.033 0.003 0.076 

Shank -0.041 0.008 -4.906 < 0.001 -0.057 -0.024 

RAN20-REG7       

Intercept -0.172 0.012 -14.376 < 0.001 -0.195 -0.148 

Shank 0.082 0.004 19.463 < 0.001 0.074 0.091 

RAN5-REG5       

Intercept 0.102 0.014 7.144 < 0.001 0.074 0.13 

Shank -0.052 0.005 -10.353 < 0.001 -0.062 -0.042 

 
Table 5.4: Model output for mixed effects linear regression on the modulation index for 
tone presentation rate. R2 = 0.412; Df = 822; random effect std. = 3.42x10-6. RAN20-REG5: 
R2 = 0.589; Df = 218; random effect std. = 0.0709. RAN20-REG7: R2 = 0.856; Df = 302; random 
effect std. = 0.0578. RAN5-REG5: R2 = 0.706; Df = 302; random effect std. = 0.0691. 

When assessing the oscillations in the LFP at the pattern rate, the mean SNR 

across all sites and conditions showed even weaker power at the pattern rate, than 

the tone rate, with an SNR of 0.776 for the random and 0.878 for the regular condition 

(n = 304 sites). A Mann-Whitney U test revealed a significant difference between the 

SNR during presentation of the random and regular sequences (U = 18962, p < 0.001, 

see Figure 5.12A). Analysis by pattern length (including only REG5 and REG7) and 

random alphabet, showed that the power at the pattern rate was significantly higher in 

the regular sequence for only RAN20-REG5 (U = 18637, p < 0.001; Mann-Whitney U, 

Bonferroni) and RAN5-REG5 (U = 24784, p < 0.001; Mann-Whitney U, Bonferroni; see 

Figure 5.12B). This shows that out of pattern lengths 5 and 7, only 5 seems to elicit 

higher pattern rate power during regularity, and this was the only condition in which 

the SNR exceeded 1, providing some evidence that there is oscillatory power at the 

pattern rate. However the pattern rate of pattern length 5 is 4.0Hz which sits squarely 

in the middle of the theta power oscillation generated by hippocampus in the ferret 

(Dunn et al., 2022).  
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Figure 5.12: Differences in power at the pattern rate between random and regular 
sequences. A) The signal to noise ratio at 4.0Hz and 2.86Hz for pattern lengths 5 and 7 
respectively, across sites and conditions for random and regular sequences. B) The SNR split 
by conditions RAN20-REG5, RAN20-REG7 and RAN5-REG5. C) Modulation index split by 
condition (each circle is a recording site) with the average and standard error shown across 
sites in grey. Error = standard error for A-B, error = standard deviation for C. * = p < 0.05, ** = 
p < 0.01, *** = p < 0.001 

A mixed effects linear regression (recording site as a random intercept) on the 

pattern rate modulation index, revealed main effects of pattern length, random 

alphabet, shank, and significant interactions between shank and random alphabet, 

and shank and pattern length (see Table 5.5). Pairwise comparisons (Dunn test, 

Bonferroni) revealed that the modulation index for all conditions were significantly 

different from one another with RAN20-REG5 showing the highest modulation index, 
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followed by RAN5-REG5, and then RAN20-REG7 which shows a negative modulation 

index (see Figure 5.12C). Running the model separately by condition reveals 

significant effects of shank in the condition of RAN20-REG5 and RAN20-REG7, where 

RAN20-REG5 exhibits a larger negative coefficient such that as the recording sites 

become more ventral, and the oscillatory power at the pattern rate increase. Overall, 

these data show that oscillations at 4.0Hz (the pattern rate of pattern length 5) are 

enhanced during the presentation of regular sequences, and this increases the more 

ventral the recording site.  

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 
0.642 0.068 9.426 < 0.001 0.508 0.776 

Pattern length (PL) 
-0.129 0.014 -9.282 < 0.001 -0.157 -0.102 

Random alphabet (RA) 
0.016 0.002 8.631 < 0.001 0.012 0.02 

Shank 
-0.094 0.027 -3.435 0.001 -0.148 -0.04 

PL × Shank 
0.024 0.006 4.137 < 0.001 0.013 0.035 

RA × Shank 
-0.006 0.001 -7.518 < 0.001 -0.007 -0.004 

RAN20-REG5       

Intercept 0.316 0.014 21.83 < 0.001 0.288 0.345 

Shank -0.091 0.007 -13.88 < 0.001 -0.104 -0.078 

RAN20-REG7       

Intercept 0.058 0.02 2.922 0.004 0.019 0.097 

Shank -0.043 0.007 -6.092 < 0.001 -0.057 -0.029 

RAN5-REG5       

Intercept 0.076 0.018 4.205 < 0.001 0.04 0.112 

Shank -0.004 0.006 -0.565 0.572 -0.016 0.009 

 
Table 5.5: Model output for mixed effects linear regression on the modulation index for 
pattern rate. R2 = 0.355; Df = 822; random effect std. = 9.47x10-6. RAN20-REG5: R2 = 0.817; 
Df = 218; random effect std. = 0.0557. RAN20-REG7: R2 = 0.597; Df = 302; random effect std. 
= 0.0959. RAN5-REG5: R2 = 0.499; Df = 302; random effect std. = 0.0875. 
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5.4 DISCUSSION 
The motivation behind this chapter was to begin to understand how non-auditory 

regions such as HPC, typically implicated in regularity detection in humans, respond 

during regularity detection. MagEG recordings in humans have shown increased 

activity during regular sequences when compared to random (Barascud et al., 2016), 

and another study has shown HPC neurons responding selectively to deviant sounds 

showing sensitivity to predictable structure within an auditory stimulus (Tzovara et al., 

2022). Nonetheless, it is unknown how neurons in HPC respond to pure tone 

sequences that transition from random to regular during behaviour. In this chapter I 

show preliminary analysis, limited in scope due to time constraints, on how SU and 

MU activity changes in response to regular vs. random sequences in AC and HPC, 

and how power in the LFP at the tone presentation and pattern rate are modulated by 

regularity.   

In this chapter I firstly present a technique that successfully records 

simultaneously HPC and AC of the ferret using high-density linear probes (Neuropixels 

2.0). Whilst chronic recordings of Neuropixels are now commonplace in rodent 

research (Durand et al., 2023; Juavinett et al., 2019; Luo et al., 2020), I provide the 

first demonstration of their efficacy to target multiple brain regions for chronic 

recordings in the ferret. Due to significant anatomical variations between individual 

ferrets, accurately targeting structures beneath the cortex is challenging, and their 

larger size and strength requires that implants are extremely robust to prevent damage 

to the probe or ribbon cable after chronic implantation, particularly as animals are 

always housed in groups within enriched cages. Here I developed specialized tools 

and procedures to implant the probes and perform these recordings, with probes 

lasting over a year thus establishing a method for future research on the interactions 

between hippocampus and auditory cortex in the ferret model. The metrics I used such 

as whether sites are auditory evoked or the theta power in the LFP, give best estimates 

of the location of regions however do still contain limitations. For example, auditory 

evoked sites are based on the LFP which may overestimate the location of auditory 

cortex due to volume conduction outside the brain. Furthermore, though theta power 

does give a strong indication of hippocampus, some sublayers of hippocampus such 

as the stratum oriens, and stratum pyramidale don’t evoke strong theta oscillations in 

the ferret (Dunn et al., 2022). 
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Using this technique, I analysed the SU and MU activity of neurons in AC and 

HPC. Across the population of SU and MU activity in AC, I observed significant 

increases in the overall spike count between random and regular sequences, with 

shorter patterns inducing larger responses, supporting my findings in chapter 4. 

Performing the same analysis on units within HPC, I also observed changes in spike 

count corresponding to pattern, again shorter patterns eliciting larger spike counts, 

however the lack of a significant intercept in the GLMM suggests that there isn’t an 

overall enhancement of firing to regularity within HPC. This is in contrast to studies 

that have shown an increase in power in MagEG recordings in hippocampus during 

the presentation of regular sequence (Barascud et al., 2016), but is supported by 

findings by Tzovara et al. (2022), which found HPC neurons responding selectivity to 

deviant rather than predictable sounds. Future work could target 

parahippocampal/entorhinal neurons, shown to be responsive to standard/predictable 

tones (Tzovara et al., 2022) to identify whether stronger responses would be present 

there. 

In this chapter, the neurons in hippocampus were poorly separated from the 

neural signal, only a total of 14 single-units across two ferrets. This is likely due to 

chronic implantation of the Neuropixel implant damaging the brain and/or gliosis 

setting in by the time the animal is recorded from post-surgery. Additionally, it is 

unclear how much of the probe is in contact with the cell layer of hippocampus and 

whether the channel mapping of the probe was fine enough to capture the neurons in 

the cell layer. Unlike the rat or mouse that has more extensive literature, hippocampal 

markers and metrics for what constitutes a high yield of hippocampal neurons during 

chronic recordings in the ferret is unknown. Therefore there is much more work to be 

done on understanding and optimising chronic hippocampal recordings in the ferret 

using these high-channel count linear probes.  

The predictive coding framework suggests the neurons encoding prediction are 

likely to reside within deeper layers of cortex such as layer V (Heilbron and Chait, 

2018; Keller and Mrsic-Flogel, 2018). In line with this theory, by using tone-evoked 

LFPs to create CSD profiles of the linear probes, preliminary analysis suggests that 

there may be stronger modulation of spike count to regular sequences in deeper 

layers, potentially layers V and VI. However, these results are not yet conclusive and 
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require a more accurate estimate of the laminar structure of the auditory cortex (AC) 

along the probe, and a larger sampling of units across the depth of auditory cortex. 

My findings demonstrated increased entrainment of unit activity to both the tone 

presentation rate and pattern rate in hippocampus during the presentation of the 

regular sequence compared to the random sequence. This is an interesting result as 

this is despite not showing strong oscillations at these rates in the LFP (typically SNRs 

of < 1). Whether this entrainment could be induced from other brain regions, such as 

PFC, is unknown but possible as neurons in PFC and HPC have been shown often to 

coactivate enhancing memory performance (Euston et al., 2007; Hyman et al., 2010). 

Moreover, given that I limited oscillatory analysis on trials in which the animal remained 

at the central spout (i.e. correct reject and miss trials), this may underestimate any 

oscillatory effects of regularity, as the animal did not behave in response to the 

regularity and likely did not perceive it. Therefore these results may change when 

incorporating trials in which the animal detected the regularity. 

There is still much more opportunity for future work with the data gathered in this 

chapter, though beyond the scope of this thesis. Firstly, further analysis of the passive 

recordings in comparison to recordings gathered from the behaving ferret, will allows 

to unpick the influence of the attentional state, task relevance and movement on these 

neural correlates observed in HPC, particularly for shorter pattern lengths such as 

RAN20-REG3 which almost always elicits movement in the behaving ferret. I might 

expect these correlates to disappear if the regularity is no longer behaviourally 

relevant. Secondly, only a subset of the recordings were analysed, so with added 

recordings and SUs, I can perform waveform analysis to identify sub-populations of 

cells that facilitate or adapt their firing to regularity. Using the Poisson GLM 

implemented in chapter 4 can aid in the investigation of sensory and non-sensory 

effects on neural firing, which is important to understand the effects of regularity on 

HPC, a region strongly modulated by non-sensory effects such as movement. Lastly, 

the time course of these correlates and how they emerge jointly between AC and HPC 

could elucidate what region induced these correlates in the other. 

