
Performance-Predictable Resource
Management of Container-based
Genetic Algorithm Workloads in

Cloud Infrastructure

Thamer Alrefai

Doctor of Philosophy

University of York

Computer Science

October, 2021

ii

Abstract

Cloud computing, adopted by major providers like Amazon and Google, offers
on-demand, pay-as-you-go services and resources through shared pools. Users
submit workloads comprising multiple jobs, each containing tasks, including
a specific genetic algorithm (GA) workload detailed in this thesis. This GA
workload contains independent tasks from real-time multiprocessor allocation
and Sudoku puzzle case studies, each with fixed deadlines and fitness require-
ments. Effective resource management is critical to enhance the Quality of
Service (QoS) for cloud users. It involves resource allocation and adhering to
QoS standards, guided by workload specifics. Container orchestration emerges
as an essential deployment and management approach.

This thesis focuses on managing multiple instances of genetic algorithms (GAs)
in a cloud environment to achieve user-defined fitness levels within specified
deadlines. It presents various approaches to allocate GAs to cloud nodes and
control their execution iteratively. Initially, it introduces approaches such as
fitness tracking (FT), fitness prediction (FP), fitness-prediction-based linear
regression (FPLR), and fitness prediction based on weighted least square (FP-
WLS) for managing the workload. To enhance resource efficiency, the thesis
also addresses node interference, allowing multiple tasks to share resources while
minimizing their impact on each other. It proposes a weighted-based node inter-
ference approach, considering fitness levels and response times during iterations
to optimize task allocation.

The performance of these approaches was experimentally evaluated by testing
two GA applications and comparing them against state-of-the-art container-
based orchestration approaches. Thus, different approaches were compared con-
sidering the number of successful tasks which can be defined by the number of
tasks executed on time and achieved the fitness required. Comparison was also
made between different approaches by taking iteration analysis into consider-
ation. In situations where performance prediction was used, prediction errors
like Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were
used to evaluate and compare the performance of the prediction approaches.

iii

Contents

Abstract iii

List of Figures vii

List of Tables ix

Acknowledgments x

Dedication xi

Declaration xii

Publications xiii

1 Introduction 1
1.1 Motivation . 5
1.2 Use-cases for managing GA workload 7
1.3 Research Problems . 8

1.3.1 The problem of managing the GA workload in container-
based technologies . 8

1.3.2 The problem of node interference in container-based tech-
nologies . 9

1.4 Research hypothesis . 9
1.5 Thesis contributions . 10
1.6 Thesis outline . 10
1.7 Summary . 12

2 Background 14
2.1 Cloud computing . 14

2.1.1 Cloud computing characteristics 16
2.1.2 Cloud computing service models 17
2.1.3 Cloud computing deployment models 17

2.2 Resource management in cloud computing 18

iv

2.2.1 Resource allocation and scheduling 19
2.2.2 Resource monitoring . 20
2.2.3 Elasticity . 21

2.3 Container-based technologies . 22
2.4 Optimisation methods . 25
2.5 Summary . 27

3 Literature Survey 28
3.1 System model . 28
3.2 Workload model . 29

3.2.1 Application characteristics 30
3.2.2 Workload generator . 32

3.3 Workload deployment . 33
3.4 Workload profiling . 36
3.5 Cloud monitoring . 37
3.6 Performance prediction . 39

3.6.1 Why do we need performance prediction? 40
3.6.2 Performance prediction approaches 41
3.6.3 Prediction evaluation metrics 44

3.7 Resource allocation and scheduling 45
3.8 Optimization problem models and solvers 50
3.9 Summary . 51

4 Experimental platform, metrics and methods 52
4.1 Encapsulation of genetic algorithm 53
4.2 Application model . 53
4.3 Proposed orchestrator . 54
4.4 Metrics . 55
4.5 Experimental method . 56
4.6 Summary . 58

5 Management of container-based genetic algorithm workloads
over cloud infrastructure 59
5.1 Comparing different allocation techniques 60

5.1.1 Fitness tracking (FT): 60
5.1.2 Fitness prediction (FP): 61
5.1.3 Fitness-prediction-based linear regression (FPLR): 62
5.1.4 Fitness-prediction-based weighted least square curve fit-

ting (FPWLS) . 63

v

5.2 Evaluation . 64
5.2.1 Experimental setup . 64
5.2.2 Experimental results . 65

5.3 Summary . 79

6 Handling node interference in managing genetic algorithm work-
loads 80
6.1 Weight-based node interference approach 81
6.2 Admission control for firm real-time task 84
6.3 Evaluation . 85

6.3.1 Experimental setup . 85
6.3.2 Experimental results . 86

6.4 Summary . 98

7 Conclusions and Future Work 100
7.1 Future Work . 102

7.1.1 Generalizations to different workloads 103

References 105

vi

List of Figures

1.1 Technology stack . 3
1.2 Docker Swarm architecture. 7

2.1 Characteristics of cloud computing and its models. 15
2.2 Example monitoring architecture. 21
2.3 Vertical scaling VS horizontal scaling. 22
2.4 Virtual machines VS Container-based technologies. 23
2.5 Example of a Dockerfile . 24
2.6 GA process. 26

3.1 Allocate the workload to a VM 29
3.2 DAG shapes. 31
3.3 Timing Analysis. Extracted from [1]. 31
3.4 weather application as an example 32
3.5 Docker Swarm architecture. 34
3.6 Use Docker to deploy multiple instances of application 35
3.7 ATOM framework. Extracted from [2]. 39
3.8 Overview of the proposed methodology. Extracted from [3]. . . . 42
3.9 Priority-based resource allocation. Extracted from [4]. 46
3.10 Guaranteed admission control. Extracted from [5]. 47
3.11 Guaranteed admission control. Extracted from [5]. 47

4.1 Inputs and outputs of the GA. 53
4.2 Proposed orchestrator. 55

5.1 State machine of fitness tracking approach (FT). 61
5.2 Results of 10 experiments of different approaches and different

GA workloads (real-time multiprocessor allocation) concerning
the number of successful tasks. 66

5.3 Results of 10 experiments of different approaches and different
GA workloads (Sudoku puzzle) concerning the number of suc-
cessful tasks. 67

vii

5.4 The number of tasks done and dropped in each iteration of the
real-time multiprocessor allocation in FT and FP approaches. . 70

5.5 The number of tasks done and dropped in each iteration of the
real-time multiprocessor allocation in FPLR and FPWLS. . . . 71

5.6 The number of tasks done and dropped in each iteration of the
Sudoku puzzle in FT and FP approaches. 72

5.7 The number of tasks done and dropped in each iteration of the
Sudoku puzzle. 73

5.8 Prediction errors of the real-time multiprocessor allocation. . . 75
5.9 Prediction errors of the Sudoku puzzle. 76
5.10 Delta fitness of the real-time multiprocessor allocation. 77
5.11 Delta fitness of the Sudoku puzzle. 78

6.1 Result of 10 experiments of different approaches and different
GA workloads (real-time multiprocessor allocation) in terms of
the number of successful tasks. 86

6.2 Result of 10 experiments of different approaches and different GA
workloads (Sudoku puzzle) in terms of the number of successful
tasks. 87

6.3 Number of tasks done and dropped in each iteration of the real-
time multiprocessor allocation. 89

6.4 Number of tasks done and dropped in each iteration of Sudoku
puzzle. 90

6.5 Result of 10 experiments of different approaches and different
GA workloads (real-time multiprocessor allocation) in terms the
CPU control in the W approach. 92

6.6 Result of 10 experiments of different approaches and different GA
workloads (Sudoku puzzle) in terms the CPU control in the W
approach. 93

6.7 Waiting time of tasks in real-time multiprocessor allocation. . . 94
6.9 CPU utilization of the W approach in real-time multiprocessor

allocation . 94
6.8 Waiting time of tasks in Sudoku puzzle. 95
6.10 CPU utilization of the WCPU approach in real-time multipro-

cessor allocation . 95
6.11 CPU utilization of the W approach in Sudoku puzzle. 96
6.12 CPU utilization of the WCPU approach in Sudoku puzzle. . . . 97
6.13 Result of 10 experiments of different approaches and different GA

workloads (real-time multiprocessor allocation) 98

viii

List of Tables

3.1 Prediction results of task execution time for three different tasks.
Extracted from [6]. 41

5.1 One-way ANOVA test comparing the FT, FP, FPLR and FP-
WLS approach against Docker Swarm in real-time multiprocessor
allocation case study. 68

5.2 One-way ANOVA test comparing the FT, FP, FPLR and FPWLS
approach against Docker Swarm in Sudoku puzzle case study. . 68

6.1 Example of data collection in each of the node while executing
tasks. 82

6.2 One-way ANOVA test comparing the W approach against Docker
Swarm, Kubernetes, and FTV1 in real-time multiprocessor allo-
cation case study. 88

6.3 One-way ANOVA test comparing the W approach against Docker
Swarm, Kubernetes, and FTV1 in Sudoku puzzle case study. . . 88

ix

Acknowledgments

I would like to express my deepest gratitude and thanks to Almighty Allah for
giving me the strength, blessing, and guidance during my PhD journey and
finishing my research.

Dr. Leandro Soares Indrusiak, my PhD supervisor, deserves special thanks
for his tremendous advice, constant support, and patience during my research.
His enormous knowledge and vast experience have helped me throughout my
academic life. I would like to express my gratitude to all of the members of
the Real-Time Systems (RTS) research group. It is because of their generous
assistance and support that my time in the UK has been enjoyable.

I am grateful to my country, the Kingdom of Saudi Arabia, for allowing me to
complete my PhD in resource management in cloud computing to contribute to
the country’s development. Also, I would like to thank Taibah University for
giving me the opportunity to continue my academic life.

I want to show my thankfulness to everyone who has helped and encouraged
me to continue on my PhD journey to achieve my goal. These people are
exceptional, and they have had a profound impact on both my personal and
professional lives.

I would like to thank my parents, Mohammad Alrefai and Fatimah Alrefai, for
their unconditional love and support, I shall be ever thankful. I will always
be grateful for the tremendous sacrifices they made to ensure that I received
an excellent education. Additionally, I want to thank my brothers and sisters
for their love and support. Also, thanks to my daughters, Nour and Dalia, for
being a great motivator in my life.

x

Dedication

This thesis is dedicated to my wife, Dr.Tahani Aljohani, who has been a con-
tinuous source of inspiration and support throughout my academic and daily
life. I am grateful for your presence in my life. My deep love, gratitude, and
respect for you.

xi

Declaration

I declare that this thesis is a presentation of original work and I am the sole
author. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as References. Some of
the materials in this thesis appeared in the following published paper (see page
xiv).

Thamer Alrefai

October, 2021

xii

Publications

1. T. Alrefai and L. S. Indrusiak, “Management of container-based genetic algo-
rithm workloads over cloud infrastructure” 17th ACM International Conference
on Computing Frontiers 2020, CF 2020 - Proceedings. pp. 229–232, 2020.

xiii

Chapter 1

Introduction

Cloud computing is defined as an internet-based service that provides on-demand
and pay-as-you-go resources [7]. These resources are based on different models,
such as infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). These models can provide resources, including
applications, platforms, and physical machines. Once the resources are avail-
able, a user can request to use them from a cloud provider [8]. The release
of the resources is based on a service level agreement (SLA), which is a con-
tract between the user, the provider, and quality of service (QoS), which is a
performance measurement that needs to be met to fulfil the SLA requirements
[9].

Application domains, such as healthcare and engineering, often need a computa-
tional workload to be executed within specified QoS requirements [10][11]. The
outcome of the application typically bears financial value for the organisation
or is a prerequisite of another activity that does. Such applications are typically
executed on high-performance computing infrastructures or are costly resources
concerning computer infrastructure, staff, and energy consumption. Therefore,
effective resource management is necessary to make decisions about allocating
computational resources that meet user-driven QoS requirements [12].

One specific type of load that often appears in engineering applications is op-
timisation. In many cases, optimisation software uses meta-heuristics such as
genetic algorithms (GA) [13]. GAs are known for optimising solutions in various
domains, such as smart factories [14] and embedded multiprocessors [15]. Ex-
ample parameters that can be input into a GA are, the number of generations,
the initial population, and the set of application-specific parameters used by its
fitness evaluation function. We often need to achieve the desired fitness solution
for a specific problem, with this fitness fulfilled by a given QoS requirement [5].

1

Chapter 1. Introduction

The resources are made available from the cloud provider where they are placed
in a shared pool of resources, thus allowing users to select the most suitable
resources to fulfil their requirements. As the demand for particular resources
changes, a resource manager handles the change to fulfil the user’s demand [16].
Resource management is therefore defined as the procedure for allocating re-
sources, such as a physical machine, storage, and networking. Resource manage-
ment is achieved by providing the user with ways to meet the QoS requirements.
Resource management involves several important steps such as, monitoring the
infrastructure resources, performance prediction, and value estimation of the
resource [17].

Resource management plays an essential role in allocating resources in cloud
computing. Therefore, a considerable amount of research looks at different
areas within resource management and presents different ways of allocating
resources [18]. One way of addressing resource management in different areas is
the technology stack, which is a resource management example procedure that
already exists in cloud computing (shown in Figure 1.1). The technology stack
shown in the figure consists of several layers which includes a cloud or grid
as the infrastructure layer, cloud monitoring, performance prediction, energy
estimation, value estimation, and the resource allocation approach as the other
layers. The information from the lower level is needed to allocate resources and
meet user demands.

The benefit of having a technology stack is in the allocation of the right resources
for executing the application. For example, if there is a slot of time available in
the resources, the resource manager can use the slot to execute a task that can
fit in the available space. Using the technology stack also assists in estimating
when the task is most likely to finish and determining the required CPU and
memory to execute the task. The technology stack can also help to control
whether the task can have a financial value or not while the task is being
executed. As the providers receive a request from the user, the financial value
they get from executing the tasks starts at a maximum value. However, as the
task reaches the deadline, its value decreases which results in a lower financial
value in executing the task and or sometimes ends up paying more than needed.
To help understand the motivation of the research presented in this thesis, it is
needed to explain each layer of the technology stack. In the literature review
chapter, each of these layers will be explained in more detail.

2

Chapter 1. Introduction

Cloud/Grid

Cloud monitoring

Performance
prediction

Energy
estimation

Value estimation

Resource allocation

Figure 1.1: Technology stack

- Cloud monitoring:

While resources are provided by the cloud provider and change over time, the
technology stack’s monitoring layer helps with decision-making during resource
management. As the cloud platform is large and complex, monitoring differ-
ent layers of cloud computing is challenging due to the large amount of data
collected and analysed, which can cause overhead in the system. Thus, in or-
der to reduce the overhead caused by monitoring the resources, it is useful to
determine the right monitoring metrics such as CPU and memory [19].

Studies considered monitoring resource use in their research to track the be-
haviour of the resources. Studies, such as [2], have tackled one of the issues
within the monitoring area. Du and Li [2] used information collected from re-
sources to detect any abnormal behaviour that could cause changes in resource
usage and result in poor QoS. They considered CPU use as a metric. How-
ever, they also added additional metrics to help detect abnormal behaviour in
the resources such as reading and writing operations per second and networkIn
and networkOut in bytes (i.e., measure of amount of data moving across the
network).

As the monitoring layer of the technology stack is responsible for collecting
data from the infrastructure, the next layers which are performance prediction
and energy estimation layers, use the information collected from the monitoring
component. These layers help to determine whether the allocated resource is
able to meet the user expectations based on the predicted value and the energy
consumption [20].

3

Chapter 1. Introduction

- Performance prediction:

As mentioned earlier, the cloud user and the cloud provider are the two main
actors in cloud computing. They both can benefit from performance prediction.
Performance prediction is able to provide optimised solutions on cloud usage to
maintain the QoS requirement. On the other hand, the cloud provider can also
benefit from performance prediction layer as it prevents the resource manager
from using extra resources or allocates fewer resources to the user.

Several related studies addressed performance prediction issues, including [6]
and [3]. Both tried to predict application execution times but for different
targets. Kim et al. [6] aimed to improve the response time and cost of resources.
The input parameters of their model were job deadline and application workflow.
Their approach was to use the past executed tasks to predict the execution time
of new tasks using k-nearest neighbours (kNN) with similar samples. Mariani
et al. [3] aimed to help the user to select the best cloud configuration for their
application using the random forests (RFs) machine-learning approach. The RF
approach is a collection of several regression trees where each tree is generated
to fit the behaviour of the target performance metric using a randomly selected
training data subset.

- Energy estimation:

Cloud computing involve large data centres requiring a high amount of energy
to operate them. This problem increases the potential of carbon emission. Esti-
mating energy consumption can help resource management to allocate resources
by determining the right amount of resources without over-provisioning (pro-
viding more resources than needed) [21]. Both [22] and [23] estimated the
energy value, and used an approach to reduce the energy use by merging VMs
into one or using Dynamic Voltage and Frequency Scaling (DVFS) to reduce
the amount of energy that a VM uses.

- Value estimation:

Value estimation from the technology stack will benefit from performance pre-
diction and energy estimation since it can decide if the current task has value.
Therefore, it can determine whether the process should continue to allocate re-
sources to the task, as described in [23]. The value of a task tends to decrease
towards zero as time increases. The more time it takes to allocate a task, the
less is the value of the task to the user. Additionally, if the value is zero, the
task should be rejected since there is no benefit from executing it.

4

Chapter 1. Introduction

- Resource allocation:

Once resource allocation has enough information from the lower level, it can
allocate the new task to a suitable resource, considering the QoS and SLA.
It is the cloud provider’s responsibility to ensure that the right resources are
allocated to the submitted task from the user.

Many researchers have considered QoS-based approaches in their work to deter-
mine whether a new task is schedulable which means that worst case response
time of the task must be less than its deadline. Singh et al. highlighted several
dynamic resource allocations [5]. One dynamic resource allocation is the guar-
anteed admission control approach, which considers two factors when allowing
a task to be scheduled: task execution time and task deadline. Additionally,
this approach ensures that all applications admitted into a system will meet
their respective deadlines without interrupting other running applications. The
worst-case execution time (WCET) of the application and its tasks must be less
than the deadline for it to be schedulable using admission control. If so, then
the application can be admitted for execution. Otherwise, the application is
not schedulable, and the allocation will not proceed [5].

1.1 Motivation

The previous section introduces and explains the technology stack as an exam-
ple of a resource management process in cloud computing. There remain areas
of the technology stack that need further investigation. As data centres provide
a large number of resources, managing these resources can be challenging. Thus,
the benefit of using monitoring, is the ability to track and analyse the infras-
tructure to provide a good understanding of the resource status. Monitoring
can also help detect abnormal behaviour, which may cause some resources to
become unavailable [24]. Further, from the performance prediction perspective,
different resource types and the complexity of the application pose a challenge
to meet user expectations [25]. Additionally, the resource manager can provide
a more accurate result during resource allocation by predicting the performance
measurement. More so in the case of a change in resource demand. In that case,
performance prediction can detect it and scale resources to the right amount
to prevent any SLA violations, leading to a decrease in profits as providers lose
their users [26].

As previously mentioned, resource management is responsible for executing the

5

Chapter 1. Introduction

application sent from the cloud user. In a situation where a container orches-
trator (Docker Swarm or Kubernetes) has been used to deploy and manage
the execution of the application, the resource scheduling process is part of the
orchestrator. It decides where to allocate the task. Thus, container-based or-
chestration systems allow applications to be executed in shared resources with
fast and flexible deployment. One platform that can be used to deploy work-
loads is Docker. This platform is an abstraction to help organise the workload,
hide the details, and deploy the application in an isolated environment [27].
Docker Swarm and Kubernetes are considered state-of-the-art container-based
orchestration systems [28].

Providing resources for an incoming application is essential in obtaining the
desired results based on QoS metrics. Therefore, providers use virtual ma-
chines (VMs) to execute user applications. Similar to VMs, container-based
orchestration systems can be used for workload deployment. One feature of
container-based systems is that the container uses the operating system’s ker-
nel and runs as an isolated process instead of using a hypervisor. This also is
the case in VMs. Another feature is that the application is packed in an image
for the user to execute. They can have as many versions of that application as
needed. Further, container-based systems do not require fixed resources, such
as CPU and memory. Instead, the container can adjust the resources as needed
[29].

As we consider a container-based orchestration system for managing the GA
load in this thesis, the typical way that a baseline such as Docker Swarm or
Kubernetes manages the load, is by using a spread strategy to allocate the task
to an existing node. An application can be deployed on a shared cluster of
virtual or physical machines connected to the swarm master node using Docker
Swarm. The swarm master node acts as the manager of the cluster, allocating
an incoming job, while also executing jobs [30].

Docker Swarm uses several strategies to allocate incoming jobs to nodes, one
of which is the spread strategy. The spread strategy selects the node with the
minimum number of containers deployed on it [30]. Figure 1.2 illustrates a
Docker Swarm cluster with four nodes. The first node has been set as a Swarm
master, responsible for receiving and allocating the incoming task based on the
current scheduling strategy.

6

Chapter 1. Introduction

Client

Docker Swarm
Master (node-1)

Node-2 Node-3 Node-n

task request

Orchestrator

Figure 1.2: Docker Swarm architecture.

Kubernetes has a similar structure to Docker Swarm with respect to the master
node and worker nodes, except that the master node does not execute any of
the tasks. Additionally, the configuration of the cluster is more complex than
the Docker Swarm. Further, an incoming task is placed in a pod, where one or
more containers can be created to execute that task [31]. There are no other
approaches to deal specifically with the GA load since most methods use the
basic strategy.

1.2 Use-cases for managing GA workload

The work presented in this thesis considers the specific nature of the workload
posed by GAs when used as optimisation engines. GAs are population-based
metaheuristics that emulate the natural selection process to gradually improve
the fitness of potential solutions to a specific problem [32].

GAs can be configured to guarantee that the maximum fitness within a popula-
tion in a given generation will never be worse than the maximum fitness in the
previous generations (e.g., passing the best individuals to the next generation
unaltered). Such a GA configuration is called elitism. This thesis assumes we
are always dealing with elitist GAs.

We identified two specific optimisation problems as case studies to provide com-
pelling experimental work and validate our approach. One considered the prob-
lem of allocating real-time tasks to a multiprocessor system. In an application
with a given number of real-time tasks and a multiprocessor system with a

7

Chapter 1. Introduction

given number of cores, the GA will try to optimise allocating tasks to cores to
meet their real-time requirements (using the fitness function developed in [15]).
Therefore, the fitness metric is the number of real-time tasks that the GA has
successfully allocated.

The other case study considered the problem of solving a Sudoku puzzle. In
addition to the number of generations and the population size as input param-
eters, the GA will receive a level of puzzle difficulty. Based on the level of
difficulty, the GA will then generate this puzzle that it will try to solve. After
executing the GA, the output of the GA contains the best-achieved fitness and
the best chromosome (appearing as a sequence of symbols).

1.3 Research Problems

This section’s purpose is to provide an overview of the primary scientific research
problems addressed in this thesis. It will also highlight some research works
related to these problems. As this section provides a general overview, Chapter
3 will provide a comprehensive literature survey of the existing work.

As previously mentioned, Docker Swarm can be used by a cloud provider to
execute the incoming workload from the user. In a high-level illustration of the
research problem investigated, a workload which consists of multiple indepen-
dent tasks that need to be executed is an important step to improve the resource
manager. In this work, a specific workload is considered with real-time tasks
described in the previous section. This research mainly evaluates how resource
management handles the GA workload consisting of specific QoS constraints,
such as a hard deadline and required fitness. In this case, resource management
must execute the GA task and meet the user-defined deadline and user-defined
fitness level.

