
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A case study comparing static analysis tools for
evaluating SwiftUI projects
To cite this article: Gerald Birgen Imbugwa et al 2021 J. Phys.: Conf. Ser. 2134 012022

 

View the article online for updates and enhancements.

You may also like
Data-Driven Approaches to User Interface
Design: A Case Study
Denis Pimenov, Alexander Solovyov,
Nursultan Askarbekuly et al.

-

International workshop on next generation
gamma-ray source
C R Howell, M W Ahmed, A Afanasev et
al.

-

A latch-based sense amplifier with
improved performance for single ended
SRAM application
Bhawna Rawat and Poornima Mittal

-

This content was downloaded from IP address 2.220.13.131 on 24/07/2023 at 10:42

https://doi.org/10.1088/1742-6596/2134/1/012022
/article/10.1088/1742-6596/2134/1/012020
/article/10.1088/1742-6596/2134/1/012020
/article/10.1088/1361-6471/ac2827
/article/10.1088/1361-6471/ac2827
/article/10.1088/1402-4896/acd6c2
/article/10.1088/1402-4896/acd6c2
/article/10.1088/1402-4896/acd6c2


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

1

A case study comparing static analysis tools for

evaluating SwiftUI projects

Gerald Birgen Imbugwa, Luiz Jonatã Pires de Araújo , Mansur
Khazeev, Ewane Enombe, Harrif Saliu, Manuel Mazzara

Innopolis University, Universtikaya St. 1, Tartastan, Russia

E-mail: {g.imbugwa,l.araujo,m.khazeev,e.ewane,h.saliu}@innopolis.university
m.mazzara@innopolis.ru

Abstract. Declarative programming languages such as SwiftUI have gained increasing
relevance for user interface implementation in mobile applications. A tool for evaluating and
improving the quality of such projects is static analysis (SA). This study compares the usefulness
of two of the most popular SA tools (SonarQube and Codacy) for evaluating real-world SwiftUI
projects. Moreover, it recommends setup and adjustments to promote SA tools for SwiftUI
projects that can be extended to other languages.

1. Introduction
Declarative programming is a paradigm in which a high-level computer program is used to
specify the task to be done rather than a sequence of steps of how to do it. The program is then
executed by an “inference engine” that investigates the written set of logic relations to infer
the answer to a given query. Examples of such languages include Prolog and Swift, which have
been introduced in the late 1960s and have a direct correspondence to mathematical logic. In
this paradigm, the purpose is to allow developers to focus on the problem domain, leading to
reduced development time and increased maintainability.

In the last five years, declarative programming has been used for implementing user interfaces
in mobile applications. The list of benefits of its adoption includes the following features: a
simplified coding convention, a smoother learning curve, the ability to run on different mobile
platforms, a live preview of changes during the implementation without having to rebuild the
entire application among a host of others, among other aspects. Moreover, recently introduced
frameworks such as SwiftUI, Flutter [20] and React Native [29] contribute to a more efficient
development process when using a declarative style of programming. However, such tools do
not address code quality, a critical factor in the software development process.

The need for high-quality mobile applications requires tools and techniques to aid developers
in identifying critical portions of the source code and measuring software quality. Quality
assurance methods include testing [15], static analysis, prototyping or simulation, code
inspection, and review among a host, to mention a few. These techniques address different
aspects of the development process to guarantee that the application meets user requirements
and performs as expected. This study focuses on static analysis, which is a verification conducted
before the execution of software to determine whether given coding conventions are followed
[14]. It is noteworthy that static analysis has been firstly designed and employed for imperative

https://orcid.org/0000-0001-7450-7945


ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

2

programming. Hence, there has been limited literature on using this quality inspection method
for declarative programming, especially for mobile applications written in SwiftUI, for example.

This study aims to compare the effectiveness of some of the industry’s most common tools for
software quality assessment when evaluating real-world open-source projects written in Swift.
Such quality ensuring methods and tools are expected to automatically detect anomalies and
violations within the source code and enable one to verify whether the quality measures confirm
the framework’s official documentation. The results allow the community to gain valuable
insights into the advantages and requirements for integrating such tools into the development
process. In this study, the authors focus on SwiftUI for mobile applications, a modern declarative
programming language with limited academic literature.

