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Abstract: We present a model to estimate the technical requirements, including the photovoltaic
area and battery capacity, along with the costs, for a four-person household to be 100% electrically
self-sufficient in Germany. We model the hourly electricity consumption of private households
with quasi-Fourier series and an autoregressive statistical model based on data from Berlin in 2010.
Combining the consumption model and remote-sensed hourly solar irradiance data from the ERA5
data set, we find the optimal photovoltaic area and battery capacity that would have been necessary
to be self-sufficient in electricity from July 2002 to June 2022. We show that it is possible to build a
self-sufficient household with today’s storage technology for private households and estimate the
costs expected to do so.

Keywords: self-sufficiency; time-series model; multi-parameter optimization; SDG7; SDG13

1. Introduction

Two of the Sustainable Development Goals (SDGs) declared by the UN are to “take
urgent action to combat climate change and its impacts” [1] and to “ensure access to affordable,
reliable, sustainable, and modern energy for all” [2]. These goals are expected to be fulfilled
by 2030. Strategies to fulfill these goals can be categorized into top–down and bottom–up
approaches [3]. An example of a top–down approach would be the decision of governments
to ban CFCs [4]. An example of a bottom–up process is the population-driven evolution of
individual commitments to a more sustainable vegan diet [5–7]. Top–down and bottom–up
approaches are not mutually exclusive and can even complement each other. Thus, the ef-
forts of governments to transform entire countries and economies toward sustainability
can and should be supported by individuals within the population.

For the transformation toward sustainability, solar self-sufficiency is of special interest
for a number of reasons. First, in Germany, 89% of suitable roof areas are still unused [8].
Second, prices for solar power systems and battery storage continue to drop [9], and the
materials are becoming more sustainable due to the increased use of natural materials [10].
For this paper, 31 interviews were carried out with solar and battery installers to understand
the customer requests and needs and the market products. These interviews revealed that
the number of requests for information about self-sufficiency in particular was unusually
high this year. Moreover, we found that installers did not have a neutral source of infor-
mation about the actual requirements for sizing photovoltaic systems and batteries to be
self-sufficient. This unusual level of interest could be due to the current media-promoted
energy uncertainty [11] and the sharp increase in electricity costs in Germany in 2022 (the
wholesale electricity price rose from 128 EUR/MWh in February 2022 to 469 EUR/MWh in
August 2022 [12]).

Research on self-sufficiency and 100% renewable energy has a long history (e.g., [13–19]).
One major branch of the literature focuses on how communities, cities, or countries can
become energy self-sufficient. For example, the economic, ecological, social, and en-
ergy system factors driving municipal governments to seek energy self-sufficiency were
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analyzed [20]. Ram et al. [21] proposed a pathway for a policy-driven transition to self-
sufficiency for the city of Delhi. Moreover, Oyewo et al. [22] showed how South Africa can
make the transition to 100% renewable energy by 2050.

Another branch of the research focuses on cost-optimization modeling for private
households. The economically optimal photovoltaic (PV) modules for private households
in South Korea have a power output of about 1.2 kW [23] (kW kilowatt). In Spain and France,
under the assumption that the electricity is only self-consumed, so neither stored nor fed
into the grid, the economically optimal PV modules have a power of about 1.5 kWp [24]
(kWp kilowatt peak, indicates the power of the modules under standard conditions, 25 °C
module temperature, 1000 W/m2 solar irradiance). A map with the estimated economically
optimal PV areas and costs for 145 countries can be found in [25]. Research has also been
conducted into the economically optimal battery capacity, which is about 1–5 kWh for
private households in Spain (kWh kilowatt hour) [26].

A third branch of the self-sufficiency literature is the estimation of the degree of self-
sufficiency. A degree of self-sufficiency of about 30% was reached in a model of a Polish
city, in which all rooftops were assumed to be covered with PV modules [27]. Furthermore,
Mutani and Todeschi [28] showed a degree of self-sufficiency of about 40% under optimal
orientation of the PV modules for private households in Spain. A degree of 68% was
achieved in a household in Slovenia which was powered by PV modules in combination
with a hydrogen battery [29]. The consumption and production was measured in 15-min
intervals for one year. Recently, a research study on households in Iraq showed that it is
possible to achieve a self-sufficiency degree of about 83% using PV modules in combination
with batteries [30].

Regarding the trade-off between the cost optimization and the degree of self-sufficiency,
Colmenar-Santos et al. [31] demonstrated that 100% solar self-sufficiency is not the eco-
nomic optimum. However, homeowners are often willing to pay a premium for self-
sufficiency [32]. However, there is a lack of research and information on the requirements
to obtain 100% solar self-sufficiency for private households and the associated costs, even
though there has been research decades ago on this topic. Lund [33] showed in 1991 a
standalone photovoltaic-hydrogen energy system that was able to produce constantly 1 kW
output power. A 100% energy self-sufficient house was build by research teams in Freiburg,
Germany in 1994 [34]. Although this represents a great success for self-sufficiency research,
it must be said that the effort required to achieve this goal will not be expendable for
private households.

Today, there are websites run by public providers that can be used to estimate the
expected annual electricity production for certain parameters [35,36]. These tools either
calculate only the electricity production without comparison to a consumption curve or
are restrictive in the choice of parameters so that parameter sets for achieving 100% solar
self-sufficiency are not allowed. On the whole, there is a lack of information for private
households on the requirements and possible investments to achieve 100% solar self-
sufficiency.