1.3.1 The problem of managing the GA workload in container-

based technologies

There exists a clear gap between container-based orchestration systems and
GA. Many works have considered container-based orchestration systems, such
as Docker Swarm and Kubernetes, for performance improvement (e.g., [33]).
Although they can provide some improvements, they have limitations, like han-
dling tasks with a specific QoS, such as a deadline. On the other hand, GAs are
known for optimising solutions in various domains, such as smart factories [14]

8

Chapter 1. Introduction

and embedded multiprocessors [15]. Example parameters that can be input
into a GA are the number of generations, the initial population, and the set
of application-specific parameters. We often must achieve the desired fitness
solution for a specific problem and have this fitness fulfilled by a given deadline.
Thus, container-based orchestration systems are unable to handle tasks with a
deadline and desired fitness.

1.3.2 The problem of node interference in container-based

technologies

The workload consists of numerous of independent tasks. Sharing the resources
between multiple tasks are challenging as they can have a negative effect on
meeting the required QoS. As mentioned previously, a container-based orches-
tration system can be used to deploy and execute the incoming task from the
user. However, executing multiple tasks in one node can be challenging. When
two or more tasks have been executed in the same node, one task can utilise
more resources than others, affecting other tasks from achieving the desired
QoS. Docker Swarm is considered a container-based orchestration system. It
uses several strategies to allocate incoming tasks to the nodes, one of which is
the spread strategy. The spread strategy selects the node with the minimum
number of containers deployed on it [28]. Figure 1.2 illustrates a Docker Swarm
cluster with four nodes. The first node has been set as a Swarm master, re-
sponsible for receiving and allocating the incoming task based on the current
scheduling strategy. In this scenario, executing two or more GA tasks at the
same time can affect achieving the desired fitness on time.

1.4 Research hypothesis

The previous section introduced the challenges and limitations of existing work
related to container-based orchestration systems. Therefore, the main objec-
tive of this research is to explore and design resource management techniques
for handling a GA workload at specific QoS constraints. Along these lines,
the below thesis hypotheses determine the central focus of this research. We
formulated our hypotheses based on Section 1.3 as:

• QoS-based resource management can handle GA tasks to meet the ap-
plication’s hard real-time timing and user-defined fitness requirements.
This resource management considers executing only one task at a time

9

Chapter 1. Introduction

per cloud node and ensures tasks achieve the user-defined fitness level on
time.

• Using a situation that is representative of a real scenario, the node inter-
ference used in the resource management can lessen the effect when we
execute multiple tasks per cloud node. The node interference considers
the tasks’ information like response time and fitness achieved to deter-
mine which cloud node can execute the incoming task from the user with
negative impact on other tasks in the same cloud node.

1.5 Thesis contributions

This thesis contributions section outlines the novel contributions made in this
thesis addressing the research problems identified in Section 1.3 based on the
hypothesis set in Section 1.4:

• Management of container-based GA workload: The proposed re-
source management uses one GA feature: the number of generations to
control the execution of the tasks. As mentioned in Section 1.2, additional
features are, such as getting a result similar or better than the previous
one. Thus, resource management can execute tasks iteratively to meet the
user-defined fitness level by the deadline. This way, resource management
can increase the number of successful tasks that meet the user-defined
fitness level by the deadline.

• Handling node interference in managing GA workloads: This
thesis presents a weight-based node interference approach to overcome
the limitation of resource management. This approach allows multiple
tasks to be executed in the same node with less effect on the running
tasks. The approach considers the tasks’ information during its execution
to determine which node is suitable to execute the incoming task.

1.6 Thesis outline

The remaining chapters of this thesis are organised in the following structure.
Chapter 2 provides an overview of the main areas that this thesis addresses. It
will introduce each area before providing more details. An overview of cloud
computing is provided in Section 2.1, including its characteristics, service mod-
els, and deployment models. Further, Section 2.2 will provide an overview of
resource management in cloud computing. Some of the key points in resource

10

Chapter 1. Introduction

management are highlighted, and the section introduces resource allocation,
scheduling, monitoring, and elasticity. Since this thesis considered container-
based technologies to deploy and execute the workload, an overview of the area
is provided in Section 2.3. Section 2.4 regards optimisation methods, more
specifically GA which is considered to be a meta-heuristics algorithm. The last
section of this chapter summarises the important points.

Chapter 3 provides a literature review of various areas within resource man-
agement. Section 3.1 shows a system model of key concepts, such as workload,
static and dynamic allocation. The workload is discussed in Section 3.2 to un-
derstand some characteristics and different ways of modelling the concepts, such
as DAGs. It also shows the importance of generating a workload that follows
the same pattern as industrial examples to get a sufficient result without af-
fecting any sensitive information. Section 3.3 discusses workload deployment,
which describes the platform that can execute the tasks such as Docker Swarm
and Kubernetes. Section 3.4 explains the demands of workload profiling since
the resource manager can use it in allocation. It also looks at a number of stud-
ies that used profiling with different parameters. Section 3.5 explains the use
of cloud monitoring and other concepts in monitoring the resources provided
and passing information about the performance to check the measurements and
predict future behaviours, as further explained in Section 3.6. Further, addi-
tional sub-sections highlight the demands on prediction and ways to evaluate
performance prediction. Section 3.7 highlights different approaches to resource
allocation and scheduling that can be used in the process. The last section is the
summary, which explains the key points of chapter 3 and introduces Chapter 4.

Chapter 4, defines the experimental platforms, metrics, and methods. It ex-
plains an overview of the encapsulation of the GA approach that are used in
this thesis. Section 4.2 discussed the application model that the system needs to
handle and explains the GA case studies and their application specific param-
eters. In Section 4.3 the proposed orchestrator that is used in the experiments
is explained. Section 4.4 relates to the metrics and how these metrics are used
during the evaluation. This is followed by Section 4.5 which describe the ex-
perimental method of the work presented in this thesis. The last section is the
summary, which explains the key points of chapter 4.

Chapter 5, provides different approaches for managing the container-based GA
workload over cloud infrastructure. The chapter starts with an introduction
to the work followed by section 5.1 which compares different allocation tech-
niques, including FT, FP, FPLR. Section 5.2, provides details of evaluation of

11

Chapter 1. Introduction

the approaches which include experimental setup and results. Finally, section
5.3 provides a summary of the key points that are discussed in the chapter.

At the beginning of chapter 6, the key concepts used in the chapter including
node interference are introduced. Section 6.1 will explain the weight-based
node interference approach, how different features used in the approach are
calculated, and how these features are normalized. These features represent the
slack time which is calculated as the difference between the response time and
the deadline. The other feature is the difference in the fitness of the task. Section
6.2 presents the evaluation of the approach which includes the experimental
setup and discusses the experimental results. The last section is summary
which provides a summary of the key points that are discussed in the chapter.

The last chapter (chapter 7) presents the conclusions of the research presented
in this thesis and the identified future works. This chapter will review the
main contribution of the thesis as well as the findings in order to determine
how well the research problems have been addressed and whether or not the
hypotheses presented in this research were valid. This chapter also includes
some recommendations for future research.

1.7 Summary

To summarize, this chapter introduces the process of resource management in
cloud computing and the benefit of having a resource management that can
efficiently allocate the available resources to a workload that is submitted from
the user. In this thesis a GA workload is considered which consists of numerous
of independent tasks. Thus, one of the benefits of using resource management is
using resources in a reasonable way without over or under provision. A further
benefit is the availability which provides an additional resource to an incoming
workload by scaling the infrastructure and adding more resources.

This chapter also introduced a technology stack which is an example procedure
of the resource management that already exists in cloud computing. The ad-
vantages of the technology stack is in assisting the resource management for
determining when the task is most likely to finish and will allow other tasks to
use the resources. The aim of explaining the technology stack in this chapter
is to understand the motivation of the research and each of the layer will be
explained in more details in the next chapter.

12

Chapter 1. Introduction

As the resource management in cloud computing is important, this thesis pro-
vides several approaches to manage the multiple instances of the GAs running as
containers over cloud environment which are: fitness tracking, fitness prediction
and fitness-prediction-based linear regression. These approaches only assume
one task will be executed at a time per cloud node. Thus, allowing tasks to
share resources is frequently beneficial for resource efficiency. For this reason, a
node interference is considered to share the same resource and prevents having
a negative impact on the running tasks.

13

Chapter 2

Background

Resource management is needed to allocate and free the resources, keep track,
and manage the resources and services, for different providers and users. Thus,
this chapter offers an overview of resource management in cloud computing,
including resource allocation, scheduling, monitoring, and elasticity.

Since a cloud environment is used in this research, this chapter also provides an
overview of cloud computing, which covers its characteristics, service models,
and deployment models. A key characteristic of cloud computing is looking at
on-demand self-service as both user and provider are able share and request
resources or services without interacting with each other. Further, cloud com-
puting uses different service models, such as SaaS, PaaS, and IaaS, to interact
and choose a service. These different service models can be deployed either in
public, private, or hybrid clouds.

In order to provide suitable resources for the incoming task, cloud providers use
VM to handle the execution of the task. However, one of the drawbacks of using
VMs is the overhead that can be caused since each VM needs an additional op-
erating system. Thus, providers have taken advantage of container-based tech-
nologies to execute the tasks because this technology provides fast and flexible
execution. Therefore, the following section is about container-based technolo-
gies. This includes the difference between virtual machines and containers and
key points of Docker containers. The last section of this chapter will overview
optimisation methods, including GA, since it is a meta-heuristics algorithm.

2.1 Cloud computing

Cloud computing is an advancement of Information Technology (IT) and a
dominant business model for distributing IT resources. As mentioned before,
users and providers can get on-demand access to a shared pool and scalable IT

14

Chapter 2. Background

resources managed by the cloud provider. Over the years, different domains
have utilised cloud computing within their fields to overcome challenges such
as healthcare and engineering. One of the challenges is that of security and
data privacy, which can be expressed as an unauthorised user accessing the
network. A challenge related to the engineering domain is allocation of reliable
and flexible resources with fewer costs [34, 35, 36]. Additionally, public health
seeks solutions for managing and analysing their data due to the demand for
more resources during the COVID-19 (coronavirus) pandemic. Thus, cloud
computing is known for providing an IT solution for numerous domains [37, 38].

In the cloud computing section, we provide an overview of the characteristics of
cloud computing with different service and deployment models, as illustrated in
Figure 2.1. The first column from the right shows the main structure of cloud
computing, which include its seven characteristics, four deployment models and
three service models. Detailed information is provided in the following sections.

Cloud computing

Infrastructure
as a

service(IaaS)

Community
cloud

Multi-
tenancy

Resource
pooling

Platform as a
service(PaaS)

Hybrid cloud

Fast
Elasticity

Network
access

software as a
service(SaaS)

Private
cloud

Measured
Services

Public cloud

On-
demand

self-service
Scalability

Service models

Deployment Models

Characteristics

Figure 2.1: Characteristics of cloud computing and its models.

Having a cloud environment in this thesis has many advantages, and one of them
is low cost. In our work, we rely on several resources to handle the proposed ap-
proaches and the execution of the workloads. Providing such physical resources
is expensive and not reliable for many reasons. In case hardware resources are
used, these resources might run into some issues which lead to permanent loss
of resources. Another advantage of using cloud computing is scalability which

15

Chapter 2. Background

can resolve the previous issue of using local hardware resources. The same sit-
uation can happen to cloud-based resources. However, in cloud computing, the
damaged resources can be removed and replaced with new ones to meet the
required QoS. Furthermore, security concerns can play a key role in cloud com-
puting as well as local resources. Thus, cloud providers often provide security
from outside traffic and prevent any attack on the resources that can reduce
the performance of the resources. From the above observations, having cloud
environment in this research plays an essential role in achieving a reliable and
secure environment.

2.1.1 Cloud computing characteristics

Cloud computing has been used by many users and organisations. Therefore,
cloud computing systems provide many attractive characteristics that make
future IT applications and services positive [39, 40].

• On-demand self-service: Once providers place their resources and ser-
vice as available, users can choose and select the resources or service they
need without interacting with a human.

• Network access: This characteristic makes cloud computing unique
since it allows users to access cloud resources over the internet at all
times and from any device (e.g., smartphones, laptops).

• Resource pooling: The resources and the services from the providers
are places in shared pools to assist multiple users. Based on the user
demand, the resources can be dynamically assigned.

• Fast elasticity: Resources and services can be provided to users quickly
and flexibly.

• Measured services: Resources and services that users currently use are
monitored, controlled, and optimised by cloud providers. Cloud comput-
ing is a pay-as-you-go model. Therefore, this characteristic ensures the
user will pay only for the services used.

• Scalability: Providers can add new nodes or remove nodes with minor
changes to the infrastructure or the software based on the demand of
resources by the providers.

• Multi-tenancy: Cloud providers provide service to users. Therefore,
multiple users can access the same service simultaneously. Even though

16

Chapter 2. Background

users access the same service; each user is isolated within their customised
virtual application instance.

2.1.2 Cloud computing service models

There are several models based on which cloud computing provides its services.
Some examples of common cloud computing service models are SaaS, PaaS, and
IaaS [41].

The SaaS model allows cloud users to use applications from any cloud provider.
The applications are available through a web interface without the need for
installing these applications locally. At this stage, the users have no control
and cannot manage the cloud’s infrastructure or platform. While there are
applications available through a web interface, applications such as Gmail and
Google Docs can be available on different devices and smartphones. There are
several benefits of using SaaS. One of them is that applications are accessible
from any device that has access to the internet. Further, users do not need to
worry about the infrastructure requirement or using any of the services [39].

The PaaS offers an opportunity for developers to use one of the runtime envi-
ronments or one of the providers’ tools to assist in their development. There
are many developers engaged in building a cloud application. Therefore, the
developer community is considered strong and able to support the new devel-
opers in their application development. Further, the developers do not have to
handle the updates and the upgrades related to the infrastructure as it is taken
care by the cloud provider [39].

In the IaaS model, cloud providers provide resources like CPU, memory, and
operating system to users. IaaS uses virtualisation technology to make it easier
to provision and release the resource from the users. The benefit of using IaaS
is that users pay for the demand resources only. Also, the user can easily scale
the resources up and down based on their requirements [39].

2.1.3 Cloud computing deployment models

Cloud computing must have several models to deploy its resources and services
for the cloud users to use them. Each of the deployment models have some
restrictions (e.g., public v. private). These models are public cloud, private
cloud, hybrid cloud, and community cloud. The first deployment model, the
public cloud, is available for general use. Therefore, any user can use any of
the resources and services provided by the public cloud. The next deployment

17

Chapter 2. Background

model is the private cloud. Private cloud is made accessible for only a single
organisation. Therefore anyone within the organisation can access the cloud
and use any of its resources. The community model considers multiple organi-
sations that share the same concern to share the cloud infrastructure. The last
deployment model, the hybrid model, comprises two or more cloud models [41].

2.2 Resource management in cloud computing

A cloud computing infrastructure is a large distributed system with many pro-
cessing resources. These resources deal with inconsistent user requests and the
consequences of other external factors that are beyond the control of the user
and system administrator. The performance, functionality, and computational
cost of system evaluation are all influenced by cloud resource management.
Also, resource management requires complicated decisions and rules for multi-
objective optimization. Several factors make the process of resource manage-
ment difficult to attain exact information state, such as the complexity of the
system, constant and unpredictable interactions [16].

Resource management methods linked to the delivery models of cloud comput-
ing differ from one to another. The cloud providers deal with unpredictable
and huge workloads in all cases, forcing the concept of cloud elasticity into
challenge. Thus, the workload fluctuation in cloud computing is still an issue
that researchers are attempting to solve. Therefore, when the cloud providers
can forecast an increase in workload, they can reserve resources ahead of time
such as in seasonal web applications that might cause fluctuations [42].

The fluctuation of the cloud workload can cause either over-provisioning or
under-provisioning of resources. The under-provisioning of resources happens
when providing fewer resources for the user than needed. It is the other way
around in the over-provisioning case. One of the solutions for such a problem
is auto-scaling. Auto-scaling is a mechanism for dynamically adjusting the
resources given to elastic applications based on workloads that are received.
The goal of the approach is to adjust the resource and assists in making a
decision by either allocating, reallocating or releasing the resources to meet the
fluctuated workload [43].

As the resources provided by the cloud provider are trying to cope with the
fluctuated workload, the resource management can face another challenge when
considering efficiency, namely energy efficient, cost minimization, performance
optimization, etc. Thus, when the resources are running either at 10% of the

18

Chapter 2. Background

CPU utilization, which considered to be idle, or when they reach around 90%
which consider to be closer to the saturation point. In all cases, the power
consumption is affected by the use of the power. Therefore, one of the solutions
for such an issue is using Dynamic Voltage and Frequency Scaling (DVFS) for
efficient use of the resources and can assist in reducing the energy consumption.
This technique used to control the frequency and the voltage of the resources
to achieve reduce the power consumption while maintaining the QoS require-
ment [44].

The following subsections of resource management will discuss the key stages of
resource management: resource allocation and scheduling, resource monitoring
and elasticity.

2.2.1 Resource allocation and scheduling

Resource allocation and scheduling occur when workload consisting of one or
more jobs where each job consists of one or more tasks arrive at resource allo-
cation and the scheduling is to be processed. Thus, Manvi and Shyam in [18]
have clarified the overlapping concepts between resource allocation and resource
scheduling. Resource allocation is defined as assigning incoming tasks to the
available resources. Once a new task arrives, one of the resource allocation
techniques will handle the allocation process. In contrast, resource scheduling
is a timetable of tasks and resources that must be executed at specific times for
a specific duration. Also, processing the tasks depends on the dependency of
the tasks.

Resource allocation can be either static or dynamic. In static allocation, in-
formation about the workload is known in advance, whereas the workload may
change during dynamic allocation [5]. One of the disadvantages of static al-
location is that it can lead to the over-provisioning or under-provisioning of
resources. Thus, having an effective static allocation technique is challenging.
Further, the process of resource allocation and scheduling can be based on dif-
ferent objectives. For example, one can allocate the resources to maximise their
utilisation and minimise their costs or maximise their profit.

Cloud providers provide users with assured QoS in order to meet their users’
needs. SLAs are used to formally manage these QoS contracts. The resources
are provisioned forcefully from the cloud data centers to meet the users’ SLA

19

Chapter 2. Background

needs. This method of resource allocation may result in inefficient resource al-
location, which will have a negative influence on resource utilization. Further-
more, it will result in a workload imbalance among the data centres, resulting
in some under utilization or over utilization of the resources. Moreover, some
of the jobs will have to wait longer than expected to be executed. Thus, one of
the solutions for such problems is resource migration. There are several benefits
of using resource migration such as scheduling optimization and energy-aware
resource scheduling [45].

2.2.2 Resource monitoring

Once the demand for resources increases, efficient cloud monitoring is required
to provide accurate and fast information. The benefit of having such monitor-
ing is to distinguish the working resources from the ones turned off. The other
benefit is to detect abnormal behaviour that can slow the managing the re-
sources or services. Another benefit of cloud monitoring is that the monitoring
information can help provide a good understanding of the required resources
during the scaling process, so resource management can either add or remove
resources to fulfil the requirement [46].

Not only can resource management take the positive features of cloud moni-
toring, but cloud users can monitor their usage for different purposes, such as
the cost of the resources or a fault in one of the resources. As illustrated in
Figure 2.2, there are different components of the monitoring architecture. The
monitoring process starts with the monitoring agent that can monitor differ-
ent resources and services. Once the information is collected, the monitoring
agent will report back to the monitoring server, which will issue an alert, such
as reaching the threshold of the cost. Another way is when the information
is stored in a database such that the front-end system can show reports and
graphs related to the resource and services used.

20

Chapter 2. Background

CPUMemoryServices …

Monitoring Agent

Monitoring Server Alert

Database

Front end
with reports

and graph

Figure 2.2: Example monitoring architecture.

2.2.3 Elasticity

As the amount of workload changes over time, more resources can be requested
or released from the users. Also, some of the current jobs might need more
or fewer resources. These situations can be handled via elasticity within cloud
computing. The general definition of elasticity in cloud computing is the ability
to reconfigure the computing resources of an application based on real-time
requests. Moreover, a system must be scalable for it to be elastic. Which means
that the system is able to adapt to a sudden workload increase. Thus, there are
two kinds of scalabilities. One is vertical scaling, which is the ability to scale
up or scale down, such as add more CPU or memory within a node. The other
kind is horizontal scaling, which concerns adding or removing computational
resources (e.g., node or instances). Figure 2.3 shows the difference between
vertical scaling and horizontal scaling [47].

21

Chapter 2. Background

Vertical Scaling
Increase size of instance
(CPU, Storage, memory)

Horizontal Scaling
Add or remove instances

Figure 2.3: Vertical scaling VS horizontal scaling.

2.3 Container-based technologies

This section provides the background of container-based technologies and their
usage within cloud computing. Traditionally, cloud computing used virtual
machines (VMs) as virtualisation techniques, allowing multiple users and appli-
cations to use the same resources of a single node at the same time. Figure 2.4
illustrates the architecture of the VMs versus container-based technologies. Dif-
ferent VMs have independent operating systems (OS) on top of the hypervisor.
The hypervisor layer is for monitoring different VMs since they all use the same
infrastructure and OS. In contrast, container-based technologies do not have
the guest OS for each container since they use a container daemon to build,
run, and distribute the containers. One of the platforms that can be used to
deploy the workload is Docker containers, which use the same architecture of
container-based technologies, as illustrated in Figure 2.4.

22

Chapter 2. Background

Infrastructure

Host Operating System

Hypervisor

Guest OS

Bins/Libs

App-1

Guest OS

Bins/Libs

App-2

Guest OS

Bins/Libs

App-3

Infrastructure

Host Operating System

Container Daemon

Bins/Libs

App-1

Bins/Libs

App-2

Bins/Libs

App-3

ContainersVirtual Machines

Figure 2.4: Virtual machines VS Container-based technologies.

Docker containers are an abstraction to help organise the workload, hide the
details, and deploy the application in an isolated environment. Docker con-
tainers can be installed on a physical machine. Following this, containers can
be added and managed to fulfil the application requirements [48]. There are
several components in Docker containers, as described below:

• The Docker engine is placed on the host operating system, and several
Docker containers can be built on top of the Docker engine.

• The Dockerfile is a file that contains instructions needed to allow the
application to be executed on containers.

• Once the Dockerfile is built successfully, a read-only Docker image is cre-
ated containing the application to be executed.

• The Docker container is the running component of the Docker image.

• The Docker Hub is the repository where Docker images are stored.

A key factor in the need for Docker containers is to add intelligence to resource
allocation. For illustration, assume that there is an existing image that contains
a web application. A container can be created to run the application, and
additional containers can be created if there is a database service that needs
to be run with the application. Each container works in isolation. Therefore,
the only way that containers can communicate is by creating a network channel

23

Chapter 2. Background

that is specified during the process. As another example, Figure 2.5 shows a
Dockerfile used to build a simple image that prints a statement. The image that
needs to be built is based on the OpenJDK image version 8 and must specify
the working directory and additional commands to run that image. Therefore,
building an image can be based on an existing image or from scratch. One
benefit of using container-based technologies over VMs is less overhead since the
containers do not include the guest OS. Another benefit is increased portability.
The application is built inside an image, which can be used and deployed in
Linux and Windows systems.

