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Abstract

Increasingly large numbers of medical centres worldwide are equipped with the

means to acquire 3D images of patients by utilising magnetic resonance (MR) or

computed tomography (CT) scanners. The interpretation of patient 3D image data

has significant implications on clinical decision-making and treatment planning. In

their raw form, MR and CT images have become critical in routine practice. How-

ever, in congenital heart disease (CHD), lesions are often anatomically and physio-

logically complex. In many cases, 3D imaging alone can fail to provide conclusive

information for the clinical team. In the past 20-30 years, several image-derived

modelling applications have shown major advancements. Tools such as compu-

tational fluid dynamics (CFD) and virtual reality (VR) have successfully demon-

strated valuable uses in the management of CHD. However, due to current software

limitations, these applications have remained largely isolated to research settings,

and have yet to become part of clinical practice. The overall aim of this project was

to explore new routes for making conventional computational modelling software

more accessible for CHD clinics. The first objective was to create an automatic

and fast pipeline for performing vascular CFD simulations. By leveraging machine

learning, a solution was built using synthetically generated aortic anatomies, and

was seen to be able to predict 3D aortic pressure and velocity flow fields with com-

parable accuracy to conventional CFD. The second objective was to design a virtual

reality (VR) application tailored for supporting the surgical planning and teaching

of CHD. The solution was a Unity-based application which included numerous spe-

cialised tools, such as mesh-editing features and online networking for group learn-

ing. Overall, the outcomes of this ongoing project showed strong indications that
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the integration of VR and CFD into clinical settings is possible, and has potential

for extending 3D imaging and supporting the diagnosis, management and teaching

of CHD.



Impact statement

Medical imaging is critical for the diagnosis, treatment planning and monitoring

of patients with congenital heart disease (CHD). However, more advanced patient-

specific image-based computer modelling tools have not yet made a full transition

into the clinical field. The work in this thesis proposes suitable methods of inte-

grating two main tools into CHD clinical/educational settings: computational fluid

dynamics (CFD) and virtual reality (VR).

CFD is capable of non-invasively modelling detailed hemodynamic flows. For

CHD, this has numerous powerful applications, such as for better understanding

of patient patho-physiological conditions, evaluating theoretical post-operative out-

comes and simulating exercise conditions. However, software is typically incom-

patible with clinical practice due to time/computational requirements and manual

labour. This limits the feasibility of CFD for routine clinical practice. I applied ma-

chine learning (ML) techniques to build a data-driven pipeline for fast simulation of

3D pressure and velocity flows in post-coarctation aortas. This automated pipeline

will open up new possibilities for ‘precision medicine’ ML tools constructed using

physically-constrained simulation data.

VR is a growing phenomenon and has seen a rapid increase in applications

within healthcare. This has notable ramifications for the field of CHD, where pa-

tients present with complex and often unique anatomy. As part of my research, I

developed an application for visualising cardiac structures in VR. This was then

integrated into the clinical and teaching practices at Great Ormond Street Hospital

for Children and UCL, resulting in over 50 surgical cases planned pre-operatively

with the aid of VR and more than 240 students taught CHD anatomy/morphology
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via VR. This experience has shown that VR is received well, and could significantly

improve CHD clinical practice/education if implemented on a global scale.
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Chapter 1

Introduction

1.1 Motivation for this research
Congenital heart disease (CHD) affects almost 1% of newborns every year. Lesions

can vary widely both in terms of severity and morphological features; however,

patients often require intervention such as open-heart surgery, which carries signifi-

cant risks. The advent of cardiac medical imaging modalities has revolutionised the

way patients are diagnosed, treated and monitored. The application of image-based,

patient-specific modelling tools for supporting clinical practice have also shown to

have proven benefits in clinical practice. Despite this, many modelling approaches

have failed so far to become integrated into routine practice due to reasons that in-

clude: (i) high computational resource requirements, (i) long processing times, (iii)

the need for a specialist to operate the software, (iv) high barrier of accessibility for

clinicians, and (v) tools which are not specialised for CHD.

1.2 Objectives of the work presented
The overall aim of this work is to take patient-specific modelling tools which have

shown potential benefits for routine use in healthcare, and to develop and test more

readily-deployable applications for possible clinical integration, with the ultimate

goal of improving outcomes in CHD. The focus regarding modelling tools in this

thesis is primarily on computational fluid dynamics (CFD) and virtual reality (VR).

Computer methods including machine learning (ML), automatic segmentation, sta-

tistical shape modelling, data dimensionality reduction and 3D game engines are
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used to facilitate the translation of these tools. In this thesis, the main objectives

are:

1. To develop a pipeline that enables accelerated and clinically suitable so-

lutions of CFD, capable of inferring 3D flow in the great arteries

The end-goal is to create models capable of rapidly and automatically com-

puting flow fields in the great arteries using only routinely acquired 3D med-

ical image data. This relies on two main components: (i) an automatic seg-

mentation model which can produce surface meshes suitable for CFD, and

(ii) an ML model which can infer CFD flow fields from any given shape.

2. To develop and deploy a VR platform for clinical and educational appli-

cations of CHD

The second objective is to demonstrate the feasibility of developing and inte-

grating a VR application into clinical and educational settings related to CHD.

This requires: (i) the design and development of a novel VR platform for vi-

sualisation of CHD, (ii) application of the tool in supporting the pre-operative

planning of real patient clinical cases, and (iii) the demonstration of VR in

enhancing courses, workshops and training sessions related to CHD.

1.3 Thesis outline and structure
Chapter 2 provides a general overview of CHD, including major clinical challenges

and diagnostic medical imaging. The challenges are grouped into two main cate-

gories around clinical decision-making, and education and training, with an empha-

sis on unmet needs which computer modelling may address. This Chapter includes

information related to CHD relevant to the context of this thesis.

Chapter 3 summarises some important theoretical concepts behind the main

methodologies used in this thesis (i.e. CFD, ML, statistical shape modelling and

VR). A general overview of each method is provided, including relevant applica-

tions reported in the literature for CHD.

Chapter 4 investigates the use of ML for automatically segmenting CFD-

suitable surface meshes of the great arteries. The methods used to create and eval-
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uate the automatic segmentation model are described in detail. CFD simulations

on the ground-truth (manual segmentation) and prediction (ML segmentation) are

compared, to assess the suitability of the models for accelerating clinical CFD.

Chapter 5 describes an ML approach for rapidly predicting 3D pressure and

velocity flow fields in aortas with repaired coarctation. Novel aspects to the study

include generation of a synthetic training cohort and low-dimensional representa-

tions of large unstructured 3D flow fields. Results from the ML models are com-

pared against conventional CFD, and differences between the two approaches are

discussed.

Chapter 6 describes the development of a novel VR platform for supporting

teaching and surgical planning in CHD. Functionalities of the platform are detailed,

including the methods used to achieve them.

Chapter 7 is an overview of the clinical applications in which VR was used.

A review of CHD cases for whom treatment was pre-operatively planned with the

help of VR is provided. In particular, I present three cases of double outlet right

ventricle, detailed as case studies. Additionally, a retrospective evaluation of the

potential added advantage of VR compared to other conventional image modalities

is reported.

Chapter 8 documents how VR was used for teaching cardiac anatomy. An

overview of the library of 3D heart models developed for education is given. Appli-

cations in undergraduate/postgraduate teaching are demonstrated, including a multi-

user VR workshop for CHD, and in clinical professional courses, including a car-

diac morphology course and an echocardiography course. A study assessing the

potential benefits of VR for improving MSc student knowledge is presented.



Chapter 2

Background

2.1 Congenital heart disease

2.1.1 Introduction

Congenital anomalies are described as structural or functional abnormalities that

develop prenatally and are present upon birth. Of these defects, Congenital heart

disease (CHD) is the most common type with an incidence of ∼8 per every 1000

live births [9], therefore constituting ∼28% of all major congenital anomalies [10].

Congenital heart disease (CHD) is defined as a gross structural abnormality of the

heart or intrathoracic vessels which is actually, or potentially, of functional signif-

icance [11]. Genetic factors are commonly thought to be associated with the de-

velopment of CHD during embryonic gestation. However, the mechanics through

which genetic deficiencies are translated into structural lesions is not fully under-

stood and remains a widely studied field [12].

CHD anomalies are highly variable and can even present as a combination of

multiple lesions. In approximately 25% of infants afflicted with CHD, invasive sur-

gical intervention is required in the first year of life [13]. During the early era of

cardiovascular surgery (1950s - 1970s), the mortality for patients undergoing inter-

vention was high (25% - 50%) [14]. However, in recent years, the prognosis for

patients diagnosed with CHD has greatly improved. This is due to advances in di-

agnostic methods, equipment, surgical techniques and cardiothoracic anaesthesia.

With mortality rates decreasing, much of modern surgery is now focused on im-
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proving patient surgical outcomes and minimising functional morbidity. However,

despite low average surgical mortality and morbidity rates, there are still certain

lesions and high-risk CHD types which are challenging to treat. Current mortality

and morbidity statistics vary (especially between regions). Berger et al. analysed

1,550 patient ICU records from 7 different centres (between 2011 and 2013), and

reported a 3.2% mean morality rate and a 4.8% mean incidence of functional mor-

bidity post-surgery [15]. A meta-analysis by Best et al. indicated that the chance of

1-year survival for the lowest-risk CHD lesion was 95.5%, while for the highest-risk

lesion it was 17.4% [16].

2.1.2 Main classifications

Most CHD arises due to defective cardiovascular development during the 3rd to 8th

gestational week [13]. Abnormalities vary widely, ranging from small pinholes be-

tween heart chambers to significant aberrations in the configuration or morphology

of the great arteries. Classifications and subgroups of CHD are not unanimously

agreed upon. A widely-accepted segmentation of CHD divides types into two main

groups, cyanotic (right to left shunts) and acyanotic (left to right shunts) [17], with

further subgroups under cyanotic CHD. In this thesis, the classification of CHD

types from Leiner et al. [18] is adopted. This favours dividing CHD based on spe-

cific clinical indications that form four main subgroups:

• Shunt lesions: abnormal holes or passages, commonly in the septum, that

enable blood to pass between pulmonary and systemic circulations

• Valve lesions: abnormal valvular anatomy with functional implications on

the heart and hemodynamics

• Conotruncal lesions: abnormalities of the cardiac outflow tracts and great

arteries

• Arterial lesions: vascular abnormalities of the aorta (Ao), pulmonary artery

or coronary arteries

Some examples for the main CHD types (excluding complex disease) are

shown in Table 2.1. In this thesis, the focus is mostly around two CHD categories,
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conotruncal lesions and arterial lesions, further described in the following sections.

Shunt lesions Valve lesions Conotruncal lesions Arterial lesions

Atrial septal defects Mitral valve lesions
Double outlet right
ventricle

Coarctation of the
aorta

Ventricular septal defects Aortic valve disease
Transposition of the
great arteries Double aortic arch

Sinus venosus defects
Tricuspid valve disease
(including Ebstein) Tetralogy of Fallot Coronary fistula

Patent ductus arteriosus Pulmonary valve disease
Persistent
truncus arteriosus

Pulmonary artery
stenosis

Table 2.1: Examples of CHD types for the four primary categories.

2.1.3 Conotruncal lesions

Conotruncal lesions concern primarily the outflow tracts of the heart, and to be de-

fined as such, there must be the presence of anatomic abnormalities of the great

arteries and the conus (infundibulum) [19]. This section will briefly describe the

anatomy of some relevant types of conontruncal lesions, including the general land-

scape of current diagnostic and treatment options.

2.1.3.1 Overview

Anomalies related to the cardiac outflow tracts are some of the most frequently di-

agnosed CHD types, with prevalence observed to be ∼30% [20]. During embryonic

life, the cardiac outflow tract comprises a single arterial structure known as the bul-

bus cordis, connected to the embryonic ventricle. The proximal segment of this

structure later forms the infundibulum (conus), while the distal sections septate and

spiral to form the aortic and pulmonary arterial trunks. The formation of fully sep-

tated, properly arranged great arteries and spiralling outflow tracts requires several

complex morphogenetic events to take place during gestation. It is during this pro-

cess that defects may occur, which can result in abnormalities such as an incorrect

configuration of the great arteries or incomplete septation.

Many conotruncal lesions present with atrial or ventricular septal defects that

enable blood to flow between chambers. A defect in the septum which enables blood

to shunt between atria is known as an atrial septal defect (ASD), and similarly for

ventricles is referred to as a ventricular septal defect (VSD). Narrowing of the great



2.1. Congenital heart disease 43

vessels and valves (stenosis) is also commonly observed in conotruncal lesions.

Classic examples of conotruncal CHD include:

• Double outlet right ventricle (DORV) is characterised by a ventriculo-arterial

connection, whereby both great arteries arise entirely or predominantly from

the right ventricle (RV). Position/size of the great arteries and VSDs can be

highly variable (Fig. 2.1). Prevalence is ∼0.9% of all CHDs [13].

• Transposition of the great arteries (TGA) involves an abnormal arrangement

of the great arteries. The most common type (d-loop TGA, 4% of all CHD

cases) results in an aorta arising from the right side of the heart and a pul-

monary artery (PA) arising from the left side [13]. Multiple variations of

TGA exist, such as congenitally corrected transposition of the great arteries

(CCTGA) where the ventricles are also swapped.

• Tetralogy of Fallot (TOF) is characterised by four features: (i) a VSD, (ii)

aorta positioned over VSD (overriding aorta) allowing blood flow from both

ventricles, (iii) stenosis of the pulmonary outflow tract and (iv) right ven-

tricular hypertrophy. TOF is one of the most common conotruncal lesions,

comprising ∼5% of all CHD cases [13].

• Persistent truncus arteriosus (PTA) is defined as an incomplete division of the

great arteries, resulting in a single arterial trunk. VSDs are almost always

present. Multiple variations of the disease exist, resulting in differing levels

of separation and spatial arrangements. PTA represents ∼1% of all CHD

cases [13].

2.1.3.2 Diagnosis and treatment

Diagnosis for conotruncal lesions can occur prenatally during ultrasound imaging

[21]. In some CHD pathologies, this can be of critical importance. For example,

in TGA or TOF, babies after birth develop cyanosis if there is insufficient or no left

to right shunting of blood, therefore requiring immediate treatment and possibly

also perinatal surgical intervention [14]. TOF and TGA account for ∼10% of all



2.1. Congenital heart disease 44

Figure 2.1: The anatomy of double outlet right ventricle [1].

CHD cases; however, only 17% of TGA cases and 50% of TOF cases are diagnosed

in-utero [21].

Due to the complex spatial arrangements in many conotruncal lesions, treat-

ment, often within the first year, is challenging and requires appropriate planning

and surgical preparation. Lowered life expectancy and quality of life is often still

not restored to normal levels even post-surgical intervention [13]. Patients regularly

require follow-up and functional assessment of intracardiac implants and ventric-

ular function. In some cases, re-intervention may be required in order to replace

implants such as conduits when beginning to exhibit poor function or regurgitation.

Examples of some surgical approaches for the previously aforementioned lesions

are detailed in Table 2.2.

In the repair of conotruncal disease, the main aim is to restore the normal circu-

latory outflow from the heart, as much as possible. Since cases present with widely

different anatomical arrangements, surgical approaches often need to be tweaked

and personalised to the patient. This is compounded by the fact that CHD class

divisions are not always clear (e.g. the controversy in differentiating between TOF

and DORV) [22], which can result in the feasibility of multiple surgical approaches

across a wide spectrum of cases. In general CHD surgery, 18% of cases necessitate
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Diagnosis Possible treatment Description

DORV
Intraventricular
LV-Ao baffle

Creation of an intraventricular tunnel (baffle) to divert
and isolate the outflow of the left ventricle (LV) to the
right-sided aorta through the pre-existing VSD.

TGA Arterial switch
Transection of the great arteries above the sinuses
(including with the coronary ‘buttons’) followed by
repositioning in the correct ventricular-arterial arrangements.

TOF
Total repair
of TOF

VSD patch closure and right ventricular outflow tract (RVOT)
obstruction relief by means of pulmonary valvotomy
and resection of hypertrophied muscle bundles.

PTA
Rastelli
procedure

Closure of the VSD (using a patch) and insertion of an
extracardiac conduit connecting the right ventricle to the
pulmonary artery.

Table 2.2: Examples of surgical interventions for correcting congenital conotruncal le-
sions.

an approach that combines two or more procedures. The proportion of cases requir-

ing a combined surgical approach increases to nearly 30% when considering the

types of interventions commonly performed for conotruncal lesions. These include

intracardiac baffling, arterial switch operation (ASO) and more [23].

In conotruncal CHD, the spatial arrangement of the great arteries and the in-

tracardiac anatomy are of critical importance. Restoring normal cardiac outflow and

preserving the function of both ventricles (biventricular repair) is considered a high

priority and to produce better patient outcomes than single ventricle repair [24].

However, in DORV for example, the approach for biventricular repair is strongly

dependent on the location of the VSD, great arteries, valves and their spatial re-

lationship to one another. In some cases, biventricular repair may be impossible

to perform, whereas in others it may be highly challenging due to the presence of

comorbidities. For example, DORV may present with a stenotic RVOT (TOF-type)

and/or transposed great arteries (TGA-type) which further complicates the route for

performing successful biventricular repair. Despite the availability of surgical ap-

proaches for dealing with these issues (e.g. ASO), complex intracardiac baffles can

be prone to complications such as left ventricular outflow tract (LVOT) obstruction,

valvular disease and ventricular dysfunction [25]. Therefore, this might not be a

suitable approach for all patients. Bradley et al. reported that biventricular repair

(especially Rastelli-type) was associated with higher late mortality than single ven-
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tricle repair [26]. Indeed, the procedure with the highest risk of early mortality

in DORV is intracardiac tunnelling with ASO [27]. This finding was particularly

evident in borderline candidates that were nominated for biventricular repair. Nev-

ertheless, biventricular repairs remain to be the primary choice for DORV and other

conotruncal lesions, especially with favourable anatomy that does not necessitate

the creation of convoluted or complex intracardiac outflow tracts.

2.1.4 Arterial lesions

Arterial lesions in CHD can be defined as structural abnormalities of the aorta, PA

or coronary arteries. This section briefly describes some common types including

modern diagnostic and treatment options, with particular emphasis on coarctation

of the aorta.

2.1.4.1 Overview

Congenital abnormalities of the aorta, pulmonary artery, and coronary arteries may

occur in isolation or in association with other CHD lesions. Typical arterial ab-

normalities include vascular narrowing (stenosis), dilation, improper anatomical

connections and hypoplasia, with implications ranging from asymptomatic inci-

dental findings to sudden cardiac deaths. These defects originate during embryonic

development. At the 29th day of gestation, six pairs of aortic arches are present.

After a series of complex processes, these eventually go on to form the aorta, pul-

monary arteries and ductus arteriosus (which seals after birth). During this phase,

abnormalities of the great arteries may develop, although further changes can occur

postnatally, such as increased vascular elasticity due to a pressure imbalance [28].

Similarly, coronary artery abnormalities typically occur during the embryonic phase

when the coronary buds (later sinuses) do not originate on either side of the undi-

vided proximal bulbus cordis. Pathways of the vessels may also be abnormal if

the routes do not follow the correct pattern through the epicardial atrioventricular

and interventricular grooves [29]. Some examples of arterial lesions can be seen in

Table 2.3.

Coarctation of the aorta (CoA) is an example of a fairly common arterial lesion
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Aortic anomalies Pulmonary artery anomalies Coronary artery anomalies
Coarctation of
the aorta

Patent ductus
arteriosus Coronary fistula

Aortic stenosis
Pulmonary artery
stenosis

Duplication of the left
coronary artery

Interrupted aortic
arch

Interruption of the
pulmonary artery

Anomalous origin of
the coronary arteries

Hypoplastic aortic
arch Pulmonary sling

Single coronary
artery

Table 2.3: Examples of congenital arterial lesions.

which occurs in 5-8% of all CHD cases [30]. CoA is characterised by a narrowing

in the descending aortic lumen as a result of wall thickening and/or infolding (Fig.

2.2). The underlying factors leading to the development of CoA are still not fully

understood. Common symptoms are systemic arterial hypertension, with more rare

severe risk factors including aortic dissection and aneurysms. As with all arterial

CHD lesions, CoA is commonly associated with other disease, such as patent ductus

arteriosus (PDA), bicuspid aortic valve and hypoplastic aortic arch [31].

Figure 2.2: The anatomy of coarctation of the aorta [1].

2.1.4.2 Diagnosis and treatment

Diagnosis of arterial lesions are commonly missed, especially when isolated and

not associated to a more easily diagnosed disease such as TGA or TOF. Undetected
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coronary abnormalities are one of the leading causes of sudden death in young

adults [32]. The challenge of diagnosis is exacerbated by the fact that only 18-

30% of children with coronary artery abnormalities experience symptoms [33]. In

most cases, these children are diagnosed using transthoracic echocardiography. This

technique is also commonly used to diagnose other arterial lesions. However, when

used prenatally for diagnosis of CoA, it was found that two thirds of cases were

not identified with TTE [30], resulting in CoA being the most commonly missed

fetal CHD diagnosis. Once diagnosed, catheter angiography is considered the gold

standard in assessment of CoA and for deciding intervention [30]. This minimally

invasive catheter-based procedure allows for detailed pressure data to be recorded.

The pressure gradient across the coarctation is typically used as an indication for

intervention [34]. Other imaging techniques such as cardiac magnetic resonance

(CMR) and computed tomography (CT) are also frequently utilised for diagnosis of

arterial lesions. In general, congenital abnormalities of the great arteries result in

clearer symptoms (e.g. hypertension, low arterial blood saturation, cyanosis) com-

pared to congenital coronary anomalies and are thus easier to diagnose, at birth and

later in life [35, 36].

The main aim of intervention in arterial lesions is to improve vascular function

and reduce the risk of adverse events. Unlike conotruncal disease, arterial lesions

can be repaired in certain instances with a catheter-based interventional approach

that avoids open-heart surgery. This is done by expanding a balloon at a site of

vascular narrowing in order to relieve stenosis/coarctation. In some cases, this pro-

cedure will be accompanied by the deployment of a balloon-expandable stent for

preventing re-stenosis or re-coarctation. Some examples of surgical procedures are

reported in Table 2.4.

In CoA for example, surgical repair by end-to-end anastomosis is usually the

preferred choice for neonates [37]. Balloon angioplasty is usually performed after

3–6 months, due to the high risk of re-coarctation from highly elastic aortic tissue

that is present in younger patients. Stent placement is generally performed on older

children (>25 kg) as a more effective alternative to balloon angioplasty [30]. All
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Diagnosis Possible Treatment Description

Coarctation of the
aorta

Balloon
angioplasty

Minimally invasive. A catheter-fed balloon is
inflated at the site of coarctation to relieve
narrowing. A stent may also be deployed.

Interrupted aortic
arch

End-to-end
anastomosis

The PDA is doubly-ligated. Both ends of the
aortic arch are anastomosed to form an
uninterrupted aorta.

Pulmonary sling
Resection of the
PA with possible
tracheoplasty

The PDA is doubly-ligated. The left PA branch
is resected and sutured in the correct position.
The trachea is repaired if necessary.

Anomalous origin
of the RCA

Translocation of
the RCA

The aorta is resected. The anomalous RCA is
detached (including the coronary button) and
reimplanted in the correct anatomical location.

Table 2.4: Examples of treatments for congenital arterial lesions.

of these treatments aim to eliminate the aortic pressure gradient and reduce hyper-

tension in the left ventricle. The choice of intervention is highly dependent on the

anatomy, presence of comorbidities and severity. For CoA, long term complica-

tions may occur after all types of treatment. Recoarctation can occur even after

”successful” interventions, often requiring reoperation. A review of 11 major stud-

ies by Rothman et al. found that rates of recoarctation were on average 16% [38],

with a more recent publication by Dias et al. having placed this number closer to

12% [39]. Other serious complications include aortic aneurysms, which develop in

12% of patients with recurrent CoA, requiring long-term follow-up [34]. Systemic

hypertension is another post-op complication which requires management, although

this usually presents in patients operated after 20 years of age.

Other arterial lesions may also necessitate an aggressive interventional ap-

proach, followed by life-long monitoring. Davis et al. found that 0.17% of asymp-

tomatic patients evaluated with TTE presented with anomalous origin of a coronary

artery [33]. While the prevalence is low, if undiagnosed and untreated the conse-

quences can be severe, with clinical symptoms including cardiomyopathy, arrhyth-

mia, myocardial infarction and sudden death. Anatomical features such as acute

take-off angles and slit-like ostia have been proposed as risk factors for severe ad-

verse events [29] [32]. Surgery such as ‘unroofing’ of the coronary artery (exposing

tunnelled sections in the aorta) may be used to reduce the risk of complications.

Other options include re-implantation of the anomalous coronary artery into the
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correct location. However, indications and routes for treatment are often unclear,

due to the difficulty in establishing the existence and severity of such a congenital

defect. For arterial lesions, this extends even to post-surgical management, where

monitoring and further functional assessment is equally important. For example,

in patients diagnosed with pulmonary stenosis (present in 8% of all CHD), surgery

may involve resection of the trunk and insertion of a transannular patch [40]. Pul-

monary regurgitation is a common post-operative complication; yet, because it can

be well tolerated, might not require reintervention for numerous years. However,

this can lead to irreversible RV damage in the long-term. Overall, whilst the surgi-

cal management of arterial lesions has greatly improved, proper diagnosis, planning

and follow-up are all equally important for ensuring the long-term health of patients,

even of those presenting with common or ‘easily treatable’ arterial lesions.

2.2 Clinical challenges in CHD

The burden of CHD is rising on a global scale. One estimation placed ∼12 mil-

lion people to be living with CHD in 2017, displaying an increase of 18.7% since

1990 [41]. Much of this can be attributed to a growing global population, along

with improved treatments for sufferers of CHD that grant better long-term survival.

Indeed, in the same time-frame, CHD mortality rates are understood to have de-

creased by 50% in countries with access to treatment. In some countries, adult

patients with CHD are now more prevalent than pediatric patients. For example, in

the United States alone, adults with CHD represent two-thirds of the entire national

CHD population [13]. Another reason for the rising prevalence may be the inclusion

of new data from regions with low socio-demographic indices that were previously

underrepresented. Indeed, only 25% of the world has access to cardiac surgery,

with the distribution being very skewed and favoured towards countries with high

socio-demographic indices [42]. However, the increasing spread of diagnostic tools

has led to previously unreported cases of CHD being identified.

Despite great advancements in the diagnosis and management of CHD, signif-

icant clinical challenges remain. Crucially, the education and training of clinical
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professionals requires more optimal and accessible resources in order to fill the

growing need for CHD practitioners. Furthermore, improvements in the clinical

approach are also required, even in centres which already treat CHD patients with

low mortality/morbidity rates. Notably, greater clinical support should be made ac-

cessible for decision-making activities related to the timing of intervention, surgical

planning and prediction of the patient outcome.

2.2.1 Decision-making

The landscape of clinical diagnosis, treatment, planning and long-term management

in CHD is continually changing. Knowing what decisions to make and how to make

them is a problem frequently encountered. This even extends past pediatric settings,

since the rising prevalence of adult CHD has now created an almost entirely new set

of clinical challenges. For example, the development of hypertrophy, arrhythmia

and other morbidities can develop later on in life and take different forms in adults

versus children [13]. Complications can also develop as a consequence of improper

treatment/palliation, and are in some cases not fully understood or predictable due

to current gaps in knowledge. This adds to the already challenging environment

of clinical decision-making. In practice, clinicians typically need to follow med-

ically defined guidelines when assessing patients. However, in CHD this is not

always simple, as cases are often: (i) complex anatomically and sometimes unique,

(ii) present with multiple comorbidities that need to be considered, and (iii) lie on

the border between classifications, resulting in multiple possible treatment options.

Due to these reasons, intuition and experience play an important role in the clini-

cal management of CHD patients. In two clinical studies (not related to CHD), it

was observed that intuition played an important role in clinical risk prediction, and

in some cases led to incorrect or erroneous decision-making [43, 44]. In a field of

surgery as complex as CHD, minimising the risk to the patient is crucial, not only

for reducing mortality but also for producing better outcomes and quality of life. For

this reason, there is still a need for further refinement of clinical decision-making

related to CHD. Regarding interventional decision-making, the main problems that

a cardiologist or surgeon might face have been distilled into three simplified ques-
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tions:

• Should there be a surgical intervention?

• If so, what interventional approach should be taken?

• With the proposed approach, what are the expected outcomes of the interven-

tion?

In CHD, answering these questions often requires a comprehensive analysis

of the patient using medical imaging, physical examination, clinical measurements

(age, weight, vital signs), medical history and more. In highly complex cases, the

choice of intervention is sometimes not completely decided until the surgery is un-

derway, due to the lack of strong clinical evidence in favouring one approach over

another. For this reason, useful and informative data is needed at all levels to help

guide the clinical decision-making process. Even with modern technological ad-

vances, treatment planning in CHD remains a major challenge.

2.2.1.1 Diagnosis and decision to intervene

At the very first step, diagnosis is required to establish the condition of the patient.

This can be particularly difficult in arterial lesions, such as CoA, where diagnosis is

missed in 85% of older children referred to a hospital with murmurs/hypertension

[45]. Some of these patients are asymptomatic and will remain so, although ∼50%

die under 30 due to sudden events such as aortic dissection/rupture.

Currently, the accepted medical indication for intervention in CoA is the exis-

tence of a transcoarctation pressure gradient of >20 mmHg [30, 31]. Catheterisa-

tion is considered the ‘gold-standard’ method to extract this value, although TTE is

favoured in some centres since it prevents unnecessary hospitalisation. The binary

threshold of 20 mmHg has been shown to not always give a clear indication for

intervention. For example, it has been observed that some patients do not experi-

ence an LV strain reduction post-intervention [46], while other patients which are

observed to be normotensive remain at risk of adverse events [47].

In post-op CoA patients which possibly require re-intervention, the approach

on determining an intervention remains the same, regardless of the introduction
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of new factors. For example, Ou et al. showed that post-repair CoA arch shape

is correlated to adverse outcomes [48], and Bruse et al. correlated post-repair CoA

shape features with hemodynamic risk factors [49]. Despite this, there is an absence

of shape-based indices to be used as part of the decision-making process. Further

non-invasive metrics are needed to give clinicians a clearer indication of the patient

physiological condition for diagnosis and intervention decision.

2.2.1.2 Pre-operative planning

Following diagnosis and a decision to intervene, the next step to consider is what

procedure should be performed and how it should be conducted. In complex

conotruncal lesions such as DORV, anatomies are often unique and require individ-

ualised surgical repair. In this case, the decision between a biventricular repair (pre-

serving both ventricles) and a univentricular repair (preserving only one ventricle)

has significant implications. For example, the perceived superiority of biventricular

physiology against univentricular physiology has sometimes led to the inappropriate

pursuit of biventricular repair in borderline candidates, resulting in elevated mortal-

ity rates [50]. Indeed, in DORV, the non-committed VSD types are associated with

early and late morality [27]. The presence of non-commited/remote VSDs can also

have other consequences; in some cases driving the choice unnecessarily towards a

univentricular repair even with an adequately sized LV and RV [51].

For complex surgical repairs, each patient is often treated as a ‘bespoke’ case

that necessitates its own tailored approach. For example, Corno et al. detailed a

narrative-based approach to be used by surgeons for constructing a bespoke inter-

ventional plan in DORV repair [52]. With such an approach, the burden of problem-

solving during surgery can be minimised through extensive planning, thus allowing

the surgeon to focus more on the delivery of the procedure. However, since the

lesions that require this kind of approach are complex, guidelines tend to be highly

generalisable, which may limit their effectiveness for constructing individualised

repair. For example, when trimming the patch during intraventricular baffling in

DORV, Corno et al. recommends sizing it using the ”most posterior point of the in-

traventricular communication and the most anterior point of the aortic valve” [52].
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However, in reality, multiple patch sizes can fit this description, and this guideline

fails to give strong constraints for the baffle design. This is important since improper

baffle design may have significant clinical ramifications, such as LVOT obstruction.

Indeed, surgical outcomes for CHD have been observed to differ strongly, even be-

tween centres within the same country [53]. In modern medicine, guidelines are

needed in conjunction with medical imaging, which is the primary tool for plan-

ning surgery. However, for conotruncal lesions in particular, it is often challeng-

ing to relate 2D cross-sectional images to the actual 3D anatomy. The burden of

needing to mentally visualise the patient’s 3D cardiac anatomical configuration also

greatly complicates the pre-operative phase. Therefore, to better support surgeons

during pre-operative planning, improved accessibility to advanced 3D visualisa-

tion/simulation tools is essential.

2.2.1.3 Prognosis

The development of a prognosis which includes an expectation of surgical outcomes

is an ongoing challenge for pediatric cardiologists. In CoA for example, it is mostly

assumed that the elimination/minimisation of the transcoartation pressure gradient

will improve the patient’s health and reduce the risk of adverse events. However, it

is not uncommon for post-op patients to experience complications, such as elevated

LV strain or hypertension [30] [46] [54]. Additionally, if multiple interventions

are required (e.g. due to recoarctation), further complications may develop. For

example, aneurysms are 3× more likely to form in patients with persistent coarcta-

tion than those with native coarctation [34]. Dijkema et al. reported that 4-14% of

CoA patients show re-coarctation, 13% form aortic aneurysms and 35%-68% have

persistent chronic hypertension [30]. Even though surgical repair is generally the

favoured option over balloon angioplasty and stenting (especially in infants), it is

unclear exactly how the surgical approach relates to post-op complications.

Being able to accurately predict the results of surgical intervention is useful

not only for properly informing the patient/parents, but also for feeding back into

the previous two clinical questions. For example, an infant diagnosed with post-

op CoA (pressure gradient >20mmHg) would likely be nominated for surgical re-
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intervention. However, multiple compounding factors could contribute to a poor

outcome, including an improper diagnosis, poor surgical approach choice or even

an unclear understanding of the effect of the pre-existing arch geometry on the

patient condition. Therefore, being able to accurately predict the post-intervention

physiology on a patient-specific basis would be crucial for optimising the treatment

and management plan. This fits into the vision of ‘precision cardiology’, which

is of growing interest in CHD and relies on the use of computational modelling

to improve diagnosis, procedure planning and prognosis on a patient-specific basis

[55].

2.2.2 Education and training

Finding more effective methods to teach anatomy and clinical practice of CHD is

of high interest. Historically, cadaveric dissection was the primary medium through

which anatomical education was delivered. The traditional model of education was

primarily an apprenticeship-like one, with instruction typically given on a one-to-

one basis [56]. Changes in legislation during the early 19th century resulted in

stricter regulations around the procurement of cadavers, resulting in a shift that

favoured teaching anatomy to groups of students instead of individuals. The use of

cadaveric specimens remains a crucial aspect of anatomical education, especially in

CHD, where post-mortem hearts are still considered the ‘gold standard’ for teach-

ing cardiac morphology. However, the wide breadth of CHD types makes it difficult

for educators to consolidate a sufficiently diverse collection of samples for teach-

ing. This is additionally hampered by the difficulty in acquiring and preserving rare

lesions, resulting in a skewed distribution where the majority of resources remain

isolated within specific centres and countries. Additionally, the global increased

demand for cadaveric resources is in line with the growing numbers of medical

students and trainees [57]. While samples are exceptionally useful in education,

they are also not without their faults. For example, it is argued how much cadav-

eric specimens can be related to living anatomy [58]. This is especially the case

in CHD, where collapsed heart chambers/vessels and the process of fixation may

produce important alterations in the overall appearance/texture. Additionally, the
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diminishing numbers of trained anatomists is making it increasingly challenging to

deliver and sustain this teaching format [58]. Finally, all anatomical specimens are

prone to degradation over time. The dependency on anatomical specimens (despite

their scarcity and limitations) has made it increasingly difficult to scale up CHD

teaching in-line with growing global demand.

Alternative pedagogical methods of teaching which include diagrams, images

and videos have become crucial for counteracting the scarcity of anatomical spec-

imens. In modern educational settings, these resources have become the primary

tools for delivering morphological teaching. With the advent of the World Wide

Web, the dissemination and exchange of this content has been widespread, enabling

easier access to educational resources for CHD than ever before. The rise of medical

imaging has also played a role in generating visual teaching material which relates

directly to living anatomy, as opposed to cadaveric specimens. However, all of

these tools still have their limitations. Notably, the three-dimensional appreciation

of anatomy is diminished when perceiving diagrams, images or videos on a screen.

This is of particular importance in a field such as CHD, where depth perception

is key to be able to properly delineate complex spatial arrangements of structures.

Secondly, many resources do not contain any patient-specific relevance, for exam-

ple, idealistic diagrams/videos which fail to provide a complete representation of

true individual cardiac anatomy.

Recently, technological advances such as 3D-printed models [59, 60] have al-

lowed for the creation of patient-specific, medical image-derived 3D models to be

produced. A number of studies have recorded highly positive feedback related to

the use of 3D printing for teaching CHD [60]. However, despite previously ob-

served benefits, some limitations hamper the widespread use of 3D printing as an

alternative to conventional CHD teaching methods. Primarily, the biggest challenge

is related to time-requirements and high cost, which have made it difficult to scale

up the production of 3D printing for CHD. Printers that create high-fidelity, de-

formable models are very expensive, with servicing/material costs also high. In a

world which is becoming increasingly dependent on easily-distributable digital re-
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sources for independent learning, 3D printing does little to facilitate this transition.