In this paper, our goal is to contribute to the energy sustainability transformation
by presenting a model that can be used to estimate photovoltaic module size (PV area)
and maximum battery capacity (MBC) requirements for solar self-sufficiency for private
households. We derive our model by optimizing the required PV area and MBC in different
regions of Germany, which receive different amounts of solar radiation. The optimization is
performed under the constraint that the hourly consumption and production of electricity
never empties the home battery. We then use our model with current price levels to derive
the average annual cost of solar self-sufficiency. We do not attempt to predict electricity
production and consumption (for studies on these, see [37–39]). Instead, we model hourly
annual consumption using representative data from Berlin, Germany in 2010 [40]. To
calculate potential electricity production, we use reanalysis data on a raster map between
July 2002 and June 2022 (ERA5, [41]). Furthermore, we use these data sources to optimize
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for the minimal required PV area and MBC for self-sufficiency over the last 20 years
in Germany.

The paper is organized as follows. First, we discuss our data sources in Section 2.
Then, in Section 3, we outline the model of electricity consumption and the method of opti-
mization to derive the PV area and MBC that would have been needed for self-sufficiency
over the past 20 years. Section 4 presents the results, including a colored map of Germany
indicating the best and worst regions for solar self-sufficiency, the relationship between
required battery capacity and available PV area, and a model for the additional costs that
are to be expected. In particular, it shows that it is possible to achieve self-sufficiency with
today’s storage technology. Finally, Section 5 summarizes the results and concludes the
paper with the discussion of potential further improvements of our model.

2. Production–Consumption Cycle and Data Description

In this section, we introduce the production–consumption cycle of electrical energy.
Then, we use the components of the cycle to structure the description of the data.

2.1. Production–Consumption Cycle

The production–consumption cycle is shown in Figure 1. PV modules convert electrical
energy from the sun to DC electrical energy. The energy is either consumed, stored, or sold
on the energy market. In case of underproduction, the energy demand is either satisfied
from the battery or from the energy market. Detailed explanations of the paths (a)–(e) in
Figure 1 are as follows:

(a) When the production and load are balanced, the produced electricity is directly
consumed. The produced DC electricity is converted by a power inverter to AC
electricity. Here, we assume that the inversion has an efficiency of ηPI = 0.91 [42].

(b) When there is overproduction, the excess energy is stored in the battery until the max-
imum battery capacity is reached. The efficiency of charging the battery is assumed to
be ηC = 0.95 [42].

(c) When there is underproduction, the energy demand is fulfilled by the battery first.
In this case, we have two losses: one associated with discharging the battery and the
other one associated with the power inverter. The total efficiency is assumed to be
ηD = 0.9 [42].

(d) When there is overproduction and the battery is fully charged, the electricity can be
transferred to the main grid and sold on the energy market with losses due to the
power inverter, which has efficiency ηPI = 0.91. The price received for each kWh sold
is in Germany bounded by law currently at a price psell = 0.07 EUR/kWh [43].

(e) When there is underproduction and there is not enough energy in the battery, the elec-
trical gap needs to be compensated for from the energy market. Currently, the price is
approximately pbuy = 0.4 EUR/kWh including taxes (for anticipated price evolution,
we refer to [44]).

We use this setup to estimate how much PV area and battery capacity are necessary
to avoid buying any electricity. That is, path (e) is excluded, so that no additional costs
will arise in the future except for maintenance. This optimization is discussed in Section 3.
To model the production of electricity, we use hourly solar radiation data from July 2002 to
June 2022. The model for the hourly consumption is based on data from 2010. The data
sets for production and consumption, and for the characteristics of the PV modules and the
battery, are presented below.
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Figure 1. Energy storage cycle. PV modules (blue square, top) convert solar energy to electrical
energy. In the best case, the production aligns with the consumption. Surplus energy is stored in the
battery. In case the battery is full, further surplus is sold. Energy demand is fulfilled from the battery.
If the battery is empty and there is demand for energy, it is purchased from the energy market.

2.2. Production Data

In this paper, we are interested in the electrical energy that can be produced by PV
modules from solar radiation. We calculate the electrical DC energy Eel,l for different loca-
tions l as the integral over time of the total irradiance per square meter Itotal,l,t, multiplied by
the PV area P in m2, multiplied by the efficiency τ of the PV module. Benda and Černá [45]
compared different PV modules and efficiencies. Based on their research, we choose
τ = 20%.

The electrical energy can therefore be expressed as

Eel,l = τP
∫

dtItotal,l,t, (1)

where
Itotal,l,t = Idirect,l,t + Idiffuse,l,t + Ireflected,l,t. (2)

The total irradiance consists of three parts. The direct irradiance Idirect,l,t is the solar
radiation that directly reaches the PV modules. Some of the solar radiation is scattered
by clouds or by the particles of the Earth’s atmosphere. This is represented by the diffuse
irradiance Idiffuse,l,t. Solar radiation that is reflected by the ground is represented by
Ireflected,l,t. The three irradiances are described by