Figure 2.5: Example of a Dockerfile

Containers have the advantage of introducing less virtualization overhead than
VMs because there is no additional virtualization layer. Instead, they are im-
mediately executed on the host OS’s kernel. Containers are more efficient and
allow for better scalability as a result. However, because containers were not
built as a security tool to isolate between untrusted and potentially malicious
containers, the lack of a virtualization layer poses new security vulnerabilities
due to the lower level of isolation. Containers placed on the same host share
a common operating system, making them vulnerable to attacks on shared re-
sources such as the file system, network, and kernel. Another limitation of
Docker container is providing a cross-platform compatibility. One important
difficulty is that if an application is built to run in a Docker container on Win-
dows, it will not run on Linux, and the other way around. Virtual machines,
on the other hand, are not bound by this limitation [49].

24

Chapter 2. Background

2.4 Optimisation methods

There has been increasing demand for cloud computing in various domains, such
as engineering, industrial, and business computing. Many of those domains use
optimisation tools to improve solutions to their domain-specific problems. The
goal of using optimisation is to maximise the result with limited resources.
Further, only the best solution is selected from a set of solutions that the op-
timisation method provides. As previously mentioned in the introduction that
this thesis uses a GA-based workload. Thus, this section provides an overview
of meta-heuristics and GA, which is considered one of the methods of meta-
heuristics [50].

A meta-heuristic is a higher-level heuristic intended to discover, generate, or
select a heuristic. It may provide an effective solution to an optimisation prob-
lem. Enough information on the problem and computation capacity are needed
to achieve such an effective solution. Meta-heuristics provide a set of solutions
for an optimisation problem. There are few assumptions that meta-heuristics
may assume about the problem they are trying to solve [51].

Most meta-heuristics are either classified as a local search, global search, or
a hybrid meta-heuristic. Generally, local search optimisation is considered a
more exploitative method by collecting search experience to provide high-quality
solutions, such as an iterated local search (ILS) algorithm. On the other hand,
the global search is a more explorative method and can extend the search in a
wide domain, such as ant colony optimisation (ACO) and GAs [51].

Meta-heuristics are also classified as either single- or population-based heuris-
tics. Numerous solutions are provided in the search process, which decide
whether the meta-heuristic is a single solution or a population-based algo-
rithm. A single solution or population-based algorithm must be selected to
choose a meta-heuristic for a specific optimisation problem. Single solution
meta-heuristics are more exploitation-oriented, whereas population-based meta-
heuristics are more explorative-oriented. One of the population-based meta-
heuristics is the evolutionary algorithm [32].

25

Chapter 2. Background

Population
initialization

Fitness
calculation

Selection Crossover Mutation
Stopping
criteria

No

Yes

Figure 2.6: GA process.

The evolutionary algorithm is a set of algorithms in a global search. It is a
population-based meta-heuristic and naturally inspired. One of the algorithms
within the evolutionary algorithm is GA. As illustrated in Figure 2.6, the pro-
cess of the evolutionary algorithm is started initially by generating a set of so-
lutions (population initialisation). Each population has multiple chromosomes
and within each chromosome includes multiple genes with representative val-
ues as either (0 or 1) or different representation based on the specific type of
problem [52].

A fitness calculation (fitness function) decides how suitable a chromosome, or an
individual, is compared to others within the population. Thus, a fitness score is
given for each chromosome which represents the probability of being selected for
reproduction. After that, a selection step selects the most suitable individuals
and uses their genes for the next generation. In the crossover step, each of
the chosen individuals is a parent. A crossover point is selected at random
within the genes. After that, the process reaches a mutation step. Some of the
parent genes face mutation at random. This process is repeated until a stopping
criterion is met [52].

One strategy that can be applied in the selection stage is elitism. Using this
strategy allows the best individuals from the current population to be carried

26

Chapter 2. Background

over to the new population. This way, the elitism strategy guarantees the best
solution in every iteration until the process reaches the stopping criteria [32].

2.5 Summary

This chapter has provided an overview of the related areas this thesis considered.
This chapter started with an overview of cloud computing and its different
models and characteristics, followed by an overview of resource management of
cloud computing as it is the key area in managing the GA workload. Container-
based technology is used to deploy and execute the GA workload. Therefore,
an overview of the area is given. The last area is the optimisation method used,
particularly GA.

27

Chapter 3

Literature Survey

3.1 System model

As businesses and industries migrate to cloud-based systems, more issues are
being addressed at every layer of the technology stack (Figure 1.1). One reason
that businesses migrate to cloud computing is to take advantage of the three
models, IaaS, PaaS, and SaaS. The main actors in cloud computing are the users
and providers. A user is one who submits a task to be executed. A provider
provides resources such as a Virtual Machine (VM) to handle the execution.

Two factors need to be considered when submitting a task or providing re-
sources. These are Quality of Service (QoS) and Service Level Agreement
(SLA). An SLA is a legal contract between the user and the provider based on
the user’s expectations and requirements. The user can specify several SLA
requirements, for example CPU capacity, memory size, availability, and price.
QoS is a performance measurement, which needs to be met in order to fulfil the
SLA requirements. Examples of QoS are, response time, and throughput [53].

A cloud user can send a workload which consists of several jobs to be processed.
Each job consists of multiple tasks with their dependencies. Thus, a task is
a unit of work to be done that is indivisible. Figure 3.1 shows the process
of allocating the workload. Knowing the availability of the resource can be
challenging, so monitoring the infrastructure provides information regarding
the resource status and its capacity.

Resource allocation is defined as assigning incoming tasks to the available
resources. Once a new task arrives, one of the resource allocation techniques
will handle the allocation process, based on workload profiles, which execute
the job in advance on multiple configurations to determine the right resource to
execute the job. Resource allocation can be either static or dynamic. In static

28

Chapter 3. Literature Survey

allocation, information about the workload is known in advance, whereas in
dynamic allocation, the workload may change during the process. Admis-
sion control is an example of resource allocation which uses information from
the workload like worst-case response time to determine whether to admit the
workload or not based on its deadline [5].

workloaduser

Resource allocation

VM-1 VM-2 VM-3

Task 1

Task 2 Task 3

Task 4

Figure 3.1: Allocate the workload to a VM

3.2 Workload model

In order to assist the resource manager in making the right decision when al-
locating resources, it is essential to understand the GA workload and its be-
haviour. By understanding the behaviour of the GA workload, different areas
can be optimised such as performance, cost, and energy.

Understanding the application behaviour involves several characteristics includ-
ing, parallelism and scaling, dependencies between tasks, execution time anal-
ysis, affinity and value. One of the issues within the workload is the change of
application structure over time including the number of tasks and its depen-
dencies. Another issue is related to the different types of resources that are
available to run the application which result in unfair allocation of the tasks.
Therefore, heterogeneous resources and workload complexity can be considered
to be a challenge within a workload model [54] [55]. Based on the measurement
of an existing system which can be obtained from an entity such as a log file, it
is possible to model a workload that can then be used to generate a synthetic
workload. The main goal of workload modelling is to offer performance anal-
ysis, simulation of cloud resource management approaches, and allowing cloud

29

Chapter 3. Literature Survey

providers to improve their systems’ QoS without having to create costly large-
scale environments [56]. Some researchers, such as work done by Burkimsher
et al. in [57], have developed a synthetic workload generator which has the key
features of the real workload. The benefit of the workload generator is hav-
ing better control of the workload and its behaviour. Several aspects need to
be considered when generating a realistic workload, for example, inter-arrival
times, job size, and the dependency structure of the job.

3.2.1 Application characteristics

One of the key features of an application is parallelism which happens when the
task runs on multiple cores and is executed simultaneously to solve the compu-
tational issue. Parallelism can improve performance as it uses extra resources
to complete the tasks. A parallel application may contain several parts with
dependency constraints between them. Thus, the current part will wait for the
previous part to finish executing prior to executing the current task. Also, each
part can have one or multiple tasks which can be executed on numerous VMs
for fast execution and reduce the amount of time that the job can take to finish
all the tasks [58]. In order to control the level of parallelism, an auto-scaling
approach can be used which will be covered later.

Along with parallelisms, an application might contain some dependencies among
the tasks that need to be considered. For example, if task B depends on task A,
it means that task B cannot be performed until task A is finished executing. It
is important to know whether an application has dependencies or not, because
it can affect the overall execution time. Task dependencies can be represented
as Directed Acyclic Graph (DAG) structures [59]. There are different shapes
of DAG, such as linear, independent chain, and diamond. Figure 3.2 illustrates
the different shapes of DAG. The left shape represents linear dependencies, the
middle shape represents an independent chain, and the right shape represents
diamond dependencies, where nodes are tasks and edges are dependencies be-
tween the tasks [60].

30

Chapter 3. Literature Survey

Figure 3.2: DAG shapes.

When an existing application contains parallelism and dependencies between
tasks, a real-time analysis is a one-way process to determine the amount of time
it takes to execute the application and then allocate suitable resources to process
it. The benefit of real-time analysis is that it informs about the the upper and
lower bounds of the application which can help improve the responsiveness of
an application. There are several concepts which are helpful to understand
when analysing the time a task takes including the worst, best, and average
case execution time [5]. The execution time of a given task is dependant upon
the input value of the application, which is why the worst, best, and average
are not equal. Worst-case execution time (WCET) is the longest execution of
a task, and the best case is the fastest execution time of a task [58]. Figure 3.3
illustrates how important real-time analysis is when executing a task as it can
minimise the time it takes during execution [1].

Figure 3.3: Timing Analysis. Extracted from [1].

31

Chapter 3. Literature Survey

An example application that considers these characteristics is a weather appli-
cation that is illustrated in Figure 3.4. In this application, 7 tasks are used in
order to visualise weather information. Task one is the collecting phase from
other sources of information such as radar data. Then, tasks 2, 3, and 4 can
be executed in parallel, as the main goal is to calculate the different values
including visibility, turbulence, and cloudiness. It is important to complete the
execution of the previous tasks in order to start execution of task 5, as it de-
pends on tasks 2, 3, and 4. Task 5 will collect the numerical values and analyse
them to predict the weather. The last two tasks represent dynamic modelling
and visualising the weather information. The execution time of this application
depends on two factors which are, dependencies and parallelism. An example
of dependencies is seen in task 7 which depends on task 6, whereas tasks 2, 3,
and 4 represent parallel tasks [59].

Figure 3.4: weather application as an example

3.2.2 Workload generator

Given the importance of understanding the workload and its characteristics, it is
essential to generate a workload that performs similar to a real workload. There
are several reasons to support the importance of generating a workload. The
first of those reasons for using a generated workload is to avoid seeing any sen-
sitive information. The second reason is the possibility of running hundreds or

32

Chapter 3. Literature Survey

thousands of experiments and reproducing those experiments whenever needed.
Therefore, when the experiment is carried out in a real-world environment, the
result will be similar to that achieved before [56]. Curiel and Pont [61] explore
different workload generations and describe various design options in order to
generate a workload. Two approaches can be considered for providing input
to the workload generator. One using the trace log of an existing system, and
second using a statistical model. Furthermore, several parameters can be tuned
when generating a workload, such as, the arrival time of the job, the size of the
job, and dependencies between tasks.

Galindo et al. [62] generate a workload for different load intensities such as
memory intensive which require to meet memory capacity for the load to be
executed. Although, they generate a workload based on probability distribution,
they do not cover dependencies between tasks as demonstrated in the work done
by Burkimsher et al. [57]. The aim of their work is to characterise the grid
workload of an engineering design department by analysing log files spanning
a period of 30 months. Several workload characterisations are covered, such as
dependency between tasks, execution time, and variation of arrival times. They
observe that the highest rate of task submission is during working hours. One of
their workload generation approaches generates a workload with task execution
times which is similar to their observations from analysing the log files.

3.3 Workload deployment

Workload deployment is an important stage of resource management since
the technology used to deploy and execute the workload may affect the QoS
achieved. Thus, a Docker container can be used to deploy and execute the
workload to overcome this issue. Docker containers are classified as lightweight
because they have a low overhead in comparison to VMs. Docker containers
do not require a virtualization layer to run the workload. Instead, they are
deployed directly on OS [48].

Within the container-based technologies that handle the workload deployment
are Docker Swarm and Kubernetes approaches which are considered state-of-
the-art container orchestration systems. These orchestrators are open-source
platforms and are able to handle the deployment of the workload as they have a
resource management within the orchestrator to decide which virtual or physical
machines (node) can execute the workload. Using Docker swarm, an application
can be deployed on a shared cluster of nodes that are connected to the swarm

33

Chapter 3. Literature Survey

master node. The swarm master node acts as the manager of the cluster which
handles the allocation of incoming job. The swarm master node can also execute
the jobs by itself [28].

Docker swarm uses the following three strategies to allocate an incoming job to
the nodes: spread, binpack, and random strategies. The spread strategy selects
the node with minimum number of containers deployed on it, whereas binpack
selects the node with minimum amount of CPU and RAM available. Figure 3.5
illustrates a Docker Swarm cluster with four nodes. The first node has been set
to be a Swarm master which is responsible for receiving the incoming task and
based on the current scheduling strategy allocates the task [28].

Figure 3.5: Docker Swarm architecture.

Docker Swarm uses a two-step process to execute the task. The first step is
using filter feature which can be either node filtering like constraint, health,
and container slots; or configuration filtering like dependency and port. Then,
using one of the strategies, the task is allocated to the right node [63].

Kubernetes has a similar structure to Docker Swarm with regard to the master
node and worker nodes. Except that, the master node will not execute any
of the tasks. In addition, the configuration of the cluster is more complex
than that of Docker Swarm. Furthermore, each node in Kubernetes cluster
can run pods where each pod consists of one or multiple Docker containers.
As pods are considered to be the smallest unit, Kubernetes can only control
the pods [27]. The scheduling process of Kubernetes is based on filtering the
nodes in the cluster by taking into consideration the pod requirements. After
filtering, the node with the highest score is selected to execute the task. One

34

Chapter 3. Literature Survey

way of computing the scoring is in finding the node utilization and then the
scheduler places the pod to the node with the highest score [64].

A number of studies explore how Docker containers assist the resource man-
agement process. Docker containers allow multiple deployment of the same
application to provide availability for the service and reduce the waiting time.
For example, using the existing cluster configuration to deploy, the Apache Cas-
sandra application needs to run one instance of Cassandra per server. Apache
Cassandra is a database that handles large data providing scalability which
leads to high availability. Therefore, each server needs to be connected with
at least one other server to support availability for the service. In real-world
environments, the server has high-end components which could cause under-use
of resources as the demand is less than the provided resources. Therefore, de-
ploying Cassandra on Docker containers can solve this issue as Docker allows
deployment of an application on multiple instances as shown in Figure 3.6 [33].

Figure 3.6: Use Docker to deploy multiple instances of appli-
cation

As the application is being deployed on the Docker, the user needs to use the
infrastructure in an efficient way to avoid any waste of resources. Thus, a per-
formance measurement can determine when to assist the process of allocating
services to users by knowing when an existing resource will become available

35

Chapter 3. Literature Survey

[65]. Shirinbab et al. [66] evaluate the performance of the Cassandra applica-
tion when deployed on Docker versus other VMs. They selected several per-
formance metrics for their comparison between Docker and other VMs such as
CPU utilisation, throughput, and mean latency. Their results show that Docker
containers have lower overheads compared to VMs.

As Docker Swarm contains a resource manager to handle the execution of the
tasks, the scheduling strategies may not serve some businesses as they might
focus on specific requirement such as increasing their profits. Liu et al. in [63]
propose a new scheduling strategy based on a multi-objective optimization con-
tainer to improve the QoS performance. Their work takes into account several
factors like CPU usage, memory usage, and the time spent transmitting images
over the network. The authors develop a measuring technique for each critical
component to establish a scoring function for each one and then integrate them
into a composite function to determine the most suitable node to deploy the
containers needed to be assigned in the scheduling process [63].

3.4 Workload profiling

Understanding resource characteristics including storage, memory, and network
capability, during resource management can assist in providing the right amount
of resources needed for the given requirements. Using workload profiling during
resource allocation can assist resource management as a profile can provide
good understanding of the workload characteristics such as dependencies and
parallelism [67]. Workload profiling is the process of analysing changes in the
workload that was previously executed. Given a metric such as execution time,
workload profiling needs to be optimised when executing on different platform
configurations. Workload profiling thus can be used to estimate job execution
times and the amount of resources needed when a job becomes available [68].

According to [69], there are several stages in profiling such as, data granularity,
monitoring, storing, and processing. At the data granularity stage, the main
goal is to define the metrics that need to be profiled. In addition, resource
management can benefit from this data and provide a better QoS with better
response time, throughput, and cost for users.

There are a number of studies in the literature using a profile-based approach
within resource management, for example [23] and [70]. The goal of Singh
et al. [23] is to allocate resources in a way that optimises energy and value
using profiling and non-profiling approaches. The data used during the profiling

36

Chapter 3. Literature Survey

approach was from previously executed applications. This data was collected
for each task, such as voltage/frequency level, value curve, arrival time, and
energy consumption. During resource allocation using a profiling method, this
data, along with the High Performance Computing (HPC) platform, was input
into the algorithm to perform the allocation. Their algorithm uses the input
parameters explained above and the result allocates incoming tasks as having a
positive value. The algorithm consists of several parts which are listed below.

• It monitors the execution of tasks, once there is an change, it updates the
resources.

• It monitors incoming tasks to place them into a queue.

• It collects all the bids from the users to choose the maximum bid.

• It computes the value and energy of unscheduled tasks when using re-
sources.

• Based on the profiling result, the algorithm can select the maximum
value per energy consumption and its value, energy, allocation, and volt-
age/frequency levels.

• It schedules the task and updates the resources.

Profiling the resource utilisation can be useful in order to determine the effec-
tiveness of the resource allocation when executing a workload. There are some
utilisation parameters that can be considered such as CPU and memory. Pro-
filing the resource utilisation can be used when migrating a VM or powering
a new one [17]. Dezhabad et al. [71] developed a new classification scheme
for workloads based on resource consumption. The researchers employed a
hierarchical clustering approach to generate three workloads and resource de-
mand profiles for low, moderate, and high-demand applications. The presented
technique assists cloud providers in resource allocation optimization and profit
improvement.

3.5 Cloud monitoring

Cloud monitoring is the process of collecting data about resources and man-
aging them. Several studies have considered cloud monitoring to be a crucial
step in resource management as it monitors the infrastructure layer for different
metrics such as resource use, the amount of energy used, and availability. This
checks if there are any faults in the resources or the physical VM is off and

37

Chapter 3. Literature Survey

needs to be turned on [72]. Several monitoring tools are currently used for dif-
ferent monitoring purposes, such as Amazon cloud watch, which is used only for
Amazon resources. As reported in [72] this tool has some limitations including
the model being designed for centralised models not ensuring the availability of
resources.

In terms of usage, there are some usage parameters that can be monitored
such as CPU and memory. These parameters can assist resource management
during the process including VM migration and powering on of new physical
machines. Two scenarios can happen during resource management, under-use,
or over-use of resources. Over-use happens by allocating more resources than
needed. Whereas under-use happens by allocating less resources than actually
needed [17].

An example paper on monitoring resources is Du and Li [2] which presents an
automated tracking, orchestration, and monitoring (ATOM) framework to mon-
itor resource usage in an IaaS system. They also use a novel tracking method
to continuously track important system usage metrics with low overheads. Re-
ducing overheads is done by collecting data from each Virtual Machine (VM)
every minute and then reporting it to the Cloud Controller (CLC) through a
Cluster Controller (CC). Furthermore, ATOM tracks several metrics from each
VM user such as CPU use and network I/O [2].

As Figure 3.7 shows, there are several components in the ATOM framework,
one of which is a tracking component. In this component ATOM adapts the
optimal online tracking algorithm for one-dimensional online tracking inside
the monitoring service on NCs. Another component is Monitoring (anomaly
detection). ATOM adds this component in CLC to analyse tracking results
by the tracking component which provides continuous resource usage data in
real-time. It uses a modified PCA method to continuously track the divided
subspace and automatically detects anomalies by identifying notable shifts in
the subspace. Also, this component adjusts the tracking threshold from the
tracking component dynamically based on data trends and false alarm rates.
The last component is Orchestration (introspection and debugging). When
a potential anomaly is identified by the monitoring component an introspect
request along with anomaly information is sent to the orchestration component
on NC to raise an alarm to cloud users for further analysis [2].

38

Chapter 3. Literature Survey

Figure 3.7: ATOM framework. Extracted from [2].

Moreover, Docker swarm [73] was used as a container-based technology to exe-
cute the workload. It consists of several nodes one of which acts as the master
node. Within the master node, a monitoring component collects information
from the existing nodes. This information can be the number of containers
in each node, CPU utilization, or memory utilization. Monitoring these nodes
helps the resource manager within the master node to allocate the task to a
suitable node based on the resource allocation policy currently used.

The other use of the monitoring within the resource management is in moni-
toring the resources in terms of energy consumption. Enes et al. [74] develop
a platform that controls a power budget to limit the amount of energy spent
by users, apps, and individual instances. Their power budget platform was
built by combining and extending numerous tools such that the CPU shares
of containers can be scaled down or scaled up to minimise or increase energy
consumption accordingly. One of the tools that is used in their platform is
POWERAPI which is a tool that monitors the infrastructure and reports back
to the platform about the existing energy consumption.

3.6 Performance prediction

The idea behind prediction is in forecasting the future behaviour of specific ap-
plications based on the given information in order to provide the right resources

39

Chapter 3. Literature Survey

during the resource management process. The goal of using performance pre-
diction is to facilitate the QoS that the user expects. There are several issues
that can be avoided by predicting performance, such as over-provisioning or
under-provisioning [75].

There are several scenarios that can be improved through the use of performance
prediction. One of them is assuming the application needs of another VM.
Therefore, the process of turning on a VM is time consuming, and the user
will notice the time it takes to run the new VM. Likewise, in cases where a
prediction model has not been used, providing the right amount of resources
can be challenging and may result in under-provisioning or over-provisioning
[26].

3.6.1 Why do we need performance prediction?

As mentioned previously, performance prediction is a crucial step in resource
management for a number of reasons. One reason is for optimising the cost of
resource usage. Users and providers can obtain this benefit by estimating future
usage and ways to reduce cost. There are several ways to reduce the cost when
using prediction, such as the cost of energy, networking, and maintenance. One
of the studies that uses performance prediction to optimise the cost is by Kim
et al. [6] whopropose an end-to-end elastic resource management system for
scientific application on a public IaaS cloud.

As there are different costs for every VM from cloud providers such as Amazon,
one of the strategies Kim et al. use is related to calculating the performance
and cost ratio to determine the value of the task (which can be calculated as -
minute cost * execution time). Resource evaluation of the performance and cost
ratio aims to satisfy the deadline for each task and reduce the total execution
cost for all tasks. As the prediction model for task execution time produces
several VM options, the approach evaluates VMs in order to select the most
cost efficient approach which meets the deadline. For instance, if there is a task
(task A) with a one-hour deadline, the prediction results for task execution time
on four different types of VMs are as shown in Table 3.1. Using the cheapest
VM (m1.medium) of the three (m1.medium, m1.large, and m1.xlarge) is the
best in terms of cost efficiency because m1.medium has the lowest (best) value
for the performance-cost ratio [6].

40

Chapter 3. Literature Survey

Table 3.1: Prediction results of task execution time for three
different tasks. Extracted from [6].

VM info Prediction result
Type Min. Price task A task B task C
m1.small $0.00125 80 min. 80 min. 80 min.
m1.medium $0.00248 50 min 55 min 40 min
m1.large $0.00498 40 min 25 min 20 min
m1.xlarge $0.00997 25 min 11 min 10 min

Another reason for using performance prediction is for optimising the resource
use. Knowing the behaviour of an application may help improve the process
of allocating the task as the prediction can determine when the resource is free
and the next tasks in the queue can be allocated. Also, an accurate prediction is
needed to avoid any conflict when sharing the resource between two applications
which can lead to a decrease in the QoS [26].

