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Abstract

Automatic speech recognition has become a ubiquitous technology integrated into our daily
lives. However, the problem remains challenging when the speaker is far away from the
microphone. In such scenarios, the speech is degraded both by reverberation and by the
presence of additive noise. This situation is particularly challenging when there are competing
speakers present (i.e. multi-party scenarios)

Acoustic scene simulation has been a major tool for training and developing distant
microphone speech recognition systems, and is now being used to develop solutions for
mult-party scenarios. It has been used both in training – as it allows cheap generation of
limitless amounts of data – and for evaluation – because it can provide easy access to a
ground truth (i.e. a noise-free target signal). However, whilst much work has been conducted
to produce realistic artificial scene simulators, the signals produced from such simulators are
only as good as the ‘metadata’ being used to define the setups, i.e., the data describing, for
example, the number of speakers and their distribution relative to the microphones.

This thesis looks at how realistic metadata can be derived by analysing how speakers
behave in real domestic environments. In particular, how to produce scenes that provide a
realistic distribution for various factors that are known to influence the ’difficulty’ of the
scene, including the separation angle between speakers, the absolute and relative distances of
speakers to microphones, and the pattern of temporal overlap of speech. Using an existing
audio-visual multi-party conversational dataset, CHiME-5, each of these aspects has been
studied in turn.

First, producing a realistic angular separation between speakers allows for algorithms
which enhance signals based on the direction of arrival to be fairly evaluated, reducing the
mismatch between real and simulated data. This was estimated using automatic people
detection techniques in video recordings from CHiME-5. Results show that commonly
used datasets of simulated signals do not follow a realistic distribution, and when a realistic
distribution is enforced, a significant drop in performance is observed.

Second, by using multiple cameras it has been possible to estimate the 2-D positions of
people inside each scene. This has allowed the estimation of realistic distributions for the
absolute distance to the microphone and relative distance to the competing speaker. The
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results show grouping behaviour among participants when located in a room and the impact
this has on performance depends on the room size considered.

Finally, the amount of overlap and points in the mixture which contain overlap were
explored using finite-state models. These models allowed for mixtures to be generated, which
approached the overlap patterns observed in the real data. Features derived from these models
were also shown to be a predictor of the difficulty of the mixture.

At each stage of the project, simulated datasets derived using the realistic metadata
distributions have been compared to existing standard datasets that use naive or uninformed
metadata distributions, and implications for speech recognition performance are observed
and discussed. This work has demonstrated how unrealistic approaches can produce over-
promising results, and can bias research towards techniques that might not work well in
practice. Results will also be valuable in informing the design of future simulated datasets.
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Chapter 1

Intoduction

1.1 Motivation

Automatic speech recognition (ASR) is the task of taking an acoustic signal spoken by a
person and producing a text transcript of the words uttered. ASR technology has become
commonplace in our everyday lives in recent years. It has become customary to speak to
our phones to set a reminder or to shout across the room to ask our smart speaker to play a
song. Even though the technology has become “good enough” to be helpful, it still leaves
users with many frustrations when the recogniser is incorrect. It may be surprising to hear
that the performance of these recognisers has surpassed human-level performance on many
recognition tasks (Bermuth et al., 2021; Zhang et al., 2020b).

However, in many everyday situations, this technology can perform poorly. Although
there can be a lot of specific reasons for poor performance, many can be traced back to a
mismatch between the data the systems have been trained on and the data that they encounter
when they are later deployed.

A particular ASR problem known as distant speech recognition (DSR) has some unique
characteristics making it more susceptible to this mismatch problem that is not often discussed
in the literature. In DSR, a target speaker whose speech we would like to recognise is located
far from the recording device, which can be several metres across a room. In this setup, there
are often interferers (i.e., competing speakers and other sound sources) whose signals we
may not want to recognise but instead want to filter out to prevent them from corrupting
the speech we do want to recognise. Some of these competing sound sources may have
well-defined locations, while others may be diffuse and arrive at the microphone from no
clear direction. The task of effectively filtering out distracting sounds is something that
humans can perform naturally when attending to a conversational partner at, for example, a
dinner party, i.e., the “cocktail party effect” (Cherry and Bowles, 1960; Haykin and Chen,
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2005). However, although humans perform this task seemingly effortlessly, it remains a
surprisingly challenging signal processing problem.

In addition to the competing noise source, the DSR task is also made challenging by the
effect of reverberation. Reverberation is caused by the acoustic signal having many paths
to the recording device: there will generally be one ‘direct path’ but then many paths that
result from one or more reflections off the walls and other surfaces in the environment. The
reverberation can be split into two parts, early and late. The early part is composed of the
energy arriving by paths that reach the microphone soon after the direct path. These early
reflections are highly correlated with the original speech and can aid recognition. In contrast,
the late part is uncorrelated and can be detrimental to recognition performance (Kinoshita
et al., 2009).

Automatic methods for filtering the target speech can exploit the fact that speakers have a
well-defined direction relative to the recording device (Xiao et al., 2016). The device used
to capture the acoustic signal in practice tends to be an array of microphones as opposed to
a single microphone. Having an array of microphones means that the time delays between
the signal reaching the different microphones can be used to infer spatial information of the
source location of the signals reaching the device (Knapp and Carter, 1976). So, a typical
DSR system will consist of a pre-processing step that involves extracting the target speaker’s
speech from the noisy signal(s) reaching the recording device. In the multi-channel case,
statistically optimal ‘beamformers’ are commonly used to enhance a target speaker direction
whilst suppressing signals from other directions (Breed and Strauss, 2002; Ferguson, 1998).
This extraction procedure can be achieved through separate tasks such as target-speaker
extraction (Delcroix et al., 2020), speech enhancement (Chaudhari and Dhonde, 2015) and
speech separation (Choi et al., 2005; Wang and Chen, 2018).

When building DSR systems with source separation front-ends, simulation is typically
used to both train (Hershey et al., 2016; Luo and Mesgarani, 2019) and evaluate (Le Roux
et al., 2019; Vincent et al., 2006) the performance. Simulation involves taking a clean,
isolated speech signal and corrupting it such that it has the acoustic properties of a signal
propagating through a room from the source (speaker) to the sink (recording device); this is
known as spatialising. These spatialised signals can then be combined by simply summing
the signals together, creating a mixture. The role of the DSR’s front-end is then to map this
noisy mixture back to a clean, isolated version of the speech signal that can be fed to the
speech recognition stage.

Simulation is useful because it allows for the source separation front-end to be directly
evaluated, i.e., we have access to the pre-mixed target speech signal that can be compared
to the front-end’s output. Without simulation, a proxy to the target speech signal would
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be required, for example, a near-field microphone could be used. However, such signals
still contain some undesired noise. Using simulated signals also allows the front-end to be
directly trained, i.e., it can learn a noisy to clean speech mapping by using the clean signals
as a target in a training procedure. Directly learning this mapping produces by far the best
results in commonly used datasets of simulated signals (Luo and Mesgarani, 2019; Subakan
et al., 2021). Finally, simulated data is also useful as it allows for arbitrary large datasets to
be generated with various spatial properties. In contrast, when recording a real1 DSR dataset,
we are limited to the spatial properties of the original recording.

However, despite its advantages, simulation has a major potential drawback. In practice,
training and evaluating systems on simulated data are often found to lead to poor performance
when deploying systems on real signals (Haeb-Umbach et al., 2020). Instead, the state-of-
the-art in practice relies on an unsupervised backend which by definition is not biased by any
training data (Du et al., 2020a; Ito et al., 2016). The problems with simulation are due to the,
often, large mismatch between the simulated training data and the eventual real deployment
data. Understanding these sources of mismatch and understanding how to produce simulated
DSR speech data that is better matched to real scenarios is therefore the key aim of this
thesis.

1.2 Thesis overview

1.2.1 Thesis aims

This thesis aims to address some of the mismatches between the evaluation data used in
DSR and the eventual deployment data of these recognisers. In particular, the thesis explores
data-driven approaches to model the behaviour of real people at small social gatherings,
e.g., spatial characteristics of speakers relative to interfering speakers and their turn-taking
patterns. These models are used to create datasets that are more challenging and more
realistic than those that are currently commonly used, and which, because they are guided
by observed data, allow the construction of ASR and pre-processing components that will
generalise better to real datasets.

This analysis is performed by exploring a large existing multi-modal dinner party dataset,
i.e., CHiME-5 (Barker et al., 2018).

The dataset consists of unscripted, conversational speech that has been captured by
microphone arrays with four channels and a high-definition camera integrated into the unit.
Whilst the audio is fully-transcribed, the video data is entirely unlabelled. A project aim is to

1Real in terms of spatial properties, i.e., artificial signal datasets are not fake.
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use the camera feed to infer the location statistics of speakers relative to the microphones.
Further, the transcripts are analysed to understand the statistics of speaker turn-taking and the
resulting speaker overlap in casual conversational settings. With models of speaker location
and turn-taking, realistic DSR data can be simulated. We can then look in detail at how the
properties of the simulation impact the evaluation of DSR recognition systems, comparing
conclusions drawn from the more realistic data set with simpler existing ones.

1.2.2 Research questions

RQ1 To use spatial filtering to extract the speech of the desired speaker in the presence of an
interfering speaker, multiple channels are used to exploit differences in signals reaching
the microphones. The differences in the signals are a direct result of different angles of
incidence with the microphone array for each of the sources. If two signals (target and
interferer) are coming from similar directions the signals will be similar for each of the
channels in the array. The difference between the two directions of arrivals is referred
to as the angular separation. The amount of angular separation is a parameter that is
not often discussed in the design of simulations or measured when reporting results.
Therefore this thesis explores, how well do simulated datasets represent the angular
separation found in real data? And how does poorly representing real data affect
ASR evaluation?

RQ2 The signal-to-noise (SNR) ratio between the target source and noise (competing
speaker plus background) governs a large part of the difficulty of a mixture for both
speech separation and ASR. For multiparty speech data, the SNR is a result of the
loudness of each of the initial signals and the distances the signals need to travel to
reach the microphones in the array. This means the SNR is largely the result of the
relative distance of sources i.e., the distance the desired speaker is away from the
microphone relative to the interfering speaker. Therefore, this thesis explores, how
well do simulated datasets represent the relative distance found in real data? And
how does poorly representing real data affect ASR evaluation?

RQ3 To address RQ1 and RQ2 methods for locating the positions of speakers are required.
Requiring people to wear intrusive devices to track their positions inside rooms is not a
practical requirement in everyday life. In practice, under real-world usage, smart-home
devices tend to be placed ad-hoc and “out-of-the-way” with little regard to optimising
their placement for estimating speaker position unintrusively e.g., by using video
cameras. Therefore, this thesis explores, how well can integrated cameras from
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ad-hoc placements of devices be used to estimate speaker positioning inside of
rooms?

RQ4 Speech separation algorithms often perform poorly when the number of sources present
is different from the number of sources being extracted. Therefore the number of
overlapping speakers is important to model when simulating data. Speech separation
algorithms also exploit context when extracting sources, therefore the placement of the
overlap affects the difficulty. This thesis therefore explores, how well do simulated
datasets represent the overlap patterns found in real data? And how does poorly
representing real data affect speaker extraction evaluation?

RQ5 The behaviour of speakers in multiparty scenarios will result in different degrees of
difficulty for the scenario, e.g., more or less speaker overlap depending on the degree
of ‘formality’. Modelling parties potentially allows for similar behaving parties to
be grouped together and the difficulty of the generated data from participants to be
predicted. This is a useful tool when considering the performance of a DSR system
for a particular recording. Therefore this thesis explores, how can representations be
created to best model the difficulty of parties for ASR?

1.3 Contributions

Analysis of speaker separation

In Chapter 4 an analysis of the angular separation distribution used in commonly used
simulated datasets is shown. This is contrasted with estimates of the angular separation found
in a real dataset, these estimates are later refined in Chapter 5. It was found that there is a
large mismatch between the different simulated datasets and further still with the real data.
This results in simulated datasets overemphasising the performance of separation angles that
do not often occur in real data.

It was found that once we enforce a realistic angular separation into the simulation, the
performance of a state-of-the-art baseline system drastically decreases. The degree to which
the performance decreases depends on the technique being used. This could potentially lead
to a claimed improved system in simulation not resulting in an improvement in real data i.e.,
its simulated performance improvement was due to improving separations that do not occur
in real data.
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Analysis of the impact of speaker distance

Chapter 5 contributes an impact analysis of modelling speaker distances in simulations.
Using multiple cameras with overlapping views, the 2-D positions of people inside of rooms
were estimated as well as angular separation. These 2-D positions enabled estimates of
relative distances to the microphone to be modelled. It was found that when constraining
estimates to be within a small room, the placement of people can be modelled using uniform
random positioning. But when larger rooms are used the participants place themselves
relatively closer together i.e., form groups.

When enforcing a realistic relative distance the results showed a complicated relationship
which showed the impact of the realistic relative distance distribution depending on the
angular separation distribution being used.

Generative modelling framework for realistic overlap

In Chapter 6, a generative framework for modelling the turn-taking of multiparty scenarios
using a fixed number of speakers is presented and released as a Python package2. The
framework produces overlap distributions that can approximate those found in the real data as
well as the placement of the overlaps. This framework allows for arbitrarily long turn-taking
patterns to be generated which can be used to create isolated mixtures for speech separation
as well as other tasks such as diarisation.

Representations for analysing the difficulty of multi-speaker parties

Chapter 6 shows representations that can be computed from the generative model presented
in the same chapter. The representations show a way to visualise the behaviour of speakers
based on their turn-taking. These representations were shown to be a predictor for the
performance of target-speaker extraction. They could further be used to evaluate other tasks
such as diarisation, or they can be used in training ASR systems conditioned on the behaviour
of speakers.

Speaker position data

To analyse the data in this thesis, speaker position data needed to be gathered from videos.
This was achieved through annotating the data as well as using automatic people detection
algorithms as described in Chapter 3. This data has been made available online3 to reproduce

2https://github.com/jackdeadman/turn-taking
3https://chime.jackdeadman.com

https://github.com/jackdeadman/turn-taking
https://chime.jackdeadman.com
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the work. In addition to this, the data could be used by researchers to train ASR systems on
speaker position information as the video data is not publicly available for use.

Annotation tools

Finally, the annotation tools used in this thesis were tailor-made to speed up the process of
annotation for locating speakers. These tools have been made publicly available to benefit
researchers who may want to annotate similar datasets4.

1.4 Organisation of the thesis

The diagram in Figure 1.1 shows the structure of the thesis. In the introduction, we have
discussed the motivation of the thesis and the gap in the literature that this work aims
to address. That is we motivate the need for good simulation in order to drive research
towards algorithms that perform well in simulation and real deployment data. In Chapter
2, we explore the literature on creating spatialised speech through simulation and how
these signals are processed. This reviews the signal-processing techniques required for
transforming an isolated clean-speech signal into a multi-channel reverberant signal. This
then extends to exploring how simulated signals play a role in the development of automatic
speech recognition systems. This involves looking at simulated datasets that are used for
pre-processing as well as other roles such as pre-training and data augmentation. Chapter
3 introduces the CHiME-5 dataset, an existing multi-modal, multi-channel dinner party
corpus, this is then compared with alternative datasets that could have been used for this
work. The chapter includes tools developed to extract the location of speakers within the
videos of the corpus both automatically and manually. Chapter 4 explores estimating the
angular separation between speakers in a real recorded scenario by using single cameras.
The results are then projected into a simulated environment to measure the impact of the
mismatch. Chapter 5 extends this work by combining multiple cameras to estimate the 2D
position of people inside the rooms This allows for distance estimates and refinement of
the angular separation estimate. Chapter 6 looks into analysing speaker behaviour from a
temporal perspective as opposed to a spatial one, this investigates how speaker overlap can
be modelled as well as representations for the turn-taking behaviour of speakers. Finally,
Chapter 7 concludes by discussing how the work addresses the research questions proposed
in this introduction chapter.

4https://github.com/jackdeadman/video-annotation-tools

https://github.com/jackdeadman/video-annotation-tools
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Chapter 3 
Data and tools for analysing speaker behaviour

Chapter 4 
Estimating speaker location using a single device

Chapter 2 
Distance microphone speech processing

Chapter 1 
Introduction

Chapter 6 
Modelling speaker turntaking 

Chapter 7 
Conclusions

Chapter 5 
Estimating speaker location using multiple devices
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Fig. 1.1 Structure of the thesis chapters. The thesis begins with a review of the literature
on distant microphone speech processing. It then goes on to review the data available to do
the required analysis and the additional data requirements. The three experimental chapters
then follow, with work on spatial analysis using speaker positions in Chapters 4 and 5. This
is then followed by temporal analysis using speaker turn-taking in Chapter 6. This is then
followed by the conclusions.

1.4.1 List of publications

During the course of the author’s Ph.D they have published four papers, three (1, 2, 4) of
which have directly contributed to the outputs presented in this thesis.

1. Deadman. Jack and Barker. Jon “Simulating realistically-spatialised simultaneous
speech using video-driven speaker detection and the CHiME-5 dataset”. In proc.
INTERSPEECH. 2020

2. Deadman. Jack and Barker. Jon “Improved simulation of realistically-spatialised
simultaneous speech using multi-camera analysis in the CHiME-5 dataset”. In proc.
ICASSP. 2022
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3. Tu. Zehai, Deadman. Jack, Ma. Ning, Barker. Jon “Auditory-Based data augmenta-
tion for end-to-end automatic speech recognition”. In proc. ICASSP. 2022

4. Deadman. Jack and Barker. Jon “Modelling turn-taking in multispeaker parties for
realistic data simulation”. In proc. INTERSPEECH. 2022





Chapter 2

Distant microphone speech processing

2.1 Introduction

Automatic speech recognition (ASR) technology has progressed rapidly over recent decades.
This has been largely due to algorithmic development, data availability and computation
resources providing the advancements needed for complex recognition tasks to be solved. In
order to encourage development in the field, simplified tasks are first created by constraining
real application scenarios to create simpler problems, which are sometimes referred to as “toy
problems” that are more approachable. Once these simplified problems have been adequately
solved more complex tasks can be addressed using what was learned from the prior research.

If research is to progress efficiently, great care needs to be taken when defining suitable
constrained tasks. The constrained tasks need to be simple enough that progress can be made
given state-of-the-art at the time of the research. Making a task too difficult will lead to little
progress that can be measured and motivation will be lost. However, it is also necessary that
the task is simplified in such a way it still progresses science in the correct direction that will
later lead to the development of harder and more realistic tasks. If a problem is simplified
in a way such that algorithms can exploit aspects of the task that will never be available
in data from the real scenario, then research will be lead down the wrong path, promoting
techniques that do not generalise beyond the toy problem. For example, if an ASR system
exploits spectral properties that are only present in extremely clean signals then once noise
is added to the signal the techniques will fail. Therefore, it is important when simplifying
the tasks to understand what part of the tasks are realistic and what unrealistic parts could
potentially be exploited.

Recognising speech from distant microphone recordings is one of the most difficult
unsolved problems in ASR. The difficulty comes from the many aspects of complexity that
occur due to the behaviour of people in the environment and the way the acoustic signal is
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corrupted due to the properties of the environment. This leads to algorithms that work in
simplified tasks failing in real environments due to the mismatch. Worse, it is often unknown
why these algorithms fail in such a scenario. This failure may be due to a mismatch in one
or more of the many unmeasured variables in the real data. Therefore, it is important to
add complexity to the simplified task in a way that approaches the eventual real data. It is
important to note, constrained tasks are not made more realistic simply by making them more
‘difficult’: a task can be made arbitrarily (e.g., extremely noisy), but if this difficulty is not
moving the task closer to the real data then this too is going to lead research down a fruitless
path.

This chapter aims to give an overview of the task of distant microphone speech recognition
and the associated literature in multi-party environments. When reviewing this literature
we shall be doing so in light of the discussion above. The key aim will be to understand
why a distant microphone is a challenging problem and to understand something about the
most popular approaches that go towards solving it. With this knowledge in hand, we can
understand the aspects of the problem that need to be captured when designing the simplified
datasets, i.e. the toy problems, that can be used as stepping stones towards producing systems
for real applications. This understanding will then contribute to the design of the datasets
introduced in the main thesis chapters.

The remainder of this chapter will proceed as follows. First Section 2.2 will provide a
more formal description of what we mean by distant microphone and multi-party environment.
Section 2.3 will describe the components that make up an ASR system for this setup. Next,
speech separation techniques will be explored in Section 2.4 and 2.5 as this is a key component
in multiparty scenarios. With Section 2.4 focusing on spectral-temporal filtering and Section
2.5 focusing on spatial filtering. Next, the chapter looks at artificial room simulation in
Section 2.6. Then in Section 2.7 we explore where simulated data fits into the development
on distant microphone ASR.

2.2 Problem setup

In this thesis, we will be considering ‘multi-party environments’. By multi-party this simply
means environments in which more than one person is present and more than one person may
be speaking at any moment. The environments will also contain a mix of non-speech sources.
To formally define the setup, a multiparty environment signal is captured with a microphone

array denoted by x[t] =
[
x1[t] · · · xM[t]

]⊤
. The array consists of M microphones and

each microphone i captures a signal xi[t] at time t. The signal captured at the microphone
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array will consist of a combination of J speech signals C[t] =
[
c1[t] · · · cJ[t]

]⊤
and some

background noise n[t] =
[
n1[t] · · · nM[t]

]⊤
,

x[t] =
J

∑
j=1

c j[t]+n[t]. (2.1)

The wet speech signals c j[t] are the result of clean signals being subjected to distortion from
the containing environment and n[t] captures all remaining noise e.g., sensor and diffuse
noise. The room corruption process can be modelled as a linear time-invariant (LTI) system.
The response of a signal s[t] with some LTI system H can be computed through convolution
(~) with the impulse response of that system i.e., s[t]~H(δ [t]) = H(s[t]). The convolution
operation is defined for some signals s[t] and h[t] as,

s[t]~h[t] =
∞

∑
k=−∞

s[k]h[t − k]. (2.2)

Therefore, the wet speech signals c j[t] at the microphone array for source j are defined as,

c j[t] =
[
s j[t]~ r1 j[t] · · · s j[t]~ rM j[t]

]⊤
, (2.3)

where ri j is system response of the room of microphone i for the source position j. This
signal is commonly known as the room impulse response (RIR) and characterises how the
dry source signal s j[k] is corrupted by traveling from location of source j to microphone i.

Speech recognition in a multi-party environment aims to extract the speech sources s j[t]
from the mixture and produce a transcript of each of the utterances. Alternatively, it may
only be necessary to extract the speech of some target source s′[t] ∈ {s1[t], ...,sJ[t]} with all
remaining sources treated as noise. This chapter aims to review techniques for producing a
transcript for the target source(s) in the mixtures as well as discuss the challenges involved in
this problem domain and the assumptions being made. Training and evaluating such systems
often requires knowledge of s j[t] but this cannot be directly captured in real multi-party
data. Data can be synthesised to address this through generating mixtures from close-talk
microphone recordings s j[t] and known RIRs ri j[t]. Methods for generating RIRs through
measurement and simulation are discussed at the end of the chapter.

The experimental work of this thesis is situated within this framework. Chapter 4 and
Chapter 5 consist of experimental work on producing more realistic RIRs (Equation (2.3)).
Whilst Chapter 6 explores the mixing process of the sources (Equation (2.1)) i.e., the turn-
taking behaviour of the speakers.
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Diarisation

Preprocessing

Speech Separation

Speech Enhancement

Target Speaker Extraction

Speech Recognition

Speaker Counting Scene Classification

Input Mixture

Dereverberation

Fig. 2.1 Schematic overview of how distant microphone processing tasks can be combined to
create a speech recognition system. Each of the individual components can be evaluated as a
means to an end.

2.3 Components within distant speech recognition

In order to develop systems for distant microphone speech recognition the process is often
broken down into several components. These components represent tasks that can be
considered separately, i.e. trained and evaluated independently before being used to construct
a full system. Example components include speech detection and speaker counting, source
separation, dereverberation, speech recognition, etc. However, recent work has seen that it
can be possible to train systems in an end-to-end fashion if the data is available (Li et al.,
2022). The diagram in Fig 2.1 presents an example of how components can be combined to
form a distant microphone ASR system.

Given a stream of multiparty audio containing the speech that we want to recognise,
we must first determine the segments containing the individual utterances. The process of
determining who is speaking and when is known as diarisation. Diarisation is often treated
as an independent task with its own performance metrics (Bredin, 2017). Although more
recent approaches treat diarisation and speech recognition jointly, i.e. solving both problems
simultaneously rather than sequentially (Mao et al., 2020), we here consider more classical
approaches that apply diarisation as a precursor to speech recognition.

After diarisation, smaller segments of speech can be processed in an enhancement step.
These segments will contain the desired speaker but may also contain noise such as from the
environment or interfering speakers. Enhancement aims to extract the desired signal from
the mixture removing the undesired noise. Again, enhancement is often treated as a separate
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task. Enhancement research considers many desired tasks, for example, telecommunications,
hearing aids as well as a preprocessing before speech recognition. It is well known that an
improved perception of audio quality from a human perspective may not lead to improved
recognition performance. Therefore the loss functions the enhancement systems use may
vary but the underlying architectures are unchanged.

Finally, this enhanced signal is fed into a speech recognition backend. For the system to
perform well, it still needs to be robust to the variability in the data in distant microphone
recognition. To achieve this systems are often trained on a variety of noisy data, e.g.,
corrupted by many different environments. This could consist of artificially created data (Ko
et al., 2017) or recorded vast amounts of data (Chen et al., 2021). Other effective strategies for
creating robust distant microphone ASR consist of removing the effects of the environment
as a feature level with robust feature transforms (Gales and Woodland, 1996).

The component that has arguably the biggest governance over WERs is speech separation.
Therefore, the extent to which systems can separate speech well governs their performance.
The extent to which datasets are realistic is governed by the extent to which they capture the
complexity of the real source separation cues.

2.4 Spectral-temporal filtering

The following section will discuss speech separation cues and the techniques to extract
sources. These can be broken into spectral-temporal cues which exploit cues in the time-
frequency domain and spatial cues which exploit cues from the source’s physical location.

2.4.1 General framework

In this section, the general framework will be described in the context of single-channel
enhancement networks. The next section describes how this framework can be extended to
incorporate multiple channels this is performed by incorporating spatial information.

Given the mixtures x[k] the aim of spectral-temporal filtering is to extract the target

source s j[k] or J target sources
[
s1[k] · · · sJ[k]

]⊤
using spectral information. In this

section, x∗[t] denotes a selected channel in x[t] i.e., x∗[t] ∈ {x1[t], · · · ,xM[t]} which is known
as the reference channel and may be arbitrarily chosen or through an estimate of audio quality.
Note the distortion due to reverberation of the RIR ri j can either be treated as noise and
therefore part of the separation task or through further processing through dereverberation
e.g., using weighted-prediction-error (Drude et al., 2018). The specifics usually depend on
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Fig. 2.2 A depiction of how the short-term Fourier transform (STFT) converts a signal x[t] into
a time-frequency representation. The time-domain signal is broken down into K overlapping
frames by sliding a window with a shift size H. Each frame consists of L samples, and
frequency information is then extracted from the frame using N filterbanks (n = 1 and n = 10
are shown above as examples). Above in red shows the filterbanks are a combination of
a windowing function and a Fourier basis component. Instead of a fixed filterbank, these
kernels can be learned from data for representations that are more task-specific than the fixed
STFT.

the targets used in supervised training but nevertheless does not need to be considered when
describing the framework.