Idirect,l,t =
FDIR

cos(Θ)
cos(γ) , (3)

where Θ is the zenith angle of the sun and γ is the angle between the normal vector of
the PV module and the sun (see Figure 2). The total sky direct solar radiation at surface
(FDIR) is the amount of direct solar radiation reaching the surface of the Earth in units
of J/m2 (Joules per square meter). We obtain the FDIR from the ERA5 data [41] along with
the data set for global horizontal irradiance (GHI) and the dimensionless albedo parameter α
representing the Earth’s reflectivity. The GHI is the amount of solar radiation (also known
as shortwave radiation) that reaches a horizontal plane at the surface of the Earth. This
parameter comprises both direct and diffuse solar radiation and is in units of J/m2. All
three data sets contain hourly data. The data for GHI and FDIR give the accumulated
values for a period of 1 h ending at the relevant date and time. The data for albedo give
the average albedo measure for that hour. Let the time t be the hour under consideration.
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The data are available on a grid with a 0.25° resolution. We used the data covering an area
surrounding Germany bounded by longitudes of 6° E and 15° E and latitudes of 47° N and
55° N, so in total, there are 33× 37 = 1221 grid cells of data.

n

Figure 2. A model of solar radiation falling on a PV module. Here, n is the normal vector of the PV
module, γ is the angle between the normal vector and the solar direction, λ is the angle between the
PV module and the ground, and Θ is the zenith angle.

From GHI and FDIR, we can extract the diffuse horizontal irradiance (DHI) by

DHI = GHI− FDIR . (4)

The diffuse irradiance can then be expressed as

Idiffuse,l,t = DHI
1 + cos(λ)

2
, (5)

where λ is the installation angle of the PV module (see Figure 2). Mubarak et al. [46] suggest
that PV modules should be oriented toward east and west, because then, there is a greater
overlap between the time intervals of electricity production and demand. Therefore, we
assume that our PV modules are positioned at an angle λ = 15° toward east and west, each
covering 50% of the total area. For other orientations, one can use their factors for different
orientations as a first approximation.

Finally, we can express the reflected radiation as

Ireflected,l,t = α GHI
1− cos(λ)

2
. (6)

As an example, the weekly irradiance values for one grid point are plotted in Figure 3
for the year 2021. The direct irradiance fluctuates strongly compared to the diffuse ir-
radiance. The total irradiance is significantly higher in the summer than in the winter.
The reflected irradiance is almost negligible, since the modules are located at an angle
λ = 15°, nearly flat on the ground, and hence, little of the radiation reflected by the ground
reaches the PV modules.
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Figure 3. Weekly irradiance per m2 and weekly electricity consumption at the “sunny” location (left)
and the “cloudy” location (right) (for definitions, see Section 4).

2.3. Consumption Data

We use consumption data from [40] that include electricity usage values on the second
scale for 74 households in Berlin, Germany from 1 January 2010 to 31 December 2010. This
data set has been used in other studies (e.g., [46,47]). We used the mean consumption of
the 74 households, which is around 4.7 MWh per year and is a good representation of a
four-person household consumption curve in Germany [40]. Since our irradiance data are
on an hourly scale, we accumulated the consumption data to an hourly scale (see Figure 4).
The electricity usage is different from month to month but also depends on weekdays and
the hour of the day. Two example days are plotted together with the total mean in Figure 4.
It can be seen that the need for electricity is higher in the winter (February) compared to
the summer (July). This higher consumption in the winter is underlined in Equation (11),
which also shows the weekly consumption for one year. For information on the non-linear
relationship between temperature and electricity consumption, we refer to [48].
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Figure 4. Average hourly electricity consumption in kWh over one year (black) as well as the
consumption for a weekday and a weekend in February (purple, blue) and July (green, red).

Based on the hourly mean across 74 households in this data set, we model a time
series for the hourly consumption with a quasi-Fourier series and temporal autoregressive
model. Starting from Section 3.2, we also want to make conclusions for different yearly
consumption levels. For example, for an annual consumption level of 3.2 MWh, we
multiply the consumption curve by 3.2

4.7 . In the following, we describe the consumption by
the consumption rate C, which is the percentage of the default consumption level of 4.7 MWh
(C = 100 3.2

4.7 % in this case).
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2.4. Storage

Battery storage is an essential part of the setup for being self-sufficient and for the
broader energy transition of society [49,50]. This is reflected in the large body of research in
different directions, from the optimal economic usage of batteries (e.g., optimal charging
cycles [51]), to making batteries cheaper and more robust (e.g., by using aluminum, sulfur,
and salt as the main components; [52]). Hence, it is likely that battery prices will drop in
the future, even though they currently remain high.

To gather information on current battery sizes and costs for private households,
we collected information from n = 46 companies in Germany that install PV modules
combined with electricity storage in private households. The average storage price for an
installed solution before tax was x̄sp = 776 EUR/kWh with a sample standard deviation of
ssp = 10 EUR/kWh. For private households in Germany, we have to consider an additional
19% value-added tax. The largest battery storage we were able to identify has a capacity
of 1520 kWh [53], which consists of a 20 KWh electrical battery and a 1500 kWh hydrogen
storage unit that is designed for use as seasonal storage (for details on seasonal storage,
see [54]).