The remainder of this paper is organized as follows. Section 2 reviews the existing literature
on static analysis and its use for declarative programming in the last decades. Section 3 presents
the methodology for selecting the automatic static analysis tools, as well the real-world projects
written in SwiftUI used as a benchmark. It also presents additional tasks necessary to address a
common issue in the static analysis: false positives. A comparison of the results obtained by the
selected tools is shown in Section 4 and discussed in Section 5. Lastly, Section summarizes the
main findings, suggestions for the adoption of static analysis into the development cycle when
using declarative programming and aspects to be approached by future research.

2. Literature Review
This section reviews the existing literature on static analysis and its use for declarative
programming.

2.1. Static analysis for evaluating projects
Static analysis is the automated analysis of a program before its execution. It aims to aid
development teams to verify software quality quickly. Static analysis is often used to detect
security vulnerabilities, low performance, non-standard or outdated programming constructs,
and noncompliance with enterprise standards. Static analysis tools can be classified according
to the employed technique: parsing the source code into an abstract syntax tree (AST), regular
expression matching, and combining both. While regular expression matching is easier to
implement and allows more flexible rules for identifying errors, AST enables more specific,
contextual matching and can reduce the number of false positives errors reported in the code.

There has been a considerable amount of research demonstrating the benefits of static analysis
for imperative programming. For example, Wichmann et al. [28] pointed its usefulness in
industrial settings. Examples of its adoption include major companies such as eBay [16], Google
[6] and Microsoft [19]. However, the authors recognize that the benefits are often hard to
quantify, diminishing its impact. Chess et al. [8] which stresses the benefits of performing code
security analysis with static analysis tools such as BOON, CQual, MOPS, Splint, amongst others.
For example, it can find security vulnerabilities in the early development stages. Prähofer et al.
[25] stresses that static code analysis complements the work that compilers execute regarding the
assessment of self-contained program quality by identifying bad code, violations of programming
conventions and potential defects. One major drawback of the static analysis tools identified by
the previous studies is the possibility to produce false positives errors.

2.2. Static analysis for declarative programming
Since its introduction, static analysis has been employed mostly for imperative programming
languages like C++ and Java. There has been a limited number of studies using this technique
for declarative programming. For example, Peralta et al. [23] demonstrated the use of SA
for coding in an imperative language written in the form of logic constructs. In other words,
a declarative program is derived from the original imperative before being analysed by the



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

3

Figure 1. Number of papers published between 2000 and 2021 on static analysis per declarative
programming language.

automatic tool. A limitation of this method is the requirement for parsing the code from
imperative to declarative programming, which might introduce noise into the code and give
limited insight into the semantics of the imperative program.

Most of the existing literature on static analysis for declarative programming targets Prolog
applications with the purpose to evaluate and complement compiler techniques [17, 10, 12, 11].
Interestingly, some static analysis frameworks for specific declarative languages have been
implemented in the last decades, including Lisp [21], Java [22], and Swift [27]. However, there is
still a need for a more comprehensive body of research on the effectiveness of SA for declarative
programming used in real-world projects. Furthermore, the number of papers published in the
last decades on this topic is limited, as shown in Figure 1.

3. Methodology
This study assesses the usefulness of static analysis tools for evaluating the quality of real-world
projects written in SwiftUI, a declarative programming language developed by Apple [3]. This
section presents the criteria for selecting the automatic tools and the real-world projects used
as a benchmark.

3.1. Requirements for the static analysis tools
The first step of the conducted research was to select static analysis tools that report some
of the most relevant quality metrics [9]: number of issues, complexity, code duplication, code
smell, hotsport, number of vulnerabilities, number of and code size. Specifically, for a number
of issues, the results reported by the tool were validated by manual inspection of the code and
the use of the existing Apple documentation [4]. In addition to the quality metrics mentioned
above, the static analysis tools should present the following features:

• SwiftUI support: Most of the imperative programming languages have several static
analysis tools available. SwiftUI, however, has a limited number of options.

• Report on the number of code standard violations: Code standards are rules and
guidelines provided either by the programming language or the organization, leading to
improved communication among teams, reduced program errors, and contributing to the
overall software quality.



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

4

Figure 2. Model View Controller [13].