While it has been seen that lower-cost, rigid 3D printed options are useful [59],

Yuen et al. found that educators greatly prefer anatomical specimens and, in some

cases, do not consider 3D printed models as sufficiently accurate representations

for anatomical teaching [61]. In general, whilst the usage of 3D printing is indeed

useful as an accessory to conventional teaching methods, it remains to be seen if it

can make a significant impact in revolutionising CHD education. A solution which

solves many of the limitations of conventional CHD teaching and 3D printed mod-

els should: (i) be low cost and digital, (ii) enable independent/collective learning

and (iii) enable 3D interaction with patient-specific anatomical models.

2.3 Medical imaging and post-processing
Medical imaging is crucial for the management of CHD from fetal development all

the way into adulthood. It allows for the retrieval of both anatomical and physiolog-

ical information related to the heart and circulation of patients. In addition, images

are also important precursors for image-based computational modelling, discussed

in later sections. In this section, the four main types of medical imaging used in

CHD are briefly described, with advantages and disadvantages of each modality

highlighted, and the specific use-cases where they are most effective (Table 2.5).

Imaging Modality Vascular
Anatomy

Intracardiac
Anatomy Blood Flow Ventricular

Function Interventions

Echocardiography × ! ! ! ×
Catheter Angiography ! ! ! × !

Computed Tomography ! ! × ! ×
Magnetic Resonance ! ! ! ! !

Table 2.5: The capacity of the main imaging modalities used in CHD [8].

2.3.1 Echocardiography

Echocardiography is the primary imaging modality for initial diagnosis of CHD

[62], most commonly used to diagnose and inspect the anatomy and function of

structures such as valves, large arteries, chambers, myocardium and more [8], rang-

ing from fetal screening all the way into adulthood. Echocardiography principles
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are based upon high frequency sound waves from a probe being emitted and di-

rected into heart tissue. The ultrasound pulses reflect off tissues with different ma-

terial properties and return to the probe. This data is then used to project an image

on a monitor (Fig. 2.3).

Figure 2.3: A parasternal long-axis view using two-dimensional (2D) echocardiography
[2].

There are two main types of echocardiography commonly deployed: transtho-

racic two-dimensional echocardiography (TTE) and transoesophageal two-

dimensional echocardiography (TOE). TTE is conducted by placing a probe over

the patient’s chest, whereas in TOE the probe is passed down the oesophagus and

positioned behind the heart. TTE is the primary method for diagnosing cardiac

conditions, whilst TOE is more commonly used during surgical interventions to

monitor specific functions of the heart and guide catheterisation [63]. Benefits to

TOE include a clearer acoustic window, due to the positioning of the probe which

avoids the lungs and ribs. Information regarding the hemodynamics can also be

retrieved using TTE or TOE, in a process known as Doppler echocardiography.

This is common for identifying the presence of valvular regurgitation, shunting be-

tween chambers and calculate measures of cardiac function. In CoA for example,

2D Doppler echo enables velocity information to be recorded for estimating the

pressure gradient across the coarctation [46]. However, the accuracy of this method

is contested, with some reports observing Doppler echocardiography to overesti-

mate the transvalvular gradient in patients with aortic stenosis when compared to

CMR [64]. Errors due to inter-user variability also exist, as the image acquisi-
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tion is highly dependent on the probe position/angle. This has been observed to

be particularly evident in prenatal screening [65]. Lastly, the development of 3D

echocardiography enables volumetric image acquisition, which gives better under-

standing of three-dimensional anatomy. However, limitations related to spatial and

temporal resolution make 2D ultrasound the preferred choice, especially since the

advantages of 3D echo for initial diagnosis and non-invasive measurements are not

well established.

2.3.2 Catheter angiography

Catheter angiography is conducted in a catheterisation laboratory (cath-lab) and is

typically used to visualise arteries, veins and heart chambers. A catheter is inserted

into the patient via a blood vessel before being guided towards the heart or area of

interest (such as a coarctation). X-ray fluoroscopy is used to provide a real-time

indication of the catheter location. Once the catheter tip arrives at the destination of

choice (e.g. a coarctation or stenosis), contrast agents can be injected and further

images taken, usually at a frame rate of 2-3 per second. This provides a high resolu-

tion capture of vascular anatomy and dynamics. Additionally, the catheter enables

direct measurement of pressures.

Figure 2.4: Coarctation of the aorta as viewed during a cardiac angiography procedure [3].

Catheter angiography is generally performed in situations where critical hemo-

dynamic measurements are necessary, for example if there is a high degree of suspi-
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cion of coronary artery abnormalities [8] or for the quantification of transcoarctation

pressures in CoA [30]. Since the approach is invasive, it is usually avoided in mod-

ern CHD as a method of diagnosis, not least due to the harmful ionising radiation

which the patient is subjected to. Additionally, catheter angiography can only pro-

vide 2D projections of image data, which is suboptimal for the visualisation of 3D

anatomy [66]. For these reasons, there has been a decline in the use of catheter

angiography in favour of three-dimensional and non-invasive modalities, such as

cardiac computed tomography and cardiac magnetic resonance.

2.3.3 Cardiac computed tomography

Cardiac computed tomography (CT) is a well-established imaging modality, fre-

quently used for the management of patients with CHD. In CT, an X-ray source

rotates around a patient while the attenuation is measured by a series of detectors

on the other side. In modern scanners (multidetector CT), scans are performed in

a spiralling fashion which has enabled acquisition during a single breath-hold and

during the first pass of contrast, resulting in the ability to quickly reconstruct cardiac

images in any 2D plane or in 3D [8]. Data is acquired in an axial spiral volume, and

reconstructed into sagittal, coronal and oblique planes. Iodinated contrast is typi-

cally administered during the procedure in order to better visualise the heart, and is

also referred to as computed tomography angiography (CTA). Capturing certain car-

diac structures often requires the acquisition to occur at a specific time point in the

cardiac cycle. In these cases, an electrocardiogram (ECG) is used for calibration,

and is known as ‘ECG-gating’. In modern scanners, the capture of multiple frames

over a cardiac cycle is also possible and is known as four-dimensional CT (4DCT).

Some indications for CT in CHD are reported in a single-centre study [8] and in-

clude: aortic vascular rings, PA anatomy (if no functional information needed), pul-

monary venous anatomy, post-operative systemic to pulmonary shunts and more.

A major advantage of CT is the rapid acquisition time. This reduces the need

for general anaesthesia, which is especially of importance in critically ill patients,

as the risk of prolonged sedation can be higher than the radiation risk [8]. Another

advantage is the high spatial resolution, which is particularly suitable for assessing



2.3. Medical imaging and post-processing 61

Figure 2.5: CTA dataset of a patient diagnosed with VSD. Coronal, axial and sagittal planes
are shown.

intracardiac anatomy and in neonates. However, drawbacks to CT include radi-

ation dosing, artefacts arising from medical implants and limitations when func-

tional/hemodynamic information is necessary, especially at high heart rates.

2.3.4 Cardiac magnetic resonance

Cardiac magnetic resonance (CMR) imaging is a highly powerful imaging modal-

ity for CHD management. CMR is based upon the principles of ‘nuclear spin’, a

fundamental property of atomic nuclei and elementary particles that can be affected

by the presence of a strong magnetic field. CMR is a versatile tool which allows

for detailed assessment of both cardiovascular anatomy and function. Other ad-

vantages include a large field of view, unlimited choice of imaging planes and low

operator-dependency [8]. Different MR sequences allow for acquisition of differ-

ent parameters and information. Steady state free precession (SSFP) is especially

popular since it can create high levels of contrast between blood and nearby cardiac

tissue using rapid pulse frequencies, thus massively decreasing acquisition time.

Another application of SSFP includes bright-blood cine CMR that enables acquisi-

tion of dynamic images of the heart [67].

Using CMR, clinical metrics such as ventricular mass, end-diastolic volume

and ejection fraction can be reliably assessed. In some cases, magnetic resonance

angiography (MRA) may be performed by injecting a gadolinium-based contrast

agent to improve the delineation of arterial lesions. Furthermore, phase-encoded

imaging is commonly performed to measure flow volumes, peak velocities and

regurgitation fractions. Velocity can be encoded in 2D, which is known as 2D
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phase-contrast (PC) CMR. Importantly, this has shown to be accurate (even more

so than TEE) when compared to catheter angiography measurements [68]. Re-

cent developments have also enabled 3D encoding of the flow field over time (4D

flow CMR). However, this tool currently suffers from limitations preventing regular

clinical usage; notably long acquisition times (10–20 minutes), large amounts of

post-processing and low spatial resolution [69].

Figure 2.6: Whole-heart SSFP cine CMR in a patient with surgically corrected CoA.

CMR is appropriate for use in multiple scenarios for patients with CHD. For

example, patients with surgically corrected CoA are recommended for lifelong

follow-ups in order to screen for recoarctation, aneurysm formations and more.

With CMR, the 3D anatomy including the location, length and diameter of the

coarctation can be accurately established. CMR is also an excellent imaging choice

for the assessment of patients with conotruncal lesions such as TOF, due to the abil-

ity to evaluate ventricular function. However, motion artefacts (due to respiratory

and cardiac artefacts) often pose challenges, potentially requiring measures such as

alternative pulse sequences, breath-holding and ECG/respiratory gating. Further-

more, CMR scanning of a patient with complex CHD can take up to an hour. In

small children (especially those with high heart rates) this often proves difficult,

thus necessitating sedation [66]. Additionally, patients with ferromagnetic metallic

implants are unable to undergo CMR due to the strong magnetic fields. Despite

these limitations, CMR remains a crucial form of assessment for CHD patients, and

is constantly evolving due to developments in sequencing and machine learning.
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2.3.5 3D image segmentation

3D images from CMR or CT are typically stored and transmitted in a universal for-

mat known as Digital imaging and Communications in Medicine (DICOM). This

format contains image data and attributes related to the patient (e.g. age, weight,

date of scan). Three-dimensional image information is stored as voxels with 8 or

16 bit greyscale (pixel intensity) values. As seen previously in Fig. 2.6 and 2.5,

data can be viewed in three planes (coronal, sagittal, axial), with spacing between

slices depending on the type of scan and commonly varying between 1-10 mm.

Typically, the planar images are displayed on a monitor for clinical and diagnostic

assessment. However, if needed, specific regions of interest may be extracted from

the 3D volume via image segmentation, one of the fundamental processes for im-

age analysis. The first stage of image segmentation is the generation of a ‘mask’,

a binary 3D image which retains only the voxels in the structure of interest (e.g.

the aorta). The creation of the mask can be done manually, by selecting individ-

ual voxels, or using semi-automatic tools present in most modern software, such

as seeded region-growing and level-set contouring. Segmented regions of the 3D

image can be converted into a 3D surface mesh with algorithmic approaches (Fig.

2.7). This transformation results in a three-dimensional grid of nodes with connec-

tivity information (for defining triangular elements) that enables computer graphics

visualisation.

Figure 2.7: Image segmentation of an aorta from CMR in a patient with surgically repaired
CoA. The generation of the mask is followed by surface mesh reconstruction.
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An algorithmic approach is typically deployed (e.g. marching cubes [70]) to fa-

cilitate the conversion of a binary image volume into a 3D triangular surface mesh.

Following surface reconstruction, it is common for grids to be further refined us-

ing algorithms for remeshing and smoothing. Several modern implementations of

re-triangulating surfaces exist, many of which are based upon the principle of De-

launay triangulation and Laplacian smoothing [71]. Other mesh post-processing

functions may be necessary in order to remove floating erroneous elements or holes

in the surface. In cardiovascular applications, segmentations are used for object

classification tasks for disease, denoising and organ measurement. In general, the

use of image segmentation including subsequent surface mesh representation is also

crucial in many cardiac computational modelling applications, some of which in-

clude 3D printing, virtual reality and finite-element simulations.

2.4 Summary

In this chapter, a general background to CHD was provided, starting with a classifi-

cation of the primary lesion types. Special emphasis was given to conotruncal and

arterial abnormalities, which were explored in greater depth due to their relevance

in this thesis. Notable lesions within these classifications included double outlet

right ventricle and coarctation of the aorta. Clinical challenges related to decision-

making, education and training within the field of CHD were highlighted. It was

shown that there is a lack of accurate non-invasive tools for diagnosis and progno-

sis of CHD lesions, especially for predicting post-operative outcomes. Similarly,

it was seen that the repair of complex CHD is often hampered by challenging 3D

anatomical configurations, which are not currently fully evaluated in 3D prior to in-

tervention. In educational settings, the need for new methods to support the growing

rise of CHD was highlighted, in particular with digital approaches that support 3D

visualisation of patient-specific abnormalities and are widely accessible. Following

this, a brief overview into the primary imaging modalities used in CHD was pro-

vided, along with image segmentation processes, critical for many computational

modelling pipelines. In this context, the general concepts relevant to the method-
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ologies adopted in this thesis will be described in the following chapter.



Chapter 3

Methodology

3.1 Introduction

Within the scope of this thesis, multiple methodologies were used (sometimes in

conjunction with one another) to facilitate the translation of computational mod-

elling tools into clinics. This chapter is used to describe the general theory of each

modelling tool, including some recorded applications within the field of CHD from

the literature. The four main methodologies discussed are: (i) computational fluid

dynamics, (ii) machine learning, (iii) statistical shape modelling, and (iv) virtual

reality.

3.2 Computational fluid dynamics

CFD is a subset of fluid mechanics which combines mathematical formulations of

fluid structures with computational methods, for the purpose of quantifying flow

properties in a given domain. During its history, the application of this technique

has seen uses in several fields, such as aeronautical and automotive engineering.

In CHD, the use of CFD is well documented for assessing the hemodynamics of

patient cardiac structures, improving understanding of CHD, optimising medical

device design and more. At its foundation, CFD relies upon fundamental principles

of physical fluid behaviour.
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3.2.1 Governing equations

The governing equations of fluid flow represent mathematical formulations of the

conservation laws of physics:

• The mass of a fluid remains constant over time in any closed system

• The rate of change of momentum equals the sum of the forces on a fluid

particle (Newton’s second law)

• The rate of change of energy equals the sum of the rate of heat addition and

the rate of work done on a fluid particle (first law of thermodynamics)

Fluid behaviour is described in terms of macroscopic properties, such as ve-

locity, pressure and density. A fluid particle can be considered the smallest possible

element of fluid, where the influence of microscopic properties is negligible. A

small element of fluid can be defined with sides δx, δy and δ z (Fig. 3.1). The

approach of defining a control volume which contains fluid elements inside a fixed

region is known as the Eulerian approach. Flow properties are expressed as fields,

as opposed to tracking individual particles (Lagrangian approach). In CFD, the

Eulerian framework is the most common approach, and requires forms of the con-

servation laws which are concerned with flow properties for fluid elements that are

stationary in 3D space.

δx

δy

δ z(x, y, z)

x

z
y

Figure 3.1: Fluid element for conservation laws.

In a fluid element, the centre is located at position (x,y,z). Fluid flow equa-

tions are derived from any systematic changes in mass, momentum and energy in

the fluid element due to flow across its boundaries, and where appropriate, due to
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the action of sources inside the element. All fluid properties are functions of space

and time. Since fluid elements are so small, properties at the faces can be suffi-

ciently expressed with the first two Taylor series expansion terms. For example, the

pressure at the left and right YZ faces (both at a distance of 1
2δx from the centre),

can be expressed respectively as [72]:

p− ∂p
∂x

1
2

δx and p+
∂p
∂x

1
2

δx (3.1)

3.2.1.1 Conservation of mass

In a fluid element, the rate of increase of mass is equivalent to the net rate of flow of

mass into the element. The mass flow across each face also needs to be accounted

for, and is given by the product of density, area and the velocity component normal

to the face (Fig. 3.2). The sum of all these components equals the net rate of flow

of mass into the element across its boundaries.

ρu+ ∂ (ρu)
∂x

1
2δx

(x, y, z)

x

z
y

ρv− ∂ (ρv)
∂y

1
2δy

ρu−+∂ (ρu)
∂x

1
2δx

ρv+ ∂ (ρv)
∂y

1
2δy

ρw− ∂ (ρw)
∂ z

1
2δ z

ρw+ ∂ (ρw)
∂ z

1
2δ z

Figure 3.2: Conservation of mass in a fluid element.

The expression for the net rate of flow of mass into an element across its faces

is then equated to the rate of increase of mass inside the element. Following this,

the following equation can be derived (where u is the three-dimensional velocity

vector):

∂ρ

∂ t
+∇ · (ρu) (3.2)
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Eq. 3.2 is also known as the continuity equation. It describes the unsteady,

three-dimensional conservation of mass at a point in a compressible fluid. The first

term describes the rate of change of the density. The second term (convection term)

describes the net flow of mass across the element boundaries. For an incompressible

fluid (e.g. a liquid), the density p is constant, thus eliminating the first term.

3.2.1.2 Conservation of momentum

Newton’s second law dictates that for a particle, the rate of change in momentum

equals the sum of the forces on the particle. Rates of increase of x, y and z momen-

tum per unit volume of a fluid particle are given as ρ
Du
Dt ,ρ

Dv
Dt ,ρ

Dw
Dt , respectively.

The stress acting on a fluid particle can be defined in terms of the pressure p and

nine viscous stress components τi j that act in a direction j on a boundary i j. The

product of stress and area yields the forces. For example, Fig. 3.3) shows the stress

components in the x direction [72].

x

z
y

τxx − ∂τxx
∂x

1
2δx τxx +

∂τxx
∂x

1
2δx

τzx − ∂τzx
∂ z

1
2δ z

τzx +
∂τzx
∂ z

1
2δ z

τyx −
∂τyx
∂y

1
2δy

τyx +
∂τyx
∂y

1
2δy

p− ∂p
∂x

1
2δx p+ ∂p

∂x
1
2δx

Figure 3.3: Stress components acting in the x direction on a fluid element.

After resolving all the forces in the x direction, the total force per unit vol-

ume on the fluid due to surface stresses is equal to the sum divided by the volume

δxδyδ z:

∂ (−p+ τxx)

∂x
+

∂τyx

∂y
+

∂τzx

∂ z
(3.3)

In order to avoid considering body forces in detail (Coriolis force, electro-

magnetic force etc.), their overall effect can be represented as a source SMx of x
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momentum. By setting the rate of change of x momentum equal to the total force

in the x direction due to surface stresses (Eq. 3.3) plus sources, the x component of

the momentum equation can be defined:

ρ
Du
Dt

=
∂ (−p+ τxx)

∂x
+

∂τyx

∂y
+

∂τzx

∂ z
+SMx (3.4)

The same approach can be used to derive the y and z components of the mo-

mentum equation:

ρ
Dv
Dt

=
∂τxy

∂x
+

∂ (−p+ τyy)

∂y
+

∂τzy

∂ z
+SMy (3.5)

ρ
Dw
Dt

=
∂τxz

∂x
+

∂τyz

∂y
+

∂ (−p+ τzz)

∂ z
+SMz (3.6)

3.2.1.3 The energy equation

The energy equation is derived from the first law of thermodynamics. It states that

the rate of increase of energy for a fluid particle is equivalent to the net rate of heat

added to the particle and the net rate of work done on the particle. The rate of in-

crease of energy is denoted by ρ
DE
Dt . The derivation of the energy equation involves

a similar approach as previously shown, by resolving components of heat flux across

the boundaries. The final energy equation is given in Eq. 3.7, where parameters in-

clude internal energy i, Boltzmann’s constant k, temperature T , dissipation Φ and

an energy source term Si.

∂ (ρi)
∂ t

+∇ · (ρiu) =−p∇ ·u+∇ · (k∇T )+Φ+Si (3.7)

Liquids and gases flowing at low speeds behave as incompressible fluids. With-

out density variation, there is no connection between the energy equation and

mass conservation and momentum equations. The flow field in these cases can

be solved using only mass conservation and momentum conservation formulations.

If the problem does not involve heat transfer, then the energy equation can be dis-

carded [72].
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3.2.1.4 The Navier-Stokes formulation

In the conservation equations thus far, the viscous stress components τi j have been

additional unknowns. By using models to describe these viscous stresses, more

useful forms of the conservation equations can be formed. One of the most com-

mon methods is to describe viscous stresses as a function of the fluid’s deformation

(strain) rate. In three-dimensional flows, the deformation rate is composed of a lin-

ear deformation rate and a volumetric deformation rate. For incompressible liquids,

the effect of the volumetric deformation rate can be neglected. In a Newtonian fluid,

the linear deformation rate is directly proportional to the viscous stress. Therefore,

a constant of proportionality (dynamic viscosity µ) can be introduced to express all

nine viscous stress components as functions of the linear deformation rate.

Substituting these new expressions for the viscous stresses into the conserva-

tion of momentum equations (Eqs. 3.4, 3.5 and 3.6) yield the Navier-Stokes equa-

tions. These are more useful forms of the conservation of momentum and energy

equations, and describe the motion of a viscous, heat-conducting fluid. Conve-

nient expressions of the Navier-Stokes equations can be constructed by ‘hiding’ the

lengthy viscous stress terms in the momentum source. Therefore, the new source is

defined SM = SM +[sM], where [sM] is the viscous forces. Finally, the Navier-Stokes

equations can be written as:

ρ
Du
Dt

=−∂p
∂x

+∇ · (µ∇u)+SMx (3.8)

ρ
Dv
Dt

=−∂p
∂y

+∇ · (µ∇v)+SMy (3.9)

ρ
Dw
Dt

=−∂p
∂ z

+∇ · (µ∇w)+SMz (3.10)

3.2.2 The finite volume method

The governing equations (conservation of mass, momentum and energy) have all

been shown to share a similar form. By introducing a generic property φ , the con-

servative form of all fluid equations follow this structure:
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∂ (ρφ)
∂ t + ∇ · (ρφu) = ∇ · (Γ∇φ) + Sφ (3.11)

Equation 3.11 is also known as the transport equation for property φ . Each

of the four terms describes a different transport process in systems of fluid flow.

The term in green describes the rate of change of φ in the fluid element, in red

is the convective term, in blue is the diffusive term (Γ=diffusive coefficient) and

finally in yellow is the source term. This is the starting point for the finite volume

method, which is an approach for representing and evaluating a system of partial

differential equations. By setting φ equal to 1, u, v, w and i, special forms of the

conservation equations (mass, momentum, energy) can be formed. The key step in

the finite volume method is to integrate these partial differential equations over a

three-dimensional control volume (CV):

∫
CV

∂ (ρφ)
∂ t dV +

∫
CV ∇ · (ρφu)dV =

∫
CV ∇ · (Γ∇φ)dV +

∫
CV Sφ dV (3.12)

A crucial step in this approach is the conversion of the convective/diffusive

volume integrals into surface integrals with the use of Gauss’ divergence theorem.

For a vector a, this theorem states that:

∫
CV

∇ · (a)dV =
∫

A
andA (3.13)

Where A is the bounding surface and an is the component of vector a normal to

the surface element dA. By applying this rule to equation 3.12, improved versions

of equation 3.12 are found. In steady-state problems (no time component), the rate

of change term can be ignored, resulting in the integrated steady transport equation:

∫
A
(ρφu)ndA =

∫
A
(Γ∇φ)ndA+

∫
CV

Sφ dV (3.14)

These terms can now be evaluated as fluxes at the surface of each fluid ele-

ment. In order to solve for most fluid problems, conditions of flow at the domain



3.2. Computational fluid dynamics 73

boundaries are important to specify. The following auxiliary boundary conditions

are typically required for solving steady/unsteady incompressible viscous flow in-

side a control volume (with no heat transfer):

• For unsteady flows, u must be given at time t = 0 everywhere in the solution

region

• On solid walls, u = uwall (no-slip condition)

• At the inlet, u must be known as a function of position

• At the outlet, −p+µ
∂un
dn = Fn and µ

∂ut
dn = Ft (stress continuity)

In fully-developed flows (e.g. through a duct Fig. 3.4), it can be assumed there

is no change in any of the velocity components in the direction across the outlet

boundary (∂un
∂n = 0). Therefore, the gradient of all variables φ can be assumed 0 in

the flow direction at the outlet, except for pressure.

Flow

Solid wall, Velocity = 0

Solid wall, Velocity = 0
Inflow
boundary

Density
and velocity
given

Outflow
boundary

Commonly
Fn =−p
and Ft = 0

Figure 3.4: Boundary conditions for an internal flow problem.

In the finite volume method, the domain is typically divided into a grid of

discrete cells, with properties conserved across element boundaries. Flow proper-

ties are computed at the centroid of each cell. In order to solve non-linear transport

equations for thousands/millions of elements, a numerical approach is needed. Typ-

ically, this involves using a linear solver which iteratively solves and updates the

flow variables until sufficient convergence is observed (when residual errors stop

differing between iterations). Multiple algorithmic approaches have been demon-

strated in CFD for performing this process, such as the semi-implicit method for

pressure linked equations (SIMPLE), which is commonly used and is often avail-

able in commercial CFD solvers. Once convergence has been achieved, interpola-

tion methods are used to describe the variation of properties between cell centroids
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in the volume. In the solution process, additional physical models for phenomena

may be implemented, such as turbulence when modelling non-laminar flow.

3.2.3 The CFD procedure

In the previous sections, the general fundamental concepts behind CFD using a

finite volume approach were described. However, in real applications, pre- and

post-processing are also needed in the overall CFD software pipeline. The first

step involves the creation of a geometry with boundaries that define the overall

fluid domain. Common formats include surface meshes and computer aided design

(CAD) models. Following this, the domain is typically discretised into numerous

smaller volume mesh elements. The accuracy and convergence of the simulation

is heavily dependent on the construction of this mesh. Typically, as the number of

elements increases, the accuracy of the simulation also increases (at the expense of

computational time). Multiple other aspects of a mesh also influence the solution,

such as the mesh skewness, type of element, refinement level near walls and more.

In real-world applications, it is not always possible to discretise a geometry with

a structured mesh where nodes are uniformly distributed. The use of unstructured

mesh solvers that build grids using tetrahedral elements (3D) is a robust approach

commonly used to tackle this issue.

After mesh generation, the bounding surfaces of the control volume are de-

fined, typically as inlets, outlets and walls. Inlet and outlet boundary conditions are

applied and material properties (viscosity, density) of the fluid are also set. In the

solver, additional modelling considerations (e.g. turbulence) are implemented, if

necessary. The overall pipeline is shown in Fig. 3.5 [73]. Once the solution has

converged, post-processing is essential in order to extract information of relevance,

such as pressure/velocity distributions inside the flow field, from the 3D domain.

Some popular commercial CFD solvers include Fluent and CFX (Ansys, Inc), Star-

CCM+ (CD-adapco), OpenFOAM (openCFD .Ltd).
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(1) Pre-processing (2) Solver

(3) Post-processing

• Geometry creation
• Mesh generation
• Material properties
• Boundary conditions

• Graphs
• Pressure contours
• Velocity streamlines
• Other

Solver Settings
• Initialisation
• Solution control
• Monitoring solution
• Convergence criteria

Physical Models
• Turbulence
• Combustion
• Radiation
• Other processes

Transport Equations
• Mass, momentum, energy
• Other transport equations
• Equations of state
• Additional physical models

Figure 3.5: The overall CFD software pipeline from a user perspective.

3.2.4 Recent applications of CFD in CHD: a review

Over the past 20 years, there has been an increased interest in the use of CFD for

cardiovascular applications. Improved CPU hardware, more accessible simulation

software and a rising need for deeper insights into hemodynamic flows for research

have all contributed to this growth. The ability to simulate in-vivo conditions has

enabled low-cost, reproducible and non-invasive testing of stents, valve prosthe-

ses and other devices. For example, regulatory bodies such as the U.S. Food and

Drug Administration have published guidelines on the use of modelling techniques

for testing prosthetic valve designs [74]. The increased interest in simulation for

device testing aligns with a growing focus on in-silico clinical trials. Simultane-

ously, the increased capabilities of image segmentation during this time period has

enabled patient-specific CFD, allowing for non-invasive quantification of hemody-

namics in humans. Importantly, several studies have validated CFD measurements

against conventional clinical methods such as 4D cardiovascular magnetic reso-

nance (CMR) imaging or catheter-based pressure measurements [75, 76].

Patient-specific CFD has become an essential component for the research and

study of hemodynamic flow patterns in abnormal vascular structures. These in-

sights can then be used to better understand lesions and their associated physio-
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Application CFD metrics Findings Author

Blood flow
in shunts

Pressure,
Velocity,
WSS

Graft angulation presents a risk for WSS-
induced thrombosis, which is more likely
to occur in elongated central shunts

Ascuitto
et al. [77]

HLHS
Pressure,
energy loss,
WSS

Creation of a smooth aortic arch angle
reduced WSS and energy loss, and
improves performance after Norwood

Itatani
et al. [78]

RV pathologies
(DORV, TOF) Energy loss

Greater insight into the causes of RV-
pulmonary circulation failure and new
metrics for understanding dysfunction

Lee
et al. [79]

Fontan
circulation Energy loss

Using CFD to optimise geometry and
improve the efficiency therefore the
clinical outcome

Rijnberg
et al. [80]

Table 3.1: Examples of CFD applications for CHD.

logical features. For example, Youssefi et al. used patient-specific CFD to show

that aortic stenosis is correlated with higher levels of wall shear stress and helicity

in the ascending aorta [81]. A different CFD study by Osorio et al. showed that

the placement location/angle of LV assist devices is correlated with risk of cere-

bral thromboembolism [82]. Ascuitto et al. showed that wall shear stress-induced

thrombosis is more likely to occur in elongated central surgical shunts [77]. Other

examples are shown in Table 3.1 [83, 84].

An emerging application of patient-specific CFD is to obtain physiological in-

sight for guiding clinical diagnosis, decision-making and surgery. The predictive

power of CFD in these cases may enable alteration of the conventional clinical pro-

cedure. For example, LaDisa et al. described the feasibility of CFD for estimating

the pressure gradient non-invasively in coarctation of the aorta, potentially reduc-

ing the need for catheterisation [85]. This is especially significant since such an

approach may be a suitable alternative to cardiac catheterisation with pharmacolog-

ical stress testing for assessing conditions during exercise [86]. CFD has shown

to be suitable for modelling flow even in highly clinically challenging 3D anatomy,

such as coronary arteries with anomalous aortic origins [87] or post-repair structures

including corrected coarctation of aorta (see Chapter 2, Section 2.2.1.1) and Fontan

circulation [88,89]. Furthermore, 3D CFD can be used to derive metrics which have

potential for aiding the risk stratification of patients vulnerable to adverse events.
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For example, Qiu et al. associated a specific CFD helical hemodynamic flow pattern

with a significantly increased risk of abdominal aortic aneurysm rupture [90].

In some cases, virtual surgery may also be performed alongside with CFD to

assess the optimal surgical configuration and maximise the predictive capabilities

of CFD. For example, in patients with hypoplastic left heart, surgical correction

involving the creation of a total cavopulmonary connections (TCPC) may be nec-

essary (Fontan procedure). CFD has shown to be suitable for better understanding

how the hemodynamics is related to TCPC geometry, and in some cases has been

used for pre-operative planning on a patient-specific basis [91–93]. Another exam-

ple of CFD for virtual surgery was presented by Itu et al. who described the use

of CFD for predicting the hemodynamic response to aortic stenting in patients with

CoA [94]. Thus, integration of CFD into clinical settings may have important ram-

ifications when used: (i) for detailed assessment of patient-specific hemodynamics

in response to stress or interventions, (ii) to estimate CFD-derived indices for sup-

porting clinical decision-making and risk-stratification, and (iii) alongside virtual

surgery for optimising the interventional approach.

Sufficient evidence exists to indicate that CFD can potentially provide signif-

icant benefits in the routine clinical management of CHD [95, 96]. However, the

lack of an automatic and fast CFD platform suitable for clinical implementation

has prevented this hypothesis to be adequately explored. Namely, high computa-

tional resources and long simulation times make it difficult to facilitate integration

in hospitals. Specialist knowledge is often needed in order to setup the simulation

and post-process the data. Due to these challenges, CFD has remained primarily a

research tool, and has yet to be properly implemented in routine clinical practice.

In order to encourage this transition, fully automatic, fast, reproducible and robust

CFD prediction tools would be necessary to lower the barriers for entry into the

healthcare environment.
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3.3 Machine learning
ML can be defined as the scientific field of creating computer models which can

learn to perform a task from data, without being explicitly programmed. A com-

puter program is said to learn from experience E with respect to a task T and some

performance measure P, if its performance on T (measured by P) improves with

experience E. Much of ML relies on the combination of both statistical theory and

computational algorithm/optimisation principles. The modern landscape of ML is

vast, with applications ranging from self-driving cars, to email spam filters and

advertising. In CHD, ML has recently found applications in accelerated CMR ac-

quisition, automatic image segmentation, diagnostic support and a few more.

ML can be subdivided into two categories: supervised ML and unsupervised

ML. In supervised ML, the training data E used for model training is labelled.

Therefore, inputs are paired with their corresponding output, which makes it possi-

ble to use specific algorithms to learn patterns. Prediction tasks for supervised mod-

els typically constitute of either classification (discrete output) or regression (con-

tinuous output) problems. For example, at its most simplistic form, linear regression

can be considered a form a supervised ML. For an existing numerical dataset with

two variables (x and y), a line of best fit with the form y = B0 +B1x can be found

by using a numerical approach that looks to minimise some error between the ex-

pected and actual results. This principle forms the basic foundational backbone of

how modern ML algorithms train models. Several different types of supervised ML

algorithms exist, such as k-nearest neighbours, decision trees, logistic regression

and more, each with their own advantages and disadvantages. Unsupervised ML

models work by finding patterns within unpaired data, and are outside of the scope

of this thesis.

3.3.1 Artificial neural networks

An artifical neural network (ANN) is a highly flexible type of ML modelling ar-

chitecture which can be used in numerous applications. The principles are inspired

by the networks of biological neurons found in the brain. One of the earliest and

simplest forms of an ANN is the perceptron, which is based upon the concept of
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an artificial neuron called a linear threshold unit (LTU). Each input is a numeri-

cal value associated with a weight coefficient. The LTU computes a weighted sum

of its inputs, then applies a step function to that value for the final output. This

can be used for binary classification tasks. The output is given by the formula

HΘ(x) = step(xTΘ), where the inputs are x and the weights are Θ.

x1 x2 x3

θ1 θ2 θ3

sum

step

output

Figure 3.6: Architecture of an LTU.

Training an LTU in this case means finding the correct values for the weights

so that the step function classifies input data as best as possible. A perceptron is

composed of a single layer of LTUs, with each unit connected to all inputs. This

forms a dense layer, while input neurons form an input layer. A trainable bias

feature containing a constant value is generally added (e.g. b = 1). The role of the

bias unit is to effectively act as the ‘y-intercept’ variable for the layer, enabling for

a more flexible model. Perceptrons can be stacked and connected between layers to

form more complex models for predicting multiple outputs, known as multi-layer

perceptrons (MLPs) [97].

Equation 3.15 shows how the outputs of an MLP can be expressed as a func-

tion of the inputs x, weights Θ, bias b and activation function φ . In modern ML,

much more complex and effective architectures have been developed, however the

perceptron remains a fundamental conceptual building block in ANNs.

hΘ,b(x) = φ(xΘ+b) (3.15)
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3.3.2 Deep neural networks

When an ANN contains more than one layer (excluding input and output layers), it

is commonly referred to as a deep neural network (DNN). If the network parses data

in a sequential manner with no looping connections, it can be considered a feed-

forward network. DNNs are highly popular due to their extremely configurable

structure, which can be tailored in order to solve complex non-linear problems.

Input
layer

Dense
layer 1

Dense
layer 2

Output
layer

Bias
units

Figure 3.7: Example architecture of a single output regression DNN. The input layer con-
tains 3 units. Two hidden layers contain 8 units each. The bias units are shown,
although are often omitted in diagrams.

An essential algorithm for computing the errors of all individual network units

was first described in 1986, and termed backpropagation [98]. This approach uses

two passes: a forward pass which computes the prediction error of the model, and a

second pass which goes through all network layers in reverse to measure the contri-

bution from each connection to the overall error. After this, the weights are tweaked

in each unit to reduce the error. This is done using an iterative process called gradi-

ent descent (GD), which measures the local gradient of a cost (error) function with

respect to a weight vector Θ, and seeks to adjust Θ in a direction that reduces the

error. It is based on the observation that a differentiable multivariate function FΘ de-

creases the fastest if it goes in the direction of the gradient. Equation 3.16 expresses

this relationship, with γ representing a constant learning rate [97].
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Θi+1 = Θi − γ∇F(Θi) (3.16)

1
2

3

θ2

θ1

Figure 3.8: Gradient descent in a convex function. A random starting point is initialised.
With each iteration, the local gradient is computed and used to adjust the
weights θ1 and θ2 towards the minima. Three example iterations are shown.

For example, if using the commonly applied mean squared error (MSE) for-

mula as the cost function in a simple linear regression model, FΘ would be con-

sidered convex. In a convex function, the line connecting any two points on the

curve cannot cross it. For two parameters, this can be visually imagined as a bowl,

since the function is continuous, smooth and has a single global minimum at the

centre (Fig. 3.8). In this case, gradient descent would eventually converge towards

the global minimum as each iteration adjusts the weights in ways that minimise the

cost function.

As the step function is non-differentiable, alternative activation functions are

needed in MLPs. Some commonly used non-linear activations include the rectified

linear unit (ReLU) and logistic function. ReLU has become widely popular due to

its fast performance and good applicability to most problems. Also, since ReLU

has a constant positive value when differentiated, it can solve a common issue in

backpropagation where gradients at lower layers receive small values and remain

unchanged (known as vanishing gradients). However, ReLU also has drawbacks,

and can cause GD to bounce around due to its sharp slope change about the origin
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(0,0). In addition, units can sometimes stop learning (dying ReLUs) if the network

is tweaked in a way that the weighted sum of inputs to a unit is negative. Because

the derivative of the ReLU function is 0 at negative values, that neuron would ef-

fectively stop training. Despite these issues, ReLU remains highly useful in DNN

modelling.