To summarise, it is likely that neurons in hippocampus are responsive to 

regularity within the sequence, changing the amount of firing dependent on pattern 

length, but more importantly showing entrainment to both the tone presentation rate 
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and pattern rate. Preliminary analysis also suggests that units encoding the regularity 

of the sequence may be located in lower layers. Nevertheless, these are far from 

conclusive and more work is needed to understand the role of hippocampus in 

detection of these deterministic acoustic patterns.  
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6 CHAPTER SIX: OPTOGENETIC CORTICAL INACTIVATION IN 

THE FERRET 

6.1 STATEMENT OF CONTRIBUTION 
This chapter has been adapted from a published paper: Town, S.M., Poole, K.C., 

Wood, K.C., Bizley, J.K., 2023. Reversible inactivation of ferret auditory cortex impairs 

spatial and non-spatial hearing. J Neuroscience  

https://doi.org/10.1523/JNEUROSCI.1426-22.2022. I designed the optogenetic 

validation experiment. ST, JB and I acquired the data from the validation experiment. 

I analysed the data from the validation experiment. ST, JB and I interpreted the result. 

ST and JB designed the vowel discrimination task. ST, JB and I collected the data for 

the discrimination task. For the purposes of this thesis, I expanded the results and 

focused the chapter on the validation of the optogenetic method in the ferret. 

6.2 INTRODUCTION 
In this thesis I’ve shown the first evidence that ferrets can detect changes from 

random to regular tone sequences and neural correlates of acoustic regularity in AC 

and HPC. However, ultimately, to fully understand how the brain detects acoustic 

patterns, it is important to pinpoint the causal role of AC in regularity detection. Loss 

of function experiments allow us to probe the role of specific regions on a behavioural 

task or neural response. Reversible inactivation of cortex can provide temporally and 

spatially controlled deficits that aren’t obscured by the potential recovery from 

recruitment of other neural structures during permanent inactivation (i.e. through 

lesioning of the target brain region). Temporal precision is specifically necessary in 

this paradigm to tease apart the causation of neural regions on the rapidly emerging 

repeating patterns of the sequences used in this thesis. Because of this optogenetics 

is an optimal candidate for inactivating AC in the ferret during regularity detection. 

Optogenetics is well documented in rodent animal species with a large variety of 

tools and procedures. In contrast, in the ferret model, optogenetic methods are limited 

with only a few studies using it within the ferret (Murphy et al., 2021; Roy et al., 2016; 

Zhang and Frohlich, 2022) and even less showing behavioural impairment and neural 

impairment through inactivation (Bajo et al., 2019). Bajo et al. (2019) used an ArchT 

opsin to inactivate excitatory neurons and observed that inactivating the high-

frequency region of A1 in the ferret perturbed behavioural adaptation to sound 
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localisation after an ear plug, but not sound localisation in and of itself. This is likely 

due to the inability to silence a large enough area of AC as methods such as cooling 

have shown behavioural impairment, in the ferret, in auditory localisation tasks when 

silencing auditory cortex (Lomber and Malhotra, 2008; Wood et al., 2017). 

Recently a viral vector with high interneuron specificity in the non-mouse model 

has given us the tools to inhibit circuit activity through excitation of inhibitory 

interneurons. This method employs the natural inhibitory circuit of the brain and 

silences the output of excitatory cells (Wiegert et al., 2017) and has been shown to  

produce more effective photoinhibition than direct photoinhibition (Li et al., 2019).This 

viral vector uses the mDlx promoter to target GABAergic neurons, previously shown 

in ferrets to express in 98.2% of cells containing GAD67 (Dimidschstein et al., 2016). 

Combined with Channelrhodopsin-2, it will allow the activation of this opsin in the 

membrane of these neurons with blue light, which in turn cause an influx of sodium 

ions into the cell increasing the likelihood of firing. In contrast, I will also assess another 

viral construct that targets excitatory neurons through a CamKII promoter, using the 

JAWS opsin that inhibits excitatory neurons through the influx of chloride ions when 

activated with red light (Chuong et al., 2014). 

In this chapter, I develop an optogenetic method in the ferret that will allow us to 

inactivate areas of auditory cortex by using the inhibitory network of the cortex. Firstly, 

I compare the expression of two different viral constructs, AAV5-CamkII-JAWS-GFP 

and AAV2-mDlx-ChR2-mCherry. After assessing the expression patterns between the 

two, I then assess the efficacy of the AAV2-mDlx-ChR2-mCherry viral construct in 

inactivating auditory cortical neurons by measuring changes in firing rate, and the 

depth of these changes by leveraging the high-density linear Neuropixels probes whilst 

presenting broadband noise bursts. This is then followed with assessment of 

behaviour during inactivation of auditory cortex in a vowel discrimination in noise task, 

in which we observed impairments. With these results I conclude that AAV2-mDlx-

ChR2-mCherry can be used to inactivate regions of auditory cortex and perturb both 

neural activity and behaviour in the ferret. Using optogenetics as a tool to inactivate 

auditory cortex will allow future work to use the temporal and spatial precision 

garnered by this technique to understand what regions of auditory cortex may be 

involved in detecting acoustic patterns, and what features of the pattern are important 

for regularity detection.   
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6.3 METHODS 

6.3.1 Surgical procedure 

Viral constructs (AAV5-CamkII-JAWS-GFP and/or AAV2-mDLX-ChR2-

mCherry) were surgically injected in A1 of four ferrets (F1814, F1706, F1801 and 

F1807) at varying depths below the pia surface under sterile conditions whilst the ferret 

was under anaesthesia (see Table 6.1 and Figure 6.1 for injection sites and 

configurations). Viral constructs and vector packaging were performed by UPenn 

Vector Core, Philadelphia, PA (JAWS and mDLX plasmid and maps  available at 

Addgene 65015 and 83900 respectively; Chuong et al., 2014; Dimidschstein et al., 

2016).  Local injections of a total of Marcaine was injected subcutaneously around the 

temporal muscle. The temporal muscle was then exposed through an incision and 

removed. The underlying skull was cleaned with citric acid (1%), and for animals 

implanted with an optic fibre, covered with dental adhesive (Supra-Bond C&B, Sun 

Medical). Two screws were embedded in the skull in each hemisphere approximately 

5mm from the midline and either side of the craniotomy placement. To expose auditory 

cortex, I used the coordinates: 12mm from the midline and 11mm from the rear fissure, 

to target the top corner of auditory cortex in the ferret. The craniotomy was targeted to 

reveal the suprasylvian sulcus next to A1 of MEG and low frequency A1. The pia was 

then removed from the target injection sites and the glass pipette containing the virus 

was advanced into the brain at the furthest depth (typically 800µm) and 1µL of virus 

was injected at 0.1µL/min. The pipette was pulled up to the next depth location 

(typically 500µm) and another 1µL of virus was injected at the second depth. The virus 

was injected in two injection sites in auditory cortex per hemisphere. 

For F1706, we implanted an optic fibre to deliver light to the injection sites 

chronically. The fibre was positioned close to the injection site with the surface of the 

fibre touching the cortical surface. The implant was then embedded within inert silicone 

elastomer in the craniotomy (Kwik-Sil, World Precision Instruments). The implant was 

then affixed to the skull via dental cement (Palacos R+G, Heraeus) and the screws 

attached to the skull. Implant wells were then secured around the implant to protect it 

from physical damage and to act as fixation points for the optic fibre that is connected 

to deliver the photostimulation via a laser. Excess skin was then removed to secure 

the rest of the skin smoothly around the edges of the implant. Animals were then 

allowed to recover for at least two weeks before undergoing water restriction and 
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testing. Pre-operative, peri-operative and post-operative analgesia and anti-

inflammatory drugs were provided to animals under veterinary advice. Due to COVID-

19, behavioural testing of F1706 occurred 20 months after viral injection and neural 

recordings of F1801 and F1807 occurred approximately 21 and 18 months after 

injection respectively.  

 

Figure 6.1: Locations of injection sites, fibres and electrode probes. A-B) Multiple probe 
and fibre configurations for F1807 (A) and F1801 (B) during recordings were used. C) Injection 
sites and fibre location for the left (LHS) and right (RHS) auditory cortices. 

 

6.3.2 Histology 

To confirm electrode location and position, at the end of the experiment the 

animals, apart from F1706 due to implant failure, were transcardially perfused with 

0.9% saline and 4% paraformaldehyde (PFA) under anaesthesia. The brain was then 

removed for storage in PFA, before cryoprotecting in 30% sucrose for 4-5 days prior 

to cryosectioning. Because of the unavailability of a functioning cryostat (delayed by 

COVID-19), brains of F1801 and F1807 were stored in PFA for 6 months, limiting the 

quality of fluorescent signals. F1814 was sectioned 12 weeks from viral injection. 

Coronal sections (50μm) were taken through the full extent of the ectosylvian gyrus 

for F1801 and F1807, and sagittal sections (50μm) for F1814. However, the histology 

for F1801 is not shown as the terminal recordings severely compromised brain quality. 

Slices were then mounted on slides using mounting medium that stained the cell 

bodies with DAPI (Vectashield HardSet Antifade Mounting Medium with DAPI). Slices 
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were imaged to measure either mCherry or GFP and cell body (DAPI) labelling using 

a Zeiss Axio Imager 2.0 and Zeiss Confocal and processed on Zen Blue. 

 Left hemisphere Right hemisphere 

Subject 
no. 

Virus Fibre Virus Fibre 

F1814 

 

Site 1: AAV2-mDLX-

ChR2- mCherry (2 

depths @ 1uL) 

Depth 1: 1000uM 

Depth 2: 400uM 

Site 2: AAV5-CamkII-

JAWS-GFP (2 depths @ 

1uL) 

Depth 1: 800uM 

Depth 2: 500uM 
 

- 

 

Site 1: AAV2-mDLX-

ChR2-mCherry (2 

depths @ 0.5uL) 

Depth 1: 800uM 

Depth 2: 400uM 

Site 2: AAV5-CamkII-

JAWS-GFP (2 depths @ 

0.5uL) 

Depth 1: 800uM 

Depth 2: 400uM 

 

- 

F1706 

 
Site 1: AAV2-mDLX-
ChR2- mCherry (2 
depths @ 1uL) 
Depth 1: 800uM 
Depth 2: 500uM 
 

NeuroNexus 
optrode 

Site 1: AAV2-mDLX-
ChR2-     mCherry (2 
depths @ 1uL) 
Depth 1: 800uM 
Depth 2: 500uM 

NeuroNexus 
optrode 

F1801 

 

Site 1: AAV2-mDLX-

ChR2-mCherry (2 

depths @ 1uL) 

Depth 1: 800uM 

Depth 2: 500uM 

Site 2: AAV2-mDLX-

ChR2-mCherry (2 

depths @ 1uL) 

Depth 1: 800uM 

Depth 2: 500uM 
 

Custom fibre 

 

Site 1: AAV2-mDLX-

ChR2- mCherry (2 

depths @ 1uL) 

Depth 1: 900uM 

Depth 2: 500uM 

Site 2: AAV2-mDLX-
ChR2-     mCherry (2 
depths @ 1uL) 
Depth 1: 900uM  
Depth 2: 500uM 

Custom fibre 

F1807 

 

Site 1: AAV2-mDLX-

ChR2-mCherry (2 

depths @ 1uL) 

Depth 1: 800uM 

Depth 2: 500uM 

Site 2: AAV2-mDLX-

ChR2-mCherry (2 

depths @ 1uL) 

Depth 1: 800uM 

Depth 2: 500uM 
 

Custom fibre 

Site 1: AAV2-mDLX-

ChR2- mCherry (2 

depths @ 1uL) 

Depth 1: 800uM 

Depth 2: 500uM 

Site 2: AAV2-mDLX-
ChR2-     mCherry (2 
depths @ 1uL) 
Depth 1: 800uM  
Depth 2: 500uM 

Custom fibre 

 
Table 6.1: Table of configuration of viral injections, constructs and optic fibres used 
for each ferret. 
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6.3.3 Neural recordings 

To determine whether stimulation of ChR2 in GABAergic neurons is sufficient 

to suppress sound-driven responses in auditory cortex, we recorded the activity of 

auditory cortical neurons while presenting stimuli with and without laser stimulation to 

two ferrets (F1801 and F1807) under anaesthesia. Anaesthesia was induced by a 

single dose of ketamine (Ketaset; 5 mg/kg/h; Fort Dodge Animal Health) and 

medetomidine (Domitor; 0.022 mg/kg/h; Pfizer). The left radial vein was cannulated 

and anaesthesia was maintained throughout the experiment by continuous infusion 

(ketamine: 5 mg/kg/h; medetomidine: 0.022 mg/kg/h; atropine sulfate: 0.06 mg/kg/h 

and dexamethasone: 0.5 mg/kg/h in Hartmann’s solution with 5% glucose). The ferret 

was intubated, placed on a ventilator (Harvard model 683 small animal ventilator; 

Harvard Apparatus), and supplemented with oxygen. Body temperature (38°C), ECG, 

and end tidal CO2 were monitored throughout the experiment (approximately 48h). 