Figure 3. Model View ViewModel Architecture

• User friendly on software installation: Such a feature aims to promote the use of
software quality control by heterogeneous teams. This also considers the compatibility with
modern operating systems, required libraries and plugins, and available online support and
documentation.

After an analysis of the existing tools and how they comply with the requirements above, the
following two applications were selected: Codacy [9], and SonarQube [26].

3.2. Requirements for software projects
Next, open source real-world projects written by different teams and publicly available on
GitHub were selected for analysis. Such an approach allowed the authors to focus on the testing
instead of the implementation of possibly homogeneous applications. The second criterion was
to select projects which have been implemented using different software architectures from the
list:

• Model-View: In this architecture, the view layer is able to access the model layer, translate
user inputs, and perform actions in the model [24].

• Model-View-viewModel (MVVM): View components each have a ViewModel
component that provides a scene-specific state to the view [2].

• Redux: All views are able to access and view specific information in specific view structs
using a global app state [24].

After filtering a preliminary list of SwiftUI projects available on GitHub, a subset of
repositories was selected using the requirements as mentioned earlier. The projects selected
for further investigation using static analysis tools are shown in Table 1.

As mentioned in Section 2.1, false positives are among the most critical issues of the results
reported by static analysis tools. Therefore, the authors manually validated a sample of the
issues identified by each SA tool. Lastly, the results from the tools are compared to enable one
to gain insights about their effectiveness when assessing a declarative programming code.



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

5

Figure 4. Redux Architecture

Table 1. Projects Metrics
Repository name Description Architecture LoC
CoronaVirus-
TrackerSwiftUI

It tracks the number of positive cases of
COVID-19 around the globe.

Redux 1,464

DesignCode-SwiftUI An app for converting design to code. MVVM 926
FireTodo An TODO application using Google Firestore. Redux 1,379
FlipClock-SwiftUI An app that shows the current time with a flip

animation.
MV 263

MovieSwiftUI A movie application. Redux 7,468
NewsApp-With-SwiftUI-
And-Combine

An application using an API from Apple to get
news using the combine framework.

MVVM 14,034

SwiftUI-Chat A chat application. MVVM 309
SwiftUI-WeChat A clone application of WeChat. MVVM 2,600
SwiftUISignin A library of authentication screens for different

user interfaces.
MV 960

SwiftUITodo An TODO application. MVVM 319
Weather A weather application. MVVM 1,016
LoC: Lines of Code; MV: Model-View; MVVM: Model-View-viewModel.

4. Results
Firstly, the following steps were performed to run Codacy and SonarQube(sonarcloud) to assess
the previously selected projects (see Table 1):

(i) Connect Codacy and SonaQube to GitHub

(ii) User authentication in the SA tool

(iii) Add the target repository from the GitHub

(iv) The project is forked into the SA tool

(v) The SA tool calculates the corresponding software quality metrics

The results obtained by Codacy are shown in Table 2. The following quality metrics are
reported:

• Repository name

• Grade: Overall quality of each project, which ranges from A (high quality) to F (low
quality) according to the average number of bugs per LOC [18, 9].

• Issues: Number of occurrences of bad or potentially harmful code, which falls into one of
the following categories [9]:

– Security: potential vulnerabilities and unsafe dependencies
– Error-Prone: bad practices/patterns that cause the code to fail/prone to bugs



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

6

Table 2. Software quality metrics reported by Codacy.
Repository name Grade Issues Complexity Duplication
CoronaVirus-TrackerSwiftUI B 19% - 0%
DesignCode-SwiftUI A 8% - 0%
FireTodo B 36% 0% 0%
FlipClock-SwiftUI A 0% - 0%
MovieSwiftUI B 11% - 2%
NewsApp-With-SwiftUI-And-Combine B 19% - 0%
SwiftUI-Chat B 17% - 0%
SwiftUI-WeChat B 13% - 0%
SwiftUISignin B 27% - 0%
SwiftUITodo B 13% - 0%
Weather B 23% - 0%

– Code Style: related to the style of the code including line length, tabulation instead of
space, etc

– Compatibility: code that has no support for legacy systems or cross-platform
components

– Unused code: unnecessary code
– Performance: inefficient code regarding memory utilization and speed

• Complexity: A measure of the difficulty of understanding and maintaining the source
code.