3.6.2 Performance prediction approaches

The previous section discussed the reasons for using performance prediction.
There are several studies that use one of the performance prediction approaches.
One of the approaches is a proactive approach, which uses prediction to scale
the application. Previous studies have considered using this approach but they
have used different techniques for their models. However, one of the reasons
researchers opt for a proactive approach is its fast reaction to requests by cloud
platforms when there is are variable resource needs. For instance, Calheiros et
al. [76] use an ARIMA model and their focus is on request patterns where they
try to accurately predict the number of future requests by the user. Their work
is designed for the short-term so the predictions are quicker. In order to update
the model on the fly they apply feedback from the latest observed loads.

On the other hand, Kim et al. in [6] take a proactive approach using local linear
regression to improve the cost and performance. There are several strategies
that the system uses, namely an accurate and dynamic task execution time
predictor, a resource evaluation scheme that balances cost and performance,
and an availability-aware task scheduling algorithm. The prediction module has
additional sub-components. These include the LLR predictor, which estimates
the execution time for an input task on different types of VM. And the task
history repository, which stores predicted and real time execution results and
provides samples to estimate the task execution time.

41

Chapter 3. Literature Survey

Nadeem et al. [77] propose a novel method based on a neural network to predict
the workflow execution time in the grid to benefit from the available resources.
They apply principal component analysis (PCA) to eliminate the less important
information and make the prediction more accurate. The prediction model
collects the actual performance observed from executing training applications
on a set of cloud configurations provided by the cloud providers. The training
application they consider for this model is the NAS parallel benchmarks and
the cloud configuration parameters used in the study are the number of nodes,
the number of cores per node, and the amount of RAM per node. The model is
then released to the user who can query it for performance predictions for the
target application.

A radial basis function neural network (RBF-NN) is used in their model. The
RBF-NN consists of three-layered neural networks. The input layer is the first
layer and takes a set of workflow attribute values as input to the network,
such as dependencies, problem-size, grid-sites, scheduling policy, and grid-site
states. In the second layer each neuron i calculates the Euclidean distance di

between an input set Ai and the centre (di = ||Ai − c||) applying the Gaussian
function as a radial function. Therefore, there are weights wi resulting from the
second layer which are passed to the third layer. The third layer is the output
layer, which communicates with a hidden layer through weights. Then, the
layer approximates the function as a linear combination of neurons [77]. One
of the drawbacks of RBF-NN is in trying to distinguish which attribute is less
important.

Figure 3.8: Overview of the proposed methodology. Extracted
from [3].

Mariani et al. in [3] also consider applying random forests (RFs) as one of the

42

Chapter 3. Literature Survey

machine learning techniques to implement their prediction models. The RF
approach is a collection of several regression trees where each tree is generated
to fit the behaviour of the target performance metric using a randomly selected
subset of training data. Therefore, their goal is to use a prediction model based
on machine learning to help the user select the best cloud configuration for their
application as shown in Figure 3.8, [3].

The prediction model takes a cloud configuration and application profile as in-
put. Then the output of the model is the expected speed, execution time, and
cost. In addition, the model collects the actual performance observed from exe-
cuting training applications on a set of cloud configurations which are provided
by the cloud providers. The cloud configuration parameters that Mariani et al.
[3] consider are the number of nodes, the number of cores per node, and the
amount of RAM per node. The model is then released to the user who can
query it for performance predictions for their target application.

In cloud systems, failure is a concerning issue. Minimizing the consequences
of failure and producing accurate predictions with enough latency remains a
demanding research challenge as large-scale systems grow in scale and com-
plexity. This involves the implementation of a proactive and effective failure
management strategy aimed at reducing the impact of failure within the sys-
tem. Mohammed et al. [78] proposed an effective technique for failure prediction
using time series and machine learning approaches. Their goal was to create a
model that could reliably anticipate the failure of systems and applications.

Within the performance prediction there is an online curve fitting which helps
service providers to predict performance when the nature of the task is unknown,
or partially known. Service providers endeavour to improve the quality of service
by allocating sufficient resources to all tasks, minimising idle resources and
attaining server-wide load balance. The only way to achieve this goal is to
collect historical data and generic metrics such as CPU cycles which can predict
performance at a given time and task. After a series of operational cycles, the
historical data of the server may be used to model a function that can be
used to predict performance. This method is known as online curve fitting,
which is vital in cloud resource allocation due to the fluctuating nature of user
requirements [79]

Online curve fitting begins with coming up with data point approximation func-
tions. In this case, the typical performance limits for a given task are estimated
to yield data points that can form a curve, expressed as a function. For in-
stance, the data approximation function may be developed by estimating the

43

Chapter 3. Literature Survey

ideal lower timing bound, best-case execution time (BCET), minimal observed
execution time, maximal observed execution time, worst-case execution time
and the upper timing bound. Plotting these estimated data points on a graph
yields a curve. Then, the unknown data points may be estimated by fitting
them on the curve [80].

Online curve fitting is applicable in performance analysis because the data col-
lected from a server at different loads represent a form of the continuous differen-
tiable surface with a known structure and the constant factors can be predicted
as variables in the model. Michael and Lily present a new approach based on
extreme learning machine (ELM) and particle swarm optimization (PSO). In
their study, a neural network-based approach is proposed to address the issue
of curve fitting, one of the classic numerical analysis issues. This can be un-
derstood as an alternate strategy based on advanced learning that opposes the
numerical solution analysis method. The benefits of both the PSO optimization
approach and the ELM algorithm are incorporated into their method [81].

3.6.3 Prediction evaluation metrics

Once the prediction model has finished processing data and provided the pre-
diction value, it is essential to evaluate the model to find out its accuracy either
by using the success rate or by using error metrics.

As accuracy is one of the evaluation metrics for a prediction model, several
papers outline different ways of calculating accuracy. For example, in [82] the
authors use two metrics to identify the accuracy of the prediction. One is cal-
culating the success rate. The success rate refers to the number of accurate
predictions compared to the total number of predictions. Furthermore, some-
times there is a difference between the actual value and the predicted value.
Therefore, there are several formulas that can be used to find errors in pre-
diction such as Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE).

Cost and profit can also be used for the evaluation of a prediction. As Jiang et
al. [83] discuss Cloud Prediction Cost (CPC) to calculate the cost of prediction
error which can be of two types, the cost of the SLA violation, and the cost of
resources in idle mode.

In brief, the evaluation of the prediction model is essential to ensure that the
accuracy of the model meets the QoS and does not violate the SLA agreement.

44

Chapter 3. Literature Survey

3.7 Resource allocation and scheduling

Cloud computing has become a common approach for processing and executing
applications on a pay-as-you-go basis. As the demand for cloud-based appli-
cations grows, it is becoming more challenging to allocate resources effectively
based on user requests while still meeting the SLA between providers and users.
Furthermore, resource heterogeneity, the unexpected nature of demand, and the
diverse goals of cloud users make resource allocation in the cloud environment
even more challenging. As a result, both researchers and professionals have be-
gun significant research efforts to efficiently tackle the multiple issues associated
with cloud resource allocation [8].

Therefore, in order to allocate resources effectively and meet the QoS, there
are numerous mechanisms that can be used to perform the allocation and the
scheduling [5] and [84]. One of the ways of classifying resource allocation ap-
proaches is based on optimisation objectives (such as the QoS objective) or the
pricing objective.

QoS objective:

Under the QoS objective there are several resource allocation approaches such as
QoS-based, priority-based, and guaranteed admission control. The QoS-based
approach allocates the resources that are available for a given period of time
using a discovering intermittently available resources (DIAR) algorithm. Huang
and Venkatasubramanian [85] use the DIAR algorithm in a multimedia environ-
ment. Because their target is a multimedia environment, their work focuses on
providing continuous time when allocating the task. Therefore, limited network
bandwidth on the actual server might have an effect on the continuity of the
allocation. Even when using multiple servers during the process, if they do not
provide continuous allocation, the user might suffer poor QoS. The parameters
they consider as an input are, processor use, storage capacity and bandwidth,
requested video object identifier, start and finish time of the request, and the
request type [85].

Along with a QoS-based approach, a priority-based approach is also considered
to be under the QoS objectives. As shown in Figure 3.9, there are two stages
within the priority-based approach. The first stage of priority-based approach
is that the dispatcher receives applications from users and then sends them to a
pool of priorities. In the second stage the resource allocation algorithms sched-
ule the applications using an objective function and allocate resources which
support the least resource demanding applications. The targeted resources are

45

Chapter 3. Literature Survey

programs that are shareable between the applications, hard disks, printers, and
memory. The resource allocation looks into the priorities from high to low and
allocates the resources to the application. Then, an objective function is used
to evaluate the next application in terms of its cost. In terms of allocating
the resources, it uses Dijkstra’s algorithm which finds the maximum bandwidth
path between the resource allocation and the target [4].

Figure 3.9: Priority-based resource allocation. Extracted from
[4].

Singh et al. [5] survey different resource allocation strategies. One of the ap-
proaches covered is guaranteed admission control which considers two factors
when admitting a task to be scheduled. These are task execution time and
deadline which are related to the QoS objective. This approach ensures that all
applications admitted to a system will meet their respective deadlines without
forcing other running applications to miss theirs. Figure 3.10 shows an analysis

46

Chapter 3. Literature Survey

of WCET against deadline. If the WCET of the application and its task is
less than the deadline, the application is considered to be schedulable and can
be admitted and allocated to the right core to be executed as shown in Figure
3.10. Otherwise, the application is not schedulable and the allocation will not
proceed.

Figure 3.10: Guaranteed admission control. Extracted from
[5].

Figure 3.11: Guaranteed admission control. Extracted from
[5].

Multi-processor real-time scheduling entails designing a system with multiple
CPUs to share a load or a set of tasks in a distributed way. This schedule
may be achieved through symmetric or asymmetric scheduling. Asymmetric

47

Chapter 3. Literature Survey

scheduling in a cloud infrastructure would entail a master processor that dis-
tributes, or assigns all I/O tasks to other processors in the same VM. The other
processors only will execute the user code but deliver outputs in significantly
faster timelines. This mode of scheduling is ideal for a single-user setting, such
as a dedicated cloud server for a given organization [86].

In real-time system, three different real-time system types can be distinguished
depending on the consequences of missing a deadline. In a hard real-time
scheduling, any deadline that is missed is considered as a system failure. This
scheduling is widely utilized in engineering or health systems where failure to
meet timing requirements results in the loss of lives or products. In firm schedul-
ing, it does not compromise the proper behavior of the system yet the task’s
late completion is useless. Whereas in soft scheduling, it is possible to often
miss deadlines, and as long as tasks are completed on time, the results are still
valuable. Up until the deadline, completed tasks could be worth more and less
as time goes on [87].

Dziurzanski and Singh in [88] have considered a firm real-time scheduling in
their work. They proposed a DVFS-based (dynamic voltage and frequency
scaling) feedback control technique for a firm task allocation on Multiprocessor
Systems-on-Chips (MPSoC) systems to increase energy efficiency. The newly
created admission control algorithm performs a schedulability analysis taking
into account the states of the prior platform and rejects the task that are ex-
pected to miss their deadlines.

According to Qureshi et al. in [4], a swift scheduling mechanism is a dynamic
scheduling technique that combines the advantages of heuristics approach. This
approach is used when it cannot reach an optimal solution and thus uses the
shortest job first (SJF) method which finds the smallest execution time and
higher priority in scheduling. The swift scheduling takes the incoming tasks
into queue. Using a heuristic function, the scheduling technique selects a task
from the queue. Reducing the waiting time in the queue is the main goal of
the technique. As it mentioned in the paper that swift scheduling shows a good
result with minimum cost and time comparison with first-come first-serve and
shortest job first methods.

There are numerous studies on managing GA execution in the cloud for exam-
ple [89] and [90]. In an industrial domain scheduling a new request as soon as
possible is an important step to achieve the QoS required by the user. Thus,
Shuai et al. [89] propose an approach that allows a multi-objective GA to be

48

Chapter 3. Literature Survey

executed on multiple sub-populations (islands). Their goal is to increase re-
sponsiveness and profit when a new manufacturing order arrives or there is a
change in the factory state. Therefore, the research considers real-world smart
factories. Salza and Ferruci [90] propose an approach in distributing GAs by
using a master-slave model where the master places the individuals in a request
queue which then distributes them in a round-robin fashion to the slave nodes.
Once the slaves have finished processing the individuals, they place them in a
response queue and return to the master node.

Devarasetty and Reddy in [91] introduce an improved resource allocation opti-
mization technique by using a GA that takes into account the goals of reducing
deployment costs and increasing QoS performance. The presented algorithm
takes into account various user QoS requirements and allocates resources within
the budget constraints. Total time and maximum budget for deployment of
application are examples of users’ requirements. In the chromosome represen-
tation, they consider user QoS demands as well as available resources. Thus,
the input parameter to the GA model is the users’ QoS requirements and the
output result of the GA model is a suitable resource for the user.

Pricing Objective:

The hybrid resource allocation technique is proposed by Shah et al. in [92].
This technique allocates grid resources by combining DLT and least cost method
(LCM) in a way as to minimise the total computational cost. Specifically, hybrid
resource allocation divides the tasks into equal sized portions and allocates them
to the processing resources using the LCM technique.

Several approaches are considered under-pricing and cost objectives, such as hy-
brid resource allocation, market-based, and combinatorial auction-based. Hy-
brid resource allocation combines two methods, divisible load theory (DLT),
and least cost method (LCM). The hybrid approach goal is to minimise the
computational cost by using DLT to divide the tasks into equal sized tasks and
then allocate them using LCM.

As resource allocation varies with the optimisation objective, the market-based
approach focuses on pricing between the user and the provider. One study that
uses a market-based approach is by Singh et al. [93]. They use an auction on a
many-core system. The resource manager can receive bids from the cores and
those that offer the highest bids are allocated the jobs that have the highest
value. Their goal is to maximise the overall value returned from the system.

49

Chapter 3. Literature Survey

3.8 Optimization problem models and solvers

Over the last two decades, the optimization field has experienced remarkable
expansion. To address a wide range of issues in engineering and management,
several novel theoretical, algorithmic, and computational contributions to opti-
mization have been proposed. The most effective approach to allocate limited
resources to accomplish particular goals is determined by organisations using
optimization models, which are mathematical models. These models can be
used for a wide range of issues, from finding out the best path for a delivery
truck to discovering the best combination of goods to stock in a store [94].

Although there are many different optimization model types, they all share a few
essential characteristics. A collection of decision variables representing different
possibilities will be present in an optimization model at the beginning. The
decision variables in a model, for instance, can represent the various routes that
could be taken in order to determine the most effective delivery service. Second,
a set of constraints that specify the upper and lower bounds for the decision
variables will be present in an optimization model. A limitation might specify,
for instance, that a delivery truck is only permitted to drive on particular routes
or that it must complete all of its deliveries within a specific window of time [95].

An optimization model will also include an objective function that specifies the
goal it is seeking to achieve. The objective function in the delivery truck example
might be to reduce the overall distance travelled. Though optimization models
are useful for a wide range of issues, they work particularly well for issues with
a variety of decision variables and constraints. Because of this, optimization
models are frequently employed in industrial engineering and other disciplines
that address challenging decision-making issues [96].

Genetic algorithms have been applied to optimize resource allocation by schedul-
ing to adapt the task requirements to the available memory in a cloud com-
puting system. Zhao et al. in [97] designed an optimized genetic algorithm to
schedule divisible and independent tasks as a function of the computation mem-
ory requirements. The outcomes indicate improvement in homogenous systems
but no significant improvement in heterogeneous systems. A similar challenge
was noted in a nonlinear programming problem, modelled with a mathematical
programming language (AMPL) and aiming at optimizing task scheduling on
multiple clouds based on a minimal cost constraint [98].

50

Chapter 3. Literature Survey

3.9 Summary

From the literature review, different domains within resource management show
that information from other components plays a key role in allocating the right
resources for the task. This starts with workload and workload deployment
which can assist during system testing. In order to avoid using a sensitive data
in workload a workload model can be used to extract the workload information
so that the experiment can be carried out in a more controlled environment
to allow more experiments to be done without the concern of having crucial
business data. One of the container-based technologies that is used to deploy
the workload is a Docker container along with Docker swarm and Kubernetes
as an orchestration system to manage task deployment. Both, Docker swarm
and Kubernetes are considered to be one of the state-of-the-art container-based
systems [28]. Therefore, we consider both of them as the baseline for our work
as it will help can compare our model against it.

Within Docker swarm, a spread strategy is used to allocate tasks to one of
the nodes based on monitoring information from the nodes which refers to the
number of containers per node. In order to avoid over or under provisioning
of resources, workload profiling can be used to determine the resources needed
for the current task. In addition, information from the platform about resource
use can help determine whether to scale resources up or down as it can reduce
the cost of the running of a new machine.

Among the other areas of resource management, resource allocation has a va-
riety of objectives that a provider can determine when allocating resources.
Using market-based resource allocation can maximise the revenue of the service
provider as it chooses the highest bid. On the other hand, admission control
can be used to manage task execution and one of the criteria when admitting
or rejecting a task is based on whether the response time is less than or equal
to the deadline.

Based on the investigations that have been reviewed, improving the resource
management is an important stage in increasing the QoS performance and one
of the common metrics is deadline. Most of the works consider deadline and cost
as two features for improving the resource management. However, in our work
we consider deadline and fitness achieved from the GA as two main features.
The aim of our work is to obtain for as many instances as possible, a GA output
which achieves a user-defined fitness level by a user-defined deadline.

51

Chapter 4

Experimental platform, metrics
and methods

A real application is required to assist in evaluating resource management pre-
sented in this thesis to test the hypotheses previously mentioned in section
1.4. Therefore, this chapter will provide deep knowledge of the applications
used in this thesis (mentioned in section 1.2). Once detailed knowledge of the
applications is provided, an approach will be presented. Further, a detailed
understanding will be gained for handling the GA application within container-
based technology, including different parameters the approach received as an
input to execute that GA application.

Several parameters can be received as input to a GA application, such as the
number of generations, the number of populations, and the application-specific
parameters. Application-specific parameters are used for different optimisation
problems, such as solving a Sudoku puzzle, where the GA application receives
the level of the Sudoku puzzle’s difficulty. The resource manager must receive
the actual deadline and the user-defined fitness level to compare them after
each iteration for the approach to check whether the task has achieved the
user-defined fitness level and reached the deadline.

Traditionally, The GA application can be executed using Docker Swarm or Ku-
bernetes since they are considered state-of-the-art container-based orchestration
systems. However, we proposed an orchestrator that resource management can
use to handle the GA application. Concerning the infrastructure to be used to
deploy the orchestrator, we used Amazon AWS as one of the cloud providers to
deploy the orchestrator and evaluate resource management.

52

Chapter 4. Experimental platform, metrics and methods

4.1 Encapsulation of genetic algorithm

We created an approach that containerises the GA so that the resource man-
ager, part of the orchestrator, could instantiate containers to execute the GA
application to manage different GAs, and its parameters passed on the user
requirement. This is illustrated in Figure 4.1, showing the inputs and outputs
of the GA that can be executed in a container. One of the input parameters
is a set of application-specific parameters. It is used when the GA application
solves a specific application. For example, the GA application is used to solve
the Sudoku puzzle. The application must receive the Sudoku puzzle’s difficulty
level for the GA application to solve that puzzle. Then, the application will
generate the puzzle based on that level. The other two parameters (i.e., the ini-
tial population and the number of generations) are used for the GA application
to start the process of finding a suitable solution based on the given problem.

A Docker image was created to execute the GA inside a container, which con-
tained the actual GA application and allowed the image to receive any inputs
that might be used when a container is instantiated. After the container is
executed, the output of the GA application will be processed. The final popu-
lation will contain a set of solutions that were determined to contain the best
solution for the problem that the GA tried to solve. Each individual of the
final population has a fitness value to define how good a solution is within the
population.

Genetic Algorithm

Set of application
specific parameters

Number of generations

Initial population

Final population

Fitness of each
individual of
population

.
 .

 .

Figure 4.1: Inputs and outputs of the GA.

4.2 Application model

The application model can formally describe the work that needs to be done
by the system. Generally, a workload consists of several jobs, and each job
consists of several tasks. In our work, we consider a workload as consisting
of one job and numerous independent tasks. Further, we consider real-time

53

Chapter 4. Experimental platform, metrics and methods

tasks based on the case studies presented in section 1.2: (i) allocating real-
time tasks to a multiprocessor system and (ii) Sudoku puzzles. Thus, each task
contains several parameters. Some of which are application-specific. Meanwhile,
others are related to the GA, such as the number of generations and the initial
population. Each of these tasks was a single unit without dependencies.

Beyond the number of generations and the initial population, two parameters
related to the first case study are the X-dimension and Y-dimension. These
parameters are the number of cores in a multiprocessors system. For example,
if X and Y are 3 by 4 (3 X 4), the system represents the core as a grid that
is 3 by 4. In addition to these parameters, there is Navs, which contains the
number of real-time tasks to be allocated into the multiprocessors system. On
the other hand, the second case study receives only one specific parameter,
which is the probability besides the GA parameters. This parameter is the
level of the Sudoku puzzle’s difficulty. The higher the level of the probability
is, the more difficult the puzzle will be. Once the GA application receives the
parameter, it will generate the puzzle to be solved.

Several parameters are common between the case studies to distinguish each
task in both case studies. One of them is a unique task ID so that the result
of that task can be clearly read and evaluated. Other parameters that exist in
both case studies are the fitness required and the deadline in seconds. Both pa-
rameters are fixed values and generated for the resource management to execute
the task and achieve the fitness required by the deadline. The tasks the resource
management handles do not arrive at the same time but one after the other.
Thus, the last parameter is the task waiting time. This parameter specifies the
time that the tasks need to wait before it sends to resource management.

4.3 Proposed orchestrator

In the proposed approach, the orchestrator consists of several components ded-
icated to managing the deployment of the GA workload. This is illustrated in
Figure 4.2. Every component of the orchestrator has its own roles and respon-
sibilities in handling the information related to the task or the node, such as
the number of tasks in a node, tracking the tasks’ response times, and the fit-
ness achieved. First, the client can submit numerous GA tasks, T={t1, t2, ..., tc},
which each provide a set of application-specific parameters, the fitness required,
and the deadline. The tasks arrive randomly every S seconds. Second, once the
resource allocation component receives the task, it requests information from

54

Chapter 4. Experimental platform, metrics and methods

the node observer component about the cluster. This information might be
the number of tasks in a node, CPU utilisation, or others that the resource
allocation algorithm needs to allocate the incoming task to a suitable node.

The node observer receives updated information about the cluster from the
Docker manager. This helps make the right decision when allocating the task
to a node. Once the resource allocation module allocates the task to a node,
the Docker manager handles the execution of the task on the specified node
and collects the results. Thus, the Docker manager has a set of n nodes
N={N1, N2, ..., Nn} that execute the task in a Docker container based on the
tasks’ information and each node created as a Docker machine.

In this thesis, as the resource allocation module sets the number of generations
and initial population for the GA, each of the following chapters has its own
assumption of the tasks and the allocation technique. They will be introduced
in each chapter.

Client

Resource
Allocation

Docker
Manager

Node
Observer

Node-1 Node-2 Node-n

Request task

Allocate task to node Request / get node
 information

Execute task

Collect information

Orchestrator

Update information

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 4.2: Proposed orchestrator.