Animals were then placed in a stereotaxic frame, and the site of viral injection over 

both left and right auditory cortex was exposed. A metal bar was attached to the 

midline of the skull, holding the head without further need of a stereotaxic frame. The 

animal was then transferred to a small table in a soundproof chamber (Industrial 

Acoustics) for stimulus presentation and neural recording. During recordings, the 

craniotomy was covered with 3% agar, replaced at regular intervals. 

During neural recordings to test the inactivation of neurons during 

photostimulation, I presented broadband noise bursts of varying levels (40-70dB SPL) 

and durations (50, 100, and 250ms), either alone or with the laser on. Stimuli were 

repeated 20 times, with a pseudo-random interval (0.5-0.7s) between trials. Laser 

stimulation was provided with a 463nm DPSS laser attached to a custom-made optic 

fibre (1.5mm diameter, Thorlabs FP1500URT) that was designed to maximize the area 

over which light was delivered and could provide up to 300mW at the fibre tip. I 

presented pulsed light with a target power of 50mW and frequency of 1 or 10Hz. 

Pulses had a square-wave design with 50% duty cycle, beginning 100ms before sound 

onset and ending 100ms after sound offset. In addition to laser testing with sound 

presentation, I also tested the effect of the laser on spontaneous activity without 

sound. The effects of laser light delivery were measured at several sites over auditory 
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cortex by placing the optic fibre and Neuropixels probe in various configurations over 

MEG and close to the viral injection sites of auditory cortex in each animal (see Figure 

6.1A-B for recording configurations during recordings).  

To record the neural activity, I used Neuropixels Probes (IMEC, version 1.0) 

inserted orthogonal to the cortical surface. The probes were connected via headstages 

to an IMEC PXIe data acquisition module within PCI eXtensions for Instrumentation 

(PXI) hardware (PXIe-1071 chassis and PXI-6132 I/O module, National Instruments) 

that sampled neural signals at 30kHz. Neural activity was recorded in SpikeGLX 

(version 3.0., billkarsh. github.io/SpikeGLX) and putative action potentials were then 

extracted and sorted in Kilosort (version 3.0., www.github.com/MouseLand/Kilosort), 

and manually curated to identify single (n=174) or multiunit (n=291) activity. Spike 

clusters were merged based on assessment of waveform similarity and classed as a 

SU using waveform size, consistency, and inter-spike interval distribution (all single 

units had 2% of spikes within 2ms). Neural spikes had biphasic waveforms that were 

notably different from positive-going monophasic waveforms containing sharp peaks 

that were interpreted as laser artefacts and discarded from the analysis. 

6.3.4 Neural analysis 

To contrast the effects of laser light delivery on sound-driven activity, I first 

calculated the mean firing rate of each unit during auditory evoked activity, taking a 

window from sound onset to sound offset (50, 100, or 250ms in length). For each unit, 

I compared the mean firing rate during this window calculated over all conditions in 

which the laser was present with the mean firing rate when the laser was absent 

(change in firing rate = laser OFF– laser ON). To contrast the effects of laser light 

delivery on spontaneous activity of each unit, I performed the same calculation on 

mean firing rates during the 100ms window before sound onset, on trials with and 

without the laser. 

Inspection of neural activity with, and without, laser suggested that light delivery 

had distinct effects on subgroups of neurons. To test whether units could be 

distinguished by their modulation to laser delivery and to determine the number of 

separable groups of units using an unsupervised approach, I applied K-means 

clustering to the firing rates of each unit with and without laser. Clustering was based 

on the cosine distance between units (rather than Euclidean distance) to isolate the 

change in spike rate with laser stimulation across units with widely varying baseline 
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firing rates. I identified the appropriate number of clusters within the data by comparing 

the sum of point-to-centroid distances for K=1 to 10 and finding the knee-point using 

vector bisection (Dmitry Kaplan 2022, Knee Point, MATLAB Central File Exchange).  

To map the extent of sound-evoked activity across the length of the probe, I 

compared the mean spike rates during sound presentation and a time window 

preceding sound onset of matched duration (Wilcoxon). This analysis was performed 

on each unit to each sound duration by sound level condition, with Bonferroni 

correction for multiple comparisons. Units that showed a significant response in any 

of the conditions were classed as an auditory evoked unit (n = 72, out of a total of 464 

recorded units). I then contrasted the effects of laser light delivery on the firing rates 

of units recorded at different cortical depths during sound presentation, where depth 

refers to the distance on the probe from the most superficial channel on which spiking 

activity was observed.  

I also investigated the temporal dynamics of the optogenetic stimulation to 

control for heating effects from laser delivery (Owen et al., 2019). To identify the 

latency at which light delivery induced a significant change in firing, I performed 

nonparametric cluster statistical analysis, which controls for multiple comparisons that 

would occur from calculating a test statistic over each time point, by calculating a test 

statistic from clusters of adjacent time samples of the PSTH in which firing rate with 

laser was greater than without laser (or vice versa;  Maris and Oostenveld, 2007). This 

statistic was calculated during the 100ms after laser onset for each condition and the 

minimum time bin labelled as significant by the cluster statistic was averaged across 

conditions to calculate the latency for each unit. 

6.3.5 Vowel discrimination task 

6.3.5.1 Stimuli 

Vowels were synthesized in MATLAB (The MathWorks) using an algorithm 

adapted from Malcolm Slaney’s Auditory Toolbox 

(https://engineering.purdue.edu/;malcolm/interval/1998- 010/) that simulates vowels 

by passing a click train through a biquad filter with appropriate numerators such that 

formants are introduced in parallel. In the current study, four formants (F1-F4) were 

modelled: /u/ (F1-F4: 460, 1105, 2857, 4205 Hz), /Ɛ/ (730, 2058, 2857, 4205 Hz). 

F1706 was trained to discriminate between the pair of vowels: /Ɛ/ and /u/. All vowels 
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were generated with a 200Hz fundamental frequency. Vowels were presented in clean 

conditions as two repeated tokens, each of 250ms duration and of the same identity, 

separated with a silent interval of 250ms (see Figure 6.2). Here, two vowel tokens 

were used for consistency with previous work (Bizley et al., 2013; Town et al., 2015).  

 

Figure 6.2: Spectrogram of vowels in discrimination task. Spectrogram shows vowels 
(e.g., two 250ms tokens of /u/, separated by 250ms interval) with additive broadband noise. 
Vowel identity was always the same for both tokens, and the animal was required to respond 
left or right based on that identity (i.e., there was no requirement to compare the two tokens). 

Sounds were presented through loudspeakers (Visaton FRS 8) positioned on 

the left and right sides of the head at equal distance and approximate head height. 

These speakers produced a smooth response (62 dB) from 200 to 20,000 Hz, with a 

20 dB drop-off from 200 to 20 Hz when measured in an anechoic environment using 

a microphone positioned at a height and distance equivalent to that of the ferrets in 

the testing chamber. All vowel sounds were passed through an inverse filter generated 

from calibration of speakers to Golay codes (Zhou et al., 1992). Vowels were 

presented with additive broadband noise fixed at 70 dB SPL generated afresh on each 

trial. The noise was timed to ramp on at the onset of the first vowel token and ramp off 

at the end of the second vowel token, and thus had a total duration of 750ms (i.e., that 

was equal to the two vowel tokens, plus the intervening silent interval). Onsets of both 

vowels and noise were ramped using a 5ms cosine function.  

 

6.3.5.2 Task 

F1706 was trained to discriminate between synthetic vowel sounds by reporting 

at a left response port if one type of vowel (e.g., /u/) was presented, or reporting at a 

right response port if a second type of vowel (e.g., /Ɛ/) was presented. The chamber 

contained three response ports housing infrared sensors that detected the ferret’s 

presence. On each trial, the ferret was required to approach the centre spout and hold 



216 
 

their head position for a variable period (between 0 and 500ms) before stimulus 

presentation. Animals were required to maintain contact with the centre port until 

250ms after the presentation of the first token, at which point they could respond at 

left or right response ports. Correct responses were rewarded with water, while 

incorrect responses led to a brief timeout (between 3 and 8 s) indicated by presentation 

of a 100ms broadband noise burst and in which the centre port was disabled so that 

animals could not initiate a new trial. During testing, light was delivered in the optic 

fibres implanted in F1706 from a 463 nm DPSS laser (Shanghai Laser & Optics 

Century) with a steady-state power of 40mW, measured at fibre termination before the 

optrode using an S140C integrating sphere photodiode sensor (ThorLabs). 

 

6.3.5.3 Behavioural analysis 

All analyses excluded responses on correction trials, or trials where ferrets 

failed to respond within the required time (60s). A minimum number of trials (n = 10) 

and sessions (n = 3) in both laser and control conditions to include a sound level or 

signal-to-noise ratio (SNR) value in the analysis. Statistical analysis of effects of the 

effect of photostimulation and vowel level on performance used a generalized linear 

model fitted using fitglm in MATLAB (version 2022a). The model used a binomial 

distribution and logit link function with condition (laser on = 1, laser off = 0) and vowel 

level as fixed effects. I reported the magnitude of coefficients (estimate) of fixed effects 

of interest, the t-statistic for a hypothesis test that the coefficient is equal to 0 (T) and 

its respective p-value (p). The 95% confidence intervals are also reported for each 

fixed-effect coefficient and the adjusted R2 value of the model to assess model fit. All 

behavioural analysis was performed offline using Python packages and MATLAB. 
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6.4 RESULTS 

6.4.1 AAV2-mDLX-ChR2-mCherry & AAV5-CamkII-JAWS-GFP expression 

within ferret auditory cortex 

Optogenetic silencing can be performed either through driving inhibitory 

interneurons via Channelrhodopsin-2 with an inhibitory targeting promoter (i.e. mDLX 

(Dimidschstein et al., 2016) or suppressing  spiking of excitatory neurons via a 

halorhodopsin such as JAWS (Chuong et al., 2014). During development of the 

technique, I wanted to test the expression of two viral constructs working in each of 

these ways, AAV5-CamkII-JAWS-GFP and AAV2-mDLX-ChR2-mCherry. To assess 

the expression, both constructs were injected into auditory cortex of F1814, and then 

sagittal sections were imaged on a confocal to identify the location of the fluorescently 

labelled opsins (see Figure 6.3). Both viral constructs showed adequate spread 

throughout the tissue, expressing in a region of approximately 1mm in diameter (see 

Figure 6.3A and C). However, AAV5-CamkII-JAWS-GFP showed expression mostly 

localised to the neuropil (see Figure 6.3B) whereas AAV2-mDLX-ChR2-mCherry was 

localised within the cell body membrane, as shown by its proximity to the DAPI stained 

nucleus.  