The discussion in the following section lies within the framework of modern deep neural
network (DNN) approaches, however, the classical approach began long before this e.g.,
Wiener filtering (Lim and Oppenheim, 1979). However, this is outside of the scope of this
thesis. In modern DNN approaches, the task of separating sources from a mixture is often
broken down into three stages, encoding, masking and decoding (Pariente et al., 2020). The
encoder takes the time-domain signal x∗[t] and transforms it into a new domain using a series
of N filterbanks, using a sliding window of size L and a hop length H,

x∗[k,n] =
L−1

∑
t=0

x∗[t + kH]un[t], for n ∈ {0, . . . ,N −1}, (2.4)



2.4 Spectral-temporal filtering 17

where k is the frame number and n is the frequency bin. Traditionally in digital signal
processing, the kernel un[t] in this formulation is fixed to be,

ustft
n [t] = w(t)exp

(
− j

2πtn
N

)
, (2.5)

where w(t) is a windowing function such as Hamming. Using this well-known fixed kernel
ustft

n [t] would result in the Short-time Fourier transform (STFT). The STFT domain is very
popular and is well-understood in signal processing. A diagram illustrating this process is
shown in Figure 2.2.

In the general case for un[t], the kernel can be parameterised and the weights of the kernel
can be learned. Using a convolutional neural network to learn this kernel was a breakthrough
in the source separation with the introduction of Conv-Tasnet (Luo and Mesgarani, 2019).
This work showed that the performance of masking could be improved when the signal
is transformed into a learned task-specific domain rather than the general-purpose Fourier
domain. This work led to further kernel designs that have fewer parameters and make
assumptions about their shape, e.g., a SincNet (Ravanelli and Bengio, 2018) and GaussNet
(Loweimi et al., 2019). The choice of which depends on the application and the amount of
data available.

Given the transformed signal x∗[k,n], a masking network can be trained to estimate the
function M which predicts J masks i.e., one for each of the sources. Using X∗ as a K ×N
matrix representation of x∗[k,n], the mask prediction function is defined as,

M (X∗) =
[
M1, · · · ,MJ

]⊤
, (2.6)

where M j is a mask with the same shape as X∗, allowing for each of the sources to be
separated through element-wise multiplication (⊙),

Ŝ j = M j ⊙X, (2.7)

where Ŝ j is the matrix representation of the estimated source signal ŝ j[k,n], which is in the
transformed domain. The source can then be fed into further steps e.g., into a recognition
system or transformed back into the time domain using a decoder function,

ŝ j[t] =
K−1

∑
k=0

N−1

∑
n=0

ŝ j[k,n]vn[t − kH], (2.8)

where the kernel vn[t] can be jointly learned alongside un[t] or alternatively the pseudo-
inverse of vn can be computed using singular-value decomposition to reduce the number
of parameters. In the specific STFT case, the corresponding fixed transform for the STFT
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is known as the inverse short-term Fourier transform (ISTFT). Often the three components
(encoding, masking and decoding) are jointly trained in an “end-to-end" manner using
time-domain loss functions. When fixed transforms are used the loss function can be in the
frequency domain e.g., the error between the predicted mask and an ideal mask. Therefore,
the task of source separation can be mainly reduced to a mask prediction task.

2.5 Spatial filtering

As well as being able to filter a signal based on its time-frequency properties, it is also
possible to filter based on the source location of the signal. Cues for the location of the
signal can be captured by recording the signal simultaneously through multiple microphones
at different spatial locations (i.e., by a so-called ‘microphone array’). The relative delays
between the signal arriving at the separate microphones are indicative of the location of the
sound source. First, in this section, beamforming approaches inspired by signal processing
techniques in antennas are explained, then spatial probabilistic models are explained followed
by general spatial features that can be computed and used to estimate masks.

2.5.1 Beamforming

Beamforming is a common approach for spatially filtering signals. A beamformer is able
to enhance signals arriving from one or more directions while suppressing signals arriving
from others. Beamforming algorithms use multiple (sample-synchronised) microphones (i.e.
microphone arrays) and exploit the signal time-delay of arrival discussed earlier.

We will start by considering the case of a linear microphone array, i.e. one in which the
microphones are arranged in a line. If we assume a signal is sufficiently far away that the
waves can be approximated as planar, then the sounds coming from directly in front of the
array can be enhanced relative to sounds from competing directions by simply summing the
microphone signals. The sounds being emitted from in front of the array will be enhanced as
they will be received by all the microphones at the same time (due to plane wave assumption).
The signal will be enhanced due to them being the same signals and all in phase; therefore, the
interference will be constructive. Sounds being emitted from different directions will receive
a lower gain as they will not be in phase and hence will not have constructive interference.

To enhance a source in a different direction, the received signals can be delayed before
summing them together, effectively steering the direction of enhancement. The amount of
time needed to delay the signal to achieve the desired angle can be calculated by,
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θ

di

di cos(θ)

Wavefront

Fig. 2.3 Geometry for calculating the delays used in delay and sum beamformer. Here, we
assume that the source is sufficiently far away that we can assume the wavefront is a plane
wave. This means that when the wavefront reaches a reference point, a right-angle triangle is
formed and the distance the wavefront needs to travel to reach any point in the array can be
computed using trigonometry. Given a distance di away from a reference point, the distance
the wave will travel before reaching the microphone i is given by di cos(θ) where θ is the
direction the beamformer is pointing. From this distance the delay can be computed by using
the speed of sound in the medium.

τ
θ
i =

−di · sin(θ)
C

, (2.9)

where di is the distance between the microphone i and a reference point (e.g., centre or some
reference microphone), θ is the desired angle to steer to, and C is the speed of sound in the
medium.

The signal can be enhanced by applying the delay and then summing the channels together
and then normalising the gain, this results in the delay and sum beamformer (Grythe and
Norsonic, 2015),

ŝ[t] =
1
M

M

∑
i=1

xi[t − τ
θ
i ], (2.10)

where ŝ[t] is an estimate of the source in the direction θ . The delay and sum beamformer can
be applied in the frequency domain through a filter that changes the phase. Let the multi-

channel, time-frequency domain signal be denoted by x[k,n] =
[
x1[k,n] · · · xM[k,n]

]⊤
.

This leads to a class of beamformers known as filter and sum, as they can be formulated as
follows in the frequency domain,
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ŝ[k,n] = wH
n x[k,n], (2.11)

for the delay and sum beamformer the weight vector wDS
n is defined as,

wDS
n =

1
M

dθ
n , (2.12)

dθ
n =

[
exp(− jωnτθ

1 ) exp(− jωnτθ
2 ) · · · exp(− jωnτθ

M)
]⊤

, (2.13)

where dθ
n is the steering vector representing the plane wave propagation in direction θ and

ωn = 2πn/N is the radial frequency in radians per seconds. Note that the weight vector is
frequency dependent; this leads to the beamformer obtaining different characteristics per
frequency as shown in Figure 2.4.

The class of filter and sum beamformers optimise the weight vector w to create filters
that are optimal according to some criteria and are known as adaptive beamformers. Such
filters are optimal with respect to an estimate of the spatial covariance matrix defined by the
cross-spectral density (CSD) between the signals received at all the pairs of microphones in
the array. For a series of vectors a[k,n] ∈ CM the frequency-dependent spatial covariance
matrix ΦΦΦ

(aa)
n ∈ CM×M is defined as,

ΦΦΦ
(aa)
n =

1
K

K

∑
k=1

a[k,n]a[k,n]H , (2.14)

most of the time, the true value of the covariance can only be estimated, for example, we
may want to know the spatial covariance of the noise, this would require estimating the noise
at each of the microphones without the target speech. Through using a masking approach
described previously this can be estimated by filtering the signals and then computing the
statistics. Alternatively, the noise covariance can be estimated by finding portions of the
signal that only contain noise and no target speech. Assuming independence between the
noise and the target speech the covariance matrices can be broken down (Souden et al., 2009),

ΦΦΦ
(xx)
n =ΦΦΦ

(yy)
n +ΦΦΦ

(nn)
n , (2.15)

where ΦΦΦ
(xx)
n , ΦΦΦ

(yy)
n and ΦΦΦ

(nn)
n are the received signal covariance, target covariance and noise

covariance respectively. The received signal covariance can be computed without filtering,
therefore an estimate of the target covariance can be computed with the knowledge of a noise
covariance.
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Beampatterns for the delay and sum beamformer

Fig. 2.4 Beampatterns of the delay and sum beamformer pointing in different directions (θ )
from linear microphone array with M channels. The spacing between the microphones is
given in the plots. The direction of arrival indicates the angle of incident of the sound source
and the colour represents the gain. Lower gains result in sound sources from those directions
and frequencies being suppressed. The plots shows how changing the spacing between the
microphones and the number of microphones can have a large impact on the characteristics
of the beamformer such as the spatial aliasing and the beamwidth.
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One of the most popular choices of statistically optimal beamformers is the Minimum
Variance Distortionless Response (MVDR) (Capon, 1969) beamformer which minimises
the energy of the noise with the constraint that the signal in the direction of the beam is not
distorted,

wMVDR
n = argmin

w
wH

n ΦΦΦ
(nn)
n wn s.t. wH

n dθ
n = 1, (2.16)

where ΦΦΦ
(nn)
n is the spatial covariance matrix for the noise and dθ

n is the steering vector in the
direction of the beam, note this is applied for each frequency bin n. For the steering vector dn

the delays can be estimated (DiBiase et al., 2001; Knapp and Carter, 1976; Schmidt, 1986)
or the principal component of an estimate of the signal covariance (ΦΦΦ(yy)) matrix can be used.
The constrained MVDR problem has a solution,

wMVDR
n =

ΦΦΦ
(nn)−1
n dθ

n

(dθ
n )

HΦΦΦ
(nn)−1
n dθ

n

, (2.17)

where ΦΦΦ
(nn)−1 is the inverse of the noise spatial covariance matrix, in practice, due to

numerical stability issues, the inverse is not directly computed and alternative formulations
are used. The solution requires estimating a model of the diffuse uncorrelated noise and the
direction to enhance.

The Generalized Eigenvalue (GEV) (Warsitz and Haeb-Umbach, 2007) beamformer is
also a popular choice and does not require the direction vector, instead, the spatial covariance
matrix of the source signal is estimated which has the direction information embedded into
the matrix via its principal components. The GEV beamformer finds a weight vector wGEV

n

which maximises the energy of the signal whilst minimising the energy of the noise. This
leads to the following optimisation problem,

wGEV
n = argmax

w

wH
n ΦΦΦ

(yy)
n wn

wH
n ΦΦΦ

(nn)
n wn

, (2.18)

where ΦΦΦ
(yy) and ΦΦΦ

(nn) are the signal and noise spatial covariance matrices respectively. The
solution to Equation 2.18 leads to a generalized eigenvalue problem which has the solution,

ΦΦΦ
(yy)
n wGEV

n = λnΦΦΦ
(nn)
n wGEV

n , (2.19)

where the optimal weight vector wGEV
n is the generalized principal component with the

corresponding eigenvalue λn.
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2.5.2 Spatial models

Recall for multi-channel recordings the observations for a time-frequency are represented
by an M−dimensional complex vector, i.e., x[k,n] ∈ CM. Given the phase gives information
about the location of a signal we can exploit this by clustering similar T-F bins together
which have similar phases. One of the difficulties of using phase information is that it wraps,
therefore care needs to be taken with the model choice and distance measure. A common
approach to this problem is to use directional statistics, which are unit vectors around a
complex hypersphere. A probabilistic model over this domain can be used to cluster similar
vectors. The complex vector xkn is whitened, removing the magnitude information from the
vector,

z[k,n] =
x[k,n]

∥x[k,n]∥
, (2.20)

using directional statistics, unsupervised clustering techniques can be used to separate the
sources in an utterance by grouping each z[k,n] into clusters or assigning an affiliation
probability for each cluster. These assignments (or affiliations) can be used directly to create
a mask, e.g., a binary mask from hard assignments. The resulting masks can then be used
directly to enhance the signal through convolution, or they can be used to gather the required
statistics to use in beamforming techniques.

Clustering directional statistics requires specialised models that operate over the confined
space and in the complex domain. To use these models for source separation a mixture of P
models is used. Each model represents one of J sources and an additional one to catch all
remaining noise (i.e., P = J+1),

p(z[k,n];Θn) =
P

∑
p=1

π
(p)
n A (z[k,n];θ

(p)
n ), (2.21)

where Θn = {π
(1)
n ,θ

(1)
n , ...,π

(P)
n ,θ

(P)
n } with π

(p)
n being the component weight and θ

(p)
n being

the distribution parameters for the spatial model A . It is important to note that each of the
frequency bins n is modelled independently and therefore correlations between frequency
bins are not exploited.

One distribution used for A is the complex Watson distribution (denoted by W ) (Mardia
and Dryden, 1999),

W (z;ααα,κ) =
(M−1)!

2πMF1(1,M;κ)
exp(κ∥ααα

Hz∥2), (2.22)
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where M is the number of microphones, ααα is the mean direction (located on the same
unit hypersphere as z), κ is the concentration factor and F1 is the Kummer function. The
concentration defines how narrow the distribution will be around the mean direction, i.e., a
high value for k indicates the members of the distribution are located close to the mean vector.
The complex Watson distribution is rotationally symmetric around ααα . The symmetric nature
does not necessarily reflect the true distribution of z[k,n]. To allow for non-symmetrical
shapes around the mean vector the complex angular central Gaussian (cACG)(Ito et al.,
2016) was introduced, denoted by C . The shape of the distribution is parameterised by a
positive-definite Hermitian matrix B allowing for non-symmetric distributions where the
mean direction vector is the principal component of the matrix, and the concentration is the
eigenvalue,

C (z|B) = (M−1)!
2πMdet(B)

1
(zHB−1z)M . (2.23)

Both these models have parameters that are fit through using iterations of expectation
maximisation procedures. After fitting the parameters of the distribution, the affiliations to
each of the sources can be used to filter the signal and extract source component p. This
results in P source signal estimates ĉp[k,n] at the microphone array,

ĉp[k,n] = x[k,n]π(p)
n A

(
x[k,n]
∥x[k,n]∥

;θ
(p)
n

)
, (2.24)

therefore, for the cACGMM this would be,

ĉp[k,n] = x[k,n]π(p)
n C

(
x[k,n]
∥x[k,n]∥

;B(p)
n

)
. (2.25)

The parameters of the probability distributions that are being fit for the directional statistics
z[k,n] are not shared between frequency bins; this leads to the frequency permutation problem.
Between different frequencies, it can not be guaranteed that a component index in one bin
corresponds to the same component index in another bin, e.g., the noise cluster may be index
0 for one bin and index 1 for another bin. To mitigate this permutation problem, an alignment
can be calculated by maximising the correlation of neighbouring frequencies (Sawada et al.,
2010). In addition to this, a final step to associate a mixture component p with a desired
source component j is required.

2.5.3 Spatial features

In Section 2.4 we saw how spectro-temporal features extracted from a single channel could
be used to estimate spectro-temporal masks for source separation, e.g. conv-tasnet. The
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performance of these mask estimates can be improved by including ‘spatial features’ extracted
from microphone arrays. Spatial features that indicate the location of sources can be used to
inform masking networks beyond spectral information. The spatial features are concatenated
as input alongside a selected reference channel’s spectral features (Gu et al., 2019; Zhang
et al., 2020a). It is also possible to use all the channels as input directly with the internals of
the network learning the spatial information (Luo and Mesgarani, 2020).

The inter-channel phase difference (IPD) is a commonly used spatial feature. IPDs are
used in the frequency domain and are successful in source localisaton (Evers et al., 2020) as
well as being used as additional input features for enhancement networks (Gu et al., 2019).
The IPD features are simply the difference between the phases for the same time-frequency
bin across the two channels xi[k,n],x j[k,n] ∈ {x1[k,n],x2[k,n], . . . ,xM[k,n]},

IPD(xi[k,n],x j[k,n]) = ̸ xi[k,n]− ̸ x j[k,n], (2.26)

where ̸ is the argument of the complex number (i.e., ̸ (a+b j) = atan2
(b

a

)
). In frequency

domains, as a result of learned filter banks (e.g., conv-tasnet), IPD features can still be
computed if the filterbank consists of analytic filters. In Gu et al. (2019), an analytic filter
un[t] was formed by learning real kernels wn[t] resulting in the subsequent derived real and
imaginary parts,

un[t] = ureal
n [t]+ juim

n [t], (2.27)

ureal
n [t] = wn[t]cos

(
2πtn

L

)
, (2.28)

uim
n [t] = wn[t]sin

(
2πtn

L

)
, (2.29)

where L is the length of the analysis window and n is the filterbank index. Alternatively,
an unconstrained filter can be learned and then the Hilbert transform can be used to form
an analytic filter (Pariente et al., 2020) i.e., u′[t] = u[t]+ jH (u[t]) where H is the Hilbert
transform. Given any analytic filter, the IPD can be computed as follows,

IPD(xi[t],x j[t]) = atan2
(

xi[t]~uim[t]
xi[t]~ureal[t]

)
− atan2

(
x j[t]~uim[t]
x j[t]~ureal[t]

)
, (2.30)

where xi[t],x j[t] are the time-domain versions of xi[k,n],x j[k,n]. A problem with using IPD
features is that they require a larger analysis window compared with the windows used in
enhancement, therefore there is a problem with alignment. In Zhang et al. (2020a), spatial
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features are learned using a 2D convolution across channels in the same domain as the
masking network, avoiding the alignment issue and surpassing the performance of using
frequency domain IPD features.

The aforementioned techniques use spatial and spectral cues, and these cues are typically
‘data-driven’, i.e. learned from representative data using DNNs. This is potentially problem-
atic as cues learned from simulation may not generalise to real data. At the very least, we
need to take great care when simulating training data. In the next section, we will look at
commonly used techniques for data simulation and consider their strengths and weaknesses.

2.6 Artificial room simulation

When developing systems for distant microphone speech recognition it is often not practical
to deal directly with real signals. As explained previously, real data may be too complex,
i.e. too far beyond the capabilities of the state of the art. Recording real data in carefully
controlled environments is an option, but this is often expensive, and inconvenient and still
leaves problems with collecting accurate ‘ground truth’ measurements of individual sound
sources. For these reasons, many of the datasets commonly used for development in distant
microphone ASR are produced by simulation. In this section, we review the approaches that
are typically employed.

When we are talking with a person, the sounds we produce from our articulators resonate
in the environment we are speaking in before reaching the ears of the listener. In the case of a
recording, the listener is the microphone or microphone array. The acoustic properties of the
signals change drastically depending on the environment, for example, a large empty room
will be ‘echoey’ and a small furnished room will be absent of such echoes. The distance
between the source (the person speaking) and the sink (listener or recording device), plays
a role in the acoustic properties. Intuitively, we would expect a person talking who is far
away from us to sound quieter than a closer person. The delays and level differences between
the signals reaching our ears also give us cues for the location of the source. Therefore, we
can understand that in the real-world speech sources have spatial properties defined by the
location of the speaker, location of the listener and the containing room. In this work we call
simulating a signal being corrupted by the environment like this, a spatialised signal, in the
wider literature this is also known as auralization.

Auralization is a larger field that encompases many aims. For example producing audio
that mimics the acoustics of large concert halls, which can be used to aid the design. As
well as for entertainment purposes in creating immersive video games and music production.
It is also used in the design and evaluation of signal-processing techniques such as source



2.6 Artificial room simulation 27

separation and spatial audio. Whilst the goals are similar the tradeoff to reach the goals is
not, a video game requires the processing to be real-time with a believable perception of the
environment. A tool for evaluating processing techniques will benefit a spatialised signal
more representative of real life.

If a near-field microphone is used to record speech then these spatial properties are
almost entirely removed by design i.e., special recording setups may be used to mitigate
any undesirable spatial effects. These near-field recordings can then be ‘spatialised’ through
artificial room simulation in order for them to have the desired spatial properties for a defined
experimental setup or through measuring the properties of a room. In this section, we will
explore the assumptions and techniques used when modelling spatialised speech.

2.6.1 Acoustic rendering

To render an acoustic scene the sound wave propagates around the room before reaching
the microphone. Inspired by the rendering equation used in computer graphics the acoustic
rendering equation was proposed in (Siltanen et al., 2007). The specific details of which are
beyond the scope of this thesis but the interested reader should refer to the original paper.
However, it will be described enough to compare different methods for approximating the
equation. The equation is defined as follows,

l(p̂,ωωω) =

Emitted︷ ︸︸ ︷
l0(p̂,ωωω)+

∫
G

R(p, p̂,ωωω)l
(

p,
p̂−p
∥p̂−p∥

)
dp︸ ︷︷ ︸

Reflections from all incoming directions

. (2.31)

At a high level, the equation reduces the rendering process to formulating the acoustic energy
at the 3-D point p̂ traveling in the direction ωωω . The directivity pattern of the microphone can
then be considered when simulating the acoustics captured by summing the energy in the
appropriate directions. The equation is recursively defined as the energy being emitted at that
point and direction (l0) plus the energy reflected from all possible incoming directions i.e.,
G ⊂R3 is all the possible surface points the reflection could have come from. R encompasses
the reflectivity of the surface (e.g., how much scattering occurs when bouncing off the
surface), the geometry of the surface (e.g., the rotation of the surface) and whether the surface
is visible,

R(p, p̂,ωωω) =

Surface visibility︷ ︸︸ ︷
V (p, p̂) ρ

(
p− p̂

∥p− p̂∥
,ωωω; p̂

)
︸ ︷︷ ︸
Reflection characteristics

Geometry︷ ︸︸ ︷
g(p− p̂) . (2.32)
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Fig. 2.5 An original illustration of example bidirectional reflectance distribution functions
(BRDF) used in artificial room simulation. The figure on the left shows a highly reflective
surface, whilst the right shows a more diffuse surface. BRDFs are used to model how sound
sources scatter across a surface.

The visibility predicate function V (·) simply indicates whether or not the line between points
p and p̂ is visible, allowing for non-convex environments to be modelled. g(·) describes how
the energy flows for the geometry of the surface (e.g., using surface normals) and ρ(·) is the
bidirectional reflectance distribution function (BRDF), describing how the sound scatters
when reflecting. An example schematic of two BRDFs is shown in Figure 2.5. A highly
reflective surface (left) will have less diffuse reflections and more energy in the direction
of the reflection compared to a less reflective surface (right) which has more diffuse energy.
The complete BRDF can be measured from real materials but often they are parameterised
from absorption and scattering coefficients. It is important to note that these coefficients
are frequency dependent and this is typically considered in bands of frequencies and the
simulation is run multiple times at different frequencies.

Image Method

The simplest approach to room simulation is the image method (Allen and Berkley, 1979).
This method is by far the most commonly used in simulated distant microphone scenarios,
this is largely due to its efficiency. Often many thousands of environments need to be
simulated to be used in speech separation, therefore it is not practical to use computationally
expensive tools that can take several hours per scene to render.

The image method works by simulating the sound wave propagating around the room
reflecting off walls along the mirror reflections i.e., no diffuse reflections in the BRDF. Non-
cuboidal rooms are possible using the image method, however, most simulated datasets do not
take advantage of this due to the performance gains possible with the cuboidal assumption.



2.6 Artificial room simulation 29

Ray-tracing

More advanced techniques borrow ideas from computer graphics. Ray tracing approaches
model the acoustic environment through propagating rays (not waves) through scenes and
bouncing off walls. After each reflection, additional rays are generated in several directions
accounting for the scatting of the sound. A ray continues bouncing around the environment
until a minimum energy level is reached or a maximum number of reflections has occurred.
The computational complexity of this method is a large reason why it is not commonly used
and many of the implementations are behind expensive commercial software (Schröder and
Vorländer, 2011). In recent years, pyroomacoustics (Scheibler et al., 2018) an open source,
tool has provided a free implementation allowing for more advanced scenes to be modelled
but this still lags behind commercial software significantly. For example, RAVERN (Schröder
and Vorländer, 2011) can render scenes with 3-D models within them e.g, furniture.

In the work in this thesis, the image method is used for simulation1. The main reason
for this decision is due to the fact that the majority of benchmark datasets use this technique
which allows for a fairer comparison by changing parameters within the simulation and
then keeping simulation software constant. Using more complex simulation techniques such
as ray-tracing would provide overall more realistic simulations, however, this would be
extremely computationally expensive to use as in this work as a large number of different
datasets will be constructed and compared. However, the analysis of the speakers is general
and applicable to all simulations. The simulations require speaker behaviours to be defined
inside of their scenarios. The parameters of interest are the subject of the next section.

2.6.2 Parameters of a simulation

Given a toolkit for providing a simulation technique, we still need to provide (realistic)
metadata (i.e., scene description parameters) of the simulation. There are numerous aspects
of a simulation that needs to be decided beforehand (e.g. receiver characteristics, source
characteristics - location, directivity - room geometry, surface absorption characteristics, air
temperature and humidity etc.).

First, for a room to be simulated the geometry of the room needs to be decided. The
allowable complexity of the room will depend on the modelling technique being employed.
Early work required cuboidal rooms to be used, but modern software allows for arbitrary
shapes to be used. Advanced commercial software allows for full 3-D models to be used
in the simulation allowing not just rooms to be modelled but also the contents of the room
(Schröder and Vorländer, 2011). There is a clear trade-off between the complexity of the

1Toolkit: https://github.com/ehabets/RIR-Generator

https://github.com/ehabets/RIR-Generator
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rooms and the number of rooms designed. With a simple cuboidal room, the width and
height can be a random value chosen allowing for many configurations to be generated. For
a detailed scene, randomly generating configurations is more complicated.

The next parameter that can be modelled is the amount of reverberation. One of the
values used to measure reverberation is T60 which is the amount of time it takes the sound
pressure level to reduce by 60 dB. When using the image method, this value can be directly
chosen as a parameter of the simulation. This is achieved by using the inverse of Sabine’s
equation to calculate the absorption coefficient. For more complicated simulations this is the
result of the materials used in the acoustic scene. Instead, absorption coefficients for walls in
the scene are chosen and then a T60 can be measured.

Next, the position of the people in the room and the microphone placement are metadata
that needs to be decided. Typically this is chosen uniformly within the room (Hershey et al.,
2016; Maciejewski et al., 2020). The distances between speakers will affect the difficulty
of the mixtures as spatial cues become less useful as discriminating features when in close
proximity.

As well as the position of the speaker, the direction they are facing also plays a role in the
way the sound propagates around the room. The sound emitted from a person talking is not
uniformly dispersed spherically from a point sound but has some directivity. Modelling the
directivity of sound sources was largely only possible in commercial software, but recently it
has been made available in free software (Scheibler et al., 2018).

For speech separation datasets, scenes are often simulated with talkers performing single
utterances and starting co-temporaneously (e.g., Hershey et al. (2016)). More recently, there
has been an interest in producing datasets suitable for developing and evaluating diarization
with multiple speakers and attempts made at reproducing realistic conversation turn-taking
patterns (e.g., Chen et al. (2020)). Specific examples are discussed in more detail in the
following section.

2.7 The role of simulated data in speech recognition

Simulated data plays a large role in the development of distant microphone ASR systems,
both in providing training data as well as evaluation data. In this section, an overview of
commonly used datasets is shown, then an overview of how simulated data is used to train as
well as evaluate ASR and components of ASR systems.
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2.7.1 Simulated datasets

A simulated dataset in this work is any database of signals which were generated through
a computer program either in its entirety or in part. This is in contrast to real data which
is directly captured in an environment. Typically the speech signal used in artificial data
is captured from a real recording, often this is recorded in a quiet environment, close to
the microphone, this is denoted as a clean signal. Artificial data can then be created by
processing the clean signal. For example, background noise can be added to the signal by
simply combining the clean signal with some background noise which could be recorded
independently or generated e.g., white noise. The background noise could be a competing
signal that needs to either be separated or suppressed. It is important to note that simply
adding the signals together ignores many of the phenomena that occur in the real world.
However, it does provide a cheap way to generate a large amount of data.