• Duplication: The percentage of code which is implemented more than once within the
repository.

It is possible to notice from Table 2 that most of the projects are graded as having overall
quality B. One reason is the apparent correlation between the number of issues and the grade.
For example, two projects with the issue metric below 10% have grade A. It is also possible to
observe that, for all projects but FireTodo, Codacy shows a dashed character for complexity. For
FireTodo, however, Codacy shows 0%. The tool fails to indicate if the metric is nonapplicable
or an error in the report presentation. Lastly, only MovieSwiftUI had a small percentage of
duplicated code.

Next, SonarQube was executed against the selected projects. The quality metrics reported
by the tool use the following letter grades: A (no open issue), B (minor), C (major), D (critical)
and E (blocker). The results are shown in Table 3, which contains the following list of quality
metrics:

• Bugs: The number and grade of errors in the source code. Such errors can be a source of
reliability issues in the source code.

• Vulnerabilities: Number of issues that enable a malicious code to hack the source code.

• Security hotspots: Percentage of sensitive parts of the code based that require attention.

• Code smell: Number of portions of the code that are confusing and difficult to maintain.

• Duplication: Code that appears more than once within the repository.

It is noteworthy that all repositories had zero bugs except for MovieSwift, which had one bug
but grade C instead of B. This indicates that other factors are considered when grading this
metric in addition to the number of errors. One reason can be the higher number of code smells



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

7

Table 3. Software quality metrics reported by SonarQube.
Project name Bugs Vulnerability Hotspot Code Duplication

reviewed smells
CoronaVirus-TrackerSwiftUI 0 (A) 0 (A) 100% (A) 15 (A) 0.0
DesignCode-SwiftU 0 (A) 0 (A) 100% (A) 23 (A) 0.0
FireTodo 0 (A) 0 (A) 100% (A) 28 (A) 0.0
FlipClock-SwiftUI 0 (A) 0 (A) 100% (A) 1 (A) 0.0
MovieSwiftUI 1 (C) 0 (A) 100% (A) 171 (A) 0.4
NewsApp-With-SwiftUI-And-
Combine

0 (A) 0 (A) 100% (A) 21 (A) 3.7

SwiftUI-Chat 0 (A) 0 (A) 100% (A) 7 (A) 0.0
SwiftUI-WeChat 0 (A) 0 (A) 100% (A) 49 (A) 6.5
SwiftUISignin 0 (A) 0 (A) 100% (A) 47 (A) 0.0
SwiftUITodo 0 (A) 0 (A) 100% (A) 11(A) 0.0
Weather 0 (A) 0 (A) 100% (A) 18(A) 0.0

of this project. Again, there is an apparent lack of a more transparent evaluation and grading
by the SA tool. Lastly, SonarQube was more successful than Codacy in identifying duplicated
codes.

An analysis of both tools indicates a need for more transparent grading criteria of the quality
metrics. For example, Codacy combines quality metrics, which prevents a better understanding
of the aggregate result. Moreover, these tools generate many false positives because of the
verification of supporting code (e.g., read me files).

It is noteworthy that most of the issues identified by Codacy and SonarQube were not
related to the declarative programming nature of the code, since this type of error is also
recurrent in imperative programming languages. This indicates that such tools are as applicable
to declarative programming as they are for imperative code styles.

5. Discussion
SA tool is a leap forward to the code quality of any software project. The two tools(SonarQube
and Cadacy) used for the experiment proved correctly to identify the coding-style violation
despite failing in some areas.

The metrics generated for software quality differed from the two SA tools used during this
research. Despite running the same project with different SA tools under the same category with
the same steps. For example, duplication in Codacy one project only was flagged(MovieSwiftUI),
whereas, in SonarQube, three projects were flagged(MovieSwiftUI, NewsApp-With-SwiftUI-
And-Combine, SwiftUIWeChat). Additionally, the duplication metric in Codacy is not part
of the overall software quality.

Rules used in analysing a project under test in the AS tools differed immensely. SonaQube
Swift package has 172 rules used in analysing the software projects. Whereas, Codacy depends
on linter packages from 3rd parties like the tailor, SwiftLint, and Jackson. The generated metrics
might not be meaningful if the developer had already used the 3rd party linter library before
running the project on Codacy. The extensive database of strict rules offered by SonarQube can
be the reason for the effective metrics reported in all projects analysed.