With the more localised expression around the cell body with the AAV2-mDLX-

ChR2-mCherry viral construct, and the increased effectiveness of leveraging the 

inhibitory network to inactivate cortex (Li et al., 2019), I focused my efforts on using 

the AAV2-mDLX-ChR2-mCherry viral construct to silence auditory cortex. To check 

the depth of expression I sectioned slices coronally in F1807 and assessed the 

localisation of the opsins to the cell body. Widefield imaging demonstrated viral 

expression in MEG, with labelled cells observed between 1 and 2 mm from injection 

sites (see Figure 6.4A). Confocal imaging again revealed some colocalization of 

mCherry with cell bodies (labelled by DAPI), however as the brain of F1807 was fixed 

after terminal recordings, and stored in PFA for 6 months, this limited the quality and 

contrast of fluorescent signals (see Figure 6.4B). Overall, I can conclude that AAV2-

mDLX-ChR2-mCherry does successfully express within the cell body of neurons in 

auditory cortex with a spread of approximately 1 to 2mm per injection site. 
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Figure 6.3: Fluorescent imaging of optogenetic viral injection sites in auditory cortex of 
F1814. A) Injection site in auditory cortex of the AAV5-CamkII-JAWS-GFP. Spread of injection 
site reaches approximately 1mm. B) Increased magnification and staining of cell nuclei with 
DAPI (white arrow) shows expression of construct within the neuropil (white box). C) Injection 
site in auditory cortex of the AAV2-mDLX-ChR2-mCherry. Spread of injection site reaches 
approximately 1mm and shows expression within the cell body. D) Expression of the construct 
is within the cell body membrane of multiple cell bodies around intact nuclei, stained by DAPI 
(white box).   



219 
 

 

Figure 6.4: Fluorescent imaging of an example of a AAV2-mDLX-ChR2-mCherry 
injection site within auditory cortex of F1807. A) Widefield imaging of coronal sections 
through the ectosylvian gyrus with the cell bodies labeled with DAPI (blue) and ChR2 labeled 
with mCherry (red). B) Confocal imaging of the injection site showing colocalization of cell 
bodies and mCherry expression (outlined). 

 

6.4.2 Cortical inactivation via activation of GABAergic interneurons 

With the confirmed viral expression of AAV2-mDLX-ChR2-mCherry within ferret 

auditory cortex, I examined the electrophysiological efficacy of cortical inactivation 

through optogenetics. To do this I performed terminal recordings to record neural 

responses around the viral injection sites of F1801 and F1807. Using Neuropixel 

probes (NP1.0) I recorded the activity of 465 units in auditory cortex under ketamine-

medetomidine anaesthesia.  Multiple optic fibre and recording sites were tested over 

auditory cortex (see Figure 6.1A-B), and at each site, I presented broadband noise 

with half of the trials presenting a laser simultaneously (100ms before and after sound 

onset/offset; see Figure 6.5). Light delivery affected neural responses in a variety of 

ways, including suppressing neural responses to sound (see Figure 6.5A & D), 

suppressing baseline spontaneous firing (see Figure 6.5B) and, in some cases, 

driving firing (see Figure 6.5C).  
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Figure 6.5: Neural responses during photostimulation of ChR2. Peristimulus time 
histogram and raster plots showing responses of four example units recorded from auditory 
cortex with and without light delivery in a single laser pulse (A-C) and a 10Hz laser pulse (D). 

Across the population, I observed that photostimulation most commonly 

suppressed sound evoked and spontaneous activity in the majority of units (see 

Figure 6.6). While these patterns were most evident when examining firing in the time 

window around sound presentation (see Figure 6.6A & C), the same pattern was also 

evident in spontaneous activity (see Figure 6.6B & D). To capture distinct effects of 

light delivery on the neural population, I used K-means clustering to classify units into 

separate groups. I performed K-means clustering in a polar coordinate system to 

compare the mean firing rates of each unit, as it allowed me to capture the 

experimental effect of light delivery via the angle units, while standardising 

comparisons across units with widely varying firing rate. The angular distribution 

showed peaks that distinguished units showing strong suppression (angles tending to 

0 radians), units that were unaffected by light (values near π/4 radians), and a smaller 

number of units showing laser driven activity (angles tending to π/2; see Figure 6.6E). 

Cross-validation on the sum of point-to-centroid distances for K=1 to 10 

indicated that two clusters captured the majority of variance between units (see Figure 

6.6F), with the two groups being distinguished by their sensitivity to photostimulation 

(see Figure 6.6). Cluster 1 showed a significant decrease in sound evoked firing, 

median change of -1.296 spikes/s during photostimulation (Wilcoxon signed rank test, 

Bonferroni, p < 0.001, Z = -14.3), whilst cluster 2 showed a small but significant 

increase, with a median change of 0.0667 spikes/s (p < 0.001, Z = 5.09). Light delivery 
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was also successful in suppressing baseline spontaneous activity. Cluster 1 showed 

a significant decrease in spontaneous firing, median change of -0.4167 spikes/s during 

photostimulation (Wilcoxon signed rank test, Bonferroni, p < 0.001, Z = -8.18), whilst 

cluster 2 again showed a small but significant increase, with a median change of 

0.0667 spikes/s (p < 0.001, Z = 4.22)). The lower firing rates of units without laser 

illumination gave less scope to observe modulation and thus the effects of inactivation 

were weaker. 

 

Figure 6.6: Optogenetic inactivation of auditory cortical activity. A-B) Scatterplots of firing 
rate with and without laser. C-D) Cumulative histograms of change in firing rate with laser light 
delivery. Plots show firing rate measured during (A, C) or before (B, D) sound presentation for 
each unit, coloured by cluster and filled if the change in firing rate between laser conditions 
was significant (Wilcoxon signed-rank, p < 0.05). Green lines/labels on cumulative histograms 
mark the proportion of units (across all clusters) in which laser presentation suppressed 
spiking activity (Δ spikes/s < 0). E) Histogram of the polar angle of units between the laser FR 
and control FR in radians for auditory evoked responses. F) Sum of point-to-centroid distances 
for K=1 to 10, with the knee point outlined in red.   

For each unit within a cluster, I also asked if the mean sound-evoked firing rate 

(windowed between 50 to 150ms from laser onset, which included 50ms of baseline 
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activity and the first 50ms of sound evoked activity) differed between laser 

presentation and absence (two-tailed sided Wilcoxon signed rank test, p < 0.05). The 

majority of units in cluster 1 (60.3 %) showed significant changes in activity with light 

delivery, while only a minority of units (25.9%) in cluster 2 were affected by 

photostimulation. The pattern of results was similar, regardless of whether activity was 

recorded from SUs or MUs (see Table 6.2). 

Cluster # Single-units Multi-units Total 

Cluster 1 58/103 (56.3%) 106/169 (62.7%) 164/272 (60.3%) 

Cluster 2 16/71 (22.5%) 34/122 (27.9%) 50/193 (25.9%) 

Total 74/174 (42.5%) 140/291 (48.1%) 214/465 (46.0%) 

 

Table 6.2: Proportion of single and multi-units in each cluster that showed a significant 
change in firing rate with laser light delivery in 50-150ms window after laser onset 
(Wilcoxon, p < 0.05) 

6.4.3 Spatial and temporal profile of optogenetic inactivation using AAV2-

mDLx-ChR2-mCherry 

The extent and speed of inactivation are major considerations when 

manipulating neural activity during behaviour. To understand how far and how fast it 

was possible to suppress neurons using ChR2 expressed via the mDlx promoter, I 

mapped the effects of laser light with cortical depth and time (see Figure 6.7). In our 

analysis of depth, I defined the limits of auditory cortex on the basis of sound-evoked 

responses, of which 95% were observed within 2.62 mm of the top of the probe (see 

Figure 6.7A-B). Such functional estimates are comparable with the thickness of ferret 

auditory cortex observed histologically (with correction for tissue shrinkage during 

fixation; see Figure 6.4).  

Across the depth profile of AC, laser-driven suppression of neural activity was 

stronger in more superficial units and diminished with distance from the cortical 

surface (see Figure 6.7C). The effect of depth was evident in the median position of 

units in clusters 1 and 2 (identified through K-means clustering in the previous section), 

with light-suppressed units grouped in cluster 1 occurring significantly closer to the 

cortical surface (rank-sum test, p < 0.001). Modelling the laser-related change in single 

trial spike counts of individual units as a function of distance from the cortical surface 

confirmed a significant interaction between depth and light delivery (Poisson mixed-

model regression with distance and light as fixed effects, ferret, unit, and sound 

duration as random effects, p < 0.001). However, the fall-off in suppression captured 
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by the model took place across several millimetres, with 90% of all significantly 

inactivated units (see Table 6.2) being located within 1.598 mm of the cortical surface. 

This prolonged fall-off over several millimetres contrasts with the rapid attenuation of 

blue light in tissue over hundreds of micrometres (Li et al., 2019), making it unlikely 

that light-based artefacts account for the spatial extent of inactivation observed.  

 

Figure 6.7: Optogenetic inactivation by depth and latency. A) Schematic of probe 
displaying approximate anatomic locations in reference to surface, defined as the most 
superficial depth at which spiking was observed. B) The location of auditory evoked units (n = 
72) as a function of cortical depth from surface with boxplot showing quartiles with whiskers 
showing the 95th percentiles. C) Change in firing rate with light delivery as a function of cortical 
depth from surface. Inset, Magnified grey region with dotted line indicating predictions from 
fitted Poisson mixed-model. D) Latency of significant change in firing rate with light delivery 
as a function of depth. Marker colour and shape in panels C and D indicate cluster grouping 
identified via K-means clustering, as in Figure 6.6. 

The temporal profile of inactivation also indicated that the effects we observed 

were not a trivial result of cortical heating, as light delivery suppressed cortical activity 

rapidly (see Figure 6.7D). Nonparametric cluster statistics revealed a median latency 

for significant change in firing at 2.5ms. Such rapid changes in firing rate show that the 

mDlx-induced expression of ChR2 in auditory cortex provided a fast method for cortical 
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inactivation, and are unlikely to be driven by changes in temperature of tissue that 

have been reported over longer time-scales, on the order of hundreds of milliseconds 

or seconds (Owen et al., 2019) 

6.4.4 Optogenetic inactivation primarily affects broad-spiking neurons 

Analysis of light-driven suppression of sound driven responses indicated that 

optogenetic inactivation affected a specific subgroup of neurons; that is, units in cluster 

1 but not cluster 2, identified through K-means clustering. It is possible that cells within 

each cluster may be drawn from distinct populations of neurons suppressed by light-

driven local network inhibition (cluster 1), and GABAergic interneurons driven by light 

(cluster 2). Pyramidal neurons and interneurons are often distinguished by their spike 

waveform as broad and narrow spiking cells, respectively (Moore and Wehr, 2013; 

Niell and Stryker, 2008); and so, I asked whether the clusters identified from firing rate 

data might have distinct spike shapes that correspond to these cell types.  

To compare spike shapes, I measured the trough-to-peak latencies of average 

spike waveforms from well-isolated single units in cluster 1 (n = 80) and cluster 2 (n = 

20) recorded within 1.598 mm from the cortical surface (i.e., the depth range within 

which 90% of significantly inactivated units were identified). I found that the trough-to-

peak latencies of SUs in cluster 1 (i.e., those that were suppressed by the laser) were 

indeed longer (mean = 0.402ms) than those in cluster 2 (mean = 0.338ms), indicating 

a broader waveform (see Figure 6.8A). To determine whether differences in trough-

to-peak latency observed between clusters might arise spuriously, I compared the 

difference I observed in the data with results when randomly shuffling cluster labels 

(see Figure 6.8B). Permutation testing confirmed that the difference in spike widths 

between clusters was significant (p = 0.01, n = 1000 iterations). Thus, my results are 

consistent with the suggestion that neurons suppressed by the laser were primarily 

broad-spiking excitatory/pyramidal neurons, while the remaining cells were more likely 

to be narrow spiking inhibitory interneurons. However, because the mDlx promotor is 

specific only to GABAergic neurons, light is likely to drive multiple subclasses of 

inhibitory interneurons including, but not restricted to, fast spiking PV neurons. 
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Figure 6.8: Optogenetic inactivation of broad spiking units. A) Spike shapes of well-
isolated single units of cluster 1 (blue, n = 80 SUs) and cluster 2 (red, n = 20 SUs) recorded 
within 1.598 mm of the surface. Data are shown as mean 6 SD. B) Difference in trough-to-
peak latency of each mean waveform (cluster 1 – cluster 2) for observed data (red dashed 
line, difference = 0.0648ms) or when randomly shuffling clusters labels (histogram, n = 1000 
iterations) during permutation testing (97.5th percentile, black line). 

