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ABSTRACT
Spectroscopic phase curves of transiting hot Jupiters are spectral measurements at
multiple orbital phases, giving a set of disc-averaged spectra that probe multiple hemi-
spheres. By fitting model phase curves to observations, we can constrain the atmo-
spheric properties of hot Jupiters, such as molecular abundance, aerosol distribution,
and thermal structure, which offer insights into their atmospheric dynamics, chem-
istry, and formation. We propose a novel 2D temperature parameterisation consisting
of a dayside and a nightside to retrieve information from near-infrared phase curves
and apply the method to phase curves of WASP-43b observed by HST/WFC3 and
Spitzer/IRAC. In our scheme, the temperature is constant on isobars on the nightside
and varies with cosn(longitude/ε) on isobars on the dayside, where n and ε are free pa-
rameters. We fit all orbital phases simultaneously using the radiative transfer package
NEMESISPY coupled to a Bayesian inference code. We first validate the performance
of our retrieval scheme with synthetic phase curves generated from a GCM and find
that our 2D scheme can accurately retrieve the latitudinally averaged thermal struc-
ture and constrain the abundance of H2O and CH4. We then apply our 2D scheme to
the observed phase curves of WASP-43b and find: (1) the dayside temperature-pressure
profiles do not vary strongly with longitude and are non-inverted; (2) the retrieved
nightside temperatures are extremely low, suggesting significant nightside cloud cov-
erage; (3) the H2O volume mixing ratio is constrained to 5.6× 10−5–4.0× 10−4, and we
retrieve an upper bound for CH4 mixing ratio at ∼10−6.

Key words: radiative transfer – methods: numerical – planets and satellites: atmo-
spheres – planets and satellites: individual: WASP-43b.

1 INTRODUCTION

Exoplanet surveys suggest planets are common around stars
in our galaxy (Winn & Fabrycky 2015). The diversity in their
characteristics from system architecture to bulk properties
poses challenging questions in the theory of planetary for-
mation (Mordasini et al. 2009). Gaseous giant planets with
close-in orbits (period < 10 days), dubbed hot Jupiters, are
a key piece of the puzzle for two reasons: (1) they likely
undergo significant orbital migration and play an impor-
tant role in shaping planetary system architecture (Dawson
& Johnson 2018), and (2) they are the easiest targets for
spectroscopic characterisation, and the constraints on their
atmospheric properties give valuable insights into planetary
formation (Madhusudhan et al. 2017; Mordasini et al. 2016).

The spectral appearance of hot Jupiters is determined

? E-mail: jingxuan.yang@hertford.ox.ac.uk

by the opacity structure and the thermal structure of their
atmospheres. Conversely, by fitting spectra generated from
atmospheric models to observations, we could constrain the
atmospheric properties of these planets in a process known
as atmospheric retrievals (Irwin et al. 2008; Madhusudhan
& Seager 2009; Line et al. 2013; Changeat & Al-Refaie 2020;
Cubillos & Blecic 2021; MacDonald & Batalha 2023). Two
observing methods are widely used: (1) transmission spec-
troscopy, which measures the stellar light filtered through
the planetary limb during primary transits (Barstow 2017;
Sing et al. 2016); (2) eclipse spectroscopy, which extracts the
dayside emission spectra by monitoring the combined stellar
and planetary flux during secondary eclipses (Lee et al. 2012;
Mansfield et al. 2021). Such observations have been done at
both high resolution (e.g., Brogi & Line 2019) from ground-
based facilities and at low-resolution using space telescopes
(e.g., Wakeford et al. 2017), resulting in a myriad of atomic
and molecular detections (e.g., Fe: Hoeijmakers et al. 2018;
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Na: Snellen et al. 2008; H2O: Evans et al. 2016; CO2: Team
et al. 2022).

A major challenge in the analysis of low-resolution emis-
sion spectra is the degeneracy between thermal structure
and molecular abundance; in particular, modelling highly in-
homogeneous thermal structure with a single temperature-
pressure (TP) profile can lead to significant biases in re-
trieved molecular abundance (Feng et al. 2016; Blecic et al.
2017; Taylor et al. 2020). This degeneracy can be partially
broken by measuring the emission spectra of transiting hot
Jupiters at multiple orbital phases. As hot Jupiters are likely
tidally locked to their stars due to the short orbital separa-
tions, it is straightforward to relate the orbital phases to the
central longitudes of the visible hemisphere. Note that we
assume the planets have edge-on orbits, and we define the
equator to be in the orbital plane. Such observations, called
‘phase curves,’ allow us to constrain the thermal structure
of the atmospheres better, resulting in better constraints on
the chemical abundance as well.