1

1

Figure 3.9: ReLU activation function (blue) and its derivative (red).

Unlike the previous linear regression example where the cost function formed

a smooth bowl (Fig. 3.8), gradient descent in DNNs is usually a highly dimensional

and non-linear problem. This only worsens the more parameters and weights there

are to tweak. The multivariate landscape of a DNN solution can contain several lo-

cal minima that the optimiser can get stuck in. Large plateaus and sharp variations

in gradients can also make convergence unstable or time-consuming. A highly im-

portant parameter when training DNNs is the learning rate (LR) which influences

the size of each iteration step. LR is an example of a hyperparameter, which needs

to be tuned to improve the performance of the optimiser. If the selected LR is too

large, the solution will bounce around without converging; too small and it will take

a long time to converge.

A common practice is to use momentum-based optimisers such as adaptive

moment estimation (Adam) and RMSProp to make convergence easier. Momentum

optimisation works by subtracting the local gradient from a momentum vector m,

and updating the weights by adding m (Eq 3.17).

m = βm− γ∇F(Θi) (3.17)

Referring back to the bowl analogy, this effectively means the gradient is used



3.3. Machine learning 83

only for informing acceleration, not speed. To simulate some sort of friction in

the system and prevent momentum from growing too large, a new parameter β is

introduced. The expression for momentum is shown in Equation 3.17, with the

gradient descent weight-update step effectively becoming Equation 3.18.

Θi+1 = Θi +m (3.18)

The use of momentum in gradient descent effectively allows the optimiser to

more quickly cross ‘plateaus’ and ‘roll’ over local minima. In optimisation schemes

like Adam, there are also added benefits such as a reduced need for LR tuning, since

Adam adaptively adjusts the LR while running. Another problem other than conver-

gence is overfitting. If model weights are tweaked too stringently with respect to the

training data, the DNN will be unable to perform inference on unseen data. Tech-

niques such as stopping optimisation early, regularisation, batch-normalisation and

dropout all have been designed to reduce overfitting and improve performance [97].

3.3.3 Convolutional neural networks

A convolutional neural network (CNN) is a form of DNN, widely used for computer

vision applications. CNNs make it possible to perform complex image-based tasks

through the use of convolutional layers. The role of a convolutional layer is to

assemble small low-level features into larger higher-level features. This requires

a kernel (filter) to parse through the image and produce a new matrix of features

with reduced dimensionality (feature map). This is shown in Fig. 3.10, where a

6x6 image is converted into a 4x4 feature map using a 3x3 convolutional filter. In

this example, the filter starts from the top-left corner and strides one pixel at a time,

eventually ending in the bottom-right corner. The filter performs an element-wise

dot product with each section. The resulting matrix values are summed up and form

the new pixel value in the feature map [97].

After the convolutional layer, it is common to perform pooling on the resulting

feature map. This is used to downsize the matrix and reduce computational load

through dimensionality reduction. Additionally, it is useful for extracting dominant



3.3. Machine learning 84

0 3 0 1 0 0

2 0 1 0 1 1

0 1 3 2 0 1

1 1 1 1 0 1

0 0 0 1 0 1

0 1 1 0 0 0

1 0 1

0 1 0

1 0 1

3 8

Section (3x3)

Filter / Kernel
(3x3) Feature map (4x4)

Input image (6x6)

Convolution ∗

Figure 3.10: Convolutional filter operation.

features which are positionally and rotationally invariant. This can help the model

become more robust and perform better. Max pooling is the most popular method

and involves retaining only the highest element in a section. This has a secondary

effect of acting as a de-noiser, as it discards all pixels in each section apart from

one.

3 8 3 5

6 5 5 3

4 5 4 5

3 3 3 2

Feature map (4x4)

8 5

Pooled Feature
map (2x2)

Figure 3.11: Max pooling with a filter size (2x2) and a stride of 2.

CNN architectures may involve several layers of convolutional and pooling

layers. The convolved and pooled features are then passed into a fully connected

network, which is responsible for either classification or regression, depending on

its design. In an image-recognition classifier with four possible classes, the network

may follow a general architecture as seen in Fig. 3.12. During training, each weight

in the hidden layer is adjusted using backpropagation as normal. In a convolutional

layer, each filter (array of numbers) can be considered a weight, and is also opti-

mised using gradient descent. This allows the network to prioritise specific features
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which are of relevance to the problem solution.

Input image Feature maps

Pooled
Feature maps

Fully connected
network

Output

Feature extraction Classification

Figure 3.12: Example architecture for a CNN classifier with 4 output classes.

Progress in the field of CNNs in recent decades has been rapid, resulting in

numerous types of highly specialised network architectures for different applica-

tions. In the field of automatic medical image segmentation, the U-Net architecture

has become widely popular. This multiscale network is composed of an encoder

(consisting of convolutional and downsampling layers), and a decoder (which re-

lies on convolutional and upsampling layers). Each convolutional layer is followed

by batch normalisation and ReLU activation. The number of convolutional filters

doubles with each downsampling layer, and halves with each upscaling layer. Af-

ter every pooling step, the spatial resolution is halved, and vice versa. The final

convolutional layer contains a softmax activation function and performs the classi-

fication of the features into an image mask. In this step, each pixel is assigned a

value corresponding to a class (e.g. 0 for background, 1 for organ).

Importantly, this network makes use of skip connections by appending data

from earlier layers onto later layers. This effectively creates an uninterrupted gradi-

ent flow from the first layer to the last layer, thus diminishing the ‘vanishing gradi-

ents’ problem. Additionally, this improves the models ability to retain information

that may have been lost during downsampling, enabling more stable weight optimi-

sation and improving model prediction granularity [99].
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Figure 3.13: Overview of standard U-Net architecture.

3.3.4 Recent applications of ML in CHD: a review

Due to growing evidence of the usefulness and accuracy of ML models, a ris-

ing number of ML algorithms are being approved for clinical use by regulatory

bodies worldwide [100]. A common application of ML is for image-based tasks.

For example, Hauptmann et al. described a CNN-based method which accelerates

whole-heart CMR image acquisition and removes motion artefacts [101]. Steeden

et al. showed that images produced using an accelerated CMR acquisition method

were not statistically different to the ground truth data, and could be acquired 3x

faster than conventional scanning [102]. The use of image-based models for aid-

ing diagnosis/prognosis has also been documented [103]. Arnaout et al. presented

models which were able to identify abnormal fetal ultrasound cases with compa-

rable accuracy to manual clinical evaluation [104]. In a separate study, Arnaout et

al. showed that CNN-based classifiers could potentially support echocardiography

through accurate identification of the viewing plane in a TTE scan [105]. Other

documented cardiovascular imaging applications include detection of hypertrophic

cardiomyopathy, quantification of aortic valve area from ultrasound and assessment

of calcium deposits [100].

A recent application of ML in medical imaging is for automatic image seg-

mentation. Automatic or semi-automatic segmentation methods based on shape

models or level-set algorithms have been extensively used in the past [106–108].
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However, they often require some type of user input or manual post-correction,

rely on priors which are not readily available, or may struggle to adapt to abnor-

mal anatomies (e.g. CHD). Automatic CMR image segmentation of cardiovascular

structures such as ventricles, atria, great arteries has been possible with the use of

DNN architectures such as the U-net [109–111]. This has been achievable even

with very limited datasets, due to image-augmentation and synthetic data gener-

ation facilitated via deep learning techniques [112]. Quantitative metrics derived

from ML segmentations (e.g. ventricular volumes) compare well with manual seg-

mentations [113, 114], and these techniques are now entering clinical practice.

The acceleration of image segmentation has other, indirect consequences on

the clinical management of CHD, by helping to facilitate the translation of mod-

elling tools. For example, image segmentation remains one of the most user-

intensive and time-consuming parts of the CFD modelling workflow, and automat-

ing this step would lower the barriers for CFD clinical adoption [115]. ML can be

used to accelerate the CFD pipeline in even further ways, such as by building mod-

els which entirely replace the need for a conventional CFD solver. For example,

Yevtushenko et al. presented a centreline-based DNN model capable of inferring

pressure gradients in aortic geometries, with results equivalent to those from a con-

ventional CFD solver [116]. Feiger et al. described a ML-based approach for de-

veloping models that infer accurate pressure drop and WSS values in patients with

CoA [117]. Liang et al. detailed a shape-driven approach in which a synthetic co-

hort of aortas was generated in order to produce a sufficiently large dataset for ML

model training. In the same study, ML models were shown to be capable of repro-

ducing aortic pressure and velocity flow fields with high accuracy, when compared

to conventional CFD [118, 119].

ML has also been used in non-imaging based applications of CHD healthcare,

such as for predictive and diagnostic modelling. For example, Qu et al. built an

ensemble ML model that uses over 1000 clinical indicators (glucose, coagulation

levels, etc.) to predict the chance of CHD development during early pregnancy.

Preliminary results were promising and also highlighted some specific clinical pa-
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rameters that displayed strong correlations with CHD development [120]. The use

of ECG-based DNNs for detecting arrhythmia and left ventricular dysfunction have

also been demonstrated [100]. Diller et al. presented a single-centre study show-

ing that a combination of inputs (including from ECG, clinical metrics and de-

mographic information) could be used to train models capable of prognosticating

patient disease and suggesting therapy options [121]. By augmenting electronic pa-

tient records using these models, in the future it may be possible to better manage

patients and provide more personalised care.

Overall, it has been seen that ML and DNNs are being used more and more

frequently in clinical CHD environments in order to perform image-based tasks,

accelerate the CFD workflow, provide diagnostic support and help the clinician to

better understand patient anatomy/physiology. Of notable relevance is the proven

ability of ML for facilitating the translation of existing computational tools into clin-

ical settings (automatic image segmentation, CFD). Challenges for developing new

ML solutions include large requirements of data, time-consuming data labelling

and opaque ‘black box’ models which can limit how interpretable the results are

for a clinician. Despite these limitations, ML applications in CHD are increasingly

applied due to the vast potential benefits.

3.4 Statistical shape modelling

A statistical shape model (SSM) describes the distribution of a population of shapes.

One of the most simple applications of statistical shape modelling is to represent a

group of objects (e.g. skulls) as a mean shape. SSMs are also used widely in

medical imaging for tasks such as clustering and exploring shape variability within

a cohort. Multiple frameworks for constructing SSMs exist, each with differing

approaches. Shapeworks [122] is a popular solution which uses a particle-based

method for the parameterisation of shapes. Another popular framework is Defor-

metrica [123] which is based upon the large deformation diffeomorphic metric map-

ping (LDDMM) method.
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3.4.1 Deformetrica

With Deformetrica, shapes can be expressed as deformations of ambient space (the

space surrounding and including a mathematical object). D’Arcy Thompson (1917)

was the first to propose using ambient space deformations as a way of comparing

biological shapes. In this context, a diffeomorphic transformation of ambient space

is a deformation that is both differentiable and invertible.

φ

φ−1

u

v

x

y

Figure 3.14: Example diffeomorphic transformation which maps a smooth manifold into
another. The function is invertible and fully differentiable at all points (no
sharp corners).

In Deformetrica, a space deformation is described as a time-varying diffeomor-

phism Φt . Practically, if x ∈ Rd represents a point in ambient space, the deformed

point is expressed as Φt=1(x). A time-varying diffeomorphism Φt can be given

as the integral of an ‘energy-conserving’ set of differential equations (Hamiltonian

equations), with an initial condition that Φ̇t=0 = vt=0. In this case, the possible val-

ues of vt=0 are set to belong to a linear space built using a convolution kernel K, and

a paired set of control points (qi)i=1,...,n and vectors (µi)i=1,...,n (known as momenta)

distributed in ambient space. Using the kernel K and the paired sets (qi)i=1,...,n and

(µi)i=1,...,n, a ‘velocity’ vector field v(x) is defined through:

v(x) =
n

∑
i=1

K(x,qi) ·µi (3.19)

Where K is typically a Gaussian kernel K(x,y) = exp((−∥x− y∥)2/σ2) with

width σ > 0 [123]. Therefore, with this approach, diffeomorphisms can be fully
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characterised using an initial set of control points and momenta. This transforma-

tion can therefore be denoted as Φq,µ . Consequently, each model will be formulated

as an optimisation problem on the variables (qi)i=1,...,n and (µi)i=1,...,n. For the op-

timisation process, non-parametric ‘current’ or ‘manifold’ distances can be used

to evaluate the error between the deformation and the target (do not require point

correspondence).

Figure 3.15: Simplified diagram of a control point based diffeomorphism of ambient space.
The transformation that maps the two shapes to one another can be fully pa-
rameterised by a control point grid q (9x9) and corresponding momentum
vectors µ (only six out of 81 momenta vectors are drawn).

Registration is a common application of Deformetrica and shape modelling in

general. For a given target S j, an appropriate diffeomorphism Φ j can be estimated

by minimising a given cost function. When approaching a collection of shapes Si,

an atlas approach can be used to compute a set of diffeomorphisms S j and a mean

diffeomorphism T , or mean template. In this case, the cost function seeks to find

optimal values of T , q and ui. In an atlas model, all diffeomorphisms computed are

respective to the mean T .

3.4.2 Principal component analysis

Principal component analysis (PCA) is a statistical technique that is used to identify

patterns in a dataset. It is often used to reduce the dimensionality of large data sets,
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by projecting the data into a smaller set of uncorrelated axes called principal com-

ponents. The first principal component accounts for as much of the variability in the

data as possible, and each succeeding component has the highest variance possible

under the constraint that it is orthogonal (uncorrelated) to the preceding compo-

nents. In Fig. 3.16, it can be seen how a two-dimensional dataset can be expressed

using a single new axis (C1) of maximal variance capture. The usefulness of this

technique becomes apparent when data is much more highly dimensional (thou-

sands or millions of parameters). PCA can be useful for data visualisation, feature

extraction, and noise reduction. PCA may also be used to improve the interpretabil-

ity of large datasets or for extracting useful features to make DNN model training

easier. In statistical shape modelling, a common application of PCA is to repre-

sent deformations with lower-dimensional approximations, allowing for shapes to

be clustered by their PCA component scores.

x1

x2

c2

c1

Figure 3.16: Selection of new axes to project data on based on variance. C1 is the first
principal component (maximal variance), C2 is the second.

For any given square matrix A, there exist a number of unique eigenvectors x

that only undergo scaling (no rotation) when multiplied by A (i.e. Ax = λx). The

scaling factor λ is often referred to as an eigenvalue. Properties of eigenvectors are

highly related to principal components. For example, a dataset with the mean sub-

tracted from all its elements (standardised) can be given as a matrix M (m samples ×

n features). The n×n covariance matrix C can then be given as C = MTM/(n−1).
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The eigendecomposition of C yields its eigenvectors, which also happen to be the

principal components of M. However, in practice, the numerical formulation of

MTM can cause instability and precision loss for some matrices, therefore an al-

ternative matrix factorisation method called singular value decomposition (SVD) is

often applied.

In SVD, the matrix M can be expressed as a factorisation so that M =

Um×mSm×nVT
n×n. By using this new definition of M, computing the covariance

matrix directly is avoided, and the eigendecomposition of C is instead equivalent to

V S2

(n−1)V
T. The principal components are given as the rows in the matrix VT. The

projection of the data M along the new coordinate axes is given in the rows US. Nu-

merous algorithmic approaches exist for efficient computation of SVD. Most mod-

ern implementations in linear algebra packages are developments of the original

Golub-Reinsch algorithm, which uses an iterative approach to find a stable solution

for the SVD of a given matrix [124].

PCA is essential in numerous applications such as statistical shape modelling.

Previously, it was described how momenta could be used to describe a population

as deformations relative to a mean shape. When applying PCA to the grouped

momenta, the principal components of shape deformation can be found. These are

also known as the modes of variation. The projection of each subject along the

PCA modes allows each shape to be represented as a low-dimensional deformation

from the mean. Often, these ‘modes’ take on a unique form (warping, bending,

etc.) which gives further indication into the shape variance within the population.

This can be coupled with methods such as cluster analysis to investigate how shape

features correlate with other metrics. It also enables a way of parameterising unseen

subjects, by expressing them in terms of PCA mode scores.

3.4.3 Recent applications of SSMs in CHD: a review

Due to the highly morphological nature of CHD abnormalities, statistical shape

modelling has been widely used in conjunction with PCA for research into the rela-

tionship between CHD and shape. For example, Bruse et al. explored the possibility

of using an SSM to automatically extract shape-based biomarkers for diagnosis and
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risk-stratification in CoA. Correlations between specific shape PCA modes and clin-

ical metrics such as ejection fraction were found, indicating potential suitability for

this technique in routine clinical settings [125]. Sophocleous et al. leveraged longi-

tudinal SSMs to assess the change in shape during growth in diseased aortas [126].

Similarly, studies have been conducted on other pathologies such as TOF. For exam-

ple, Kollar et al. identified ventricular shape modes that correlated with intracardiac

biomechanics and physiological dysfunction in the RV [127].

Another alternative use for SSMs is for supporting other modelling workflows,

such as automatic image segmentation. Contrary to a CNN, this approach works by

identifying image landmarks and computing an SSM deformation (from the mean)

to help guide the segmentation process. An early implementation of this approach

was detailed by Weese et al. [107]. Alba et al. found that this approach enabled

accurate automatic ventricular segmentation of severely diseased hearts even with

a normal morphological heart SSM model [128]. In recent years, SSMs for au-

tomatic segmentation have been superseded by deep-learning models, which have

shown much faster inference times and work directly on the pixels without the need

for a prior [129]. SSMs and PCA have also been used for encoding shape features,

an important application in the development of shape-driven models for replicat-

ing CFD [118]. This approach relies on the fact that in the past it has been shown

hemodynamic flow structures can be regressed from shape features [130]. Using

this approach, shapes can be represented as low-dimensional deformations, making

them suitable for use with DNNs. The ability to generate synthetic shapes using an

SSM also enables the expansion of a pre-existing dataset of real patient geometries.

Hoeijmakers et al. reported findings in which their computed atlas model was used

to randomly sample over 2,000 synthetic aortic valve geometries, which were then

simulated with CFD and used to build a DNN for inferring pressure drop [119].

The ability to generate realistic patient geometries based on a pre-existing popu-

lation also has ramifications in the growing field of in-silico modelling, e.g. the

optimisation of left atrial appendage closure devices [131].
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3.5 Virtual reality
Extended reality (XR) is an umbrella term which encompasses all forms of com-

puter simulated experiences that rely on visual, auditory and sensory stimulation.

Virtual realty (VR) is a subset of XR, and unique in that it creates an enclosed syn-

thetic environment with no outer stimulus from the real world, hence facilitating

complete immersion. With modern technology, this is typically accomplished with

the use of a head-mounted display (HMD), tracked hand controllers and audio head-

phones. Recent and rapid developments in the design of commercial devices have

opened up the possibility to create applications targeted for the medical field. In

this section, an overview of modern VR will be given, including hardware/software

aspects and some general applications of VR for treating and teaching CHD.

3.5.1 Depth perception

Depth perception is one of the fundamental factors for allowing humans to perceive

the world in three dimensions. In order to perceive depth, there are two main types

of visual signals that the brain processes. The first are monocular cues, which can be

perceived with a singular eye. The second type of stimuli are binocular cues, which

require two eyes. Some important monocular cues for depth perception include:

• motion parallax: the relative motion of an object with respect to its back-

ground gives some indication of its distance to the observer

• perspective: when parallel lines converge towards a horizon, this makes it

easier for an observer to estimate the relative distance between objects

• curvilinear perspective: parallel lines in a visual field tend to become curved

as they near the outer extremities. This effect produces a slight natural dis-

tortion in the visuals which enhances the feeling of being present in a 3D

scene

• lighting and shading: the way that light falls on objects can provide a visual

cue to help the brain determine the size, shape and distance of that object in

the scene
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• texture gradient: nearby objects have higher levels of visible detail, whereas

further objects appear denser and less detailed

These monocular cues (and others not mentioned) play an important role in

three-dimensional vision. However, in species with two-front facing eyes, binocu-

lar cues enable far superior depth perception capabilities. Stereopsis is the process

whereby two images of the same scene from slightly different perspectives are com-

bined to perceive distance and visualise depth. The separation of the eyes is known

as the interpupillary distance (IPD), and is crucial in this process. The difference

between the left and right eye images (binocular disparity) is used to estimate dis-

tance [4]. The binocular disparity, δ , between images is approximated by comput-

ing the relative phase shift between objects in the scene, as shown in Fig. 3.17 and

Eq. 3.20. The sensation of depth Z has been suggested to be approximately related

to binocular disparity through a psychophysical formulation (Equation 3.20), where

D is the viewing distance to the object. Note, if D changes (e.g. observer moves

away from object), maintaining the same depth perception will require δ to change.

Since δ is inversely proportional to D2, at large distances this the brain would need

to be able to delineate extremely small binocular disparities, due to the similarity

in images. When this distinction cannot be detected in the brain, the stereoscopic

depth of the object is not perceived.

δ = φL − φR δ ≈ IPD ·Z
D2 (3.20)

Stereopsis occurs specifically in the visual cortex following a number of com-

plex neurological processes which are not fully understood. The difficulty in un-

derstanding this mechanism is also complicated by the lack of a clear distinction

between the actual 3D scene (geometric model), and the perceived 3D scene in the

observer’s mind (perceptual model) [132]. Apart from stereopsis, another binocular

cue that the brain processes is convergence, which is the result of both eyes having

to fixate on an object in order to maintain stereoscopic vision. Since the eyeballs

converge as the object appears closer, nearer objects require more extraocular mus-

cle exertion to focus. The brain interprets this muscular exertion as an additional



3.5. Virtual reality 96

η

φL φR

IPD

AB

C

Left-eye image Right-eye image

φL φR

A BC A BC

Figure 3.17: The geometry of binocular vision [4]. Both eyes fixate on a pillar (A) in the
scene, with two other pillars (B and C) also visualised. Vergence η is the
angle of fixation. The angle φ between A and a relative object (e.g. C) varies
in each eye. Binocular disparity is computed as the difference between these
two angles.

indicator for perceiving distance.

3.5.2 Head-mounted displays

The earliest binocular devices for simulating 3D environments began with the de-

velopment of the stereoscope, designed by Sir Charles Wheatstone in 1838. The

principle of a stereoscope relies on two images simulating left and right eye views

of an object. If both eyes view the images intended for them at once, the brain is

‘tricked’ into perceiving a 3D projection. This principle is the foundation of VR

and is relied upon even today. Up until recent years, HMD devices struggled to en-

ter the wider commercial market due to multiple limitations. These included issues

related to low image contrast, narrow field of view (FOV), poor comfort and low la-

tency, which often caused motion sickness and discomfort during head movement.

In 2010, the first prototype of the Oculus Rift HMD (Meta Platforms Inc.) was

revealed, which featured a previously unseen 90 degree FOV and eliminated lens-

based distortion artefacts that other products at the time suffered from. This device

is often accredited for producing a revival in the interest of VR from commercial

sectors.

The Oculus Rift and similar devices around the time typically relied on a ca-
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Figure 3.18: Quest 2 head-mounted VR headset, first released in 2020 by Meta Platforms
Inc. (formerly Facebook).

bled connection to a desktop with a high-end graphics processing unit (GPU) in

order to offload the low-latency rendering tasks typically required in VR. Addition-

ally, external ‘base stations’ were required for HMD and controller tracking tasks.

Over time, advancements have enabled the manufacture of ‘standalone’ devices

which contain onboard computers to perform computing tasks without the aid of

cabled components [5]. Additionally, many modern solutions now incorporate in-

built tracking systems instead of the more conventional external base stations. One

of the most popular current standalone headsets is the Meta Quest 2 (released 2020,

Meta Platforms Inc.), which was the primary HMD of choice for the majority of

activities described within this dissertation (Fig. 3.18).

3.5.2.1 Head-mounted display input

Hardware components in VR devices typically fulfil certain roles that place them

in one of two categories: input devices and output devices. In modern HMDs,

user input is primarily conducted via handheld controllers. Controllers are typically

tracked with 6 degrees of freedom (DOF), recording both translation and rotation.

The combined positional and rotational information of an object in Euclidean space

is also referred to as a ‘pose’. Controller tracking is typically achieved with the

use of inertial sensors such as accelerometers, gyroscopes and magnetometers to

measure orientation. Due to their fast refresh rate, inertial sensors are a popular
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Figure 3.19: Exploded view of Quest 2 headset revealing the onboard Qualcomm Snap-
dragon XR2 central processing unit and heat removal system lying under the
front cover [5]. The Quest 2 runs on an Android-based operating system.

choice in modern devices such as the Quest 2. However, positional errors typically

accumulate over time (drift), requiring an additional tracking system to compensate.

Optical tracking (or camera-based tracking) has become increasingly popular

because of its high accuracy and flexibility [133]. In the Quest 2, this is imple-

mented using an “inside-out” approach, which utilises four head-mounted cameras

with wide-angle lenses to detect the pose of targets situated in space. In this con-

text, each target is a controller fitted with a ring (Fig. 3.20) that contains infrared

light-emitting diodes (LEDs) arranged in a specific pattern. Flashes from the IR

LEDs are synchronised with the cameras, which transform the measured radiation

into greyscale images. Pattern recognition algorithms detect the 2D positions of the

LED markers in each image. These are then passed onto a central tracking con-

troller, which uses triangulation to compute the 3D pose (with an accuracy of < 1

mm and 0.1 °) [133]. The latency between the tracked and rendered controller may

also be reduced with kinematic prediction algorithms, which use motion to estimate

the future pose of the handsets for improving smoothness [134].
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Figure 3.20: Schematic block diagram and technical drawing of Quest 2 controller. Buttons
and LEDs can communicate via a bus. Wireless communication allows signals
to be received to and from the HMD [6].

In the Quest 2, the cameras run at 60 Hz and perform both controller and head-

set pose tracking on alternating frames (effectively running at 30 Hz each). Low

exposure images are taken to highlight the positions of the LEDs for optical track-

ing. On alternate frames, high exposure images are taken of the surroundings for the

HMD pose estimation. These images are needed for constructing a 3D map of the

surroundings while simultaneously estimating the observer’s respective location;

a well-established computational problem known as simultaneous localisation and

mapping (SLAM). For the solution, a continual update of point cloud landmarks

(such as corners of tables) is processed by extracting features from the image data.

Additionally, a constant stream of inertial sensor measurements from the HMD is

recorded. Using a history of landmark observations and headset movements, a re-

cursive method can be used to estimate the most probable pose and 3D environment

map. Thus, given a set of control input vectors U0:t and sensor observations Z0:t

up to and including time t, the user’s current state (pose) xt and environmental map

of time-invariant landmarks m can be found by solving the following probabilistic

distribution (joint posterior) [135]:

P(xtm|Z0:t ,U0:t ,x0) (3.21)

This problem can be expressed as a two-step sequential process involving a
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prediction (time-update) and a correction (measurement-update). For the solution,

expectation-maximisation algorithms are used to iteratively search for a local max-

imum likelihood of the joint posterior. Numerous algorithmic approaches (Kinect,

Intel RealSense, Google Tango) have been applied to solve this problem [133]. Im-

portantly, this method assumes that the location of the user is deterministic at all

times and treats computed landmark locations as 3D points known with absolute

certainty.

3.5.2.2 Head-mounted display output

In HMDs, optical and display components are of critical importance for delivering

an immersive visual experience to the user. High resolution, colour reproduction

and contrast ratios in displays are important for creating a sense of immersion in

VR. High frame rates (refresh rates) in screens are desirable for preventing motion

sickness, with the Quest 2 displays running natively at 90Hz.

Figure 3.21: Exploded diagram of a Meta Quest 1 display system consisting of two organic
LED screens (330 & 335). The lenses (310 & 315) can be seen, along with
other parts of the housing such as frames, mounts, brackets and more [7].

In the human eye, objects at varying distances can be brought into focus (made

sharper) in a process known as accommodation. This mechanism is managed by

ciliary muscles in the eye, which contract and alter the shape of the lens, thus mak-

ing incoming light from the object refract and converge on the retina. At optical



3.5. Virtual reality 101

infinity (object distance > ∼6 m), light rays entering the eye can be assumed as

parallel, and the cornea and lens (in a relaxed state) refract light to produce focus.

As objects approach the observer, accommodation is required and the lens changes

shape to maintain image clarity. At very close distances, the lens cannot accom-

modate any further and the focal point does not coincide with the retina, causing

a blurred image. This becomes a problem in stereoscopic VR HMDs, where the

displays need to be positioned close to the eyes in order to produce a sufficiently

large FOV. For this reason, lenses are commonly built into HMDs in order to restore

image focus (Fig. 3.22).
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Figure 3.22: Principles of accommodation in the eye. A) Display is at a distance of optical
infinity from the eye (no accommodation), (B) display is nearby requiring
accommodation and is in focus, (C) display is very near and out of focus even
at maximum accommodation, (D) lens is positioned at distance f from the
display, thus refracting rays as parallel from display and enabling focusing.

The measure of a lens’ optical power is the reciprocal of its focal length f , and

is an important consideration in lens design. Focal length can be computed using

inner/outer lens curvature R1 and R2, lens width d, and the refractive index of the

lens material n with the Lensmaker’s equation:

1
f
= (n−1)

(
1

R1
− 1

R2
+

(n−1)d
nR1R2

)
(3.22)

A lens design which refracts light from a display to produce parallel rays would

theoretically produce an accommodation distance of optical infinity (Fig. 3.22D).

However, such a configuration would practically have issues due to the discrepancy

between the accommodation distance and the vergence angle (Fig. 3.17). Essen-

tially, fixation on an object that is perceived to be nearby would not correlate with

the accommodation distance (infinity), resulting in ‘visual fatigue/strain’ over time.

This effect is known as the vergence-accommodation conflict (VAC). In the Quest
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2, lenses have a focal distance of ∼1.3 m, as a compromise to reduce eye strain for

objects held at an arm’s length and objects viewed in the distance. Current research

aims to solve this with the use of eye-tracking technology and variable focal length

lenses [136].

In HMDs, minimisation of the size and weight while maintaining satisfactory

lens magnification is a significant design challenge. For example, reduction of the

lens-display distance can be achieved if the lens focal length f is decreased (in-

creased optical power) with thicker and more curved lenses (Eq. 3.22). Fresnel

lenses approximate a curved surface with stepwise elements and can be used instead

of regular biconvex lenses to counteract the increased thickness/curvature, such as

in the Quest 2. Other methods include using a material with a higher refractive in-

dex, although this can pose manufacturing difficulties. More recent pancake optics

use polarisation techniques to bounce light between optical elements, thus reducing

the effective focal length (Meta Quest Pro).

The FOV is another important consideration of lens and HMD design, with

higher FOVs contributing to improved virtual immersion. The FOV of a HMD

increases with larger displays S and shorter focal lengths f , as shown in Equation

3.23. However, maximising these design parameters has the undesirable effect of

making the optics larger, and introduces issues such as lens distortion. In order to

counteract this, software post-processing (barrel distortion) is applied to VR images

so that the projection appears more rectilinear after passing through the lens.

FOV = 2arctan
(

S
2 f

)
(3.23)

This technique becomes more difficult to calibrate as the focal length increases,

making users more likely to experience discomfort due to distortive effects. In ad-

dition to this, chromatic aberration may occur in higher focal length optics, which

is the effect of the lens refracting colours differently according to their wavelength.

This can result in blurring and rainbow-coloured artefacts appearing at area of high

contrast and at the fringes of the image. Software-based correction is often required

to minimise this effect. Developments in eye-tracking technology, pancake lenses
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Figure 3.23: Pin-cushion distortion resulting from a lens (left). Application of barrel pre-
distortion to the images to undo the warping effect (right).

and software-based artefact correction show great promise for furthering the expe-

rience of VR visual output [133].

3.5.3 Virtual environments

Virtual environments can be described as arrangements of 3D objects with pro-

grammable behaviours. In VR, 2D projections of the 3D scene are displayed in

the headset through graphical rendering. Input from the user is also processed in

real-time to enable interactions and allow the user to affect the surrounding world.

Overall, these two processes are essential and must run concurrently to maintain an

immersive and reactive virtual environment.

3.5.3.1 Computer graphics

The visualisation of a 3D virtual environment relies on foundational principles from

computer graphics. Cartesian surface meshes are widely used for rendering 3D

topological surfaces. In game engines such as Unity (Unity Technologies), surface

meshes contain vertex positions, triangle connectivity, face normals and more. Tri-

angles are defined by indexing three points from the array of vertices. The direction

of the triangular normal vector of each triangle is defined by the order the vertices

are indexed (winding order). This information can be used to determine whether

or not a polygon should be rendered to the display (back-face culling). For a set

winding order convention, the computation of the dot product between the camera-

triangle vector O and the normal N can describe which way the triangle is facing,

and whether it needs rendering. Specific instructions for how the GPU should ren-

der an object (e.g. back-face culling) are given through a type of scripting known
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as shaders. These are an essential part of the rendering pipeline in game engines.
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Figure 3.24: Back-face culling using clockwise winding order. Front-facing triangles are
rendered (A), while back-facing triangles are discarded (B). N = triangle nor-
mal, O = observer-triangle vector, P1 = first vertex, P2 = second vertex, P3 =
third vertex, θ = O N angle.

Algorithm 1 Backface culling
% Compute dot product between O and N
ON = dot(O, N)
% if ON is less than or equal to 0, render, else cull
if ON <= 0 then

render triangle
else

cull triangle
end if

Shaders can be defined as computer programs which describe how a scene

should be coloured, shaded, lit and ultimately, rendered. The two primary types of

shaders are vertex and fragment (pixel) shaders. Vertex shaders are used in the first

step and transform a 3D scene of objects into a 2D camera projection composed

of pixels in a process known as rasterisation. At this stage, various properties can

be assigned to vertices or modified, such as colour or texture values. Mathematical

functions can also be implemented in order to create specific effects, such as custom

illumination models. For example, a popular shader technique is Phong shading,

which uses normal interpolation to approximate smooth shading on a faceted sur-

face (Fig. 3.25). Once the 2D projection is finalised, the vertex shader passes on the

rasterised image onto the fragment shader. The fragment shader then computes the

colour of each pixel for the display, with considerations such as object transparency,

depth and lighting also taken into account.
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Figure 3.25: Standard flat polygonal shading (left) compared to Phong shading (right).

3.5.3.2 Interaction

Human-computer interaction is an essential component of VR. The ability to build

in environmental responses to user input has allowed for the possibility of creat-

ing applications which are not purely perceptual. Typically, interaction in virtual

environments is conducted through the combination of a user interface (UI) and a

collision based event system. User interfaces are especially important for creating

menus (buttons, toggles) that control various functions. Selection of UI elements in

3D is performed using raycasting. This is typically managed by firing a ray from

the position of the user’s handheld controller towards a flat panel in 3D space. In

order to determine if a UI element was triggered, geometric checks between rays

and polygonal entities are used. For example, a ray-plane intersection is widely

applied in such situations. A plane P can be described by the dot product of a po-

sition on the plane X and the planar normal N. A ray (or segment) is given by the

parametric equation S(t) = A+ t(B−A), where A and B are the start and end points

respectively. Expressions for computing the parameter t and the intersection point

Q can thus be derived [137]:

t =
X ·N −N ·A
N · (B−A)

Q = A+ t(B−A) (3.24)

In addition to UI interaction, 3D objects in space may interact with one another

in VR. This is typically managed using collision detection, an approach in which

each object has an associated ‘collider’ that is triggered when contact is made with

another collider. Colliders are typically primitive shapes such as cubes or spheres

that are not rendered by the GPU. For example, if two objects containing sphere

colliders make contact, a sphere-sphere algorithm can be used in order to flag this
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Figure 3.26: Intersection of a ray (or segment) with a plane during raycasting of a UI ele-
ment in VR. The hand (A) represents the ray source (controller position in 3D
space).

Algorithm 2 Ray-plane intersection
% Compute t value in parametric equation for segment
AB = B - A
t = (dot(N, X) - dot(N, A)) / dot(N, AB)
% Intersection exists if t between 0 and 1, compute and return value
if t >= 0 and t <= 1 then

Q = A + t * AB
else

Q = null
end if

interaction [137]. Detecting collision is important for creating interactions such as

‘grabbing’ or ‘handling’ of 3D objects with the handheld controllers (Fig. 3.27).

A B

R r

Figure 3.27: Detecting the intersection of two spheres. This can be used to allow for model
handling and spatial manipulation.

Similarly to ray-plane intersection, a mathematical formulation exists for de-

termining the occurrence of a sphere-sphere collision. This overlap test involves a
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simple comparison of the Euclidean distance between the sphere centres A and B

against the sum of the sphere radii R and r.

Algorithm 3 Sphere-sphere intersection
% Compute squared distance between centres
D = A - B
D squared = dot(D, D)
radii sum = r + R
% Spheres intersect if squared distance is less than sum of radii
if D squared <= radii sum then

Spheres intersect
else

Spheres do not intersect
end if

3.5.4 Recent applications of VR in CHD: a review

Recent improvements to HMD hardware have enabled breakthroughs in medical

applications. Bulky headsets with poor latency and visual clarity have been replaced

by commercial HMD solutions which mitigate those issues. This has lowered the

barrier for VR to be used as a means of visualising patient-specific 3D anatomical

models. Understanding the spatial relationships between anatomical structures is of

particular importance in the realm of complex CHD.

Prior to VR, 3D printed models have been successfully used in the past to aid

3D visualisation of cardiovascular anatomies [60, 138]. Numerous applications of

3D printing have been shown for interventional planning [139–143] and anatomical

evaluation [144–146]. However, VR has begun to show several advantages over 3D

printing, such as lowered costs and no waiting times. Additionally, VR has opened

up the opportunity for integrating conventional 3D-assisted tools in an interactive

environment, such as measuring, dynamically clipping meshes and more [147]. The

use of shared online virtual rooms for interacting with 3D models also offers the

possibility to perform joint 3D assessment of patient cases remotely. Other advan-

tages of VR include the ability to digitally preserve 3D models, easily distribute

resources and generate simulated training environments.