6.4.5 Optogenetic silencing of auditory cortex impairs vowel discrimination in 

noise 

To assess whether inactivation of auditory cortex through optogenetic means 

could impair behaviour, I used a behavioural vowel discrimination task, already 

previously demonstrated to show impaired performance during inactivation of auditory 

cortex through cortical cooling (Town et al., 2023). We trained one ferret (F1706) in a 

vowel discrimination task (/u/ or /Ɛ/) of varying sound level with vowels in additive 

broadband noise in control conditions and with laser light delivery. Performance 

increased with increasing vowel levels across conditions, but decreased when auditory 

cortex was photostimulated (see Figure 6.9). A logistic regression with condition (laser 

on or off), and vowel level as factors, revealed main effects of both. For every increase 

in vowel level by 1dBSPL, proportion of correct responses increased by 0.0557 (p = 

0.00272) and photostimulation decreased performance by -0.590 (p = 0.0160). 

Overall, this shows that auditory cortical inactivation, through the activation of ChR2 

in GABAergic neurons, impaired vowel discrimination in noise in the ferret. 
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Figure 6.9: Performance of F1706 in the vowel discrimination task at various vowel 
levels. Performance is calculated by computing the percent correct for each vowel level in 
both the control condition (black circles) and condition with photostimulation (blue circles). The 
size of the circles represents the number of trials performed by the ferret at each vowel level 
and condition. The binomial linear regression prediction is plotted in the dotted-dashed line 
with the 95% confidence intervals for both the control (black dashed line) and laser condition 
(blue dashed line). 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept -2.053 1.101 -1.865 0.0623 -4.475 0.370 

Condition 
(0 = laser off;  
1 = laser on) 

-0.590 0.245 -2.410 0.0160 -1.130 -0.0512 

Vowel level 0.0557 0.0186 2.998 0.00272 0.0148 0.0966 

 
Table 6.3: Estimates of each fixed effect in the binomial linear regression on 
performance. R2 = 0.716; Df = 11 
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6.5 DISCUSSION 
The data in this chapter showed the successful development of a technique to 

inactivate AC in the ferret model using a recently developed viral construct: AAV2-

mDlx-ChR2-mCherry. I showed strong evidence on the suppression of neural 

responses due to the activation of the inhibitory network and that this inactivation can 

impair behaviour in a vowel discrimination in noise task. 

Outside of rodent research there has been a widespread lack of data and studies 

that shows the effectiveness of optogenetics at behavioural, physiological and 

histological levels, specifically in the ferret model. The most common techniques for 

temporary inactivation are through the use of cooling loops or Elvax implants that 

release muscimol which have much longer acting effects compared to that of 

optogenetics (see for a review: Slonina et al., 2022). Therefore the tools to have 

precise spatial and temporal precision in loss of function studies in ferret are limited. 

Studies have used ArchT in ferret auditory cortex to target excitatory neurons and 

reduce their likelihood of firing (Bajo et al., 2019), however the efficacy of this method 

to silence enough of auditory cortex is not as effective as leveraging the inhibitory 

network to silence cortex (Li et al., 2019). With the recent development of the mDlx 

promoter as a method of targeting the ChR2 opsin to GABAergic neurons in the ferret 

(Dimidschstein et al., 2016), it has created a new avenue for cortical silencing studies 

outside of the rodent model, thereby allowing the causal study of more complex 

auditory processing and behavioural tasks.  

I injected auditory cortex in the ferret with AAV2-mDLx-ChR2-mCherry and 

recorded neural responses through the laminar structure of AC with Neuropixels 

probes whilst presenting photostimulation with a laser emitting 463nm. I showed that 

the majority of neurons showed suppression in both their auditory evoked firing and 

spontaneous firing when the opsin was activated. I also observed two clusters of 

neural responses, ones that showed strong inactivation and others that showed no 

change or in the rare case a strong activation. The cluster of neurons that were 

supressed were likely broad-spiking excitatory neurons, inhibited by the activation of 

their connected inhibitory interneurons. Whereas the other cluster were likely narrow-

spiking interneurons, activated by the opsin, or neurons that were too deep in the 

cortical layers to be affected by the inhibitory network.  
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By using Neuropixel probes I was able to record single and multi-unit responses 

all along the laminar structure of AC and assess the efficacy of the optogenetic method 

as a function of depth. I showed that despite light typically dissipating within hundreds 

of micrometres in brain tissue (Li et al., 2019), that inactivation occurred over a depth 

of approximately 1.6mm. This amount of inactivation across depth would not be 

possible with methods that use opsins such as ArchT or JAWS to reduce the firing of 

excitatory neurons, as it is wholly reliant on light to provide the inactivation. In the case 

of targeting GABAergic neurons, due to the recurrent inhibitory connectivity in cortical 

circuits the suppression on excitatory neurons are amplified and therefore suppression 

in a small region near photostimulation withdraws input to the surrounding regions, 

reducing activity in the surrounding regions (Li et al., 2019). This property of 

photoinhibition is key for animal models with much larger brains than rodents, as much 

larger regions need to be inactivated to produce a deficit in behaviour or neural 

correlate due to the brain ability to recruit alternative neural circuits (Slonina et al., 

2022). 

Light delivery during photostimulation can cause cortical heating and this heating 

can perturb neural responses and thereby can alter behaviour (Owen et al., 2019; 

Peixoto et al., 2020). However this is typically on the time scale of hundreds of 

milliseconds or seconds (Owen et al., 2019), and I observed the median latency for 

significant suppression in neural firing to occur at 2.5ms. Therefore it is likely that the 

changes in firing are driven by optogenetic inactivation rather than changes in 

temperature in the tissue. However, future work in which the presentation of laser light 

at a different wavelength to that of the excitation wavelength of the opsin in control 

trials, would provide similar heating but no optogenetic inactivation as a control.  

Through fluorescent imaging, I confirmed the successful expression of the AAV2-

mDlx-ChR2-mCherry construct in neurons within auditory cortex, and that the spread 

of the virus reached approximately 1mm in diameter. Future work with 

immunofluorescence whilst staining for CamKII and GAD67 would allow me to confirm 

whether this viral construct is targeting excitatory neurons or inhibitory GABAergic 

interneurons respectively, and PV+ and SOM stains would identify the ratio of 

expression between inhibitory interneuron subtypes. This would aid in understanding 

the role of these interneurons in the vowel discrimination task, but more relevantly the 

role of these in a regularity detection task. This method was developed in order to 
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identify a causal link between auditory cortex and regularity detection in the 

behavioural paradigm I developed. Due to COVID-19 and other unforeseen 

circumstances this became beyond the scope of this project. However, now given the 

ability to precisely inactivate regions of auditory cortex with millisecond precision, it 

provides opportunities for understanding how the brain processes auditory patterns. 

Inactivation during later parts of the pattern could elucidate what number of repeats is 

important for detection in the ferret. Furthermore, inactivating secondary or primary 

regions of auditory cortex bilaterally across a trial could provide evidence for whether 

these regions are needed for the animal to successfully perform the task. 

In conclusion, in this chapter I show the first evidence demonstrating the 

effectiveness of the mDlx promoter in the ferret in either enabling silencing sensory 

responses (in any sensory modality) or altering behaviour. This creates a foothold to 

expand on which future work can perturb neural responses with temporal precision in 

a ferret model. 
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7  CHAPTER SEVEN: DISCUSSION 

In this thesis I aimed to understand how the brain detects and maintains a 

representation of deterministic acoustic patterns. I presented rapid sequences of tone-

pips that transition from a random selection of frequencies to a regularly repeating 

pattern to a behaving animal model – the ferret. I varied the length of the pattern and 

the frequency pool used in the random sequence and measured behavioural 

performance, and neural correlates within both the local field potential and firing of 

single and multi-units within auditory cortex and hippocampus. My findings provided 

evidence that a non-primate model can detect these changes from random to regular 

tone sequences, and that auditory cortex and hippocampus showed neural correlates 

in neuronal firing and the LFP.  

7.1 FERRETS AS A MODEL FOR INVESTIGATING REGULARITY DETECTION 
In chapter 2 I introduced the ferret as a model species for the study of how the 

brain detects deterministic acoustic patterns. I tested whether ferrets could detect the 

transition from random sequences to regular patterns, and their perceptual capabilities 

in detecting increasingly complex patterns. I further investigated the cognitive 

strategies of the ferret during the task to test if they are performing true regularity 

detection. The stimulus I used to assess this auditory process was a rapid sequence 

of tone-pips that transitioned from a random sequence to a repeating regular 

sequence, with varying lengths of the pattern that had previously been used in human 

studies. My main findings were that ferrets could in fact perform regularity detection, 

but as the pattern length increased (from 3 to 5 to 7 tones in length), reaction time 

increased and performance decreased. Previous work has demonstrated that ferrets 

can detected repeated single frequency pure tones (Ma et al., 2010) and noise bursts 

(Saderi et al., 2019), and primates have shown changes in pupil diameter consistent 

with the emergence of regularity within the tone sequences (Barczak et al., 2018), yet 

my work is the first to demonstrate an animal model performing the regularity detection 

task developed by Barascud et al. (2016). 

In comparison, human subjects displayed excellent performance in detecting 

these transitions, with near-perfect detection rates for pattern lengths of 10 and 20 

tones (Barascud et al., 2016). Reaction times were also rapid for pattern length 10, 

with an average of 5.5 tones needed after the transition to detect the regularity, which 
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is comparable to an ideal observer based on the PPM model (which requires just 3 to 

4 tones). However, for pattern length 20, despite achieving ceiling performance, 

human listeners required significantly longer, taking an average of 13.6 tones after the 

transition to detect the regularity, which is much more delayed than the predicted 3 to 

4 tones needed by the model. To perform this task, it has been proposed that listeners 

must retain a subset of the previous tone frequencies in their short-term memory, 

which they can then compare with their stored internal model and transition 

probabilities between tones of the predicted stimulus (Barascud et al., 2016). This 

memory process has been shown to impose constraints on performance in the PPM 

model (Harrison et al., 2020), where the authors replicated the changes in latency 

across pattern lengths by manipulating short- and long-term auditory memory 

capacity. These findings suggest that there is an increased detection latency in 

humans for increasing pattern lengths due to limitations of auditory memory. A similar 

explanation may hold for the ferret data I present in this study, and suggest that more 

stringent memory constraints in the ferret limit performance to shorter pattern lengths, 

with the increasing latency as pattern length increases, providing similarities in the 

behaviour between the two species.  