Codacy offers the most desirable setup process with a few steps for configuration regarding
ease of use. The Codacy UX/UI offers comfort to view the metrics at a glance and navigation
to different subcategories of metric analysis. On the other hand, SonarQube suffers most from
the complex setup process that is not friendly to beginners. SonaQube UX/UI is a bit complex



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

8

as it offers extensive metrics. A new user using SonarQube can lose focus on the task at hand
due to the number of charts and figures floating around.

The SA tools are of great benefit as they offer extensive metrics for accessing new paradigms
in programming languages. The metrics features shared by both tools include; security,
maintainability, duplication, and security. In addition, the SA tools offered rules configurations
depending on the analysis required for a project. SonaQube goes further to add other sets of
rule quality gates.

Lastly, a significant criticism of the use of the selected quality tools is related to the lack of
transparent criteria for the overall grades of a project. One reason might be that such rates result
from the aggregation of individual results for all the files in the project without considering their
relative importance and role(e.g. source code, setup file) in the project. However, the integration
of automatic tools and data-driven approaches in software quality is recommended for integration
into the development cycle [7, 1, 5].

6. Conclusion
This study compared the usefulness of two among the most popular static analysis tools in the
software development industry (i.e., Codacy and SonarQube) to assess the quality of real-world
open-source projects written in SwiftUI. SwiftUI has gained increasing relevance in the software
industry and is often used for developing applications in Apple’s ecosystem. The tests consisted
of running the tools for the projects, a manual validation for false positives, and a comparison
of the results to gain insights into the possible incorporation of these tools into the development
cycle.

The conducted experiments and results demonstrated that static analysis could correctly
identify issues regarding security and especially code-style to some extend. However, the use of
the selected tools requires some prior effort in setting up its use. For example, filtering files that
do not contain source code are configuration files (e.g. markdown files). Moreover, a manual
inspection of the code is also necessary due to false positives, i.e. parts of code that have been
mistakenly flagged as containing errors. In SwiftUI projects, one of the reasons is the use of
some programming patterns (e.g. closure). This study also identified a limitation on the use
of static analysis tools which is the need for more transparent grading criteria for projects and
artefacts. For example, there is an apparent correlation between grade and number of issues in
the reports provided by Codacy. However, the available references do not provide information
on whether the latter feature affects the former.

One of the aims of this study is to strengthen the currently limited amount of literature on
static analysis for declarative programming languages. Real-world projects were selected and
used as a benchmark for tools that are popular among development teams. The conducted
experiments demonstrated their usefulness and indicated which adjustments are necessary for
a more productive development cycle. Although there might be some criticism on the format
of the reports provided by static analysis tools (e.g. Codacy and SonarQube), they can play a
meaningful role in ascertaining software quality as already in imperative software development.
Future research should address additional available declarative frameworks such as Flutter,
Jetpack, Compose and React Native. Moreover, it might be beneficial to assess how static
analysis can be integrated into the development process and activities such as compilation and
interpretation without extensive manual code inspection.

References
[1] Akinsanya, B.J., Araújo, L.J., Charikova, M., Gimaeva, S., Grichshenko, A., Khan, A., Mazzara, M.,

Ozioma Okonicha, N., Shilintsev, D.: Machine learning and value generation in software development:
a survey. In: International Conference on Tools and Methods for Program Analysis. pp. 44–55. Springer
(2019)



ITTCS 2021
Journal of Physics: Conference Series 2134 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/2134/1/012022

9

[2] Aljamea, M., Alkandari, M.: Mmvmi: A validation model for mvc and mvvm design patterns in ios
applications. IAENG Int. J. Comput. Sci 45(3), 377–389 (2018)

[3] Apple: Declare the user interface and behavior for your app on every platform., https://developer.apple.
com/documentation/swiftui

[4] Apple: Xcode and swift, https://developer.apple.com/swift/resources/
[5] Atif, F., Rodriguez, M., Araújo, L.J., Amartiwi, U., Akinsanya, B.J., Mazzara, M.: A survey on data

science techniques for predicting software defects. In: International Conference on Advanced Information
Networking and Applications. pp. 298–309. Springer (2021)