We obtain the yearly costs for the battery with the annuity equation. We assume that
we take a loan of 100% of the battery costs K0 and pay it back with a monthly constant rate
pMBC for n = 10 years, which is the time of the warranty of the battery. The outstanding
debt after n years is then given by

En = K0qn − pMBC(qn − 1)
q− 1

, (7)

where q = p+ 1. We assume it is possible to take out a loan at an interest rate of p = 3% [55],
so q = 1.03. Then, we can calculate the yearly cost of the MBC pMBC by setting En = 0
(since we want to have zero debt at the end), yielding

pMBC =
K0qn(q− 1)

qn − 1
=

776× 1.0310 × 0.03
1.0310 − 1

= 90.97 EUR/kWh . (8)

2.5. Photovoltaic Modules

Since solar energy is available for free in large quantities across the Earth, it is possible
that the generation of electrical energy from PV modules will become humanity’s main
source of energy in the future. Making this more likely is that prices for solar electricity
continue to drop [9]. There is also a great deal of ongoing research into making PV mod-
ules cheaper, more efficient, and more sustainable in terms of production materials [10,56].
An important step in the future will be if communities can 3D print their own PV mod-
ules [57].

To gather information about the prices of PV modules today, we collected PV mod-
ule prices n = 22 from four online shops with a warranty of at least 15 years [58–61].
The average price for only the PV module excluding taxes is x̄PV = 101 EUR/m2 with
sPV = 5.3 EUR/m2. These modules have on average a rate output power of 402 kWp. Based
on the interviews with the installation companies, it is further assumed that the installation
costs are an additional 100% over the PV module prices. We also have to consider the
additional 19% value-added tax. The total price per m2, including installation and taxes, is

PVm2 = 240 EUR. (9)

Again, we use the annuity equation and assume that we take out a 100% loan with
interest rate p = 3% and pay it back over the n = 15 years of warranty at a constant rate.
In that case, we can calculate the yearly costs of the PV per m2 as

pPV =
K0qn(q− 1)

qn − 1
=

240× 1.0315 × 0.03
1.0315 − 1

= 20.1 EUR/m2 (10)
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PV modules can also be characterized by their kWp. Based on our data, the price per
kWp is PVkWp = 1394 EUR including installation and tax.

In our model, we do not take the power reduction over time of the PV modules nor
the battery into account. This effect could be incorporated into the model by scaling the PV
area and battery capacity accordingly.

3. Methods
3.1. Modeling the Hourly Electricity Demand

Based on the data presented in Section 2.3, the hourly demand for electricity is depen-
dent on the hour of the day, whether it is a weekday or weekend, and the season of the
year. Therefore, we modeled the average hourly consumption c(t) between 2 January 2010
and 23 December 2010 using Fourier series and by taking temporal lags into account. We
constructed and estimated the frequencies and parameters from the data set. The resulting
logarithmic models are as follows:

ln(c(t)) ≡ c̃(t) =

{
βd0 + Td + Dd + Yd + Wd + εd if t is on a weekday
βe0 + Te + De + Ye + We + εe if t is on a weekend ,

(11)

where βd0, . . . , βd9 and βe0, . . . , βe11 are the regression coefficients of the weekday and week-
end model, respectively (see Table 1). Td and Te are the autoregressive components, Dd and
De are the daily variations, Yd and Ye are the yearly trends, Wd and We are the interactions
between daily and yearly trend, and ε is independent white noise. The autoregressive
models are given by

Td = βd1 c̃(t− 1) + βd2 c̃(t− 2) + βd3 c̃(t− 24) + βd4 c̃(t− 25) (12)

and
Te = βe1 c̃(t− 1) + βe2 c̃(t− 2) + βe3 c̃(t− 25) , (13)

where the time lag always refers to the hours of the previous day of the same category (e.g.,
for the weekend model, if t is on a Saturday at 9:00 a.m., then t− 25 refers 25 h before to
the previous Sunday at 8:00 a.m.). Based on the residuals’ autocorrelation function and
the partial autocorrelation function, we choose the time lags in a step-wise manner until
the functions showed no autocorrelation in the residuals. The daily variations and yearly
trends are modeled by

Dd = βd5 sin
(

2π t̃
d

)
+ βd6 sin

(
4π t̃

d

)
, (14)

De = βe4 sin
(

2π t̃
d

)
+ βe5 cos

(
4πt̃

d

)
, (15)

Yd = βd7 sin
(

2π t̃
yd

)
+ βd8 sin

(
π t̃
yd

)
, and (16)

Ye = βe6 sin
(

2π t̃
ye

)
+ βe7 cos

(
2π t̃
ye

)
, (17)

where d = 24 is the number of hours in a day and yd,e is the total number hours in the year,
with ye = 2× 51× 24 = 2448 for weekends and yd = 5× 51× 24 = 6120 for weekdays in
common years. In leap years, however, there is an additional 24 h depending on whether
the additional day is a weekday or a weekend. The time t counts the hour of the year
and the time t̃ counts the hours of each category (t̃ ∈ {1, ..., yd,e}). Finally, we model the
interaction of the daily and yearly tends as

Wd = βd9 sin
(

4π t̃
d

)
cos
(

2π t̃
yd

)
, and (18)
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We = βe8 sin
(

2π t̃
d

)
cos
(

2π t̃
ye

)
+ βe9 sin

(
4πt̃

d

)
cos
(

2πt̃
ye

)
+ βe10 sin

(
4π t̃

d

)
sin
(

π t̃
ye

)
+ βe11 cos

(
4πt̃

d

)
sin
(

π t̃
ye

)
. (19)

Since during the 8 days between 24 December 2010 and 1 January 2010 there are
outliers in the data, we kept the daily profiles equal to the data from 2010 regardless of
the weekday.