Conversely, this PPM model may not fully explain how the brain detects 

regularity, as it relies on the system encoding each individual tone on a discrete scale, 

and cannot generalise to continuous acoustic features (Skerritt-Davis and Elhilali, 

2018). Moreover, there is likely the input of other extracted acoustic features, such as 

the regularity of a change in amplitude modulation of a salient frequency band that 

could inform whether this transition from random to regular has occurred. In fact, I 

showed that ferrets more easily detected patterns when they contained fewer unique 

frequencies, which you would not expect if all tones in the pattern were encoded by 

the auditory system equally. Ferrets were also able to make use of the cue of the 

reduction in unique frequencies in the random sequence, from an alphabet of 20, down 

to a restricted set of frequencies used in the pattern. When comparing performance 

for RAN20-REG5 and RAN5-REG5, ferrets were much better able to detect the 

RAN20-REG5, leveraging the added cue of the change in stimulus statistics.  Yet 

when just tested on this reduction in unique frequency but no pattern (RAN20-RANX), 

the ferrets did not reliably detect this as a change, demonstrating that the repetition in 
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the pattern guides behaviour, whereas the change in stimulus statistics may enhance 

saliency. 

My demonstration that ferrets can detect these transitions from random to 

regular sequences and exhibit similar patterns of behaviour to humans makes the 

ferret a prime model for understanding how the brain detects regularity, and what and 

why differences may occur in detection between animals and humans. Some of the 

main differences between animals and humans could occur because humans 

constantly use statistical learning for rules in speech (Santolin and Saffran, 2018; 

Wilson et al., 2017), and in music and rhythm (Large and Palmer, 2002; Tillmann et 

al., 2001) which all play a large role in human auditory perception. This up weighting 

of complex statistical rules within the incoming acoustic environment may cause 

differences in how the auditory system deals with regularity.  

7.2 ARE NEURONAL OSCILLATIONS RESPONSIBLE FOR REGULARITY 

DETECTION? 
Using the behavioural paradigm developed in chapter 2, I investigated the neural 

mechanisms underlying regularity detection in the local field potential of auditory 

cortex. Previous studies in humans have indicated that the detection of regular 

sequences is correlated with increased power in neural signals, larger signals for more 

predictable stimuli (e.g. shorter pattern lengths). Furthermore, EEG recordings have 

revealed oscillations at both tone presentation (20Hz) and pattern rates, and source 

localisation of EEG and MagEG recordings has suggested the involvement of AC, 

HPC and IFG (Barascud et al., 2016; Southwell, 2019; Southwell et al., 2017). Based 

on this prior research, I tested the hypothesis that regular sequences would elicit larger 

evoked LFP responses and increased oscillations in AC compared to random 

sequences, and whether the pattern length modulated the evoked or oscillatory power. 

My results showed no difference in the evoked power in the LFP between random and 

regular sequences, however, I did observe reduced oscillations at the tone 

presentation rate, and increased oscillations at the pattern rate during regularity. 

Furthermore, both of these oscillations were modulated by the pattern length in a 

manner that mirrored behaviour, with pattern lengths of 3 showing the most reduced 

tone presentation rates and the most enhanced pattern rates. 
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Given these findings, it is still unclear what the underlying neural mechanism 

driving the sustained response observed in humans in MagEG and EEG, and/or 

whether these changes in oscillatory power at various rates could contribute. 

Oscillations in the brain are ubiquitous, and low frequency oscillations (1-10Hz) 

propagate throughout the brain tissue easily and readily (Gourévitch et al., 2020), 

providing a manner in which to couple various brain regions (Bahmer and Gupta, 

2018), increasing their coherence by coordinating rhythmic activity through 

entrainment (Lakatos et al., 2019). Oscillations provide a role in auditory processing, 

entraining neural responses to the structure in the auditory signal, and in particular the 

1-10Hz rate has been shown to facilitate perception (Ding et al., 2017), memory 

(Calderone et al., 2014) and auditory scene analysis (Riecke et al., 2015). The 

patterns I employ in this thesis repeat at sub 10Hz rates (2.86Hz, 4.0Hz and 6.67Hz) 

and likely propagate to multiple brain regions, given I observe these oscillations in 

primary and secondary fields of auditory cortex, and hippocampus. It is likely that these 

oscillations are entraining activity and increasing the efficiency of stimulus encoding 

by aligning the relevant processes to the predictable events in the incoming sound. 

However the source of these oscillations are still unknown, but perhaps is more likely 

to be induced from higher-order areas, given that Barczak et al. (2018) observed 

pattern rate oscillations occurring earliest in the pulvinar which would likely be getting 

input from higher-order areas such as parietal cortex and PFC (Cappe et al., 2009; 

Romanski et al., 1997), and then outputting its signal to AC. 

Whether these oscillations are functionally relevant in order to detect the 

transition from random to regular tone sequences is a question that has yet to be 

answered. These increased oscillations at the pattern rate during regularity have been 

observed in EEG in humans (Southwell, 2019), in LFP recordings in the macaque 

(Barczak et al., 2018), and now in my data in the ferret.  My data showed that pattern 

rate oscillations decreased with increasing pattern length and the power at these 

oscillations mirrored behavioural performance, such that ferrets were best able to 

detect, and showed the largest pattern rate oscillations during regularity firstly for: 

RAN20-REG3 then RAN20-REG5, RAN20-REG7 followed by RAN5-REG5. However, 

my results also identified larger oscillations at the pattern rate during miss trials in the 

ferret over hit trials (for RAN20-REG3 and RAN20-REG7), which either suggests that 
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increased power does not enhance perception or perhaps that these oscillations may 

be supressed during detection or attenuated by movement.   

In the hippocampus, I demonstrated changes in oscillatory power in the LFP in 

response to the regular sequences. Interestingly I observed a similar pattern of 

decreased power at the tone presentation rate during regularity, as I did in auditory 

cortex. However, I only observed differences in the pattern rate for RAN20-REG5 and 

RAN5-REG5 which have a pattern rate of 4.0Hz. Given the hippocampal role in 

memory, statistical learning and integrating acoustic patterns (see for a review: Billig 

et al., 2022) but also the strong persistent theta oscillation that coordinates neuronal 

activity throughout (Nuñez and Buño, 2021), it could be likely that theta may be 

modulated by the predictability of the incoming acoustic stimulus, or its behavioural 

relevance. The increases in oscillatory power I observed at 4.0Hz could be 

entrainment to the pattern – i.e. a correlate of regularity detection, or  it could be an 

shift in the theta frequency (whether it is due to the pattern itself or some other 

response to behaviour), perhaps some anticipatory signal of reward (Benchenane et 

al., 2010) or a correlate of memory due to the task engaged behaviour (Buzsáki and 

Moser, 2013; Kragel et al., 2020). A comparison between passive and task engaged 

subjects would begin to unpick the role of hippocampus during behaviour, but given 

how strongly modulated hippocampus is by the behavioural relevance of the stimulus, 

removing behavioural relevance may remove any correlates of regularity. 

7.3 HOW DO NEURONS ENCODE REGULARITY? 
With the identification of neuronal oscillations in the LFP of auditory cortex and 

hippocampus, it is likely that these oscillations modulate neuronal firing. Likewise, the 

sustained response seen in MagEG and EEG studies (Barascud et al., 2016; 

Southwell, 2019) could originate from changes in neural firing rather than an evoked 

LFP. I leveraged the micro-electrode recordings in the ferret to extract single and multi-

unit activity and I investigated how firing changes in term of rate and spike timing in 

response to regular and random tone sequences, and how these correlates are 

modulated by pattern length and are influenced by sensory and non-sensory effects. 

My findings showed neurons elicited larger responses for shorter pattern lengths 

across the population of units, that these units entrained to the pattern rate during 

regularity, increased their temporal precision of firing to their BF during regular context 
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and that across the population of single-units, neurons increased their firing with 

increasing repetitions of the pattern.  

Given the enhanced oscillatory power in the LFP, it is likely that spiking activity 

will entrain to these oscillations. Using vector strength as a measure of entrainment, I 

observed neurons in both auditory cortex and hippocampus during the presence of 

regularity, entrain to the pattern rate. Using the analysis developed by Asokan et al. 

(2021), I also demonstrated that neurons more precisely fire to their BF in a regular 

context compared to random. This evidence supports the idea that oscillations and 

entrainment are modulated by regularity, whether this modulation enhances regularity 

detection or is just the auditory system responding to low-level features in the incoming 

stimulus is unknown. Inherently, neurons in auditory cortex are not as tone locked as 

neurons in subcortical regions such as MGB or IC. Given a framework of hierarchical 

processing, this can be advantageous as auditory cortex can be more sensitive to 

slower contextual changes. Entrainment or the increased temporal precision of firing 

in auditory cortex can cause it to become more primary-like, reducing temporal 

smearing that may otherwise mask responses to deviant sounds. However if the 

entrainment was the sole method of modulating spike timing, then we would also 

expect enhanced temporal precision in the random context as the regular inter-tone 

interval does induce a higher oscillation in the LFP at the tone presentation rate. 

Therefore another mechanism that could increase firing precision, and may be more 

likely, are local or long-range inhibitory networks, through the decrease in latency of 

output to excitatory neurons, sharpen the neural firing of neurons in AC (Lee et al., 

2020), and given the involvement of higher-order areas, this signal could originate from 

regions such as PFC and/or HPC that encode the predictability of a stimulus (Keller 

and Mrsic-Flogel, 2018).  

Spiking activity to a repeating stimulus has been well characterised as SSA, 

where neurons adapt to the repeating stimulus and yield stronger responses to stimuli 

that deviate from the repeated stimulus (Nelken, 2014). Therefore it seems likely that 

neuronal adaptation whether it is SSA or some other form of habituation would play a 

role in how regularity is represented in neuronal firing. We may expect for shorter 

pattern lengths to generate the greatest adaptation, however I observed across the 

population of neurons, shorter pattern lengths eliciting more spikes. Nevertheless, 

these shorter patterns are also the easiest to detect so there may be confounds due 
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to detection or movement in the behavioural task that could modulate spiking activity. 

When using the Poisson GLMM to pull out these non-sensory effects, I found that the 

presence of regularity significantly decreased firing. I also observed this decrease in 

regular over random contexts when analysing the response of neurons to their BF. 

This suggests that regularity does supress neural firing, however for all conditions 

apart from RAN20-REG7, across the population, SUs significantly increased their 

firing with increasing repetitions of the pattern. This might suggest a dual effect of 

regularity detection, an initial adaptation to the repeating stimulus perhaps in part 

induced by SSA, but facilitation as the pattern emerges which could be either 

generated in auditory cortex or perhaps induced by higher-order areas that respond 

to much slower contextual changes in the stimulus.   

Given that I showed these neurons don’t respond to the repetition or regularity in 

isolation, it may suggest that the effects of adaptation and facilitation may occur within 

the same neurons. Additionally, while on average neurons adapted to regularity and 

facilitated over increasing repetitions, the population showed considerable 

heterogeneity. Therefore, ongoing work is seeking to establish if these effects are 

evident in the same neurons, or in distinct sub populations clustered by specific 

stimulus response properties, or whether adaptation or facilitation to either of these 

effects could be influenced by a neuronal subtype (i.e. excitatory or inhibitory neurons). 

Inhibitory interneurons seem to be a strong candidate given that they’ve already been 

shown to modulate the late responses to standards and deviants in an oddball 

paradigm (Yarden et al., 2022), and show preferences for periodic stimuli (Mehra et 

al., 2022). Further work, using techniques such as calcium imaging to opto-tag specific 

neuronal sub-types could be useful in identifying whether a demographic of neurons 

have a particular response profile to presentation of regular sequences.   

7.4 THE DETECTION OF REGULARITY: FROM MESO-SCALE TO MACRO-SCALE 
In chapter 1, I discussed how various studies and experiments have explored the 

brain’s processing of predictive stimuli, ranging from single neuron analysis to 

cognitive brain-wide imaging. Whilst the mechanism underlying regularity detection in 

the auditory system has been a topic of debate, research has consistently shown that 

the auditory system operates on a processing hierarchy, with increasing complexity of 

feature encoding as you ascend the auditory pathway (Asokan et al., 2021; Norman-
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Haignere et al., 2022; Parras et al., 2017; Phillips et al., 2016; Tzovara et al., 2022; 

Wacongne et al., 2011). This poses a complex question of how regularity is detected, 

as it can range from local low-level patterns to higher-order statistical regularities that 

unfold over longer timescales. This has been partially addressed by experiments using 

regularities that vary on local and global time scales (Asko et al., 2023; Bekinschtein 

et al., 2009; Costa-Faidella et al., 2011; El Karoui et al., 2015; Nourski et al., 2018; 

Yaron et al., 2012), yet has not been addressed in a random to regular tone sequence 

paradigm in which patterns contain multiple frequencies that repeat with various 

pattern lengths.  