To create artificial signals which have some of the acoustic properties of the signal moving
around the room, the artificial simulation techniques discussed in the previous section are
used. To create such a signal the clean signal is convolved with the RIR generated by the
simulation software. RIR can also be recorded instead of generated, the recorded RIR would
then be used to create the artificial data which sounds like it was recorded in the room the
RIR was recorded in. However, capturing a large dataset of RIRs is expensive and the variety
of rooms will always be limited.

Finally, a combination of mixing and room simulation approaches is used in practice
when creating artificial datasets. For single-channel enhancement room simulation is used
to create reverberant signals. In the multi-channel case, it is essential to have some kind
of environmental simulation either through recorded or simulated RIR. By their nature, a
simulation of the environment is required for the spatialised datasets as the amount of delay
between the microphones for the signal when reaching the array is exploited in the spatial
filtering. To simulate two people talking inside a room the two spatialsied signals are created
and then they are combined together through addition. The inclusion of background noise
into the mixture is a non-trivial problem. For example, adding single-channel recordings
of background noise to each of the artificial channels will result in a source in front of the
array. Recording multi-channel background noise and positioning the microphones the same
distance away as the recording device can be a method to use the background noise but
this limits the amount of data available and there will still be a mismatch in the data e.g.,
directivity patterns of the microphones and the geometry of the room the data was recorded
in will not be the same as the simulation.

The use of simulated data has been widespread across the literature. The work in this
thesis is particularly interested in overlapping speech in distant microphone ASR. Speech
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separation algorithms aim to separate the overlapped speech into separated clean signals.
This field was largely initiated with Deep Clustering (Hershey et al., 2016) which introduced
an artificial dataset, typically known as WSJ0-2mix in the literature. The dataset consists
of mixing together pairs of utterances from the WSJ corpus together through adding the
signals, creating highly overlapped mixtures. The dataset became the defacto benchmark for
speech separation, but quickly become saturated with the latest techniques able to separate
the sources with near perfection (Subakan et al., 2021). Further versions of the dataset with
additional speakers are also used to add to the complexity.

For the dataset to be used for multi-channel algorithms, the spatialised version was
introduced in (Wang et al., 2018), which used the image method to create artificial RIR
by placing speakers randomly inside a room. The same pairs of utterances were used as
WSJ0-2Mix to allow for some comparison.

Both versions of WSJ0-2Mix contain no background noise. The WHAM! (Wichern et al.,
2019) corpus was created to address this weakness by recording ambient noise in urban
areas. WHAM! uses the same mixtures as WSJ0-2mix but with the additional background
noise. Later the WHAMR! corpus (Maciejewski et al., 2020) was released which uses the
same speaker positioning and mixing as the spatialised version of WSJ0-2Mix, creating a
reverberant dataset. However, this time the background noise from WHAM! adding to the
complexity. However, due to the background noise being a single channel, the reverberant
dataset can only be a single channel.

Libri2Mix and Libri3Mix (Cosentino et al., 2020) were introduced to compliment WSJ0-
2mix to offer another commonly used benchmark, with spatialised versions created in related
works. When introducing these datasets they showed an improvement could be made by
training across corpora.

There has been a clear trend in these corpora to make them more challenging as the state-
of-the-art algorithms perfect the separation. The aforementioned datasets have attempted to
make challenges more difficult through the addition of more speakers and real background
noise. The set of Clarity challenges (Graetzer et al., 2021) has attempted to make the datasets
more realistic by using more advanced simulation techniques. The second enhancement
challenge increased this complexity with the introduction of more advanced background
noise such as music as well as moving microphone receivers. The challenges were created
for enhancement for hearing aid users (hence the moving receivers) but it can been used to
benchmark speech enhancement in general.

The role of these datasets is to provide a clean target that can be used in supervised neural
network training. But potentially more impactful they are used to provide a reference signal
used to evaluate the performance of source separation algorithms. The details of these are
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discussed in the next sections followed by a discussion of the need for good simulation and
the potential pitfalls.

2.7.2 Training

Simulation plays a crucial role in training supervised speech enhancement and speech
separation techniques as it provides a target for the models to estimate. The targets may not
directly be the clean source but instead the mask as discussed previously. In (Heymann et al.,
2015), ideal binary masks and ideal ratio masks were shown to be effective for the tasks.
These oracle masks can be computed as we have access to the mixture and access to the clean
target, so the required mask to filter the mixture into the clean signal can be computed. The
loss function is then the root mean square error between the target and the estimate.

Instead of masks being explicitly used as the target, many modern techniques use the
target signal directly when computing the loss function, using more task-specific objectives
e.g., reducing distortions (Luo and Mesgarani, 2019) or maximising the perceptual quality
(Martin-Donas et al., 2018).

In (Hershey et al., 2016), instead of a mask being estimated an embedding network is
learned. The embedding networks provide a representation for each of the time-frequency
bins in the signal such that bins coming from the same source are close to each other in the
embedding space. These embeddings are then clustered together to create a set of masks (e.g.,
using k-mean clustering). Work has been conducted on combining these spectral embedding
features with the spatial probabilistic features discussed before (Drude and Haeb-Umbach,
2017).

Finally, simulation can be used to aid the training of the acoustic model in ASR through
data augmentation allowing for multi-condition training using simulated data. Instead of
training a model to remove the reverberation from a signal, an acoustic model can be trained
directly on the reverberant audio and learn the relevant features to focus on (Lucas et al.,
1981).

2.7.3 Evaluation

The desired goal of the separation in this context is to improve ASR performance (i.e., reduce
WER). However, often it is inconvenient to compute this value as it requires an entire ASR
to be trained. Therefore, a proxy to this evaluation metric is used to guide the development
of these frontends.

To evaluate the performance of speech separation a dedicated metric is often used. When
describing the metrics, vector representations of the signals will be used i.e., s ∈ RT , where
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T is the number of samples. The most commonly used one until recently was the signal-
to-distortion ratio (SDR) (Févotte et al., 2005) which considers an estimated signal ŝ as the
composition of the following parts2,

ŝ = starget + eintefer + eartifact. (2.33)

The signal starget is an altered version of the desired target signal based on how much of the
desired signal is in the estimate given by,

starget = f (s) where f ∈ F. (2.34)

The set F is a user-designed parameter indicating which distortions are allowed to incur to
the signal without penalty. The quantity einterfer is the signal from other sources (and noise)
still remaining in the estimated source and eartifact is the remaining unaccounted signal which
is not the desired signal or from the other original sources i.e., artifacts created from the
signal processing.

Together these quantities can be used to compute the SDR as defined as the following
ratio,

SDR = 10log10
∥starget∥2

∥eintefer + eartifact∥2 . (2.35)

One of the underlying assumptions of the metric is that it assumes the residual error i.e.,
ŝ− starget = eintefer + eartifact is orthogonal to the target signal. However, this is not always the
case and simply rescaling the estimated signal will result in a change in SDR performance
even though the amount of distortion is effectively unchanged. To make the metric agnostic
to the scale of the estimate, the SI-SDR metric (Le Roux et al., 2019) is defined as,

SI-SDR = 10log10
||αstarget||2

||αstarget − ŝ||2
for α = argmin

α

∥αs− ŝ∥2, (2.36)

where α = ŝ⊤s
∥s∥2 i.e., scales the reference signal to be as close to the estimated signal as

possible. Later versions of SDR in the bss_eval toolkit attempt to address the scaling issue as
well time offset between the reference target and the estimated through learning an optimal
filter. This allows for a source target signal to be used as a reference instead of a spatialised
signal that may not be available. SI-SDR is the preferred metric used in speech separation,
however, when spatialised signals are used then SDR has been shown to be the better metric
(Drude et al., 2019a).

2Sometimes a noise term is considered but this can be considered as part of the interferer
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Given these metrics, we can see how simulated data plays a vital role in evaluating the
performance of speech separation. In order to compute SDR and SI-SDR as well as many
other metrics (Taal et al., 2011) we have to have access to the clean signal before any noise is
adding the signal. In the real world is it difficult to have access to that clean signal. If we
are recording a distant microphone scenario we may be able to record the clean signal by
using a microphone close to the speaker as a proxy for the clean signal. This clean signal
may not have many of the environmental effects present e.g., reverberation. However, if we
are recording a conversation it is unlikely we will be able to record the signal without the
interfering speaker also being captured.

One way to have access to the clean signal and the noisy signal is to have access to the
signal that is being generated. This is possible if the real dataset is captured by playing
audio through speakers and then recording the playback from a distant microphone. The
clean reference signal that is being played from the speakers can be used as the reference.
Producing such as dataset will of course be costly and limited in size.

Artificial simulation is the typical way speech separation is evaluated as we have access
to the reference signal before mixing. As the simulation is fully controlled it also allows for
analysis of the performance with respect to many aspects of the setup e.g., the nature of the
speaker, the positioning of the speakers and the room configuration.

2.7.4 Discussion

Now that the role of simulation has been described it is important to discuss the potential
impact relying on simulation has on speech separation and distant microphone ASR in
general.

Through looking at the brief history of the development of simulated datasets we could
see the need to create more and more complexity as the algorithms developed got better. The
way complexity has been added does not necessarily reflect the way simulation mismatches
with the real data. For example, should developing an algorithm that can separate a large
number of speakers be a priority when in reality this will likely rarely occur?

When training models on simulated datasets which are then tested datasets of real signals,
it is quick to see that that mismatch results in poor performance. Where this mismatch comes
from is not always easy to see, given how many uncontrolled variables are present in real
data

What is harder to see, and potentially more troublesome is when the simulation is used
for evaluation. A system may perform well on the simulated evaluation data because it is
exploiting aspects of the simulation. This problem may be solved by updating the training
data to closely match the evaluation data. However, some aspects may be more fundamental
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to the nature of the technique. For example, a technique that only works when sources are
completely stationary will work in a simulated environment where the sources are stationary,
however, when the sources inevitably move in the real data, that technique will fail. This
mismatch may result in pursuing algorithms that work in simulated data but will never work
in real data.

2.8 Conclusions

In this chapter, an overview of techniques used in distant microphone speech processing has
been presented. The techniques discussed have largely focussed on the overlapped speech
aspect and how we can separate the sources. Separating sources in distant microphone ASR
exploits spectral filtering techniques as well as spatial filtering techniques.

This chapter has shown how simulation plays a crucial role in the development and evalu-
ation of speech separation. Simulation is used to provide the targets in the supervised training
of models but also used to provide the reference signal when evaluating the performance of
source separation.

The chapter has discussed the aspects of the simulation that can be controlled when
designing the scenario that is being simulated, such as the speaker positioning and the
amount of overlap. Typically, these values of chosen uniformly random with little motivation.
If we are using simulated data to evaluate the performance of these techniques the data must
be a fair reflection of what we will expect to see in the real data.

In the following chapters experimental work on providing the metadata for the simulation,
driven by analysing the behaviour of people in real scenarios. To be specific the positioning
of speakers relative to one another and the amount of overlap in speech will be addressed.



Chapter 3

Data and tools for analysing speaker
behaviour

3.1 Introduction

The way in which people interact in social environments is a well-researched field in the
social sciences. In Psychology, the field of Proxemics (Hall et al., 1968) studies how the
physical space between people varies depending on the type of social discourse. For example,
in more intimate settings, conversational partners position themselves closer to each other
than compared to when conversing with colleagues. Whilst there is a wealth of research in
this field (Norris, 2004), the work typically relies on specialist knowledge using a specialised
notation (Hall, 1963) to annotate the behaviour of participants in these studies. If we want to
produce simulations with characteristics of realistic speakers, we must first understand the
behaviours we want to mimic.

In the previous chapter, we looked at the variables of a simulation that affect the realism
of the artificial acoustic environment. The realism of the simulation can be factored into two
parts, first how well the simulator reproduces physical phenomena and second the naturalness
of the metadata provided to parameterise the simulation, e.g., speaker positioning and turn-
taking. Whilst the simulators are informed by physical models, the metadata is typically
informed by heuristics which are not often presented in a well-motivated manner. This work,
therefore, focuses on how this metadata can be informed in a data-driven manner using data
extracted from the behaviour of real people. To accomplish this, we must first have access to
a dataset containing natural behaviour; we must then analyse this data to extract the important
behavioural information of the speakers.
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The structure of the chapter is as follows, first in Section 3.2 a review of the potential
speech corpora that can be used for speaker behaviour analysis is presented. In order to
achieve this, a set of requirements for the dataset is established. Corpora are then reviewed
with respect to these requirements. The result of the review showcases that not one of the
potential datasets meets all the requirements. However, in lieu of recording an entirely new
dataset, the CHiME-5 (Barker et al., 2018) dataset, a collection of unscripted audio-visual
dinner party recordings, is judged to be the most appropriate. Details of the CHiME-5 dataset
are presented in Section 3.3. However, its video component lacks the annotations required
for analysing speaker behaviour. Therefore, the remainder of the chapter focuses on the
CHiME-5 dataset and tools developed to extract speaker positional information. Methods
to extract positional information from the videos are then established in Section 3.4. This
is achieved through automatic people detection methods as well as through novel tools
developed to produce annotations. Evaluation of these tools is then presented in Section 3.5.
This extracted data provides the basis for the work in Chapter 4 and Chapter 5 using single
and multiple devices respectively.

3.2 Corpora

The size of the models underlying modern automatic speech recognition (ASR) systems have
grown incredibly in recent years, such that current state-of-the-art systems require millions of
parameters to be trained. Adequately fitting these parameters can require 100s or even 1000s
of hours of speech as training data. This has led to the development of many large-scale
corpora such as LibriSpeech (Panayotov et al., 2015), CommonVoice (Ardila et al., 2019) and
Gigaspeech (Chen et al., 2021). These corpora allow for large continuous speech recognition
systems to be trained and to be robust to many variations in speech quality.

However, these datasets consist of recordings of segmented speech of mostly individual
speakers. This neglects many crucial difficulties that occur when we place a microphone at a
distance to transcribe conversations. In the real world, the people talking will walk around
their environment, this changes the characteristics of the acoustics of the signal such as
direct-to-reverberant energy ratio (DRR) and signal-to-noise ratio (SNR) when we take into
account an interfering speaker. Spatial cues are typically exploited when using multi-channel
recording devices to enhance signals based on their source location. It is therefore more
challenging for these enhancement systems when the signals come from the same direction.
In addition to this, people do not take clean turns when having a conversation, speech is often
filled with backchannels and interruptions.
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Therefore to transcribe long-form recordings a system needs to be developed to break
the long recordings into speech segments to be fed into a recognition system. This is a
non-trivial problem which involves determining who is speaking and when a task known as
diarisation. In addition to this, there may be multiple people speaking at once in order to
separate these speech sources into separate streams the known number of speakers is required
for the prominently used separation techniques (Ito et al., 2016; Luo et al., 2020; Luo and
Mesgarani, 2019).

The task of transcribing long-form recordings offers many real-world challenges, but also
many real-world opportunities for solutions to the problem. In order to enhance a speech
signal it is often required to build a background model of the noise. Having a large context
window (Kanda et al., 2019) can be beneficial for modelling this background. Furthermore,
steering a multi-channel enhancement system towards a target speaker requires knowing
the location of the speaker either through explicit steering vectors or implicitly with spatial
models of the target speech, both of which requires observing enough of the target speech
to estimate these values. However, with a long-form party, prior information can be used to
establish the speaker’s location based on where they were previously observed.

This thesis aims to provide methods for simulating such distant microphone setups driven
by observing real-life recordings. This allows for state-of-the-art systems to be evaluated
in setups more closely matched with what they will face in deployment which will provide
more reliable results and avoid over-emphasising techniques exploiting unrealistic setups. A
realistic simulation also provides the opportunity to provide a controllable setup to explore
techniques to exploit the characteristics that do appear in real data.

3.2.1 Corpora requirements

Establishing a set of requirements allows for the possible datasets to be compared objectively
with respect to their suitability for this research. This work aims to produce simulations that
more realistically mimic how people behave in the real world when distant microphones
are used to observe social interactions in environments. Therefore the behaviour of people
needs to be recorded in a similar setting in a scenario with few constraints on how the
participants should behave. There is a trade-off between the number of constraints placed on
participants in such recordings setups (McGrath and Hollingshead, 1994), placement of too
many constraints results in data not representative of the real scenario, and placing too few
constraints leads to too many variable factors making analysis and interpretations of results
difficult. The datasets will be evaluated with respect to the situation setup, that is how closely
it will match a typical distant microphone scenario. The task the dataset is designed for and
what applications it can be amenable to e.g., ASR, diarization, separation etc. Finally with
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respect to the dataset’s tracking capability of the participants within the recordings in order
to capture speaker behaviour.

Situation Setup The speech should be elicited from people having real conversations in a
natural recording setup. Actors playing roles produce different turn-taking patterns to what
we would expect from a real conversation. In real data this is especially the case if the person
talking is conversing with someone familiar. For example, friends are more likely to interrupt
each other and finish each other’s sentences. The formality of the setting also plays a role in
this behaviour, a formal meeting may contain lots of well-articulated utterances that can be
very long e.g., a presentation. Contrast this with a heated conversation over dinner or during
a board game where turns will not be clearly taken and words may not be fully completed.

Task The dataset should consist of recordings from long-form conversations. Therefore,
the dataset should be amenable to the task of ASR and diarization. The dataset does not
have to be fully transcribed, knowing that speech is taking place is sufficient. However, a
fully-transcribed dataset is beneficial as the end goal of this work is to produce simulations
to benefit speech recognition research and being able to benchmark the source material for
the analysis is a nice feature. Lower-level transcriptions such as word-level alignment and
phone-level are not required. The dataset being amenable for speech separation research
is also a nice feature but is not required. For real recordings worn microphones can be
used as a proxy for the clean signal and the distant microphone as the noisy input needing
enhancement.

Tracking capability The final key component of the dataset is a method for understand-
ing speaker positioning. The detail of speaker tracking can be on several levels. Given
microphone arrays in distant speech recognition typically have microphones placed along a
horizontal plane, the position of speakers along the azimuth angle of the array is the lowest
level of useful positional information of the speaker. Tracking the 2-D position (top-down
view) of the speaker is a level above this i.e., the angle plus the distance away from the
microphone. This provides information about the distance speakers are away from the
microphone as well as their distance to a competing speaker relative to the microphone.
Tracking the direction people are facing can provide further information on the acoustics
e.g., facing towards the microphone or away. Simulating directivity patterns is not possible
in many simulation packages freely available (and commonly used), but is available in some
commercial software (Schröder and Vorländer, 2011). Finally, full 3-D position information
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of speakers including their skeletal posture would provide the most detailed description of
their position, however, modelling this in simulation is beyond the scope of this work.

3.2.2 Review of potential speech corpora

In this section, a review of potential speech corpora will be conducted. Datasets that capture
recordings of real environments are considered. The related literature in distant microphone
speech recognition can be split into two categories. First, a ‘noise robustness’ perspective
where the problems related to processing speech signals in the presence of additive noise
and reverberant distortions. The second perspective is ‘multi-party interaction’ where the
difficulty comes from recognising speech from people having conversations.

Whilst multi-party corpora often have some noise robustness aspect e.g., a distant micro-
phone capturing the recordings of the speakers, however, difficulty also comes from the fact
multiple people are talking which could contain overlapping speech in a difficult-to-predict
manner. The multi-party interaction corpora have largely focused on the ‘meeting room’
problem involving the task of diarization prior to speech recognition. On the other hand, the
noise-robust community has largely focused on recording challenging realistic backgrounds
and room impulse responses to artificially create mixtures. Simulation is key in noise robust
speech recognition to evaluate pre-processing tasks such as dereverbaration, speech enhance-
ment and speech separation. A timeline of influential datasets across these communities is
depicted in Figure 3.1. The figure showcases corpora which contain real data as part of the
simulation or in its entirety. Not all the datasets listed are distant microphones, but their
development has led to progress in related work in distant microphones. These datasets
are often released in the context of a challenge providing the opportunity to benchmark the
performance of speech-processing techniques, this is also depicted in the diagram.

Noise Robust Speech Processing. The robust speech processing community is focused
on developing signal processing techniques to remove noise created by background noise
and reverberation, as well as developing speech recognition systems robust to variations
caused by these distortions. A robust speech recognition system will contain several of the
following, a frontend enhancement system, robust feature transforms, robust features and
multi-conditioning training. Early work in robust speech recognition treated the enhancement
tasks independently with their own evaluation metrics (Kinoshita et al., 2013; Vincent et al.,
2006). Each of the individual evaluation metrics does not necessarily correspond with
eventual WERs (Iwamoto et al., 2022).

Datasets for noise robust research largely focus on creating artificial mixtures which
involve recording background noise in real environments and then additively mixing this
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CHiME-3 Dataset
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Fig. 3.1 Depictions of influential datasets in noise robust speech processing and multi-party
interaction. The diagram illustrates how datasets are often been driven by challenges to
benchmark their performance. Often multiple challenges are associated with a single dataset.
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noise into clean close-talking microphones. The first known dataset to do this was NOISEX-
92 (Varga and Steeneken, 1993), which created samples with backgrounds recorded in
military-related environments e.g., ‘helicopter’, ‘machine gun’, which the task of recognising
continuous string of digits. Following a similar scheme, the AURORA (Nakamura et al.,
2003) dataset contains spoken digits with separately recorded backgrounds added to the
mixtures. This dataset is larger with a greater variety in the number of speakers. Recording
speech and then adding the noise into the mixture negates the fact that people change how
they speak in the presence of noise (Zollinger and Brumm, 2011). More recently, The
MC-WSJ (Lincoln et al., 2005) records speech in a real environment of overlapping speech.
In the dataset, people are seated in a defined location around a meeting room table and told to
read utterances from the Wall Street Journal corpus (Paul and Baker, 1992). This dataset has
been used for the REVERB challenge (Kinoshita et al., 2013) to benchmark dereverberation
techniques on real data.

The series of CHiME challenges have looked to motivate research in robust speech
recognition by combining signal processing and statistical modelling communities.

The first CHiME challenge (Barker et al., 2013) used the CHiME dataset (Christensen
et al., 2010), extending foundational work using single-channel (Cooke et al., 2010). The
data contains background recordings captured inside a real home environment which contains
many different sound sources such as noise from children playing and the television. In
addition to this binaural room impulse responses (RIRs) are measured inside the room
capturing the audio. Artificial mixtures were then created by mixing utterances from the
GRID corpus (Cooke et al., 2006) convolved with the RIR and adding the background
recordings.

CHiME-2 (Vincent et al., 2013) addresses the limitations of the first challenge by using
the same dataset but creating a larger vocabulary task by using the Wall Street Journal corpus
(WSJ) as source material. The RIRs were also extended to be time-varying by interpolating a
grid of measured RIRs to simulate the movement of speakers across a distance of around
5 cm. The results from the challenge concluded that this movement added into the simulation
had little impact on the recognition performance.

The third CHiME challenge (Barker et al., 2015) was released alongside a new dataset.
A tablet with 6 microphones attached to the device along with a close-talking microphone
was used to record prompted read speech in real environments. The impulse responses were
estimated as an optimal filter in terms of least squares using the close-talking microphone
as a proxy for the clean signal. The motion of the speaker was tracked using SRP-PHAT
which was used to create a time-varying filter. The combination of impulse response and
time-varying filter was used to simulate clean utterances in the environment. For background
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noise, recordings without speech were added to the simulated datasets. Therefore, the dataset
consists of real data with matched simulated data. Analysis of the challenge concluded that
simulation overestimated the usefulness of beamforming approaches. The spatial statistics
required for these methods could not be accurately estimated using the approaches that
worked in simulation. Further analysis was more critical towards the minimum variance
distortionless response (MVDR) beamformer, however, the largest impact on performance
was due to the number of microphones. This resulted in a fourth challenge limiting the
number of microphones to only two (Vincent et al., 2017). As of writing the final dataset for
the CHiME series is from CHiME-5 (Barker et al., 2018) which was used in the CHiME-
5 challenge and the CHiME-6 challenge (Watanabe et al., 2020). This involves distance
microphone recordings of unscripted dinner parties consisting of a variety of domestic noise
from the homes of real people, more details will follow in this chapter.

Multi-party interaction On the other hand, the literature on multi-party interaction has
largely focused on the ‘meeting room’ problem. Meeting room datasets are created either
through recording real meetings or eliciting meetings through participants playing roles.
Whilst noise is present in these settings (e.g., air conditioning and computer fans), the noise
is relatively less dominant and varied compared to environments investigated in noise robust.
The field of the literature arguably starts with the ShATR database1 which is the first to
incorporate multi-speaker interactions through eliciting conversations between five people
seated around a table solving crossword puzzles.

The largest and most impactful of these datasets is the AMI Corpus (McCowan et al.,
2005), which has been influential in the field of distant microphone speech recognition
spanning eight years of development. The AMI dataset was the result of a project which
aimed to give insight into human interaction during meetings. Distant microphone audio
recordings, as well as videos, were captured using separate device recordings at several
research sites using “instrumented meeting rooms”. In addition to this, other accompanying
files such as notes and slides are also released. The dataset is fairly large, with 100 hours
of meetings recorded containing a varying number of participants. In the AMI corpus, the
meetings are not scripted. However, participants are given roles to play within a fictional
company and given a scenario. A subset of the dataset does come from real meetings that
are not elicited. The corpus consists of recordings of meetings across several locations
consisting of mostly non-native English speech. The high number of non-native speakers is
an interesting ASR problem to solve but contributes to a further complexity that needs to be
addressed when developing speech recognition systems and analysing results.

1https://spandh.dcs.shef.ac.uk/projects/shatrweb/papers/ioa94.html

https://spandh.dcs.shef.ac.uk/projects/shatrweb/papers/ioa94.html
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The Sheffield Wargames Corpus (SWC) (Fox et al., 2013) was developed to address
some of the weaknesses of the AMI dataset by using games of Warhammer (a table-top
strategy game) as a surrogate to a meeting. They argue that playing Warhammer elicits
similar behaviours that are observed in meetings. AMI uses volunteers playing roles who
do not know each other, which arguably does not result in the same behaviour we would
expect in real meetings containing people who do know each other. Like AMI, SWC also
provides multiple modalities such as audio and video captured on different devices. SWC also
provides positional tracking of the participants using Ubisense tracking devices. However,
SWC has some major drawbacks, such as only using one small room to record the data. The
small room also contains a large table to assist in their game, further limiting the movement
of the participants. The constrained task of Warhammer also limits the variety in speaker
behaviour across the possible space of human social behaviour. In addition to this, the dataset
consists of entirely male speakers in the initial recording, which limits the dataset variety in
spectral properties and behavioural properties. Later recording sessions (Liu et al., 2016) of
the dataset address this with a day of a recording involving female participants. However,
this was addressed through a setup where male players taught females how to play the game,
creating a different dynamic from the rest of the dataset.

The CHiME-5 dataset was developed and released alongside the CHiME-5 (Barker et al.,
2018) challenge and was also used in the subsequent CHiME-6 challenge (Watanabe et al.,
2020). The dataset consists of recordings of “Dinner parties” inside real homes. These dinner
parties are unscripted and the topics can be freely chosen. The only requirement was that
a party contained three stages. A cooking stage where participants prepared their meals, a
dining stage and some form of after-dinner socialising. A party is recorded using multiple
Kinect v2 devices which have a 4-channel microphone array and an integrated 1080p camera
on the unit. Six devices are placed around the apartments with at least two devices in each of
the rooms. Given that these are all real homes, the location of the activities may be in the
same room e.g., some households may dine and socialise in the same room. In total there are
20 parties with a total of 50 hours of speech.