The values estimated by a least-squares fit for the consumption model β̂ are shown
in Table 1. Estimates for the residuals εd and εe can be found in Table 2, which shows
values for the sample standard deviations σεd and σεd as well as estimates and p-values for
the Durbin–Watson test.

Table 1. Estimated values for the consumption model.

Parameter Estimate Std. Dev. p-Value

Equation (11)—Weekday consumption
Intercept β̂d0 1.535 0.0518 <2× 10−16

Time Lag 1 β̂d1 0.638 0.0124 <2× 10−16

Time Lag 2 β̂d2 −0.138 0.0089 <2× 10−16

Time Lag 3 β̂d3 0.552 0.0108 <2× 10−16

Time Lag 4 β̂d4 −0.292 0.0120 <2× 10−16

Daily Variation 1 β̂d5 −0.081 0.0032 <2× 10−16

Daily Variation 2 β̂d6 −0.074 0.0032 <2× 10−16

Yearly Trend 1 β̂d7 0.014 0.0017 <2× 10−16

Yearly Trend 2 β̂d8 −0.090 0.0049 <2× 10−16

Interaction 1 β̂d9 −0.013 0.0024 4.18× 10−8

Equation (11)—Weekend consumption
Intercept β̂e0 1.687 0.0577 <2× 10−16

Time Lag 1 β̂e1 0.671 0.0198 <2× 10−16

Time Lag 2 β̂e2 −0.069 0.0162 2.29× 10−5

Time Lag 3 β̂e3 0.129 0.0141 <2× 10−16

Daily Variation 1 β̂e4 −0.170 0.0060 <2× 10−16

Daily Variation 2 β̂e5 0.103 0.0063 <2× 10−16

Yearly Trend 1 β̂e6 0.015 0.0025 5.07× 10−10

Yearly Trend 2 β̂e7 0.051 0.0030 <2× 10−16

Interaction 1 β̂e8 −0.022 0.0035 2.24× 10−10

Interaction 2 β̂e9 −0.037 0.0043 <2× 10−16

Interaction 3 β̂e10 −0.040 0.0053 3.05× 10−14

Interaction 4 β̂e11 0.030 0.0080 1.52× 10−4

Table 2. Estimated values for the residuals of the consumption model.

Model Residuals Sample
Mean

Sample
Std. Dev.

Durbin-Watson
(p-Value)

Weekday εd 7.1× 10−18 σεd = 0.09081 2.0624 (0.9907)
Weekend εe 2.6× 10−18 σεe = 0.08568 1.9716 (0.1871)

3.2. Optimization for PV Area and Battery Capacity

With the hourly production data and the hourly consumption model, we can evaluate
the production–consumption cycle for one year for arbitrary values of the PV area and
MBC. We evaluate a year from July in one year to June in the following year to avoid a break
in the critical time period between November and February, during which consumption is
high and production is low (see Figure 3).
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We evaluate each year individually, so that we can say which years have greater
requirements for the PV area and MBC. The annual evaluation also avoids compensating
a “bad” year with the energy excess from a previous “good” year. Figure 5 shows the
dependence of the amount of electricity that needs to be purchased on the PV area and the
MBC for the year from July 2020 and June 2021 in the “cloudy” region (for the definition of
this region, see Section 4).
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Figure 5. Left shows the electricity that needs to be bought between July 2020 and June 2021 in the
“cloudy” region (for the definition of this region, see Section 4), depending on the MBC for different
PV areas. Right shows the electricity that needs to be bought between July 2020 and June 2021 in the
“cloudy” region, depending on the PV area for different MBCs.

It can be seen that it is possible to reach zero (i.e., no energy had to be bought through-
out the year) for different configurations of PV area and MBC. In these cases, we are
self-sufficient during that year. The important question we want to answer is: what is
the minimal PV area that is necessary to be self-sufficient? This is because the PV area
is the most common limiting factor for private households in Germany. We also want to
understand the relationship between the MBC and the PV area P in different locations l in
Germany and also for different electricity consumption rates C.

Therefore, we express the hourly battery load Bl,t(P, C) for every hour of the year
t ∈ {1, ..., 24× 365(366)} in the location l as follows

Bl,t(P, C) =

{
max(Bl,t−1(P, C) + ηD

ηPI
∆l,t(P, C), 0) if ∆l,t(P, C) < 0

min(Bl,t−1(P, C) + ηC
ηPI

∆l,t(P, C), MBC) if ∆l,t(P, C) > 0 .
(20)

The hourly battery level is determined by the battery level from the previous hour and
the difference in production and consumption over that hour (∆l,t(P, C) = PηPIτ Itotal,l,t −
C c(t)). Since there are two different efficiencies related to charging and discharging the
battery, we take this into account in the two cases for Bl,t(P, C), whether ∆l,t(P, C) is smaller
or larger than zero. The hourly battery load cannot be negative and cannot exceed the
maximum battery capacity. If Bl,t(P, C) becomes smaller than zero in one hour, we set it
to zero and have to buy the unmet energy demand from the energy market. On the other
hand, if Bl,t(P, C) exceeds MBC, we set it to MBC and can sell the excess energy in the
energy market. So, we can see that the hourly battery load depends on how we choose
the MBC.