In this discussion, I will attempt to provide a general overview of the processes 

that could be involved in the regularity of deterministic acoustic patterns. As sound 

waves from the incoming pure tone sequence enters the ear, it is processed by the 

cochlea and the frequency information is transmitted up the lemniscal auditory 

pathway. Initially, as the incoming tone sequence is random, neurons respond strongly 

to each tone. Neurons in auditory cortex will then, across the population of frequency 

tuned neurons, begin to induce oscillations in the local field potential which in turn 

entrains other neurons in auditory cortex. Initially this occurs at the tone presentation 

rate of 20Hz due to the regular inter-tone interval present in the pure tone sequence. 

However, when the random sequence transitions to a regular pattern, a reduction in 

oscillations at the tone presentation rate is caused due to the smaller number of 

neurons firing due to the reduced variety of frequencies and/or repetition suppression 

from the increased predictability of the stimulus. On the other hand, neurons that are 

tuned to frequency elements in the pattern will continue firing but now begin to induce 

oscillations at the pattern rate. These oscillations may be propagated to higher-order 

areas such as hippocampus and perhaps PFC.  

These oscillatory correlates might then update the predictive model and send back 

‘prediction signals’ to AC through inhibitory networks to reduce the temporal smearing 

and increase precision of firing of the neurons in AC, encoding the incoming regular 

sequence with more precision and efficiency. With time, the expectation of precision 

is optimized, leading to an increase in firing as neurons become more primary-like. 

This could then induce and increase in firing as more repeats of the pattern are 

presented, up-weighting the representation of regularity and aiding behavioural 

detection. There are still major gaps in our knowledge on this process, but ferrets sit 
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at an advantageous mid-point, to perform single-unit recordings, and perform these 

complex perceptual tasks, to further probe how the brain detects acoustic patterns. 

7.5 FUTURE WORK 

7.5.1 Ongoing work 

There are several avenues of work that are still on-going that will provide further 

insights in the work presented in this thesis. One such avenue is the comparison of 

neural correlates between passively listening and behaving animals. In addition to the 

behavioural recordings I captured with the WARP arrays and Neuropixels, I also 

collected a number of recordings in passively listening animals (a handful of cells were 

presented in section 5.3.2), in which the same random to regular tone sequences were 

presented. This data can shed light on how the neural correlates such as entrainment 

within the LFP or firing of single-units changes in AC and HPC by the animal’s 

attentional state. By comparing these passive recordings with the behavioural 

recordings, it is possible to determine how much of the neural correlates identified 

exist as fundamental brain mechanisms within AC. For example, do neural responses 

become more adaptive as the pattern emerges or for shorter pattern lengths if the 

animal is not attended to the stimulus, or do we observe the same effects in AC and 

HPC despite attentional state. These passive recordings may also provide a better 

comparison to previous human studies in which EEG and MagEG recordings were 

obtained during passive listening of the sequences. By comparing the neural 

responses observed in the ferrets during passive listening to the results from previous 

human studies and probing of automatic detection of regularity, it is possible to draw 

further parallels between human and animal cognition. 

Moreover, the selection of Neuropixels recordings included in this work was 

only a small subset of the data collected due to time constraints. However, with the 

analysis and spike sorting of more recordings, I can obtain more single-units and with 

that added power to perform waveform analysis, as in chapter 6, to determine if units 

that facilitate or adapt their firing to regularity, or any other correlate, are represented 

by a certain sub-population of cells such as excitatory broad-spiking or inhibitory 

narrow-spiking neurons. Additionally, by analysing more recordings, I can run the 

Poisson GLMM to investigate sensory and non-sensory effects on neural firing, as was 

done in chapter 4 in HPC. This is important to unpick as HPC is strongly modulated 
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by non-sensory effects such as movement, and the current approach of ignoring trials 

in which regularity is detected may underestimate the effects of regularity. Additionally, 

I would like to further look at how the time course of these correlates emerge jointly 

between AC and HPC; whether they emerge first in one region and if any coherence 

appears between regions during regularity.  

7.5.2 Avenues for future investigations 

A promising direction for future research is to further investigate PFC in the 

ferret, a brain region that has consistently been found to play a crucial role in regularity 

detection. Studies have shown that the PFC exhibits increased activity during 

regularity detection (Barascud et al., 2016; Heilbron and Chait, 2018; Southwell, 2019) 

with the right inferior frontal gyrus (IFG), a region of PFC, being a major source of the 

mismatch negativity (MMN) response (Alho, 1995). Therefore, it is possible that neural 

correlates of regularity detection could be identified within the PFC of ferrets, if this 

brain region is recruited similarly to humans, though the analogue of IFG in ferret 

frontal cortex is still unknown. Furthermore, recent advances in functional ultrasound 

technology in ferrets, as demonstrated by Bimbard et al. (2018), provide a promising 

tool for mapping the regions involved in regularity detection in this animal model. This 

technology could serve as a valuable bridge between imaging in humans and animal 

models, and help shed light on whether the PFC and HPC show increased activity via 

brain-wide imaging in the ferret brain as they do in humans, or if other brain regions 

may be implicated instead in the ferret.  

Furthermore, it would be highly beneficial to expand our understanding of the 

neural mechanisms underlying the detection of complex pure tone sequences by 

recording subcortically and within higher-order thalamic areas, such as the pulvinar 

that been shown to entrain to the pattern rate more robustly than A1 (Barczak et al., 

2018). As demonstrated by Asokan et al. (2021), investigating the transformation of 

neural encoding in random and regular contexts but instead with the regularity induced 

by repeating frequencies rather than inter-tone intervals, could provide another 

perspective on how information regarding the pure tone sequence is transformed as 

you ascend the auditory pathway. While the Neuropixels probe used in this thesis 

targeted auditory cortex and hippocampus, it could also be utilized to record from the 

medial geniculate body (MGB) and inferior colliculus (IC). If done with acute 

recordings, this may provide better signal-to-noise and may better allow us to 
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investigate how the laminar structure of auditory cortex influences the neural 

correlates.  

On a behavioural level, another study could push the perceptual boundaries on 

what the ferrets can detect as regularity. At what pattern length do the ferrets fail to 

detect the repetition? It would also be a good opportunity to run this paradigm in the 

form of a 2AFC, now that we have the knowledge of how rapidly ferrets can detect 

regularity, which would remove the confounds of movement in neural recordings 

during the presentation of the regular sequence.   

Finally, chapter 6 opened opportunities into identifying causal contributions of 

brain regions in regularity detection, via cortical inactivation by optogenetics. This 

technique is a powerful tool due to its high spatial and temporal resolution (see for a 

review: Slonina et al., 2022) and has now been successfully established in the ferret. 

One key question is whether silencing primary and/or secondary fields of auditory 

cortex impairs regularity detection, or if it differentially affects detection based on the 

complexity of the pattern (i.e. cortical silencing may only impair detection of pattern 

lengths 5 and longer). Further investigations could also target the subfields of auditory 

cortex individually to causally determine their role in regularity detection. Furthermore, 

the precise millisecond temporal control provided by optogenetics (as highlighted in 

Town et al., 2023), offers a unique opportunity to perturb neural firing to unpick the 

neural mechanisms underlying regularity detection. For example, does perturbation of 

entrainment through activation of oscillations at rates other than the pattern rate impair 

behaviour or increase/decrease firing to regularity, or can regularity detection be 

delayed by inactivating just one cycle of the pattern. These are all questions that still 

need to be answered, and the ferret provides a valuable model system, a mid-point 

between human and rodent studies, to manipulate complex perceptual processes and 

identify causal contributions to regularity detection. 
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9  APPENDICES 

9.1 ONLINE PSYCHOPHYSICS  

9.1.1 Consent form 

 

Removed due to personal data 

 

9.1.2 Example information sheet (H1) 

 

Removed due to personal data 
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9.2  METHODS 
 

9.2.1 Permutation testing 

 

Figure 9.1: Permutation testing for each ferret. Violin plots of the chance distribution 
created through permuting each ferrets reaction times for each condition (each ferret 
coloured according to the legend) for RAN20 (A) and RAN5 (B).  
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9.3  GLMM TABLES 

9.3.1 Chapter Three tables 

 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.117 0.028 4.228 < 0.001 0.063 0.172 

Pattern length -0.012 0.004 -2.842 0.005 -0.02 -0.004 

Random alphabet -0.004 0.001 -4.126 < 0.001 -0.006 -0.002 

AEG (ref MEG) -0.037 0.03 -1.216 0.224 -0.097 0.023 

PEG (ref MEG) -0.024 0.029 -0.839 0.401 -0.081 0.033 

Lower (ref Upper) -0.083 0.028 -2.991 0.003 -0.137 -0.028 

Middle (ref Upper) -0.143 0.032 -4.402 < 0.001 -0.206 -0.079 

Novelty (Novel = 1) -0.144 0.024 -6.13 < 0.001 -0.19 -0.098 

PL × AEG 0.005 0.004 1.176 0.24 -0.004 0.014 

PL × PEG 0.01 0.004 2.301 0.021 0.001 0.018 

RA × AEG 0 0.001 0.314 0.753 -0.002 0.002 

RA × PEG -0.002 0.001 -1.685 0.092 -0.003 0 

PL × Lower 0.01 0.004 2.563 0.01 0.002 0.018 

PL × Middle 0.022 0.005 4.542 < 0.001 0.012 0.031 

RA × Lower -0.002 0.001 -2.24 0.025 -0.004 0 

RA × Middle -0.003 0.001 -2.7 0.007 -0.005 -0.001 

PL × Novelty 0.019 0.003 5.57 < 0.001 0.012 0.025 

RA × Novelty 0.003 0.001 3.56 < 0.001 0.001 0.004 

AEG × Novelty 0.023 0.013 1.75 0.08 -0.003 0.048 

PEG × Novelty -0.005 0.012 -0.367 0.713 -0.029 0.02 

Lower × Novelty 0.006 0.012 0.539 0.59 -0.017 0.029 

Middle × Novelty 0.028 0.014 2.052 0.04 0.001 0.055 

 
Table 9.1. Mixed effect linear regression on the modulation index (SNR during regular 
sequences – SNR during random sequences) at the tone presentation rate in the local 
field potential. R2 = 0.303; Df = 1953; random effects std. = 0.0563 
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   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Intercept 0.178 0.033 5.389 < 0.001 0.113 0.243 

Pattern length -0.026 0.005 -4.842 < 0.001 -0.036 -0.015 

Random alphabet 0.004 0.001 3.812 < 0.001 0.002 0.006 

AEG (ref MEG) -0.028 0.034 -0.816 0.415 -0.095 0.039 

PEG (ref MEG) 0.024 0.033 0.732 0.464 -0.04 0.088 

Lower (ref Upper) -0.061 0.032 -1.887 0.059 -0.125 0.002 

Middle (ref Upper) -0.036 0.037 -0.971 0.332 -0.109 0.037 

Novelty (Novel = 1) -0.058 0.027 -2.148 0.032 -0.111 -0.005 

PL × AEG 0.009 0.005 1.709 0.088 -0.001 0.02 

PL × PEG -0.002 0.005 -0.374 0.709 -0.012 0.008 

RA × AEG -0.001 0.001 -0.769 0.442 -0.003 0.001 

RA × PEG -0.002 0.001 -1.771 0.077 -0.004 0 

PL × Lower 0.011 0.005 2.181 0.029 0.001 0.021 

PL × Middle 0.005 0.006 0.884 0.377 -0.006 0.017 

RA × Lower 0 0.001 -0.162 0.871 -0.002 0.002 

RA × Middle -0.002 0.001 -1.753 0.08 -0.004 0 

PL × Novelty 0.017 0.004 4.181 < 0.001 0.009 0.025 

RA × Novelty -0.003 0.001 -3.079 0.002 -0.004 -0.001 

AEG × Novelty -0.005 0.015 -0.323 0.747 -0.033 0.024 

PEG × Novelty 0.007 0.014 0.521 0.603 -0.02 0.034 

Lower × Novelty -0.024 0.013 -1.782 0.075 -0.05 0.002 

Middle × Novelty 0.003 0.015 0.181 0.856 -0.027 0.033 

 