VR solutions for planning cardiac surgery are becoming increasingly com-
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mon. Numerous applications for planning cardiothoracic interventions have been

demonstrated, including coronary bypass grafting, and mitral valve annuloplasty

ring sizing amongst others [148, 149]. Interest in VR for CHD is growing due to

the pronounced morphological challenges frequently faced. Reported findings re-

lated to the use of VR for visualisation and analysis of CHD are promising, with or

without preliminary image segmentation [150–153]. Lesions requiring intracardiac

repairs (e.g. VSD, DORV, etc.) have been frequently reported defects in literature,

related to surgical planning with VR. For example, Mendez et al. describes the use

of VR for planning repair of a large inlet-type VSD [150]. Similarly, Ghosh et

al. described a patient case of multiple muscular VSDs where VR was used pre-

operatively [154]. Using VR, surgeons were able to (i) locate the VSDs in 3D, (ii)

determine the RV incision site, (iii) identify the muscle bundle requiring division to

access the anterior defect, and (iv) ultimately decide on a hybrid transcatheter and

surgical approach. Ayerbe et al. presented a complex DORV case-study in which

the patient was assessed with VR in order to decide the surgical approach to repair

an obstructed RV-PA conduit [155]. Navigation of the 3D model confirmed that

the obstruction was related to the subaortic conal prominence. Cen et al. reported a

further five surgical cases of patients with diagnosed pulmonary atresia, VSDs and

major aortopulmonary collateral arteries (MAPCAs), all planned pre-operatively

using mixed reality headsets [156].

In Section 2.2.2, it was mentioned how pathological specimens are regarded as

the ‘gold standard’ resource for learning cardiac morphology [157]. Unfortunately,

the number of available specimens is low compared to needs, the samples degrade

over time and thus remain an inaccessible resource to many. VR offers the oppor-

tunity to digitally ”preserve” specimens, view models from non-conventional views

and interact with other users in online virtual 3D environments. The integration of

VR in courses for teaching CHD is, however, still in its infancy [158–160]. Increas-

ing numbers of single and multi-user VR platforms for anatomical exploration of

cardiac models are being reported [147]. This is in part due to a decreased barrier to

game engines such as Unity, which have enabled researchers to more easily develop
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tailored 3D solutions for VR. Axelrod et al. demonstrated the early-stage feasibility

of a VR platform for CHD (Stanford virtual heart project) [158]. Lau et al. de-

scribed a Unity3D-based project in which four patient-specific models of the heart

were explored by medical professionals (n=35), with 72% of participants reporting

positive feedback [161]. Kim et al. detailed the use of a multi-user Unity-based ap-

plication for enabling collaborative discussion of patient cases in VR [160]. Most of

the participants (68%) reported that VR would be their preferred method of choice

for examining 3D models of CHD and for determining a diagnosis.

In recent years, rapid advancements and improved accessibility to VR have

led to a rising need for research-backed evidence that supports its implementation

in clinical and teaching environments. When used for pre-operative planning, the

difficulty in finding tangible clinical metrics for evaluating VR has made qualita-

tive methods highly popular [160, 161]. For example, Pushparajah et al. reported

the following findings: surgeons (n=5) were presented with retrospective cases in

VR (n=15) requiring repair of the atrioventricular valves. Following this, 67% re-

ported ‘more’ or ‘much more’ confidence in anatomical understanding following

VR assessment [162]. Despite the challenge in finding clinical parameters to cor-

relate against VR usage, some studies have made efforts in the past. For example,

Ye et al. recently conducted a prospective study assessing the use of mixed-reality

devices for planning the repair of complex DORV, with patients split into a group

assessed with VR (n=17) and a control group (n=17) [163]. Despite all patients

undergoing the same repair, the time for surgery was 21.4% lower in the interven-

tion group (p < 0.05). In order to build greater support for integration of VR in

clinical settings, more studies with similar approaches are needed. In the literature,

the assessment of VR for CHD education is also primarily questionnaire-based, al-

though recent studies have shown greater efforts to assess knowledge uptake with

quantitative metrics. Notably, Lim et al. assessed the usefulness of the Stanford

virtual heart project [158] for improving the knowledge acquisition of medical

trainees [164]. Participants were divided into an intervention group (n=80) and

a control group (n=51), with knowledge being tested using a series of assessments
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relating to anatomical and visuospatial concepts of CHD. Findings showed higher

scores for the intervention group, with 100% of participants recommending inte-

gration of the tool into the residency programme. However, a contrasting study by

Patel et al. found that VR provided no improvement in CHD assessment scores for

students when compared to 3D models on a 2D screen [165]. The sparsity of stud-

ies in the field means that it is still not clear as to what extent VR is beneficial in

CHD pre-operative planning and education, especially when compared to other 3D

modalities.

In research, the range of software used for VR visualisation is highly variable,

with many authors presenting competing applications. While commercial appli-

cations for viewing 3D models exist, they are typically focused on the teleconfer-

encing market and do not contain the sufficient tools or ease-of-use for integration

in CHD clinical/teaching situations. In order to have access to the full capabili-

ties of VR, the development of a comprehensive platform with a sufficient array

of functionalities is necessary. Features such as online virtual rooms, visualisation

tools and a curated selection of 3D models for education are important in order to

be able to study various applications of VR. Furthermore, integration into clinical

settings necessitates the platform to have intuitive interactions and to run indepen-

dently, without the support of an engineer. Compatibility with current and future

commercial headsets is necessary.

3.6 Summary and Conclusion

In this section, four main computational modelling techniques of importance for

this thesis were described, along with their application in CHD and remaining chal-

lenges: (i) CFD, (ii) ML, (iii) statistical shape modelling and (iv) VR. A brief

overview of CFD theory and methods were presented. Applications of CFD in CHD

showed high suitability for routine clinical practice, although CFD is hampered by

long simulation times, high computational resources and the need for an engineer

to set up simulations. Automating and accelerating the CFD pipeline were identi-

fied as critical tasks for facilitating the translation of CFD to CHD clinical settings.
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Following this, a description of ML and DNNs was given. Clinical applications

were shown to be vast and rapidly growing, with possible uses for automatic seg-

mentation and creation of data-driven CFD models. Statistical shape modelling and

PCA were then described, including some applications which involved representing

shapes as low-dimensional deformation modes for clustering and analysis. These

methodologies will be adopted in the next two Chapters to automate CMR image

segmentation (Chapter 4) and immediately predict pressure and velocity informa-

tion (Chapter 5), in order to develop a CFD pipeline for full clinical implementation

and improved management of CHD. Finally, the fundamental and technical prin-

ciples behind modern VR were introduced in this Chapter. This included some

background to human depth perception, HMD design and the creation of virtual

environments. Applications of VR in the CHD field were shown, displaying great

promise for pre-operative and educational settings. In Chapter 6 of this thesis, these

VR principles will be leveraged to develop an in-house VR application, with a set

of tools designed to respond to CHD specific clinical and educational demands and

unmet needs. Chapters 7 and 8 will be centred around clinical and educational

applications respectively, to demonstrate the capabilities of the technology when

implemented into those settings.



Chapter 4

Automatic segmentation of the great

arteries for computational

hemodynamic assessment

4.1 Introduction

Interest in the use of CFD for the assessment of cardiovascular disease has been in-

creasing over the past two decades. CFD models have previously been shown to be

suitable for predicting hemodynamic response to interventions, thereby aiding ther-

apeutic planning (Section 3.2.4). Patient-specific reconstructions are often derived

from 3D CMR, particularly cardiac and respiratory gated whole-heart sequences.

The use of ML for accurately segmenting ventricles and great vessels from CMR

images was discussed in Section 3.3.4. Implementation of automatic segmentation

for clinical CFD would significantly reduce the time requirements for simulation.

However, the suitability of ML segmentation for CFD has not previously been in-

vestigated.

4.2 Aims and objectives

The aims of this study were to: (i) develop an ML method for simultaneous segmen-

tation of the aorta and PAs from whole heart CMR images in patients with paediatric

or adult CHD, (ii) compare conventional and ML segmentations using traditional
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image-based scores, (iii) compare CFD metrics derived from both conventional and

ML segmentations, and (iv) investigate the association between image-based scores

and CFD errors. In this Chapter, I was responsible for the mesh pre-processing,

CFD simulation and flow analysis, while Dr. Javier Montalt-Tordera contributed

with the development and image-based evaluation of the ML segmentation model.

4.3 Methods

4.3.1 Subjects

90 cardiac triggered, respiratory navigated, 3D whole heart, balanced, steady state,

free precession (WH-bSSFP) data from previously scanned children and adults with

paediatric CHD (excluding patients with single ventricles) were used for this study.

All patients were scanned on a 1.5T scanner (Avanto, Siemens Healthineers AG,

Erlangen, Germany) using a standard whole-heart balanced steady state free pre-

cession sequence [166]. The imaging protocol was as follows: orientation: sagittal,

matrix size: 256 x 144 x 96 (head-foot, anterior-posterior, left-right), acquired voxel

size: 1.6 mm (isotropic), flip angle: 90°. Image acquisition was accelerated using

GRAPPA (factor of 2 along phase encoding dimension) and partial Fourier (factor

of 6/8 along both phase and slice encoding dimensions).

Additionally, 10 external examples were retrospectively collected from a dif-

ferent centre. These were scanned on a 1.5 T scanner (Ingenia, Philips Healthcare,

Amsterdam, Netherlands) with the following imaging protocol: orientation: axial,

matrix size: 240 x 240 x 110 (left-right, anterior-posterior, head-foot), acquired

voxel size: 1.44 mm (isotropic), flip angle: 90°. Image acquisition was accelerated

using SENSE (reduction factor of 2) and partial Fourier (6/8).

4.3.2 Ground truth segmentation

Reference standard conventional segmentation (Section 2.3) of the aorta and PAs

was performed using a semi-automatic technique with manual correction (Plug-

ins built in Horos v4.0, Horosproject.org sponsored by Nimble Co LLC d/b/a

Purview, Maryland, USA). Initial segmentation was done using the fast level-set

method [106]. This requires the user to: (i) set a threshold, (ii) place seeds in the
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vessel of interest, and (iii) add blocking regions to prevent segmentation of un-

wanted structures. The quality of this initial segmentation is dependent on both

the underlying anatomy and the image quality, but manual correction is always re-

quired to remove unwanted structures and clip vessels. The proximal limit of both

the aortic and PA segmentations was the semi-lunar valve. The distal limit of the

segmentations were the diaphragmatic level of the aorta, and hilar branches of the

PAs. Head and neck arteries were manually removed at their origin.

All 90 datasets were segmented by a primary observer (10 years’ experience in

CMR post-processing). The primary observer’s segmentations are referred to as the

ground truth (GT). In addition, a secondary observer (19 years’ experience in CMR

post-processing) segmented 10 of these images (test set, see below) to investigate

inter-observer variability. These are referred to as second observer (SO) data. The

10 external examples were segmented by the secondary observer only, following

the same procedure.

4.3.3 Data preparation

Prior to ML training, the pixel intensities of the WH-bSSFP data were normalised

(range [0, 1]). The aortic and pulmonary binary segmentation masks were concate-

nated in the channel dimension and combined with a third channel containing a

binary “background” mask (one-hot encoding). The images and 3-channel segmen-

tation masks were either centrally cropped or symmetrically zero-padded to a fixed

matrix size of 160×96×64 (superior-inferior, anterior-posterior, left-right). Finally,

the image-label pairs were randomly split into a training set (70 examples, 78%),

a validation set (10 examples, 11%) and a test set (10 examples, 11%). This split

was used to maximize the size of the training set, while providing sufficient data

for validation and statistical analysis. The examples from the external test set were

reoriented, interpolated and cropped to match the orientation, matrix size and voxel

size of the in-house data.
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4.3.4 Network architecture

A U-Net [167] CNN was used to simultaneously segment the aorta and PAs from

WH-bSSFP data. The network architecture is shown in Section 3.3.3. Each con-

volutional layer was followed by a batch normalization layer and a rectified linear

unit (ReLU) activation. Downscaling was performed using max-pooling layers, and

upscaling was performed using transpose convolution layers. The number of con-

volutional filters after the first layer was set to double after each downscaling layer

and halve after each upscaling step. The final convolutional layer has three filters

(equalling the number of possible classes – aorta, PA and background), followed by

a softmax activation. Final predicted labels were obtained by assigning each pixel

to the class with the highest probability.

4.3.5 Model training and evaluation

The network implementation and training scheme was formed to allow the investi-

gation of multiple hyperparameter values, with the full search space shown in Table

4.1. A Hyperband algorithm [168] was used to perform efficient hyperparameter

optimization. This method samples the search space randomly and adaptively allo-

cates more computational resources to the most promising hyperparameters combi-

nations. Dice score was used by the Hyperband to assess performance and choose

the final model.

Table 4.1: Hyperparameter search space.

Parameter Type Domain

Scales Architecture {2, 3, 4}
Layers per block Architecture {2, 3, 4}
Initial filters Architecture {32, 64}
Learning rate Training [0.0001, 0.01]1

Batch size Training {2, 4}
Loss function Training {CCE2, Dice, IoU, Tversky, focal Tversky}

1 2 3

The neural network and related functionality were implemented and trained

1{·} represents a discrete set of values; [·] represents a continuous interval of real values.
2The learning rate was sampled using a log-uniform distribution.
3CCE: categorical cross-entropy.
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using TensorFlow [169]. In particular, the model implementation, losses and met-

rics are available in TensorFlow MRI [170], an open-source framework developed

in-house. Weights were initialised using He’s method [171] and optimised using the

Adam algorithm [172]. Training, including hyperparameter optimization, took ∼24

hr on an Nvidia Titan RTX GPU with 24 GB of onboard RAM (Nvidia Corporation,

Santa Clara, CA, USA).

The optimised ML model was evaluated on the test dataset against the ground

truth segmentations (ML vs GT). The accuracy of segmentation was quantified us-

ing several image-based segmentation metrics: Dice score, Intersection over Union

(IoU), Hausdorff distance (HD) and average surface distance (ASD). Each metric

was computed independently for each vessel. Additionally, the same metrics were

calculated for the secondary observer’s segmentation against the GT (SO vs GT),

and between the ML model and the secondary observer (ML vs SO).

To assess generalization ability to data from other sources, the ML model was

also evaluated on the external test set. The same set of metrics were computed

(Dice, IoU, HD and ASD) between the ML predictions (Ext-ML) and the ground

truth segmentations (referred to as Ext-SO, since the manual segmentation was per-

formed by the same person as the SO data). Prior to evaluation, ML masks were

filtered to remove all but the largest connected component, as identified using 3D

connected component labelling with 26-connectivity [173]. This post-processing

step was used to eliminate small background regions which had been misclassified

as vessels.

4.3.6 Surface and volume meshing pipeline

The resultant segmentation masks were converted into finite element volume

meshes, using the processes shown in Fig. 4.1. The masks (GT, ML and SO) were

first transformed into surface meshes, by applying the marching cubes algorithm

using an implementation from vascular modelling toolkit (VMTK) [174]. Follow-

ing this, re-meshing and smoothing was performed with consistent parameters. The

surface meshes were clipped manually at inlets and outlets to create planar sur-

faces; 30 mm extensions were added to encourage the flow profile to develop past
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an initial flat plug condition. Finally, these were meshed with tetrahedral elements

to build the final unstructured grid for CFD analysis. The grid resolution was de-

termined through a sensitivity analysis (see Appendix A.1). To assess the effect of

the manual clipping of the anatomies on the CFD, the simulations from the ML seg-

mentations were also re-run using the same inlet and outlet locations as the GT data,

defined by overlaying the GT clipped geometry to the corresponding ML geometry.

1 2 3 4 5 6 7

Surface 
generation

Remeshing & 
Smoothing Clipping

Extensions & 
Centerlines

Volume 
meshing CFD Analysis

Post-
processing

Figure 4.1: Automatic mesh processing pipeline from segmentation to CFD analysis, fol-
lowed by post-processing to reshape the data in a consistent format between
subjects (99 planes from inlet to outlet containing average pressure and veloc-
ity).

4.3.7 CFD boundary conditions

CFD simulations were carried out using the solver Fluent 19.0 (Ansys, Canonsburg,

PA, USA). Blood was modelled as an incompressible Newtonian fluid with density

1060 kg/m3 and 0.004 Pa·s dynamic viscosity [175]. Vessel walls were considered

rigid, and no-slip conditions were imposed. A laminar, steady-state model was

selected to simulate blood flow at peak systole [176, 177]. A generalisable inlet

condition for the aorta and PA was applied to all subjects, with a uniform (plug)

inlet velocity profile of 0.66 m/s for the aorta and 0.57 m/s for the PA [178]. The

outlets for all cases were assumed to be at zero pressure and the convergence criteria

was set at 10−4 for the residual errors. Simulations were run on a Dell workstation,

with a Xeon CPU E5-2630 (24 processors at 2.3 GHz), 32 GB RAM and an Nvidia

GeForce GTX 1080 Ti.
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4.3.8 CFD post-processing

To compare the flow field between the pairs of different unstructured meshes (ML

vs GT, SO vs GT and ML vs SO), correspondence was created by subdividing

each vessel with 99 planes orthogonal to the centrelines, calculated in VMTK, and

equally distanced. Static pressure and velocity magnitude were averaged in each

plane (see Fig. 4.1) and a percentage error was calculated for each plane pair, using

ML as reference (GT in the comparison between SO and GT). The mean absolute

percentage error (MAPE) for pressure and velocity were computed for each vessel

pair.

MAPE =
1
N

N

∑
i=1

∣∣∣∣Truei − Predi

Truei

∣∣∣∣×100% (4.1)

4.3.9 Statistical analysis

Shapiro-Wilk tests were used to test the normality of the different segmentation met-

rics and CFD errors, grouped by vessel (aorta and PA), and segmentation pair (ML

vs GT, ML vs SO and SO vs GT). Wilcoxon signed rank tests were used to compare

the pressure and velocity errors for the ML vs GT group. Mann-Whitney U-tests

were used to compare segmentation metrics and flow field errors between the aorta

and the PA, for the ML vs GT group. Friedman tests for repeated measurements

were performed to compare segmentation metrics and flow field errors between the

ML vs GT, ML vs SO and SO vs GT groups, for both aorta and PA segmentations.

Significant Friedman test results were followed up by pairwise Wilcoxon post-hoc

tests. Additionally, Wilcoxon signed rank tests were used to compare ML vs GT

and SO vs GT metrics for both aorta and PA segmentations. Mann-Whitney U-tests

were used to compare Ext-ML vs Ext-SO segmentation metrics against ML vs SO

metrics. Wilcoxon signed rank tests were used to compare the pressure and velocity

errors for the manually clipped ML vs GT data and the equally clipped ML vs GT

data. Pearson’s correlation coefficient was used to measure the linear relationship

between each pair of a segmentation metric (i.e. Dice, IoU, HD or ASD) and a

flow field error (pressure or velocity MAPEs), for both aorta and PA segmentations.
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Pearson correlation coefficients were also used for estimating the linear relationship

between the flow errors and the radius/angulation error in the mesh outlet flow ex-

tensions (ML vs GT). This was performed to assess the influence of outlet geometry

error on the flow field error. The p-value was calculated for each comparison to test

non-correlation. Throughout this work, a p-value <0.05 was considered statistically

significant.

4.4 Results

4.4.1 Hyperparameter optimisation

A total of 124 hyperparameter configurations were sampled during the neural net-

work optimization procedure (see Appendix A.2). The best performing configura-

tion was as follows: scales = 3, layers per block = 2, initial filters = 64, learning

rate = 3.46x10-4, batch size = 2, and loss function = focal Tversky. This model was

selected and used in all further experiments.

4.4.2 ML segmentation

The ML segmentation was successful in all 10 test datasets. The specific diag-

noses for these patients were: repaired tetralogy of Fallot (n = 1), repaired Tetral-

ogy of Fallot with mild right PA stenosis (n = 1), Marfan syndrome with dilated

aorta (n = 1), Marfan syndrome with pectus excavatum (n = 1), dilated PA (n = 1),

bicuspid aortic valve with dilated aorta and unrepaired VSD (n = 1), repaired dou-

ble outlet right ventricle with right sided arch (n = 1), unrepaired atrial septal de-

fect (n = 1), aortic regurgitation with dilated aorta (n = 1), post-Ross procedure

with mechanical aortic valve (n = 1). Inference time for the ML model was ap-

proximately 160 ms for simultaneous segmentation of aorta and PAs, compared to

approximately 30 minutes for manual segmentation of aorta and PAs. There was

good agreement between the ML and GT segmentation, with a median Dice score

of 0.945 (interquartile range: 0.929–0.955) for the aorta and 0.885 (0.851–0.899)

for the PAs. The Dice score was significantly higher for the aorta than the PAs

(p = 0.002) with similar findings observed for IoU, HD and ASD (Fig. 4.2A–D).

The best, median and worst segmented images in terms of Dice score are shown
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Figure 4.2: Segmentation metrics and flow field errors. Three segmentations are compared
in a pairwise fashion: machine learning (ML), ground truth (GT) and secondary
observer (SO). (A–B): Confusion-based similarity metrics: Dice score and IoU.
(C–D) Distance-based similarity metrics: Hausdorff distance (HD) and average
surface distance (ASD), measured in pixels. (E–F) CFD-derived pressure and
velocity mean average percentage errors (MAPE).

in Fig. 4.3. The three main differences were: (i) the length of the vessel segmented,

(ii) differences in pixel labelling that resulted in small deviations of the vessel bor-

der, and (iii) small protrusions at the origin of the carotid and subclavian arteries in

the ML segmentations of the aorta.

The aortic inter-observer Dice score (SO vs GT) was 0.949 (0.916–0.960)

and was not significantly different from ML vs GT (p = 0.575). The pulmonary

Dice score for the SO vs GT was 0.882 (0.870–0.894) and was also not signifi-

cantly different from ML vs GT (p = 0.721). The ML vs SO Dice score was 0.933

(0.924–0.944) for the aorta, which was not significantly different from ML vs GT
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Best Case

Prediction Ground Truth

Median Case Worst Case

Prediction Ground Truth Prediction Ground Truth

Mean Dice: 0.962 Mean Dice: 0.939 Mean Dice:0.894

Figure 4.3: Test set segmentation overlays. Predicted and ground truth masks are overlaid
on the original images for the best, median and worst test cases. Aorta and PA
masks are shown in red and blue, respectively. Multiplanar reformats of the
original 3D volume were manually selected on a case-by-case basis to be most
informative. The best case had Ross procedure and mechanical aortic valve,
the median case had an atrial septal defect and the worst case had a dilated PA.

and SO vs GT (p = 0.741), and 0.843 (0.791–0.860) for the PAs, which trended

towards being lower than ML vs GT and SO vs GT (p = 0.061).

The ML segmentation was also successful in the external dataset. The specific

diagnoses for these patients were: cardiomyopathy (n= 4), normal anatomy (n= 1),

repaired tetralogy of Fallot (n = 1), left PA stenosis (n = 1), anomalous pulmonary

venous drainage (n= 1), repaired coarctation of the aorta with hypoplastic arch (n=

1), bicuspid aortic valve with severe AR and dilated aortic root (n = 1). The best,

median and worst examples from the external test set are shown in Fig. 4.4. There

was reasonable agreement between the Ext-ML and Ext-SO segmentations, with a

median Dice score of 0.913 (0.889–0.927) for the aorta and 0.751 (0.728–0.797) for

the PAs. Agreement was significantly lower than ML vs SO for the PAs (p= 0.011),

but not for the aorta (p = 0.089). Similar findings were observed for IoU, HD and

ASD (Fig. 4.5).
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Best Case

Prediction Ground Truth

Median Case Worst Case

Prediction Ground Truth Prediction Ground Truth

Mean Dice: 0.883 Mean Dice: 0.821 Mean Dice: 0.798

Figure 4.4: External test set segmentation overlays. Predicted and ground truth masks are
overlaid over the original images for the best, median and worst test cases.
Aorta and PA masks are shown in red and blue, respectively. Multiplanar refor-
mats of the original 3D volume were manually selected on a case-by-case basis
to be most informative. The best case had normal anatomy with gothic arch,
the median case had bicuspid aortic valve and the worst case had mild left PA
stenosis.

4.4.3 CFD metrics

There was overall good agreement in CFD metrics calculated using ML and GT seg-

mentations (Fig. 4.2E–F). The median MAPE for pressure and velocity in the aorta

were 10.1% (interquartile range: 8.5–15.7%) and 4.1% (3.1–6.9%) respectively,

and for the PAs 14.6% (11.5–23.2%) and 6.3% (4.3–7.9%). PA MAPEs trended

towards higher values compared to aortic MAPEs, but this did not reach statistical

significance (p = 0.081 for pressure and p = 0.093 for velocity). However, pressure

was more sensitive than velocity to different segmentations, with pressure MAPE

being 2.5x greater than velocity MAPE (∗∗∗p < 0.001).

Fig. 4.6 shows the surface meshes of test cases with the highest and lowest

CFD MAPE, as well as pressure and velocities along the length of each vessel.

Fig. 4.7 shows pressure and velocity fields calculated using both ML and GT man-

ual segmentations. The main difference in the surface meshes (particularly for the
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Figure 4.5: Segmentation metrics. The model’s segmentation (ML) is compared with the
observer’s segmentation (SO) for two different datasets: the original data (ML
vs SO) and an external test set from a different site and vendor (Ext-ML vs Ext-
SO). (A–B): Confusion-based similarity metrics: Dice score and intersection-
over-union (IoU). (C–D) Distance-based similarity metrics: Hausdorff distance
(HD) and average surface distance (ASD), measured in pixels.

worst cases) were associated with the inlets and outlets (angle and size) and these

differences propagated into pressure and velocity fields.

SO vs GT (inter-observer) and ML vs SO pressure and velocity MAPEs were

of a similar magnitude to the errors from the ML segmentations (Fig. 4.2E–F, p >

0.2). When the clipping planes of the GT segmentations were used on the ML

geometries, the median pressure and velocity MAPEs were reduced to 8.0/3.1%

(∗∗ p< 0.01) for the aorta, and to 10.4/3.7% for the PA (∗∗ p< 0.01) (see Appendix

A.3).

Fig. 4.8 illustrates the relationship between the segmentation metrics and the

CFD errors on the ML vs GT comparison. No statistically significant correlations

were found between any of the metrics, either for the aorta or the PAs, for either

manual or equally clipped data.

Fig. 4.9 presents the relationship between outlet surface cross-sectional ra-

dius errors and angulation errors (ML vs GT) and flow errors (ML vs GT), com-
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Worst Ao case (subject 1):

Best Ao case (subject 8):

Best PA case (subject 6):

Worst PA case (subject 7):

Figure 4.6: Best and worst cases for aortas and PAs. Graphs show planar-averaged metrics
along the length of the vessels, starting from the inlet. Black geometries cor-
respond to ground truth, whereas red correspond to predictions. The best aorta
case had an atrial septal defect and the worst had a repaired double outlet right
ventricle with right arch. The best PA has a bicuspid aortic valve with dilated
aorta and unrepaired VSD, and the worst is a Marfan syndrome with dilated
aorta.
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Best Ao 

Worst Ao 

Best PA 

Worst PA 

Pred               True Pred           True

Pressure (mmHg) Velocity (m/s)

Figure 4.7: Best and worst aorta and PA predictions. Flow fields of pressure and velocity
displayed, as contours and streamlines, respectively.
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puted using the Pearson correlation coefficient. For the PAs, angulation/radius

errors are the average result for both pulmonary branches. Only one statistically

significant correlation was found, showing that pressure errors increased when the

error in cross-sectional outlet radius increased, with respect to aortic simulations

(R = 0.86,∗ ∗ p < 0.01). No other statistically significant correlations were found

between outlet radius error/angulation error and pressure/velocity errors.
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Figure 4.8: Flow errors against similarity metrics. The figure shows a scatter-plot matrix
where each point corresponds to a subject. In the abscissas, two confusion-
based metrics, Dice and IoU, and two distance-based metrics, the Hausdorff
distance and the average surface distance, measured in pixels. In the ordinates,
the pressure and velocity mean average percentage errors (MAPE). All values
are for the ML vs GT comparison. Red and blue colours identify aorta and PA
data, respectively. Trend lines are least-squares polynomial fits of degree 1. For
Dice and IoU, higher is better (more similar). For Hausdorff distance, average
surface distance and pressure and velocity MAPEs, lower is better.

4.5 Discussion
In this study, a DNN was trained to simultaneously segment the aorta and PAs from

3D CMR data. As its primary purpose was to provide patient specific anatomies for

CFD models, accuracy was evaluated using conventional image-based segmentation

metrics and resulting errors in CFD measures. The main findings were: (i) the

proposed network achieved high performance in terms of image-based segmentation

metrics, (ii) there was reasonable agreement between CFD models derived from
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Figure 4.9: Flow errors compared to errors in the outlet cross-sectional radii or outlet an-
gulation. Each point corresponds to a subject. Red and blue correspond to
aortic/pulmonary artery errors, respectively. All values are for the ML vs GT
comparison. Pearson correlation coefficients for each comparison are shown
for aorta and pulmonary artery errors, with associated p values.

the ML and ground truth manual segmentation, (iii) these errors were similar in

magnitude to those observed between two different manual segmentations, and (iv)

there was no relationship between the segmentation metrics and the resulting CFD

errors.

4.5.1 ML Segmentation

It was found that the segmentation model achieved comparable or better perfor-

mance than previously reported 3D ML segmentation of the great vessels, including

in patients with CHD [110,179]. This suggests that the chosen network architecture

and subsequent hyperparameter optimization were sufficient for accurate segmen-

tation. Nevertheless, there were some differences between the GT and ML segmen-

tations, and visual inspection reveals three main types of error. The first error was

a tendency for ML to start and stop segmenting at slightly different points in the

vessel compared to the ground truth. The second type of error was the presence

of “bumps”, due to the segmentation masks bleeding out at the locations of arterial

branches, particularly in the aorta. Both these errors can be considered failures to

properly demarcate vessel limits, rather than failures to correctly label blood pool
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pixels. The third type of error was inaccurate labelling of blood pixels at the vessel

border, resulting in subtle differences in surface geometry. It should be noted that

none of these patients had very abnormal pulmonary vascular or aortic anatomy,

which was necessary to ensure that CFD models could be created from the seg-

mentations. However, further testing on complex CHD is necessary if segmentation

models are to be used more widely. Extension to complex disease may require fur-

ther enhancements, and several strategies could potentially help improve the ML

segmentation accuracy and generalizability. These include increasing the amount

and heterogeneity of training data, or performing data augmentation, both of which

improve generalizability and performance of ML models [180,181]. Another inter-

esting option might be the inclusion of statistical shape models [182, 183], which

could help ensure that the segmented shapes conform to common patterns.

The model was also tested on 3D data acquired on a different vendor scan-

ner. Although the type of sequence (3D whole-heart bSSFP) and imaging protocol

were similar to the original data, there were visually apparent differences in image

quality and characteristics. Nevertheless, a reasonable segmentation quality was ob-

served. For the aorta, agreement with a human observer was only slightly lower than

agreement with the same observer in the original data. However, there was a larger

reduction in agreement for the PAs. This suggests there is scope for improving the

generalisability of the model, especially with regards to more complex structures

than the aorta, such as the PA. One of the best solutions for this is to include multi-

site, multi-vendor data in the training set, but this would incur obvious labelling

costs and potential data sharing difficulties. One possibility for bypassing data-

sharing difficulties would be for institutions to build generative ML models for cre-

ating synthetic images [184]. Since synthetic images would follow the training data

distribution, these could be used in cases where patient data sharing is not permissi-

ble. Indeed, Fernandez et al. showed that segmentation models could be effectively

trained purely with synthetic data [185]. Other approaches to improve robustness

to out-of-distribution data might be the use of data augmentation techniques (e.g.

domain translation methods to generate multi-vendor datasets [186, 187]) and the
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use of strategies that incorporate additional domain knowledge [188]. Furthermore,

data from different imaging modalities (CT, CMR) and different sequences, or at

different resolutions could be included to make the models more robust and gener-

alisable.

Segmentation is not a trivial task, and it was demonstrated that the agreement

between two humans was similar to the agreement between ML and the GT human

segmentation. This suggests that ML “errors” are approximately at the level of the

inter-observer variability, and similar observations have previously been made for

aortic segmentation [110]. Furthermore, there are significant advantages of ML over

manual segmentation including very fast segmentation without user interaction and

perfect reproducibility, due to its deterministic nature. This makes ML particularly

useful for removing clinical bottlenecks and accelerating population-based research.

4.5.2 Relationship between CFD and Segmentation Errors

Reasonable agreement in pressure and velocity fields calculated from ML and man-

ual segmentations was demonstrated. Importantly, the differences in CFD metrics

using ML vs manual segmentations were of a similar magnitude to those between

two independent manual segmentations. This suggests that ML can be success-

fully used to provide a starting point for CFD simulations, with accuracy similar to

inter-observer variability.

However, there were some differences in CFD metrics between ML vs GT

segmentations, particularly for pressure calculations. Pressure errors may be higher

because local deviations in surface geometry tend to cause only local velocity field

derangement, but have a global effect on upstream pressures. This effect is visible in

the worst-case aorta, where a narrowing and angulation change in the ML aortic out-

let (at the flow extension) resulted in localised flow acceleration, and significantly

altered upstream pressures (worst Ao, Fig. 4.7 and Appendix B.7). This effect was

analysed over the entire population in order to identify if it was a shared problem

amongst all cases. The observation that larger outlet radius errors correlated with

larger pressure errors was found (for aortas), supporting this hypothesis. However,

no similar correlations existed for outlet angulation error, suggesting this was not
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influential (Fig. 4.9). No correlations could be identified for the pulmonary arteries.

This is likely due to the presence of multiple outlets (flow splits) that introduce new

sources of error, making the relationship between shape error and flow error more

complex. In the future, the influence of different categories of segmentation/pre-

processing errors (elongation/shortening, bumps, angulation changes, boundary er-

rors) should be further explored, with particular emphasis on understanding how the

magnitude of these errors affects the CFD flow fields.

Interestingly, no significant correlations between image-based segmentation

metrics and errors in the pressure/velocity fields were found. This suggests that

neither overlap-based (Dice, IoU) nor boundary distance-based (HD, ASD) metrics

can accurately capture the features that ensure CFD accuracy. This may be because

CFD models are highly sensitive to local geometric errors, while segmentation met-

rics are global and therefore may not fully capture these localised deviations. An-

other reason may be that differences in clipping (which were not accounted for by

segmentation metrics) are responsible for some of the CFD errors, as shown by

the analysis of equally clipped data. However, significant CFD errors remained

after removing this confounding factor, and these errors were still not correlated

with image-based segmentation metrics. Irrespective of the cause, the poor cor-

relation between segmentation and CFD errors has some important implications.

Specifically, in this application, it might be better to combine conventional global

image-based losses with more CFD specific objective measures during training. For

example, these could include losses which prioritise preserving accuracy of the do-

main boundaries, since it was observed that outlet radius errors are highly correlated

with pressure errors in aortas (Fig. 4.9).

4.5.3 Limitations

One of the main limitations of this study was that a simplified CFD model was ap-

plied across all subjects (laminar, steady state, with no patient-specific parameters).

This was done to better isolate the effect of segmentation differences on the resulting

CFD model. However, it does limit the patient specific aspect of these comparisons

and in the future, boundary conditions for each subject (such as velocity profiles
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taken from phase contrast CMR) could be incorporated into the model. Further-

more, now that good agreement has been demonstrated using simple CFD models,

the utility of ML segmentation for more complex CFD models should be investi-

gated. Another limitation is that the methods used for comparison do not necessary

account for the full flow field. Plane-averaged pressures and velocities along the

length of the centreline were used to quantitatively compare different CFD models.

However, this averaging does lead to a loss of localised details in the flow fields. A

node-based approach for comparing two distinct 3D flow fields could be useful for

improved model evaluation, and will be presented in the following Chapter.

4.6 Summary and conclusion
A CNN was developed, optimised and trained for segmentation of the aorta and the

PAs in 3D cardiovascular CMR. The segmentation network was validated for its

primary purpose - the creation of CFD models and calculation of flow fields - with

errors in the range of human inter-observer variability. The proposed method can

help automate the workflow of clinical hemodynamic assessments and improve its

robustness, as it provides 3D anatomical reconstructions nearly instantaneously af-

ter image acquisition. Assembling the specific patient CFD analysis and the related

computational costs remain the next hurdle for a fully translatable tool in clinical

practice. Thus, automation of the CFD setting-up and solver will be shown in the

following Chapter, as the final stage for a fully automated CFD pipeline for cardio-

vascular applications.



Chapter 5

Design of a real-time computational

fluid dynamics pipeline: a machine

learning approach for predicting

aortic hemodynamics

5.1 Introduction
Despite the potential benefits described in Chapter 2 and 3, CFD is still not inte-

grated into routine clinical practice due to the need for an experienced engineer to

set-up simulations, high computational resource requirements and long simulation

times. Whilst the ML method presented in Chapter 4 can help speed up the conven-

tional CFD simulation pipeline, many other steps still require manual inputs. ML

models have previously shown to be suitable for accelerating and automating CFD

pipelines [116, 117]. The main challenges of training ML models using CFD data

include: (i) poor availability of clinical data, (ii) unstructured meshes without point

correspondence, and (iii) large meshes and resultant flow fields.