Now, we can formulate an optimization problem to find the minimal required MBC
for a given P, a given C, and in different locations l, under the condition that we do not
have to buy any energy:

Minimize MBC

subject to Bl,t−1(P, C) +
ηD
ηPI

∆l,t(P, C) ≥ 0, for all t

Bl,0(P, C) = 10, for all l, P, C .
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Since the solution depends on l, P, and C, we denote the optimum by MBCl(P, C).
Note that Bl,t(P, C) depends on the upper bound MBC according to Equation (20). We
run the optimization on the data of each year between July and June, assuming that we
start with an initial battery load of Bl,0(P, C) = 10 kWh. We perform the optimization by
bisection with the convergence criterion that the distance between the least known upper
bound and the greatest known lower bound is less than 0.01 kWh. All code and data to
reproduce the analysis are available open-source data (see data availability statement).

In the case that the PV area is too small to provide the required energy, there is no
solution for this optimization problem. Hence, we can optimize for the minimal required
PV area Pmin,l(C) in different locations around Germany:

Minimize P

subject to Bl,t−1(P, C) +
ηD
ηPI

∆l,t(P, C) ≥ 0, for all t

Bl,0(P, C) = 5, for all l, P, C .

We performed this optimization using the bisection method under the convergence
criterion that the distance between the least known upper bound and the greatest known
lower bound is less than 0.01 m2.

We determined Pmin,l(C) for each grid cell and for each of the 20 years individually.
By doing so, we can rule out that energy surplus from one year is carried forward into
a “bad” year. The minimal PV area for each grid cell for the default consumption rate of
C = 100% for the worst year is plotted in Figure 6.

In Figure 7, we plotted the relationship between MBCl(P, C) and PV area for different
values of PV area, different consumption rates, and in two representative locations (“cloudy”
and “sunny”).

For a conservative estimation of the required MBCl(P, C) for a given PV area and a
given C, we have to consider the uncertainty of the consumption model c(t). We can cover
the small variance by adding the “worst” 3-σ-interval offset of the uncertainties to the MBC
δMBC(C) (like a backup battery) with the uncertainties from Table 2,

δMBC(C) = C
ηD
ηPI

exp(3 max(σεd , σεe) max(c(t)) = 1.659C kWh . (21)

The factor of ηD
ηPI

is due to the uncertainty linearly affecting the condition of the
constraint (see [62]). The 3-σ uncertainty covers 99.5% of regular daily routines, such as
boiling water, cooking, or watching TV at variable times, because these daily routines are
covered in the consumption curve and the excess use in one hour will be compensated
in the next hour. However, it does not cover larger, outlier events such as celebrating a
30th birthday at home with many guests, cooking, loud music, and special lightning in
January. Such events with large electricity demand are probably not compensated within
the next or previous hours. Hence, if we wanted to take into account such events, this
could be completed by either including these energy demands in the consumption curve or
increasing the MBC by the energy needed for such events, especially if these events take
place in the time period between November and February.

One final assumption we are making is that the coverage of 99.5% will be extended by
the behavior of the household itself. If the household has some kind of feedback on the
level of battery load, this knowledge will affect their behavior, resulting in lower electricity
use at critical times.
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Figure 6. Heat map of the the minimal required PV area Pmin,l(C = 100%) to gain 100% self-
sufficiency for the 1221 locations considered. The red crosses indicate the grid cells within Germany
where the highest and lowest PV areas would have been necessary for self-sufficiency over the past
20 years.

MWh
MWh
MWh
MWh
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min, cloudy
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Figure 7. MBCs(P, C) and MBCc(P, C) needed to gain 100% electrical self-sufficiency depending on
the PV area that is available for different consumption rates C (from purple to blue). The values
for the sunniest region and the cloudiest region are marked and indicated by the colored suns and
clouds. For any location in Germany, the true value is within the colored area between the cloudy
and sunny extremes.

4. Results

We calculate the minimal resources Pmin,l(C) and MBCl(P, C) required to achieve 100%
self-sufficiency in each of the past 20 years and in each of the 1221 grid cells for different
consumption rates. We plot, for every grid cell, Pmin,l for the worst year in Figure 6 for
the default consumption rate C = 100%. The red crosses in the map indicate the grid cell
where the highest (38.7 m2) and lowest (24.8 m2) PV area is necessary. As expected, in the
south, the required PV area is smaller than in the north. We select these two representative
locations with the highest and lowest PV requirements to set upper and lower limits. This
allows us to make statements that apply to the whole of Germany. We call these two
locations “sunny” and “cloudy”.
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Figure 7 shows the MBCl(P, C) that is needed to gain 100% electrical self-sufficiency,
depending on the PV area that is available, the consumption rate C, and for the “sunny”
and “cloudy” location. As expected, when less electricity is required, the required PV area
and MBC are smaller and vice versa. We can then estimate the relationship between MBC
and PV area. In Figure 7, it can be seen that there is a break in each lower (sunny location)
and upper (cloudy location) plot. For PV areas smaller than the breakpoint, the gradient of
MBCl(P, C) is exponential with increasing PV area. The gradient of MBCl(P, C) is linear
for PV areas larger than the breakpoint. The breakpoints are obtained manually from the
data and plotted in Figure 8. In the following, we will only consider the “sunny” and
“cloudy” locations. Therefore, we write MBCs(P, C) and MBCc(P, C) for these two locations,
respectively.

use both exponential 
models in this area

use both linear 
models in this area

use
 lin

ear m
odel fo

r s
unny b

ord
er 


and exponentia
l m

odel fo
r c

loudy b
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Figure 8. Plot showing which model from Figure 7 we have to choose to describe the relationship
between MBC and PV area for a given consumption rate and PV area.