Table 9.2: Mixed effect linear regression on the modulation index (SNR during regular 
sequences – SNR during random sequences) at the pattern rate in the local field 
potential. R2 = 0.185; Df = 1772; random effects std. = 0.0565 
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   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

RAN20-REG3       

Intercept -0.024 0.027 -0.897 0.370 -0.077 0.029 

AEG -0.025 0.025 -0.973 0.331 -0.074 0.025 

PEG -0.005 0.025 -0.179 0.858 -0.054 0.045 

Lower -0.030 0.028 -1.05 0.294 -0.086 0.026 

Middle -0.078 0.031 -2.493 0.013 -0.139 -0.016 

Novelty -0.027 0.035 -0.755 0.451 -0.096 0.043 

AEG × Novelty 0.071 0.038 1.859 0.064 -0.004 0.146 

PEG × Novelty -0.010 0.034 -0.300 0.764 -0.076 0.056 

Lower × Novelty 0.070 0.037 1.889 0.060 -0.003 0.143 

Middle × Novelty 0.043 0.041 1.068 0.286 -0.036 0.123 

RAN20-REG5       

Intercept 0.092 0.017 5.434 < 0.001 0.059 0.125 

AEG -0.002 0.022 -0.102 0.919 -0.045 0.04 

PEG 0.047 0.020 2.311 0.021 0.007 0.087 

Lower -0.05 0.019 -2.653 0.008 -0.087 -0.013 

Middle -0.025 0.023 -1.090 0.276 -0.069 0.020 

Novelty -0.028 0.024 -1.187 0.236 -0.074 0.018 

AEG × Novelty -0.028 0.030 -0.945 0.345 -0.087 0.031 

PEG × Novelty -0.023 0.028 -0.802 0.423 -0.079 0.033 

Lower × Novelty 0.083 0.026 3.128 0.002 0.031 0.134 

Middle × Novelty 0.042 0.031 1.333 0.183 -0.020 0.103 

RAN20-REG7       

Intercept 0.013 0.019 0.676 0.500 -0.024 0.050 

AEG -0.031 0.023 -1.334 0.183 -0.076 0.014 

PEG 0.007 0.019 0.37 0.712 -0.031 0.045 

Lower -0.07 0.020 -3.461 0.001 -0.109 -0.03 

Middle -0.044 0.023 -1.93 0.054 -0.089 0.001 

Novelty -0.056 0.024 -2.325 0.021 -0.103 -0.009 

AEG × Novelty 0.003 0.030 0.114 0.910 -0.055 0.062 

PEG × Novelty -0.014 0.026 -0.512 0.609 -0.066 0.038 

Lower × Novelty 0.067 0.026 2.550 0.011 0.015 0.119 

Middle × Novelty 0.016 0.030 0.541 0.589 -0.043 0.076 

RAN5-REG5       

Intercept 0.126 0.017 7.418 < 0.001 0.093 0.159 

AEG -0.035 0.020 -1.714 0.087 -0.074 0.005 

PEG 0.025 0.018 1.385 0.167 -0.011 0.061 

Lower -0.055 0.018 -3.014 0.003 -0.091 -0.019 

Middle -0.044 0.021 -2.103 0.036 -0.086 -0.003 
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Novelty -0.022 0.022 -1.014 0.311 -0.065 0.021 

AEG × Novelty 0.000 0.027 0.016 0.987 -0.052 0.053 

PEG × Novelty -0.021 0.025 -0.860 0.390 -0.069 0.027 

Lower × Novelty 0.040 0.024 1.691 0.091 -0.007 0.087 

Middle × Novelty 0.017 0.028 0.614 0.539 -0.037 0.071 

 

Table 9.3: Mixed effect linear regression on the behavioural modulation index (SNR 
during regular hit trials – SNR during regular miss sequences) at the pattern rate in the 
local field potential for each condition separately. RAN20-REG3: R2 = 0.153; Df = 341; 
random effect std. = 0.0622. RAN20-REG5: R2 = 0.0281; Df = 479; random effect std. = 
0.0199. RAN20-REG7: R2 = 0.0318; Df = 436; random effect std. = 0.0124. RAN5-REG5: R2 
= 0.0443; Df = 437; random effect std. = 0.0279. 
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9.3.2 Chapter Four tables 

 

   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

Multi-unit       

Intercept 0.098 0.014 7.22 < 0.001 0.071 0.125 

AEG -0.062 0.022 -2.873 0.004 -0.104 -0.02- 

PEG -0.106 0.02 -5.432 < 0.001 -0.144 -0.068 

Random alphabet -0.001 0.00 -1.519 0.129 -0.001 0.000 

Pattern length -0.018 0.002 -10.368 < 0.001 -0.022 -0.015 

Middle -0.063 0.018 -3.449 0.001 -0.098 -0.027 

Lower -0.05 0.029 -1.736 0.083 -0.107 0.007 

AEG × RA 0.003 0.001 4.231 < 0.001 0.001 0.004 

PEG × RA 0.001 0.001 2.491 0.013 0.000 0.002 

AEG × PL 0.005 0.003 1.376 0.169 -0.002 0.011 

PEG × PL 0.012 0.003 4.448 < 0.001 0.007 0.017 

Middle × RA 0.000 0.001 0.600 0.549 -0.001 0.001 

Lower × RA 0.000 0.001 0.050 0.96 -0.002 0.002 

Middle × PL 0.013 0.003 4.926 < 0.001 0.008 0.018 

Lower × PL 0.015 0.004 3.759 < 0.001 0.007 0.023 

Single-unit       

Intercept 0.115 0.016 7.421 < 0.001 0.085 0.146 

AEG -0.056 0.036 -1.552 0.121 -0.127 0.015 

PEG -0.086 0.025 -3.478 0.001 -0.134 -0.037 

Random alphabet -0.001 0.000 -2.84 0.005 -0.002 0.000 

Pattern length -0.021 0.002 -10.863 < 0.001 -0.025 -0.017 

Middle -0.115 0.031 -3.751 < 0.001 -0.174 -0.055 

Lower -0.129 0.043 -2.986 0.003 -0.214 -0.044 

AEG × RA 0.001 0.001 1.168 0.243 -0.001 0.004 

PEG × RA 0.003 0.001 4.365 < 0.001 0.002 0.004 

AEG × PL 0.003 0.006 0.532 0.595 -0.009 0.016 

PEG × PL 0.006 0.003 1.815 0.070 0.000 0.013 

Middle × RA 0.000 0.001 -0.014 0.988 -0.002 0.002 

Lower × RA 0.001 0.001 0.907 0.365 -0.002 0.004 

Middle × PL 0.024 0.005 5.005 < 0.001 0.015 0.034 

Lower × PL 0.033 0.005 6.037 < 0.001 0.022 0.043 

 

Table 9.4: Mixed effects linear regression on the spike count modulation index (spike 
count during regular sequences – spike count during random sequences) for multi and 
single unit activity. MU: R2 = 0.469; Df = 1526; random effect std. = 0.0622. SU: R2 = 0.448; 
Df = 1482; random effect std. = 0.0705.  
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   CI 95% 

Fixed effects Estimate 
Standard 

error 
T p value Lower Upper 

RAN20-REG3       

Intercept -1.280 0.0762 -16.8 < 0.001 -1.43 -1.13 

Regularity -0.0223 0.00441 -5.07 < 0.001 -0.031 -0.0137 

Reward -0.0114 0.0133 -0.855 0.393 -0.0375 0.0147 

Movement 0.0342 0.00414 8.25 < 0.001 0.026 0.0423 

Pattern repetitions 0.00466 0.000621 7.5 < 0.001 0.00344 0.00587 

Frequency dist. -0.0322 0.0004 -80.3 < 0.001 -0.033 -0.0314 

RAN20-REG5       

Intercept -1.160 0.0808 -14.3 < 0.001 -1.32 -0.999 

Regularity -0.0258 0.00624 -4.13 < 0.001 -0.038 -0.0136 

Reward -0.0231 0.0229 -1.01 0.311 -0.0679 0.0217 

Movement 0.00434 0.00564 0.769 0.442 -0.00671 0.0154 

Pattern repetitions 0.0116 0.0014 8.33 < 0.001 0.00891 0.0144 

Frequency dist. -0.030 0.000543 -55.4 < 0.001 -0.0311 -0.029 

RAN20-REG7       

Intercept -1.120 0.0922 -12.1 < 0.001 -1.30 -0.935 

Regularity -0.0122 0.00856 -1.43 0.153 -0.029 0.00454 

Reward 0.0683 0.0355 1.93 0.0542 -0.00123 0.138 

Movement 0.0316 0.0081 3.89 < 0.001 0.0157 0.0474 

Pattern repetitions 7.14x105 0.0025 0.0285 0.977 -0.00484 0.00498 

Frequency dist. -0.0329 0.000755 -43.6 < 0.001 -0.0344 -0.0314 

RAN5-REG5       

Intercept -1.15 0.0748 -15.4 < 0.001 -1.3 -1.01 

Regularity -0.0467 0.00604 -7.74 < 0.001 -0.0586 -0.0349 

Reward -0.0878 0.0266 -3.3 < 0.001 -0.14 -0.0356 

Movement 0.0356 0.00547 6.51 < 0.001 0.0249 0.0463 

Pattern repetitions 8.57E-03 0.00136 6.29 < 0.001 0.0059 0.0112 

Frequency dist. -0.0272 0.000537 -50.7 < 0.001 -0.0283 -0.0262 

 
Table 9.5 Mixed effects Poisson regression on the spike count across single units for 
each condition.  RAN20-REG3: R2 = 0.111; Df = 964000; random effect std. = 0.789. RAN20-
REG5: R2 = 0.103; Df = 461000; random effect std. = 0.715. RAN20-REG7: R2 = 0.0860; Df = 
269000; random effect std. = 0.717. RAN5-REG5: R2 = 0.0990; Df = 459000; random effect 
std. = 0.629 
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9.4 SUPPLEMENTARY FIGURES 

9.4.1 Categorisation of factors influencing single unit activity 

 

Figure 9.2: Categorisation plot of significant effects identified by a GLMM (Poisson) on 
each single unit and the number of times each combination of effects occurs across 
the population of single units. 
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9.4.2 Custom syringe pump for passive recordings 

 

 

Figure 9.3: Custom syringe pump. A custom syringe pump was modified from the Open-
source lab (Wijnen et al. 2014) to provide a continual water reward for passive 
electrophysiological recordings from awake ferrets. The custom syringe pump was powered 
by a battery to avoid electrical noise that may interfere with the recordings. All hardware was 
3D printed on an Ultimaker 2+ with a stepper motor to drive the carriage to push/pull the 
syringe pump. The custom syringe pump was controlled via an Arduino and a Stepper Motor 
Driver (EasyDriver) with custom code written in the Arduino IDE which was uploaded to the 
microcontroller. Functionality was added to allow custom code within MATLAB to control the 
syringe pump remotely. 