Through surveying the literature, three potential datasets have been identified that could
meet or partially meet the requirements established in the previous section, namely AMI
(McCowan et al., 2005), Sheffield Wargames Corpus (Fox et al., 2013) and CHiME-5. Whilst
other potential meeting corpora could be used to evaluate speech recognisers such as the
ICSI Meeting corpus (Janin et al., 2003) or more conversational datasets such as COSINE
(Stupakov et al., 2009). These datasets have been immediately ruled out as they do not
provide additional modalities to extract positional information.
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Table 3.1 Comparison of different datasets of conversational speech.

Dataset Pros Cons

AMI

• Large dataset (100 hours)

• Audio and video data
recorded

• Well established in the re-
search community

• Unscripted speech

• Multiple locations

• Formal meeting scenario

• Participants acting roles

• No position tracking provided

SWC

• Position tracking information
provided

• Unscripted speech

• Natural behaviour (not acting)

• Limited to game playing sce-
nario

• Limited to a single room

• Small dataset (24 hours)

• Female participants retrofitted
into the dataset

CHiME-5

• Large dataset (50 hours)

• Unscripted speech

• Multiple Locations

• Natural behaviour (not acting)

• Social setting

• Audio and video data
recorded

• No position tracking provided
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From the potential datasets available, the most appropriate for this work is CHiME-5.
This is because it directly uses data recorded inside a variety of domestic environments in
unscripted scenarios. Although positional information is not provided like with SWC, it does
provide multi-camera recordings, which can be used to locate participants. A breakdown of
the pros and cons of the datasets is given in Table 3.1.

Given that the CHiME-5 does not provide any tracking system data but does provide
video, techniques to extract speaker location needs to be explored and developed. The
remainder of this chapter provides a deep analysis of the CHiME-5 dataset and the tools used
to explore the video data.

3.3 CHiME-5 dataset

Given it has been established that CHiME-5 is the most appropriate dataset to conduct this
research, the remainder of this chapter conducts an analysis of the dataset and its impact on
the research community. The CHiME-5 data was released in 2018 alongside the CHiME-5
challenge.

3.3.1 Overview

The CHiME-5 dataset consists of twenty recordings of dinner parties inside real homes, each
party having four participants. There are 48 participants in total, 23 of which are female
and the remaining 25 are male. An attempt was made to have an even balance of male and
female participants in each of the parties, however, for only 10 out of the 20 parties this is the
case2. A dinner party consists of three phases, cooking, dining and after-dinner socialising.
Each of these phases typically took place in different rooms of the home. The dinner parties
are captured using multiple devices. In each of the rooms of the parties, two Microsoft V2
Kinects are placed at the edge of the rooms. A Kinect consists of a 4-channel microphone
array with an integrated camera into the unit, as illustrated in Figure 3.2. The devices provide
audio recordings from each of the microphones sampled synchronised between microphones
on a device. However, recordings are not necessarily synchronised between different devices.
The devices also provide 1080p video recordings from their cameras.

As well as the distant Kinects, near-field microphones also capture the session through
in-ear devices (OKM Soundman II) worn by each of the participants. The in-ear microphones
can be used in training components of an ASR system such as the acoustic model or speech
enhancement system. However, the systems are evaluated on their performance on the Kinect

2For a breakdown see: https://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/data.html

https://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/data.html
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Fig. 3.2 Diagram showing the layout of the Microsoft Kinect v2 device. The device contains
a 4-channel linear microphone array with an integrated 1080p camera. Used with permission
from The University of Sheffield http://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/
overview.html

devices. The primary motivation for the in-ear microphones was for aiding the transcription
of the dataset and therefore it was not a priority for this data to be a clean reference, only
an improvement over the distant microphones. Whilst the in-ear microphones may have a
higher SNR they are not clean signals. The in-ear microphones often pick up more cross-talk
due to their location and omnidirectional nature compared with traditional close-talking
microphones located near the speaker’s mouth.

The structure and layout of each of the apartments vary greatly and give a good represen-
tation of what we would expect when deployed in the real world. In Figure. 3.3 we can see
four examples of the floorplans. In each of the apartments, six recording devices (Microsoft
Kinect v2) are placed around the apartments, with at least two devices in each of the rooms.
The figure demonstrates that the definition of a ‘room’ can be blurry, for example, in S12, the
entire apartment is open plan with no walls separating each of the rooms. In contrast, if we
look at S18, we can see a clearly separate kitchen area in the apartment. In more open-plan
apartments, devices placed to listen in one room will also be able to capture audio from the
other rooms. Figure. 3.4 shows how the separation of the speakers can depend largely on the
layout of the room.

3.3.2 Impact of CHiME-5

The dataset has been used as the basis for open automatic speech recognition evaluations.
The first of these, the CHiME-5 challenge (Barker et al., 2018) was launched with a baseline

http://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/overview.html
http://spandh.dcs.shef.ac.uk/chime_challenge/CHiME5/overview.html
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Fig. 3.3 Example of the floorplans of four apartments in the CHiME-5 dataset. The figure
demonstrates the variety of room layouts. Some are open-plan like S12 and others have more
distinct rooms like S18.

Fig. 3.4 The left-hand side shows participants being narrowly separated whilst the right-hand
side shows widely separated participants. Faces have been manually blurred to protect the
privacy of the participants.
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system with a performance of a WER of 73.3% on the eval dataset; this was later reduced
to 41.6% (Kanda et al., 2019) after the challenge. Following this, the CHiME-6 challenge
was released with the same dataset with official procedures to address frame-dropping and
array de-synchronisation issues that arose while recording the dataset. The challenge also
expanded the task to also include diarisation, i.e., the task of figuring out who is speaking
and when. The result of this challenge was a state-of-the-art performance of 31.0% (Du et al.,
2020a). Throughout the thesis, when referring to the CHiME-5 dataset, this will refer to
the dataset created including the procedures provided in the CHiME-6 challenge to address
recording issues.

Since the release of the CHiME-5 dataset, the corpus has led to many advancements in
the field of ASR and speech enhancement. The challenges themselves have drawn in many
participants, with the WERs significantly reduced over time. One of the most impactful
contributions comes from research within Guided Source Separation (GSS) (Boeddeker et al.,
2018) which is a powerful unsupervised technique for separating speakers in a mixture. More
details on this approach are presented in Chapter 3. In addition to this, advancements in
voice activity detection (VAD) in this domain with target-speaker VAD (TS-VAD) were
presented in (Du et al., 2020a). CHiME-5 has also been used to develop simulated corpora,
this uses CHiME-5 background noise along with signals spatialised using RIRs with array
geometries matching the Kinects (Sivasankaran et al., 2021). The outcomes of this corpus
showcased previous state-of-the-art techniques fail to work, such as the delay-and-sum
based beamformer, BeamformIt (Anguera et al., 2007) which finds the optimal path of
delays using GCC-PHAT (Knapp and Carter, 1976) and dynamic programming. Beamformit
provided large improvements in the AMI corpus. When used in CHiME-5 the beamformer
provided minimal improvement to the recognition results, simply choosing the best channel
provided better recognition results (Barker et al., 2018). The reason for this difference is
not immediately clear and given the nature of the dataset, it does not provide easy analysis
due to the number of variables that can not be controlled when observing real behaviour.
Providing a method to approximate the complexity of CHiME-5 across multiple dimensions
e.g., noise, room geometry, speaking styles, speaker positioning, speaker turn-taking etc.
lends itself to providing insight into why CHiME-5 is so difficult as we can peel back the
layers of complexity.
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3.4 Tools created for analysis

3.4.1 General strategy

In the previous section, we have established that the CHiME-5 dataset is the most suitable
corpus to analyse the behaviour of people in a social setting. As stated, the corpus contains
video recordings of the participants which will be used to locate the speakers. Therefore, it is
left to decide how this speaker information can be extracted from the videos. In this following
section, the tools used to extract speaker information from the raw videos are described and
evaluated. The end goal of these tools is to locate the mouth position of each of the speakers
i.e., the source of the speech signal. The tools were developed from scratch in order to meet
the objectives of the thesis and the tools have now been realised to aid in reproducing this
work or annotating similar datasets. The code alongside installation instructions can be found
in the GitHub repository3.

Given there is a large amount of data that needs to be analysed in the corpus, it is
not feasible to accurately hand-annotate the entire dataset in a reasonably efficient manner.
Therefore, the first automatic tools to locate people in videos are explored, which are used
across a variety of different domains. Novel annotation tools are also developed which have
two roles, first to establish the error in the automatic tools, and second to provide their own
raw data. Both the data generated from the automatic tools and hand-annotated tools are used
in Chapter 4 and Chapter 5 when exploring the impact of using this analysis in simulation.

Manual annotation tools To trade-off between fast annotations and highly accurate an-
notation tools, two different sets of tools are developed: highly accurate annotations allow
for automated tools to be evaluated whilst the faster tool allows more data to be annotated
compromising on some accuracy.

Automatic tools Another trade-off needs to be made with the automatic tools. In the
section on automatic tools we will explore different approaches namely face detection and
pose estimation.

First, a description of the annotation and automated approaches are described, followed
by the methodology to extract the mouth position of the speakers. These mouth positions are
then evaluated with respect to the most accurate isolated frame annotation tool.
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Fig. 3.5 Example screenshot is taken from the isolated frame annotation tool. The faces of
the participants have been blurred to protect their privacy. When annotating the data, faces
were visible.
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Fig. 3.6 Screenshot is taken from the real-time annotation tool. The faces of the participants
have been blurred to protect their privacy. When annotating the data, faces were visible.

3.4.2 Isolated-frame annotation tool

The isolated-frame annotation tool aims to provide the most accurate estimations of the
mouth position of the speaker. This tool is developed to work on a set of images rather
than videos, therefore frames from the videos are first extracted before using the tool. In
Figure. 3.5 an example of annotating a frame of a video is shown. When annotating a
person a bounding box around the head of the person is first created by the person annotating.
Then from within this bounding box a point can be placed indicating where the mouth is
positioned.

The annotation tools work by annotating projects, a project is created for each of the
sessions annotated. Within a project, multiple frames from a video can be loaded, in addition
to multiple camera perspectives. In the figure, on the right-hand side, the list of speakers is
displayed. The annotator selects the speaker they want to annotate before they create their
bounding box. The speaker they select is consistent across the frames and cameras in the
project, this allows for there to be an association between frames and across devices. These
associations can later be linked to a speaker in the audio data by inspecting the transcript and
video.

Isolated frames were annotated by sampling every five minutes in all the videos in the
development set and then annotating a bounding box around the speaker’s face as well as
annotating the position of the mouth.
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3.4.3 Real-time annotation tool

The real-time annotation tool works directly with the video data as opposed to extracted
frames. The goal of this tool is to provide a larger amount of data whilst compromising on
the accuracy of locating the mouth position. In the isolated-frame tool, box a bounding box
was annotated as well as the mouth position. In the real-time tool, only the mouth position is
annotated.

The real-time annotation tool works by the annotator playing the video and clicking and
dragging on the person as they move across the screen. In addition to this a tracking point can
be placed and by using the Lucas–Kanade method of optical flow (Lucas et al., 1981), further
annotations can be automatically created automatically, guided by the annotator. The tracking
point allows for annotations to be created which react quickly to sudden movements from the
speakers. In cases where the optical flow cannot easily track someone e.g., occlusions, the
human annotator can correct the errors made and replace the tracking point when appropriate.
Due to the real-time nature of the tool, it is not always possible for the tool to keep up with
the video being annotated, in this case, frames are dropped and the gaps in between the
frames are linearly interpolated. An example of using the real-time annotation tool is shown
in Figure 3.6, where a single speaker is being annotated in the centre of the frame. There is a
trade-off between using the speed of the real-time tool and the accuracy of the isolated-frame
tool. An example of comparing annotated frames using the two tools is shown in Figure 3.7.
Here we can see the real-time tool slightly missing the mouth position of the speaker when
we compare it to the accurate isolated-frame tool. Later, this difference in accuracy with be
evaluated.

3.4.4 Face detection automatic tool

Automatic tools allow for a far greater amount of data to be annotated. The first automatic
tool to be explored is face-detection. The reason for using a face-detection approach is that
they are efficient and provide a clear way of estimating the mouth position.

The task of face-detection is well-established in the literature. Initial approaches (Kumar
et al., 2019) used a classifier with a sliding window to determine regions which contained
faces, these regions are then combined to find the location of the faces. Modern approaches
use deep learning techniques that can perform the entire inference in a single pass (Redmon
et al., 2016).

The open source toolkit Dlib (King, 2009) is used, which is well-established and provides
many tools for Computer Vision tasks. In particular, the toolkit has a Convolutional Neural

3https://github.com/jackdeadman/video-annotation-tools

https://github.com/jackdeadman/video-annotation-tools
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Isolated frame Realtime

Fig. 3.7 The annotations on the left show bounding boxes and mouth positions annotated
from the isolated frame tool. The annotations on the right show the corresponding frames in
the real-time annotation tool. In the real-time tool, only mouth positions are annotated. The
faces of the participants have been blurred to protect their privacy. When annotating the data,
faces were visible.



56 Data and tools for analysing speaker behaviour

Network (CNN) based face-detection system. Specifically, the tool being used in this work is
the cnn_face_detection_model_v14, this model is trained on a dataset of faces created from a
subset of ImageNet, AFLW, Pascal VOC, the VGG dataset, WIDER, and face scrub5. The
model is trained by optimising the maximum-margin optimisation function. During inference
the images are upsampled to be twice as large, this was found to improve the number of
detections significantly. Even though no information is being added when upsampling it was
found faces that were far away and therefore smaller are missed without this upsampling
step. The pose detection system is run on all the videos in CHiME-5.

3.4.5 Pose estimation automatic tool

The final tool used in this work is for pose estimation, in particular, the open source toolkit
OpenPose (Cao et al., 2019) is used to find the poses of the people in the videos. Again, this
is a well-established toolkit. Estimating the pose of a person aims to locate keypoints of a
human skeleton, for example, arms, legs and neck. Estimating the entire skeleton of a person
may seem excessive as we are only really interested in the mouth position. However, this
approach has the benefit of being able to detect people when they are facing away from the
camera, in the face detection case, no face would be found, however, a pose could be still
estimated. The pose detection system is run on all the videos in CHiME-5.

3.5 Evaluation

Now that both the automatic detection and annotation tools have been described, the next
section looks at establishing the accuracy and therefore the confidence we expect to have in
the tools with respect to the CHiME-5 dataset. It is important to establish this confidence as
the speakers inside of the CHiME-5 dataset is very different to the datasets the automatic
methods are normally evaluated on i.e., often the cameras in CHiME-5 have occlusions.
Therefore in the following section a methodology for this evaluation is established and then
the metrics that will be used are defined, this leads to the next section where the results are
presented with respect to this methodology.

4https://github.com/davisking/dlib/blob/8d4df7c0b3fa7c4c1e4175951161b01ccf4541b5/
tools/python/src/cnn_face_detector.cpp

5https://github.com/davisking/dlib-models

https://github.com/davisking/dlib/blob/8d4df7c0b3fa7c4c1e4175951161b01ccf4541b5/tools/python/src/cnn_face_detector.cpp
https://github.com/davisking/dlib/blob/8d4df7c0b3fa7c4c1e4175951161b01ccf4541b5/tools/python/src/cnn_face_detector.cpp
https://github.com/davisking/dlib-models
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Fig. 3.8 Automatic detections were paired with the annotated data through minimising the
total euclidean distance between annotated position and detected position. Then a two-
component Gaussian mixture model is fit on the paired data to find the threshold values
for pose and face detection methods to determine if a detected point is close enough to be
considered correctly detecting the paired person. Using these models a threshold of 53 was
chosen for the pose system and 64 was chosen for face. The crosses inside of the plot indicate
misclassified detections, which shows the face detection produces far fewer mistakes.

3.5.1 Methodology

Given these automatic methods provide different estimates of speakers i.e, a face bounding
box vs a skeleton, we eventually want to estimate a mouth position. This mouth position
needs to be assigned to a labelled speaker in order to determine the accuracy of the detection
system.

For the pose-detection system, the mouth position is simply chosen to be the nose
keypoint as this is the closest to the mouth that OpenPose provides. To estimate the mouth
position of the speaker from the face detection tool we can use the centre of the box for the
x-axis position of the mouth. For the y-axis 74% down the face is chosen, this minimises the
distance from the labelled data.

The assignment of the isolated-frame annotations and the detections are chosen by looking
at all the possible permutations and choosing the pairing of detections and annotations which
miminises the total euclidean distance.

Given the assignments determined from the previous method, it is left to decide if the
two points are close enough to be considered detecting the annotated person or whether it is
the result of a false positive and a false negative. In order to determine if an assignment is a
detection correctly assigned to an annotation a threshold value needs to be determined. This
threshold is estimated through fitting a two-component Gaussian Mixture Model (GMM) on
the paired data as depicted in Figure 3.8 where pose assignments are considered correct if
they are within an x pixel distance of 53 and for face this value is 64.
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3.5.2 Evaluation metrics

Detection Using the assignments and the thresholds defined in the methodology section,
the following standard metrics can be defined to evaluate the detection capability of the
automatic methods.

Precision =
TP

TP+FP
, (3.1)

Recall =
TP

TP+FN
, (3.2)

F-Score =
2×Precision×Recall

Precision+Recall
=

2×TP
2×TP+FP+FN

, (3.3)

where TP, FN, FP are the total True Positives, False Negatives and False Positives respectively.

Accuracy To determine the accuracy the distance a speaker is away from the detection is
used. In particular, the accuracy of the x-Distance, y-Distance and Euclidean distances are of
interest,

x-Offset = ax −bx, (3.4)

x-Distance = |ax −bx|, (3.5)

y-Distance = |ay −by|, (3.6)

Euclidean = ∥a−b∥, (3.7)

where a =
[
ax ay

]⊤
is the annotated position and b =

[
bx by

]⊤
is the detected position

of the automated method. The absolute value and the euclidean norm are given by |·| and ∥·∥
respectively.

3.6 Results

3.6.1 Automatic detection results

The results of the automatic methods are shown in Table 3.2. The face-detection system finds
fewer people than pose as it fails when people are facing away from the camera. However,
high precision means we can be fairly confident that it is finding true faces. Pose complements
these errors as it misses fewer people but yields more false positives. Note, a low recall will
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Table 3.2 Results are shown from eight devices in two different sessions after 558 faces have
been hand-annotated and paired with detections by automatic methods. Video resolution:
1920×1080. Accuracies are mean ± standard error.

Detection Accuracy (px)
Precision Recall F-Score x-Distance y-Distance Euclidean

Face 98.7% 36.6% 52.5% 23±2 18±1 32±2

Pose 94.1% 60.5% 72.9% 24±3 27±2 40±4

Table 3.3 The results of re-annotating a segment in a session in the CHiME-5 dataset. The
distances are in pixels and are the result of annotating 1080p videos (1920 × 1080). Showing
the mean and standard deviation (std) difference between the two annotation runs.

Measure Mean Std

x-Offset -3 21
x-Distance 15 15
Euclidean 19 17

not hinder the separation analysis that follows as long as the position of persons missed is at
random with respect to screen position. Next, we look at the accuracy of these detections
by measuring the horizontal and vertical distance in pixels to the mouth, x-Distance and
y-Distance (Table 3.2, rhs). (Note, in one device an oddly placed mirror mislead the detection
systems leading to many large unrepresentative errors. This effect was not seen in any of
the other 113 cameras and so was treated as an outlier and the device was removed from the
evaluation).

3.6.2 Re-annotation accuracy of the real-time tool

There is a trade-off between the speed of the annotations and the accuracy that they provide
with the real-time tool. When not using the tracking feature, the annotated position of the
speaker can be slightly incorrect as the human annotator has to react to the sudden change if
the person changes their direction and therefore some error can be introduced.

The error in the real-time tool can be measured by re-annotating the same data twice
and comparing the differences between the two. This process was performed for a 5-minute
segment in all the devices in one of the sessions in the dataset. The difference in the re-
annotations is shown in Table. 3.3. Given that the videos have 1920 pixels horizontally and
1080 pixels vertically, the error is very small. The table shows that, on average, the number
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Fig. 3.9 An example of comparing annotations from two different runs of the same segment
of data using the real-time annotator. The left side shows the x pixel index of the two runs for
three speakers and then the right-hand side shows the x-offset (i.e., the difference between
the runs).
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of pixels difference between the re-annotations is only 15 pixels. This estimate of error will
later be used in Chapter 5 when combining camera estimates to locate speakers.

The error in re-annotating is caused by not being able to consistently keep track of the
mouth position of the speaker as the video is being played in real-time, and people can move
their heads very quickly. When annotations are very poor, the tool allows the annotator to
go back in time in the video and redo the annotation. The degree of inaccuracy depends on
the distance the speaker is away from the camera, i.e., if they are far away from the device,
movements can more easily be tracked. The plots in Figure 3.9 illustrate two different runs
of annotating the same segment. The left side shows the x-position for both the annotations
for the three speakers that were visible during this segment. On the right side the difference
between the two runs is show and we can see the result is close to 0.

3.7 Conclusions

This chapter presented the motivation for using the CHiME-5 corpus. The dataset provides a
unique opportunity to analyse people’s natural behaviour in a social setting using unobtrusive
recording devices. In addition to this, CHiME-5 is a well-established dataset that has
already impacted the research community. Continuing to use this data by providing position
information of the speaker contributes further to this work.

This chapter also presented annotation tools to track speakers in real-time, as well as
isolated frames. This is because tools are needed to extract this position information from
the videos to create a ground truth. Now that automatic tools to automatically extract speaker
positions are evaluated using the annotations. The positions will later be used in further
analysis in the following chapters.





Chapter 4

Speaker spatial analysis: estimating
speaker location using a single device

4.1 Introduction

It is becoming commonplace to find smart devices with voice assistants in homes. These
devices use an array of microphones to exploit spatial cues to enhance speech in the desired
direction whilst suppressing competing sounds such as noise and competing speakers in other
directions. It is well known that these systems perform better when there is a greater angular
separation between speakers. In a meeting room scenario, a microphone array is typically
placed in the centre of the table to maximise the separation angle between speakers. This is
in contrast to smart speakers, where the primary focus of the user is not maximising angular
separation, but usability. Their preference is more likely to be to place the device “out of
the way" i.e., this is typically at the edges of rooms avoiding obstructions. In addition to
this, studies in the behaviour of people have shown that in a social setting, people tend to
stand close to each-other (Hall et al., 1968). These two factors combined result in a smaller
angle of separation between the talkers than one may expect. We will explore this conflict
by analysing the behaviour of people in social settings and the impact it has on current
speech enhancement techniques and automatic speech recognition (ASR). Knowing the true
behaviour of speakers will help in understanding how best to design future microphone array
algorithms and hardware.

As described in the previous chapter, to benchmark speech enhancement techniques,
a controlled environment is required where a version of the audio before distortion is
available. This is typically achieved using databases of simulated signals, which are created
by generating room impulse responses (RIR) through simulation, e.g., the image method
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(Allen and Berkley, 1979), and then convolving the RIR with the clean audio. Simulating the
complexities of the real world is an incredibly difficult task but an important gap that needs
to be bridged to provide meaningful results before algorithms are tested on real data. It is
therefore the aim to produce results that are representative of those that would be achieved
on real data. This is because direct testing of real data is not possible, this is because, unlike
simulation, the real data does not provide the ground truth separated signals that are needed
when computing many performance metrics. Many advances have been made in improving
the realism of simulations (Brinkmann et al., 2019), for example, by simulating non-cuboidal
room shapes (Scheibler et al., 2018) and high fidelity ray-traced acoustic rendering. However,
the distribution of the speaker locations is an aspect that has been largely overlooked when
producing the simulated data.

Often in multi-channel speech enhancement, when reporting results, overall performance
is presented with no information about how the performance relates to the speaker separation
distribution in the dataset being used. This is a surprise given the attention that is paid to
other aspects of evaluation, e.g., the reverberation times, the SNR ranges, and the choice
of metric to be reported (Le Roux et al., 2019). Although these are all very important
factors when evaluating the performance of speech enhancement systems, this chapter argues
that the separation of speakers is an additional factor that is equally important to simulate
correctly, particularly because different techniques may perform with different effectiveness
at different points on the speaker separation distribution. An unrealistic separation distribution
can therefore lead to misleading conclusions regarding the relative effectiveness of source
separation and recognition techniques under consideration.

In particular, this chapter argues that current simulated datasets such as (Drude et al.,
2019b; Maciejewski et al., 2020; Wang et al., 2018) have separation distributions that have
unrealistically large mean separations and therefore may lead to overpromising results, i.e.
demonstrating large gains due to spatially-based source separation that are not realised in
a real-situation where the separation angles are much lower. This is because they do not
represent the spatial separation of speakers in typical social settings and therefore, may
produce overpromising results. For this study, the video data captured during the recording of
the CHiME-5 dataset is used for the analysis of speaker separation. This chapter uses analysis
from cameras capturing videos from the perspective of 114 microphone arrays recording 50
hours of social interaction in 20 homes. For a full description of the dataset, see Chapter 3
and (Barker et al., 2018).

The aim of the chapter is to compare the difficulty of a simulated overlapping speech
recognition task that uses a realistic distribution of speaker separation, with that of the
difficulty of existing commonly-used datasets. This will be achieved by first learning
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the speaker separation from the real data, i.e., by analysing the CHiME-5 data using its
video component to locate speakers from the perspective of every one of the microphone
devices. Second, these distributions will be used to generate overlapped speech datasets
that are equivalent to existing evaluation datasets in every respect apart from the separation
distribution. Third, the performance of state-of-the-art multichannel distant microphone
speech recognition systems will be compared using both the unrealistic existing datasets and
the more realistic new datasets. This chapter, therefore, aims to address questions such as
How much impact does separation distribution have? and Do the realistic separations lead
to significant differences in the estimate of ASR performance? Worse, do different separation
distributions lead to different answers when ranking ASR techniques, i.e., might previous
datasets have led researchers to make erroneous conclusions about what might work best in a
real environment.

The chapter is organised, as follows. Section 4.2 outlines the methodology for estimating
and testing the separation angle. Section 4.3 details the approach for automatically locating
people in the living spaces. Next, in Section 4.4 the distributions of the real dataset are
compared with existing benchmark datasets. The experimental work in Section 4.5 and
Section 4.6 show the impact of using the realistic distribution. Finally the concluding
remarks in Section 4.7.

4.2 Methodolody

The aim of this chapter is to investigate the impact that imposing a realistic separation angle
distribution has on distant microphone ASR and speech separation. To achieve this, first, we
need to establish what is a realistic distribution, then, we need to determine how to generate
data according to this distribution and finally, we need to evaluate the impact that this has
on performance. This section will give a brief overview of the methodology adopted in this
chapter, first starting with the definition of angular separation.

The separation angle in this work is defined as follows. Given a microphone array l

with a centre at position ml =
[
mx

l my
l

]⊤
and speakers at position p1 =

[
px

1 py
1

]⊤
and

p2 =
[

px
2 py

2

]⊤
the angular separation is defined as,

ϕl(p1,p2) = arccos

(
(p1 −ml)

T (p2 −ml)

∥p1 −ml∥∥p2 −ml∥

)
. (4.1)

A depiction of the angular separation between people is shown in Figure 4.1 where two
people are in the room with two randomly placed microphone arrays. The possible separation
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Microphone Array

Microphone Array

φ1
φ2

Fig. 4.1 Depiction of the definition of angular separation. The separation angle is the absolute
difference between the two angles of the speakers from the perspective of the microphone
array. It has a range of 0 to 180 degrees.

angles are between 0 and 180 degrees. We can clearly see that the range of angles that
are possible depends on the placement of the devices as well as on the Euclidean distance
between the speakers. The separation angle function ϕl can be reformulated to be in terms of
the difference between the azimuth angles of the speakers relative to the device as depicted
in Figure 4.2. This is formulated as,

ϕl = |wrap(θl (p1)−θl (p2))|, (4.2)

where,

θl
(
p j
)
= atan2

(
py

j −my
l

px
j −mx

l

)
, (4.3)

wrap(θ) = atan2
(

sin(θ)
cos(θ)

)
, (4.4)

The wrap function normalises the angle between π and −π . Therefore after taking the
absolute value the angle lies between 0 and π .