Based on Figure 8, we can conclude from the consumption level and the PV area that
we have available (we should use as much PV area as possible, since the PV area is cheap
compared to the battery costs) which models we should choose to describe the relationship
between MBCs(P, C), MBCc(P, C) and PV area. The four models for cloudy and sunny,
each with a linear and an exponential model, are chosen as follows:

MBCs,lin(P, C) = γsl,0 + γsl,1C + γsl,2P + εsl , (22)

MBCc,lin(P, C) = γcl,0 + γcl,1C + γcl,2P + εcl , (23)

ln(MBCs,exp(P, C)) = γse,0 + γse,1C + γse,2P/C + εse , (24)

and
ln(MBCc,exp(P, C)) = γce,0 + γce,1C + γce,2P/C + εce . (25)

The estimated parameters can be found in Table 3. Based on these relations, we can
estimate the costs for self-sufficiency, as discussed below.

Costs for Solar Self-Sufficiency

The total price Ql per year at different locations l includes the annual price that one
has to pay for the setup of the battery and PV area pA and is reduced by the amount of
electricity gel that one can sell on the market within the year and also by the default price
gd of the electricity that one would have paid without the setup. Hence, Ql contains only
the additional costs

Ql = pA(MBCl(P, C), P, pMBC, pPV)− gel(l, P, C, psell)− gd(C, pbuy) (26)
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Table 3. Estimated values for the relationship between MBC and PV area.

Parameter Estimate Std. Dev. p-Value

Equation (22)—MBC, sunny, linear
Intercept γ̂sl,0 2.996 1.6274 0.069

Linear Consumption γ̂sl,1 0.843 0.0186 <2× 10−16

Linear PV area γ̂sl,2 −0.327 0.0122 <2× 10−16

Equation (23)—MBC, cloudy, linear
Intercept γ̂cl,0 0.330 1.7815 0.854

Linear Consumption γ̂cl,1 1.014 0.0640 3.42× 10−15

Linear PV area γ̂cl,2 −0.177 0.0224 1.69× 10−8

Equation (24)—MBC, sunny, exponential
Intercept γ̂se,0 7.209 0.3564 <2× 10−16

Exp. Consumption γ̂se,1 0.007 0.0007 2.91× 10−10

Exp. PV/C γ̂se,2 −5.825 0.6157 9.71× 10−10

Equation (25)—MBC, cloudy, exponential
Intercept γ̂ce,0 6.773 0.0940 <2× 10−16

Exp. Consumption γ̂ce,1 0.007 0.0003 <2× 10−16

Exp. PV/C γ̂ce,2 −1.460 0.0514 <2× 10−16

We now look into each of these components individually. The default price for
electricity gd is the amount of electricity consumed times the price for each kWh pbuy.
To model gel, we plot the annual energy sold against the PV area in Figure 9 and find a
linear relationship in both the sunny (gel,s) and the cloudy (gel,c) region. Based on this plot,
we estimate that

gel,s(P, C) = γel,s,0 + γel,s,1 P + γel,s,2 C + εel,s (27)

and
gel,c(P, C) = γel,c,0 + γel,c,1 P + γel,c,2 C + εel,c . (28)
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Figure 9. Shows the amount of money gained within a year for selling the overproduced electricity.

The estimated parameters can be found in Table 4. In the following, we model the
setup cost pA by separating it into the total costs for the MBC (QMBC) and the total costs for
the PV area (QPV),

pA(MBCl(P, C), P, pMBC, pPV, C) = QMBC(MBCl(P, C), pMBC) + QPV(P, pPV) , (29)

where the total yearly cost for the PV area is the PV area multiplied by the yearly price per
m2,

QPV(P, pPV) = P pPV , (30)
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and the costs for the battery are the MBC multiplied by the yearly costs per kWh pMBC. We
derived the relationship between MBC and PV area above, so we have

QMBC(MBCl(P, C), pMBC) = pMBC MBCl(P, C) . (31)

With these equations, we have derived all contributors to the total price for self-
sufficiency Ql . The total prices for self-sufficiency by the PV area and the consumption rate
for the sunny and cloudy limits are plotted in Figures 10 and 11.

2
0
,0
0
0

MWh
MWh
MWh

Figure 10. Relationship between the total yearly cost of self-sufficiency and the PV area for three
different consumption rates (colors left to right from lower to higher consumption rate). The limits
for cloudy and sunny regions are marked and the area between theses limits is filled. Any place in
Germany is within that filled area.

2
0
,0
0
0

Figure 11. Relationship between the total yearly costs of self-sufficiency and the consumption level
for three different PV areas (colors left to right from smaller to larger PV area). The cloudy and sunny
limits region are marked and filled. Any place in Germany is within that filled area.

From Figure 10, one can see that a larger PV area decreases the total cost of self-
sufficiency in any location in Germany. In contrast, a higher consumption of electricity
yields to greater yearly costs (see Figure 11). It can also be seen that being self-sufficient
can possibly result in financial benefits if the consumption level is low and there is a large
PV area. Both of these factors reduce the need for a large, expensive battery. However,
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the cheaper approach makes more sense in sunnier regions, which are located primarily in
the south of Germany.