5.2 Aims and objectives
The study presented in this Chapter has the following three primary objectives:

(i) to create a suitably large synthetic cohort of 3D aortas based on real patients;
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(ii) to train ML models to predict aortic/velocity pressure fields by representing

unstructured/large data types with low-dimensional vectors; and (iii) to compare

results between the ML-based CFD solution and the conventional CFD method.

5.3 Methods

5.3.1 Statistical shape modelling

The dataset used for development of the SSM consisted of cardiac and respiratory

gated steady state free precession CMR images (N=67) from patients previously di-

agnosed with coarctation of the aorta (CoA). All patients were post-surgical repair,

asymptomatic and underwent CMR imaging at a mean age of 22.4 ±6.2 years. Im-

ages for each subject were manually segmented and converted into surface meshes

(Section 2.3). This was followed by remeshing and smoothing using functions from

the VMTK, as described in Section 4.3.6. All geometries were aligned in the same

local space and orientation through rigid registration using an iterative closest point

algorithm in VMTK [189]. This ensured that shape modelling was not affected by

any spatial misalignment. Surfaces were manually clipped above the aortic root for

the inlet, and at the diaphragm for the outlet. An SSM was then built using these

clipped aortic surfaces, using an approach previously described by Bruse et al [125].

The package Deformetrica 4 was used to build the SSM [123]. First, an average

aortic shape (surface template) was computed, containing 2,541 nodes (Fig. 5.1). A

volume template was also created by meshing the surface template with tetrahedral

elements (29,000 nodes). Each subject could then be described as a non-linear de-

formation of 3D ambient space, relative to the template (Fig. 5.1). In this case, each

deformation is fully parameterised by a paired set of 3D control points (qi)i=1,...n

and 3D momenta vectors (µi)i=1,...n (Section 3.4.1) using a Gaussian kernel of width

σ which was set as 10 mm. The number and location of control points were op-

timised (n=172) by initialising the model with a high resolution control point grid

(n=500) and truncating points which were observed to have little influence on the

deformation (low variance). The final computed 3D deformations for a given sub-

ject were represented by a deformation vector with 516 coefficients - the number of
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control points (172) multiplied by the number of deformation directions (3). The

deformation vectors for the whole population were collected in the 2D matrix M

[67, 516], which was decomposed using PCA in order to identify low-dimensional

deformations which account for most of the variance. This required standardisa-

tion for each column in M (i.e. removal of the mean and scaling to unit variance).

Following this, SVD was performed with M being decomposed into three matrices:

M = USVT. The V transpose matrix [516, 516] contained the principal component

axes or PCA modes, S is a rectangular diagonal matrix [67, 516] where the singu-

lar values on the diagonal can be used to calculate the variance explained by the

associated PCA modes, and the matrix product US [67, 516] contains the projec-

tion (weights) of each subject onto each PCA mode. It was found that the first 35

PCA modes were capable of approximating 99% of the variance in M. This meant

that specific aortic shapes could be represented by a lower-dimensional deformation

vector with 35 coefficients rather than 516 (almost 15 times reduction in the size).

3D Deformation Field 
(parameterised at control points)

Template warps as a 
result of 3D deformation

Final approximated
subject

Template
(mean shape)

Figure 5.1: Mesh registration with SSM. An example aortic shape approximation using my
SSM is shown. Individual surface or volumes can be reconstructed using a
mean aortic shape and applied deformation field initialised on a set of control
points (n=172).

Using the SSM, new synthetic aortic shapes could then be created using syn-

thetic lower dimensional deformation vectors. Specifically, each of the 35 coeffi-

cients in a synthetic vector was generated by randomly sampling a Gaussian distri-

bution (within 2 standard deviations) based on the distribution of weights in the US
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matrix. Following concatenation of all the lower dimensional deformation vectors,

the matrix X [3000, 35] was transformed into a matrix L [3000, 516] by matrix

multiplication (L = XSVT), thus reversing PCA and mapping the matrix X onto the

original axes. Standardisation was then reversed in all columns of L using the pre-

viously computed standard deviations and means in the M matrix. The deformation

matrix L was then reshaped into a 3D momenta matrix [3000, 172, 3] and applied

onto the aortic surface and volume template using Deformetrica, thus generating

a surface and volume mesh for each new synthetic subject. Since all new meshes

are derived from the same template, all synthetic aortas contained the same number

of nodes/elements. Additionally, nodes can be thought to be lying within spatially

correspondent locations within each aorta (see Appendix B.1). This was vital for

enabling the dimensionality reduction of derived flow fields, as described in later

sections.

The new synthetic population (n=3000) was compared to the original popula-

tion (n=67) by computing geometric properties of the shapes based on a centreline

approach. Mean centreline lengths and diameters were computed. Mean torsion

is used to express how sharply the centreline is twisting in space. The parameter

tortuosity describes the length ratio between the centreline and a rectilinear line be-

tween the endpoints. All parameters were computed using implementations within

VMTK, as described by Piccinelli et al [190].

5.3.2 CFD pipeline

Volume meshes previously generated with the SSM were unsuitable for CFD com-

putation. This was primarily because low mesh skewness could not be guaranteed,

and remeshing was not an option since nodes were to be preserved in order to main-

tain point correspondence (see Appendix B.1). Therefore, separate meshes solely

for CFD computation were built, starting from the surface of each aorta, and follow-

ing the pipeline as described in Section 4.3.6. Firstly, each surface was extended by

40 mm at the inlet. This was done to produce a flat and circular inlet upon which a

velocity profile could be uniformly applied. Extending the inlet further than 40 mm

was avoided in order to reduce the likelihood of surface self-intersection. Follow-
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ing this, volume meshing with tetrahedral elements was performed [191] (∼400,000

cells on average). Element/node counts were deemed to be in satisfactory ranges

after a mesh sensitivity analysis (see Appendix B.2).

CFD (Fluent, Ansys Technologies) was performed on all 3,000 synthetic cases.

The same boundary conditions were applied to each simulation, as part of adopting

a simple model which would reliably converge for all subjects. Laminar, steady-

state flow conditions were enforced. An inlet velocity of 1.3 m/s, corresponding to

an average ascending aortic flow rate at peak systole, was set [192,193]. A velocity

boundary condition was preferred to a volumetric flow rate, since it is invariant to

any differences in inlet surface area between subjects. Outlet gauge pressure was

fixed at 0 Pa. Standard non-slip conditions were applied at the wall, and the fluid

was assumed to be Newtonian with density and dynamic viscosity equal to 1,060

kg/m3 and 0.004 Pa·s, respectively [194]. The set-up and simulation of all 3,000

cases was fully automated.

5.3.3 Machine learning

5.3.3.1 Data interpolation

As CFD was performed on large unstructured meshes with inconsistent numbers

of nodes/elements between cases, point correspondence had to be restored prior to

PCA-based dimensionality reduction of the flow fields (needed for easier model

training). This was done using the volume meshes previously generated with the

SSM (by applying deformations to the volume template mesh). Since each of these

‘SSM volume meshes’ inherited its properties from the template, relative nodal po-

sitions were preserved. Consequently, pressure/velocity data for all subjects was re-

sampled from unstructured CFD meshes onto SSM volume meshes using a Voronoi

kernel (padding of 5 mm, grid resolution of 1,000,000 voxels) in the software Par-

aview (Fig. 5.2). This resulted in 3,000 newly resampled pressure/velocity fields,

with all subjects containing 29,000 nodes in point correspondence. The data was

concatenated into a feature vector and PCA was applied to reduce dimensionality.

The aim was to capture 99% of variance with as few PCA modes as possible.
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Point volume interpolation 
of CFD pressure field

Resampling data on mesh 
with node correspondence

Resampled CFD pressure 
field (29,000 points)

Figure 5.2: CFD data interpolation. CFD results are interpolated onto a point-
correspondence mesh (generated by the SSM), thus restoring node concor-
dance.

5.3.3.2 Deep neural network architecture

The architecture adopted was a standard sequential, fully-connected DNN with in-

dependent networks for pressure and velocity. The input for the model was the

lower dimensional deformation vector, which is also referred to as a ‘shape vec-

tor’. The outputs of the trainable part of the model were the pressure/velocity PCA

scores (reduced order CFD field), referred to as a ‘pressure/velocity vector’. A non-

trainable inverse PCA layer (implemented in Keras using a lambda layer) serves

to reconstruct the pressure/velocity vector into the full 3D flow field with 29,000

nodes (see Fig. 5.3). Rectified linear units (ReLU) were used in each hidden layer.

Linear activation functions were set at the output. Model implementation was done

using Keras and TensorFlow 2.0.

5.3.3.3 Deep neural network training

Models were built separately for predicting the static pressure and the velocity-

magnitude. The loss function used for training was the mean absolute error (MAE),

computed on the entire 3D flow field (i.e. after inverse PCA) rather than on the

output pressure/velocity vector. This provides a more granular measure of error

and effectively weights the importance of each PCA mode in the network according

to the amount of variance it explains. Model optimisation was carried out using
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Figure 5.3: The general sequential, fully-connected DNN set-up used to build both pressure
and velocity predictors (’CFD vector’ can be either pressure or velocity PCA
vectors).

the Adam optimiser [195]. Hyperparameter tuning was conducted with a 5-fold

cross-validation process to find the best model settings. The number of hidden

layers, number of hidden layer neurons and initial learning rate were all explored.

This was repeated for 1,000 model configurations, sampled using a tree-structured

Parzen estimator (TPE) algorithm [196]. Batch size and epochs were set at 32 and

50, respectively. Hyperband pruning was used to terminate early training rounds if

the model was deemed to be poorly fitting the validation data.

After completing hyperparameter tuning using 5-fold cross-validation, the

model was retrained on the entire training dataset. From 3,000 subjects, 2,800 were

randomly selected to make up the training set (with 10% being used for valida-

tion). The remaining subjects (200) formed the test set. Model training lasted 1,000

epochs and training/validation loss was monitored. A workstation with an Nvidia

GTX 1080Ti graphics card was used to perform training.

5.3.3.4 Model evaluation

Once trained, models were evaluated on the test set of synthetic aortas (n=200). Ab-

solute errors were computed for every node in all test cases by comparing the pre-

diction value (ML) to the ground-truth value (CFD). Errors were then normalised

according to subject CFD data range, as detailed in Liang et al. [118]. Normal-

isation was necessary to enable direct comparison between individual cases and

also between CFD metrics, since pressure/velocity ranges widely differed per sub-

ject. Equation 5.1 details how normalised absolute error (NAE) is computed for
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either pressure or velocity at a node i, belonging to a subject j. Truei, j is the

CFD nodal pressure/velocity value. Predi, j is the ML nodal pressure/velocity value.

Range(True j) is the difference between the maximum and minimum values in the

CFD flow field for subject j.

NAE(i, j) =

∣∣Truei, j − Predi, j
∣∣

Range(True j)
×100% (5.1)

Mean node errors (MNAEN) were computed by averaging NAE values across

the population for each node (n=29,000). These were then plotted on the template

mesh points in order to better visualise the magnitude of these errors with respect

to their location. However, since NAE values are absolute errors, this provides no

insight regarding any systematic over or under-estimation during model inference.

Therefore, a Bland-Altman plot was used to examine the bias and limits of agree-

ment of the pressure and velocity DNNs. This was done for the overall aorta and

for three separate regions; ascending aorta, transverse arch and descending aorta

(anatomically defined).

Mean subject errors (MNAES) were computed by averaging NAE values in

each subject (n=200). Cases with the best, median and worse mean subject error

values were compared. A single population error for both pressure and velocity

was given by averaging all MNAES values. The relationship between shape mode

scores and subject error (MNAES) was investigated with scatter plots and assessed

using Pearson R coefficients and p values (p = 0.05 considered significant).

In addition to evaluation of the models on the test set (n=200), the models were

also tested on real, patient-specific aortas with previously repaired CoA (n=10),

completely unseen from the SSM and the DNN. This was done in order to vali-

date the robustness of the models for inferring accurate flow fields on real subjects

outside the synthetic training/testing sets. CMR images of each patient were seg-

mented. Surfaces were approximated by non-rigid registration (applying deforma-

tions on the template) using the SSM. Deformation matrices for each case were

decomposed into PCA shape vectors and passed as inputs into the DNN models.

Pressure and velocity-magnitude fields were inferred for each subject. Following
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this, all ten predictions were compared to CFD flow fields computed using both

SSM derived geometries and real geometries.

Comparison between ML and SSM derived flow fields were performed using

the MNAES as previously described. However, it was not possible to compare the

predicted and real CFD flow fields with node-based metrics due to the lack of node-

to-node correspondence and exact surface matching. Therefore, a gradient-based

approach was used to enable direct comparison of pressure/velocity flow fields

without shape correspondence. Subject centrelines were used to calculate plane-

averaged pressure/velocity gradients at 99 locations over the length of the aorta,

as shown in Section 4.3.7. To compare gradients, the Fréchet distance (FD) was

used. The FD is a measure of similarity between two point-sets of curves, taking

into account the location and ordering of the curve coordinates. Intuitively, it can be

thought of as the shortest possible distance between two observers traversing differ-

ent paths while remaining connected. An advantage of using the FD is that it does

not neglect sharp spikes or differences between gradients, which some other metrics

may diminish through averaging. Additionally, FD is not a percentage error, there-

fore is stable around values close to 0 (such as at the very end of the descending

aorta in pressure flow fields). An algorithmic implementation for computing FD as

described by Eiter et al. was used to calculate this metric [197].

5.4 Results

5.4.1 Statistical shape modelling

PCA decomposition was performed on the deformation matrices (momenta) com-

puted by statistical shape modelling. The first, second and third PCA modes cap-

tured 29.8%, 13.2% and 10.1% (total 53.1%) of the variability, respectively. Mode 1

relates to overall vessel size, mode 2 relates to ascending arch angulation/diameter,

and mode 3 describes rounded versus triangular arches. After PCA decomposition,

99% of the variance in the momenta could be represented with the first 35 modes.

Some examples of the 3,000 synthetic subjects produced by randomly sampling and

combining 35 PCA mode scores are shown in Fig. 5.4. Anatomical characteristics
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of the synthetic aortas (length, diameter, tortuosity and torsion) were found to be

statistically similar to those of the real patient cohort (see Table 5.1).

+2 SD-2 SD

-2 SD +2 SD

-2 SD +2 SD

M
o

d
e

 3

Modes of Deformation Randomly Sampled Synthetic Post-COA Aortas 
(using all 35 modes)

… Up to Mode 35

Template

Template

Template

M
o

d
e

 2
M

o
d

e
 1

Figure 5.4: Modes of deformation. Left: first three modes of deformation from the SSM
(SD = standard deviation). Right: examples of synthetic post-repair CoA aortas
from the test set (using combinations of all 35 shape modes).

Diameter (mm) Length (mm) Tortuosity Mean torsion
Real cohort mean 19.74 ±1.29 257.3 ±29.88 2.21 ±0.39 0.0044 ±0.061
Synthetic cohort mean 20.12 ±1.32 258.5 ±23.08 2.19 ±0.35 0.0012 ±0.053
p value (Welch’s t-test) 0.25 0.75 0.74 0.65

Table 5.1: Comparison of aorta dimensions between original real cohort (n=67) and syn-
thetic cohort (n=3000).

5.4.2 Training data

After CFD was computed on all cases (n=3000), values were interpolated from high

resolution meshes onto lower-resolution grids in point correspondence. The mean

loss in accuracy due to interpolation was found to be 0.056% ±0.027 and 0.849%

±0.247 for pressure and velocity-magnitude, respectively. This was computed by

calculating the mean percentage error in centreline pressure and velocity gradients

for all cases (n=3000) and averaging the results. The data post-interpolation was

used as the ’ground-truth’ training and testing sets.



5.4. Results 142

PCA decomposition of the pressure and velocity training data matrices ([2800,

29000] each) was then performed, following standardisation. After PCA decompo-

sition, 99% of the standardised pressure variance could be captured with 20 modes.

Only 87% of the standardised velocity variance could be captured with 55 modes,

and it was felt that adding more modes to capture greater variance was not feasible

due to massively diminishing returns. Subject errors resulting from PCA decom-

position were tested on the 200 test cases (unseen by the PCA model). Average

MNAES in pressure and velocity fields were found to be 1.46% ± 0.59 SD and

2.70% ±0.49 SD. The reconstructed test cases with the highest MNAES for pres-

sure and velocity (4.32% and 4.93%, respectively) are shown in Appendix B.3.

5.4.3 Model architecture

The model input layer size was set at 35 (number of shape modes). Output layer

sizes were set at 20 and 55 for pressure and velocity, respectively (number of pres-

sure/velocity modes). Hyperparameter tuning using cross-validation was performed

1,000 times to search for the optimal learning rate, number of neurons and number

of layers, with tuning taking ∼4 hours per model. Pressure and velocity model

architectures as a result of the optimisation process are shown in Appendix B.4.

5.4.4 Model predictive performance

Pressure and velocity-magnitude fields were computed on the test set (n=200) using

the trained DNNs. Conventional CFD took ∼5 minutes per subject, whereas ML

inference took ∼0.075 seconds, demonstrating a ∼4,000x speed-up.

5.4.4.1 Node errors

Average node prediction errors (MNAEN) were computed for all nodes (n=29,000).

Fig. 5.5 (left) shows these values projected onto the template (average position of

the nodes), allowing for the locations of the highest absolute errors to be assessed.

Pressure errors were observed to be lower in the descending aorta, with the highest

errors situated in the transverse arch. Velocity errors were notably more prevalent

in the underside of the arch and descending aorta. The maximum MNAEN was

observed to be 12.46% and 14.86% for pressure and velocity, respectively.



5.4. Results 143

Bland-Altman analysis showed negligible prediction biases for the overall

aorta (Fig. 5.5, right) and within selected regions (Appendix B.5). Bland-Altman bi-

ases were found to be 0.19% and 0.28% for pressure and velocity, respectively. The

limits of agreement were found to be marginally wider for pressure when compared

to velocity (15.65% vs 12.89%, respectively).

Velocity MNAEN (%)Pressure MNAEN (%)

Figure 5.5: Nodal error analysis. Left: Distribution of mean nodal errors (MNAEN), com-
puted on the test set (n=200). Errors are absolute values and are projected
on the template aorta. Right: Bland-Altman plots for the overall aorta. Nor-
malised error (%) refers to the NAE of each node in every test case, without
taking the absolute value (n=5,800,000). Only 1,000 randomly selected points
were drawn to improve graph readability.

5.4.4.2 Subject errors

The population error for pressure and velocity was 6.01 ±3.12% SD and 3.99

±0.93% SD, respectively. The test cases with the best, median and worst subject

error (MNAES) are shown in Fig. 5.6 with corresponding pressure/velocity gradi-

ents. The maximum MNAES for pressure and velocity were found to be 23.60%

and 8.07%, respectively. The minimum MNAES for pressure and velocity were

found to be 1.54% and 1.91%, respectively.

The relationship between pressure/velocity MNAES and shape mode coeffi-

cients is presented in Fig. 5.7. The second and third mode showed statistically

significant correlations with velocity prediction MNAES, with the third shape mode

showing the highest correlation (R=-0.31). No significant correlations were found

between any other shape mode and MNAES.
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Figure 5.6: Best, median and worst test-set predictions. Comparisons between ground truth
(CFD) and predicted (ML) in the test set (n=200). Best, median and worst cases
for both pressure and velocity-magnitude are shown, ranked using the mean
node-to-node error (MNAES). Pressure/velocity gradients are also displayed.

Figure 5.7: Shape modes vs. ML error. Scatter plot comparing the shape PCA mode values
against subject error (MNAES) in the test set (n=200). Pearson R coefficients
and p-values were computed for each subplot.
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5.4.5 Validation with real patient data

Coefficients for the first 10 shape modes for all new subjects (n=10) were found

to lie within the max-min ranges of the original PCA shape modes (n=67, see Ap-

pendix B.6). The average prediction error using the MNAES metric (ML vs CFD

computed on SSM meshes) was 10.19% ±10.41 and 4.47% ±1.18 for pressure

and velocity respectively. This corresponds to an increase in mean subject error by

4.18% for pressure and 0.48% for velocity, when compared to the population error

in the test-set of synthetic cases (n=200).

Due to the lack of point correspondence and surface matching between the

real and SSM shapes, Frechet distance of pressure and velocity gradients were used

to compare the ML CFD results with the patient CFD data (computed using both

SSM and real geometries). The FD computed between the ML and the CFD (SSM)

gradients corresponded to the prediction error arising solely from the ML model

(FD SSM). The FD computed between the ML and the CFD (real shape) gradients

corresponds to the total error between the ML prediction and true CFD (FD real).

The subjects with the best and worst FD (real) for pressure and velocity are shown

in Fig. 5.8. The mean FD SSM was 1680 ±629 Pa for pressure and 0.47 ±0.17 m/s

for velocity. This compares to 4583 ±3210 Pa for pressure and 1.30 ±0.37 m/s for

velocity between the ML and real-CFD (FD real).

5.5 Discussion
The main findings of this study were: i) SSMs and PCA are suitable for creating

synthetic training data and dimensionality-reduced representations of 3D shape and

flow, ii) DNNs based on these dimensionality-reduced representations can predict

pressure and velocity fields with high accuracy.

5.5.1 Synthetic data generation and dimensionality reduction

A key element of the approach presented was to use an SSM and PCA to both gen-

erate a synthetic training dataset (n=3,000), and to parameterise aortic shape/flow

fields for simplifying DNN model training. It was demonstrated that volumetric

meshes generated by the SSM were suitable for forcing point correspondence in the
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Figure 5.8: Best and worst pressure and velocity predictions on the real patient test cohort
(n=10). ML predictions are performed on the SSM mesh representation. FD
(SSM) is the error between the ML predicted (red) and SSM mesh CFD (dashed
black) gradients. FD (real) is the error between the ML predicted (red) and true
mesh CFD (solid black) gradients.
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CFD dataset through interpolation of 3D aortic CFD flow fields. It was also shown

that less than 60 PCA modes were needed to capture the majority of variance within

aortic shape deformations and 3D pressure/velocity fields. For the shape deforma-

tions, it was found 99% of the total variance could be captured with the first 35

PCA modes. However, the selection of these modes was based purely on amount

of variance captured, and potentially omits low-energy deformations which could

still correlate with the CFD flow-fields. In the future, a sensitivity analysis could

be conducted to assess how many and which shape/CFD modes should be incorpo-

rated in the DNN, and how this would affect model performance. From observation,

mean PCA reconstruction errors of pressure/velocity were found to be low, but not

insignificant in the worst observed test-set reconstructions (Appendix B.3). Geo-

metric properties of the synthetic data were shown to be mostly close to the real

cohort (Table 5.1). In the future, newer approaches for generating synthetic data

and creating dimensionality-reduced representations of complex structures could

be explored, notably deep-learning methods such as autoencoders [118] and gener-

ative adversarial networks (GANs) [198]. In some studies, autoencoders have been

shown to be superior to PCA-based methods (e.g. for 3D facial surface reconstruc-

tion) [199, 200]. Additionally, GANs have shown promise for creating images of

synthetic patients afflicted with CHD [201]. Finally, instead of sampling a Gaus-

sian distribution to find combinations of shape PCA parameters, other methods for

creating new DNN training data may be more appropriate, such as Latin hypercube

sampling [202].

5.5.2 Model performance

DNN-based models were observed to predict point clouds of both pressure and ve-

locity flow fields with good accuracy, while being approximately 4,000x faster than

the presented conventional CFD method. Node errors for pressure were seen to be

larger at the inlet, while velocity errors were more skewed towards the distal regions

of the aorta (Fig. 5.5). This is most likely due to the CFD boundary conditions at

the inlet and outlet constraining the pressure/velocity variability at these regions.

The further away from the aortic inlet or outlet, the greater the variability in veloc-



5.5. Discussion 148

ity or pressure, respectively. It should be noted that there were no significant biases

in either pressure or velocity predictions, suggesting that there were no systematic

errors with the models (Fig. 5.5). In testing, it was found that the mean pressure

subject error was slightly higher than the mean velocity error. This is despite the

pressure PCA model capturing more variance than the velocity model. A possible

explanation for the higher pressure errors is that the association between shape and

pressure is more complex than that between shape and velocity in aortic domains.

This is supported by the observation that shape modes do not correlate with pres-

sure errors (Fig. 5.7). Interestingly, there was a strong negative correlation between

shape mode 3 and velocity error. This suggests that more ’gothic’ aortas (charac-

terised by a more triangular arch) were less prone to velocity prediction errors. A

possible explanation may be that the gothic arch constrains downstream flow pat-

terns (where most velocity errors occur), hence making it easier for the model to

characterise flow features associated to this subset of aortic shapes.

An important element of this study was to apply trained DNN models to

prospective, unseen cases in order to explore the feasibility of performing infer-

ence on real patient data (n=10). It was shown that the average node-based predic-

tion error (MNAES) on the prospective cases did increase for pressure from 6.01%

to 10.19%. Velocity errors increased only marginally in the prospective test cases

(3.99% to 4.47%). This aligns with the previous observation that the relationship

between shape and pressure may be more complex due to the lack of an observed

correlation between the shape PCA modes and pressure prediction errors. ML pre-

dictions were also compared to the real CFD (performed on the raw segmentation

mesh) for all cases. This enabled the proportion of the total error due to the SSM

and DNN to be estimated. It was shown that ∼60% of the total gradient error in

pressure/velocity was due to the SSM, which further strengthens the argument for

improved shape parameterisation.

The approach of using DNNs to model 3D aortic pressure and velocity flow

fields has been described in other works [117, 118]. However, an important limita-

tion of this data-driven approach is that flow fields cannot be assumed to satisfy the
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Navier-Stokes equations for incompressible flow. This may hinder the applicability

of the approach for simulations where accurate flow field prediction is insufficient

in of itself, and conservation of mass and momentum needs to be guaranteed. Fu-

ture development should also include models for computing velocity x, y and z

components, allowing visualisation of streamlines or possible derivation of param-

eters such as wall-shear stress. Other studies have reported the use of long short-

term memory (LSTM) networks or specialised architectures such as PointNet to

build CFD-based ML models [116, 203, 204]. LSTM networks in particular may

be highly suited towards any ML transient flow applications, due to their inher-

ent ability to learn temporal sequences of data. Other architectures such as prob-

abilistic DNNs which output uncertainty intervals during inference should also be

explored [203, 205, 206]. Additionally, alternative methods for sampling synthetic

data (e.g. Latin hypercube sampling) may produce a more diverse dataset for model

training. This may prevent the occurrence of outliers, such as the worst pressure

case in the test-set (MNAES=23.6%).

5.5.3 Potential clinical utility

The fast computation of hemodynamics using the proposed method may have mul-

tiple potential clinical uses. However, this is a proof-of-concept study and further

improvements are required prior to any clinical validation (particularly the inclu-

sion of patient-specific boundary conditions and time varying flow fields - see lim-

itations). Nevertheless, several clinical usages may be possible if this is achieved,

such as for supporting the identification of patients who need an intervention and

predicting the outcome. Specific to the post-repair CoA population, several stud-

ies have shown that CFD can be used to evaluate abnormal hemodynamics (par-

ticularly during stress) and predict normalisation of hemodynamics after stenting

of coarctation. However, this approach is rarely used in the clinical environment

because it is so time-consuming. The approach could possibly be extrapolated to

evaluate stress hemodynamics by simulating each training dataset case under el-

evated cardiac stress conditions. A second application could involve a fast and

automatic pipeline to predict post-stenting hemodynamics in aortas. This could be
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implemented in a two-step solution using: (i) a surrogate finite-element model for

predicting an ideal post-op aortic shape following stenting, and (ii) a surrogate CFD

model for predicting hemodynamics on the post-op aortic shape (following the ap-

proach presented in this study). Use of such models would bring forth a new level

of precision medicine that is currently lacking in congenital heart disease.

In this proof-of-concept approach, the quantities of interest (full 3D pressure

and velocity fields) were selected in order to assess the model’s ability to predict

hemodynamics over the entire aortic domain for individual subjects. However, for

specific clinical applications, such as non-invasive estimation of transcoarctation

pressure gradients, a different modelling approach may be more suitable than the

one presented in this Chapter. This is because for such an application, sampling a

pressure gradient from a 3D reconstructed flow field may be less accurate/reliable

than using a model that is tailor-made to predict only a pressure gradient. An-

other advantage of this method is that clinically acquired pressure gradient data

could be used to validate the ML model. However, the possibility to infer 3D pres-

sure/velocity (including potentially wall shear stress) has greater importance when

applied to clinical applications other than CoA (e.g. aortic aneurysms). Further-

more, the design of an interactive and visual 3D tool synergises better with the idea

of a virtual stenting/surgery pipeline for pre-operative planning.

In addition to the current proposed approach, physics-informed neural net-

works (PINNs) are being increasingly used to solve systems of partial differential

equations. These are especially useful in scenarios where the boundary conditions

are uncertain or the governing fluid flow equations need to be conserved [207].

Other advantages of PINNs include ‘mesh-free’ network architectures which can

integrate sparse data from multimodality sources into the learning process, by using

an experimental data loss in addition to the Navier-Stokes loss. However, in contrast

to the data-driven approach presented in this Chapter, PINNs take long amounts of

time to optimise the network weights and can be challenging to train. Additionally,

each model needs to be trained per patient, therefore the approach does not allow

for development of a single, generalisable ML model.
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5.6 Limitations

In order to translate the proposed DNN-based CFD approach to clinics, there are

two main modelling limitations which need to be bypassed. The first is related to

the loss in surface accuracy when using SSM representations of aortic shapes. The

second is the current simplicity of the CFD approach, which needs to be further

developed in order to generate more meaningful DNN training data.

5.6.1 Shape Parameterisation

It has been seen in previous studies and in Chapter 4 that aortic CFD flow fields

are highly sensitive to geometric and topological variation [208]. For this reason,

using shape vectors that are accurate descriptors of the aortic surfaces is of criti-

cal importance. In the future, the relationship between the SSM registration error

and the resultant CFD flow fields should be further investigated. Where possible,

augmentations to the shape vector should be trialled in order to see if DNN predic-

tion errors for real subjects can be reduced. This may require including additional

shape information as inputs in the DNN models to act as a form of regularisation,

such as a registration error or a geometric feature (e.g. centreline diameters). Such

complimentary shape descriptors may be used to better inform the network of im-

portant features not fully captured by the SSM shape vector alone. Additionally,

multiple SSMs based upon templates other than the mean aortic shape could be

generated. These would enable closer non-rigid registration for unique cases where

the target aorta deviates significantly from the mean shape. Recently, Wiputra et al.

demonstrated methods for augmenting SSMs to enable the inclusion of head and

neck vessel geometry within the aortic shape parameterisation, while retaining high

accuracy with low-dimensional PCA vectors [209]. A similar approach may be em-

ployed in future studies in order to be able to fully describe the patient-specific aorta

with head and neck vessels. Of course, a simple initial improvement could be made

by adding more subjects to the SSM to introduce more variability in the population.
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5.6.2 Computational Fluid Dynamics

In this study, a simplified CFD pipeline was chosen in order to easily automate and

ensure convergence for numerous simulations (n=3,000). A standard CFD solver

set-up was used, assuming steady-state conditions and incompressible flow. In order

to account for the pulsatility involved in aortic flow, a transient solver may be better

suited to real-life applications. It was also assumed that the flow through the great

arteries at peak systole was laminar [210]. In the future, the Reynolds number may

be computed for individual cases to allow for the inclusion of turbulence modelling

where necessary. However, for complex morphologies (such as CoA), Reynolds

number has been seen to be an inconsistent measure of turbulence [211]. Feiger et

al. proposed an alternative solution to turbulence modelling when performing CFD

on a large scale, which involves meshing the domain with extremely high numbers

of nodes [117].

Boundary conditions selected included a fixed, flat velocity inlet and zero pres-

sure outlet condition for all cases. However, idealised inlet velocity profiles (flat,

parabolic etc.) have been shown to be ineffective for producing clinically relevant

data [212, 213]. Thamsen et al. showed that a synthetic aortic population could be

created with realistic accompanying 4D CMR-derived vector flow profiles [214]. In

the future, a similar approach could be taken, allowing for an additional velocity

vector field input parameter into the ML model. Alternatively, a more accessible

approach could involve the use of a parabolic velocity inlet condition and a patient-

specific unsteady flow profile (derived from phase-contrast CMR) in conjunction

with a transient solver for resolving the peak systolic flow field. In this study, it

was decided to omit the head and neck vessels from the CFD model for simplicity,

however this would be required when aiming to simulate realistic patient-specific

aortic hemodynamics [208]. Indeed, Wiputra et al. showed that accurate modelling

of the head and neck vessels is necessary for capturing local flow features in the arch

and producing realistic downstream fluid flow forces [209]. Thus, the inclusion of

head and neck vessels along with lumped parameter outlet models such as Wind-

kessel models should be explored in the future [215,216], as modelling downstream



5.7. Summary and conclusion 153

resistance has been seen to produce more clinically meaningful results [217–219].

5.7 Summary and conclusion
In this proof-of-concept exploration, a pipeline for building ML-based models to

perform repetitive vessel-based CFD tasks has been proposed. Generation of syn-

thetic aortic training data by means of shape modelling allowed ML techniques to

be used, even where data scarcity is an issue (n=67). Point correspondence was

maintained between subject meshes in order to enable PCA. ML models were able

to compute pressure and velocity flow fields much more rapidly (4,000x) than tradi-

tional CFD solvers, without large computational requirements or simulation setup.

Comparison between predicted and ground truth test cases revealed good overall

performance. Testing on prospective cases revealed that shape registration errors

could produce misleading flow fields which deviated significantly from the ‘real’

CFD result, even in the presence of low ML errors. The approach described in

this study is shape-driven and is applicable to any vascular structure which can be

segmented from medical images. In the future, as further explained in Chapter 9,

the models should be improved, so they can perform inference on prospective data

from real patients. The requirements for this are two-fold; improving the accuracy

of the shape representation methods while incorporating the head and neck ves-

sels, and using a more realistic CFD pipeline for generating training data with the

inclusion of patient-specific boundary conditions. Comparison of the ML models

against clinically acquired data (such as catheter-based pressure drops) should be

also performed in the future for validation purposes. Results from the CFD auto-

mated pipeline and from possible CHD simulated treatments could be visualised,

together with the patient specific anatomy automatically segmented using the al-

gorithm proposed in Chapter 4, in the VR platform that will be described in the

following Chapter, to further enhance care in CHD.



Chapter 6

VheaRts: a virtual reality platform

for supporting treatment and

teaching of congenital heart disease

6.1 Introduction

Despite great potential, as discussed in Section 2.2.2 and Section 3.5.4, VR has

not yet fully transitioned into clinical practice, neither for pre-operative planning of

complex cases nor in educational settings. At the time of my project conceptualisa-

tion, VR software solutions bespoke for the visualisation of congenital abnormal-

ities were sparse and not fully compliant with the needs identified at our clinical

centre. Thus, in order to exploit the uses of VR for CHD, I worked on the develop-

ment of a flexible in-house VR platform that could be fitted with tailored features

to respond to the specific demand of care and education in CHD.

6.2 Aims and objectives

The aim of the VR platform was to provide clinicians and students with a user-

friendly tool to enhance understanding of CHD. This was achieved by incremen-

tally implementing specific features, taking into account the direct feedback from

specialists in CHD surgery/clinical care and education/training. The overarching

needs inspired the application to include: (i) easy to use interactive capabilities
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with patient-specific models via hand controllers, (ii) a collection of specialised

tools for enhancing spatial and anatomical understanding of cardiac anatomy, and

(iii) a multi-user feature implemented as a room-based system to enable participants

to create/join online VR sessions, simultaneously.

6.3 Development tools

6.3.1 Unity

Unity is a conventional 3D game engine that has become popularised in recent years

for the development of VR experiences, and follows an object-oriented program-

ming (OOP) approach. Objects in this sense can contain data and/or functions, and

can derive these properties from other objects or classes in a process known as in-

heritence. Since OOP is a highly modular approach by design, code and data can

be easily reused within a project, allowing multiple objects in a scene to share the

same or similar behaviours. In Unity, ‘MonoBehaviour’ is the base class which al-

most every script inherits from. MonoBehaviour contains a number of classes and

functions that facilitate the development process such as: code for storing mesh

information, positional information, computing physics interactions, collider detec-

tion and more.