The video component of the CHiME-5 dataset will be used to estimate the position of
the people from the perspective of each of the cameras in the screen space. Given that the
cameras are integrated into the microphone array device, the speaker azimuth angle to the
device (θl(p j)) can be estimated from the screen space without knowledge of the talker’s
true location. Screen space positions of speakers are detected using the automatic methods,
pose detection and face detection, details of which are outlined in the previous chapter. For
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Fig. 4.2 The angle between the two speakers (ϕ j) at microphone array l can also be computed
through looking at the azimuth angle of the two speakers and computing the difference.
When computing this difference care needs to be taken due to the wrapping nature of circles.
To account for this, the difference needs to be normalised to be around the unit circle before
taking the absolute value.
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every frame in the video, i.e., every session and every device (total 114 videos) the detection
systems are run. From this, a distribution of angular separation can be estimated.

This distribution can then be used directly for sampling an angular separation or as a
reference to match when using other sampling methods. By creating a dataset that has
separation angles that are expected in the real data and then evaluating systems, the overall
performance will implicitly weigh the performance of the system across angles that are more
important. This means focusing on improving the angles we see in the real data will improve
overall performance more than improving wide angles. Finally, to compare the potential
impact of using unrealistic separation angles, the experiments in this work use identical
datasets that have the same mixing process but with separation angle distribution being the
only difference.

4.3 Estimation of the real speaker spatial separation distri-
bution

The CHiME-5 dataset consists of 20 dinner party sessions, with each party broken into
three stages: cooking, dining and after-dinner socialising. Each of these stages typically
takes place in different rooms of the house, i.e., Kitchen, Dining, Living rooms respectively.
A room is captured by two Microsoft Kinect V2 devices, consisting of a 4-channel linear
microphone array and a 1080p camera. The location of the devices was chosen such that they
were not obstructing the participants, i.e., at the edge of the room looking into the party. This
means the placement of the devices does not necessarily maximise the separation of speakers
but more closely mimics the placement of a device in a real home use case.

4.3.1 Linear approximation of the relationship between screen and
angle

To find the angle of the speakers, the position of the speakers in the image of device l needs
to be mapped to the azimuth angle. The azimuth is the target because, like most linear arrays,
the Kinect is linear in the horizontal plane, as this is where most spatial diversity occurs. This
means for our analysis, the x coordinate (measured in pixels) of a speaker’s mouth in the
image is the most important feature to capture. The angle of azimuth can be approximated
from the l-th device’s screen x-coordinate using,

θl(p j)≈
xscreen

l j ×84.1

1920
, (4.5)
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Fig. 4.3 Validation of the linear relationship between device screen space and azimuth
angle. This assumption was validated by using the depth sensor in the Microsoft Kinect and
projecting the position (θ depth

l ) to an angle and then comparing this with the screen space
estimate of angle (θ screen

l ).

where xscreen
l j is the x pixel index in the screen space for device l and source j, 84.1 is the field

of view of the camera measured in degrees, and 1920 is the resolution of the video. However,
due to the nature of lenses, this linear approximation is not completely valid, i.e., there is
typically distortion at the edges of the frames which can become extreme for wide-angle
lenses. To validate the linear assumption, an informal experiment using the depth sensor
within the Kinect V2 device was conducted. Using the Kinect Software Developer Kit1

(SDK) a skeleton of a person with 3-D points of their position relative to the device is given.
The SDK also provides a screen position of each of the joins in the pose. In order to estimate
the amount of distortion and therefore the validity of the linear assumption, the mapping
from the 3-D depth sensor position to the screen space position is shown in Figure 4.3. The
figure was created by walking around a room and periodically capturing 3-D positions and
screen space positions of all visible joints. All these points are then used in the data in the
plot. In the plot we can see the data roughly fits the linear relationship between screen space
and azimuth angle. A function could be fit directly on this data but for simplicity, the linear
relationship will be used in the following experiments in this chapter and the further chapters.

1https://learn.microsoft.com/en-us/azure/kinect-dk/
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Fig. 4.4 Validation of the assumption of randomly choosing speakers instead of active
speakers. The plot compares the distribution of separation angle between active speakers
with the distribution when choosing two people at random. The similarity of the two
distributions suggests that the separation angle is independent of speaker activity state. This
means that the separation of active speakers can be modelled using measurements of the
separation between all pairs of speakers in the scenes.
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Fig. 4.5 Comparison of the separation distributions created from using all the frame data in
the entirety of CHiME-5.

4.3.2 Estimated speaker separations

To detect speakers, two different ‘out-of-the-box’ tools were used: the Dlib CNN face
detector (King, 2009) (face) and the OpenPose keypoint detection library (Cao et al., 2019)
(pose). These tools can both be regarded as state-of-the-art but have different strengths and
weaknesses. The face detection system is only able to locate a person if they are facing the
camera or if their profile view is visible. The pose detection system is able to locate people
turned away from the camera but suffers from more false detections. These detection systems
were run on each of the frames in the 114 videos in isolation.

Ideally, we wish to use the angular positions from the automatic methods to estimate
angular separation between active speakers. Although the CHiME-5 transcript can be used
to recover the speaker activity state of identified speakers, the identity of the speakers can not
easily be determined reliably using the automatic methods. Therefore, the analysis makes the
assumption that separation is independent of speaker activity state, i.e., that we can measure
angles between pairs of people in the scene regardless of whether they are talking and then
use the distribution of these separations as an estimate of cases where both people are talking.

This assumption has been tested using a fully annotated subset of the data. Using the
real-time annotation tool described previously, three cameras are annotated for the entirety of
session S02, i.e., with the speaker identities so that the people in the scene can be linked to
the transcript. For each video frame in which two or more active speakers are detected by the
face system, two random people are chosen and the angular separation is computed. Note,
this approach is valid even considering the low recall of the detector assuming the missed
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Table 4.1 Position and separation of speakers throughout the dinner parties. The centre of the
screen is 0 pixels/degrees. Results are average ± standard deviation.

Position Separation
Screen (px) Angle (°) Screen (px) Angle (°)

Pose −23±323 −1±14 380±268 17±12
Face −35±302 −2±13 427±274 19±12

detections are missed at random with respect to location. This is then repeated but now
sampling pairs of people regardless of speaking activity state. The resulting distributions are
compared in Figure 4.4. The similarity of the distributions suggests that person separation
is largely independent of the speaking state. This may seem unusual, i.e., people speaking
at the same time might be expected to be closer together. However, overlapping speakers
may be from competing conversations, and inactive speakers are still ‘socially engaged’ and
therefore standing at conversational distances from each other. The figure also highlights the
variety in the distributions between the different devices. The distributions have clear distinct
peaks indicating speakers are often in the same locations.

We can now measure person separation across all 114 devices without regard for speaker
activity state and take this as a proxy for overlapped speaker separation. Analysis is re-
peated with both face and pose detectors (Figure 4.5). Even though the two systems have
complementary errors, the resulting distributions are similar. Both distributions show that
few detections have a separation around 0 pixels. This observation is likely due to the fact
the detection systems are not able to detect a person if that person is being occluded by
another person, rather than being directly caused by any specific human behaviour (this is
one of the limitations that can be overcome using the multiple camera approaches that will
be introduced in the next chapter.)

In Table 4.1 the overall statistics for the dataset are shown. The mean and standard
deviation for the position results are the averages of the mean and standard deviation of each
of the sessions. We average over sessions as the initial placement of the device will affect
these statistics. Both detection systems have a small skew to the left, indicating a bias in
the placement of the devices. Both detection systems show how small the separation angle
is between the speakers, with both showing similar separation angles even though the two
different approaches have different characteristics.
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Fig. 4.6 Comparison of the different methods for generating the metadata for the room
configurations in WSJ0-2Mix and SMS-WSJ. Original diagrams based on descriptions of
the simulation configurations reported in (Wang et al., 2018) and (Drude et al., 2019b),
respectively.
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4.4 Existing spatialised speech datasets

Now that the angular separation in the real data has been established, we will look at how this
compares to two publicly available spatialised datasets that are commonly used to benchmark
multi-channel speech separation and distant microphone ASR. This section will first describe
two datasets, namely WSJ0-2Mix Spatialised and SMS-WSJ both of which use the Wall
Street Journal (WSJ) corpus in full or in part as source material for creating the mixtures.
The WSJ corpus consists of clean recordings of primarily read speech, which comes from
speakers reading articles from the newspaper Wall Street Journal. The dataset has two
releases commonly referred to WSJ02 and WSJ13. On face value, WSJ0-2Mix Spatialised
and SMS-WSJ seem similar but we shall see the design decisions for the two datasets are
quite different, especially with respect to their source positioning.

4.4.1 WSJ0-2Mix Spatialised

WSJ0-2Mix is a well-established corpus within speech separation that contains mixtures
of two speakers taken from WSJ0, mixed at signal-to-noise ratios between 0 dB and 10 dB.
Mixtures have been constructed by first choosing two random speakers and then one random
utterance from each of those speakers. The training data for WSJ0-2Mix takes utterances
from the training data of WSJ and the validation dataset also samples from the training
data of WSJ (i.e., this is a closed set). The evaluation dataset, however, samples from the
combined development and evaluation datasets of WSJ (i.e., creating an open set). In total
the dataset consists of 30 hours of training, 10 hours of validation and 5 hours of evaluation
data. WSJ0-2Mix uses instantaneous addition of the pair of speech samples, i.e., there is no
spatialisation nor modelling of room acoustics.

Later, in further work, a spatialised version of the WSJ0-2Mix dataset was created
using the same utterance pairings and SNRs (rescaled factoring in the sound decay when
spatialised). The dataset uses the image method to create the RIRs which are then used
to spatialise the mixtures. For the room simulation, shoebox rooms are employed with
T60 reverberation times sampled between 0.2 s and 0.6 s. The geometries of the rooms
are created with random widths, lengths and heights. The size of the circular microphone
array aperture and its offset from the centre of the room are randomly sampled. The ranges
used when sampling these values are depicted in Figure 4.6 (LHS). The positions of the
talkers in the room are chosen by sampling a random position inside the room. Once two
positions are chosen some validations are run such as checking the speakers are not within a

2LDC Catalog No. LDC93S6A
3LDC Catalog No. LDC94S13A
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minimum distance of each other and that both are not too close to the microphone array. If the
conditions are not met then the random values are sampled again. It is worth mentioning that
these constraints were not documented in the corresponding publication. It is only through
inspecting the code for generating the parameters that we can see this procedure. We will
later see the impact this has on the distribution of angular separations.

4.4.2 SMS-WSJ

The Spatialised Multi-Speaker Wall Street Journal (SMS-WSJ) corpus was created to address
some of the shortcomings of the WSJ0-2Mix and Spatialised WSJ0-2Mix corpora for use
in ASR. WSJ0-2Mix was created for speech separation and not ASR and thus there is no
agreed-upon set of data to be used for acoustic model training, i.e, should the same training
data be used for acoustic modelling as used for training supervised speech separation? The
training data for WSJ0-2Mix contains 20,000 mixtures, however, due to the sampling nature,
only 8769 are unique, making it less ideal for ASR training. Therefore, when using the
dataset, some researchers train the ASR system on different data, e.g., the full WSJ corpus
(Paul and Baker, 1992). In addition to this, the development data for WSJ0-2Mix contains
speakers that are used in training. SMS-WSJ addresses these problems through creating
mixtures derived from WSJ0 and WSJ1 and by taking care to maximise the number of unique
utterances used.

In terms of spatialisation, SMS-WSJ and WSJ0-2Mix have some similarities such as
both opting to use shoebox rooms and using the image method to generate the RIRs. Again,
the details of the generation method are shown in Figure 4.6 (RHS). The most noticeable
difference between the two datasets is their approach to selecting the positions of the sources:
whilst WSJ0-2Mix chooses random positioning in the room, SMS-WSJ chooses the position
relative to the microphone array. This works by choosing an angle for the first speaker, then
an angular separation is sampled, and finally, two microphone distances are sampled.

SMS-WSJ exploits the simulated nature of the corpus to provide extra targets that can
be used for evaluation and training. The authors provide a split for the RIRs to separate
them between early and late reflections, with a cutoff chosen at 50 ms. This allows for the
decomposition of the spatial image to be,

c(image)
j [t] = c(early)

j [t]+ c(late)
j [t] (4.6)

= r(early)
i j [t]~ s j[t]+ r(late)

i j [t]~ s j[t], (4.7)
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where c(image)
j [t] is the reverberant speech signal, c(early)

j [t] is the reverberant speech from

early reflections, c(late)
j [t] is the uncorrelated late reflections for source j, r(early)

i j [t] is the early
part of the RIR, r(late)

i j [t] is the late part of the RIR for source j at microphone i, and s j[t]
is the clean signal for source j. A schematic overview of the dataset in shown in Figure
4.7. The dataset is defined by the scenario metadata which describes the utterances being
mixed together and their spatial positioning. SMS-WSJ has generated Gaussian noise for the
background, the seed for this is derived from the metadata. The blocks in orange describe
databases of speech signals that can be used for training and evaluation. For example, the
early reflections of the spatial image may be a better target for training speech enhancement
if an anechoic output is desired.

4.4.3 Comparison of the angular separation between the datasets

Next, we will look at the difference in the distributions of the sampling methods imposed
in WSJ0-2Mix and SMS-WSJ. Instead of the instantiated data in the datasets, we will
look at the underlying separation distributions of the generative methods used. For SMS-
WSJ, the separation angle is drawn directly whereas in WSJ0-2Mix the distribution is more
complicated as the angle is the outcome of other parameters. In order to estimate the theoretic
angular separation distributions of the two datasets, 1,000,000 speaker position pairs are
generated and the resulting separation angles are computed, allowing for the true distribution
to be closely approximated. The result of this sampling is shown in Figure 4.8. Immediately
we can see that the two datasets produce very different separation distributions. As expected
SMS-WSJ has a uniform distribution across all angles. However, WSJ0-2Mix produces very
few mixtures with speakers with a low separation angle. Although this distribution may be
initially surprising, the underlying cause is clear and results from the constraints placed on
minimum inter-speaker distance and minimum speaker-microphone distance: In order for the
angle to be narrow the competing speaker needs to be in front or behind the first speaker and
not within 1 metre. This results in far fewer valid positions compared to if the two speakers
have a very wide separation.

Both of these distributions are in stark contrast to the true separation angle distribution
estimated in the previous section. WSJ0-2Mix, in particular, produces very few mixtures with
separation angles we would expect in real data. This means that WSJ0-2Mix is favouring
systems that are better at separating mixtures with wide angular separation and almost
completely disregarding their performance on narrow angles. Without knowing how well a
system performs on narrow-angle data, it will be hard to predict how well it will perform on
real data. This same argument can be made for SMS-WSJ which weighs all angles equally.
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Fig. 4.7 Overview of the data inside of SMS-WSJ. The dataset provides several versions of
targets that can be used for training and evaluation. In particular, they decompose the spatial
images into early and late reflection parts.
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Fig. 4.8 The distributions used for generating the separation angle between speakers in SMS-
WSJ and WSJ0-2mix. The plot illustrates a clear mismatch between the two approaches. With
SMS-WSJ having a uniform distribution of separation angles and WSJ0-2Mix spatialised
having a large dip in narrow angles.

4.5 Effect of realistic angular separation

So far in this chapter, we have established the speaker separation distribution in a real dataset
(Section 4.3) and shown how this is greatly mismatched to the distributions of two commonly
used simulated datasets (Section 4.4). In this section, we will investigate the impact of this
mismatch by comparing the performance of identical speech separation and recognition
systems under these various distributions.

4.5.1 Motivation

The aim of the following experiment is to explore the potential impact of using datasets that
favour separation angles not found in the real world. A potentially very effective system on
simulated data can fail on a real dataset (which is often the case) for numerous reasons such
as this mismatch in separation angle. This could happen for two reasons. First, supervised
methods are trained directly on data with very few narrowly separated speaker samples,
therefore they will be unable to learn to discriminate between sources in narrowly separated
mixtures. Second, and potentially more troublesome, is that approaches may be more
fundamentally flawed when it comes to discriminating narrowly separated speakers, but the
impact of this has not been realised because they have not been tested at such angles.
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Fig. 4.9 Schematic diagram of the SMS-WSJ baseline system.

4.5.2 Method

Experiments use the baseline system4 described in (Drude et al., 2019b), namely, a complex
angular central Gaussian mixture model (cACGMM) (Ito et al., 2016) mask estimator is used
with a Minimum Variance Distortionless Response (MVDR) beamformer and a factorised
time-delayed neural network (TDNN-F) based acoustic model. The acoustic model is trained
by first training a HMM-GMM hybrid system on clean WSJ utterances following the WSJ
recipe in the Kaldi repository5. Using the standard Kaldi training procedure of bootstrapping
lower-order models, a triphone HMM-GMM is then used to create the alignments for the
neural model training. The early images of the reverberant single speakers are used to obtain
alignments, these phone alignments are then used not in the early images but full images
with additional noise, i.e., Noisy single speaker. This allows the neural model to be trained
robustly but with more accurately estimated alignments. The TDNN-F is trained using the
lattice-free maximum mutual information loss function. Note the acoustic model is trained
solely on isolated speech and not mixtures, which allows for the mixing process to be the
subject of experiments for evaluation without needing to retrain the acoustic model.

The first set of experiments measures how the baseline performance changes when the
SMS-WSJ dataset enforces a realistic spatial distribution. In the original SMS-WSJ setup,
the target speaker was placed in the room by randomly sampling a distance and an angle from
the microphone array, and a competing speaker is placed at a uniformly sampled angular
distance. To generate the two speaker positions for the ‘realistic’ distribution, an angle is
uniformly sampled around the array. Using a Gaussian distribution with a standard deviation

4Code available online: https://github.com/fgnt/sms_wsj
5https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5

https://github.com/fgnt/sms_wsj
https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
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Fig. 4.10 Comparison of the sensitivity of speech separation metrics. SDR is widely known
to be sensitive to the scale of the signals. SI-SDR is sensitive to the offset of the signal,
making it a less ideal metric for multi-channel microphones where each of the microphones
has different offsets but each is equally valid.

of 14 degrees and a mean set by that chosen direction, the two speaker directions are sampled.
The value 14 degrees is used based on the standard deviation of people positions given by
the Pose estimator shown in Table 4.1. The speaker distances are then chosen by sampling
uniformly from 1-2 metres, i.e., the same as SMS-WSJ. The remaining random parameters
are identical to SMS-WSJ. This does not necessarily create a realistic setup because in
CHiME-5 the arrays were placed at the edge of the room and here they are placed in the
centre of the room. However, it does let us see how the performance of the system changes
when speakers have the distribution of separations that are observed in real data.

Source separation metrics and word error rate (WER) will be reported in the results.
In particular, the signal-to-distortion ratio (SDR) will be reported in preference to the
scale-invariant version of the metric (SI-SDR). While the SI-SDR metric is ubiquitous in
single-channel speech separation where it was designed to be used, it is not well defined in
the multi-channel case, even though it is still widely used. The toolkit used to compute the
SDR (bss_eval (Févotte et al., 2005)) finds a finite impulse response (FIR) filter to allow
the metric to align the observation and reference, i.e., to model the room impulse response
(RIR). This FIR filter allows for clean utterances to be used as a reference instead of spatial
images. This is important because, in multi-channel setups, each of the audio streams is
not aligned, i.e., as the sources take different amounts of time to reach the microphones.
The SI-SDR metric does not have this RIR filter and therefore expects the reference and the
observation to be aligned. An illustration of this problem is shown in Figure 4.10 (LHS).
The plot shows the SI-SDR and SDR computed with the inputs being the same signal (an
utterance from WSJ). The x-axis indicates an artificial delay added to the signal to simulate
the time-of-arrival. A positive value indicates the amount of time before the signal reaches
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the microphone. The plot shows that SI-SDR is very sensitive to this offset and any change
results in a very negative result. The SDR is mostly invariant to this change in offset. On the
right-hand side of the same figure we can see how this compares with the sensitivity of SDR
with respect to scale. Of course, the SI-SDR metric is (by design) completely invariant to
scale as shown in the figure. Whilst SDR is not invariant to scale, it is far less sensitive to
the change in scale compared with the sensitivity of SI-SDR with offset. If anechoic spatial
images are used for the reference when computing SI-SDR, a massive change in performance
will be observed by simply changing the reference channel. In some enhancement systems, a
reference channel may be an input and therefore for evaluation we know which reference
spatial image to compare to. However, some modern systems even use all audio streams
as input and therefore a reference spatial image is not known. This lack of definition for
SI-SDR for multi-channel speech separation makes the SDR metric the preferred metric.
Alongside SDR, PESQ (Rix et al., 2001) to measure speech quality and STOI (Taal et al.,
2011) to measure intelligibility will also be reported, this is to show how changes in these
metrics correspond with the WER performance. When computing the WER the sources are
separated first and then inference using the speech recognition system is run on each of the
sources.

Only the evaluation dataset is changed in the experiments. Therefore the original SMS-
WSJ dataset is used to train the acoustic model. This is valid because the acoustic model
is trained on single-speaker utterances rather than on mixtures, and the updated mixtures
will only have changed angular separation between speakers (the rotation angle distribution
relative to the microphone array will be unchanged). It is also valid because the enhancement
system under test is the cACGMM (Ito et al., 2016) model which is unsupervised and
therefore only requires the evaluation data. Experiments with training supervised separation
methods on mixtures of narrowly separated talkers is a potential area for future work.

The cACGMM model is being used as this is the key component of the current state-of-
the-art in speech separation in real datasets such as CHiME-5 (Barker et al., 2018). The model
clusters the time-frequency representations of the channels to provide a mask. These masks
can either be used directly to enhance a channel or used to compute the spatial covariance
matrices to be used in beamforming, e.g., MVDR. The experiments will compare the two
approaches to see if one is more sensitive to the angular separation. In addition to this, oracle
masks will be used instead of the estimate from the cACGMM. This allows us to distinguish
between two possible causes of poor results at low angular separations: the system may
perform poorly because of the poor spatial clustering due to the narrow angles or because the
MVDR beamformer cannot filter such narrow separation.
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Fig. 4.11 Comparison of the angular separation in simulated datasets. We compare the
datasets SMS-WSJ (Drude et al., 2019b) and WSJ0-2mix spatialised (Wang et al., 2018)
with adapted versions of their setup.

Table 4.2 The effect of changing the positions of the speakers in the SMS-WSJ database.
Oracle results are shown in grey. When Enhancement is ‘None’, the first channel in the
microphone array is chosen.

Mask Enhancement Data SDR PESQ STOI WER

cACGMM MVDR Realistic 9.0 1.85 0.74 31.49
cACGMM MVDR SMS-WSJ 12.3 2.07 0.82 18.15

cACGMM Mask Realistic 7.1 1.73 0.71 49.09
cACGMM Mask SMS-WSJ 9.5 1.83 0.78 40.01

None None Realistic -0.4 1.49 0.66 78.93
None None SMS-WSJ -0.4 1.50 0.66 78.73

IBM MVDR Proposed 10.4 1.88 0.77 21.23
IBM MVDR SMS-WSJ 12.9 2.06 0.83 14.23

4.5.3 Results

The results from changing the placement of sources in SMS-WSJ are shown in Table 4.2.
We can see that by only changing the location of speakers the WER of the cACGMM system
increases by over 13% absolute (73.5% relative) when using the MVDR beamformer. Note,
this is a system that contains similar components to the best performing systems on the
CHiME-5 dataset (Du et al., 2020b). If a system can be made that is more robust to smaller
separation angles, then there is huge potential to create an overall better-performing ASR
system. The oracle ideal binary mask (IBM) comparison shows that even with perfect
knowledge, the beamformer approach performs significantly worse with the new dataset.
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Multi-channel approaches that do not use a beamformer may offer a solution to this (Wang
et al., 2018; Zhang et al., 2020a); however, they rely on closely matched training data.

The performance difference between the two datasets when comparing using the cACGMM
mask directly with the result with MVDR shows that beamforming is potentially more im-
pacted by the narrow distribution compared with the spatial clustering.

The results of using no enhancement and no masking indicate that changing the speaker
positioning has not greatly changed the lower bound performance, i.e., this is expected as the
mixture utterances have not changed.

Next, when we look at the speech separation metrics, in this case, we can see they all
largely correspond with WER when comparing the scores across different techniques and
across the two datasets.

4.5.4 Discussion

The results have shown that imposing a realistic separation angle has a large impact on the
performance of both source separation and ASR. One of the reasons for the low separation
angles in CHiME-5 is the devices are placed at the edges of the room in order to avoid
obstructing people and well as mimicking the placement you would expect such devices to
be placed naturally in homes. However, in SMS-WSJ the devices are placed in the center of
the room instead of the edges. It is important to consider how much of the angular separation
angle is due to the placement of the devices and not just the behaviour of the people in the
room. Therefore, the next experiments will consider placing the devices at the edges of the
room.

4.6 Microphone location versus speaker distribution

The next set of experiments considers the placement of the microphones separately from the
distribution of the speaker positions. For these experiments, WSJ0-2Mix is used to show
the impact of changing the device placement. In the real data, people are interacting with
each other rather than talking towards any one of the devices, therefore their position should
be independent of the device placement. This makes WSJ0-2mix’s method for generating
speaker positioning more ideal when comparing the effect of device placement and the effect
it has on the resulting angular separation.
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4.6.1 Motivation

In the previous experiments, in which the microphones were placed in the centre of the
room, the simulation was artificial because the narrow speaker separation angles that were
imposed would not naturally occur if the microphones were in this position. Therefore the
next experiments will consider how much of the difficulty can be added into the simulation
without altering the speaker location distribution from the original SMS-WSJ but by simply
resimulating with the devices moved to the edges of the rooms. Does microphone position
alone account for the difficulty observed in the CHiME-5 set-up?

4.6.2 Method

These experiments compare the WSJ0-2mix spatialised setup, with a variation of the setup
where the microphones are placed at the edge of the room (WSJ0-edges), in both cases
speakers are positioned uniformly in the room with constraints on minimum distances. A
device is placed at the edge by first randomly choosing one of the four sides of the room
and then a random position along the wall. Devices are placed such that there is a 50 cm
padding room from the closest wall. The two datasets are then compared with a setup with
microphones at the edges but with the realistic distribution enforced. This uses the same
angle generation method as the previous experiment but with a distance sampled between
1 and 3 metres (WSJ0-edges-realistic). The comparison of the distribution created from
this setup is shown in Figure 4.11 (right). Placing the microphones at the edge of the room
resulted in a distribution closer to the real data, but the tail is still far larger than that observed
in the real data. Note the distribution of this realistic setup is slightly different from the
distribution created in the previous setup. This is due to the resampling of points when they
are outside of the room.

4.6.3 Results

Table 4.3 presents performance results of the cACGMM MVDR source separation system
when adapting the WSJ0-2mix spatialised setup to be a more realistically distributed dataset.
Here the min version of the dataset is used which trims the longer utterance to be the length
of the shorter one. This version is not appropriate for speech recognition as some words may
be cut off. Surprisingly, placing the microphones at the edge of the room does not make the
dataset any more challenging than the original setup, i.e., the performances reported in the
1st and 2nd table rows are fairly comparable. This is likely due to the minimum distance
constraint still limiting the minimum angular separation possible. Now when we look at the
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Table 4.3 Source separation results

Dataset SDR PESQ STOI

WSJ0-2Mix 15.1 2.50 0.83
WSJ0-edges 15.2 2.61 0.82
WSJ0-edges-realistic 14.5 2.28 0.71

results of enforcing the angular separation distribution with the devices at the edges we can
see the impact of the distribution. The impact is not as big as that observed in the previous
experiment. This may be attributed to the simplicity of this setup, i.e., no background noise
and 100% overlapping mixtures. The realistic variant of the ‘edges’ dataset is sampled
from the perspective of the device and as such a microphone-source distance also has to be
sampled. The distribution of speaker distances resulting from this may also be contributing
to the performance difference.