Using Figures 10 and 11 in addition to Equation (26) lets one estimate the requirements
and the expected annual cost for solar self-sufficiency. It is worth noting that with a higher
consumption of electricity, for example, by an electric car or a heat pump, it is still possible
to achieve solar self-sufficiency, but large PV areas and high MBCs are necessary. One can
optimize the costs by taking into account that it is not only important how much electricity
is needed but also when it is needed [46,63].

Table 4. Estimated values for the relationship between the amount of money gained from selling
surplus electricity, the consumption rate, and the PV area.

Parameter Estimate Std. Dev. p-Value

Equation (27)—Selling, sunny
Intercept γ̂el,s,0 −32.800 9.8304 0.00111
PV area γ̂el,s,1 16.217 0.0491 <2× 10−16

Consumption γ̂el,s,2 −3.410 0.0819 <2× 10−16

Equation (28)—Selling, cloudy
Intercept γ̂el,c,0 −37.625 11.6773 0.00162
PV area γ̂el,c,1 12.820 0.0439 <2× 10−16

Consumption γ̂el,c,2 −3.839 0.0959 <2× 10−16

5. Discussion and Conclusions

In this paper, we modeled the hourly annual electricity demand of an average four-
person household using Fourier series and an autoregressive statistical model. We applied
the results to the time period from July 2002 to June 2022. The consumption model
was compared to hourly solar radiation data from ERA5. From the comparison of these
values, we optimized how much PV area and how much battery capacity would have been
necessary for electricity self-sufficiency during these 20 years. The values were determined
for a fixed, optimal orientation of the solar modules with a 15° inclination toward east
and west for 1221 grid cells in and around Germany. From the grid cells located within
Germany, the two cells with the highest and lowest demand of PV area were then selected
as representatives for all of Germany and designated as “cloudy” and “sunny”.

For the cloudy and sunny regions, the relationship between battery capacity and PV
area was estimated for different electricity consumption rates. We also derived the expected
annual cost of self-sufficiency from the models. Our model shows that using more PV area
for self-sufficiency is cheaper. This is particularly interesting given that currently, 89% of
suitable rooftop space is still vacant [8]. In addition, our model shows that if the annual
electricity consumption is low, combined with a sufficiently large solar area, it may be
possible to earn money by selling surplus electricity in sunny regions while being self-
sufficient. To reduce costs for self-sufficiency, the main advice is to reduce one’s electricity
consumption and/or to move the consumption to sunny hours of the day, if possible [46].

Using this model, people interested in living self-sufficiently can estimate which con-
ditions have to be fulfilled and what costs can be expected. In particular, our model shows
that self-sufficient households can be built with today’s storage technology (1520 kWh
Hydrogen Storage [53]). In providing this information, we aim to lower the barrier for
private households to achieve self-sufficiency. This could help support a bottom–up sus-
tainability transformation to achieve the SDGs “take urgent action to combat climate change
and its impacts” [1] and “ensure access to affordable, reliable, sustainable and modern energy for
all” [2]. In the future, we expect households and communities to become more interested in
solar self-sufficiency as the prices of PV systems and batteries continue to decline in the
coming years.

Our model is characterized by the following facts. First, it allows to optimize for 100%
self-sufficiency. We explicitly do not say that this is economically the best way, but everyone
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can at least have an idea on the dimensions of required tools and the expected costs. Second,
we evaluate with our model the difference between electricity consumption and production
on an hourly basis to provide a more reliable result compared to weekly or daily evaluation.
Third, the model is based on solar radiation data from ERA5, which are available worldwide.
Thus, it can be easily transferred to another area using the provided open source code.
Fourth, we built our model based on historical data without future forecasts, which would
induce further uncertainty in the provided information (e.g., required storage capacity
at each location). In turn, this means that only influences of climate change and global
warming from the past are included in the model. Nevertheless, forecasting the input
quantities to obtain reliable predictions of the requirements/costs for 100% self-sufficiency
is an important field for future research.

The impact of climate change and global warming on the model can be mainly due
to more frequent weather extremes [64]. The critical period for self-sufficiency is between
November and February, as less electricity is produced and more electricity is consumed
during this time. Weather extremes can shorten or lengthen this critical period and thus the
requirements for self-sufficiency by providing more or less sunny and warm days within
this period.

In future work, we will further elaborate on the weaknesses of our models. These
include (1) adding more consumption curves with different profiles (e.g., those in [65]),
(2) adding more past radiation data to make the self-sufficiency conditions more stable,
(3) modeling the radiation data on a minute-by-minute frequency to reduce the error in the
comparison of the aggregated consumption data, (4) taking into account the battery life,
as well as the degradation of the battery and the PV modules over time, (5) considering the
effects of temperature on the efficiency of the PV modules, and (6) considering different
positions and orientation angles of the PV modules.

Another possible research avenue would be to take the idea of self-sufficiency further
and find and model solutions for complete self-sufficiency, including water treatment and
food cultivation [66]. Modeling the combination of residential solar and wind energy
would be another interesting research topic, following [67]. Another possibility could be to
extend our approach to the SDG “make cities and human settlements inclusive, safe, resilient
and sustainable” [68] by connecting self-sufficient single-family homes into communities to
form self-sufficient smart villages.
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PV photovoltaic
MBC maximum battery capacity
CFC chlorofluorocarbon
DC direct current
AC alternating current
C electricity consumption rate
DHI diffuse horizontal irradiance
FDIR total sky direct solar radiation at surface
GHI global horizontal irradiance
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