Within Unity, assets such as images, videos, mesh files and more can be im-

ported. The Unity Editor grants a graphical user-interface (GUI) for the developer to

assemble a scene, change settings, write scripts and more. The majority of scripts

within Unity are written in the language C#, and are appended onto objects in a

scene (following OOP). Shaders (i.e. scripts that act in the rendering pipeline) are

typically written using high-level shader language (HLSL). Following assembly of

a scene (containing meshes, objects with behaviours, lighting sources etc.), the ap-

plication can be started by simulating the game-loop. Physics, collider interactions,

logic, rendering and more are updated once every frame, following a specific exe-

cution order.
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6.3.2 Oculus software developer kit

Unity includes third-party software development kits for Oculus hardware (Section

3.5.2) in order to allow interfacing with Oculus devices. Some of the functionalities

provided in the Oculus SDK include:

• integration of Unity with the device headset/controllers, in order to register

inputs and send outputs

• scripts for managing VR-based interaction with objects in the Unity scene

• scripts for raycasting and creating VR-compatible GUIs

• prefabricated assets (prefabs) which allow for visualising the controllers/hands

• scripts to manage audio and voice interaction

6.4 3D data pre-processing
To generate 3D heart meshes for viewing within VheaRts, cross-sectional patient

images require pre-processing prior to importing. The first step involves segmenta-

tion of the 3D CT or CMR dataset, the choice of which is dependent on the existing

imaging availability for the patient (see Section 2.3.5). Due to the higher spatial

resolution offered, CT is generally preferred. For segmentation of CMR, a 3D

whole-heart SSFP sequence is typically used. All images are acquired in DICOM

format. Software used to generate the masks of the images includes ScanIP (Synop-

sys Simpleware) and Mimics (Materialise), and segmentation is typically performed

using semi-automatic threshold functions. Manual editing is often necessary, e.g.

when ensuring structures such as the atria/ventricles are properly separated from

one another. For most applications, the blood pool of the images is segmented,

omitting the myocardium unless specifically requested for clinical assessment. Sur-

face meshes typically require further editing, which is performed in Meshmixer

(Autodesk), and includes common operations such as re-meshing, removal of arte-

facts and cropping of unnecessary sections. In most cases, a negligible and artificial

outer thickness of 0.1 mm is added to surface meshes by duplicating the mesh in

the outward direction of the surface normals. This operation is typically done for

3D printing, but in VheaRts also improves the visibility of mesh boundaries when



6.5. Core functionalities of VheaRts 157

using the clipping tool (see Section 6.5.2), although this is optional. For compati-

bility with Unity, mesh files required conversion from .stl format to .obj, which also

supports multi-object meshes, allowing for hearts composed of subcomponents in

the application. As explained in the later sections, the file size of heart meshes is

typically kept under ∼50 MB for files imported within Quest 2 devices, although

HMDs tethered to a workstation can support meshes of sizes over 1 GB (depending

on processing power).

6.5 Core functionalities of VheaRts

The in-house VR platform, referenced in the context of this thesis as ‘VheaRts’,

underwent a process of continuous development and functional optimisation over

the timeline of my PhD project. Core functionality developed for VheaRts was used

to form two main applications of the software, one tailored for clinical decision-

making of CHD and the other tailored towards educational needs in CHD. Features

were developed to grant users a wider range of possible interactions with the 3D

heart models. Most of the following tools/functions were accessible across both

educational and clinical versions of VheaRts, along with Android/Desktop builds

for Oculus Quest/Rift (Section 3.5.2). 1

6.5.1 Model grabbing and handling

VR model handling is the most intuitive and important of all interactions, being

fundamental in almost any modern VR experience which utilises hand-tracked con-

trollers. The functionality of this feature is provided within Oculus’ Unity SDK,

and its implementation relies on two main scripts from the library: OVRGrabber

and OVRGrabbable, which distinguish target colliders (object) from user colliders

(the hands) and manage interactions between the two. Objects can be grabbed with

either hand (by holding down the trigger button), and also translated and rotated

intuitively. This allows for natural manipulation of heart models.

1Video of primary VheaRts functionalities: https://vimeo.com/831949370

https://vimeo.com/831949370
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Figure 6.1: Grabbing/handling of a patient-specific heart model using two individual VR
hand controllers.

6.5.2 Shader-based graphical clipping tools

Real-time object clipping allows users to dynamically crop 3D models for an un-

restricted investigation of intracardiac anatomy. The tool was implemented with

shader code (HLSL) which allows Unity to dictate how an object is rendered by the

GPU. With the clipping tool, the user can dynamically hide sections of the model

by passing a planar or spherical ‘clipping object’ into the target mesh. The clipping

tool can be translated/rotated using the hand controllers. Sphere size can be ad-

justed using the user-interface. The position/orientation of the clipping plane/sphere

respective to the heart can be fixed, allowing the user to ‘lock’ specific cuts in place.

Figure 6.2: Left: plane-based clipping. Right: sphere-based clipping. Bright red areas
indicate gaps in the mesh wall where ‘false thickness’ has been rendered.

The shader for the plane clipper runs by looping through each vertex in the

mesh, and calculates the dot product of the vertex-plane vector and the plane’s nor-

mal vector. If the result is positive, the vertex is discarded from the render process
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and not displayed. If the result is less than or equal to zero, this is rendered. For

the sphere slicer, a similar approach is taken, except the vertex is discarded if the

vertex-sphere distance is greater than the sphere radius, since it implies the vertex

is not within the bounds of the sphere.

A

N

A

O

Figure 6.3: Left: plane-clipping. Dot products between plane normal (N) and each vertex-
plane vector determine if a vertex is rendered (e.g. vertex A is rendered). Right:
sphere-clipping. Vertices outside the bounds of the sphere radius are rendered
(e.g. vertex A).

In some heart meshes, the myocardium or other types of wall thicknesses may

be present. In order to visualise a ‘thickness’ within the gap between the two shells,

two render passes in the shader are required. The first pass renders only the back-

facing triangles as a flat, unlit colour with no illumination or shadows. The second

renders only the front-facing triangles (with normal illumination). This combined

effect results in the mesh appearing as it normally would, until the user clips the

model and views the back-faces (which are unlit), giving the impression of ‘thick-

ness’ or muscle mass.

6.5.3 Virtual echocardiogram probe

A virtual echocardiogram tool enables users to practice generating ultrasound-like

2D slices from a 3D cardiac object. The VR probe was designed by attaching an

additional camera in the scene to an interactive/grabbable probe handle.

During runtime, the camera’s output is converted into a texture. The texture

is updated constantly and overlaid onto a two-dimensional conical sprite, in or-

der to emulate the projection of an ultrasound. The camera has an infinitesimally

short depth for creating a flat 2D projection. Post-processing filters including noise,
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Figure 6.4: Echocardiogram tool, with projected four chamber view on the right.

monochrome and bloom were applied to create a stronger likeness to conventional

ultrasound imagery.

6.5.4 Marking and measuring

Functionality for inserting markers and measuring distances allows users to high-

light structures or assess diameters, lengths and sizes of cardiac structures.

Figure 6.5: Left: markers placed on a heart model. Right: linear distance between two
points positioned on the aortic arch of the patient-specific model.

Marker placing was implemented by instantiating primitives (in-built Unity

meshes) at runtime. Markers attached to heart objects would remain in the same re-

spective positions. Previously placed markers could be deleted. Distances between

two markers could be measured using a function that converts Unity’s standard dis-

tance units into millimetres, while accounting for any scaling performed to the mesh
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within the application.

6.5.5 Mesh slicing

The ability to cross-cut and section the heart in any plane enables users to subdivide

the heart with any desired configuration of slices. The new meshes can be then

grabbed/interacted with, similarly to regularly imported objects.

Figure 6.6: Left: heart model (pre-cut) with user deciding plane orientation. Right: heart
model (post-cut) split into two separate meshes.

The slicing algorithm involves a number of steps. The first is to define the

desired plane using three points in space. These points are recorded by the user

with a laser pointer, setting the plane position (Fig. 6.6). Following this, a for

loop checks the vertices of each triangle and identifies whether it is left/right-sided

from the plane, depending on the computed signed distance (dot product). Trian-

gles which are identified to lie on the axis of the plane have their intersection points

computed. This is performed for each triangle edge with a plane-line intersection

formula [137]. For a plane with normal n and offset D from the origin, the intersec-

tion vector I on a line given by two points AB is given as:

I = A+

(
D−n ·A

n · (B−A)

)
× (B−A) (6.1)

Following identification of a plane-triangle intersection, the polygon is split

and/or sorted depending on the orientation of the intersection. Five main types

of intersections were identified, with only two cases necessitating re-triangulation

(Fig. 6.7). To maintain consistency, the vertices are always passed into the retri-
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angulation function in clockwise winding order. In fringe situations where the cut

lies extremely close to a vertex (intersection point is <1% edge length), the triangle

may be sorted instead of undergoing splitting and re-triangulation, following cases

3 or 4 (Fig. 6.7). Once the new triangles are constructed, they are sorted into the

new mesh collections depending on what side of the plane they lie on. Limitations

of this approach include the possibility of generating highly skewed triangles if the

intersection line is very close to the border.

Algorithm 4 ComputePlane
% User draws a plane P in 3D with the laser pointer
% Save any three points (p1, p2, p3) that lie on the plane P
p1, p2, p3 = points[0], points[1], points[2]
% Compute two vectors that lie on the plane
p3p1 = p3 - p1
p2p1 = p2 - p1
% Compute the cross product of p3p1 and p2p1 for the plane normal n
n = Cross(p3p1, p2p1)
% Compute offset of plane (d) using any point on the plane
d = Dot(n, p1)
return n, d

Algorithm 5 GetSideOfTriangle
% Get the signed distances of all triangle vertices from the plane n
for Vertex v in triangle t do

signedDistance = Dot((v-n), n)
distances.Add(signedDistance)

end for
return distances

Algorithm 6 GetIntersectionPoints
% Compute the locations of the triangle/plane intersection points (if they exist)
for Edge e in triangle t do

% Use line-plane intersection formula (Eq. 6.1)
i = IntersectionEquation(e, n, d)
if intersection is found then

break
end if

end for
return i
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Algorithm 7 Retriangulate
% Build new triangles from vertices and intersection points (Fig. 6.7)
if Case 1 then

% Preserve winding order of triangles
newTri1, newTri2, newTri3 = [A, AB, AC], [AB, C, AC], [AB, B, C]
% Return as left/right sided depending on signed distance
return newTri1, newTri2, newTri3

end if
if Case 2 then

newTri1, newTri2 = [A, B, BC], [A, BC, C]
return newTri1, newTri2

end if
if Case 3 then

% Does not require retriangulation
return t

end if
if Case 4 then

% Does not require retriangulation
return t

end if
if Case 5 then

% Does not require retriangulation - duplicate in both left/right arrays
return t, t

end if

Algorithm 8 Mesh cutting algorithm
n, d = ComputePlane()
for triangle t in mesh do

distances = GetSideOfTriangle(T)
if t is entirely left-sided then

leftTris.Add(t)
end if
if t is entirely right-sided then

rightTris.Add(t)
end if
if t not entirely right or left sided then

% Determine t intersection points
i = GetIntersectionPoints(t, n)
% define new triangles and add them to corresponding left/right arrays
newTrisLeft, newTrisRight = Retriangulate(t, i, n, d)
leftTris.Add(newTrisLeft)
rightTri.Add(newTrisRight)

end if
end for



6.5. Core functionalities of VheaRts 164

A

B

C

AB

AC
A

BC
BC

Figure 6.7: The five main triangle-plane intersection conditions. The red dotted line indi-
cates the cutting plane. The intersection conditions from left to right are: (i)
two edges, (ii) one vertex and one edge, (iii) one vertex, (iv) one edge, and (v)
all three vertices.

6.5.6 Mesh surface painting

Surface mesh painting to grant users the ability to highlight and/or delete specific

areas on the surface of the mesh in VR, thus providing further mesh-editing func-

tionality. Newly generated meshes can be exported in an .stl format. A selection of

different ‘brush sizes’ are accessible with the tool.

Figure 6.8: Left: user selecting and painting mesh surface elements by raycasting with
laser pointer. Right: heart after selected elements were deleted.

Implementation of this tool is mesh-based rather than shader-based. During

initialisation, a duplicate mesh of the target heart is generated with empty triangles

(not visible). With the use of a laser pointer, a raycast ‘hit’ is registered on the

target mesh. Following this, a function identifies which triangles were selected

and activates them in the secondary mesh. Since the secondary mesh has a higher

priority in the rendering queue, triangles appear to overlay the original mesh, acting

as a mask.

When the user decides to delete any highlighted triangles from the mesh, active
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Figure 6.9: Mesh surface element painting with increasing brush-sizes. Triangle connec-
tivity is used to determine element selection patch.

triangles in the secondary mesh are removed from the original mesh. The user has

the ability to change the ‘paint brush’ size by parsing through a mesh connectivity

dictionary and highlighting nearby triangles (Fig. 6.9).

6.5.7 Miscellaneous features

In addition to the aforementioned tools, other functionalities have been developed

for VheaRts. These included:

• tutorial videos for each tool which can be viewed in-app

• scaling (or resizing) of imported 3D models using a GUI

• generating screenshots from the VR user perspective

• recording videos from the VR user perspective

• annotation and colouring of meshes with multiple subcomponents

• interactivity with individual mesh subcomponents for creating an ‘exploded’

view

• importing of patient ultrasound or CT/CMR images

• animations for cases with multiple mesh frames, acquired typically from 4D-

CT sequences

6.6 Networking implementation
Thus far, all VheaRts described features are accessible in the offline, single-user

educational and clinical platform versions. In order to enable online and multi-user

interaction while preserving the same functionality, modifications and changes were

necessary.
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6.6.1 Photon unity networking

Photon unity networking (PUN) is a package for adding multi-user functionality

into Unity applications. It comes pre-built with scripts and behaviours that enable

individual players to access shared rooms, where objects are synced over the net-

work. PUN offers servers so that players can connect over the cloud, removing the

need for managing end-to-end connections. Players connect to a master server con-

taining a list of identifiers for various regions. When PUN determines the region of

choice (or lowest latency region by default), the user is guided via the region’s mas-

ter server into a game server. Creation/joining of individual rooms is conducting

and hosted on the game servers.

Photon cloud

Client

Name Server
Master Server 

EU
Game Server

EU

Master Server
US

Master Server
...

Game Server
US

Game Server
...
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3

Figure 6.10: PUN cloud connectivity system.

An application programming interface (API) within PUN provides implemen-

tations of a number of networking functions, allowing for much of the base function-

ality of multiplayer experiences to be quickly built-up (e.g. creating rooms, joining

rooms). Generic objects in the scene can be converted into networked objects with

the use of a ‘Photon View’ script. Ownership of objects can be transferred to other

players, allowing more than a single person to control/interact with an object. Re-

mote procedure calls (RPCs) can be conducted over the network, allowing users

to execute commands on other clients’ applications via the server. This enables

pre-existing functionality to be modified for supporting multi-user capabilities. For

example, actions such as toggling a model on/off could be performed using an RPC

so that the scene is synchronised between clients. Audio transfer and in-built avatars

are also included within the PUN package.
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6.6.2 Online rooms

VheaRts applications were fitted with multiplayer functionality in order to allow

users access to shared rooms. Two classifications of online lobbies were assigned:

a classroom-type lobby (one tutor and several students), or a clinical lobby (all

with equal permissions). Before entering a classroom-type lobby, setting the level

of permissions (student or tutor) was required. This allowed only one tutor to be

active in the scene, which was important in classroom contexts, since it granted

only the course coordinate access to the GUI for toggling tools and models. This

streamlined the teaching process by preventing other users from modifying settings.

The flowchart for entering/creating rooms when a user loads into a classroom-type

lobby can be viewed in Fig. 6.11. For clinical lobbies, all users were granted full

permissions.

Are you the tutor?

Execute application

Does room exist?

Input session room name

Create room and 
Join as student

Input a username

Join room as student

Does room exist?

Display control scheme

No Yes

Create room
and join as tutor

Input session room name

Join room as tutor

Is a tutor in room?

No

Yes

No

Yes

Yes

No

Figure 6.11: The flowchart for users accessing the online component in an online
classroom-type lobby.

Each user is granted a digital avatar upon loading into a room, composing of

head and hand models. Usernames can be entered and are displayed over each
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avatar. Voice communications using the headset in-built mic and headphones were

enabled. Each tool previously described in Section 6.5 had online-compatibility

implemented using a combination of RPCs and pre-fabricated PUN scripts to ensure

functions could be correctly synced over the network. Transfer of ownership for

some objects (e.g. ultrasound probe, clipper) was made possible to allow users

with lower permissions (students) to also interact with tools and grab heart models.

Locomotion was enabled for each player, allowing users to reposition themselves

in the room with the controller joysticks. All users could toggle a laser pointer to

highlight or indicate structures.

Figure 6.12: Example session of a VR multiplayer environment in the educational applica-
tion. The tutor (pointing at heart) can be seen using a clipped model to teach
cardiac anatomy in a classroom setting.

6.7 VheaRts for clinical decision-making
VheaRts for clinical decision-making was built by assembling the previously de-

scribed tools for an application in which 3D models of the heart could be loaded

during runtime for VR assessment. All core and networking functionalities were

included except for those not relevant to clinical usage (e.g. labelling of mesh sub-

components). Builds for both PC (Windows) and Android (Quest devices) were de-

veloped, in order to be able to target tethered Oculus headsets (Rift) and standalone

headsets (Quest). Functions for the serialisation and deserialisation of meshes were

included. This enabled models to be saved in a persistent library, avoiding the need

to re-import models each time the application is halted.
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Figure 6.13: Top: Desktop GUI for importing models in the clinical application (a VR-
based GUI is available for the Quest build). Bottom: User-perspective during
clipping tool interaction in the VR environment (blue: GUI for toggling mod-
els, red: GUI for toggling tools/settings).

Fig. 6.13 presents the desktop version of the VheaRts clinical application.

After initialisation, the user may alter settings or import new models via a GUI (Fig.

6.13, top). In the desktop version this is performed with mouse/keyboard, whereas

for the standalone Quest build the user uses a laser pointer to make selections in

an in-VR GUI. Features of the GUI included: (i) text fields to be able to point to a
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file location (ii) a button for executing the import command (iii) a list to be able to

select models, (iv) a button to delete selected meshes, and (v) a canvas for selecting

the colour of individual submeshes. An option for flagging the imported file as a

thick-walled mesh was needed in order for assigning shader properties so that the

gaps between shells are rendered as full (e.g. the myocardium). The shader was

discussed in greater depth in Section 6.5.2. From the desktop GUI, access to VR

is granted using a UI button in the bottom-right corner, with online functionalities

accessible in-VR via the settings menu (Fig. 6.13).

6.8 VheaRts for education
In the educational version of VheaRts, interactions with models, user-interfaces and

tools were mostly unchanged from the clinical application. The most significant dif-

ferentiating feature was the replacement of runtime mesh importing with a selected

library of curated CHD models for teaching. The selection of models is described

in Chapter 8. Additionally, some specific features required implementation in the

educational application. These functions included: the possibility to toggle on/off

mesh labels and the ability to have dynamic, ‘animated’ hearts by using a script

which loops through multiple meshes in a patient case. Networking capabilities

were also included for the educational app version. However, the implementation

differed from the clinical version in order to more closely simulate a conventional

anatomy lab through the use of ‘classroom-type lobbies’ (see Section 6.6.2).

6.9 Summary and conclusion
A framework for a VR platform (VheaRts) consisting of a specific set of features for

teaching and planning treatment of CHD has been outlined. The general software

architecture and development approach was described, along with the implemen-

tation of individual tools, including the scripting approach and any relevant algo-

rithms used to create the feature. The configuration of the application to support

networking capabilities through server-hosted online rooms was described. The fi-

nal assembly of two individual applications - clinical and educational - was outlined

and examples of their adoption in the respective areas will be presented in the next
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two chapters, together with studies carried out to gain evidence on the advantages

of the use of VR for clinical care and education in CHD.



Chapter 7

VheaRts for clinical planning

7.1 Introduction
The overall potential of VR for clinical applications in CHD was discussed in Sec-

tion 3.5.4, including the remaining challenges of translating VR into actual clinical

practice as recognised from the literature. In this Chapter, I report the overall experi-

ence related to the integration of VheaRts (see Chapter 6) into clinical pre-operative

planning for CHD at Great Ormond Street Hospital for Children and at an external

centre, Bristol Royal Hospital for Children, from 2019 to date. The first part of the

Chapter lists the CHD cases where VheaRts was employed for planning complex

treatments (Section 7.2), the second section focuses on three examples of a specific

lesion, DORV (Section 7.3), the third part describes a retrospective study to assess

the advantages of VR compared to other image modalities (Section 7.4), and the

final part describes the use of VheaRts beyond CHD (Section 7.5). The aims of

this part of the project were to: (i) explore the possibilities for supporting complex

surgical pre-operative planning within CHD and (ii) capture the potential benefits

and disadvantages of VR vs other 3D imaging modalities.

7.2 Overview of VheaRts clinical cases of CHD
The use of VheaRts was requested on a case-by-case basis by clinical practition-

ers from Great Ormond Street Hospital for Children and the Bristol Royal Hospital

for Children for pre-operative planning of a complex CHD cases. Following the

creation of the 3D anatomical reconstruction for each individual case by conven-
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tional segmentation techniques (Section 2.3) of routine diagnostic imaging, users

were able to interact with the patient specific 3D models using the tools described

in Chapter 6. VR interaction was typically self-guided, and cross-sectional medical

images (CT/CMR) were available on a separate screen as part of the VR patient as-

sessment. During the period 2019-2023, a total of 48 patients were evaluated using

VheaRts at Great Ormond Street Hospital and 8 patients at Bristol Royal Hospital

for Children. Thus, a total of 56 cases have been reviewed (combining both clinical

centres) using VheaRts, with primary diagnosis shown in Table 7.1.

Case Primary diagnosis Case Primary diagnosis
1 DORV 29 Multiple associated complex lesions
2 DORV 30 AOCA
3 DORV 31 AOCA (intramural)
4 DORV 32 AOCA (intramural)
5 DORV 33 Complex heterotaxy
6 DORV 34 Complex heterotaxy
7 DORV 35 Double aortic arch
8 DORV, HLHS 36 Hypoplastic aortic arch
9 DORV (TGA-type) 37 Truncus arteriosus
10 DORV (TGA-type) 38 Aortic valve dysplasia
11 DORV (TGA-type) 39 Shone complex
12 DORV (TOF-type) 40 Complex LVOTO
13 DORV (TOF-type) 41 PDA (type B)
14 DORV (TOF-type) 42 PPVI stent implantation
15 DORV (complex) 43 Ebstein’s anomaly
16 Cardiac tumour 44 Double mitral valve dextrocardia
17 Cardiac tumour 45 Double inlet left ventricle
18 Cardiac tumour 46 TGA
19 Cardiac tumour 47 HLHS
20 Cardiac tumour 48 CCTGA
21 Cardiac tumour 49 CCTGA
22 AVSD 50 CCTGA
23 AVSD 51 CCTGA
24 VSD 52 HLHS
25 VSD 53 HLHS
26 ASD and sinus venosus 54 MAPCAs
27 Multiple associated complex lesions 55 Right atrial isomerism, TAPVC
28 Multiple associated complex lesions 56 Obstructed TAPVD repair

Table 7.1: Compiled list of cases (n=56) reviewed with VR. The last 8 cases (highlighted)
were managed and performed at the external clinical centre.

Overall, cases with conotruncal lesions (see Section 2.1.3) as primary diag-

nosis formed 39% of the referrals. The most frequently requested lesion (Chapter
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2) was DORV (27%), followed by cardiac tumour/fibroma (11%); TGA-type and

TOF-type DORVs each constituted 20% of the total DORV cases. Cases with a

primary query related to a septal defect (AVSD, ASD, VSD) formed 9% of the re-

ferrals, although these defects were much more common as an associated lesion in

other diseases (e.g. in all DORV cases). Cases were deemed to be with ‘multiple

associated complex lesions’ if 5+ abnormalities were present with no clear primary

diagnosis. Arterial lesions as a primary diagnosis (see Section 2.1.4) constituted

7% of the referrals. CCTGA was observed to be the most frequently requested le-

sion at the external centre (38%). Notably, no DORV or cardiac tumour cases were

requested at the external centre. The only lesions requested in both centres were

CCTGA (internal n=1, external n=3) and hypoplastic left heart syndrome (HLHS)

(internal n=1, external n=2). Prolonged testing of the VheaRts clinical application

in the external centre will be needed in order to compare both populations in greater

detail. Finally, cases recorded included some patients with highly unique lesions,

such as anomalous origin of the coronary arteries (AOCA) or patients with cardiac

tumors (Fig. 7.1). Almost all cases were referred from surgeons/cardiologists with

the intention to evaluate the anatomical arrangement of the patient cardiac struc-

tures prior to surgical intervention. In these instances, model handling interactions

and clipping tools were most frequently used.

Figure 7.1: Left: rare case of a tumor embedded within the myocardium in VR (red: heart,
green: tumor, translucent: myocardium). Right: VR model of a patient with an
anomalous intramural coronary course (blue: right side of heart, red: left side).

One request only was received from an interventional cardiologist to plan a
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case of percutaneous pulmonary valve implantation (PPVI) in the presence of pos-

sible risks of compressing the nearby coronary artery (Fig. 7.2). This resulted

in a unique outcome where VheaRts was used as a method to visualise a set of

structural simulation results. The implantation of two stents (SAPIEN, Edwards

and Melody, Medtronic) was simulated at different levels of expansion and at dif-

ferent locations using the software Abaqus (Dassault Systèmes, SIMULIA corp).

The results were visualised in VheaRts and used to better understand how the

impingement of the stented PA root on the coronary artery varied with the stent

type/placement/expansion.

Figure 7.2: Left: PPVI simulation with a Melody stent expanded at a diameter of 18 mm.
Right: PPVI simulation with a SAPIEN stent expanded at a diameter of 17 mm.
All models were rendered in VheaRts.

At the end of the first year of VheaRts deployment and testing (2019-2020),

clinical information related to the patients that were pre-operatively assessed with

VR (n=14) was retrospectively collected and analysed, together with feedback from

the clinicians/surgeons who had used the application (n=6) via a short survey. No

early mortality was recorded, and mean operative time, cardiopulmonary bypass

time, aortic cross clamp time, ICU stay, ventilation time and hospital stay length

were similar to those reported from historical data without the use of VheaRts.

Further prospective analyses on larger cohorts will be required in order to establish

the possible value of VheaRts for surgical planning. In terms of clinical feedback

for the use of VheaRts, respondents had an average experience of 17.5±9.6 years

of specialisation within their field. The majority of users (67%) had tried VR prior

to VheaRts. Following VheaRts testing, 83% agreed strongly or very strongly that

the application and tools were intuitive. Feedback indicated that model handling
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was observed to be the most intuitive and useful tool, shortly followed by clipping.

All users stated strong interest in using VheaRts again for clinical pre-operative

planning of CHD. Examples with more details and specific surgical approaches are

reported in the following Section.

7.3 VheaRts for planning DORV repair: case studies
As described in Section 7.2, DORV was the most commonly referred lesion for VR

assessment (27%, n=56). From 2019-2022, the surgical team reported three patient

cases in detail where VheaRts was used for pre-operative assessment. These are

presented with the aim of showing: (i) the general approach that was taken using

VR, (ii) how VR contributed to the formulation of the pre-operative plan, and (iii)

the potential applicability of VR in DORV.

7.3.1 Case report 1: planning biventricular repair

The patient presented with a postnatal diagnosis of DORV with side-by-side great

arteries, large non-committed VSD and a small muscular apical VSD. Previous pal-

liation included a PA banding. Cardiac CT confirmed the presence of a significant

subpulmonary obstruction with RV hypertrophy. The 3D model was reconstructed

from cardiac CT.

As part of the pre-operative planning phase, the surgeon used VheaRts to as-

sess the intracardiac anatomy of the patient from both conventional (axial, sagittal,

coronal) and non-conventional views. The graphical clipping slicer was used to

evaluate the severity of the subpulmonary obstruction and the feasibility of a biven-

tricular repair. The spatial relationship between the VSDs and the great arteries was

evaluated.

The patient underwent successful intracardiac biventricular repair at 10

months-of-age with VSD enlargement, division of mid-cavity RV muscle bun-

dles and intraventricular tunnelling through the VSD to the aorta. Postoperative

echocardiography showed a patent LV to aorta tunnel, with laminar flow and no

residual VSD. Postoperative CT was performed and segmented, allowing additional

evaluation of the surgical outcomes in 3D (Fig. 7.3, right).
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Figure 7.3: Left: pre-surgical patient model, shown using the planar clipping tool. The
markers delineate the planned LV-aorta baffle path. Centre: Post-surgical pa-
tient model, with newly reconstructed LVOT shown. Right: the same post-
surgical patient model with only the isolated LV to aorta baffle route shown.

7.3.2 Case report 2: planning biventricular repair with arterial

switch

The patient presented with DORV, previously palliated with a PA band. Due to an

identified tricuspid valve (TV)/mitral valve (MV) fibrous continuity, the interven-

tricular communication was suspected to be perimembranous, and the conduction

axis expected at its posterior-inferior margin. The 3D model was reconstructed from

cardiac CT images.

Using VheaRts, assessment of the intracardiac anatomy was performed. The

relationship between the VSD and the great arteries was inspected in a similar ap-

proach to case 1 using the clipping tools. The course of the suture line and expected

3D conduction system route were mapped by placing markers and measuring dis-

tances (Section 6.5.4). The diagnosis of the VSD phenotype was confirmed.

Following VR assessment, interventricular tunnelling of the LV to the PA with

arterial switch was deemed the most suitable approach. At 10 months-of-age, the

patient successfully underwent PA de-banding, VSD enlargement, intracardiac rout-

ing of the LV to the pulmonary root, arterial switch and re-positioning of the neo-PA

to the right of the neo-aorta.
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Figure 7.4: Pre-surgical patient blood pool model. Left: exterior view, right: intracardiac
view with the expected LV-PA baffle route plotted using markers.

7.3.3 Case report 3: planning complex biventricular repair

A patient with complex DORV was referred following a series of interventions in

other centres. The original anatomy presented with aortic coarctation, arch hy-

poplasia and DORV. As a neonate, the patient underwent aortic arch repair and PA

banding. At 10 months-of-age, the patient underwent the Glenn and Damus-Kaye-

Stansel (DKS) procedure [220], planning for an eventual total cavopulmonary con-

nection (TCPC). A 3D model was reconstructed from CT images.

Using VheaRts, a small LV cavity, narrow VSD and thickened interventricular

septum could be clearly identified. The fibrous continuinity between the TV/MV

implied a perimembraneous VSD. With VheaRts, the 3D conduction system route

and suture lines were mapped by measuring and using markers and the clipping

tools.

The patient was operated with a one and one half ventricle repair approach

with VSD enlargement. The postoperative course was complicated, with bilateral

pleural effusion and a failed attempt at extubation. The superior vena cava pressure

was measured at 20mmHg, with the inferior vena cava at 10mmHg. Seven days

after the one and one half ventricle repair, the Glenn was taken down and a biven-

tricular repair was successfully performed. Three weeks after the repair, cardiac

catheterisation showed a patent SVC-RA connection, open RV-PA conduit, good

LV function and an unobstructed LV-DKS channel and LVOT.
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Figure 7.5: Pre-surgical patient blood pool model. Left: exterior view, right: intracardiac
view with the interior DKS revealed using the clipping tool.

7.4 VheaRts for planning DORV repair: a retrospec-

tive pilot study to assess the benefits of VR

7.4.1 Introduction

As described in Sections 2.1.3 and 3.5.4, DORV represents a wide range of anatom-

ical configurations that, together with associated abnormalities, often result in

unique anatomies requiring individualised surgical repair approaches. In many

cases, deciding on a biventricular/univentricular approach can be challenging, with

potentially significant impacts on patient outcomes. Since the introduction of 3D

options for exploring intracardiac anatomy, there has been a lack of evidence for

favouring one 3D modality over the other, or against conventional cross-sectional

imaging (CT/CMR). This study reports a first attempt to identify evidence regard-

ing the potential usefulness of VR compared to other image modalities in the pre-

operative planning of DORV.

7.4.2 Aims and objectives

This study aimed to evaluate the role of different 3D modelling techniques (3D

PDF, printed models, VR) and conventional cross-sectional imaging in the surgical

planning of patient-specific DORV cases. The main objectives were to: (i) evaluate
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how the surgeon approach differs when exposed to various 3D imaging modalities,

and (ii) investigate any potential advantages for using VR as a supplementary 3D

visualisation tool during the pre-operative planning of complex DORV.

7.4.3 Methods

7.4.3.1 Patient population and image data

Ten consecutive patients with complex DORV who successfully underwent biven-

tricular repair with intracardiac baffle (without arterial switch), between August

2015 and March 2018 at Great Ormond Street Hospital for Children were retro-

spectively selected. CT images were acquired using dual source multidetector CT

scan (Siemens Somatom Force, Siemens Healthineers, Erlangen, Germany), as con-

trast enhanced non ECG-gated datasets. Cardiac MR imaging were acquired with

contrast enhanced three-dimensional balance steady state free precession (3D whole

heart) in mid-diastole with respiratory navigator at 1.5 Tesla (Siemens Avanto). Rel-

evant clinical information, including post-operative follow-up and cross-sectional

imaging data (CT/CMR) was collected for all patients.

Volumetric images were post-processed (see Section 2.3) to reconstruct the

atria, ventricles, great vessels and, where possible, valvular structures. For 3D print-

ing, two planar cuts were performed on the 3D meshes, one across the RV free wall

and one across the LV posterior wall to expose the intracardiac anatomy and VSD.

The cuts were indicated by the operating surgeons as optimal to evaluate the patient-

specific anatomies. A 1 mm uniform thickness was added to each cardiac surface

for printing.

7.4.3.2 Three-dimensional visualisation tools

Following image reconstruction, the 3D PDF file of each patient model (with planar

cuts) was created from ScanIP (Synopsis, U.S.A.). All models were then printed

at 1:1 scale, in rigid white nylon (EOS PA2200 Nylon 12) using selective laser

technology (EOS P100). The 3D reconstructions (as .obj files) were imported into

VheaRts. The target HMD was the Oculus Rift system (Section 3.5.2). In the

VR environment, the user could freely move, rotate and interact with each patient-



7.4. VheaRts for planning DORV repair 181

specific model in virtual space, as detailed in Chapter 6.

7.4.3.3 Evaluation of patient model and surgical strategy

The ten cases were independently evaluated by two experienced paediatric cardiac

surgeons from different centres, each with more than 15 years of experience as a

first operator in paediatric cardiac surgery. Neither surgeons were involved in the

original intervention nor with the clinical care of the patients, and were completely

blinded to the actual surgical repair and outcome. Each surgeon was individually

asked to provide a surgical plan for all ten retrospective cases, using four different

visualization tools. The decision on the type of repair (biventricular vs univentric-

ular) was recorded at the end of each stage of the analysis, noting whether arterial

switch would be required. The first assessment of patients was based on clinical his-

tory and conventional imaging modalities such as echocardiography and CT/CMR

images. The review of the images was guided by a senior cardiologist with ex-

tensive experience in cardiovascular imaging. Following this, the surgeons were

presented sequentially with patient-specific three-dimensional models of each case

in the form of: (i) a 3D PDF, (ii) a physical 3D printed model, and, (iii) the VR

setup (Fig. 7.6).

3D Printed Model3D PDF Virtual Reality

Figure 7.6: Three-dimensional visualisation tools used by surgeons A and B for an example
case.

At each step, the surgeons were asked to confirm or change their potential

surgical approach. Each decision was compared to the actual strategy performed on

each patient (i.e. the choice of reference) in order to evaluate the accuracy of each

type of 3D modelling modality in planning complex surgical repairs. The actual
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performed surgical repair was considered successful for all patients, due to reported

positive outcomes within their follow-up time.

7.4.4 Results

7.4.4.1 Patient population

Patient baseline characteristics are summarized in Table 7.2. Nine patients had

previous palliation at a median of 0.6 months (ranging from 0.1 - 3) including PA

banding (PAB, n=6), arch repair and PAB (n=2) and bilateral PAB and PDA stent

(n=1). In accordance with the plan agreed by the multidisciplinary team, all patients

underwent biventricular repair with intracardiac tunnelling ± VSD enlargement at

a median of 8.4 months (ranging from 2.6 - 13.8). In three cases (case 1, case 6,

case 7), ASO was performed. Details of each procedure and LVOT gradients at

discharge are recorded in Table 7.3.

Case Imaging
modality

Location of
interventricular
communication

Arrangement of
great arteries Additional findings

1 CT
Multiple (non

committed+apical)
Parallel, aorta anterior

and to right
Atrial septal defect, aortic arch
hypoplasia, aortic coarctation

2 CMR Subpulmonary
Parallel, side by side,

aorta to right
Patent foramen ovale, aortic

coarctation, RCA from left facing sinus

3 CT Non committed
Parallel, side by side,

aorta to right N/A

4 CT Non committed
Parallel, side by side,

aorta to right
Large VSD split in two by

large muscular bridge

5 CT
Double committed
with inlet extension

Parallel, side by side,
aorta to right

Sub aortic narrowing, anomalous left
anterior descending from RCA

6 CT Non committed
Parallel, side by side,

aorta to right
Large conal branch running on

the anterior wall of RV

7 CT
Multiple (non committed

+ small muscular)
Parallel, aorta anterior

and to right N/A

8 CT Non committed
Parallel, side by side,

aorta to right
Subpulmonary and main
pulmonary artery stenosis

9 CT Non committed
Parallel, aorta anterior

and to right
ASD, chordal attachment of tricuspid

valve to interventricular septum

10 CT Non committed
Parallel, aorta anterior

and to right
Aortic arch hypoplasia,

aortic coarctation

Table 7.2: Baseline characteristics for the 10 DORV patients.

The median follow-up was 31 months (ranging from 10.2 - 44.6). There were

no mortalities during follow up. Two patients underwent further surgical interven-

tions. Case 1 had surgical closure of residual apical VSDs due to the persistence of

significant left to right shunt 24 months after the initial repair. Case 7 underwent
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Case Type of
biventricular repair

Previous
palliation

Age at palliation
(months)

Age at repair
(months)

Discharge
LVOT (m/s)

1
ASO, intraventricular
tunnel and arch repair

Bilateral PAB
and PDA stent 0.7 6 1.2

2 Intraventricular tunnel
Arch repair,

PAB 0.1 11 1.1

3 Intraventricular tunnel PAB 1.4 7 1.4
4 Intraventricular tunnel PAB 0.5 5 2.2
5 Intraventricular tunnel PAB 2 3 1.2

6
ASO and

intraventricular tunnel PAB 2.6 10 1.4

7
ASO and

intraventricular tunnel PAB 0.4 13 2.5

8 Intraventricular tunnel n/a n/a 5 1.3
9 Intraventricular tunnel PAB 3 11 1.2

10 Intraventricular tunnel
Arch repair,

PAB 0.1 10 1.1

Table 7.3: Procedures performed for each DORV patient. CPB = Cardio-pulmonary by-
pass, ASO = arterial switch operation, PAB = pulmonary artery banding.

two reoperations for recurrent LVOT obstruction. A resection of a fibro-muscular

shelf was performed at 8 months after repair, followed by a later replacement of the

VSD patch at 23 months. One more patient (i.e. case 5) was scheduled for reoper-

ation at the time of writing, with an LVOTO gradient of 4.1 m/sec 40 months after

the biventricular repair. Follow-up data such as LVOT gradients are summarised in

Appendix C.1.