4.4 Metrics

In this thesis, we consider a hard deadline and achieving the user-defined fit-
ness level. Thus, resource management aims to maximise the number of tasks
executed on time and achieve the fitness required. Therefore, this section is

55

Chapter 4. Experimental platform, metrics and methods

related to some observed properties of the workload when the orchestrator ex-
ecutes it. The resource allocation policies used may affect the tasks’ results on
the response time, or the fitness achieved. Moreover, the metrics used in this
section can be employed in a resource management approach and for comparing
and evaluating different resource management policies.

Complete task response time:

As the tasks may go through several iterations during their execution, the com-
plete response time of a task is calculated from the arrival of the task until the
end of its execution when the task terminates.

Execution of a single iteration:

The execution of a single iteration is calculated from when it arrived until the
end of its execution at that iteration. This is because tasks may go through
multiple iterations throughout their execution.

Task waiting time:

The task waiting time is the time from the arrival of the task until the resource
allocation allocates one of the available nodes to it.

Fitness achieved:

Once the resource allocation allocates the task to a node, the Docker manager
will handle the execution of the task. Once the task is finished running the
iteration or it completely finished the execution, the result of the task will be
collected. One of the results collected concerns the fitness achieved, which can
determine whether the task has met the user-defined fitness level or not.

Number of successful tasks:

Once the tasks finish executing and the results are collected, a task is considered
successful if the complete response time is less than or equal to the user-defined
deadline. Further, the fitness achieved must be greater than or equal to the
user-defined fitness level.

4.5 Experimental method

We considered the Docker Swarm and Kubernetes as the baselines to compare
the proposed approaches for making a fair comparison. The baselines and pro-
posed approach are assessed at the same load level to ensure a fair comparison.

56

Chapter 4. Experimental platform, metrics and methods

The reason for choosing these baselines is that they are considered state-of-the-
art container-based technology. Thus, we created a cluster of 12 nodes in the
baselines and approaches. Further, the baselines and approaches will receive the
incoming task randomly every S second (i.e., 10–20 seconds). The workloads
are based on the case studies mentioned in section 1.2, where we generated
20 workloads (10 workloads for each case study), and each workload contains
150 tasks. Testing the approaches and the baselines with different workloads
will help provide a greater understanding of the result during the evaluation.
Further, it will help in quantitatively analysing the approaches.

Once the incoming task is received by either the master node (from the baseline)
or resource allocation (from the orchestrator), one of the allocation policies will
allocate the task to a suitable node (e.g., the spread strategy in Docker Swarm).
In this thesis, we proposed several allocation policies to handle the allocation of
incoming tasks. Once the task has finished the execution, the result is written
in a log file, and the container is removed.

In our work, we conducted a series of experiments to assess our approaches.
AWS EC2 instances (type t2.micro) used for these experiments have 1 VCPU
and 1 GiB memory, and the operating system is ubuntu. The first step is to
create two instances of t2.micro. This instance is for the user to send the task
and the other instance is for the resource manager to receive and allocate the
tasks.

On the resource manager instance, we need to install the Docker engine to create
a Docker machine and handle the execution of the tasks. Once the installation
is done, then the experiments presented in this research can be reproduced by
following the steps below:

1. In the resource allocation java file ("ResourceAllocation.java"), we need
to choose the approach that needs to be used in the experiment.

2. Run command
java -cp .:lib/* Orchestrator.MainProcess
in the terminal to start the resource manager which then starts by cre-
ating the nodes (Docker machines) that will be used in the experiment.
After each node creation, the applications will be downloaded using "Con-
figNode.sh" which handles the downloading on each node.

3. Once step two is done, on the user instance we need to run the command
java Userpart.Client

57

Chapter 4. Experimental platform, metrics and methods

which will connect to the resource manager instance and start sending the
tasks.

All the required files along with detailed instructions to reproduce the results,
are available at https://gitlab.com/ta835/resource-management

4.6 Summary

In conclusion, this chapter introduces a key point that the rest of the thesis
depends on. An encapsulation of the GA is introduced so that resource man-
agement can instantiate as many Docker containers as needed. Each Docker
container can have a different configuration based on this thesis’s task infor-
mation and case studies. Aside from the baselines, the approaches presented
in this thesis will use the proposed orchestrator implemented using Java. We
generated 20 workloads for both case studies to evaluate the approaches and
compare them against the baselines. We collected two metrics to be used in the
evaluation during the experiments: the response time and the fitness achieved.

58

Chapter 5

Management of container-based
genetic algorithm workloads over
cloud infrastructure

Cloud infrastructure has been widely used to support engineering applications.
The fast and efficient execution of software tools can contribute to prompt re-
sponses and solutions to engineering problems. One specific type of load that
often appears as part of engineering applications is optimisation. In many
cases, optimisation software uses meta-heuristics such as GAs [13]. GAs pro-
vide optimisation solutions in various domains, such as smart factories [14] and
embedded multiprocessors [15]. The number of generations, the initial popu-
lation, and a set of application-specific parameters are examples of parameters
that can be input for a GA. Additionally, a solution with the desired fitness
for a specific problem is often necessary, with this fitness fulfilled by a given
deadline. A prediction feature can be used to determine the fitness by a given
deadline when executing the GA workload. Therefore, this chapter proposed
two approaches to investigate this hypothesis.

In a situation where a container orchestrator (Docker Swarm or Kubernetes) has
been used to deploy and manage the execution of the application, the resource
scheduling process is part of the orchestrator and decides where to allocate the
task. Thus, container-based orchestration systems allow applications to be exe-
cuted in shared resources with fast and flexible deployment. One platform that
can deploy workloads is Docker, an abstraction to help organise the workload,
hide the details and deploy the application in an isolated environment [27].
Docker Swarm and Kubernetes are considered state-of-the-art container-based
orchestration systems [28].

59

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

Improving resource management is considered an essential part of managing a
specific GA workload. This allows the task to meet the deadline and achieve
the fitness level required by the user. We assume that only one task is executed
at a time per cloud node in this chapter. A queue can reserve the tasks until
enough resources are available to process them. Therefore, this chapter proposes
a novel approach to manage different GA workloads and compare them against
the baselines. Additionally, the chapter examines how well this approach im-
proved the number of tasks executed on time and whether the tasks achieved
the required fitness level. There is an iteration process when executing the task.
Therefore, we considered iteration analyses. In addition, because performance
prediction has been used in this chapter, an evaluation technique must be used
to determine the efficiency of the approach. One of the techniques for evaluat-
ing the prediction approach’s effectiveness is to use a prediction error analysis,
which will be done to evaluate the prediction approaches.

5.1 Comparing different allocation techniques

Based on the different models mentioned previously, the resource allocation
module receives the incoming tasks from the client, and it requests from the
node observer the node that is available to handle that task. Based on this
information (i.e., the incoming task like deadline and the information from the
cloud platform like number of task in a node), resource allocation can decide
on which node a task is submitted for execution. Various allocation decisions
are possible. This chapter proposes several approaches and compares them to
the Docker Swarm spread strategy and Kubernetes as baselines. Additionally,
for the baselines, we evaluate the following approaches: fitness tracking (FT),
fitness prediction (FP) and fitness prediction-based linear regression (FPLR).

5.1.1 Fitness tracking (FT):

This approach aims to keep track of the achieved fitness and compare it with the
user-defined fitness requirement. Additionally, the approach aims to improve
the number of tasks, which a) are executed on time and b) achieve achieve the
fitness required by the user.Thus, the task will continue executing tracking until
it reaches the deadline or has achieved the user-defined fitness requirement.

Furthermore, the task goes through several iterations. It has a fixed number
of generations at each iteration to track the time taken to execute the task,
and the fitness achieved, as illustrated in Figure 5.1. Once the task is received,

60

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

either an available node will execute the task or it is placed in a queue. After the
task is allocated to a node, the task starts at the initial iteration and stores the
time it takes, and the fitness achieved. It further sets the maximum number
of iterations that the task can go through. At each iteration, the task will
continue to execute for a fixed number of generations using the best results
from the previous execution. This is because every time we execute the GA
application, it gives similar or better results than the previous time. This
process continues until the task reaches the deadline, the fitness achieved is
higher than the required fitness, or it reaches the maximum number of iterations.

Ready State Node Selection Initial Stage

Process S stages

Received task/
find a node

Node found /
Start executing the task

[Time >= deadline] / drop task and write result

[Fitness achieved >= fitness required] / done and write result

[Time < deadline &
fitness achieved <
fitness required] /
 set max stage

[Time < deadline &
fitness achieved < fitness required &
currentStage(S) < maxStage] /
 S +1

[Time >= deadline] / drop task and write result

[Fitness achieved >= fitness required] / done and write result

[current stage > max stage] / done and write result

[nodes = 0] / Insert into queue

Visual Paradigm Online Diagrams Express Edition

Visual Paradigm Online Diagrams Express Edition

Figure 5.1: State machine of fitness tracking approach (FT).

5.1.2 Fitness prediction (FP):

In FP, although we are executing a fixed number of generations at each itera-
tion, we use a polynomial prediction to predict the fitness achieved at a given
time similarly to FT. In this section, we assume a second-degree polynomial
prediction model. The prediction is used to find the relationship between the
independent variable (time taken) and the dependent variable (fitness achieved).

Predicting the fitness value of a problem-solving process based on a given dead-
line is the aim of fitness-required forecasting for quadratic cases. The mathe-
matical model for the quadratic case is illustrated in equation 5.1. As the new
data points become available when running the approach, the coefficient values
become updated and then can predict the fitness required at a given deadline.

61

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

F (t) = C +m1× t+m2× t2 (5.1)

Where:

- F(t) is the fitness value at time t which means at a given deadline.

- C is the intercept.

- m1 is the coefficient associated with the linear term, indicating the rate of
change of fitness with respect to time.

- m2 is the coefficient associated with the quadratic term, capturing the curva-
ture of the fitness curve over time.

In this approach, we use the prediction to predict the fitness achieved by the
deadline. Additionally, for the FT approach conditions, each iteration will check
whether the fitness predicted is better than or equal to the fitness required
based on the previously observed current task data. Based on Figure 5.1, we
set the predicted fitness as the fitness required to go to the next iteration and
then collect more points that can be used in the prediction. After the second
iteration, the prediction value is updated based on the observation points from
the first and second iterations.

5.1.3 Fitness-prediction-based linear regression (FPLR):

The prediction used in the previous approach (FP) was a polynomial prediction
based on the observation data as the task goes through the iterations. In doing
this, all observation data collected from each iteration are considered when
updating the fitness prediction. Concerning the fitness prediction for FPLR, a
linear regression prediction is used to forecast the fitness achieved at a given
time. The FPLR approach uses predictions based on the last two observed data
points to predict the fitness for the next iteration.

Although the relationship between the dependent and independent variables is
best approximated using a polynomial prediction, one or two outliers in the
data might significantly impact the result of the nonlinear analysis On the
other hand, using the linear regression approach is less complex concerning
its implementation and provides satisfactory outcomes. On the negative side,
the linear regression assumes that the relationship between the dependent and
independent is a straight line. Further, linear regression is too simple to describe
the complexities of the real world.

62

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

F (t) = C +m1× t (5.2)

We are interested in predicting the fitness required of a problem-solving process
based on the computing time (t) spent on the problem in the context of fitness
function forecasting in a linear case. We apply a basic linear model as illustrated
in equation 5.2. Where:

- F(t) is the fitness value at time t which means in our case at a given deadline.

- C is the intercept.

- m1 is the coefficient that represents how the fitness value changes with respect
to computation time t.

We can use a technique like linear regression to determine the values of co-
efficients C and m1. During the problem-solving process, the technique will
collect data points which result in updating the estimated value for C and m1
iteratively.

Thus, each iteration checks whether the fitness predicted is better than or equal
to the fitness required based on previously observed current task data. As
illustrated in Figure 5.1, we set the predicted fitness as the fitness required
to go to the next iteration, with additional data observations collected for the
prediction. In processing the iterations, an additional condition is also used (the
fitness prediction) to determine whether the task can achieve the required fitness
by the deadline. After the second iteration, the prediction value is updated
based on the observation points from the first and second iterations.

5.1.4 Fitness-prediction-based weighted least square curve

fitting (FPWLS)

FPWLS uses one of the curve fitting approaches which is weighted least square
to predict the fitness achieved at a particular time, much like FP. Similar to the
FP, we assume a weighted least square of the second-degree polynomial predic-
tion model in this section. As the name suggests, Weighted Least Square is a
method for accounting for the influence of each data point by giving each data
point the appropriate amount of weight in relation to the parameter estimate.

Like other Least Squares, weighted Least Squares is an effective technique that
uses weights that are inversely related to the variance. It is similar in that it
can offer many kinds of simple-to-understand statistical intervals for estimation,

63

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

prediction and optimization. One of the benefits of weighted least squares is
its capacity to handle regression scenarios where the quality of the data points
varies. Another benefit, it works well for getting the most information out of
small data sets. The major disadvantage, it requires knowing the exact weights.
Results from weight estimation might be unreliable, especially when working
with small samples. In our work, each data point is considered to be important
since we are dealing with a small data set.

In this method, we forecast the fitness achieved by the deadline using WLS.
Similar to the previous approaches, the fitness predicted for the FT approach
conditions will also be compared to the fitness required based on the previously
observed current task data in each iteration to see if it is better or equal. We
set the predicted fitness as the fitness necessary to proceed to the next itera-
tion based on Figure 5.1 and then gather more data that can be used in the
prediction.

5.2 Evaluation

This section will examine the different approaches and baselines concerning how
well they improve task execution. First, an experimental setup will be discussed,
followed by an experimental result. In the experimental result, there will be
several evaluations of the result. For example, one could compare different
approaches regarding the number of successful tasks in each approach. Since
two approaches are used for the prediction, a performance prediction error will
be used to compare their predictions. Then, an iteration analysis will be done
to check the behaviour of the tasks when they go into an iteration process.

5.2.1 Experimental setup

In this experiment, we used the proposed orchestrator in Figure 4.2, as men-
tioned and explained in Chapter 4. Thus, we created a cluster of 12 nodes for
both the baselines and the proposed approaches that could execute the incom-
ing workload. As mentioned in Chapter 4, the user can submit a workload to be
executed in one of the created nodes. Then, resource allocation can receive an
incoming workload randomly every S second (i.e., 10–20 seconds) and allocate
the task to the available node. In this chapter, we assume that the node can
execute only one task per cloud node.

Since we have a deadline for managing the GA workload in this chapter, the
experimental work aims to evaluate different approaches such as FT, FP and

64

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

FPLR and compare them against Docker Swarm and Kubernetes baselines.
Additionally, the first experimental hypotheses (related to managing the GA
workload) will be investigated in this section of the evaluation. During the
evaluation, we consider two metrics: the response time and the fitness achieved.
The importance of collecting these metrics is to find the number of successful
tasks. In our work, we can say that the task is considered a successful task only
when it achieves user the defined fitness level by the deadline.

Regarding the workload, we consider two specific kinds of GA workloads: allo-
cating real-time tasks to a multiprocessor system and Sudoku puzzles. Thus, the
GA is fed with problem-specific parameters needed for these case studies. The
number and types of tasks to be allocated and interconnects of the multipro-
cessor are example parameters related to the real-time multiprocessor problem.
However, the difficulty level of the puzzle is an example parameter related to
the Sudoku puzzle.

When generating the previous workload, we generated real-time tasks with a
task ID, x-dimension, y-dimension and navs. The x-dimension and y-dimension
are the number of processors in a multiprocessor system, and navs contain the
number of real-time tasks. Further, we generated the level of difficulty for the
Sudoku puzzle optimisation problem. These parameters will be passed to the
genetic algorithm for an application-specific domain. Additionally, we generated
the fitness needed to be met for each task when the task finished executing and
a fixed deadline in seconds.

Our experiment used Amazon Web Services EC2 instances to deploy our or-
chestrators and run the experiments. The node used was t2.micro (1 VCPU
and 1GB memory), running on the Ubuntu Linux operating system. Since we
have two main parts of the orchestrator (the user who sent the workload and
the rest of the orchestrator), there were two EC2 nodes for each client and the
orchestrator. Therefore, the client could send a task for the resource allocation
to receive. We created additional 12 nodes to handle the execution of the tasks
to have a fair comparison between the proposed approaches and the baselines.

5.2.2 Experimental results

We considered two case studies (real-time multiprocessors allocation and Su-
doku puzzles) mentioned in section 1.2. In our work, we ran 10 experiments
on each case study. Thus, we executed 150 tasks on the FT, FP, FPLR and
FPWLS approaches in each experiment and the Docker Swarm and Kubernetes.

65

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

We collected two metrics: the response time and the fitness achieved. The re-
sults show that the approach we implemented (FPWLS) performed better than
the FT, FP and FPLR approaches and the Docker Swarm and Kubernetes in
the first case studies. In the second case study, the result of FPWLS shows that
the approach pull-back compared with the other approaches. In more detail,
the median observed results of FPWLS in the first case study were higher than
the median observed results in the other approaches, as shown in Figure 5.2
and 5.3.

FT FP FPLR FPWLS Docker_Swarm Kubernetes
50

60

70

80

90

100

110

nu
m

be
r

of
 s

uc
ce

ss
fu

l t
as

ks

Figure 5.2: Results of 10 experiments of different approaches
and different GA workloads (real-time multiprocessor allocation)

concerning the number of successful tasks.

66

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

FT FP FPLR FPWLS Docker_Swarm Kubernetes40

50

60

70

80

nu
m

be
r o

f s
uc

ce
ss

fu
l t

as
ks

Figure 5.3: Results of 10 experiments of different approaches
and different GA workloads (Sudoku puzzle) concerning the

number of successful tasks.

As shown in Figure 5.2, the FT approach has 16% more successful tasks than
the Docker Swarm and Kubernetes, whereas the FP approach has achieved 21%
more successful tasks. In addition, the FPLR has achieved 26% more successful
tasks. Further, the FPWLS achieved a higher percentage than FT, FP and
FPLR, with 29% more successful tasks. Conversely, FPLR achieved a higher
percentage of successful tasks with 13% than FP with 9%, FT with 5% and
FPWLS with 11% more successful tasks (Figure5.3).

The reason for the results in the Docker Swarm and Kubernetes (state-of-the-
art container-based orchestration systems) is that they both execute the task
in a single execution. Therefore, the container executed and reported back the
result, regardless of the condition. However, in FT, FP, FPLR and FPWLS,
we forced the GA containers to run in iterations to keep track of and predict
the fitness, considering the tasks’ deadline. Once the results were obtained, we
compared them with the desired results. Additionally, the approaches could
tune the number of generations passed to the GA container to ensure they did
not exceed the current task’s deadline. Having these features over the Docker
Swarm and Kubernetes allows us to achieve more successful tasks as shown in
the previous results.

67

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

Approach f -ratio P -value
FT vs. Docker Swarm 39.72 p-value is < .00001
FP vs. Docker Swarm 61.28 p-value is < .00001

FPLR vs. Docker Swarm 138.90 p-value is < .00001
FPWLS vs. Docker Swarm 174.64 p-value is < .00001

Table 5.1: One-way ANOVA test comparing the FT, FP, FPLR
and FPWLS approach against Docker Swarm in real-time mul-

tiprocessor allocation case study.

We compared the results using one-way analysis of variance (ANOVA) tests to
statistically demonstrate the difference between the results obtained from the
experimental approaches. As seen from the previous result that Docker Swarm
and Kubernetes achieve similar results in both case studies, we use Docker
Swarm to compare our results against it when analyzing the result using the
ANOVA test.

Thus, the f-ratio is the variation between the approaches’ mean values based
on the f-ratio. The p-value can be obtained and compared to the significance
level (0.01, 0.05, or 0.10). As illustrated in table 5.1, the result shows that the
F-ratio is 39.72 when comparing FT against Docker Swarm whereas the p-value
(p-value < 0.00001) is less than the significance level of 0.05. Therefore, at the
95% confidence level, it can be observed that there is a significant difference
among the other approaches when we compare them against Docker Swarm.

Approach f -ratio P -value
FT vs. Docker Swarm 7.81 p-value is .011949
FP vs. Docker Swarm 19.20 p-value is .00036.

FPLR vs. Docker Swarm 41.66 p-value is < .00001
FPWLS vs. Docker Swarm 30.85 p-value is .000028

Table 5.2: One-way ANOVA test comparing the FT, FP, FPLR
and FPWLS approach against Docker Swarm in Sudoku puzzle

case study.

On the other hand, we used the ANOVA test for the second case study (Sudoku
puzzle). We compared FT approach against Docker Swarm. As illustrated in
table 5.2, the result shows that the f-ratio value is 7.81 when we compare FT
approach with Docker Swarm, whereas the p-value is 0.011949 which is less than
the significance level of 0.05. Therefore, at the 95% confidence level, it can be
observed that there is a significant difference among the approaches. Similarly,

68

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

it can be observed that the results of the other approaches are significant when
comparing them against Docker Swarm.

Further iteration analysis of the approaches was carried out using both case
studies: real-time multiprocessor allocation and the Sudoku puzzle. The itera-
tion analysis is related to the number of iterations that the tasks go through to
achieve the desired result. Several points can be observed in Figures 5.4, 5.5, 5.6
and 5.7. As illustrated in Figure 5.4 and 5.5, the FPLR approach could reduce
the number of iterations compared to the FT, FP and FPWLS approaches. The
reason for reducing the number of iterations is that some tasks were dropped
earlier due to the fitness prediction condition in the FPLR approach. In addi-
tion, the number of observed data points that are considered in the prediction
models (e.g. FP, FPLR and FPWLS) are small which may have some effects
on the number of tasks done or dropped at each stage.

Conversely, the same analysis has been applied to a second case study, showing
that the FP approach has reduced the number of iterations that the task can
go through compared to the FT, FPLR and FPWLS approaches. As shown
in Figure 5.6 and 5.7, most of the approaches did not reduce the number of
iterations as was seen in the previous case study (Figure 5.5). This is because
some tasks take longer (concerning the number of generations and iterations)
to solve the Sudoku puzzle. Further, related to the puzzle’s difficulty, there
is a low number of difficulty levels of the puzzle, needing a larger number of
generations to find a solution. Furthermore, FPLR has a smaller number of
tasks beyond the eleventh iteration compared to the FT approach.

The GA applications that we are dealing with in this research are configured
to achieve similar or better results. Therefore, as explained previously, some
tasks can be dropped when using FP, FPLR or FPWLS, reducing the com-
putational cost of running the task. Based on the result achieved, FPWLS
has achieved 29% more successful tasks in the real-time multiprocessor alloca-
tion whereas 11% more successful tasks in the Sudoku puzzle than the FT and
FP approaches while it is closer to FPLR approach with 13% more successful
tasks. Additionally, the prediction approaches used in FP, FPLR and FPWLS
can identify whether the task can reach the user-defined fitness based on the
observed data points of the current task. Based on these approaches, the task
can continue to execute or be dropped early.

Since FP, FPLR and FPWLS use predictions to forecast the fitness achieved at
a given iteration, we used the root mean square error (RMSE) and mean abso-
lute error (MAE) measurements to evaluate the performance of the prediction

69

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(a) FT approach.

1 2 3 4 5 6 7 8 9
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(b) FP approach.

Figure 5.4: The number of tasks done and dropped in each
iteration of the real-time multiprocessor allocation in FT and

FP approaches.

70

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

1 2 3 4 5
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(a) FPLR approach.

1 2 3 4 5 6 7 8 9
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(b) FPWLS approach.