4.6.4 Discussion

Placing the devices at the edge of the room results in an angular separation closer to that
of what was observed in the real data but still not what we could expect to see if the real
data. By enforcing the realistic distribution the performance decreased but this may also be
due to the distance speakers are away from the microphone and their relative distance. Only
the separation angle was explored in this chapter. Estimation of the distances will further
provide realism in the simulation.

4.7 Conclusion

Often the methodology for generating speaker positions in generated datasets is to make it
completely random, but as discussed throughout this work, this is not realistic. Constraints
such as enforcing a minimum distance between sources seem sensible at first but can yield
unrealistic distributions. Without reporting either the separation distribution of the dataset or
the performance of the source separation system with respect to the separation angle, it is
difficult to compare results across different works. For example, it has been shown in this
chapter the WERs can change by over 73.5% relative due to changes in the distribution of
source locations alone. It is suggested that when generating simulated evaluation data err
towards sources being closer together rather than using a uniform distribution in order to more
closely match real data. This work has focused on just one parameter of simulation design,
however, other equally important parameters are often overlooked such as directivity patterns
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(i.e., the direction speakers are facing), the distance they are away from the microphone and
the degree of speaker overlap (Chen et al., 2020).

In this chapter, automatic methods were employed to estimate the angular distribution
of speakers in a multi-speaker distant microphone scenario using face-detection and pose-
detection techniques. Using this analysis, the chapter showed that in the CHiME-5 scenario
where the camera has a field of view of 84.1 degrees, the speakers that are visible have an
average angular separation of 17 degrees. This distribution was compared with common
simulated datasets that are used to benchmark the state-of-the-art in speech separation and
found there is a large disparity. We then showed that this disparity could have consequences
for the research community, such as leading research down the wrong path by pursuing
systems that optimise unrealistic angular separations.

The next chapter will explore how 2-D estimates of speaker locations inside rooms can
be estimated by combining estimates of angle from multiple cameras. This will allow for a
better estimate of angular the separation between speakers as occlusions will not hinder the
detections. Further, it allows the microphone-source distances to be calculated. Accurately
modelling these distances allows for realistic SNRs levels to be estimated (i.e., stemming from
the relative distance of competing speakers) and for distance-dependent direct-to-reverberant
energy ratios to be modelled. Modelling these aspects correctly can further improve the
realism of the simulated datasets.



Chapter 5

Speaker spatial analysis: estimating
speaker location using multiple devices

5.1 Introduction

Acoustic room simulation (Allen and Berkley, 1979; Scheibler et al., 2018; Schröder and
Vorländer, 2011) is an essential tool for developing distant microphone automatic speech
recognition (ASR) systems. Simulation allows for clean reference signals to be used in
evaluating speech enhancement (Févotte et al., 2005; Le Roux et al., 2019), for arbitrary
large training data (Ko et al., 2017) to be constructed and for targeted evaluation and analysis
of the performance of ASR systems (Vincent et al., 2017). Simulation is commonly used for
generating training data. For example, for augmenting real training data, or for providing
ground truth information when training supervised speech enhancement systems. For the
simulated data to be useful, it needs to match the distribution of the real target data (Cosentino
et al., 2020). However, simulation is also often used for generating evaluation data. In such
cases, the need for realism is even more crucial: a poor simulation can result in wasted effort,
i.e., by promoting approaches that work in simulation but not in real situations.

Although modern methods for acoustic room simulation can accurately model the physics
of sound propagation, e.g., (Schröder and Vorländer, 2011), this is only one part of the
problem. Room simulations are driven by their metadata, e.g., the room size, location
of sources, T60 time and so on. The distribution of this metadata needs to be carefully
considered. If it is poorly motivated the resulting dataset can overemphasise the importance
of one component of a speech processing system over another. For example, the importance
of beamforming approaches can be overplayed if simulations have unrealistically large
angular separations between speakers (Pan et al., 2014).



88 Speaker spatial analysis: estimating speaker location using multiple devices

In our work, simulating multiparty conversations for distant microphone speech recogni-
tion research is the focus. Previously, a large real audio-visual dataset (CHiME-5 (Barker
et al., 2018)) was used to look at one aspect of this problem, angular speaker separation
(Deadman and Barker, 2020). Our methodology was to use camera data from single devices
to estimate and hence simulate realistic angles between overlapping speakers. In this work,
the analysis is extended by using multiple cameras. This allows the 2-D room location of
the target and interference speakers to be estimated. This data can then be used to correctly
simulate the full spatial distribution of speakers, and hence produce data with realistic speaker
properties such as signal-to-noise ratio (SNR), angular separation and direct-to-reverberant
energy ratio (DRR).

The chapter is organised as follows. Section 5.2 reviews previous simulated spatialised-
speech datasets and their role in automatic speech recognition research. In Section, 5.3 the
general methodology is outlined. Section 5.4 details the method for calculating speaker
locations using multiple devices from annotated single-device data. These positions are
then used in Section 5.5 to estimate the relative distance of speakers and interferers in the
CHiME-5 datasets. This analysis is used to inform a simulation with an improved estimate
of angular separation and speaker distance which is evaluated in Section 5.6. The chapter
concludes with a short discussion and a summary of the findings.

5.2 Background

The speech enhancement and source separation fields rely heavily on simulated datasets
constructed by convolving room impulse response (RIRs) with clean utterances, for example
from WSJ (Paul and Baker, 1992) and LibriSpeech (Panayotov et al., 2015). The spatialised
version of WSJ0-2MIX was introduced in (Wang et al., 2018), which became a common
benchmark for multi-channel source separation algorithms. In recent years, deep learning
techniques have performed so well in these scenarios that more challenging datasets have
been required. WHAM! (Wichern et al., 2019) increased the challenge by adding real
background noise and then WHAMR! (Maciejewski et al., 2020) extended WHAM! by using
reverberant noisy mixtures. Both multi-channel WSJ0-2Mix and WHAM! use the WSJ
corpus (Paul and Baker, 1992) as their source for clean speech signals, and both randomise
speaker positions uniformly in the room. LibriMix (Cosentino et al., 2020) was introduced to
compliment WHAM! and WSJ0-2Mix

Attempts have been made towards creating simulations that mimic more realistic temporal
overlap in simulation (Chen et al., 2020; Fujita et al., 2019). However, little progress has
been made towards generating data-driven speaker positioning in these setups (Deadman and
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Barker, 2020), even though there is a wealth of behavioural research showing that people in
multi-party conversations observe social rules that govern how they are spaced, i.e., the field
of proxemics (Hall, 1963). Due to these spatial mismatches, amongst others, deep learning
techniques may perform well in simulated environments but then perform poorly in real
domestic scenarios (Maciejewski et al., 2019).

5.3 Methodology

This chapter follows the same general methodology presented in the previous chapter, first,
the behaviour of speakers will be analysed and modelled. Using this modelling a set of
evaluation datasets are created to measure the impact imposing realistic positioning has on
speech separation and speech recognition.

First, in order to estimate the speaker position information, multiple devices with overlap-
ping views of the CHiME-5 living spaces are used. Alongside the CHiME-5 video recordings,
the CHiME-5 data provides rough floorplan sketches that were produced by the recording
engineers. These sketches provide the approximate position and orientation of the recording
devices. With this information, the 2-D location of people in the scenes can be estimated
using a process akin to triangulation. However, device positions have only been marked
approximately, and so this data has to be refined using a calibration process. This process
works by iteratively adjusting device location and orientation parameters so as to reduce
the apparent mismatch between estimates of speaker positions in each of the devices. The
devices are then combined to give 2-D positions of people in the rooms throughout the
parties.

Once the 2-D person positions have been recovered, they can then be used to produce
estimates of the absolute distances speakers are away from the microphones and the relative
distances compared with a competing speaker. The 2-D positions also allow for a refinement
of the angular separation estimates provided in the previous chapter. Together the angular
separation distribution and the relative distance to competing speaker distribution are the
focus of the experimental work. With the belief that angular separation is the more important
distribution to be modelled for separation performance and relative distance is more impactful
for ASR performance.

5.4 Estimating 2-D positions using multiple devices

Realistic speaker location distributions are learned from the CHiME-5 dataset, a unique
dataset that contains long unscripted recordings of informal 4-person ‘parties’ recorded
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across many homes. Analysing CHiME-5 allows us to gain insight into the natural behaviour
of people in conversational settings. The data comprises recordings from Microsoft Kinect
v2 devices placed unobtrusively at the edges of rooms. The devices contain a microphone
array with an integrated camera. The video recordings, which have overlapping fields of
view, allow speaker location to be estimated.

In order to accurately estimate the position of speakers in the room, several challenges
need to be addressed. First, accurate speaker locations need to be estimated in the image
space of each of the devices.

Second, in order to map from the device image spaces to the physical room space, the
location and orientation of each of the devices need to be known. This step uses a calibration
procedure that estimates the actual location of the devices given initial rough sketch estimates
provided with CHiME-5 (Section 5.3). Finally, a procedure for mapping into room space
is required that is robust to errors in the video annotation and camera parameter estimation
(Section 5.4).

5.4.1 Speaker location annotation

An annotation tool1 is used that employs a mixture of optical flow tracking and manual
guidance to allow an annotator to efficiently and accurately track the location of each person’s
mouth (or estimated location in case of occlusion). Annotations are made at 100 ms intervals
with occasional dropped frames in-filled via linear interpolation. Annotated tracks are
reviewed and corrected as necessary.

The CHiME recordings are each around 150 minutes in duration. Each is composed
of three separate phases of roughly equal length, focusing on activity in different areas of
the living space (kitchen, dining, living room). A sample of the data is used, composed
of 5-minute segments from the middle of each phase. There are 20 separate CHiME party
recordings and so there are a total of 60 5-minute segments. Each of these is recorded with 5
or 6 devices, making a grand total of 342 video segments. The video may feature between 0
and 4 participants depending on the party phase and the device location. 186 of the segments
were seen to contain at least one participant requiring annotation. Note that many of the
environments are ‘open plan’ flats, so devices located in a living room, or kitchen area, can
detect participants in the dining area, for example.

1The tool is available to use, https://github.com/jackdeadman/tracking-annotator

https://github.com/jackdeadman/tracking-annotator
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Fig. 5.1 Illustration of the aim of the loss function. Given some number of devices, each one
of them will have a hypothesis of the angle of the speaker based on the camera estimate. In a
perfectly calibrated system all the cameras will have hypothesis angles such that the lines
coming out of the devices intersect at the true location of the speaker. Therefore the objective
is to minimise the error in these misalignments. This is archieved through iteratively reducing
the error between the centre of the intersections and each of the intersections.

5.4.2 Camera calibration

In the CHiME-5 dataset, the floorplan of each of the rooms is provided through sketches.
These sketches include the walls and their measured length and rough locations of the devices
and their rotations. This provides a good initial starting point for the true location of the
devices, but if they are used naïvely, the final estimate of the participant positions will be
poor.

To address this issue, the devices are calibrated using an optimisation procedure. If three
cameras detect the same person, then the vectors produced from their observation angle
should intersect at the same point. This is formulated by minimising the following objective
function,

J(Θ) =
1
K

K

∑
k=1

1
L(k)

L(k)

∑
l=1

∥a(k)l − ck∥, (5.1)

where K is the number of samples, L(k) is the number of intersections for sample k, a(k)l is
the l point of intersection for sample k, and ck is the centre point of the intersections, i.e.,
the objective is to minimise the distance between the intersections and the mean intersection
point. Therefore, an optimal solution places the device such that all the devices “agree” with
each other, a depiction of this loss function is shown in Figure 5.1. This objective function is
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Fig. 5.2 Results from running the calibration process. The image shows the process has
successfully calculated that the device U02 should be rotated in the floorplan. This calibration
process has resulted in estimates of positions that are more plausible.

then minimised using stochastic gradient descent. The parameters (Θ) are the x, y coordinates
and rotation of each of the devices (18 parameters in total for a session). A sample in this
formulation is a vector containing the detected angle in each of the devices. If a camera does
not detect the person, the computed gradient is set to zero for the corresponding parameters
for that device.

The calibration procedure assumes that the devices remain stationary. The devices are
supposed to remain stationary throughout a session. Although the devices are at fixed
locations, analysis of the data indicates that small movements occasionally occur, presumably
when they have been accidentally disturbed by participants.

Note also that the calibration process is using a 2-D geometry. For each device, three
parameters are estimated (x,y,yaw) and three ignored (z,pitch, roll). Throughout the work,
we are assuming that we are dealing with linear microphone arrays that are in the horizontal
plane. Cues for source separation arise due to differences in the azimuthal angle of sources,
not in their elevation. Hence, 2-D person locations are required to be estimated and the
z-coordinate is ignored.

An example of the result of running this calibration procedure is shown in Figure 5.2.
The figure shows how the calibration procedure has adjusted the orientation of device U02 to
be rotated slightly clockwise relative to the original sketch. By then examining an example
frame from the video, we can see this is a sensible adjustment as the camera direction after
calibration better matches what we can see in the video, i.e., the initial floorplan indicates
that the device is aligned to be facing parallel to the walls of the kitchen area, whilst in fact, it
is rotated slightly to the right. Similar assessments were made for the other sessions to verify
the calibration was working. (Note, however, the technique requires at least three cameras to
see a person so it is not always possible for it to be applied).
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5.4.3 Estimating speaker location

After camera calibration, for each frame, a person’s true angle to the device can be estimated
given the annotated observations in the image. We model this using a Gaussian distribution
with the mean set to the angle given by the annotation d,

θ ∼ N (µ = d, σ
2). (5.2)

The variance, σ2, models inaccuracies in the annotation and in the estimation of the device
angle. This parameter has been set empirically and is tuned to 10 degrees in the experiments
that follow. This value was chosen by using the estimate of the errors within annotations
shown in Section 3.62.

Given these annotations in isolated cameras, we can estimate the most probable location
of speakers in a two-dimensional space. Given a 2D position in the room, an angle can be

computed in each of the devices by projecting the position p =
[

px py
]⊤

into an angle for
each of the devices where ηl is the rotation of the device l,

wrap(θ) = atan2
(

sin(θ)
cos(θ)

)
, (5.3)

projecti(px, py) = wrap(atan2(py, px)−ηl), (5.4)

These observation angles can then be combined to give a probability of a position given
the annotations o1, ...,oL, where L is the number of devices,

P(px, py|o1, ...,oL) =
L

∏
l=1

N
(
projectl(px, py); µ = ol,σ

2) , (5.5)

If a speaker is not detected in a camera then the probability mass is distributed uniformly
across all angles.

The probability function in Equation 5.5 is depicted in Figure 5.3. In the figure, an
artificial setup is created with the true location of the person placed at the position (3, 3). An
error has been artificially added to the simulated detections to show how the probabilities of
the position change as more devices are added to the formula. Even though the final camera
provides a poor estimate of the position, it does not skew the distribution away from the true
location. Given this probability distribution, a location can be estimated by either choosing

2By using the linear relationship: σ = 15px ≈
√

10
◦
.
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Fig. 5.3 Illustration of Equation 5.5 showing how adding more cameras changes the estimate
of positions. The darker areas indicate a higher probability of the person being in that location
given the detections in each of the cameras.

the peak,
posmax = argmax

x,y∈W×H
P(x,y) (5.6)

where the catesian product W ×H represents the discrete grid of all possible positions in the
room. Alternatively the expected value can be computed,

posexp =

[
∑

x∈W
xPX(x) ∑

y∈H
yPY (y)

]⊤
. (5.7)

The max point provides the most plausible estimates when the devices are well-calibrated and
close to each other. In the more difficult cases, i.e., devices facing each other, the expected
point resulted in more plausible estimates and the max point was found to be very sensitive
to small changes in the image-space location estimates. For this work, the posexp is used as
the estimate of the speaker position.

5.5 Using 2-D positions to estimate mixture statistics

Next, we will explore how the methodology outlined is used to estimate positions of people
in CHiME-5 and the information that can be extracted from the 2-D position estimates.
Information such as an improved angular separation estimate and distance to the microphone.

5.5.1 CHiME-5 position estimates

Using the procedure described in the methodology, the 2-D positions of people in the dataset
are computed. Without being able to evaluate the position estimates of the talkers directly
with groundtruth positions, the estimates will be visualised and qualitatively evaluated.

The visualisation will compare the use of posmax against posexp and the effect of using
the calibrated device estimates. First, in Figure 5.4 the position estimates of the people for the
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Fig. 5.4 (S01, Segment 1, posmax): Without well-aligned devices the position estimates
using the max results is some very implausible estimates, such as the red speaker being far
away from the group when they are all eating their dinner. Once calibrated, all the position
estimates seem sensible, even showing the green person moving around the orange.

Fig. 5.5 (S01, Segment 1, posexp): Using the expected point results in estimates less sensitive
to the camera misalignment problem. However, the improvement when aligned is less
significant.
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Fig. 5.6 (S01, Segment 3, posmax): When the maximum point is used the estimates are very
poor when the cameras are facing toward each other.

first segment of session S01 are shown3. In these estimates, we can see that calibration has a
large impact on the estimates. Given that during this segment, all the participants are eating
food and seated around a dinner table, we would expect their positions to be stationary and
located around a dinner table. In the uncalibrated plot (left) we can see that the red person is
situated far away from the group. After calibration (right) we can see all the participants are
now in more plausible locations. The reason for this large change in the estimate is due to
the nature of the relationship between the distance away from the camera and the amount of
the space that is visible e.g., if we are looking at a wall and then step back, we will see more
of the wall. This means the error in the 2-D position estimate will be larger for devices that
are far away from the true position of the speaker.

Next, if we look at the same session and segment but now use posexp as the estimate of
speaker location. A visualisation of these positions is shown in Figure 5.5, here we can see
the estimates are less sensitive to the misaligned devices. That is the red person is closer
to the rest of the group compared to when using the posmax as the estimator. However, the
estimates of positions seem less plausible than the calibrated version of posmax. In posexp it is
not clear where the green person would have been seated. That being said, the other speakers’
positions all seem plausible and the movement of the green person has been captured. Both
these figures have demonstrated the need for the calibration process.

Next, we will look at a later part in the same session. Using posmax the positions from
session S01 and Segment 3 are shown in Figure 5.6. In this part of the session, the participants

3Segment 1 is typically the cooking phase but there was no specified time limit for cooking. In this session
the participants finished cooking quickly and therefore was not represented in this particular segmentation.
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Fig. 5.7 (S01, Segment 3, posexp): Using the expected point provides better estimates even
when the cameras are facing toward each other.

are placed in the bottom right of the room playing a party game that involves some movement.
This part of the room is more challenging for estimating the positions from devices. This is
because the cameras are facing almost opposite each other, meaning the small movements
in one of the estimates can lead to large changes to the position estimates. In the figure, we
can see that the blue person has several estimates far away from the group and has appeared
to have teleported across the room, which is very unlikely to have been the case. Again if
we contrast this with the estimate from using posexp (Figure 5.7) we can see these erroneous
estimates are no longer being made and the overall distribution of the positions is more spread
out. Through manually inspecting the videos, these estimates appeared more plausible.

Finally, to conclude looking at the positions, another session in shown in Figures 5.8 and
5.9. In these figures, session S08 is shown for the third segment. Again similar observations
can be made with posmax producing less reliable results compared with posexp. The plot also
again shows the importance of a calibration process. Even though the estimates seem reliable
they are not perfect, as demonstrated in Figure 5.9, here speakers are located outside of the
room. Initially, this may seem like a very poor estimate as they cannot be outside of the room.
However, when looking at the videos the participants were sitting on a sofa very close to the
wall. This error could be due to the misalignment in the devices which calibration did not
perfectly fix, or due to the floorplans provided not having been perfectly measured. With that
being said, from inspecting the videos, the positions seem roughly correct. The green and
blue people are seated on one sofa, whilst the orange and red are on another.



98 Speaker spatial analysis: estimating speaker location using multiple devices

Fig. 5.8 (S08, Segment 3, posmax): The estimates are not perfect, sometimes people can be
predicted as being outside of the house. However, these estimates are still roughly correct
given the participants were sitting on a sofa next to the wall.

Fig. 5.9 (S08, Segment 3, posexp): Again the expected point has provided a better estimate
of speaker positions when the cameras are misaligned. However, after, calibration the position
estimates are outside of the room. This could potentially be caused by the walls being poorly
sketched.
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5.5.2 Estimating angular separation using 2-D positions

Using the procedure described in the methodology, the 2-D positions of people in the dataset
are computed. This allows us to refine the estimate of the angular separation we previously
reported. The automatic pose detection method used in the previous chapter was limited
by the field of view of the device, i.e., separations of more than 84.1 degrees cannot be
observed because at least one of the speakers would not be visible, and the probability of
one speaker being out of view increases as the angular separation increases towards this
limit. The automatic method also underestimates extremely small angles due to the speakers
occluding each other. Now that the 2-D positions of speakers have been estimated, we can
project these positions onto the devices to measure their separation angle relative to the
device (even in cases where they cannot both be seen by the camera). This is important
because even if the participant is not visible, their speech would still be recorded.

The plot in Figure 5.10 shows the updated angular separation from projecting the positions
into a reference device. The reference device is chosen by selecting the device which on
average throughout a segment people are closest to, this device is then constant for the entire
segment. A reference device is chosen as not all devices will be relevant, e.g., a device that is
in a room that the speech signal does not reach.

The single-device approach would not have detected people in that room but when using
2-D positions an angle can be computed no matter the device’s relevance. The single-device
estimates use all the devices that can see speakers and not a reference device as speaker
distance is not available to those techniques and it is the techniques for estimating separation
that is being compared.

The plot in Figure 5.10 shows that the average separation angle between speakers is still
very low but not as low as was previously estimated when using single-device analysis. The
plot also shows the separation of the speakers if the labels are used directly, which shows
a similar distribution to that which was previously reported, validating the belief that the
automatic methods provided a good estimate of speaker location. The labelled data also
shows that the lack of separations at 0 degrees was due to the occlusions as this gap has
now been filled in. The angles from using projections from 2-D positions show that the first
estimated distribution was accurate but with a long tail that was missed, presumably due to
the limited field of views of the individual devices.

5.5.3 Estimating speaker distance

Now that estimates of the 2-D positions have been computed, this now enables the estimate
of speaker distances, both relative to one another and with respect to microphone arrays.
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Fig. 5.10 Distribution of the angular separation estimates for different estimation approaches.
Shown are two single-device approaches (one automatic and one using labelled data) and a
multi-device approach that uses a combination of cameras to produce 2-D position estimates,
which are then projected into the reference device.
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Fig. 5.11 Comparison of the absolute distance between speakers (left) and the absolute
distances to the reference device (right).
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Again using the reference device, for a frame in the video that has two or more people with
estimated positions, two random people are selected and one is assigned to be the target
speaker. In Figure 5.11 (left), the absolute distances between the speakers are shown. Here
we can see that the participants are often within a metre of one another. This lines up with
the literature of proxemics with states humans tend to be between 46 cm and 122 cm during
interactions between friends and families (Hall et al., 1968), i.e., the scenario implemented
in CHiME-5. It is worth noting a limitation in the position estimates: the distributions show
some estimates where speakers are very close to 0 cm away from each other, clearly, this is
not possible. However, the general shape of the distribution is encouraging, with a strong dip
in distances classed at intimate, i.e., 1 cm to 46 cm. Next in Figure 5.11 (right), we can see
the absolute distances speakers are away from the reference devices. Given that the devices
are intended to be placed out of the way we would not expect participants to be close to the
devices. The plot shows that on average people tend to be around 2 metres away from the
devices but these distances can go as far as 5 metres indicating maybe one speaker is in a
different room from the reference device (and therefore other participants).

Next, we will look at the relative distance ratio of speakers and interferes,

D =
dtarget

dinterferer
(5.8)

where dtarget and dinterferer are the distances away from the device for the target speaker and
interferer respectively. The ratio of these distances allows us to interpret the potential impact
with respect to SNR. Just looking at the absolute distance (Euclidean) between speakers is
insufficient for approximating the relative level of their speech signals at the microphone.
For example, speakers being 1 metre apart when the microphone is 1 metre away from the
target speaker will produce very different relative levels than if the target is 5 metres from
the microphone.

The division in the relative distance distribution will produce a long tail therefore when
visualising the resulting data it is easier to see the distribution in the log domain. Next,
we will look at how these real positions compare with the positions we get from randomly
placing people uniformly inside rooms. The plot in Figure 5.12 compares the absolute value
of the log ratio of the target speaker and interferer, i.e., |log10(D)|. The absolute value is
taken as the interferer and target is randomly chosen and therefore the ordering is arbitrary4.
In Figure 5.12 we can see that, on average, people stand closer together in this social setting
as compared to positioning randomly. This means that given a large room, people place
themselves relatively close to each other rather than spacing themselves across the entirety

4Alternatively, the target could have been chosen to always be the closest person.
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Fig. 5.12 Comparison of the absolute log of the ratio between speaker and competing
speaker. Under the constraint, speakers are between 1 and 2 metres (left) from the device,
and speakers position themselves somewhat randomly. In a larger room (right) setting they
position themselves closer to each other i.e., form a group.

of the room. This is an expected result but is confirmed by the data. The plot on the left of
Figure 5.12 shows the relative distance of speakers when we constrain the estimates to be in
the range of positions that can be found in SMS-WSJ. In the plot on the right, the distribution
in SMS-WSJ is extended to between 1 and 5 metres and the range in CHiME-5 has been
matched. From this plot we can see that the distribution is random when looking at a small
room. But when looking at a larger room, people tend to gather in groups.

Next we will look at the range of absolute distances and relative distances observed in
the dataset. Figure 5.13 looks at the joint distribution of dtarget against dtarget

dinterferer
. Here we can

see that most of the data is concentrated around small absolute distances. Again, this plot
would benefit from being displayed in the log domain. In Figure 5.14, the same data is shown
in a log-log plot. This now highlights the spareness of the data. Even though the dataset
consists of many hours of parties, people will only move around the room for a limited
amount of time, and the distances possible will be limited to very few room geometries. The
plot also shows the parallelogram nature of the distribution. This is due to the fact the relative
distance’s maximum is limited by the room size. The distribution shape can be explained by
looking at the extremes. When the target speaker is very close to the microphone array all
of the possible distances for the interfering speaker will be at least as far as them i.e., the
left side of the plot. On the other extreme, where the target speaker is as far away from the
microphone as possible i.e., the right-hand side of the plot. The interfering speaker will be at
most as far as the target and most likely closer to the microphone.



5.5 Using 2-D positions to estimate mixture statistics 103

Fig. 5.13 Joint distribution of the target speaker’s absolute distance from the microphone
against the relative distance to a competing speaker.
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Fig. 5.14 Joint distribution of the target speaker’s absolute distance from the microphone
against the relative distance to a competing speaker.
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5.6 Realistic speaker location in simulation

Following a similar procedure to that of the previous chapter, to evaluate the impact that
speaker positioning has on source separation and ASR, a series of datasets are created that use
data-driven speaker location estimates to provide realistic setups. Using the same baseline
system presented in Chapter 4 and trained on the same data. ASR experiments are run to show
the impact that these setups have on the performance of speech separation and recognition to
illustrate the potential impact of the mismatch between typical simulation and real data. In
particular, the experiments aim to explore if the updated angular separation still has a large
impact on the difference in performance between real and simulated data that we observed in
the previous chapter. The experiments also aim to explore if enforcing the relative distance
distribution also impacts speech separation and ASR. Again speech separation, intelligibility
and ASR metrics are reported in the results to see how an overall impact on performance for
the different datasets.