[6] Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static analysis defect warnings
on production software. In: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. pp. 1–8 (2007)

[7] Capizzi, A., Distefano, S., Araújo, L.J., Mazzara, M., Ahmad, M., Bobrov, E.: Anomaly detection in devops
toolchain. In: International Workshop on Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment. pp. 37–51. Springer (2019)

[8] Chess, B., McGraw, G.: Static analysis for security. IEEE security & privacy 2(6), 76–79 (2004)
[9] Codacy: Software metrics: A practical guide for the curious developer. pp. 2–29 (11 2020).

https://doi.org/10.1109/TELFOR.2018.8612149
[10] De Boeck, P., Le Charlier, B.: Static type analysis of prolog procedures for ensuring correctness. In:

International Workshop on Programming Language Implementation and Logic Programming. pp. 222–
237. Springer (1990)

[11] Eichberg, M., Kahl, M., Saha, D., Mezini, M., Ostermann, K.: Automatic incrementalization of prolog based
static analyses. In: International Symposium on Practical Aspects of Declarative Languages. pp. 109–123.
Springer (2007)

[12] Filé, G., Rossi, S.: Static analysis of prolog with cut. In: International Conference on Logic for Programming
Artificial Intelligence and Reasoning. pp. 134–145. Springer (1993)

[13] Gallagher, M.: Model-view-controller without the controller., https://www.cocoawithlove.com/blog/

mvc-without-the-c.html

[14] Gomes, I., Morgado, P., Gomes, T., Moreira, R.: An overview on the static code analysis approach in software
development (11 2020)

[15] Jamil, A., Arif, M., Abubakar, N., Ahmad, A.: Software testing techniques: A literature review. pp. 177–182
(11 2016)

[16] Jaspan, C., Chen, I.C., Sharma, A.: Understanding the value of program analysis tools. In: Companion to the
22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion.
pp. 963–970 (2007)

[17] Matsumoto, H.: A static analysis of prolog programs. ACM Sigplan Notices 20(10), 48–59 (1985)
[18] McConnell, S.: Code Complete, Second Edition. Microsoft Press, USA (2004)
[19] Nagappan, N., Ball, T.: Static analysis tools as early indicators of pre-release defect density. In: Proceedings.

27th International Conference on Software Engineering, 2005. ICSE 2005. pp. 580–586. IEEE (2005)
[20] Napoli, M.L.: Beginning Flutter: A Hands on Guide to App Development. John Wiley & Sons (2019)
[21] Narayanaswamy, K.: Static analysis-based program evolution support in the common lisp framework. In:

Proceedings.[1989] 11th International Conference on Software Engineering. pp. 222–223. IEEE Computer
Society (1988)

[22] Öqvist, J.: Contributions to Declarative Implementation of Static Program Analysis. Ph.D. thesis, Lund
University (2018)

[23] Peralta, J.C., Gallagher, J.P., Sağlam, H.: Analysis of imperative programs through analysis of constraint
logic programs. In: International Static Analysis Symposium. pp. 246–261. Springer (1998)

[24] Phan, D.H.: Benchmarking common architectural patterns in ios development (2019)
[25] Prähofer, H., Angerer, F., Ramler, R., Lacheiner, H., Grillenberger, F.: Opportunities and challenges of

static code analysis of iec 61131-3 programs. In: Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation (ETFA 2012). pp. 1–8. IEEE (2012)

[26] SonarQube: Your teammate for code quality and security, https://www.sonarqube.org
[27] Tiganov, D., Cho, J., Ali, K., Dolby, J.: Swan: a static analysis framework for swift. In: Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 1640–1644 (2020)

[28] Wichmann, B.A., Canning, A., Clutterbuck, D., Winsborrow, L., Ward, N., Marsh, D.W.R.: Industrial
perspective on static analysis. Software Engineering Journal 10(2), 69–75 (1995)

[29] Wu, W.: React native vs flutter, cross-platforms mobile application frameworks (2018)

https://developer.apple.com/documentation/swiftui
https://developer.apple.com/documentation/swiftui
https://developer.apple.com/swift/resources/
https://www.cocoawithlove.com/blog/mvc-without-the-c.html
https://www.cocoawithlove.com/blog/mvc-without-the-c.html
https://www.sonarqube.org