Figure 5.5: The number of tasks done and dropped in each
iteration of the real-time multiprocessor allocation in FPLR and

FPWLS.

71

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(a) FT approach.

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(b) FP approach.

Figure 5.6: The number of tasks done and dropped in each
iteration of the Sudoku puzzle in FT and FP approaches.

72

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(a) FPLR approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0

10

20

30

40

50

60

70

80

90

Nu
m

be
r o

f t
as

ks

Done
Dropped

(b) FPWLS approach.

Figure 5.7: The number of tasks done and dropped in each
iteration of the Sudoku puzzle.

73

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

approaches. RMSE and MAE measure the difference between the predicted
value at a given iteration and the achieved value at a given iteration, as shown
in Equations (5.3) and (5.4). A lower value of RMSE and MAE demonstrates
a better result. In addition, they show how far the predicted values are from
the actual values [99].

RMSE =

√√√√∑n
j=1 (xj − x̂j)

2

n
(5.3)

MAE =
1

n

n∑
j=1

|xj − x̂j| (5.4)

where xj is the observed value, and x̂j is the predicted value. Thus, the pre-
diction error unit in the figure is the fitness function. As shown in Figures 5.8
and 5.9, the results of the 10 experiments of the FP, FPLR and FPWLS show
that FP has a lower median than the FPLR and FPWLS approaches in both
applications (real-time multiprocessor allocation and the Sudoku puzzle). Fur-
ther, the results demonstrate that FP has better accuracy in both MAE and
RMSE. The reason for such results is that FPLR uses a linear regression pre-
diction, which is optimistic concerning giving an early prediction result. Since
we have small data-points to be used in the FPWLS approach which is one of
its drawbacks, the approach performed worse than other approaches in terms
of prediction error.

Since the MAE and RMSE look into the prediction error and compare the
approaches, these measurements did not show the change in the prediction
error across the iterations. This can be shown in Figures 5.10 and 5.11. In both
figures, the delta fitness is taking the absolute value of the difference between
the fitness achieved and the fitness predicted. Further, the prediction has not
been used during the first or second iteration. Therefore, the actual prediction
errors start from the third iteration. Figure 5.10 shows that the FP and
FPWLS approaches achieved a similar result concerning the delta fitness across
the iterations, whereas the FPLR approach starts with a high delta fitness and
gets lower in further iterations.

On the other hand, Figure 5.11 shows that the tasks in both approaches reach
the maximum number of iterations. Further, the delta fitness starts high and
slightly gets lower as the tasks go on in further iterations. Additionally, the
median of delta fitness of the FPLR approach achieves better results than FP

74

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

FP FPLR FPWLS0

10

20

30

40

50

60

70

Pr
ed

ict
ion

 e
rro

r

(a) MAE prediction error.

FP FPLR FPWLS0

10

20

30

40

50

60

70

Pr
ed

ict
ion

 e
rro

r

(b) RMSE prediction error.

Figure 5.8: Prediction errors of the real-time multiprocessor
allocation.

75

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

FP FPLR FPWLS
0

15
30
45
60
75
90

105
120
135
150
165
180

Pr
ed

ict
ion

 e
rro

r

(a) MAE prediction error.

FP FPLR FPWLS
0

15

30

45

60

75

90

105

120

135

150

165

180

Pr
ed

ict
ion

 e
rro

r

(b) RMSE prediction error.

Figure 5.9: Prediction errors of the Sudoku puzzle.

76

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

3 4 5 6 7 8 9
Stages

0

5

10

15

20

25

30

35

40

45

50
De

lta
 fi

tn
es

s

(a) Delta fitness of FP approach.

3 4 5
Stages

0

5

10

15

20

25

30

35

40

45

50

De
lta

 fi
tn

es
s

(b) Delta fitness of FPLR approach.

3 4 5 6 7 8 9
Stages

0

5

10

15

20

25

30

35

40

45

50

De
lta

 fi
tn

es
s

(c) Delta fitness of FPWLS approach.

Figure 5.10: Delta fitness of the real-time multiprocessor allo-
cation.

77

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Stages

0

5

10

15

20

25

30

35

40

45

50
De

lta
 fi

tn
es

s

(a) Delta fitness of FP approach.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Stages

0

5

10

15

20

25

30

35

40

45

50

De
lta

 fi
tn

es
s

(b) Delta fitness of FPLR approach.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Stages

0

5

10

15

20

25

30

35

40

45

50

De
lta

 fi
tn

es
s

(c) Delta fitness of FPWLS approach.

Figure 5.11: Delta fitness of the Sudoku puzzle.

78

Chapter 5. Management of container-based genetic algorithm workloads over
cloud infrastructure

and FPWLS. The figures show that the FP and FPWLS approaches averages
across the iterations fall above 5 for the fitness achieved, whereas the FPLR
approach falls below 5 for the fitness achieved.

Designing a system that simultaneously fulfils the majority of real-time tasks
on time and achieves the user-defined fitness level is challenging due to the
initial assumption that the workload is unknown in advance. The goal of this
research is to propose solutions that outperform the state-of-the-art container-
based orchestration systems (e.g. Docker Swarm and Kubernetes). Both Docker
Swarm and Kubernetes can handle the GA tasks but they only execute them
without taking into consideration the user-defined fitness level and the timing
constraints. Hence, we utilize these features in our work in such a way as to
improve the result.

Furthermore, the idea behind these approaches is to develop a solution that is
close to the baseline in order to have a fair comparison. In addition, our interest
in the prediction models used is to drop the tasks that might not achieve the
user-defined fitness level by the deadline even if there was no change in the
fitness. By doing this, we allow the tasks that are in the waiting queue to be
allocated to a node and start the execution which results in reducing the waiting
time.

5.3 Summary

In general, the work in this chapter attempts to manage the GA workload
in a container-based environment by considering two case studies (the real-
time multiprocessors allocation and the Sudoku puzzle). To this end, we have
proposed the FT, FP, FPLR and FPWLS approaches to improve the number
of tasks executed on time and achieve the fitness required by the user. After
running the 10 experiments and comparing FPWLS against the FT, FP and
FPLR approaches, the FPWLS approach achieves better results and improves
the total number of tasks executed on time while attaining the required fitness.
Although prediction models usually require a suitable data sample to be used
during the training of the models, the prediction model that has been used in
FP, FPLR, and FPWLS is able to predict given the data points provided from
executing the task.

79

Chapter 6

Handling node interference in
managing genetic algorithm
workloads

Chapter 4 discussed the orchestrator’s model used in our experiment and the
containerisation approach, which allows the resource manager to instantiate
as many GA containers as needed. Further, the chapter explains the metrics
collected to be used in the evaluation. On the other hand, Chapter 5 examined
the management of container-based GA workloads over cloud infrastructure.
However, one limitation that can be observed from this chapter is that resource
management cannot handle node interference. Therefore, only one task can be
executed per cloud node.

However, this chapter presents a weight-based node interference approach. The
node interference happens when two or more tasks are executed in the same
cloud node. This approach is designed to handle node interference and allow
multiple tasks without negatively impacting previously allocated workload. The
approach considers collecting information from the workload during the execu-
tion to achieve this and uses it to determine which node can achieve the goal of
the approach.

There are two metrics that the approach used to handle node interference:
slack time and fitness achieved. Thus, the proposed approach in this chapter is
evaluated using a similar evaluation as the previous chapter. Experimental work
is undertaken on each of the features and is compared to the baselines (Docker
Swarm and Kubernetes), and the FT approach from the previous chapter.

80

Chapter 6. Handling node interference in managing genetic algorithm
workloads

6.1 Weight-based node interference approach

Our algorithm intends to find a feasible allocation for the GA workload to meet
the user-defined QoS constraints. In other words, the response time of each
task must not exceed the user-defined deadline, and the fitness achieved from
executing the task must not be lower than the user-defined fitness level. In
this subsection, we propose a metric called weight to represent the workload
handled by a particular node at each point in time. We then use that metric
to guide our allocation process so that new workloads are placed on the nodes
more likely to handle them without negatively impacting previously allocated
workload.

In our work, node interference happens when there is more than one task ex-
ecuted in a cloud node. As these tasks share the same resources, each task
executed in the same node can be affected owing to the sharing of resources.
Therefore, the weight of each node considers the task’s fitness achieved and slack
time, which is the time difference between the deadline and response time. As
the deadline and the achieved fitness of the task are important in our work,
the task goes through several iterations. Each iteration has a fixed number of
generations used to track the time taken to execute the task (response time)
and fitness achieved.

Concerning allocating an incoming task to a node, the resource allocation will
always allocate the incoming tasks to an idle node if an idle node exists. In
case all the nodes are busy executing other tasks, we use the weight of each
node. We calculate the normalised slack time of the task (NSTjk) to obtain
the weight of the nodes, as illustrated in equation (6.1). Simultaneously, we
find the normalised difference in the fitness of the task (NDFj), as shown in
equation (6.2). We used maxFAjk and FAjk to find the NDF to avoid dividing
it by zero value as FRj can be zero. Furthermore, as shown in table 6.1, three
nodes are an example, and each node has some tasks under the process of
execution. The table represents the information of currently executed tasks at
some point in time with NST and NDF values.

NSTjk =
Dj −RTjk

Dj

(6.1)

NDFj =

(
|FAjk − FRj|
maxFAjk

)
(6.2)

81

Chapter 6. Handling node interference in managing genetic algorithm
workloads

Node Tasks within
the node

Dj RTjk NSTjk FRj FAjk maxFAjk NDFj

node-1
task-1 88 30 0.659 0 6 27 0.22
task-2 125 3 0.976 9 14 14 0.357

node-2 task-3 130 10 0.923 18 35 35 0.485

node-3
task-4 198 94 0.525 0 8 26 0.307
task-5 191 8 0.958 9 42 42 0.785

Table 6.1: Example of data collection in each of the node while
executing tasks.

In the equation Dj is the deadline of the task, and RTjk is the response time
at the k iteration. As we are dealing with tasks’ response time less than the
deadline, we do not need to use the absolute value of Dj and RTjk. Further,
max FAjk is the maximum fitness achieved, as the fitness achieved is updated
after each iteration whereas FAjk is the fitness achieved at iteration k. Also,
FRj is the fitness required. The intuition behind NSTjk and NDFj is finding
the node of a task with a larger slack time and less fitness to be achieved, where
the effect of the new task will be less on the existing task.

As soon as the previous values are collected from each task j in node i, equa-
tions (6.1) and (6.2) will start the normalisation process. As such, we obtain
the final result of both NSTj and NDFj. Subsequently, we apply equation (6.3)
to determine the weight of each node in the cluster (Wi).

Wi =
n∑

j=1

NSTjk +NDFj (6.3)

Once we have the weights based on equation (6.3), we allocate the incoming
task to the node with the maximum weight value. This process ensures that
the incoming task will have a negative impact on the existing task when the
resources are shared. For example, we can apply and calculate the weight of
each node (table 6.1). Then, node-1 will have a total weight of 2.209, node-2
will have a total weight of 1.408, and node-3 will have a total weight of 2.575.
Based on these weight values of the nodes, the incoming task will be allocated
to node-3 as the node will have the maximum weight among the other nodes.

When executing two or more tasks in the same cloud node, the node might
reach a saturation point and at that point, some of the tasks might get more
resources than the other tasks closer to their deadline. Thus, We use a fixed

82

Chapter 6. Handling node interference in managing genetic algorithm
workloads

threshold of CPU utilisation to avoid the node from reaching a CPU saturation
point. Once a node reaches the threshold, we limit the tasks within the node
based on the tasks’ deadlines. In other words, the task that is closer to its
deadline will be allocated more CPU utilisation. We calculate the percentage
of the task based on its response time and how long the node executes the task
to limit the CPU utilisation of the tasks, as illustrated in equation (6.4).

PTj =
RTjk

Dj

(6.4)

We use algorithm (1) to illustrate the process of limiting the tasks within a node.
From line (1 - 7), Docker Manager, which is part of the orchestrator, collects
the CPU utilisation of each node in the cluster for every fixed interval by using
a Linux command ”head − n1/proc/stat” for calculating the CPU utilisation.
The information is then passed to the Node Observer to update every node and
its CPU utilization. At line 4, the Node Observer checks the fixed threshold
against every node in the cluster to see whether the node exceeded the threshold
which then flagged every node in the cluster with true if a node exceeded and
false if the node did not reach the threshold. Subsequently, from line (8 - 13), the
Resource Allocation checks every node with a true flag to limit every task within
that node based on equation (6.4). Assuming node-3 reaches the threshold for
the CPU utilisation, the node will be flagged true, and the Docker Manager will
use one of the Docker options, which is ("−− cpu =< value >") to specify the
CPU available for the task. This option allows the resource manager to limit
the CPU usage of a task. Taking an AWS EC2 instance with 1 CPU as an
example, the value range from 0.0 to 1 which means that −− cpu = 0.6 reflects
that the task will guarantee maximum of 60% of the CPU utilization.

Considering table 6.1, task-4 will guarantee maximum of ≈ 0.47 of the CPU,
while task-5 will guarantee a maximum of ≈ 0.05 of the CPU. In this case, the
task closer to reaching the deadline will be allocated more CPU to provide a
better chance to achieve the fitness required before the deadline. On the other
hand, once the CPU utilisation of the node is back to normal (less than the
threshold), all the tasks within that node will return to their normal state with
full access to the CPU.

For more clarification, the approach discussed in this section has several features
involved to assist resource management, such as NSTj, NDFj, Wi and Wi with
monitoring node utilisation. Each of these features can be used individually to
analyse their result. Since we are dealing with timing constraints, we use node

83

Chapter 6. Handling node interference in managing genetic algorithm
workloads

utilization to distribute the CPU among the existing tasks in the node based
on the percentage of the task.

Algorithm 1: CPU utilization control.
Input: CPU utilisation of nodei.
Result: Limit the CPU utilisation of each task.

1 nodeFlag = < nodei, false >;
2 for nodei in Nodes do
3 collect CPU utilisation for nodei;
4 if CPU utilisation for nodei > 80% then
5 nodeFlag = < nodei, true >;
6 end

7 end
8 if nodeFlag == < nodei, true > then
9 for taskj in nodei do

10 Compute PTj from equation (6.4) for each task;
11 limits the CPU usage for taskj based on PTj value.

12 end

13 end

6.2 Admission control for firm real-time task

Task allocation and scheduling algorithms that use admission control have been
shown to be useful in the case of dynamic workloads in container-based systems
because they can boost platform utilization and meet timing requirements. On
real-time systems, three real-time types can be distinguished based on the effects
of missing a deadline: hard, where any deadline violation may endanger the
correct behaviour of the entire system; firm, where it does not harm the correct
system behaviour but the late completion of the task is worthless; and soft,
where a late task still has consequential damage for the system [88].

In this section, we propose an admission control based on slack time to improve
the number of successful tasks that achieved the user-defined fitness level by
the deadline. In this section, we are assuming that we have a firm deadline. In
case there is an idle node new tasks will be allocated to it. In case all the nodes
have currently executing tasks, this technique uses the information from each
task and then allocates the new task to a node with a minimum slack time.

84

Chapter 6. Handling node interference in managing genetic algorithm
workloads

The main goal of choosing the minimum slack time is to allow other nodes with
higher slack time to finish executing the tasks and obtain a positive value by
achieving the required result. From the previous equation (equation 6.1) we can
formulate a new equation to calculate the normalized slack time of every task
in a node as shown in equation 6.5.

NSTADi =
n∑

j=1

Dj −RTjk

Dj

(6.5)

As shown in the normalized slack time (NSTADi), the equation Dj is the
deadline of the task, and RTjk is the response time of task j at the k iteration.
After allocating the task to an idle node if exists otherwise to a node with a
maximum NSTADi, the task will start the execution. After each execution,
admission control will check the response time of the task with its user-defined
deadline. If the tasks still have time remaining and the user-defined fitness level
still did not achieve the task will be admitted again for further execution.

6.3 Evaluation

This section will considers several techniques and baselines to observe how ef-
fectively they improve task execution. An experimental setup will be discussed
first, followed by a discussion of the experimental result. There are numerous
evaluations of the experimental result in the report. An example is comparing
different ways based on the number of successful tasks in each methodology.
There are features involved in calculating the weight. Therefore, each of the
features will be analysed separately. Finally, the combined approach is also
analysed. Then, an iteration analysis was undertaken to check the behaviour of
the tasks when they go into an iteration process.

6.3.1 Experimental setup

In this experimental work, we follow a similar setup as section 5.3.1. As we
consider node interference in this chapter, we assume that the cloud node can
execute multiple tasks at the same time per cloud node. The experimental
work aims to evaluate different approaches, such as NST, NDF and W, and
compare them against Docker Swarm and Kubernetes as baselines and as an
FT approach discussed in the previous chapter. Additionally, the second ex-
perimental hypothesis (related to node interference) will be investigated in this
section of the evaluation. Moreover, the number of successful tasks, which will

85

Chapter 6. Handling node interference in managing genetic algorithm
workloads

be used in the evaluation, can be defined as the task whos response time is less
than or equal to its deadline and its fitness achieved is greater than or equal to
its fitness required.

6.3.2 Experimental results

W NDF NST FTV1 Docker_Swarm Kubernetes
50

60

70

80

90

100

110

n
u
m

b
er

 o
f

su
cc

es
sf

u
l t

as
ks

Figure 6.1: Result of 10 experiments of different approaches
and different GA workloads (real-time multiprocessor allocation)

in terms of the number of successful tasks.

As we considered two case studies (real-time multiprocessors allocation and Su-
doku puzzle) in our work, we ran 10 experiments on each of the case studies.
Thus, in each experiment, we executed 150 tasks on the W, NDF and NST ap-
proaches. Then, we compared them against the FT approach from the previous
chapter as well as Docker Swarm and Kubernetes as they considered the base-
lines. The reason for choosing the FT approach and not the others is because
FP and FPLR use prediction features. Also, both W and FT are rather simi-
lar in executing the tasks, except that the cloud node in the previous chapter
executes only one task at a time per cloud node, whereas W is able to execute
multiple tasks at a time per cloud node. We used the same metrics explained
in chapter 4 which are response time and fitness achieved. The results show
that the approach we implemented (W) performed better than the other ap-
proaches, including Docker Swarm and Kubernetes in both case studies. The

86

Chapter 6. Handling node interference in managing genetic algorithm
workloads

W NDF NST FTV1 Docker_Swarm Kubernetes
40

50

60

70

80

90

100
n
u
m

b
er

 o
f

su
cc

es
sf

u
l t

as
ks

Figure 6.2: Result of 10 experiments of different approaches
and different GA workloads (Sudoku puzzle) in terms of the

number of successful tasks.

median and maximum observed results of W in both the case studies are higher
than the median and maximum observed results in other approaches, as shown
in Figure 6.1 and 6.2.

As shown in Figure 6.1, the W approach has a higher percentage at 26% more
successful tasks when compared to Docker Swarm and Kubernetes. Also, NDF
achieved 15% more successful tasks, whereas 16% more successful tasks were
achieved for NST and FTV1. On the other hand, using Figure 6.2, W also
achieved a higher percentage of successful tasks at 20% when compared to other
approaches. Additionally, NDF achieved 12% more successful tasks, whereas
NST achieved 10% more successful tasks, and FTV1 achieved 4% more success-
ful tasks.

87

Chapter 6. Handling node interference in managing genetic algorithm
workloads

Approach f -ratio
W vs. Docker Swarm 129.54
W vs. Kubernetes 99.87

W vs. FTV1 10.56

Table 6.2: One-way ANOVA test comparing the W approach
against Docker Swarm, Kubernetes, and FTV1 in real-time mul-

tiprocessor allocation case study.

We compared the results using one-way analysis of variance (ANOVA) tests
to statistically demonstrate the difference between the results obtained from
the experimental approaches. for the same reason as stated in the previous
chapter, Docker Swarm and Kubernetes achieve similar results which allows
us to choose one of them and compare our result against it. The f-ratio is
the variation between the approaches’ mean values based on the f-ratio. The
p-value can be obtained and compared to the significance level (0.01, 0.05, or
0.10).

As illustrated in table 6.2, the result shows that the F-ratio is 129.54 when com-
paring W against Docker Swarm, whereas the F-ratio is 99.97 when comparing
W against Kubernetes. In both cases, the p-value (p-value < 0.00001) is less
than the significance level of 0.05. Therefore, at the 95% confidence level, it can
be observed that there is a significant difference among the three approaches.
Furthermore, we compared W with FTV1, and the result shows that the F-ratio
is 10.56, and the p-value (0.004437) is less than the significance level. Thus, at
the 95% confidence level, it can be observed that there is a significant difference
between the approaches.

Approach f -ratio
W vs. Docker Swarm 114.13
W vs. Kubernetes 84.94

W vs. FTV1 89.35

Table 6.3: One-way ANOVA test comparing the W approach
against Docker Swarm, Kubernetes, and FTV1 in Sudoku puzzle

case study.

On the other hand, we used the ANOVA test for the second case study (Sudoku
puzzle). We compared W, Docker Swarm, Kubernetes and FTV1. As illustrates

88

Chapter 6. Handling node interference in managing genetic algorithm
workloads

in table 6.3, the result shows that the f-ratio value is 114.13 when we compare
W with Docker Swarm, whereas the f-ratio is 84.94 when we compare W with
Kubernetes. Thus, in both cases, the p-value (p-value < 0.00001) is less than
the significance level of 0.05. Therefore, at the 95% confidence level, it can be
observed that there is a significant difference among the approaches. Addition-
ally, we compared W and FTV1. The analysis result shows that the f-ratio is
89.35 and the p-value (0.00001) is less than the significance level. Thus, at the
95% confidence level, it can be observed that there is a significant difference
between the approaches.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r
 o

f
ta

s
k
s

Done
Dropped

(a) W approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(b) NDF approach.

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(c) NST approach.

1 2 3 4 5 6 7 8 9 10 11 12
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(d) FT approach.

Figure 6.3: Number of tasks done and dropped in each itera-
tion of the real-time multiprocessor allocation.

Next, we undertook an iteration analysis of the approaches of W, NDF, NST

89

Chapter 6. Handling node interference in managing genetic algorithm
workloads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0

10

20

30

40

50

60

70

80

90
N

u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(a) W approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(b) NDF approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0

10

20

30

40

50

60

70

80

90

N
u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(c) NST approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Iterations

0

10

20

30

40

50

60

70

80

90
N

u
m

b
e
r

o
f

ta
s
k
s

Done
Dropped

(d) FT approach.

Figure 6.4: Number of tasks done and dropped in each itera-
tion of Sudoku puzzle.

and FT. Further, we applied this analysis to both case studies: real-time mul-
tiprocessor allocation and the Sudoku puzzle. The iteration analysis is related
to the number of iterations that the tasks go through to achieve the desired
result. Several points can be observed in Figures 6.3 and 6.4. As illustrated
in Figure 6.3, the NST approach achieves a similar result as the FT approach.
While W and NDF approaches exceed the number of iterations when compared
to the FT approach.

Figure 6.3(A) shows there are more cases of tasks that achieved the required
fitness on time (done tasks) when compared to (B), (C) and (D). Meanwhile,
there are better cases of tasks (done tasks) in (B) and (C) compared to (D). On

90

Chapter 6. Handling node interference in managing genetic algorithm
workloads

the other hand, although the number of iterations is the same in (C) and (D),
the number of dropped tasks is slightly different, as can be observed from the 4th

iteration until the 9th iteration. Considering the slack time, (C) has improved
the number of tasks done which allows tasks to have more time and a better
change of achieving the fitness required. Furthermore, as there were no tasks
placed in the queue, several tasks took advantage of the extra time and spent it
on the tasks to be executed. Taking the W approach from the 3th until the 10th

iteration as an example, the number of tasks done are shown when compared
to the FT approach. Therefore, at least 15 tasks took advantage of the node
interference approach and the tasks were either done or dropped before.