5.6.1 Experimental setup

Experiments use the baseline system described in Drude et al. (2019b), namely, a complex
angular central Gaussian mixture model (cACGMM) mask estimator is used with a minimum
variance distortionless response (MVDR) beamformer and a factorised time-delayed neural
network (TDNN-F) based acoustic model. The experiments measure how the baseline
performance changes when the SMS-WSJ dataset enforces realistic speaker distributions.
This compares the impact of the relative distance distribution and the updated angular
separation distribution. To account for the dependency on the change in relative distance
distribution when the absolute distance is larger, an additional set of datasets are created with
a room size mean set to (12, 8) which samples speaker distances between 1 and 5 metres,
which is named large. The original dataset has a mean room size of (8, 6) and samples
distances between 1 and 2 metres.

For realistic separation, the angular separation of the speakers is sampled from a Gaussian
kernel density estimate of the angular separation distribution from multi-device as shown in
Figure 5.10. For realistic relative distance, the first speaker’s absolute distance is sampled in
the same way as SMS-WSJ. The competing speaker’s distance is then drawn by sampling
from a conditional distribution. The conditional distribution is computed by first modelling
the joint distribution of absolute distance and relative distance, again using a Gaussian kernel
density estimate.
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Table 5.1 Results from the complex angular central Gaussian mixture mode (cACGMM)
baseline system comparing several datasets with fit (F) and an uninformed (U) distributions
for angular separation (Φ) and relative distance (D).

Name Φ D PESQ STOI SDR WER

O
ri

gi
na

l

SMS-WSJ (Drude et al., 2019b) U U 2.07 0.82 12.35 18.25
Single Device (Chapter 4) F* U 1.85 0.74 9.0 31.49

Original+Φ F U 1.91 0.76 9.80 28.25
Original+D U F 2.06 0.82 12.17 18.49
Original+Φ+D F F 1.90 0.76 9.79 28.09

L
ar

ge

Large-SMS U U 2.01 0.78 11.38 22.49
Large+Φ F U 1.84 0.73 8.40 34.21
Large+D U F 2.04 0.80 11.59 21.73
Large+Φ+D F F 1.83 0.73 8.09 36.07

*Angular separation distribution fit on different data.

5.6.2 Comparing the use of the distributions in large and small rooms

The results in Table 5.1 show the outcome of the experiments. An experiment is denoted by
the format {room size}+Φ+D, where Φ+D are included if the angular separation and relative
distance are using the distributions fit on the real data. When an uniformed i.e., original
distribution is used, these symbols are not present in the name (e.g., Large+Φ means the
angular separation was fit on the real data but the relative distance distribution is uninformed,
and the room size is the large variant).

The results show that the updated angular separation still has a large impact on the
performance of ASR and speech separation, but slightly less extreme than first reported in
the previous chapter, this is due to the distribution producing very few narrow mixtures. The
impact of fitting the relative distances shows a more complex relationship. In the original
room size of SMS-WSJ the performance of the system decreases by a very small amount
when the relative distance distribution is enforced. The performance however increases when
this is combined with the angular separation, again by a small amount. When extended to a
large room the results show that a realistic distance results in an easier dataset for separation.
To explore why this may be the case, the results of the large room experiments are broken
down next.
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Table 5.2 Enhancement and ASR performances when using MVDR with estimated masks
(cACGMM), oracle masks (IBM), or directly using pre-mixed signals (Image) for large rooms
under various speaker spatial distributions: baseline (Large+SMS), baseline plus realistic
distances (Large+D), plus realistic angular separation (Large+Φ), or both (Large+D+Φ).

Dataset Mask Enh PESQ STOI SDR WER

Large-SMS
cACGMM MVDR 2.01 0.78 11.38 22.49
IBM MVDR 2.01 0.80 12.10 16.68

Image 2.00 0.80 13.20 9.66

Large+D
cACGMM MVDR 2.04 0.80 11.59 21.73
IBM MVDR 2.05 0.81 12.36 16.41

Image 2.03 0.81 13.53 9.63

Large+Φ

cACGMM MVDR 1.84 0.73 8.40 34.21
IBM MVDR 1.88 0.76 10.23 21.81

Image 2.00 0.80 13.24 9.80

Large+Φ+D
cACGMM MVDR 1.83 0.73 8.09 36.07
IBM MVDR 1.88 0.76 10.13 21.96

Image 2.02 0.81 13.42 9.45

5.6.3 Analysis of the impact of positioning in large rooms

Next, the results in Table 5.2 show the breakdown of the performance within a large room.
First looking at the “images” which represent the spatialised versions of the utterances before
any mixing. All datasets give similar WER performances on these images, as expected as
the utterances have not changed and they are contained in the same set of room sizes. The
WERs for the images show the best performance we could expect for the utterances based
on their location i.e, how much the reverberation is affecting performance. We can see that
Large+D produces very similar results. But comparing Large+Φ and Large+Φ+D we
get some interesting results. The image for Large+Φ+D shows the raw spatial images
are the easiest. But after mixing and then separating the results switch i.e., Large+Φ now
performs better than Large+Φ+D. This could be because without the Φ distribution the
separation is performing so well (competing source completely removed) the impact of the
relative distance is not felt. Therefore it is important for both of these distributions to be
modelled together and simply the relative distance alone is not enough. The results also show
how intelligibility metrics can be a poor predictor of ASR performance. In Large+D the
intelligibility metrics are very similar between cACGMM and the ideal binary mask (IBM)
but the WER has a large difference, with the IBM being far better.
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5.7 Discussion

In this chapter the need for a data-driven approach to relative distance has been shown to be
room size dependent, therefore this should be another consideration for possible consideration
when designing simulations. Room sizes are often quite arbitrarily defined and their shapes
are simple rectangles (i.e, shoe boxes). Further analysis considering the room geometry
would give further insight into this relationship.

In the results, the importance of both modelling the relative distance alongside the angular
separation has been shown. If sources are being well separated and then the relative distance
and therefore SNR of the initial mixture is irrelevant if the noise is being completely removed.
Therefore further work in considering training acoustic models on partially separated mixtures
under the Large+Φ+D conditions could potentially improve the performance. This complex
relationship shows an important motivation for why we should have realistic simulations. If
we believe our systems can separate mixtures this well because of wide angles, then we will
never see that when people are closer to each other our acoustic model is failing. Rewarding
improving separation across all angles evenly (as currently being done) will not benefit
eventual ASR tasks, if, we need to improve robustness to narrow angles and narrow relative
distances.

5.8 Conclusions

In this study, an analysis of the relative distance between speakers and competing speakers at
unscripted dinner parties has been contributed. A methodology and the challenges involved
in deriving this estimate due to uncalibrated cameras from rough floorplan sketches. The
analysis also contributed an updated estimate of the angular separation of speakers in the
CHiME-5 dataset, a refinement of the previous chapter. The experimental work shows
the relationship between angular separation and the challenges it produces when the angle
narrows. The work has also demonstrated the complicated relationship of relative distance
and its effect on performance and the importance of modelling it alongside the angular
separation.

The speaker location labels for a subset of CHiME-5, are released alongside this work5,
allowing for the analysis to be reproduced. Derived 2-D positions are also released alongside
this, to allow for further analysis. In addition to this, the RIRs and metadata for the datasets
produced have been released, which can be used as additional benchmarks, i.e., allowing

5https://chime.jackdeadman.com

https://chime.jackdeadman.com
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the community to analyse the performance of their ASR systems with respect to angular
separation and relative microphone distance in a comparable manner.





Chapter 6

Speaker temporal analysis: modelling
speaker turn-taking

6.1 Introduction

Automatic speech recognition (ASR) is a challenging task with numerous factors contributing
to its difficulty, with recognising multi-party conversations in real, noisy environments being
one of the most difficult scenarios. Recent ASR challenges have shown that much work is
left to be done (Barker et al., 2018; Watanabe et al., 2020). It is therefore vital to break down
the factors that are contributing to the difficulty. In this thesis so far, we have explored the
impact of the angular separation between speakers and the microphone distance by analysing
videos in the CHiME-5 dataset (Barker et al., 2018). This chapter extends this analysis by
looking at speakers’ temporal behaviour, i.e., their turn-taking behaviour.

Generating realistically overlapped speech data is crucial for the development of better
conversational ASR systems. There has been much recent work in speech separation (a
crucial ASR component) but it has mainly focused on highly-overlapped mixtures (Cosentino
et al., 2020; Drude et al., 2019b; Hershey et al., 2016). This data poorly models the real
challenges. For example, applying separation techniques can be detrimental to ASR if the
models attempt to extract more sources than those that are present (Sato et al., 2021), hence
good estimates of the number of active speakers are needed. However, this is trivial in
fully-overlapped cases. More recently, attention has turned to sparse versions of commonly
used datasets (Menne et al., 2019) that use a parameter to govern the amount of overlap when
creating mixtures. This is a step towards creating more realistic simulations but still fails to
model the complexity of real conversations.
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The simulated dataset most closely capturing real conversation dynamics is LibriCSS
(Chen et al., 2020), which creates long-form parties containing many utterances from several
speakers. It can be processed into segmented mixtures, directly used for tasks such as
diarisation, or used in experiments with enhancement systems requiring long context windows
(Kanda et al., 2019). However, LibriCSS contains just 10 hours of data, which are recordings
of audio played back in a room. Therefore, the dataset is only appropriate for evaluation
rather than training.

The work presented in this chapter aims to greatly extend this by allowing for arbitrarily
large amounts of data to be produced from generative models. These models will be derived
from analysis of the 50 hours of conversations recorded from 20 parties in the CHiME-5
dataset (Barker et al., 2018).

The uses of the generative overlapped speech simulation techniques presented in this
chapter extend beyond ASR to the task of diarisation. The recent trends in diarisation
has been towards jointly optimising voice activity detection and segmentation (Bredin and
Laurent, 2021), and towards end-to-end systems (Fujita et al., 2019). If such systems are
to be trained using simulated datasets, the modelling of realistic turn-taking behaviour is
essential.

In this work, we will establish a framework for analysing the turn-taking behaviour
of people in real-life recordings and establish a method for extracting how much of the
difficulty of a recording can be attributed to the turn-taking behaviour. In Section 6.2, we
discuss the complexity of human turn-taking. In Section 6.3, we introduce a framework for
modelling the turn-taking behaviour of multi-person “parties” using a simple finite-state
representation. Section 6.4 shows that representations can be created that can be used to
characterise recordings in real datasets with interpretable meanings. These representations
are then evaluated in Section 6.5 in the context of target-speaker extraction, where the
representations can predict the difficulty of a mixture purely based on turn-taking behaviour.
Finally, Sections 6.6 and 6.7 concludes our findings.

6.2 Background

Modelling the turn-taking behaviour of humans is a well-established research field (Schegloff,
2000; Skantze, 2021). The behaviour of people changes depending on numerous factors
such as their environment, who they are talking to and whether the conversation is physical
or virtual. Modelling turn-taking is also a multi-modal activity, where cues are not always
verbal. Gazes are often used to select the next speaker, or head nods are used to indicate
confirmation and encourage the speaker to continue talking.
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Predicting who is speaking next is of interest across a wide range of applications. For
example, more natural human-computer interactions can be realised if the virtual agent can
naturally interject and wait their turn when appropriate. Virtual agents themselves have a
wide range of applications such as in clinical settings (Mirheidari et al., 2019) and within
smart-home echo systems.

Much work has been done towards predicting how the turns will develop, allowing for
conversational agents to naturally take their turn and add backchannels without the perception
of interruption (Ekstedt and Skantze, 2020).

In this chapter, instead of predicting turn-taking behaviour, we aim to observe real turn-
taking and generate more data following the observed distribution. Whilst prediction will
require observations of the speaker (e.g., a video recording), a generator will not require
a recording. The generator can model characteristics of this behaviour by looking at the
resulting turns that were taken even if that turn occurs due to non-verbal behaviour (i.e., to
describe the patterns we only need to observe them, and do not need to understand their
cause.)

In previous work, when generating simulated parties for the use in diarisation, simplistic
approaches have been used, such as in (Fujita et al., 2019), where speakers are treated
independently. This completely neglects how speakers interact with each other. Agent-based
models for generating speaker turns have been explored (Padilha, 2006), where participants
are parameterised by engineered features such as talkativeness (desire to talk), confidence
(persistence to talk when others are talking), verbosity (desire to continue talking). Motivated
by this, we aim to build a structure that can learn these parameters from the data.

6.3 Framework for modelling turns

In this section, we introduce a framework1 for modelling turn-taking solely based on utterance
timings, i.e., looking at the turn-taking behaviour of speakers while ignoring any linguistic
and acoustic cues that will come with these signals. This simple approach allows for easily
computed models that can be fitted to a wide array of datasets, i.e., not all datasets provide
fully transcribed text but most provide end-pointing and speaker identity.

With a transcript providing start and endpoints of utterances in a party, a discrete repre-
sentation of K observations can be created through sampling at a predefined frame rate fs

with no overlapping frames. In this chapter the value fs = 100 is used for all experiments.
Given a party with a set of speakers P= {a,b,c,d, ...}. The state of the speaker activity of the

1Python Package: https://github.com/jackdeadman/turn-taking

https://github.com/jackdeadman/turn-taking
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party is defined as matrix Y =
[
y1, ...,yK

]⊤
where yk ∈ {0,1}J and J = |P| i.e., the number

of speakers. The value y j
k = 1 if speaker j is speaking at frame k and y j

k = 0 otherwise. A
speaker is speaking in a frame if at any point in the frame, the transcript denotes they are
speaking.

6.3.1 Finite-state model formulation

We want to build a vector representation φφφ to summarise the speaker activity matrix, Y.
We propose to achieve this through training a generative model Mθθθ and computing features
from the learnt parameters θθθ , i.e., f (θθθ) = φφφ . Finite-state models have been ubiquitous in
speech recognition history (Trentin and Gori, 2001) with their relatively simple design and
well-defined mathematical properties. They have also been shown to be useful for modelling
and predicting turn-taking (Raux and Eskenazi, 2009). Using the parameters of hidden-
Markov models has been well established in many tasks requiring speaker representations,
e.g., speaker recognition (Garcia-Romero and Espy-Wilson, 2011), speaker verification
(Campbell et al., 2006) and adaptation for robust speech recognition (Kuhn et al., 2000;
Senior and Lopez-Moreno, 2014).

We propose to model the behaviour of speakers as a series of observations yk being
generated by a model depending only on yk−1. This can be achieved through Markov
models where states indicate the active speakers at that point in time. First, fully-connected
Markov model, where every possible combination of speakers has a state, Sfull = P(P) and
an |S|× |S| transition matrix Tfull where Tmn is the probability of transitioning from state
m to state n. The full model requires many parameters (O(2J)). Therefore we will also
explore a further model which requires fewer parameters (O(J)) by treating speakers as
independent generators with their own Markov models. An independent model with a set of
independent models Sind = {sind

1 , ...,sind
J } where sind

j = {{P j},∅}, with the corresponding
transition matrices for each of the sub-models Tind = {Tind

1 , ...,Tind
J }. In all these models the

null state ∅ represents the silent state.
The total time spent inside of state follows an exponential distribution, which means very

small durations are highly probable, but this will not be the case in real data. To account
for this the modelling power of all Markov models can be further extended through fitting
a time distribution Ps(D = d;Θs) on each of the states s for a time d, making the model
semi-Markovian (Janssen and Limnios, 1999). The time spent in the state is drawn from this
distribution instead of being a function of a state self-transition probability. Graphic repre-
sentations of these models are presented in Figure. 6.1 and Figure. 6.2 for the independent
and fully-connected models respectively.
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∅

{b}

1.001.00

Fig. 6.1 Diagram of the finite-state representation for the independent model. The state
names represent the active speakers when in that state. Each of the speakers has a their own
sub-model inside of the larger turn-taking model. The time spent inside each of the states is
drawn from a time distribution before transitioning to the next state.
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{a}
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0.33
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0.33

0.33

0.33 0.33
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Fig. 6.2 Diagram of the fully-connected model. The states represent all the possible combina-
tions of speakers.
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6.3.2 Training models

In order to train a model, the training data needs to be gathered by transcribing real turn-
taking behaviour. This can be derived from fully-transcribed text such as for ASR tasks or
endpoints with speaker identity such as from diarisation tasks. The endpoints for each of the
speakers should be time-aligned, i.e, if individual close-talking microphones are used, they
should be synchronised upon the beginning of the recording.

Given the endpoints for a session, sampling at the sample rate fs produces the activity

matrix Y. This can be interpreted as a sequence of states e.g.,
[
s1 s1 s1 s2 s2 s2 . . .

]⊤
,

this data then needs to be converted into data that can be used to fit the model. The parameters
of the model are a combination of the transition weights between the states and the parameters
of the time distributions. First, the transition weights can be estimated by counting the number
of times transitions are made between state pairs,

Tmn =
ηmn

∑m ηmn
, (6.1)

where ηmn is the count of the transitions from sm to sn. This is the same process for all the
turn-taking models.

Next, the state duration distributions Ps(D;Θs) are fit by counting the number of con-
secutive samples that have the same state, i.e., this is computing the duration in the state.
This process will therefore lead to a training dataset where each sample is an integer i.e.,
the durations it observed in the states. These time datasets are then used to fit the duration
models inside each state according to the appropriate parameter estimation technique for the
model, e.g., using maximum likelihood estimation (MLE).

It is important to note that the ordering of speakers is arbitrary and reordering the speakers
will result in a change in the parameter estimations. In order to mitigate this issue, the speaker
identities are assigned based on activity, i.e., P1 is always the most active, and PK is the least.

To make this training procedure concrete and to illustrate some differences between the
data between sessions in the CHiME-5 dataset, examples of the state duration distributions
are shown in Figure 6.3 and Figure 6.4. In both these examples the fully-connected model is
trained with activity Y generated using fs = 100 using data from the entire session. Within
the states a Wald distribution2 is used for Ps(D;Θs) and the scale and mean parameters are fit
using MLE.

There are several observations we can make from looking at these plots. First, as expected
the durations observed in single-speaker states are far longer than when we compare with
states with multiple active speakers. This is because people tend to try to not interrupt each

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wald.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wald.html
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State time distributions (S09)

Fig. 6.3 Fully-connected model’s state distributions fit on S09 using a Wald distribution to
model the duration.

other and when an interruption does occur the other person will quickly stop, it is unlikely
long sustained simultaneous speech will occur. Next we can compare across session S09
(Figure 6.3) and S21 (Figure 6.4). Here we can see in session S21, fewer observations
were seen for states involving many speakers and when they do occur they are shorter when
compared with S09. Indicating the group of individuals in S21 prefer to take turns talking
instead of interrupting one another and S09 consists of a group of dominant speakers.

6.3.3 Sampling models

For the model to be used for generating turn-taking data, state sequences need to be sampled
from the generative models, this creates the activity matrix Y . This can then be used in
applications such as diarisation to generate turns or as we will explore later in the chapter,



118 Speaker temporal analysis: modelling speaker turn-taking

0.0 20.0 40.0 60.0
Time (s)

0.000

0.005

0.010

0.015

0.020

De
ns

ity

s1 = 

0.0 10.0 20.0 30.0
Time (s)

0.000

0.005

0.010

De
ns

ity

s2 = {a}

0.0 2.5 5.0 7.5
Time (s)

0.000

0.002

0.004

0.006

0.008

De
ns

ity

s3 = {b}

0.0 5.0 10.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s4 = {c}

0.0 2.0 4.0 6.0
Time (s)

0.000

0.005

0.010

0.015

0.020

De
ns

ity

s5 = {d}

0.0 2.0 4.0 6.0
Time (s)

0.0000

0.0025

0.0050

0.0075

0.0100

De
ns

ity

s6 = {a, b}

0.0 2.0 4.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s7 = {a, c}

0.0 2.0 4.0
Time (s)

0.000

0.005

0.010

De
ns

ity

s8 = {a, d}

0.0 1.0 2.0 3.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s9 = {b, c}

0.0 2.0 4.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s10 = {b, d}

0.0 2.0 4.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s11 = {c, d}

0.0 1.0 2.0
Time (s)

0.000

0.005

0.010

0.015

0.020

De
ns

ity

s12 = {a, b, c}

0.0 1.0 2.0 3.0
Time (s)

0.000

0.005

0.010

0.015

De
ns

ity

s13 = {a, b, d}

0.0 0.5 1.0 1.5
Time (s)

0.000

0.005

0.010

0.015

0.020

De
ns

ity

s14 = {a, c, d}

0.0 0.5 1.0 1.5
Time (s)

0.00

0.01

0.02

0.03

0.04

De
ns

ity

s15 = {b, c, d}

0.0 0.5 1.0 1.5
Time (s)

0.00

0.01

0.02

De
ns

ity
s16 = {a, b, c, d}

State time distributions (S21)

Fig. 6.4 Fully-connected model’s state distributions fit on S21 using a Wald distribution to
model the duration.
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Examples from the real data

Fig. 6.5 Two 10 second segments taken from CHiME-5. The black regions indicate parts in
the audio where people are talking.
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Examples of generated data from the fully-connected model

Fig. 6.6 Data generated by the fully-connected model. The model is fit using the entire
session that Figure 6.5 shows a segment of.

speech separation where mixtures can be created with realistic overlap and placement of
overlaps.

To generate an activity matrix Y, the model is initialised at a starting state (e.g., silent
state), sampling the duration from the state distribution Ps(D;Θs) and then sampling the
next state based on the transition weight. The model then transitions to this state, and a
new duration is sampled. The process is repeated until a desired number of samples have
been generated. For the independent model, this process can be done in parallel across the
sub-models.

To compare the generative capabilities of the fully-connected and the independent model,
data from the entirety of session S09 in CHiME-5 is used to fit the models. By using a
sample rate fs = 100 and the Wald distribution for state duration distribution Ps the models
are fit on the entire sessions and then a set of samples are generated starting at the silent state.
In Figure 6.5 a segment from the real data is shown, this illustrates the kind of turn-taking
that occurs in the real scenario, we can see it is quite structured with sensible locations for
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Examples of generated data from the independent model

Fig. 6.7 Data generated by the independent model. The model is fit using the entire session
that Figure 6.5 shows a segment of.

interrupts and that it is not too overlapped. Next in Figure 6.6 we can see two examples of
10-second segments generated by the fully-connected model. Here, we can see the model has
produced some turn-taken patterns which could be believable, the model appears to place
overlaps in positions that we would expect in real conversations. For example, on the left,
we can see that overlaps have been placed at the start and end of an utterance, with a quick
backchannel in between. However, the model appears to maybe overestimate the amount of
overlap. Next, in Figure 6.7 the independent model is used to generate the data, here we can
see clearly that the model overestimates the amount of data and does not produce turn-taken
that seems believable.

Given a trained turn-taking model, we can look at the transition matrix which contributes
to its characteristics. The heatmap in Figure 6.8 shows an example of the resulting transition
matrix after training a fully-connected model on session S09. Here we can see the spareness
of the matrix, it is very unlikely that some of the transitions will occur, i.e., many of the state
transitions involving more than one speaker activity changing are very rare.

Next, the turn-taking models will be evaluated more formally by exploring how well they
can match the overlap statistics found in the real data.

6.3.4 Comparison of overlap distribution produced from models

Now that the two model types have been described and we have subjectively seen that
the fully-connected model produces turn-taking that appears to be more realistic than the
independent model. Next, we will look at the overlap distribution in terms of the number of
people speaking at one time. Accurately modelling this distribution will aid in producing data
that can be used for evaluating speech separation as knowing the number of active speakers
that are being mixed is important for many techniques used.
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Heatmap of the transition matrix of a trained fully-connected model
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Fig. 6.8 Heatmap plot showing the transition matrix of the fully-connected model after being
trained on session S09. The plot shows the spareness of the matrix due to transitions between
states involving two speaker changes being rare.
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Table 6.1 Comparison of the fully-connected model with the independent model. Computed
using transcript, no voice activity detection. Monte Carlo estimation using 500 samples to
estimate mean overlap for the models. E[X ] is the expected number of people talking at one
time.

Number of people speaking
Model 0 1 2 3 4 E[X ]

CHiME-5 22% 52% 20% 5% 2% 1.15
Fully-connected 19% 42% 30% 8% 1% 1.30
Independent 6% 25% 37% 25% 6% 1.98

To measure the model’s capability of matching the overlap statistics of the sessions it
was trained on, the overlap distribution will be compared with the training data used for the
model. For each session in the CHiME-5 dataset, a Y is computed using fs = 100 and a Wald
distribution (Seshadri, 1999) is used for the time distribution (Ps) in the states. A model is
fit on the entire session, and then data is generated matching the original session length by
first starting the sampling process at the silent state. The overlap statistics are then computed.
The process is repeated 500 times in order to estimate the mean statistics of the overlap, that
is we want to know the steady-state overlap distribution of the generative model, estimated
in a Monte-Carlo fashion.

The results in Table 6.1 show the distribution of the CHiME-5 overlap according to the
transcript3. The numbers reported in the table are the average of this across all the parties.
From the table, we can see that the independent model produces a larger expected number of
speakers than the original dataset. It is also mismatched with respect to the number of people
speaking at one time. The fully-connected model still produces more overlapped data, but it
is far closer to the training data both in terms of the expected number of speakers and the
general distribution shape.

Although the model is not directly trained on the overlap distribution, it successfully
approximates the degree of overlap observed in CHiME-5. The results show us that if we
treat speakers as independent generators, the overlap statistics produced by the model vastly
overestimate the amount of overlap in real turn-taking. This is because the model has no
consideration for how speakers interact with each other and neglects the fact people try to
avoid talking over each other when possible when having a conversation.
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Table 6.2 Table of results showing how well different distributions (Q(x)) can approximate
the true distribution (P(x)) of speaker overlap. All distributions in scikit-learn that were able
to produce an estimate of the state distributions were used in the experiment. The results
show that many of the distributions produce similar results and are all appropriate choices
for the CHiME-5 dataset. Due to the large standard error values, it is not possible to say if
any of the distributions are most appropriate for the CHiME-5 dataset.

Distribution DKL(P(x)||Q(x)) Standard Error

Wald 0.055 0.010
Exponnorm 0.056 0.010

Gilbrat 0.057 0.010
Gompertz 0.058 0.011
Genexpon 0.059 0.012

Recipinvgauss 0.059 0.011
Moyal 0.060 0.013

Norminvgauss 0.064 0.015
Lomax 0.086 0.039

Kappa4 0.175 0.126
Foldcauchy 0.186 0.047
Halfcauchy 0.216 0.066

Nct 0.255 0.193

6.3.5 Comparison of the time-distributions

So far the Wald distribution has been used throughout this chapter. This is a design choice that
can be made and many other distributions could potentially be used. To compare distributions
a model will be trained on session data, and a new session of the same length will be then
generated using the model. The resulting overlap distribution of the generated session will
then be compared to the original distribution. To compare the distributions, the information
gain by using the original distribution P(x) over the new distribution Q(x). Formally, this is
defined using the KL divergence,

DKL(P(x)||Q(x)) = ∑
x

P(x)log
P(x)
Q(x)

, (6.2)

where DKL(P(x)||Q(x)) tells us how much additional information is needed to encode P(x)
if we have the Q(x) distribution. If the distributions are identical this quantity would be equal
to 0, therefore a better fitting distribution will have a lower value.

This divergence value will be computed for each of the sessions in the CHiME-5 dataset,
and then the average DKL(P(x)||Q(x)) value is reported alongside the standard error for

3No voice activity detection used in this calculation.
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several distributions. All the distributions available in the Python toolkit scikit-learn4 were
preliminarily tested by training them on the session data and the resulting density functions
for the distributions were visually inspected. Ones that catastrophically failed (i.e., data
likelihoods of infinity for any of the states) were removed from the main experiment.