7.4.4.2 Surgical planning

The choices of the two surgical evaluators were compared to the actual operation

performed (Table 7.4). After reviewing the CT or CMR data, a biventricular repair

strategy was correctly proposed in 9/10 cases by surgeon A and in 6/10 cases by

surgeon B.

Following review of the 3D PDF models, the feasibility of any biventricular

repair (with or w/o ASO) did not change for surgeon A (9/10) or surgeon B (6/10).

Additionally, no individual approaches drastically changed (i.e. from univentricular

to biventricular or vice versa).

After viewing 3D printed models, the total feasibility of biventricular repair

remained unchanged for surgeon A (9/10), and increased to 7/10 for surgeon B.

However, the pre-operative plan for some individual cases was changed, for both
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Case Repair CT/CMR 3D PDF 3D print VR
surgA Bi-V+ASO Bi-V+ASO Uni-V repair Bi-V+ASO

1
Bi-V

+ASO surgB Uni-V repair Uni-V repair Uni-V repair Bi-V
surgA Bi-V+ASO Bi-V+ASO Bi-V+ASO Bi-V+ASO

2 Bi-V
surgB Bi-V+ASO Bi-V+ASO Bi-V+ASO Bi-V+ASO
surgA Bi-V+ASO Bi-V+ASO Bi-V Bi-V

3 Bi-V
surgB Bi-V Bi-V Bi-V+ASO Bi-V
surgA Bi-V Bi-V+ASO Bi-V+ASO Bi-V+ASO

4 Bi-V
surgB Bi-V+ASO Bi-V+ASO Bi-V Bi-V+ASO
surgA Bi-V+ASO Bi-V Bi-V Bi-V

5 Bi-V
surgB Bi-V+ASO Bi-V+ASO Bi-V+ASO Bi-V+ASO
surgA Bi-V+ASO Bi-V+ASO Bi-V+ASO Bi-V+ASO

6
BiV

+ASO surgB Bi-V+ASO Bi-V+ASO Uni-V repair Uni-V repair
surgA Bi-V+ASO Bi-V+ASO Bi-V+ASO Bi-V+ASO

7
BiV

+ASO surgB Not sure Not sure Bi-V+ASO Bi-V+ASO
surgA Bi-V Bi-V Bi-V Bi-V

8 Bi-V
surgB Bi-V Bi-V Bi-V Bi-V
surgA Uni-V repair Uni-V repair Bi-V Bi-V

9 Bi-V
surgB Uni-V repair Uni-V repair Not sure Bi-V
surgA Bi-V Bi-V Bi-V Bi-V+ASO

10 Bi-V
surgB Not sure Not sure Bi-V Bi-V

Bi-V or Bi-V+ASO
approach 15/20 (75%) 15/20 (75%) 16/20 (80%) 19/20 (95%)

Approach matches
performed surgery 9/20 (45%) 9/20 (45%) 11/20 (55%) 12/20 (60%)

Table 7.4: Agreement with chosen surgical strategy according to different 3D tools. ASO
= arterial switch operation, Bi-V = biventricular repair, Uni-V = univentricu-
lar repair. Green: suggested biventricular approach exactly matches the repair,
Yellow: suggested approach is biventricular but need for ASO not correctly iden-
tified, Red: approach disagrees with performed repair (i.e. is univentricular).

surgeons A and B. For example, both surgeon A and B incorrectly switched to

univentricular repairs for one case each after 3D printed model evaluation (1 and 6,

respectively).

Following the 3D printed model step, VR was then performed for all cases.

The perceived feasibility of biventricular repair increased to 10/10 for surgeon A

and 9/10 for surgeon B. No approaches were changed into univentricular repairs

following VR, although for patient 6, surgeon B maintained a univentricular ap-

proach even after VR.

Overall, the agreement between the surgeon evaluators and the actual repair

changed from 75% after cross-sectional imaging review, to 95% following all 3D
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modalities. The inter-observer agreement in surgical strategies changed from 70%

after cross-sectional imaging review, to 90% after VR. Compared to traditional

cross-sectional imaging, the 3D PDF did not increase the perceived feasibility of

biventricular repair or the agreement with the surgical approach. The perceived fea-

sibility of biventricular repair improved marginally with the use of the physical 3D

printed model (by 5%) and more significantly using the VR setup (by 15%). The

agreement between the actual repair and proposed approach improved by 10% with

3D printing (45% to 55%) and by 5% with VR (55% to 60%).

7.4.5 Discussion

The main findings are:

• VR assessment following 3D PDF and 3D printing resulted in a 95% accu-

racy in determination of biventricular repair feasibility and a 60% accuracy in

determining ASO suitability.

• VR assessment showed the most significant improvement for determining

biventricular repair feasibility (increase of 15%), whereas 3D printing showed

the most significant improvement for identifying the suitability of ASO (in-

crease of 10%).

• There was no evidence to support that the use of a 3D model on screen (a 3D

PDF in this study) provided extra assistance for determining the feasibility of

biventricular repair or ASO, when compared to conventional cross-sectional

imaging.

• 3D printing and VR were found to be able to drastically change the opinion

on the surgical plan (univentricular to biventricular or vice versa), whereas

3D PDF did not.

According to the results, screen-based 3D reconstruction such as a 3D PDF had

a negligible benefit for identifying the suitability of biventricular repair. This may

be explained by the limited range of interactions 3D PDF allows, when compared to

3D printing or VR. Additionally, viewing 3D models on a screen does not provide

the same level of depth perception as VR or 3D printing does.
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Rigid white nylon 3D-printed models were used in this study. Physical 3D

printed models in a 1:1 scale showed a marginal overall improvement when com-

pared to the use of conventional imaging and 3D PDF. However, in two individual

cases (one for each surgeon), the exposure to 3D printed models led to an incorrect

decision to perform univentricular repair. In a real case scenario, this may have lead

to suboptimal surgical outcomes.

VR proved to be the best tool for the two evaluators to identify the feasibility

of biventricular repair and the need for arterial switch operation. This is likely due

to the immersive capabilities of VR, which have shown to be highly suitable for the

study of complex anatomy [153, 221]. VheaRts enabled evaluation of the patient-

specific models from conventional and non-conventional surgical views. Clipping

tools enabled exploration of the intracardiac anatomy from angles not possible with

other imaging modalities.

7.4.6 Limitations

Although small, the cohort represents a carefully selected and homogenous pop-

ulation of DORV patients with complex interventricular communications. In the

future, the study should be extended to include a larger and heterogeneous cohort

of patients and conditions. In this study, the visualisation modalities were presented

in consecutive order to the surgeons (3D PDF, 3D printing, VR). This strategy was

decided since it better mimics a real-world scenario where cross-sectional imaging

is likely followed up by 3D modalities in order of most commonplace to least com-

monplace. A limitation is that in the current approach, bias is possibly introduced

in each case due to previous exposure from a different imaging modality. In the

future, the order of 3D modalities should be randomised to better nullify this effect

and enable each modelling technique to be assessed in isolation.

A further limitation is that testing was done by two senior evaluators only.

However, it was felt that given the complexity of the assessed conditions and the

experience of the actual operating surgeon, additional testing by less experienced

evaluators may not offer as conclusive results. In this study, the choices of the two

evaluating surgeons were compared to the actual operation performed. As sum-
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marised in Table 7.3 and Appendix C.1, excellent short-term results from all repairs

were achieved. At Great Ormond Street Hospital, biventricular repair is generally

the preferred option for patients with complex DORV and remote VSDs. However,

ultimately it is the long-term re-intervention free survival that determines the best

approach to this challenging subgroup of patients, and good results are possible with

various surgical strategies. By including a diverse set of patients in the future with

longer-term successful outcomes, the assumption of ‘correctness’ for the procedure

will become more reliable.

All 3D modelling techniques used in this study have significant limitations

related to their capacity for assessment of the atrioventricular valves. This is due

to the source imaging modality (CT/CMR) which cannot display valve structures

with sufficient resolution for accurate 3D reconstruction. Since the insertion of the

tricuspid valve represents a crucial part of the surgical correction of DORV, it is

recommended that 3D models fuse information from multimodality imaging such

as 3D echocardiography.

7.5 VheaRts for planning complex surgery beyond

CHD
VheaRts was used in supporting some highly complex surgical procedures, out-

side the scope of CHD, in conjoined twins separations. In these rare cases, the

challenging anatomy often poses several questions in surgical planning, requiring a

multidisciplinary approach and the involvement of specialists from various medical

disciplines. Thus, VR represents a useful tool to assist the multidisciplinary team in

interpreting these complicated cases and in guiding the decision-making process.

In 2019, the first complex case that involved the use of VheaRts outside CHD

applications, was a set of twins with total vertical craniopagus, an exceptionally

rare condition where the crania of twins are joined, with varying degrees of fusion

between the brains and parts of the cranial vasculature.

Anatomical reconstructions from multi-modality imaging (CT and MR) of all

structures of interest (skin, bone, brains, dura, vasculature) from both twins were
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imported into VheaRts, where they could be studied. As part of the operation to sep-

arate the twins, the complex network of arteries/veins and their relationship with the

parenchyma need to be identified. VR was used to intuitively navigate the anatomies

and better understand the three-dimensional location of the vessels within the brains

by activating/deactivating different layers of structures and leveraging transparency

tools. In total, three VR sessions were organised where the lead neurosurgeon spent

time navigating the 3D reconstructed models and identifying vascular points of in-

terest (Fig. 7.7, left). Following a planning phase involving several cross-sectional

imaging (CT/MR) data, 3D printing models and VR sessions, the patients were

separated successfully in a series of complex surgeries [222].

Similarly, VheaRts was used to support a successful second separation of cran-

iopagus twins at Great Ormond Street Hospital for Children in 2020 [223], and a

third set, in 2022, this time with a different group of surgeons from the Instituto Es-

tadual do Cerebro Paulo Niemeyer in Brazil 1. For this case, a VR session was held

remotely between the lead neurosurgeons from Great Ormond Street Hospital for

Children and the equivalent surgical counterpart from the Brazilian pediatric cen-

tre using the multi-user VheaRts application to discuss the best surgical approach.

Both surgeons were connected to the same VR room using Meta Quest 2 head-

sets, and had shared control of the twins 3D-reconstructed models within the scene.

Various approaches of surgical separation were discussed, with specific challeng-

ing anatomical regions highlighted during the consultation. The twins were later

separated successfully in a lengthy procedure in Brazil [224].

A final set of omphalopagus twins, joined at the abdomen and with two func-

tional lower limbs, were separated at Great Ormond Street Hospital for Children in

2022. This case required a wide range of surgical and clinical specialists to take

part in both the planning and surgical separation, due to the complex arrangement

and fusion of multiple organs including livers, vasculatures, kidneys, urinal tract

systems and more. The 3D reconstructed models were shown to the main surgeons

during the pre-operative planning phase (Fig. 7.7, right). In addition, a multi-user

1Video of UK-Brazil online VR surgical plan for craniopagus twin separation: https://
vimeo.com/831952801

https://vimeo.com/831952801
https://vimeo.com/831952801
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Figure 7.7: Left: model of the first set of craniopagus twins, with brains in separate colours
and vessels shown intermingling. Right: conjoined omphalopagus twins, with
full skeletal structure and internal organ 3D models reconstructed.

version of the application was built on multiple Quest 2 devices and used for the

pre-operative team briefing. This facilitated an active discussion of the case, since

the acting surgeons joined the virtual room and reviewed the surgical plan in 3D,

enhancing multidisciplinary team communication. Additionally, the VR scene was

projected on monitors, allowing the rest of the surgical team (15+ members) to ob-

serve and contribute to the discussion. Following the consultation, the separation of

the twins was successfully performed [225].

7.6 Future integration of VR in clinics
In this Chapter, a model for the early adoption of a VR platform in CHD pre-

operative planning has been shown, with possible applications and benefits outlined.

In the future, greater efforts must be made in order to establish the level of benefit

that clinical VR assessment provides. This is necessary to overcome one of the main

hurdles preventing wider integration of VR in clinics - a lack of extensive evidence

quantifying if patient outcomes are improved with VR planning and if so, by how

much. A solution could involve recording patient/surgical metrics in a randomised

clinical trial, where participants have access to VR for pre-operative planning over

a prolonged period of time. The intervention group (imaging + VR) could be com-

pared to a control group (only imaging). Measures such as success rates, aortic
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cross-clamp time, cardiopulmonary bypass time, rates of re-intervention, post-op

complications and more could be recorded to assess the level of improvement that

VR brings to CHD surgery. More granular and qualitative measures could also be

extracted, by interviewing surgeons pre- and post-surgery in order to assess if the

anatomical insight provided by VR correlated with reality (e.g. I observed that the

VSD was large and perimembranous as seen in the VR model). This could be done

for various types of operations to assess the accuracy of VR for providing a realistic

expectation of the 3D anatomical configuration (and hence the surgical plan). Other

measures such as a self-perceived improvement in confidence, understanding of 3D

patient anatomy and more could be gathered as part of the questionnaires. Data

could be analysed to assess how the impact depends on the experience level of the

surgeon, and whether the case is performed at a high volume centre or not. Results

from prospective studies and clinical trials are pivotal for providing an improved

understanding on the clinical adoption of VR on a global scale.

As demonstrated in this Chapter, the VR application can be distributed amongst

multiple centres and in some cases consultation can be done between multiple hos-

pitals using VR. These capabilities could also be further studied in order to exam-

ine how they can impact current conventions for planning treatment of challenging

CHD cases. Risks involved in clinical implementation of VR relate primarily to

the quality of the 3D mesh segmentation. In order to establish a routine protocol

for mitigating the error, this would ideally require that each 3D segmentation is

conducted and checked by a cardiac imaging specialist to confirm it accurately rep-

resents the source data. Since segmentations discard information from the images

for the purpose of creating a binary model, they should only be used as a supple-

ment and not as a replacement to the imaging review. Additionally, VR assessment

should take place with the presence of the imaging expert (with the cross-sectional

images) to ensure that any doubts about the model can be addressed during the VR

review.
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7.7 Summary and conclusion
The application of VheaRts in various clinical settings for supporting decision-

making has been outlined. Individual case studies of the most commonly assessed

lesion (DORV) were presented, including a retrospective pilot study which investi-

gated any potential benefits of VR for deciding on DORV optimal surgical approach.

Finally, an insight into the scope of VR beyond CHD was given, in complex cases

of conjoined twins. In conclusion, VheaRts shows promise as a clinical visualisa-

tion tool for supporting the complex repair of CHD and other complex procedures

when integrated into a pediatric centre. Integration of new technologies, such as

VheaRts, in care settings can be fostered by early adoption in education and train-

ing of healthcare professionals. Examples of this with VheaRts are reported in the

following Chapter.



Chapter 8

VheaRts for education

8.1 Introduction

VheaRts, the VR platform I developed during my PhD (see Chapter 6), not only

finds applications within clinical decision-making of complex CHD (Chapter 7),

but also responds to the rising needs for a robust visualisation tool with specialised

functions for teaching and learning CHD (Section 2.2.2). As discussed, heart spec-

imens are considered the ‘gold standard’ for learning cardiac morphology, yet are

not widely available. Therefore, more accessible resources are required to sup-

port the growing need for effective CHD education. Due to overall advances in

portable headset technology and software capabilities, it is becoming increasingly

affordable and accessible for academic/healthcare institutions to acquire multiple

HMD devices, thus creating opportunities for teaching entirely in a virtual ecosys-

tem (Section 3.5.4). Additionally, the COVID-19 pandemic created further demand

for VR applications with online features that were previously underutilised. How-

ever, integration of VR into CHD courses for students at varying stages of education

remains widely unexplored. Lack of quantitative feedback, showing tangible im-

provement in knowledge acquisition, is the biggest barrier to wider scale adoption.

Additionally, the suitability of online VR rooms for teaching CHD is still relatively

new. In the context of exploiting VR for CHD education, this Chapter presents

how I: (i) created a curated dataset of CHD models for teaching (Section 8.2), (ii)

implemented applications of VR for teaching CHD in different settings including
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undergraduate, postgraduate and highly specialised courses (Section 8.3), and (iii)

investigated the potential benefits that VR can bring over conventional anatomical

teaching methods for improving understanding of CHD and for supporting highly

specialised anatomical education (Sections 8.4, 8.5 and 8.6).

8.2 Virtual anatomy lab
The development of the core functionalities in the VheaRts educational application

was shown in Chapter 6. In order to create a repository of hearts for teaching CHD,

the application was populated with 3D heart models. These were incrementally

added over the period 2019-2022, with the most up-to-date collection including the

30 models detailed in Table 8.1.

Models were curated to address the requirements of the senior cardiac mor-

phologists and clinicians, who were also responsible for lecturing and delivering

the courses to the recipients. The heart 3D meshes were generated from three

main sources: (i) CT/CMR patient images, retrieved from a single pediatric centre

(Great Ormond Street Hospital for Children), (ii) micro-CT or Synchrotron scans of

anatomical specimens, and (iii) idealised and artistic models of the heart, publicly

available from online repositories. All DICOM images were segmented using com-

mercially available software ScanIP (Simpleware, Synopsis). For the anatomical

samples, the myocardium was reconstructed, whilst for the clinical images only the

blood pool was segmented.

Figure 8.1: Examples of 4 models from different imaging modalities or sources. From left
to right: (i) idealised artistic model (case 1), (ii) anatomical model (micro-CT,
case 3), (iii) anatomical model (Synchrotron, case 21), and (iv) patient blood
pool model (CT, case 10).

Real patient-specific cases constituted 70% of the library models, with DORV
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Case Description Source Type Submeshes
1 Normal online repository myocardial ✓
2 Normal online repository myocardial ✓
3 Normal specimen myocardial ✓
4 Normal patient blood pool ×
5 ASD online repository myocardial ✓
6 VSD online repository myocardial ✓
7 VSD patient blood pool ×
8 AVSD online repository myocardial ✓
9 AVSD specimen myocardial ✓
10 DORV 1 patient blood pool ×
11 DORV 1 patient myocardial ×
12 DORV 1 repaired patient blood pool ×
13 DORV 2 patient blood pool ×
14 DORV 3 patient blood pool ×
15 DORV 4 patient blood pool ×
16 DORV 5 patient blood pool ×
17 TOF specimen myocardial ✓
18 TOF patient blood pool ×
19 TOF repair 1 patient blood pool ×
20 TOF repair 2 patient blood pool ×
21 TGA specimen myocardial ✓
22 TGA repair patient blood pool ×
23 CCTGA 1 patient blood pool ×
24 CCTGA 2 patient blood pool ×
25 DORV + TGA patient blood pool ×
26 HLHS patient blood pool ×
27 Mitral stenosis patient blood pool ✓
28 Sinus venosus patient blood pool ×
29 Sinus venosus repaired patient blood pool ×
30 PDA patient blood pool ×

Table 8.1: Up-to-date collection of 3D models available in the online anatomy lab. Models
from online repositories are idealised/artistic creations. Patient cases are re-
constructed from CT/CMR. Myocardial models have the muscle reconstructed
instead of the blood pool. Submeshes indicates the model is broken down into
multiple components.

being the most frequent lesion (24% of patient-derived models), followed by ide-

alised/artistic models (17%) and anatomical specimens (13%). Most of the meshes

derived from clinical cases were blood pool reconstructions (80%), with the re-

maining including the myocardium. Where possible, images were segmented into

separate individual structures to enable highlighting/labelling of each subcompo-



8.3. Overview of VheaRts for teaching CHD 195

nent. Out of all anatomical specimen cases (n=4), only case 21 (Fig. 8.1, centre-

right) was scanned using X-ray phase contrast Synchrotron imaging technology

(PB-XPCI, Paul Scherrer Institut, Switzerland). The other anatomical specimens

(n=3) were scanned using micro-CT (Nikon Metrology HMX ST 225, spatial res-

olution of 5-125 µm). Lastly, two patients (cases 25 & 27) which were previously

scanned using 4D-CT sequences had each frame of the cardiac cycle segmented in-

dividually to create dynamic models of the heart (animations) in addition to static

models.

8.3 Overview of VheaRts for teaching CHD
VheaRts was implemented in six different courses/workshops at UCL and Great

Ormond Street Hospital to support the education and training of cardiac anatomy

and CHD. The breakdown of these courses is shown in Table 8.2. From 2019 to

2022, more than 240 students were taught using VheaRts by Prof. Andrew Cook,

Professor of Cardiac Morphology at UCL.

Course Level Total attendees Years held Multi-user
iBSc undergraduate 71 2020-2022 ✓
iNUGSC workshop undergraduate 52 2022 ✓
MSc postgraduate 44 2019-2022 mixed
Cardiac morphology
workshop professional 58 2018-2020 ×

Echocardiography
workshop professional 14 2021-2022 ✓

DORV workshop professional 5 2022 ✓

Table 8.2: Overview of the different courses VheaRts was implemented in at UCL and
Great Ormond Street Hospital. Multi-user means that sessions were conducted
with multiple headsets connecting to a shared VR room.

8.3.1 iBSc

At UCL, the integrated BSc (iBSc) in Cardiovascular Science offers medical stu-

dents a year out of their Medicine programme to study foundational cardiovascular

science. An optional CHD module within the course covers the anatomy of the

normal heart and a range of complex lesions. The module is delivered via tradi-

tional lectures together with anatomical case reviews using pathological specimens.
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VheaRts was integrated into the delivery of this CHD module for the first time in

2020-2021, when iBSc students (n=40) were taught on-campus over the course of

four weeks in groups, due to COVID-19 restrictions (Fig. 8.2) 1.

Figure 8.2: An iBSc VR session (n=5) during COVID-19 restrictions (2020-2021 cohort).

During each session, the normal heart anatomy and/or a selection of lesions

matching the progression of the course were presented in multi-user VR rooms. In

the following academic year 2021-2022, the end of COVID-19 restrictions allowed

for iBSc students (n=31) to attend longer sessions in larger groups. Three one-hour

VR sessions were held in-person, with each session being repeated twice (group

sizes of ∼15).

8.3.2 iNUGSC

In 2022, a multi-user VR workshop on cardiac morphology was developed for UCL

medical students (n=52), hosted at the International Undergraduate and Foundation

Surgery conference (iNUGSC 2022) organised by the UCL Surgical Society. Four

sessions were held over the course of a day (average of 13 participants in each

session). All participants were provided with Meta Quest 2 headsets. In VR, after

a short demonstration, a brief of the normal anatomy was first delivered, followed

by an explanation of a patient-specific anatomical model with TGA (case 21, 8.1).
1Example session (VR view) of a VR session in 2020: https://vimeo.com/831951658

https://vimeo.com/831951658
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The description of the TGA case also included some proposed surgical solutions to

the lesion. Participants were assessed post-workshop and feedback was collected

to investigate the effectiveness of a VR-only based approach for teaching CHD.

Further details are presented in Section 8.4.

8.3.3 MSc

A CHD module similar to that delivered for the iBSc course is an available option

for post-graduate students who undertake the UCL MSc in Cardiovascular Science.

Students come from a range of multidisciplinary backgrounds. The module pro-

gramme starts from the fundamentals of normal cardiac anatomy. Teaching and

examination are heavily focused on the identification and understanding of CHD

morphological abnormalities. In the first year of testing (2019-2020), the VheaRts

educational platform was made available to students with two models. The first was

an idealistic model of the heart, derived from the Living Heart Project [226] (Table

8.1, case 1). This model represents an average adult male heart at 70% ventricu-

lar diastole. Nineteen individual anatomical structures were subdivided in various

colours and labelled. The second model was a TOF post-natal specimen recon-

structed from micro-CT images (Table 8.1, case 17). Through a combination of

mesh cuts, the model was subdivided artificially. Eight anatomical areas of interest

(specific to TOF) were labelled in addition to the basic cardiac structures (LA, LV,

PA and more).

In the first year of testing (2019-2020), VheaRts was used to investigate the

effectiveness of VR for improving knowledge acquisition of CHD. Students (n=22)

were divided into two groups (control and intervention) to investigate how the ad-

dition of VR affected assessment scores (see Section 8.5 for details). Following

this, VheaRts was fully integrated into the MSc CHD module (2020-2021) with

multi-user functionality and the full suite of CHD models (Table 8.1). However,

COVID-19 lockdown restrictions meant that headsets had to be posted to the stu-

dents (n=11) in order to conduct VR anatomy lab sessions. Using this approach,

three VR sessions (one hour each) were held remotely over the duration of the

CHD programme, where the normal heart anatomy and a selection of lesions were
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Figure 8.3: VheaRts normal (left) and TOF (right) models with labels and the sphere clip-
ping tool active.

explored collectively yet remotely in VR. In the following academic year (2021-

2022), normal in-person VR sessions resumed, with three VR sessions held over

the length of the programme. Due to a smaller cohort (n=11), all students could be

taught in a single group 2.

Figure 8.4: An MSc virtual anatomy lab session with a group size of 11 (2021-2022 co-
hort).

2Example MSc VR session in 2021: https://vimeo.com/831950425

https://vimeo.com/831950425
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8.3.4 Professional cardiac morphology workshop

VheaRts was tested in the UCL ‘hands-on’ Cardiac Morphology Course. This 3-day

short course is focused on teaching CHD morphology to healthcare professionals

from a mix of backgrounds with the aid of anatomical specimens, all under expert

guidance [227]. Participants (n=58) to the courses, which ran between October 2018

and January 2020 before the COVID-19 pandemic, were invited to additionally

test VheaRts over a dedicated 2-hour session. Six patient-specific models were

included, one normal and a selection of 5 CHDs (Table 8.3).

Lesion Case Specimen Image modality Age
None (normal) 3 ✓ Micro-CT 16 weeks gestation’
AVSD 9 ✓ Micro-CT 16 weeks gestation’
TOF 10 ✓ Micro-CT post-natal
TGA 17 ✓ Synchrotron 16 weeks gestation’
DORV 21 × CT 4 months
PDA 30 × CT 12 months

Table 8.3: All image datasets converted into 3D models and used in this study. The case
number of the model is with respect to the final collection of hearts (Table 8.1).

Figure 8.5: The typical VR set-up used in the VR 2-hour session slot for clinical profes-
sionals training in CHD. Left: instructor, right: course attendee.

The VR setup constituted of a single Oculus Rift connected to an Alienware

17 R5 laptop. Users had access to the following functionalities: (i) model handling,
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(ii) clipping tools, (iii) labelled structures, (iv) VR ultrasound probe and (v) measur-

ing/placing markers. After a short adaptation period, users independently explored

the contents and tools of the VR demo. The perspective of the participants was

streamed live and guidance was offered by the course’s instructor (Fig. 8.5). User

feedback was collected to assess the feasibility/effectiveness of VR for teaching

healthcare professionals (see Section 8.6 for details).

8.3.5 Professional echocardiography workshop

In collaboration with the Great Ormond Street Hospital Learning Academy (GLA),

VheaRts was adapted to support the delivery of a specialised echocardiography

simulation course for professional cardiologists and surgeons from Great Ormond

Street Hospital. Two pilot sessions were organised (in 2021 and 2022) of one

hour each. A total of 14 participants attended the courses. At each session, the

participants were split in two groups: one group followed a 30-minute lecture in

VheaRts (which included CHD clinical case studies) while the other trialled a phys-

ical echocardiography simulator. The groups then swapped for the following 30

minutes. Echocardiography training was delivered by a Consultant Cardiologist

from Great Ormond Street Hospital. Three models were used for the course teach-

ing: (i) CCTGA, (ii) VSD, (iii) and Sinus venosus (pre/post repair) corresponding to

cases 23, 7, and 28+29 from Table 8.1, respectively. Echocardiography video clips

were retrieved for each patient case and added into the VR environment (Fig. 8.6).

This allowed participants to emulate echo views using the VR ultrasound probe and

compare 2D projections to the real echo images and the 3D model anatomy.

Feedback was collected from the participants (n=5) after the first pilot work-

shop had ended. Questions related to the experience were presented in a five-point

Likert scale format. Only one attendee had prior experience in VR. All participants

agreed or strongly agreed that: (i) VR is useful for understanding cardiac structures,

(ii) VR enhances medical imaging and (iii) VR is useful for reviewing the surgical

procedure. All respondents answered ‘agree’ in response to ‘The VR headsets were

easy to use’. However, four out of five attendees noted that they had experienced

some levels of discomfort, with one expressing strong discomfort due to ‘neck pain
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Figure 8.6: In-person view of VR ultrasound probe compared to actual four-chamber
echocardiography view of the same CCTGA patient.

and headaches’. A common request was to include more post-operative cases and

patients with ‘complex 2D anatomy’.

8.3.6 Professional online DORV workshop

VheaRts was used to explore the possibility of conducting anatomical workshops

remotely in VR. This was supported by a small grant from the UCL Africa and Mid-

dle East Teaching Fund Initiative. The workshop involved a group of South African

pediatric cardiologists and cardiac surgeons (n=5) from the Nelson Mandela Chil-

dren Hospital. The session was centred around complex DORV anatomy, and how

the anatomy drove repair. Almost all DORV models from the virtual anatomy lab

were used and included in the workshop (Cases 10-15, Table 8.1). Attendees con-

nected with their Quest 2 devices to a virtual classroom hosted on a server in South

Africa. After a short familiarisation with the VR environment, participants collabo-

ratively analysed each of the DORV case studies in the application, with the course

coordinator managing the presentation of each patient case. Anonymised clinical

notes were visible for each patient in VR. After the workshop was completed, feed-

back was collected from all the participants.

Out of all respondents (n=5), only one had previously tried VR. All partici-
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Figure 8.7: VR user from Johannesburg, South Africa attending the DORV workshop, with
the course coordinator based in London, UK.

pants stated that VheaRts allowed them to explore DORV anatomy in greater detail

and better understand the spatial relationships between structures. Two participants

reported discomfort/VR sickness. Three participants stated VR was intuitive and

easy to use, while two responses were neutral. All participants stated that they were

interested in using VheaRts for clinical applications, such as pre-operative planning.

Requested lesions for VR assessment included pulmonary atresia, AVSD and ma-

jor aortopulmonary collateral arteries (MAPCAs). Requested improvements to the

application included ”more realistic textures” and ”different colours for all struc-

tures”. Overall, feedback was positive, and the application was well received by the

participants.

8.4 Assessment of VR for teaching CHD

8.4.1 Introduction

As explained in Section 8.3.2, at iNUGSC 2022, the multi-user VheaRts environ-

ment was trialled as a primary method for delivering CHD education to undergradu-

ate medical students. In this context, my aims were: (i) to investigate the feasibility

of delivering a CHD workshop solely through VR, (ii) to measure the level of en-
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gagement through user feedback, and (iii) to assess post-intervention knowledge

acquisition in the participants via a questionnaire.

8.4.2 Methods

Before and after the VR session, students were asked to fill out a questionnaire us-

ing a web-based mobile application. Demographic questions were collected through

text-based prompts. Qualitative feedback questions were answered by selecting a

value from 0-100 on an interactive GUI slider. As part of the student evaluation, at-

tendees also had to fill out an assessment composed of ten multiple-choice questions

related to the taught content (see Appendix D.1).

Pre-workshop questions:

• How much experience/knowledge do you have with the topics and instruc-

tional material presented in the class? (0=none, 100=extensive)

• How much experience/knowledge do you have with the application of Virtual

Reality (VR) in the medical domain? (0=none, 100=extensive)

• Are you motivated to attend this class? (0=not at all, 100=extremely)

Post-workshop questions:

• How much mental workload did the activities in the class impose on you?

(0=none, 100=excessive)

• How successful were you in the class? In other words, how satisfied were you

with your gain in understanding? (0=not at all, 100=extremely satisfied)

• Were you alerted during the class? In other words, were you sleepy/tired or

fully alert/awake? (0=not at all alert, 100=very alert)

In addition to computing means and standard deviations of all measured met-

rics, Pearson correlation coefficients with associated p values were calculated to

examine correlations between metrics. Values were computed using data from all

participants.

8.4.3 Results

After the course, data from the collected feedback (n=52) was compiled. The av-

erage number of students per group was 13±1.8. The average VR session time
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was 16.8 ±1.8 minutes excluding the initial demonstration and set-up. The average

year of study per participant was 1.9±1.1. Mean scores for all categories and the

assessment are shown in Table 8.4.

Mean ± standard deviation

G Cardiac
experience

VR
experience Motivation Mental

workload
Learning

effectiveness Alertness Test score

1 43.0±22.2 16.0±13.8 74.9±23.5 50.5±15.9 60.1±19.7 62.9±22.9 53.1±14.4
2 51.3±22.1 19.8±17.8 85.9±17.9 54.4±16.4 73.5±18.1 64.5±24.9 42.5±27.7
3 51.5±24.0 24.3±11.6 80.7±19.1 62.8±7.56 55.3±21.2 71.8±17.0 50.8±18.8
4 56.5±20.4 41.1±22.4 67.7±26.0 45.4±16.3 61.2±21.7 45.5±21.7 42.7±17.9
M 50.4±22.1 24.4±18.7 78.1±22.0 53.4±15.5 63.3±20.7 61.8±23.3 47.1±20.9

Table 8.4: Results from feedback and assessment for all groups (G=group, M=mean). All
questions are out of 100 (maximum). The first three columns are pre-workshop
questions, the last three are post-workshop questions.

Findings showed that there were no statistically significant correlations for

any of the feedback metrics with assessment score (all p > 0.05). Self-reported

prior VR experience showed a strong negative correlation with post-workshop

mental workload (R = −0.36,∗ p < 0.01). Self-reported prior VR experience also

showed a strong negative correlation with post-workshop reported alertness levels

(R = 0.39,∗ p < 0.01). Pre-workshop motivation levels showed a strong positive

correlation with post-workshop satisfaction levels (R = 0.44,∗ p < 0.001). No other

significant correlations between metrics were found.

8.4.4 Discussion

This pilot study demonstrated the possibility to deliver short VR-based cardiac

anatomy workshops for educational and training purposes. Average participant sat-

isfaction was high (63.3±20.7 out of 100), although lower than the self-reported

motivation levels pre-session (78.1±22.0). No significant correlations between

feedback scores and test scores were found. Therefore, in this study, the effec-

tiveness of VR (evaluated by assessment) was not correlated to the participants’

opinions regarding the experience. Students expressing lower levels of experience

with VR were found to report higher mental workloads and lowered alertness lev-

els. However, there was no correlation with prior VR experience and satisfaction

levels/test scores, which may suggest that teaching effectiveness in a short session
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(mean = 16.8±1.8 minutes) is maintained even for those with little VR experience.

In a future study, participants should be tested with a pre-workshop assessment in

order to better quantify the levels of knowledge uptake following VR usage. Addi-

tionally, groups should be homogenised according to the year of study, and repeated

at numerous intervals in order to be able to retrieve more statistically meaningful

correlations. In conclusion, the virtual anatomy lab was well-received by partic-

ipants and found to be suitable for teaching groups (n<20) cardiac anatomy, al-

though a prolonged study measuring both pre- and post-intervention assessment

levels would provide stronger evidence for/against supporting the use of VR-only

anatomical workshops.

8.5 Assessment of VR for improving knowledge of

cardiac anatomy

8.5.1 Introduction

During the 2019/2020 MSc congenital heart disease module (see Section 8.3.3),

a study was set up to (i) evaluate levels of improvement in student understanding

of CHD following VR usage, and (ii) record participant feedback regarding the

functionality of VheaRts.

8.5.2 Methods

Participants were randomly divided into two groups (A and B). Each student was

assigned a unique identifier. Firstly, all participants were required to complete a

demographic survey and a pre-class assessment on the knowledge of normal car-

diac anatomy, in order to evaluate baseline levels. In this assessment, two different

photographs of a normal heart were presented, requiring labelling. The first showed

the anterior view of a normal heart specimen, displaying the chambers and great

vessels. The second presented a posterior view, showing structures requiring more

advanced anatomical knowledge (Fig. 8.8).

Following the assessment, students attended an introductory lecture and

anatomical lab session. After teaching had concluded, group A was granted the
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Figure 8.8: Both sides of the normal heart assessment, with all answers shown (n=21).
Left: anterior view of normal heart specimen. Right: posterior view of a normal
dissected heart.

opportunity to use VheaRts to inspect the normal virtual heart model. Each user

was allowed ∼7 minutes to use VR, due to time considerations. Participants from

group A and B were then asked to fill in the same post-class test on normal heart

anatomy, with group B having completed only the lecture and lab session (without

VR).

Figure 8.9: TOF survey with lesion-specific questions already answered (n=8).

At a later date, the students attended a second lecture and lab session focused

on the anatomy and physiology of TOF. This time, participants from group B only

were granted access to the VR TOF model for ∼7 minutes each. A post-class sur-

vey consisting of a four-chamber view of a TOF specimen was then given to both

groups. Students were asked to identify the structures.

After completing post-class surveys, participants were asked to complete an

evaluation feedback survey. Users were asked about their prior experience with VR.
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Three questions using a five-point Likert scale asked participants to state: (i) how

helpful they found VR for learning cardiac anatomy, (ii) how intuitive VR was to

them, and (iii) how keen they would be to use VR continually through the congenital

heart disease module. Finally, an empty section was given for respondents to write

down any added thoughts relating to VR.