We also conducted the same analysis and applied it to the second case study
(Sudoku puzzle). Figure 6.4 shows that as we allow multiple tasks to be executed
simultaneously, more tasks tend to go through the iterations trying to achieve
the required fitness on time, as illustrated in subfigures (A, B and C) and
compared with the previous approach (FT). Further, figures (B and C) tend to
drop more tasks at early iterations when compared to (A). Thus, we can observe
that the W approach achieved more cases of tasks done across the iterations
when compared to other approaches. Taking the number of iterations from the
6th until the 18th iteration as an example, because the tasks do not have to be
placed in a queue in W, more tasks spend that time executing and some of them
achieved the user requirement when compared to the FT approach.

As the second part of of the experiments use CPU control, we conducted more
analysis comparing different threshold when limiting the CPU as illustrated in
figures 6.5 and 6.6. Figure 6.5 shows that WCPU with 70% threshold achieved
a better result when compared to 80% and 90% thresholds. Comparing the
same result that we observed previously, WCPU70% achieved more successful
tasks with 17% when compared to WCPU80% with 15% and WCPU90% with
9%. Other comparisons can be observed when we compare these results against
W with CPU control as it achieves 26% more successful tasks when compared
to Docker Swarm. Thus, based on the result, some tasks are affected by limiting
the CPU during the execution. Therefore, they did not achieve the fitness level
by the deadline.

On the other hand, we conducted the same analysis on the second case study
as illustrated in figure 6.6. WCPU90% and WCPU70% achieve similar results
when compared against the W. They both achieved 20% more success when
compared to Docker Swarm. This means that CPU control with 90% and 70%

91

Chapter 6. Handling node interference in managing genetic algorithm
workloads

WCPU90% WCPU80% WCPU70%

70

80

90

100

N
u
m

b
er

 o
f

su
cc

es
sf

u
l t

as
ks

Figure 6.5: Result of 10 experiments of different approaches
and different GA workloads (real-time multiprocessor allocation)

in terms the CPU control in the W approach.

has a slight effect on the execution of the task, whereas WCPU80% is affected
by the CPU control which achieves 15% more successful task.

One of the limitations of the previous approach (FT) is that every task has to
wait in the queue in case all the nodes are busy executing other tasks. However,
the approach that we implement can handle node interference. Therefore, re-
source allocation will allocate the incoming tasks based on the new approaches
if there is no idle node. From this point, further analysis was undertaken related
to the waiting time of tasks for both case studies, as illustrated in Figures 6.7
and 6.8. In these figures, different colours mean different experiments. It can
be observed from both figures that tasks spent more than 5 seconds waiting to
be executed, as shown in both figures in subfigure (B). On the other hand, the
W approach in Figure 6.7 shows that none of the tasks waited for a node to
be executed. Meanwhile, in Figures 6.8, the approach significantly reduced the
waiting time.

Additionally, for the previous analysis, we compared W and WCPU80% as an
example concerning the CPU utilisation as we control the CPU utilisation of
the tasks as the node exceeded the threshold. We applied this analysis to both
of the case studies, as illustrated in Figures 6.9, 6.10, 6.11 and 6.12. Each figure

92

Chapter 6. Handling node interference in managing genetic algorithm
workloads

WCPU90% WCPU80% WCPU70%
70

75

80

85

90

95

100
N

u
m

b
er

 o
f

su
cc

es
sf

u
l t

as
ks

Figure 6.6: Result of 10 experiments of different approaches
and different GA workloads (Sudoku puzzle) in terms the CPU

control in the W approach.

legend represents a cloud node, so each subfigure shows two nodes only to see
the difference before and after applying the CPU utilisation control. General,
it can be observed from Figure 6.9 that most of the nodes tend to exceed the
threshold (80%) of CPU utilisation. On the other hand, Figure 6.10 illustrates
that controlling CPU utilisation reduces CPU utilisation in some situations.
The reason for this reduction is that when we limit the CPU utilisation, we
only apply it after the first iteration of the tasks to collect the information for
equation (6.4).

93

Chapter 6. Handling node interference in managing genetic algorithm
workloads

0 20 40 60 80 100 120 140

task number
0

5

10

15

20

25

30

35

40

45

50

W
ai

tin
g

Ti
m

e
in

 s
ec

on
ds

1
2
3
4
5
6
7
8
9
10

(a) W approach.

0 20 40 60 80 100 120 140

task number

0

5

10

15

20

25

30

35

40

45

50

W
ai

tin
g

Ti
m

e
in

 s
ec

on
ds

1
2
3
4
5
6
7
8
9
10

(b) FT approach.

Figure 6.7: Waiting time of tasks in real-time multiprocessor
allocation.

22 15:26
22 15:31

22 15:36
22 15:41

22 15:46
22 15:51

22 15:56
22 16:01

0

20

40

60

80

100

C
PU

 U
ti

liz
at

io
n

(%
)

1
2

22 15:27
22 15:32

22 15:37
22 15:42

22 15:47
22 15:52

22 15:57
22 16:02

0

20

40

60

80

100 3
4

22 15:27
22 15:32

22 15:37
22 15:42

22 15:47
22 15:52

22 15:57
22 16:02

0

20

40

60

80

100 5
6

22 15:27
22 15:32

22 15:37
22 15:42

22 15:47
22 15:52

22 15:57
22 16:02

Time of a day

0

20

40

60

80

100

C
PU

 U
ti

liz
at

io
n

(%
)

7
8

22 15:26
22 15:31

22 15:36
22 15:41

22 15:46
22 15:51

22 15:56
22 16:01

Time of a day

0

20

40

60

80

100 9
10

22 15:26
22 15:31

22 15:36
22 15:41

22 15:46
22 15:51

22 15:56
22 16:01

Time of a day

0

20

40

60

80

100 11
12

Figure 6.9: CPU utilization of the W approach in real-time
multiprocessor allocation

94

Chapter 6. Handling node interference in managing genetic algorithm
workloads

0 20 40 60 80 100 120 140

task number
0

5

10

15

20

25

30

35

40

45

50

W
ai

tin
g

Ti
m

e
in

 s
ec

on
ds

1
2
3
4
5
6
7
8
9
10

(a) W approach.

0 20 40 60 80 100 120 140

task number

0

5

10

15

20

25

30

35

40

45

50

W
ai

tin
g

Ti
m

e
in

 s
ec

on
ds

1
2
3
4
5
6
7
8
9
10

(b) FT approach.

Figure 6.8: Waiting time of tasks in Sudoku puzzle.

16 22:10
16 22:20

16 22:30
16 22:40

16 22:50

0

20

40

60

80

100

CP
U

 U
til

iz
at

io
n

(%
)

1
2

16 22:09
16 22:19

16 22:29
16 22:39

16 22:49

0

20

40

60

80

100 3
4

16 22:09
16 22:19

16 22:29
16 22:39

16 22:49
0

20

40

60

80

100 5
6

16 22:09
16 22:19

16 22:29
16 22:39

16 22:49

Time of a day

0

20

40

60

80

100

CP
U

 U
til

iz
at

io
n

(%
)

7
8

16 22:09
16 22:19

16 22:29
16 22:39

16 22:49

Time of a day

0

20

40

60

80

100 9
10

16 22:09
16 22:19

16 22:29
16 22:39

16 22:49

Time of a day

0

20

40

60

80

100

11
12

Figure 6.10: CPU utilization of the WCPU approach in real-
time multiprocessor allocation

95

Chapter 6. Handling node interference in managing genetic algorithm
workloads

The same analysis was applied to the second case study (the Sudoku puzzle)
provided in Figures 6.11 and 6.12. The same was observed in this case study
when we control the CPU utilisation of the nodes. Thus, some tasks might
utilise high CPU and finish the tasks before applying some control over the
node exceeding the threshold.

Moreover, it can be observed that some nodes have been idle for some time
in both case studies. The explanation for this lies in the process of allocating
the tasks to a node. More specifically, the allocation technique is the first look
for an idle node to handle the incoming task. If all the nodes are busy, then
we apply the node interference approach. When more nodes become idle, the
allocation technique will choose a random node. This randomness of choosing
the idle node can result in some nodes becoming idle for some time.

21 21:00
21 21:05

21 21:10
21 21:15

21 21:20
21 21:25

21 21:30
21 21:35

21 21:40
0

20

40

60

80

100

C
PU

 U
ti

liz
at

io
n

(%
)

1
2

21 20:59
21 21:04

21 21:09
21 21:14

21 21:19
21 21:24

21 21:29
21 21:34

21 21:39
0

20

40

60

80

3
4

21 20:59
21 21:04

21 21:09
21 21:14

21 21:19
21 21:24

21 21:29
21 21:34

21 21:39

5

10

15

20

25

30

35

40 5
6

21 21:00
21 21:05

21 21:10
21 21:15

21 21:20
21 21:25

21 21:30
21 21:35

21 21:40

Time of a day

20

40

60

80

100

C
PU

 U
ti

liz
at

io
n

(%
)

7
8

21 21:00
21 21:05

21 21:10
21 21:15

21 21:20
21 21:25

21 21:30
21 21:35

21 21:40

Time of a day

0

20

40

60

80

100 9
10

21 21:00
21 21:05

21 21:10
21 21:15

21 21:20
21 21:25

21 21:30
21 21:35

21 21:40

Time of a day

0

20

40

60

80

100
11
12

Figure 6.11: CPU utilization of the W approach in Sudoku
puzzle.

96

Chapter 6. Handling node interference in managing genetic algorithm
workloads

21 16:21
21 16:26

21 16:31
21 16:36

21 16:41
21 16:46

21 16:51
21 16:56

21 17:01
0

20

40

60

80

C
PU

 U
ti

liz
at

io
n

(%
)

1
2

21 16:25
21 16:30

21 16:35
21 16:40

21 16:45
21 16:50

21 16:55
21 17:00

21 17:05

0

20

40

60

80
3
4

21 16:25
21 16:30

21 16:35
21 16:40

21 16:45
21 16:50

21 16:55
21 17:00

10

20

30

40

50

60 5
6

21 16:23
21 16:28

21 16:33
21 16:38

21 16:43
21 16:48

21 16:53
21 16:58

21 17:03

Time of a day

0

20

40

60

80

100

C
PU

 U
ti

liz
at

io
n

(%
)

7
8

21 16:22
21 16:27

21 16:32
21 16:37

21 16:42
21 16:47

21 16:52
21 16:57

21 17:02

Time of a day

0

20

40

60

80

100 9
10

21 16:25
21 16:30

21 16:35
21 16:40

21 16:45
21 16:50

21 16:55
21 17:00

Time of a day

0

20

40

60

80

100 11
12

Figure 6.12: CPU utilization of the WCPU approach in Su-
doku puzzle.

Furthermore, we carried out an analysis of the NSTAD approaches and com-
pare it with FT, Docker Swarm and Kubernetes. Moreover, we applied this
analysis in a real-time multiprocessor allocation case study. The NSTAD

uses the equation from the previous section (equation 6.5) to allocate the new
tasks to a node. It can be observed from the result in figure 6.13 that the
approach achieved similar results as the FT approach. On the other hand,
the approach outperforms Docker Swarm and Kubernetes. Although FT and
NSTAD achieved a similar result, NSTAD has a higher median than FT ap-
proach.

97

Chapter 6. Handling node interference in managing genetic algorithm
workloads

FT NSTAD Docker_Swarm Kubernetes
50

60

70

80

90

100

110
n
u
m

b
er

 o
f

su
cc

es
sf

u
l t

as
ks

Figure 6.13: Result of 10 experiments of different approaches
and different GA workloads (real-time multiprocessor allocation)

6.4 Summary

In summary, this work aims to manage the GA workload in a container-based en-
vironment by considering two case studies (real-time multiprocessors allocation
and the Sudoku puzzle). As the previous approach (FT) had some limitations
in handling node interference, this work introduces node interference based on
the weight of the tasks in a node. Therefore, we have proposed fitness tracking
based on the weight (W) approach to improve the number of tasks executed on
time and achieve the fitness required by the user and allowing multiple tasks to
be executed on time. After running 10 experiments and comparing W against
the FT and state-of-the-art container-based orchestration systems approaches,
the W approach, which does not control the CPU utilisation achieved a bet-
ter result. In contrast, WCPU was affected using CPU control over the tasks
within a node that exceeded the threshold. Although WCPU was affected by
the CPU utilisation control, the approach was significant when we compared it
against Docker Swarm and Kubernetes. The limitation of this work is adding

98

Chapter 6. Handling node interference in managing genetic algorithm
workloads

a node interference feature considering task information with some control over
the CPU utilisation when the node reached the threshold.

99

Chapter 7

Conclusions and Future Work

Cloud computing provides on-demand and pay-as-you-go services and resources.
As a result, business providers such as Amazon and Google have moved to
cloud computing, taking advantage of the resources and allowing many cloud
users to access them. These resources are placed in a shared pooled which
allow the cloud user to choose the suitable resources based on their needs. A
cloud user can provide a workload to be executed that consists of numerous
jobs and each job may contain several tasks some of which depend on other
tasks. One specific load that this thesis handles is the GA workload. Based on
two case studies: real-time multiprocessor allocation and Sudoku puzzle, the
GA workload consists of numerous individual tasks. Each task has a certain
deadline and fitness requirements, while the resource management must execute
tasks and achieve the fitness required before the deadline.

Resource management is important for improving QoS between cloud providers
and cloud users, and deciding on resource allocation and meeting QoS require-
ments. Resource management can manage resources using specific strategies
to execute the task without compromising the QoS requirement based on the
workload requested by the user. In order to improve resource management
considering GA workload, this thesis considered strict deadlines and the fitness
achieved as two features to increase the number of successful tasks. The number
of successful tasks means that the resource management executed the task and
achieved the fitness required by the user at a given deadline.

The container orchestrator is one technique used to deploy and manage the
workload. For example, Docker Swarm and Kubernetes are considered to be
state-of-the-art container-based orchestration systems. The limitation of these
orchestrators is that they do not consider tasks’ deadline or fitness required by
the user when executing them. Thus, this thesis considered them as baselines
to compare the proposed approaches. As explained in chapter 4, we proposed

100

Chapter 7. Conclusions and Future Work

an approach that containerises the GA in such a way that the Docker Manager,
which is part of the orchestrator, can instantiate containers to run the GA
application and its parameters based on the user’s requirements. Also, we
introduce an orchestrator that can allocate the incoming tasks based on the
information from the Node Observer. This information is similar to the number
of tasks per node and CPU utilization.

The purpose of this thesis is to investigate two hypotheses on how to manage
numerous instances of GAs running as containers in a cloud environment. These
hypotheses are as follows:

• QoS-based resource management can handle GA tasks to meet the appli-
cation’s hard real-time timing and user-defined fitness requirements. This
resource management considers executing only one task at a time per cloud
node and ensures that the tasks achieve the user-defined fitness level on
time.

• Using a situation that is representative of a real scenario, the node inter-
ference used in resource management can lessen the effect when we execute
multiple tasks per cloud node. The node interference considers the tasks’
information like response time and fitness achieved to determine which
cloud node can execute the incoming task from the user with negative im-
pact on other tasks in the same cloud node.

The first hypothesis was investigated in detail in chapter 5. In this chapter,
several approaches were proposed to improve the number of successful tasks.
These approaches are FT, FP and FPLR. The FT approach is used to track
the fitness achieved as the tasks go through several iterations. FP and FPLR
approaches use fitness prediction at a given deadline as an additional condition
when executing the task to determine whether the task will achieve the fitness
required by the deadline or not. After running numerous experiments in both
case studies, the results show that the approaches have improved the number
of successful tasks when compared to the baselines (Docker Swarm and Kuber-
netes). Thus, the FT approach has achieved 16% more successful tasks when
compared to Docker Swarm and Kubernetes whereas FP achieved 21% more
successful tasks. Further, FPLR achieved a higher percentage when compared
to FT and FP, with 26% more successful tasks.

101

Chapter 7. Conclusions and Future Work

The second hypothesis was investigated in detail in chapter 6 which considers
node interference. As the previous approaches assume that each cloud node will
only do one task at a time, the node interference is considered to allow several
tasks to use the same cloud node while having less of an impact on the currently
executing tasks. As a result, the chapter presented a weighted-based node
interference method that takes into account fitness achieved and response time
at a particular iteration. The weight-based node interference is based on two
features which is the slack time and difference in fitness achieved. These features
were used in calculating the weight and represent NST and NDF. The results
show that W achieved 20% more successful tasks when compared to Docker
Swarm and Kubernetes, whereas NST and NDF achieved lower percentages in
terms of the number of successful tasks with 12% in NDF and 9% in NST.

7.1 Future Work

The work presented in this thesis considered the management of container-
based GA workload in a cloud environment using two case studies. Having
different approaches proposed in this area is important for future work. As the
approaches in both works achieved a better result than the baselines, several
areas and features can be exploited. One direction for further research is con-
sidering different constraints, such as soft deadlines and allowing the task to
miss the deadline with a specific margin to achieve the fitness required.

Further research direction concerning node interference. The work undertaken
in this thesis is related to node interference and considers information that is
from the task executed such as the response time and fitness achieved. However,
the approach did not consider any information from the actual node such as
CPU utilization and memory. The benefit of considering information from the
node is allowing the new task to be executed in a node that is most likely to
have sufficient resources to achieve the user requirement.

The previous directions including the work undertaken in this thesis did not
include the scalability of the infrastructure. Thus, another direction is scalabil-
ity, which can be undertaken either by vertical or horizontal scaling. Vertical
scaling is when we add more CPU or memory to the existing node, whereas
horizontal scaling is undertaken by adding another node to the cluster. Both
ways can improve resource management and provide a chance for the task to
achieve user-defined requirements.

102

Chapter 7. Conclusions and Future Work

During the process of predicting the fitness required, the decision of whether
to update the coefficients of the linear or quadratic terms can be based on the
prediction error. If the error remains small, the model currently in use might
be sufficient. However, if the error starts to increase, indicating a departure
from the current model’s accuracy, the system can initiate a transition to the
alternative model.

Integrating linear and quadratic models in fitness forecasting combines their
strengths to create a more robust and adaptable prediction strategy. The dy-
namic transition between models based on problem-solving characteristics en-
hances accuracy and ensures a better fit to the changing fitness landscape. The
success of this integration lies in the careful definition of transition thresholds
to optimize the switching process.

The concepts and insights presented by Anderson et al. in [100] can have valu-
able implications for the cloud computing research community, even though
the paper itself focuses on real-time systems. Some of these insights are that
the dynamic allocation of resources to jobs and workloads is a feature of cloud
computing. New resource allocation techniques in cloud environments may be
influenced by their proposed method, which achieves an ideal balance between
predictability and effectiveness. Cloud providers can improve the trade-off be-
tween completing tasks on the deadline and optimizing resource utilization by
adapting their proposed approach.

Furthermore, cloud services often operate under Service Level Agreements (SLAs),
similar to real-time systems meeting task deadlines. The optimization-based al-
gorithm’s ability to minimize task deadline misses aligns with cloud providers’
goal of ensuring SLA compliance. Adapting this principle could help cloud
services consistently meet user expectations and contractual agreements.

7.1.1 Generalizations to different workloads

While the current thesis focuses on different approaches that try to achieve the
fitness required by a given deadline, future research could explore the applica-
bility of these approaches to a wider range of computational workloads. One
workload might be a complex workload with dependencies. The approach then
needs to deal with a job that may contain several tasks and needs to consider
two deadlines one of which is a task deadline and the other the job deadline.
Investigating the effectiveness of the proposed methods across different problem

103

Chapter 7. Conclusions and Future Work

domains and complexities would provide valuable insights into the generalizabil-
ity of the approach.

Certain workloads might have varying resource utilization patterns over time.
For instance, in cloud computing environments, resource allocation can change
dynamically based on demand fluctuations. Generalizing the fitness prediction
models involves considering how these resource utilization patterns influence
the model’s ability to forecast fitness accurately. Adaptive coefficient updating
strategies might be necessary to accommodate such dynamics.

In this thesis, it was noted that the linear and quadratic fitness prediction mod-
els could potentially be brought into a unified procedure to enhance forecasting
accuracy. Combining both models in a cohesive manner might involve adap-
tive switching between linear and quadratic models based on the characteristics
of the computation process. Exploring this integration could lead to a more
adaptable fitness prediction approach that adapts to different problem-solving
scenarios.

104

References

[1] Reinhard Wilhelm, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, Per Stenström, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem Bernat,
Christian Ferdinand, and Reinhold Heckmann. The worst-case execution-
time problem—overview of methods and survey of tools. ACM Transac-
tions on Embedded Computing Systems, 7(3):1–53, 2008.

[2] Min Du and Feifei Li. ATOM: Efficient Tracking, Monitoring, and Or-
chestration of Cloud Resources. IEEE Transactions on Parallel and Dis-
tributed Systems, 28(8):2172–2189, 2017.

[3] Giovanni Mariani, Andreea Anghel, Rik Jongerius, and Gero Dittmann.
Predicting Cloud Performance for HPC Applications: A User-Oriented
Approach. Proceedings - 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGRID 2017, pages 524–533,
2017.

[4] Muhammad Bilal Qureshi, Maryam Mehri Dehnavi, Nasro Min-Allah,
Muhammad Shuaib Qureshi, Hameed Hussain, Ilias Rentifis, Nikos Tzir-
itas, Thanasis Loukopoulos, Samee U. Khan, Cheng Zhong Xu, and Al-
bert Y. Zomaya. Survey on Grid Resource Allocation Mechanisms. Jour-
nal of Grid Computing, 12(2):399–441, 2014.

[5] Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and
Leandro Soares Indrusiak. A Survey and Comparative Study of Hard
and Soft Real-Time Dynamic Resource Allocation Strategies for Multi-
/Many-Core Systems. ACM Computing Surveys, 50(2):1–40, 2017.

[6] In Kee Kim, Jacob Steele, Yanjun Qi, and Marty Humphrey. Compre-
hensive elastic resource management to ensure predictable performance
for scientific applications on public IaaS clouds. Proceedings - 2014
IEEE/ACM 7th International Conference on Utility and Cloud Comput-
ing, UCC 2014, pages 355–362, 2014.

105

REFERENCES

[7] A.T. Saraswathi, Y.R.A. Kalaashri, and S. Padmavathi. Dynamic Re-
source Allocation Scheme in Cloud Computing. Procedia Computer Sci-
ence, 47:30–36, 2015.

[8] Abdullah Yousafzai, Abdullah Gani, Rafidah Md Noor, Mehdi Sookhak,
Hamid Talebian, Muhammad Shiraz, and Muhammad Khurram Khan.
Cloud resource allocation schemes: review, taxonomy, and opportunities.
Knowledge and Information Systems, 50(2):347–381, 2017.

[9] Bin Sun, Brian Hall, Hu Wang, Da Wei Zhang, and Kai Ding. Bench-
marking private cloud performance with user-centric metrics. Proceedings
- 2014 IEEE International Conference on Cloud Engineering, IC2E 2014,
pages 311–318, 2014.

[10] Vahid Arabnejad, Kris Bubendorfer, and Bryan Ng. Budget and Deadline
Aware e-Science Workflow Scheduling in Clouds. IEEE Transactions on
Parallel and Distributed Systems, 30(1):29–44, 2019.