The results of the overlap experiments using the remaining distributions are presented in
Table 6.2. The results show that many of the distributions are able to used for the CHiME-5
dataset. Due to the large standard error values, it is not possible to say if any are the most
appropriate. Going forward the Wald distribution will continued to be used for the state
distribution.

6.4 Party representations

Using the Markov-models we can compute features from the parameters learnt from the data.
For the independent generator, features are computed for each model and then concatenated
together, creating a larger representation. As noted the growth of the parameters for the
fully-connected is O(2J) where J is the number of speakers. When looking for meaningful
representations this is going to potentially have a profound effect. Lots of the parameters
of the models will not be well fit because transitions will never be seen during training.
Therefore, an additional model is introduced to mitigate this issue, which will be named
competing. The competing speaker model has sub-models that have dependencies on other
speakers, Scomp

j = P({P j,ξ}) where ξ symbolises some other person speaking, the model
also has independent transition matrices Tcomp = {Tcomp

1 , ...,Tcomp
J }. A diagram of this

model is shown in Figure 6.9, again using two speakers as an example.
A comparison of the growth in parameters between the models introduced in this chapter

is shown in Figure 6.10. Here we can see both the independent and competing models
produce parameter growths linearly with the number of speakers.

6.4.1 Extracting features from models

Given these models, next we will explore how representations can be computed from the
models to give a vector representation to characterise speaker behaviour. A representation
will allow for better analysis of speech technology results conditioned on the type of speaker
interaction. First, given a transition matrix for a Markov-model, a steady-state distribution
can be computed to give the probability of being in each of the states (Gagniuc, 2017),

4https://docs.scipy.org/doc/scipy/reference/stats.html
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Fig. 6.9 Competing speaker model. A speaker now has their own sub-model which has a
state conditioned of whether or not someone else is talking (ξ ).
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Fig. 6.10 Each of the models presented in this chapter has varying complexities with respect
to their number of parameters. The fully-connected model requires O(2J) parameters, where
J is the number of speakers. Making it not practical for modelling large groups.



126 Speaker temporal analysis: modelling speaker turn-taking

Fig. 6.11 t-SNE plot of the sessions in CHiME-5. Chunk ID shows how the points move
around the space over time.

φφφ
state =

[
(QT Q)−11

]⊤
, (6.3)

where Q =
[
T− I 1

]
and 1 is a column vector of ones with length |S|. From the steady-

state, we can compute a distribution over the transitions to give the probability of a transition
occurring,

ΦΦΦ
trans
mn = φφφ

state
m Tmn, (6.4)

which is flattened into a vector φφφ
trans ∈ R|S||S|. Finally, using the state time distributions, an

expected duration in the state can be computed,

φφφ
dur = φφφ

state ⊙
[
E[PS1] · · · E[PS|S|]

]⊤
, (6.5)

where ⊙ is the element-wise product.

6.4.2 Visualisation

To illustrate the embeddings, we will train models on a real-world dataset, CHiME-5. For
visualisation, we train the fully-connected model on 40-minute chunks with an overlap of
5 minutes using a sample rate fs = 100 and Wald for state distribution Ps. The speaker IDs
are assigned based on activity, i.e., P1 is always the most active, and PK is the least. This is
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done to mitigate the effect of speaker ordering being arbitrary but affecting the feature order.

The plot in Figure 6.11 shows a t-SNE representation of ΦΦΦ
all =

[
φφφ

state; φφφ
trans; φφφ

dur
]⊤

.
The t-SNE representation is a low dimensionality projection of the high dimensional data
with the objective of keeping together points which are close in the original space are also
close in the projected space. Unlike principal component analysis which is limited to linear
transformations, t-SNE projections are non-linear and are more appropriate for visualisation
rather than preprocessing for modelling.

The plot illustrates how sessions in CHiME-5 form clusters, i.e., the statistics of the
parties remain fairly consistent. The size of the points in the plot is derived from their
position in time in the party i.e., showcasing the movements of the points around the space
over time. The plot illustrates some interesting behaviour amongst parties. S07 and S21
exhibit homogeneous behaviour throughout the parties, whilst other parties show a more
varied distribution. Overall this visualisation shows that there is turn-taking structure that
can be captured within these models that characterises behaviour. The t-SNE algorithm has
no knowledge of the labels and yet clusters within same parties are formed. It would be
interesting to see if the same group of speakers participated in a party on another day, would
we see those parties close together?

Next, we will look at how turn-taking changes across different datasets. In Figure 6.12
CHiME-5 is compared with AMI (McCowan et al., 2005) and an altered version of Libri-
Party5. LibriParty is a simulated dataset for generating long-form parties, the method treats
each of the speakers independently. LibriParty originally is configured to generate parties of
two people this has been altered using four people i.e., the same as CHiME-5. LibriParty
scenarios are extended to be 40 minutes long in order to use the same chunk size of 40
minutes, 50 of these scenarios are generated. For AMI, the scenarios are limited to only
those containing four speakers. The figure shows that there is a large overlap in turn-taking
behaviour across AMI and CHiME-5. However, CHiME-5 shows a larger diversity in the
behaviours and AMI appears to be a subset of this behaviour. Now when we compare the
results with LibriParty, we can see this approach is very homogeneous and does not cover
much of the space of possible behaviours.

6.5 Evaluation

Now that a representation has been described, we will evaluate the representation with respect
to the task of speaker extraction. That is, we aim to investigate how SI-SDR (Le Roux et al.,
2019) changes with respect to the location of parties in the embedding space.

5https://huggingface.co/speechbrain/vad-crdnn-libriparty

https://huggingface.co/speechbrain/vad-crdnn-libriparty
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Fig. 6.12 Comparison of the turn-taking behaviour across different datasets. The AMI corpus
appears to represent a subset of the behaviour observed in CHiME-5. The simulated corpus
LibriParty shows very similar behaviour and does not represent the diversity of the real data.

Speaker extraction involves extracting the speech signal from the desired speaker in a
mixture of zero or more other speakers and noise. The target speaker is indicated to a model
through an enrollment. For this work, an utterance from a speaker is used that is not present
in the mixture.

6.5.1 Target-speaker extraction model

For evaluation, time-domain Speakerbeam model (Delcroix et al., 2020) will be used. The
model is based on Conv-Tasnet (Luo and Mesgarani, 2019) with an additional component to
learn a speaker embedding encoder jointly. The model is trained on Libri2Mix with WHAM
noise (Wichern et al., 2019). The advantage of target-speaker extraction as an evaluation task
is that the model works with mixtures with more than two speakers, which will be the case
with the mixtures generated from the models.

6.5.2 Data generation

In total, 506 chunks are created using CHiME-5, and AMI (Carletta et al., 2005) transcript
data. Chunk lengths are again 40-minutes with a 5-minute overlap. The AMI data is reduced
to only sessions containing four speakers and at least 40 minutes in duration. The fully-
connected model is then fit on the chunks to generate the data, again a Wald distribution is
used for states (Ps). To generate the mixture data, first, the activity matrix Y is generated
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Fig. 6.13 t-SNE representation of learnt space against target-speaker extraction performance.

from the fully-connected model, starting the model at the silent state (∅). For this evaluation,
Y contains 2.5 hours of activity for each chunk being evaluated.

The large Y matrix is broken into chunks 1 minute in length. Utterances from LibriSpeech
(dev-clean) are then placed onto these segments such that they minimise the difference
between LibriSpeech utterance duration and turn-generated duration. This process is repeated
for all the chunks, and care is taken such that mixtures do not contain speakers overlapping
themselves. If the error between the segments and LibriSpeech utterances is too large, it is
discarded6.

The 1-minute chunks are then broken into segmented mixtures. Each of the utterances in
the chunk becomes a mixture where the duration is the length of the target signal.

This allows for the steady-state of this learnt turn-taking behaviour to be evaluated, i.e.,
the fully-connected model has been shown to accurately produce turn-taking behaviour with
approximate statistics to the learnt data. Therefore generating from this model allows for
statistically stationary turn-taking data to be generated.

6.5.3 Results

Each of the models is evaluated using the 2.5 hours of turn-taking generated from the models.
A visualisation of the results is shown in Figure 6.13. The plot illustrates the average
performance of the target-speaker extraction for data generated by each of the models. The
t-SNE representation shows a clear trend where the parties in the top left of the space start

6If the average difference between utterance and segment is greater than 0.5 seconds.
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Table 6.3 Predicting SI-SDR using the model embeddings. Where ρ is Pearson Correlation
and RMSE is the root mean square error in dB. E[SI-SDR] is using the mean of the training
data as the prediction for the test samples.

Feature Fully-connected Competing Independent
ρ RMSE ρ RMSE ρ RMSE

E[SI-SDR] - 2.17 - 2.17 - 2.17

φφφ state+φφφ dur+φφφ trans 0.62 1.72 0.66 1.63 0.38 2.06

φφφ state+φφφ dur 0.63 1.70 0.67 1.62 0.38 2.06

φφφ state+φφφ trans 0.60 1.76 0.63 1.69 - 2.16

φφφ trans+φφφ dur 0.63 1.70 0.66 1.64 0.38 2.06

φφφ state 0.60 1.76 0.63 1.69 - 2.16

φφφ trans 0.60 1.76 0.62 1.71 - 2.16

φφφ dur 0.53 1.85 0.40 2.00 0.38 2.06

with a low SI-SDR and gradually go into an area of higher SI-SDR. We can then compare
this with the performance of the speaker extraction scores, where models in the middle of
the space provide the largest gains. Models in the top left are too noisy for the extraction to
perform well, and models in the bottom right are already too clean, and any enhancement
attempt has resulted in signal degradation. Such visualisation gives an overall picture of the
performance of an extraction system across a range of parties.

Next, to evaluate the efficacy of the features, we use the application of predicting the
SI-SDR scores. A Support Vector Regressor (Awad and Khanna, 2015) is trained with a
radial-basis function kernel using combinations of features presented in Section 4. The
506 samples are evaluated using a bootstrap cross-fold validation where 80% sample of
sessions is used as training data, and the other 20% is used for the test. Where in each fold
all the chunks in a session are evaluated after being trained on all other chunks, we then
report Pearson correlation and root mean squared statistics in Table 6.3; this is the average
across 100 repeats of this sampling procedure. The results show all the features provide
information in predicting SI-SDR with a fairly strong correlation when using all the features
together. The result indicates that the embeddings can provide a method of extracting how
difficult a mixture can be when the generator is known. In addition to this, the table also
shows the performance of the independent generator models in predicting the SI-SDR. The
features of the fully-connected model are able to predict the performance of SI-SDR well.
The competing model is able to surpass the performance of the fully-connecting model. This



6.6 Discussion 131

may be attributed to the fact that the full model is over-parameterised for the embedding task
but well-suited for the generation task. The independent model lacks representation power.
Each of the Markov-models inside of the independent models have the same transition matrix
which have a weight Tmn = 1 for i ̸= j and Tmn = 0 for i = j, therefore φφφ

state and φφφ
trans

contain no information.

6.6 Discussion

This chapter has presented a framework for modelling turn-taking behaviour. The training
procedure implemented to fit the parameters of the model requires a large chunk size in order
to see enough observations to fit the parameters well. However, this chapter has shown that
there are redundancies in some of the parameters. This was shown by the competing model
out-performing the fully-connected model in the representation evaluation. However, it is not
possible to generate data from the competing speaker model due to it requiring the different
sub-modules to align with each other but the generation process is independent so this cannot
be guaranteed. Therefore, it leads to the question of whether it is possible to exploit the
redundancies showcased to aid the training of the fully-connected model. For example,
the weights in the fully-connected could be shared across certain transitions. Alternatively,
simpler models such as the independent model could be used to set the initial values for the
parameters of the more complicated model. Similar to how lower order n-gram models are
interpolated for unseen higher order n-grams (Kneser and Ney, 1995).

6.7 Conclusions

In this work, we have presented a simple Markov-model approach for generating arbitrary
large datasets with statistical behaviour approximating the behaviour of people in real parties
in terms of overlap. From these models, we showed features that can be computed to give
a vector representation of a party. Using the CHiME-5 dataset, we illustrated that sessions
within the dataset provided homogeneous behaviour and clustering.

These embeddings were then evaluated within the task of target-speaker extraction, where
they were shown to have an interpretable meaning with respect to the performance of SI-SDR
improvement. This was evaluated with respect to a prediction task based solely on the
embeddings. We have shown that treating people as independent generators does not provide
a realistic way of creating turn-taking behaviour, and it does not provide an adequate way of
building a representation to predict difficulty. The fully-connected model was shown to be
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the best approach for generating turn-taking. The competing model was shown to surpass the
performance of the fully-connected model as a representation.



Chapter 7

Conclusions

This thesis has been an exploration of the mismatches between simulation and real data in the
context of automatic speech recognition (ASR). This work set out to critique the metadata
used to drive these simulations, which is typically presented without motivation. This work
aimed to investigate ways to generate this metadata by analysing the behaviour of people
when they are socialising and the impact of imposing realism into the simulation.

Simulated data is used to both train and evaluate speech separation, a key component
of distant microphone speech recognition. Benchmarking the performance of techniques
against inadequate simulations will result in misleading results which are not likely to lead to
a well-performing system on real data. In multi-talker environments, separating the speech
signals when the speech overlaps is crucial for a well-performing ASR system. Speech
separation for distant microphone ASR often relies on multiple microphones forming an
array allowing for signals to be filtered spatially. The work in this thesis has explored the
spatial aspect of the simulation i.e., the positioning of the sources, as well as the temporal
aspect i.e., the placement and amount of overlap between the sources.

At the outset of this thesis, a number of key research questions were identified which
aimed to break down the question of what is required of simulated data. These questions
have been addressed through the experimental work presented in the preceding three chapters.
They are reviewed below.

RQ1: How well do simulated datasets represent the angular separation found in real
data? And how does poorly representing real data affect ASR evaluation?
In Chapter 4 the angular separation between speakers in commonly used datasets,
namely SMS-WSJ and the spatialised version WSJ0-2Mix were compared. It was
found that these datasets have vastly different distributions of separations and the
details of what caused this difference was not even presented in the publications. It
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was found that SMS-WSJ produces simulated datasets with uniform distributions of
angular separation. Whilst WSJ0-2Mix produced a distribution of angular separation
that did not focus on narrow angles at all.

Video data from CHiME-5 was used to automatically detect speakers inside the dataset
to estimate their separation angle. Using the recordings from single devices in isolation
found that the separation angles between speakers are not uniform but biased more
towards narrow angles. This is due to the behaviour of people, i.e., people tend to
stand close to each other, but also in part due to a limitation in the field of view of the
devices. Therefore in Chapter 5, a refinement of the estimate of angular separation was
made by estimating 2-D positions of people in the rooms and then projecting them into
the devices. It was found the initial estimate of separation was a good approximation
but some large separation angles were missed.

The realistic angular separation was then used to create simulated evaluation datasets
that showed a large degradation in recognition and separation performance. The
performance decrease showed that not all separation techniques are affected equally
and therefore this could potentially lead to a mismatch where one technique is believed
to be superior because it performs were in exploiting narrow angles but in fact is it
not the better approach because the improvement over wide angles is superfluous and
focus should be on narrow angles.

RQ2: How well do simulated datasets represent the relative distance found in real data?
And how does poorly representing real data affect ASR evaluation?
In Chapter 5, 2-D estimates of speaker locations were gathered by combining and
triangulating individual estimates in single devices. These 2-D positions were then
used to estimate the distances talkers were away from the microphones. It was found
that under the constraint of small rooms i.e., the ones typically used in simulation the
relative distance was accurately modelled as in close proximity, people are positioned
randomly. However, if the same naive positioning techniques are used when we extend
the room sizes to be larger, the relative distance between speakers is no longer accurate.
The data showed that when rooms are large, people position themselves closer to
each other, i.e., they form groups. Uniformly positioning people in the room does not
capture this phenomenon.

Enforcing this realistic relative distance distribution was then the focus of the ex-
perimental work. The results showed a complicated relationship between angular
separation and relative distance. It was shown that it was important to model both
these distributions accurately. If the relative distance distribution was modelled but
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a uniformed angular separation was used, then the impact the relative distance dis-
tribution has on ASR was masked by the fact the sources were easy to separate. If
a realistic angular separation distribution was used alongside the realistic relative
distance distribution then a more challenging dataset was created. This is due to the
separation performing poorly and therefore more of the interferer is present in the
mixture. When more of the interferer is present the impact of the relative closeness of
the sources is felt.

This analysis showed a potential pitfall that could be faced when an unrealistic simula-
tion is used to derive the direction of research. The problem of the ASR system not
being able to perform well when sources are relatively close to each other was masked
by the fact the sources were too easy to be separated as the angles were too wide.

RQ3: How well can integrated cameras from ad-hoc placements of devices be used to
estimate speaker positioning inside of rooms?
In the CHiME-5 dataset devices were placed at the edge of rooms to emulate the
natural positioning of devices when people use smart-home devices in their everyday
living environment i.e., “out-of-the-way” and not a centrepiece. The placement of
these devices was not completely unknown, a rough sketch of the floorplans was
provided. This resulted in initial placements of the devices with some unknown errors.
In Chapter 5, a calibration method was devised which minimises the disagreement of
speaker positioning when three or more devices can detect a person. The calibration
process accurately repositioned the devices which under a visual inspection of the
videos appeared to represent reality.

Through modelling the error in the camera detections in the devices a probabilistic
method for estimating the probability of any position in a room given the detection in
each of the devices was shown to be an effective method for modelling the additional
error in the cameras. Choosing the maximum probability of the position in the room
was shown to be more error-prone and less effective at position estimate compared
with computing the expected value over the room space.

It was shown this method for estimating positions works well when devices can be
calibrated i.e., there are many overlapping views and the devices do not face each other.
Two devices facing each other result in poor estimates of speaker location, especially
if using the maximum probability.

RQ4: How well do simulated datasets represent the overlap patterns found in real data?
And how does poorly representing real data affect speaker extraction evaluation?
Simulated datasets vastly overestimate the amount of overlap present in mixtures. With
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some by design containing 100% speaker overlap or close to this. These mixtures often
contain a fixed number of speakers and do not consider the dynamics of multi-party
interactions. Methods for creating longer unsegmented multi-party scenarios treat each
of the speakers as independent generators with a set amount of time pause in between
utterances. In Chapter 6, this was demonstrated to show unrealistic interactions that do
not match real turn-taking behaviour, i.e., it produces scenarios with a high degree of
overlap and a high number of people speaking at one time.

A finite-state approach to represent the turn-taking was developed in Chapter 5 us-
ing semi-Markov models connecting speaking states representing all combinations
of speakers. This method models a fixed number of speakers and was shown to
be an effective way of generating data which produced turn-taking behaviour that
approximated that observed in a real environment purely based on timing information.

Modelling speakers independently failed to represent the diversity of overlap patterns
that were observed in real data. Through visualising the space of models (see RQ5)
the location of independent models was only a small cluster within the complete space
of turn-taking models. The homogeneous nature of the models impacts ASR as some
parts of the model space were shown to be more challenging the others (again see
RQ5). Not evaluating ASR across an array of turn-taking behaviour may result in
techniques being preferred which optimise that one part of the model space and not the
full diversity of turn-taking behaviours we observe in real data.

RQ5: How can party representations be created to best model the difficulty of parties
for ASR?
Using the turn-taking models developed for generating data, features were engineered
that could be computed from the parameters of the models. Computing the steady-state
probability, expected durations and weighted transition probability were effective
features for the representations.

Segments of turn-taking were used to train a generative model to produce a large
dataset of state-state turn-taking behaviour. Target-speaker extraction was then used
for evaluation to explore how difficult the data generated by each of the models was
for this task. Through visualising the representations alongside the average speech
separation performance, the models showed a clear association between the model
space and the difficulty of the data it generated. This evaluation technique allows for
different speech extraction techniques to be compared across a range of turn-taking
behaviours, allowing for a more insightful comparison between techniques.
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Using a regressive model and the representations as input, Chapter 6 demonstrated that
the features could be used to predict the performance of target speaker extraction. This
allows for measuring the amount of difficulty in simulated data due to the turn-taking
behaviour alone.

7.1 Limitations

The work in this thesis has largely benefited from the availability of the CHiME-5 dataset
which contains a diverse range of unscripted multi-party interactions, in realistic settings. In
addition to this, the author was fortunate to have access to the video data recorded alongside
the dataset. However, due to the dataset’s uniqueness, it has been difficult to evaluate this
work across corpora. For example, DiPCo (Van Segbroeck et al., 2019) which is the most
similar dataset to CHiME-5 does not provide any video or speaker position data. Any corpora
that do provide the additional modalities such as speaker positioning do not capture the same
kind of multi-party interactions that are being modelled in this work. Producing a similar
dataset with the additional speaker information was not feasible under the financial and time
constraints (without severely limiting the scope of the analytic work).

7.2 Scope for future work

This work has provided several insights into the limitations of the metadata being used to
produce simulations. However, only two aspects have been explored, the speaker positioning
and the overlap between utterances. A simulation consists of many more parameters that
are not being modelled, and as the simulation techniques being used to create reverberant
speech signal becomes more advanced, so do the requirements for the metadata. For example,
the room geometry is not a large consideration in the design of simulation, rectangular
“shoebox” rooms are often used. The materials used to make up rooms affect the amount of
reverberation in the rendered spatial images. This work explored mixtures where the sources
are stationary, given the position information, it would be possible to model the movement
of people. The trajectories of the sources would need to be modelled realistically to avoid
systems exploiting that aspect of the simulation. Furthermore, the direction people are facing
changes the acoustic properties. In this work sources are treated as point sources, however,
sources in fact have directivity patterns in real life. These aspects were not the focus of this
thesis as largely they are not modelled in current simulated datasets. This work has shown
even the simplest choices of metadata such as speaker positioning are not motivated and this
has profound consequences for the conclusions made when evaluating distant microphone
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speech recognition. It should be seen as motivation for the need to keep advancements in the
analysis as the advancements in simulation techniques increase.

The work presented in this thesis focused on spatial and temporal aspects of the multi-
party scenarios separately. The experiments focused on evaluating the impact of these
parameters through controlling these variables and creating many different datasets to mea-
sure their impact. Therefore, not one dataset is presented but rather a family of datasets.
The logical next step would therefore be to develop an overall more realistic new dataset.
Combining temporal and spatial statistics is a non-trivial problem, when the spatial char-
acteristics were explored in this thesis, segmented mixtures were created and the spatial
distributions were used directly. Broadening this setup to long-form parties will result in
the need to model the movement of speakers over time. This could be archieved through
modelling the movement of people from the 2-D position estimates and then verifying the
separation distributions of the segmented mixtures match the real data. Extra care needs to
be taken when modelling the movement of people, if the movement is too predictable this
may be exploited by the separation system.

This thesis has presented methods to augment any dataset to be more realistic. Given
a simulated dataset, a realistic variant can be created by changing the position estimates
according the distributions described in Chapters 4 and 5 and the temporal statistics presented
in Chapter 6. For datasets created through playing sounds inside of a room and capturing the
results (instead of computer simulation), the performance metrics could be altered by using a
weighted average. For example, for angular separation, improvements over narrow angles
should be weighted higher than improvements over wide angles. The amount to weigh the
angles could be governed by the separation distribution presented in this work.
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Zhang, J., Zorilă, C., Doddipatla, R., and Barker, J. (2020a). On end-to-end multi-channel
time domain speech separation in reverberant environments. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6389–6393.

Zhang, Y., Qin, J., Park, D. S., Han, W., Chiu, C.-C., Pang, R., Le, Q. V., and Wu, Y. (2020b).
Pushing the limits of semi-supervised learning for automatic speech recognition. arXiv
preprint arXiv:2010.10504.

Zollinger, S. A. and Brumm, H. (2011). The lombard effect. Current Biology, 21(16):R614–
R615.


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Intoduction
	1.1 Motivation
	1.2 Thesis overview
	1.2.1 Thesis aims
	1.2.2 Research questions

	1.3 Contributions
	1.4 Organisation of the thesis
	1.4.1 List of publications


	2 Distant microphone speech processing
	2.1 Introduction
	2.2 Problem setup
	2.3 Components within distant speech recognition
	2.4 Spectral-temporal filtering
	2.4.1 General framework

	2.5 Spatial filtering
	2.5.1 Beamforming
	2.5.2 Spatial models
	2.5.3 Spatial features

	2.6 Artificial room simulation
	2.6.1 Acoustic rendering
	2.6.2 Parameters of a simulation

	2.7 The role of simulated data in speech recognition
	2.7.1 Simulated datasets
	2.7.2 Training
	2.7.3 Evaluation
	2.7.4 Discussion

	2.8 Conclusions

	3 Data and tools for analysing speaker behaviour
	3.1 Introduction
	3.2 Corpora
	3.2.1 Corpora requirements
	3.2.2 Review of potential speech corpora

	3.3 CHiME-5 dataset
	3.3.1 Overview
	3.3.2 Impact of CHiME-5

	3.4 Tools created for analysis
	3.4.1 General strategy
	3.4.2 Isolated-frame annotation tool
	3.4.3 Real-time annotation tool
	3.4.4 Face detection automatic tool
	3.4.5 Pose estimation automatic tool

	3.5 Evaluation
	3.5.1 Methodology
	3.5.2 Evaluation metrics

	3.6 Results
	3.6.1 Automatic detection results
	3.6.2 Re-annotation accuracy of the real-time tool

	3.7 Conclusions

	4 Speaker spatial analysis: estimating speaker location using a single device
	4.1 Introduction
	4.2 Methodolody
	4.3 Estimation of the real speaker spatial separation distribution
	4.3.1 Linear approximation of the relationship between screen and angle
	4.3.2 Estimated speaker separations

	4.4 Existing spatialised speech datasets
	4.4.1 WSJ0-2Mix Spatialised
	4.4.2 SMS-WSJ
	4.4.3 Comparison of the angular separation between the datasets

	4.5 Effect of realistic angular separation
	4.5.1 Motivation
	4.5.2 Method
	4.5.3 Results
	4.5.4 Discussion

	4.6 Microphone location versus speaker distribution
	4.6.1 Motivation
	4.6.2 Method
	4.6.3 Results
	4.6.4 Discussion

	4.7 Conclusion

	5 Speaker spatial analysis: estimating speaker location using multiple devices
	5.1 Introduction
	5.2 Background
	5.3 Methodology
	5.4 Estimating 2-D positions using multiple devices
	5.4.1 Speaker location annotation
	5.4.2 Camera calibration
	5.4.3 Estimating speaker location

	5.5 Using 2-D positions to estimate mixture statistics
	5.5.1 CHiME-5 position estimates
	5.5.2 Estimating angular separation using 2-D positions
	5.5.3 Estimating speaker distance

	5.6 Realistic speaker location in simulation
	5.6.1 Experimental setup
	5.6.2 Comparing the use of the distributions in large and small rooms
	5.6.3 Analysis of the impact of positioning in large rooms

	5.7 Discussion
	5.8 Conclusions

	6 Speaker temporal analysis: modelling speaker turn-taking
	6.1 Introduction
	6.2 Background
	6.3 Framework for modelling turns
	6.3.1 Finite-state model formulation
	6.3.2 Training models
	6.3.3 Sampling models
	6.3.4 Comparison of overlap distribution produced from models
	6.3.5 Comparison of the time-distributions

	6.4 Party representations
	6.4.1 Extracting features from models
	6.4.2 Visualisation

	6.5 Evaluation
	6.5.1 Target-speaker extraction model
	6.5.2 Data generation
	6.5.3 Results

	6.6 Discussion
	6.7 Conclusions

	7 Conclusions
	7.1 Limitations
	7.2 Scope for future work

	References