Normality of data was assessed using a Shapiro-Wilk’s test. Unless stated oth-

erwise, an independent t-test was performed to compare the means between two

groups. For non-normally distributed paired data, a Wilcoxon signed-rank test was

used. Otherwise, paired t-tests were used to compare results from individual partic-

ipants ‘pre’ and ‘post’ teaching. A p value of <0.05 was regarded as statistically

significant.

8.5.3 Results

Twenty-two students enrolled in the congenital heart disease module registered to

participate in the study, with 13 in group A (59%) and 9 in group B (41%). The

backgrounds of the participants in the two groups are summarised in Table 8.5.

In group A, 77% of students reported previous clinical experience, whereas only

23% of students in group B reported clinical experience. Students reporting prior

cardiovascular field experience were 62% and 56% for group A and B, respectively.

MSc Student Background Frequency in group A Frequency in group B
Biomedical Science BSc 5 4
Current medical student 4 0
Practising physician 2 2
Pharmacology BSc 0 2
Cardiovascular Technology BSc 1 0
Human Genetics BSc 1 0
Medical Science BSc 0 1

Table 8.5: Demographics of MSc students in the two groups.

In all assessments, a correct answer was equal to one mark. No marks were

awarded for partially correct responses. Results from all assessments were nor-

mally distributed (Shapiro-Wilk test ∗p < 0.05). At baseline (pre-class), average

scores for group A and B were 6.85±4.12 and 2.78±2.11, respectively (∗p < 0.05).

Overall, the most frequently identified structures were the left ventricle (group
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A=12, group B=5), the right ventricle (group A=11, group B=6) and the aorta

(group A=11, group B=5). Students with prior clinical experience (7.08±4.23)

attained higher marks compared to those without clinical experience (2.90±1.97,

∗p < 0.05).

Figure 8.10: Results from all assessments for both intervention and control groups. Pre-
class (normal) is also referred to as the baseline test, as no VR takes place.

In the post-class normal anatomy test, group A was exposed to the additional

VR session (intervention). The average post-class score for group A and group B

was (10.08±4.21) and (5.71 ±3.40) out of a possible 21, respectively (∗p < 0.05).

A paired t-test was performed to compare pre- and post-class results, resulting in

both groups showing statistically significant improvement post-class (∗p < 0.05).

In the post-class TOF anatomy test, group B had the additional VR session

(intervention). The total number of possible marks was 8. Average results for

group A and B were 4.19±1.28 and 3.00±1.83, respectively. An independent t-

test showed no statistically significant difference between the results of cohorts A

and B (p > 0.05).

Regarding previous experience, only 4 students reported prior experience with

VR technology. Fifteen students (68.2%) reported the application to be ‘useful’ or

‘very useful’ for learning CHD. The remainder of respondents were neutral (n=6)

or rated the application ‘not useful’ (n=1). VheaRts was deemed to be ‘intuitive’ or

‘very intuitive’ by 16 users (72.7%). Finally, there were 13 students (59.1%) that

desired to use the application more frequently throughout the course programme,
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with the others being neutral (n=6) or not keen (n=3).

8.5.4 Discussion

In the normal heart anatomy assessment, it was found that the majority (95%) of

students improved their understanding of anatomical structures (post-class) when

compared to the baseline. This improvement was independent of whether or not

users were exposed to the VR session. Post-class, students in group A (exposed

to VR) performed better in the normal anatomy test than those in group B (∗p <

0.05), suggesting that VR may improve knowledge acquisition. However, for the

TOF examination, group B (exposed to VR) showed no difference in post-class

assessment scores when compared to group A (p > 0.05). This is possibly due

to the smaller sample size of TOF assessment questions (n=8) when compared to

the normal anatomy questions (n=21). Also, another explanation may lie in the

fact that group A performed better on the baseline test than group B (∗p < 0.05),

suggesting group A contained higher performing students. This is supported by

the observation that group A was mostly composed of students with prior clinical

experience (75.9%), which were also shown to perform better than those without

clinical experience (∗p < 0.05). Therefore, it can be argued that the benefits of

VR (for group B) in the TOF assessment were negated by the inherently better-

performing students of group A, thus equalising the two groups. A final explanation

for the lack of statistical significance in the TOF comparison is that the TOF VR

model was derived from a specimen, with structures less clearly delineated than the

normal anatomical VR model (which was an idealised creation). This may have

made it more complicated to use as a reference for understanding TOF anatomy,

thus hindering its usefulness.

A number of limitations were highlighted in this pilot study. The first was that

groups had to be selected based on teaching hours, preventing a homogeneous and

equal distribution of students/experience levels. Secondly, this study was focused

only on two models of hearts (one normal and one defected). In order to prop-

erly understand the extent to which VR could support CHD teaching, more lesions

should have been introduced. Each assessment should follow an identical structure
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in order to make them more directly comparable. In this study, a pre-class assess-

ment of TOF was not possible due to the scheduling, but should be enforced in a

future attempt to allow for more useful statistical analysis. Finally, in the future,

an idealistic TOF model should be used since the one used was reconstructed from

micro-CT images of an anatomical specimen, and thus more difficult to inspect than

the normal heart model.

8.6 Assessment of VR for teaching CHD to clinical

professionals

8.6.1 Introduction

In addition to undergraduate/postgraduate teaching, it is critical to explore the util-

ity of VR also for teaching clinical professionals. VheaRts was tested during a

regular dedicated session in the UCL ‘hands-on’ Cardiac Morphology Course be-

tween 2018 and 2020 (see Section 8.3.4 for details) to support CHD training for

professionals. User feedback regarding VR was collected from the participants us-

ing metrics such as perceived usefulness and ease-of-use.

8.6.2 Methods

Following the VR demo, users (n=58) were asked to provide feedback via a short

questionnaire. Participants were required to provide information related to their

professional background and clinical area of expertise. Next, the respondent was

asked if they had previous experience with VR, and, if so, to elaborate further on

what technologies they had previously tried. Three feedback questions were scored

using a five-point Likert scale and asked users about: i) the ease of interaction with

the content/tools in VR; ii) the perceived usefulness of VR for improving their un-

derstanding of morphology; iii) their willingness to implement a VR experience in

their respective working environment. Finally, an open-ended question concluded

the survey to capture any further comments. Responses were analysed by calculat-

ing average feedback scores and exploring correlations with subgroups.
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8.6.3 Results

In total, 58 participants tested VheaRts over seven sessions (average = 8.3

participants per session) for ∼10 minutes each. Twenty participants listed

their current profession to be strongly related to cardiology (i.e. cardiology

trainee/registrar/fellow, cardiac sonographer, cardiac intensive care fellow and

cardiac surgeon). Other commonly reported disciplines included roles such as

paediatrician (n=6) and anaesthetist (n=5). From the 58 participants, 11 had previ-

ously tried VR before (Fig. 8.12).

Figure 8.11: Comparing the spread of scores for ’helpfulness’ between groups with VR
experience and groups without VR experience (n=58).

Figure 8.12: Comparing feedback regarding ’helpfulness’ of the app between cardiac vs.
non-cardiac speciality groups (n=58).

VheaRts was found to be very intuitive and easy to use by 93% of the total par-
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ticipants, with an average feedback score of 4.6 ± 0.8 SD. The slicing tool was the

most commonly used feature. The average ‘perceived helpfulness of VR for learn-

ing CHD’ score was 4.4 ± 0.6 SD. Out of the total respondents, 88% viewed VR

as ‘helpful’ or ‘very helpful’. VR was deemed ‘helpful’ or ‘very helpful’ by 75%

of participants from cardiac backgrounds, and 95% from non-cardiac backgrounds

(Fig. 8.12). VR was rated as ‘helpful’ or ‘very helpful’ by 91% of participants with

prior VR experience, and 89% without prior VR experience. Over 89% of users

declared their willingness to implement VR in their clinical practice. This result is

observed to correlate with the ’helpfulness’ scores recorded (see Appendix D.2).

A total of 47 participants answered the open-ended question. Participants re-

peatedly reported that the application was useful (n=14), provided clear understand-

ing of heart anatomy (n=10) or was intuitive and easy to use (n=9). From the 47

who added comments, 28 elaborated further to make suggestions for improvements

on the software. Some future requests included: incorporating ultrasound images

(n=5) and adding dynamic/beating 3D models (n=5), both of which were imple-

mented in later VheaRts versions.

Figure 8.13: The normal 16-week specimen with roughly 1 cm volumetric bounds, com-
pared against its 3D model in VheaRts which can be scaled up freely.

The ability to scale up models was noted to be particularly advantageous for

fetal heart specimens, which are difficult to fully inspect with the naked eye (Fig.

8.13). In addition, other discovered benefits of VR (some for specific lesions) were

observed during the sessions (Fig. 8.14). For example, it was found that sphere
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clipping in DORV could allow simultaneous observation of ventriculo-arterial con-

nections and septal defects on the curved cutting plane (Fig. 8.14, top-left). This

was more intuitive and easy to accomplish in VheaRts than in conventional cross-

sectional imaging (e.g. CT/CMR). Secondly, VheaRts was found to be useful for

mapping out the electrical conduction system in the heart with markers, particu-

larly in specimens with uncommon or multiple septal defects such as in the AVSD

subject (Fig. 8.14, top-right). After tracing the pathway, the heart could be hidden

to leave only the conduction system tracks visible, enabling isolated assessment of

3D conduction pathways. Finally, VheaRts demonstrated that it could be used for

precisely assessing the origin of the great arteries. In the TOF case, it was dis-

covered that the aortic root was found to mostly originate from the right ventricle,

suggesting a possible association with DORV (Fig. 8.14, bottom).

Figure 8.14: Top left: sphere clipper for unique right-sided view in DORV. A = ASD, B
= aortic root, C = VSD and D = RVOT and PA root. Top right: conduc-
tion system mapping using markers in DORV. Bottom: VR evaluation of VA
connections in TOF. Four-chamber and short-axis views display the degree of
aortic override.
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8.6.4 Discussion

This study explored the feasibility of combining VR with a library of patient-

specific heart models for enhancing the cardiac morphology education for profes-

sionals. Early findings indicate that the addition of VR to conventional teaching

modalities is both viable and extremely well-received by professional clinicians

studying CHD.

Averages for each feedback metric were highly positive (all above 4.4 out of

5). ’Intuitiveness’ recorded the best result (4.6 ±0.6), despite 76% of attendees

having had no prior experience with VR technologies. ‘Helpfulness for learning

CHD’ displayed the lowest mean and largest standard deviation (4.4 ±0.8), likely

due to the highly mixed participant demographics, resulting in a wider range of

knowledge in CHD. From Fig. 8.11, 82% of users with prior VR experience voted

5 for ‘helpfulness’, whereas only 50% of users with no prior VR experience voted

5 for ‘helpfulness’. This may suggest that users with VR experience are better

prepared to interpret the content. This could be due to reduced/removed novelty

and unfamiliarity with VR, as described by Moro et al. [228]. From Fig. 8.12, it

can be seen that non-cardiac attendees reported the application to be slightly more

helpful on average, suggesting that the perceived helpfulness of VR is increased in

those with lowered experience levels.

Some important limitations related to the study were noted. Firstly, the survey

was designed to be concise due to time constraints in the course. In the future, the

feedback forms should be expanded to include more specific questions (e.g. related

to individual tools). More precise demographic data (e.g. years of experience,

specific profession) should also be gathered. Assessments may also be performed

in the future to evaluate participant knowledge ‘pre’ and ‘post’ VR [229]. Finally,

by including VR surgical/clinical simulators, the users could potentially be assessed

in the future by correlating perceived levels of improvement to tangible clinical

metrics measured through simulation [138].
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8.7 Summary and conclusion
The implementation of VheaRts in various educational settings related to CHD has

been described. VheaRts was used for teaching more than 240 students over the

course of its implementation at UCL and Great Ormond Street Hospital. This

spanned a range of demographics and experience levels. The details of the vir-

tual anatomy lab were presented, including applications in teaching, undergraduate

and postgraduate students, and in professional settings (such as echocardiography

simulation and DORV workshops). During the COVID-19 pandemic remote learn-

ing, the online application supported teaching to small to medium-sized groups. A

few pilot studies measured the quantitative benefits of using VR for learning car-

diac anatomy and showed promise for enhancing conventional anatomical teaching.

User feedback was overall positive, with the VheaRts platform being well-received.

In conclusion, VR shows significant promise as a tool for enhancing the understand-

ing of complex cardiac anatomy over a wide range of disciplines and background

experience levels.



Chapter 9

Conclusions and future developments

9.1 Contribution summary

This thesis aimed to explore pathways for translating potentially high-impact com-

putational tools into CHD standard clinical/teaching applications. In the introduc-

tion, it was stated that the main goals were two-fold: (i) to develop a more clini-

cally suitable pipeline for CFD by accelerating and automating processes, and (ii)

to develop and implement a VR application in clinical and educational settings. In

this thesis, it was shown that ML-based segmentation/CFD models were capable

of approximating the ground-truth data with reasonable accuracy. Future steps to-

wards clinical implementation should involve the use of more realistic simulation

data and improved shape parameterisation methods. This should be followed by

validation against acquired clinical metrics, such as pressure gradients. Also, as

part of this thesis, the development and implementation of a VR platform for CHD

teaching/clinics was demonstrated. This early exploration showed that VR was

well-received in multiple applications, such as for the planning of complex DORV

repair and for teaching cardiac anatomy to students of various experience levels.

Future efforts should involve a multi-centre approach for evaluating the usefulness

of VR, especially in pre-operative settings, through the collection of clinical data

over a prolonged period. Overall, I have shown that the translation of CFD and VR

towards clinical applications is possible, and with necessary improvements, may

contribute to the teaching and clinical care of CHD on a wider scale.
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9.2 Contributions from each chapter

In Chapter 4, the development of a fast, automatic image segmentation model for the

great arteries was presented. The model was built using a deep neural network ar-

chitecture (U-net), and was evaluated using conventional imaging metrics. The use

of this automatic segmentation model for producing ‘CFD-suitable’ reconstructions

was explored. CFD was performed on a selection of aortas and pulmonary arter-

ies inferred by the model, followed by comparison against ground truth data. The

model produced surfaces with CFD accuracy equivalent to human inter-observer

variability when performing manual segmentation. Therefore, outcomes from this

chapter suggest fast automatic segmentation models for the great arteries are suit-

able for clinical CFD, thus accelerating the overall CFD pipeline greatly by remov-

ing the initial segmentation step.

In Chapter 5, a framework for fully automatic and accelerated CFD of aortic

geometries was presented to complement the fast automatic segmentation model.

The two-step approach included a statistical shape model and PCA for parameter-

ising shape/flow, followed by a deep neural network for regressing pressure and

velocity CFD characteristics. The model was trained using a synthetically gen-

erated population of realistic aortas. Results showed that reasonable CFD pres-

sure/velocity flow fields could be inferred for unseen geometries, although errors

in shape parameterisation were significant. It was demonstrated that with this ap-

proach, large computational requirements or simulation setups can be avoided. For

this reason, this pipeline is highly suitable for clinical implementation and addresses

the primary barriers hindering current CFD methods, although further improve-

ments are needed before full utilisation.

Chapter 6 presented VheaRts, a Unity-based VR platform for assessing 3D

patient heart models or learning the anatomy of CHD. Technical details related to

the development were discussed, including the software architecture and individual

tool designed. The integration of networking in the application was shown. Specific

features were implemented for CHD which enabled the support of both clinical and

educational activities within university and hospital.
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In Chapter 7, clinical applications of VheaRts were shown. An overview of the

patient cases planned pre-operatively with VheaRts was shown, including specific

case studies. A pilot retrospective study into the impact of VR for determining

the feasibility of biventricular repair in DORV was conducted. Findings showed

that adding VR to other 3D imaging modalities increased the likelihood for the

surgeon to decide on the correct surgical approach. Finally, the use of VheaRts was

extended beyond planning in CHD to the surgical planning of three complex cases

of conjoined twins.

Chapter 8 presented the implementation of VheaRts in educational settings at

university and hospital courses. An overview of the 3D library of heart models

currently available in the virtual anatomy lab was given. Teaching with VheaRts in-

cluded undergraduate and postgraduate students; an assessment of VR for improv-

ing the structural knowledge of cardiac anatomy suggested that VR usage notably

improved knowledge acquisition of the basic heart anatomy, yet there was inconclu-

sive evidence regarding CHD lesions. VheaRts showed great potential also in the

education of clinical professionals, with applications including CHD morphology

teaching, echocardiography training and above all the possibility of online delivery

of specialised courses to units around the world.

9.3 Limitations

A common limitation between Chapter 4 and 5 was the use of simplified CFD mod-

els. The model included laminar, steady-state flow without patient-specific bound-

ary conditions. This enabled easier convergence for large-scale CFD simulation.

Additionally, it could be argued that simplified CFD made it easier to isolate the

effect of segmentation differences (Chapter 4) or correlate aortic shape features to

flow features (Chapter 5). However, whilst the current approach may have been

sufficient for demonstrating the feasibility of both applications, more realistic CFD

is necessary in order to prove the suitability of the approaches in direct clinical ap-

plications. Some other limitations include the methods performed for evaluation.

For example, in both Chapter 4 and 5, pressure gradient data was computed by av-
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eraging cross-sections along the length of vessels. In Chapter 5, a more granular

method for comparing CFD volumes was possible, due to point-to-point correspon-

dence. In Chapter 5, the accuracy of the ML model was dependent on the accuracy

of the SSM surface registration; therefore, improved shape parameterisation was

necessary to compute more realistic flow fields.

In Chapter 7 and 8, much of the work performed was exploratory and inves-

tigated the feasibility of implementing VR in various clinical/educational settings,

using mostly a combination of surveys and qualitative assessments. The study of

VR into planning the repair of DORV in Section 7.4 was limited by the assump-

tion that the performed repair was always the optimal choice. Additionally, since

observers were always exposed to 3D imaging modalities in a fixed order, bias may

have been introduced and resulted in over-inflated results favouring VR visualisa-

tion. In Chapter 8, qualitative feedback was the primary method for evaluating user

experience in VR, with short surveys typically used due to imposed time-constraints

in classroom environments. Since questionnaires varied amongst the studies, this

made results difficult to compare and aggregate since the data was not consistent. In

Section 8.5, the effectiveness of VR for improving CHD knowledge was assessed.

However, the short-term aspect of the study and inability to test multiple lesions

over the period of the course made it more challenging to establish strong support-

ing evidence for/against the use of VR for teaching CHD.

9.4 Future work

In the future, the study from Chapter 4 should be repeated using more realistic

CFD models which include the head and neck vessels. Similarly, a more realistic

CFD model should be used to create the training data in 5, including synthetic

boundary conditions for aortas generated by patient-specific flow data. Due to the

increased complexity and number of parameters, more synthetic aortas will need

to be generated. An improved SSM should be trialled, including additional shape

features for capturing the geometric properties not described by the current SSM.

This may include centreline-based data, which can also act as regularisation during
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model training. Transient CFD models should be tested with the use of LSTM DNN

architectures. ML models for other CFD parameters of interest such as wall shear

stress should also be built. Training datasets with ‘exercise boundary conditions’

should also be created, in order to be able to simulate hemodynamics under stress

in patients which are high risk.

Once reasonable performance is demonstrated on aortas, the pipeline should be

extended to the pulmonary arteries and to more complex surgical structures such as

TCPC. Finally, an end-to-end image to CFD report framework should be assembled,

by aligning together: (i) automatic segmentation of the great arteries, (ii) mesh pre-

processing VMTK pipeline, (iii) deep neural network CFD model and (iv) a post-

processing GUI tool for visualisation of the CFD results. This would enable rapid

approximation of a full 3D CFD flow field, requiring only patient inlet conditions

and a 3D image dataset. Following this, the automatic CFD tool could be deployed

in clinical situations and researched to assess its potential for improving the clinical

management of patients. Possible developments (in the more distant future) could

include extending this approach to predict flows in post-intervention aortas, using a

two-step approach that involves: (i) an ML model for predicting the ideal post-op

aortic shape, and (ii) a CFD ML model for predicting the post-op hemodynamics.

Future work for VheaRts includes the development and improvement of new

features and tools, in particular to update networking capabilities and visualisation

options. Restructuring for scalability (for more easily implementing in multiple cen-

tres) is first needed, including adapting the VheaRts code to different HMD brands

and models. In terms of specific features, new shaders should be developed to better

render transparency in objects. The post-processing stack in the echocardiography

probe could be improved to produce a more realistic ultrasound effect. A greater

suite of 3D mesh editing tools should be implemented, such as dynamic cutting of

mesh and coupling with biomechanical tissue simulators. New options for students

in the virtual anatomy lab could be implemented, such as being able to interact with

a personal, offline version of the currently active heart during classroom sessions.

This would create less passive teaching environments where students could remain
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engaged for longer periods of time.

Research into the clinical benefit of VR could be conducted by performing

larger and prospective studies, with additional questions and measured parameters

for extracting qualitative and quantitative data. Specific information related to the

surgical questions should be gathered (with follow-ups), in order to isolate the po-

tential ramifications on the surgery. For example: pre-VR: “is the RV too small for

biventricular repair?”, post-VR: “in VR, I was satisfied that the RV is insufficiently

sized for biventricular repair”, post-surgery: “the RV cavity was confirmed to be

too small in the operating theatre”. Additionally, there should be a greater effort to

assess the effectiveness of VR with quantitative measures, for example by recording

surgical information (cross-clamp time, bypass time) from patients assessed pre-op

with VR and comparing the data to a similar control population without VR access.

Similarly, future research into the educational aspects of VR in CHD could

be improved by repeating studies on larger cohorts and with more granular ques-

tionnaires. The study in Section 8.5 should be re-run over a longer time-frame,

testing students on multiple lesions and also evaluating the retention of knowledge

by repeating examinations. As an alternative to labelling structures in 2D (paper-

based examination), 3D examinations could be implemented in VR (by marking

structures). To support the deployment of VR in wider-educational settings, strong

quantitative evidence would be required which demonstrated faster knowledge up-

take and improved performance longer-term. Outside purely anatomical education,

simulators (echocardiography, surgical) and more tools could be implemented, in

order to improve trainee knowledge. Exploration of the potential benefits using

similar feedback and assessment methods could be conducted to further establish

the usefulness of VR in CHD teaching/training.

9.5 Final remarks

This thesis showed the feasibility of translating two potentially high-impact com-

putational tools (CFD and VR) for the clinical management/education of CHD. I

strongly believe that with more work, CFD and VR could be fully implemented
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for applications in the clinical practice, management and education of CHD. The

potential in an automatic and accelerated clinical CFD model in CHD care is sig-

nificant, primarily for reasons such as risk stratification and decision-making. In

the more distant future, I foresee that ML-based approaches could be used to de-

sign interactive physics-derived tools for applications such as virtual intervention

(e.g. aortic stenting). I also believe that VR has a future significance in CHD,

both for surgical planning and teaching via virtual classrooms. With improved soft-

ware, hardware and accessibility of HMD devices, it is highly likely that the uptake

of VR in clinical and teaching institutions will increase. For this reason, it is of

paramount importance to properly research the usefulness of VR, and in particular

where and how it should be applied. Most importantly, there are no practical re-

strictions preventing the approaches presented in this thesis from being utilised into

other healthcare (non-cardiac) applications. At present, the prospect of using ML,

CFD and VR to tackle complex problems in healthcare is an exciting one, and is

gathering more and more traction and momentum each year.
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Chapter 4

A.1 Sensitivity Analysis: Laminar vs Turbulent
It was found that an element count of 300,000 was well-suited to capture the flow

details in both the aorta and the PA, and for yielding a stable solution. Iterations

of 300 and 750 were sufficient for the aorta and PA respectively, in order to reach

convergence and accurate results.

Figure A.1: Difference velocity fields in Ao and PA when applying a k-omega turbulence
model(left = laminar, right = turbulent).

The gradient error (MAPE) for the aorta and PA (∼300,000 elements) vs the

highest resolution aorta and PA (1,000,000+ elements) were 2.0% and 2.15% for

pressure, respectively. The error for the velocity was 3.4% and 3.23%, respec-

tively. Lastly, the Reynold’s number was computed on both test cases, and resulted

in 3221.8 and 4250.5 for the aorta and pulmonary artery, respectively. The same

simulations were carried out with a k-omega turbulence model (with default param-



A.2. Hyperparameter Optimization 224

eters), which showed no difference when compared to the laminar model.

A.2 Hyperparameter Optimization
Training, including hyperparameter optimization, took 24 h, during which a total

of 124 hyperparameter configurations were sampled by the Hyperband iterations.

The top 10 performing configurations in terms of mean validation Dice score are

reported in Table A.1 and Fig. A.2.

Table A.1: Top 10 hyperparameter configurations.

# Scales Layers
per
block

Initial
fil-
ters

Learning rate Batch
size

Loss function Dice

1 3 2 64 3.46 ·10−4 2 Focal Tversky 0.946
2 3 4 32 1.99 ·10−4 2 Tversky 0.944
3 4 3 32 3.40 ·10−4 4 Dice 0.944
4 4 3 32 1.37 ·10−4 4 IoU 0.943
5 3 3 64 6.77 ·10−4 4 IoU 0.939
6 3 3 64 3.27 ·10−4 4 Dice 0.938
7 4 3 32 1.81 ·10−4 2 Dice 0.938
8 3 4 32 1.83 ·10−3 2 Focal Tversky 0.937
9 2 3 32 1.24 ·10−3 4 Jaccard 0.935
10 3 2 32 4.68 ·10−3 4 Dice 0.934
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Figure A.2: Parallel coordinates view of the top 10 hyperparameter configurations. Each
hyperparameter as well as the mean validation Dice score is shown on its own
axis. Each coloured line represents a hyperparameter combination, with ver-
tices at the corresponding values on the parallel axes.
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The best performing configuration was as follows: scales = 3, layers per block

= 2, initial filters = 64, learning rate = 3.46 ·10−4, batch size = 2, and loss function

= focal Tversky. This model was selected and used in all further experiments.

The top 8 performing configurations have 3 or 4 scales, which suggests that

models with 2 scales may have too limited representational power or deep layer

receptive fields. Models with at least 3 layers per block also tended to perform

better, with the notable exception of the best performing model, which had 2. A

relatively small learning rate also seems to be advantageous, with 6 of the top 7

configurations below 0.0005. Confusion-based losses seem to outperform cross-

entropy, which does not appear on any of the top 10 configurations, but none of

those appears to consistently outperform the rest.

A.3 Manual and Equal Clipping
In all cases, the equally clipped data produces better agreement between the ML and

GT CFD simulations (Fig. A.3). The median pressure and velocity error in aortas is

reduced through equal clipping by 2.1 and 1.0 percentage points, respectively. The

median pressure and velocity error in PAs is reduced through equal clipping by 4.2

and 2.7 percentage points, respectively. The magnitude of outliers is also reduced

through equal clipping.
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Figure A.3: Pressure and velocity mean average percentage errors (MAPE) for manual and
equally clipped aortas and pulmonary arteries.
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B.1 Template volume mesh deformation
Presented is an example of template volume mesh deformation when generating

the volume mesh for a new subject. In Deformetrica, the smoothness of ambient

space deformations preserves the relative spatial positions of nodes in the meshes,

however this affects mesh skewness which makes these meshes unsuitable for CFD

simulation.

Inlet surface from 
template volume mesh

Inlet after applying
3D deformation

Figure B.1: Mesh skewness due to SSM. The inlet surface of the template volume mesh
pre-deformation (left, red boundary), and the inlet post-deformation (right,
green boundary) are presented. Mesh skewness (Jacobian) is plotted, with a
result of 1 implying optimal triangle quality.
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B.2 CFD sensitivity study
A test aortic shape with a sharp arch angulation was chosen to be used in a mesh

sensitivity study. Pressure was monitored at a plane in the arch, as well as along

the entire centerline. The mean percentage error between the highest resolution

solution (∼1e6 cells) and our chosen mesh resolution (∼3e5 cells) was 2.0% and

3.4% for pressure and velocity, respectively. We determined that for this study, this

level of convergence was a suitable compromise in order to prove the feasibility of

our approach and reduce the computational burden during training data generation.

During batch CFD simulation, no divergence of errors was observed. Error residuals

(momentum and continuity) were all observed to fall under the 1e-3 threshold set.

Pressure was seen to converge more closely at the outlet, and velocity was seen to

converge more closely at the inlet. This is assumed to be due to the proximity to the

boundary conditions (velocity inlet, pressure outlet).

Figure B.2: Mesh sensitivity CFD plots. Top left: pressure along the centreline for 5
mesh resolutions. Top right: velocity-magnitude along the centreline for the 5
mesh resolutions. Bottom: Pressure monitored over 500 iterations. Iterations
= computations of the steady-state solver (no time-dependent terms).
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B.3 Best and worst PCA errors
The comparison in flow fields is shown in the worst PCA reconstructions (per-

formed on the test-set, n=200). The data is previously unseen from the PCA model.

PCA is reversed by undoing the SVD computation described in the Methods sec-

tion. The subject with highest errors in pressure after reconstruction with 20 PCA

modes had an error of MNAES=4.32%. The subject with highest errors in veloc-

ity after reconstruction with 55 PCA modes had an error of MNAES=4.93%. In

Fig. B.3, negative pressure values are respective to the reference gauge pressure set

during simulations (atmospheric pressure, 100kPa).

Pressure
(CFD)

Pressure 
(reconstructed with PCA)

Velocity-magnitude
(CFD)

Velocity-magnitude
(reconstructed by PCA)

Worst pressure PCA reconstruction Worst velocity PCA reconstruction

Figure B.3: Cases with worst PCA reconstruction errors. Left: subject with highest
pressure MNAES after reconstruction with 20 PCA modes (4.32%). Right:
subject with highest velocity MNAES after reconstruction with 55 PCA modes
(4.93%).

B.4 Pressure and velocity DNN architectures
The final pressure and velocity DNN architectures. In both networks, 4 layers were

found to be the optimal configuration. Rectified linear units (ReLU) are used in

each hidden layer, with linear units for the output layer.

B.5 Further Bland-Altman analysis
Regional Bland-Altman analysis. This was conducted on three different regions of

the aorta (ascending, transverse arch, descending). Normalised error is equivalent
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Figure B.4: DNN model diagrams. The architecture and parameters of both pressure and
velocity-magnitude networks is shown after hyperparameter optimisation.

to the NAE of each node (without taking the absolute value). The percentage of

nodes lying in the ascending aorta, transverse arch and descending aorta are 38%,

22% and 40%, respectively. It was observed that there was no evidence of any

significant systematic over-estimation or under-estimation for both models in all

three regions.

B.6 Projection of new shapes on PCA axes
PCA projections of real cases. All ten new prospective real patient cases were regis-

tered using the shape model and had their corresponding deformations decomposed

using the shape PCA model. The first 35 shape mode projections were taken for

each subject and plotted against the range of the original dataset scores (n=67). It

can be seen that in almost all cases, the 10 subjects fall within the interquartile or

maximum-minimum range of the original cohort.

B.7 Worst aortic pressure prediction
Shown are additional angles of the worst aortic pressure case from the test set

(n=200). Of particular note is the descending aorta flow extension, which has a

visibly reduced diameter and angulation in the ground truth segmentation. This

constriction is expected to be the cause of the local flow acceleration and resulting

pressure elevation in the ascending aortic domain.
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Figure B.5: Further Bland-Altman analysis. Errors in the three primary anatomical sec-
tions of the aorta are inspected. The ascending, transverse arch and descending
aortic regions are all shown.

Figure B.6: Prospective test cases shape PCA scores. The 35 shape mode projections for
all 10 new cases are shown. Boxplots represent the range of PCA mode scores
in the original cohort (n=67). Whiskers are 1.5 × the interquartile range. Red
markers are the PCA scores for the new subjects (n=10).
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True Pred True Pred

Figure B.7: Worst aorta pressure prediction. Shown are two different angles (from the
side and front) of the worst aortic pressure prediction (MNAES = 23.6%)
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C.1 Follow-up data
The table presented here includes all the relevant follow-up information for all 10

DORV patients in the study. Included is the time of follow-up, information regard-

ing re-operations during follow-up, LVOT max discharge velocity and RVOT max

discharge velocity. All patients had been repaired with a biventricular approach.

Patient
case

Time of follow-up
(months)

Reoperations
during follow-up

LVOT
max velocity (m/s)

RVOT
max velocity (m/s)

1 44.6
Closure of multiple

apical VSDs 1.5 1.7

2 33.6 No 1.5 1.5
3 40.5 No 3.3 2.1
4 28.6 No 2.2 2.4
5 39.9 No 4.1 1.9
6 43.8 No 1.5 1.5

7 23
LVOTO

relief (2x) 1.5 1.3

8 10.2 No 1.3 2
9 24.2 No 1.3 1.7

10 16 NO 1.3 1.5

Table C.1: Follow-up data for all DORV cases.
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D.1 Assessment questions for undergraduate CHD

VR workshop
The questions that were posed to attendees of the workshop are presented here.

Only one answer is correct for each multiple-choice question (shown in bold).

1. In the normal heart, the arterial roots: (A) are in parallel arrangement, (B) are

inferiorly located, (C) are both on the right-side, (D) cross one-another, or

(E) vary in position.

2. In regular transposition (TGA), the aorta is most commonly: (A) left-sided,

(B) centrally positioned, (C) posterior and to the left, (D) anterior and to the

left, or (E) anterior and to the right.

3. In a typical arterial switch operation (ASO), the following manoeuvre is per-

formed: (A) Leiden, (B) Lecompte, (C) Namagashi, (D) Metras, or (E) REV.

4. After a typical arterial switch (ASO), the pulmonary artery branches are: (A)

anterior to the aorta, (B) posterior to the aorta, (C) to the left-side of the

aorta, (D) to the right-side of the aorta, or (E) variable in position.

5. In transposition (TGA), the left-hand facing sinus typically gives rise to: (A)

all of the coronary arteries, (B) the left coronary artery, (C) the right coro-
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nary artery, (D) the circumflex coronary artery, or (E) both the left and cir-

cumflex coronary arteries.

6. Regular transposition (TGA) can be defined as: (A) separation of aorta from

the mitral valve, (B) separation of the pulmonary trunk from the mitral valve,

(C) aorta and pulmonary trunk arising from the LV, (D) aorta and pulmonary

trunk arising from the RV, (E) aorta arising from the RV and pulmonary

trunk from the LV.

7. In terms of segmental connections, regular transposition(TGA) is defined as:

(A) discordant AV + concordant VA connections, (B) discordant AV + dis-

cordant VA connections, (C) concordant AV + variable VA connections, (D)

concordant AV + discordant VA connections, or (E) concordant AV + con-

cordant VA connections.

8. In the arterial switch operation (ASO), the coronary arteries are: (A) ligated

prior to transfer, (B) divided and sutured circumferentially, (C) removed on

buttons of aortic wall, (D) not a consideration for ASO, or (E) prepared as

the first step of the ASO.

9. In the typical arterial switch operation (ASO), the ’switch’ refers to the: (A)

arterial valves, (B) arterial trunks, (C) outflow tracts, (D) coronary arteries,

or (E) the branch pulmonary arteries.

10. A typical arterial switch operation can be prevented by: (A) severe left ven-

tricular outflow obstruction, (B) a bicuspid aortic valve, (C) an intramural

coronary artery, (D) aortic coarctation, or (E) a large ventricular septal defect.

D.2 Willingness of participants to implement VR
This graph details the willingness of participants to implement VR in their prac-

tice, with respect to how useful/helpful they perceived VR during their session. It

can be seen that the large majority of users who found VR useful were also very

willing to implement it in their practice. One user reported a very high interest to
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implement VR in their practice, despite reporting a 2/5 score for usefulness of VR

in understanding CHD.

Figure D.1: Relationship between scores for ’helpfulness’ and ’willingness to implement’
(n=58).
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tias P. Heinrich, Julien Oster, Chunliang Wang, Orjan Smedby, Cheng Bian,

Xin Yang, Pheng-Ann Heng, Aliasghar Mortazi, Ulas Bagci, Guanyu Yang,

Chenchen Sun, Gaetan Galisot, Jean-Yves Ramel, Thierry Brouard, Qian-

qian Tong, Weixin Si, Xiangyun Liao, Guodong Zeng, Zenglin Shi, Guoyan

Zheng, Chengjia Wang, Tom MacGillivray, David Newby, Kawal Rhode,

Sebastien Ourselin, Raad Mohiaddin, Jennifer Keegan, David Firmin, and

Guang Yang. Evaluation of algorithms for Multi-Modality Whole Heart

Segmentation: An open-access grand challenge. Medical Image Analysis,

58:101537, 12 2019.

[112] Saeed Karimi-Bidhendi, Arghavan Arafati, Andrew L Cheng, Yilei Wu,

Arash Kheradvar, and Hamid Jafarkhani. Fully-automated deep-learning seg-

mentation of pediatric cardiovascular magnetic resonance of patients with

complex congenital heart diseases. Journal of cardiovascular magnetic res-

onance, 22(1):1–24, 2020.

[113] Wenjia Bai, Matthew Sinclair, Giacomo Tarroni, Ozan Oktay, Martin Rajchl,

Ghislain Vaillant, Aaron M. Lee, Nay Aung, Elena Lukaschuk, Mihir M.

Sanghvi, Filip Zemrak, Kenneth Fung, Jose Miguel Paiva, Valentina Cara-



Bibliography 252

pella, Young Jin Kim, Hideaki Suzuki, Bernhard Kainz, Paul M. Matthews,

Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer, Ben Glocker, and

Daniel Rueckert. Automated cardiovascular magnetic resonance image anal-

ysis with fully convolutional networks. Journal of Cardiovascular Magnetic

Resonance 2018 20:1, 20(1):1–12, 9 2018.
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