[11] Yali Zhao, Rodrigo N. Calheiros, Graeme Gange, Kotagiri Ramamoha-
narao, and Rajkumar Buyya. SLA-Based Resource Scheduling for Big
Data Analytics as a Service in Cloud Computing Environments. Pro-
ceedings of the International Conference on Parallel Processing, 2015-
December(1):510–519, 2015.

[12] Danilo Ardagna, Giuliano Casale, Michele Ciavotta, J.F. Pérez, and
Weikun Wang. Quality-of-service in cloud computing: modeling tech-
niques and their applications. Journal of Internet Services and Applica-
tions, 5(1):1–17, 2014.

[13] Mujahid Tabassum and Kuruvilla Mathew. a Genetic Algorithm Anal-
ysis Towards Optimization Solutions. International Journal of Digital
Information and Wireless Communications, 4(1):124–142, 2014.

[14] Piotr Dziurzanski, Jerry Swan, and Leandro Soares Indrusiak. Value-
based manufacturing optimisation in serverless clouds for industry 4.0.
Proceedings of the Genetic and Evolutionary Computation Conference on
- GECCO ’18, pages 1222–1229, 2018.

[15] Leandro Soares Indrusiak. End-to-end schedulability tests for multi-
processor embedded systems based on networks-on-chip with priority-
preemptive arbitration. Journal of Systems Architecture, 60(7):553–561,
2014.

106

REFERENCES

[16] Saad Mustafa, Babar Nazir, Amir Hayat, Atta ur Rehman Khan, and
Sajjad A Madani. Resource management in cloud computing: Taxonomy,
prospects, and challenges. Computers & Electrical Engineering, 47:186–
203, 2015.

[17] Brendan Jennings and Rolf Stadler. Resource Management in Clouds:
Survey and Research Challenges. Journal of Network and Systems Man-
agement, 23(3):567–619, 2015.

[18] S S Manvi and G Krishna Shyam. Resource management for Infrastruc-
ture as a Service (IaaS) in cloud computing: A survey. Journal of Network
and Computer Applications, 41(1):424–440, 2014.

[19] G. Da Cunha Rodrigues, R.N. Calheiros, V.T. Guimaraes, G.L. Dos San-
tos, M.B. De Carvalho, L.Z. Granville, L.M.R. Tarouco, and R. Buyya.
Monitoring of cloud computing environments: Concepts, solutions,
trends, and future directions. Proceedings of the ACM Symposium on
Applied Computing, 04-08-Apri:378–383, 2016.

[20] Tarek Mahdhi and Haithem Mezni. A prediction-Based VM consolidation
approach in IaaS Cloud Data Centers. Journal of Systems and Software,
146:263–285, 2018.

[21] Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan,
Prem Prakash Jayaraman, Joanna Kolodziej, Pavan Balaji, Sherali
Zeadally, Qutaibah Marwan Malluhi, Nikos Tziritas, Abhinav Vishnu,
Samee U. Khan, and Albert Zomaya. A survey and taxonomy on energy
efficient resource allocation techniques for cloud computing systems.
Computing, 98(7):751–774, 2016.

[22] Fábio D. Rossi, Miguel G. Xavier, César A.F. De Rose, Rodrigo N. Cal-
heiros, and Rajkumar Buyya. E-eco: Performance-aware energy-efficient
cloud data center orchestration. Journal of Network and Computer Ap-
plications, 78(October 2016):83–96, 2017.

[23] Amit Kumar Singh, Piotr Dziurzanski, and Leandro Soares Indrusiak.
Value and energy optimizing dynamic resource allocation in many-core
HPC systems. Proceedings - IEEE 7th International Conference on Cloud
Computing Technology and Science, CloudCom 2015, pages 180–185,
2016.

[24] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescape.
Cloud monitoring: Definitions, issues and future directions. 2012 1st

107

REFERENCES

IEEE International Conference on Cloud Networking, CLOUDNET 2012
- Proceedings, pages 63–67, 2012.

[25] Sena Seneviratne, David C Levy, and Rajkumar Buyya. A Taxonomy of
Performance Prediction Systems in the Parallel and Distributed Comput-
ing Grids. CoRR, abs/1307.2, 2013.

[26] Maryam Amiri and Leyli Mohammad-Khanli. Survey on prediction mod-
els of applications for resources provisioning in cloud. Journal of Network
and Computer Applications, 82(October 2016):93–113, 2017.

[27] Isam Mashhour Al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca Fos-
chini, Giuseppe Martuscelli, Rebecca Montanari, and Amedeo Palopoli.
Container Orchestration Engines: A Thorough Functional and Perfor-
mance Comparison. IEEE International Conference on Communications,
2019-May:1–6, 2019.

[28] Maria A. Rodriguez and Rajkumar Buyya. Container-based Cluster Or-
chestration Systems: A Taxonomy and Future Directions. (April):1–19,
2018.

[29] Jay Shah and Dushyant Dubaria. Building modern clouds: Using docker,
kubernetes google cloud platform. 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference, CCWC 2019, pages 184–189,
2019.

[30] Akshay Dhumal and Dharanipragada Janakiram. C-Balancer: A System
for Container Profiling and Scheduling. pages 1–10, 2020.

[31] Rene Peinl, Florian Holzschuher, and Florian Pfitzer. Docker Cluster
Management for the Cloud - Survey Results and Own Solution. Journal
of Grid Computing, 14(2):265–282, 2016.

[32] Christian Blum and Andrea Roli. Metaheuristics in Combinatorial Opti-
mization: Overview and Conceptual Comparison. ACM Computing Sur-
veys, 35(3):268–308, 2003.

[33] Abraham Jaison, N. Kavitha, and P. S. Janardhanan. Docker for op-
timization of Cassandra NoSQL deployments on node limited clusters.
Proceedings of IEEE International Conference on Emerging Technolog-
ical Trends in Computing, Communications and Electrical Engineering,
ICETT 2016, 2017.

108

REFERENCES

[34] Min Xia, Teng Li, Yunfei Zhang, and Clarence W. De Silva. Closed-loop
design evolution of engineering system using condition monitoring through
internet of things and cloud computing. Computer Networks, 101:5–18,
2016.

[35] Mehdi Bahrami and Mukesh Singhal. A dynamic cloud computing plat-
form for eHealth systems. 2015 17th International Conference on E-Health
Networking, Application and Services, HealthCom 2015, pages 435–438,
2015.

[36] L. Minh Dang, Md Jalil Piran, Dongil Han, Kyungbok Min, and Hyeon-
joon Moon. A survey on internet of things and cloud computing for
healthcare. Electronics (Switzerland), 8(7):1–49, 2019.

[37] Shreshth Tuli, Rakesh Tuli, Shikhar Tuli, and Sukhpal Singh Gill. Predict-
ing the growth and trend of COVID-19 pandemic using machine learning
and cloud computing. Internet of Things, 11, 2020.

[38] Mohd Javaid, Abid Haleem, Raju Vaishya, Shashi Bahl, and Rajiv Suman.
Diabetes & Metabolic Syndrome : Clinical Research & Reviews Industry
4 . 0 technologies and their applications in fighting COVID-19 pandemic.
Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4):419–
422, 2020.

[39] Md. Imran Alam, Manjusha Pandey, and Siddharth S Rautaray. A Com-
prehensive Survey on Cloud Computing. International Journal of Infor-
mation Technology and Computer Science, 7(2):68–79, 2015.

[40] Aaqib Rashid and Amit Chaturvedi. Cloud Computing Characteristics
and Services A Brief Review. International Journal of Computer Sciences
and Engineering, 7(2):421–426, 2019.

[41] Manisha T. Tapale, Mahantesh N. Birje, Praveen S. Challagidad, and
R.H. Goudar. Cloud computing review: concepts, technology, challenges
and security. International Journal of Cloud Computing, 6(1):32, 2017.

[42] Misbah Liaqat, Victor Chang, Abdullah Gani, Siti Hafizah Ab Hamid,
Muhammad Toseef, Umar Shoaib, and Rana Liaqat Ali. Federated cloud
resource management: Review and discussion, 2017.

[43] Parminder Singh, Avinash Kaur, Pooja Gupta, Sukhpal Singh Gill, and
Kiran Jyoti. RHAS: robust hybrid auto-scaling for web applications in
cloud computing. Cluster Computing, 24(2):717–737, 2021.

109

REFERENCES

[44] Frederic Nzanywayingoma and Yang Yang. Efficient resource management
techniques in cloud computing environment: a review and discussion. In-
ternational Journal of Computers and Applications, 41(3):165–182, 2019.

[45] Muhammad Ibrahim, Said Nabi, Abdullah Baz, Hosam Alhakami,
Muhammad Summair Raza, Altaf Hussain, Khaled Salah, and Karim Dje-
mame. An In-Depth Empirical Investigation of State-of-the-Art Schedul-
ing Approaches for Cloud Computing. IEEE Access, 8:128282–128294,
2020.

[46] Absa Stephen, Shajulin Benedict, and R. P.Anto Kumar. Monitoring IaaS
using various cloud monitors. Cluster Computing, 22(s5):12459–12471,
2019.

[47] Ahmed Barnawi, Sherif Sakr, Wenjing Xiao, and Abdullah Al-Barakati.
The views, measurements and challenges of elasticity in the cloud: A
review. Computer Communications, 154(December 2019):111–117, 2020.

[48] Piotr Dziurzanski and Leandro Soares Indrusiak. Value-Based Allocation
of Docker Containers. 2018.

[49] Pieter Jan Maenhaut, Bruno Volckaert, Veerle Ongenae, and Filip De
Turck. Resource Management in a Containerized Cloud: Status and
Challenges. Journal of Network and Systems Management, 28(2):197–
246, 2020.

[50] S. R. Shishira, A. Kandasamy, and K. Chandrasekaran. Survey on meta
heuristic optimization techniques in cloud computing. 2016 International
Conference on Advances in Computing, Communications and Informatics,
ICACCI 2016, pages 1434–1440, 2016.

[51] Kashif Hussain, Mohd Najib Mohd Salleh, Shi Cheng, and Yuhui Shi.
Metaheuristic research: a comprehensive survey. Artificial Intelligence
Review, 52(4):2191–2233, 2019.

[52] Sašo Karakatič and Vili Podgorelec. A survey of genetic algorithms for
solving multi depot vehicle routing problem. Applied Soft Computing
Journal, 27:519–532, 2015.

[53] Simranjit Kaur, Pallavi Bagga, Rahul Hans, and Harjot Kaur. Quality
of Service (QoS) Aware Workflow Scheduling (WFS) in Cloud Comput-
ing: A Systematic Review. Arabian Journal for Science and Engineering,
44(4):2867–2897, 2019.

110

REFERENCES

[54] Daniel A. Menascé. Workload Characterization. Internet Computing,
IEEE, 7(6):89 – 92, 2016.

[55] Deborah Magalhães, Rodrigo N. Calheiros, Rajkumar Buyya, and
Danielo G. Gomes. Workload modeling for resource usage analysis and
simulation in cloud computing. Computers and Electrical Engineering,
47:69–81, 2015.

[56] Dror G Feitelson. Workload Modeling for Computer Systems Performance
Evaluation. 2014.

[57] A. Burkimsher, I. Bate, and L.S. Indrusiak. A characterisation of the
workload on an engineering design grid. Simulation Series, 46(5), 2014.

[58] Cláudio Maia, Marko Bertogna, Luís Nogueira, and Luis Miguel Pinho.
Response-Time Analysis of Synchronous Parallel Tasks in Multiprocessor
Systems. Proceedings of the 22nd International Conference on Real-Time
Networks and Systems - RTNS ’14, pages 3–12, 2014.

[59] Mustafizur Rahman, Rafiul Hassan, Rajiv Ranjan, and Rajkumar Buyya.
Adaptive workflow scheduling for dynamic grid and cloud computing envi-
ronment. Concurrency Computation Practice and Experience, 22(6):685–
701, 2010.

[60] a Burkimsher. Dependency Patterns and Timing for Grid Workloads.
Proceedings of the Fourth York Doctoral Symposium on Computer Science,
(October):25–33, 2011.

[61] Mariela Curiel and Ana Pont. Workload Generators for Web-Based Sys-
tems: Characteristics, Current Status and Challenges. IEEE Communi-
cations Surveys and Tutorials, 20(2):1526–1546, 2018.

[62] Hugo E.S. Galindo, Wagner M. Santos, Paulo R.M. Maciel, Bruno Silva,
Sérgio M.L. Galdino, and José Paulo Pires. Synthetic workload generation
for capacity planning of virtual server environments. Conference Proceed-
ings - IEEE International Conference on Systems, Man and Cybernetics,
pages 2837–2842, 2009.

[63] Christophe Cérin, Tarek Menouer, Walid Saad, and Wiem Ben Abdallah.
A New Docker Swarm Scheduling Strategy. Proceedings - 2017 IEEE 7th
International Symposium on Cloud and Service Computing, SC2 2017,
2018-Janua:112–117, 2018.

111

REFERENCES

[64] Zhang Wei-guo, Ma Xi-lin, and Zhang Jin-zhong. Research on kubernetes’
resource scheduling scheme. ACM International Conference Proceeding
Series, pages 144–148, 2018.

[65] Naylor G Bachiega, Paulo S L Souza, Sarita M Bruschi, and Simone R
S De Souza. Container-based Performance Evaluation : A Survey and
Challenges. 2018 IEEE International Conference on Cloud Engineering
(IC2E), 2018.

[66] Sogand Shirinbab, Lars Lundberg, and Casalicchio Emiliano. Performance
Evaluation of Container and Virtual Machine Running Cassandra Work-
load. 2017 3rd International Conference of Cloud Computing Technologies
and Applications (CloudTech), 2017.

[67] Hadi Goudarzi and Massoud Pedram. Maximizing profit in cloud comput-
ing system via resource allocation. Proceedings - International Conference
on Distributed Computing Systems, pages 1–6, 2011.

[68] Nima Kaviani, Eric Wohlstadter, and Rodger Lea. Profiling-as-a-service:
Adaptive scalable resource profiling for the cloud in the cloud. Interna-
tional Conference on Service-Oriented Computing, 7084 LNCS:157–171,
2011.

[69] Rafael Weingärtner, Gabriel Beims Bräscher, and Carlos Becker West-
phall. Cloud resource management: A survey on forecasting and profiling
models. Journal of Network and Computer Applications, 47:99–106, 2015.

[70] Jie Yang, Jie Qiu, and Ying Li. A profile-based approach to just-in-time
scalability for cloud applications. CLOUD 2009 - 2009 IEEE International
Conference on Cloud Computing, pages 9–16, 2009.

[71] Naghmeh Dezhabad, Sudhakar Ganti, and Gholamali Shoja. Cloud Work-
load Characterization and Profiling for Resource Allocation. Proceeding
of the 2019 IEEE 8th International Conference on Cloud Networking,
CloudNet 2019, pages 2019–2022, 2019.

[72] Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John P. Mor-
rison, and Theo Lynn. A survey of Cloud monitoring tools: Taxonomy,
capabilities and objectives. Journal of Parallel and Distributed Comput-
ing, 74(10):2918–2933, 2014.

[73] Swarm mode key concepts. https://docs.docker.com/engine/swarm/

key-concepts/. Accessed: 2019-05-23.

112

https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/key-concepts/

REFERENCES

[74] Jonatan Enes, Guillaume Fieni, Roberto R. Exposito, Romain Rou-
voy, and Juan Tourino. Power Budgeting of Big Data Applications in
Container-based Clusters. Proceedings - IEEE International Conference
on Cluster Computing, ICCC, 2020-September:281–287, 2020.

[75] Qiang Duan. Cloud service performance evaluation: status, challenges,
and opportunities – a survey from the system modeling perspective. Dig-
ital Communications and Networks, 3(2):101–111, 2017.

[76] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload Prediction Using ARIMA Model and Its Impact on
Cloud Applications’ QoS. IEEE Transactions on Cloud Computing,
3(4):449–458, 2015.

[77] Farrukh Nadeem, Daniyal Alghazzawi, Abdulfattah Mashat, Khalid Fa-
keeh, Abdullah Almalaise, and Hani Hagras. Modeling and predicting
execution time of scientific workflows in the Grid using radial basis func-
tion neural network. Cluster Computing, 20(3):2805–2819, 2017.

[78] Bashir Mohammed, Irfan Awan, Hassan Ugail, and Muhammad Younas.
Failure prediction using machine learning in a virtualised HPC system
and application. Cluster Computing, 2019.

[79] Steve Sorrell and Jamie Speirs. Hubbert’s legacy: A review of curve-fitting
methods to estimate ultimately recoverable resources. Natural Resources
Research, 19(3):209–230, 2010.

[80] P. Srikanth, D. Rajeswara Rao, and P. Vidyullatha. Comparative analysis
of ANFIS, ARIMA and polynomial curve fitting for weather forecasting.
Indian Journal of Science and Technology, 9(15), 2016.

[81] Michael Li and Lily D. Li. A Novel Method of Curve Fitting Based
on Optimized Extreme Learning Machine. Applied Artificial Intelligence,
34(12):849–865, 2020.

[82] Sheng Di, Derrick Kondo, and Walfredo Cirne. Google hostload prediction
based on Bayesian model with optimized feature combination. Journal of
Parallel and Distributed Computing, 74(1):1820–1832, 2014.

[83] Yexi Jiang, Chang Shing Perng, Tao Li, and Rong N. Chang. Cloud an-
alytics for capacity planning and instant VM provisioning. IEEE Trans-
actions on Network and Service Management, 10(3):312–325, 2013.

113

REFERENCES

[84] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-
Hung Chung, and Yun Li. Cloud Computing Resource Scheduling and
a Survey of Its Evolutionary Approaches. ACM Computing Surveys,
47(4):1–33, 2015.

[85] Yun Huang and N. Venkatasubramanian. QoS-based resource discovery
in intermittently available environments. Proceedings of the IEEE Inter-
national Symposium on High Performance Distributed Computing, 2002-
January:50–59, 2002.

[86] Kallia Chronaki, Alejandro Rico, Marc Casas, Miquel Moretó, Rosa M.
Badia, Eduard Ayguadé, Jesus Labarta, and Mateo Valero. Task schedul-
ing techniques for asymmetric multi-core systems. IEEE Transactions on
Parallel and Distributed Systems, 28(7):2074–2087, 2017.

[87] Krzysztof Kalinowski, Damian Krenczyk, and Cezary Grabowik. Predic-
tive - reactive strategy for real time scheduling of manufacturing systems.
Applied Mechanics and Materials, 307:470–473, 2013.

[88] Piotr Dziurzanski and Amit Kumar Singh. Feedback-based admission con-
trol for firm real-time task allocation with dynamic voltage and frequency
scaling. Computers, 7(2), 2018.

[89] Shuai Zhao, Piotr Dziurzanski, Michal Przewozniczek, Marcin Komar-
nicki, and Leandro Soares Indrusiak. Cloud-based Dynamic Distributed
Optimisation of Integrated Process Planning and Scheduling in Smart
Factories. GECCO 2019 - Proceedings of the 2019 Genetic and Evolu-
tionary Computation Conference, pages 1381–1389, 2019.

[90] Pasquale Salza and Filomena Ferrucci. An Approach for Parallel Genetic
Algorithms in the Cloud using Software Containers. pages 1–7, 2016.

[91] Prasad Devarasetty and Satyananda Reddy. Genetic algorithm for quality
of service based resource allocation in cloud computing. Evolutionary
Intelligence, 14(2):381–387, 2021.

[92] Syed Nasir Mehmood Shah, Ahmad Kamil Bin Mahmood, and Alan Ox-
ley. Hybrid resource allocation method for grid computing. 2nd Interna-
tional Conference on Computer Research and Development, ICCRD 2010,
pages 426–431, 2010.

[93] Amit Kumar Singh, Piotr Dziurzanski, and Leandro Soares Indrusiak.

114

REFERENCES

Market-inspired dynamic resource allocation in many-core high perfor-
mance computing systems. 2015 International Conference on High Per-
formance Computing & Simulation (HPCS), pages 413–420, 2015.

[94] Ming Hua Lin, Jung Fa Tsai, and Chian Son Yu. A review of determinis-
tic optimization methods in engineering and management. Mathematical
Problems in Engineering, 2012, 2012.

[95] Jun Tang, Gang Liu, and Qingtao Pan. A Review on Representa-
tive Swarm Intelligence Algorithms for Solving Optimization Problems:
Applications and Trends. IEEE/CAA Journal of Automatica Sinica,
8(10):1627–1643, 2021.

[96] Anima Naik, Suresh Chandra Satapathy, and Ajith Abraham. Mod-
ified Social Group Optimization—a meta-heuristic algorithm to solve
short-term hydrothermal scheduling. Applied Soft Computing Journal,
95:106524, 2020.

[97] Zhao Chenhong, Zhang Shanshan, Liu Qingfeng, Xie Jian, and
Hu Jicheng. Independent tasks scheduling based on genetic algorithm
in cloud computing. Proceedings - 5th International Conference on Wire-
less Communications, Networking and Mobile Computing, WiCOM 2009,
pages 9–12, 2009.

[98] Maciej Malawski, Kamil Figiela, and Jarek Nabrzyski. Cost minimization
for computational applications on hybrid cloud infrastructures. Future
Generation Computer Systems, 29(7):1786–1794, 2013.

[99] R. S. Shariffdeen, D. T.S.P. Munasinghe, H. S. Bhathiya, U. K.J.U. Ban-
dara, and H. M.N.Dilum Bandara. Adaptive workload prediction for
proactive auto scaling in PaaS systems. Proceedings of 2016 Interna-
tional Conference on Cloud Computing Technologies and Applications,
CloudTech 2016, pages 22–29, 2017.

[100] James H. Anderson, Jeremy P. Erickson, Uma Maheswari C. Devi, and
Benjamin N. Casses. Optimal Semi-Partitioned Scheduling in Soft Real-
Time Systems. Journal of Signal Processing Systems, 84(1):3–23, 2016.

115

	Abstract
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Declaration
	Publications
	Introduction
	Motivation
	Use-cases for managing GA workload
	Research Problems
	The problem of managing the GA workload in container-based technologies
	The problem of node interference in container-based technologies

	Research hypothesis
	Thesis contributions
	Thesis outline
	Summary

	Background
	Cloud computing
	Cloud computing characteristics
	Cloud computing service models
	Cloud computing deployment models

	Resource management in cloud computing
	Resource allocation and scheduling
	Resource monitoring
	Elasticity

	Container-based technologies
	Optimisation methods
	Summary

	Literature Survey
	System model
	Workload model
	Application characteristics
	Workload generator

	Workload deployment
	Workload profiling
	Cloud monitoring
	Performance prediction
	Why do we need performance prediction?
	Performance prediction approaches
	Prediction evaluation metrics

	Resource allocation and scheduling
	 Optimization problem models and solvers
	Summary

	Experimental platform, metrics and methods
	Encapsulation of genetic algorithm
	Application model
	Proposed orchestrator
	Metrics
	Experimental method
	Summary

	Management of container-based genetic algorithm workloads over cloud infrastructure
	Comparing different allocation techniques
	Fitness tracking (FT):
	Fitness prediction (FP):
	Fitness-prediction-based linear regression (FPLR):
	Fitness-prediction-based weighted least square curve fitting (FPWLS)

	Evaluation
	Experimental setup
	Experimental results

	Summary

	Handling node interference in managing genetic algorithm workloads
	Weight-based node interference approach
	Admission control for firm real-time task
	Evaluation
	Experimental setup
	Experimental results

	Summary

	Conclusions and Future Work
	Future Work
	Generalizations to different workloads

	References