In order to retrieve information from a set of phase
curves using Bayesian inference, we first need to construct
appropriate parametric atmospheric models. If we want to
analyse all orbital phases simultaneously, then the models
must describe the entire observable atmosphere to generate
disc-averaged emission spectra at multiple orbital phases.
Crucially, we need multidimensional temperature models
that can capture the longitudinal variation of thermal struc-
ture in the pressure ranges probed by emission spectroscopy.
The model should also contain as few parameters as possi-
ble to ensure Bayesian parameter estimation can be done
in reasonable time, and to avoid overfitting. There are two
main approaches to this problem. The first approach is to
split the atmosphere into disjoint regions, where the thermal
structure in each region is modelled with a one-dimensional
TP model. For example, Feng et al. (2020) split the atmo-
sphere into a dayside and a nightside, whereas Changeat
et al. (2021) further model an additional hot spot within
the dayside, and Irwin et al. (2020) divide the atmosphere
into meridian bands with linearly interpolated temperature
maps between the bands. The second approach is to con-
struct highly-simplified three-dimensional analytical atmo-
spheric models. For example, Dobbs-Dixon & Blecic (2022)
propose a 3D model by separating radiative and convective
components from Global Circulation Model (GCM) outputs,
whereas Chubb & Min (2022) prescribe a 3D model by re-
stricting heat transfer to diffusion and zonal winds.

The studies summarised above offer unique and valu-
able perspectives on the analysis of hot Jupiter phase curves.
However, it is difficult to compare the different retrieval
schemes for several reasons. Firstly, the ways in which the re-
trieval schemes are validated differ significantly across stud-
ies. The most direct way to assess the performance of a re-
trieval scheme is first to create synthetic data from a model
atmosphere, then test how well the retrieval scheme can re-
cover the input atmospheric properties. Out of the studies
that include such validation tests, the synthetic data are
often generated from toy models resembling the tempera-
ture parameterisations of the retrieval schemes, so it needs
to be clarified how well the retrieval models can perform
on data generated from more realistic atmospheric models.
Secondly, there are multiple modelling steps within each re-
trieval study, for example, the modelling of thermal struc-

ture, the modelling of chemical abundance, and the mod-
elling of radiative transfer, which can all vary across stud-
ies. Thirdly, the studies that perform analysis of real obser-
vations often do not retrieve on exactly the same data set,
which hinders the comparison of the retrieved constraints.

In this work, we propose a novel 2D retrieval scheme
(model 4 in section 2.4) that can be used to retrieve chemi-
cal abundance and thermal structure from hot Jupiter phase
curves. In this model, the temperature is a function of pres-
sure and longitude. The model is split into a dayside and
a nightside: on the dayside, the temperature varies with
cosn(longitude/ε) on isobars, where n and ε are free param-
eters, and on the nightside the temperature is constant on
isobars. We use this scheme, together with several other sim-
pler 2D retrieval schemes for comparison, to retrieve molec-
ular abundance and latitudinally averaged thermal struc-
ture from phase curves of WASP-43b observed by Hubble
Space Telescope/Wide Field Camera 3 (HST/WFC3) and
Spitzer/Infra-Red Array Camera (Spitzer/IRAC). We first
validate the performance of the 2D schemes by retrieving
atmospheric properties from synthetic phase curves gener-
ated from a GCM-based model of WASP-43b, where the
‘ground truth’ is known, so we can assess the accuracy of
the retrieved properties. We then apply the 2D schemes to
the observed HST/WFC3 and Spitzer/IRAC phase curves
of WASP-43b. We also compare the 2D approach to the
phase-by-phase approach, where the spectrum at each or-
bital phase is analysed separately, in appendix B.

This paper is structured as follows. In section 2, we de-
scribe our routine for simulating spectroscopic phase curves,
our 2D temperature models, and our retrieval set-up. Sec-
tion 3 demonstrates that simplified atmospheric models can
reproduce the synthetic data generated from a GCM. Sec-
tion 4 presents the retrieval results on synthetic GCM phase
curves using our 2D temperature models, followed by appli-
cation to the observed phase curves in section 5. We discuss
the implications of our results and compare them with past
studies in section 6 and end with a conclusion in section 7.

2 METHODOLOGY

This work aims to assess the performance of a novel 2D
parametric temperature model (model 4) in retrieving atmo-
spheric properties from low-resolution spectroscopic phase
curves. We also test three simpler models (model 1, 2, and
3) for comparison. The data we model are the phase curves
of WASP-43b, as presented in Stevenson et al. (2017), and
synthetic phase curves of the same resolution simulated
from a GCM-based model. The planet WASP-43b is a hot
Jupiter around a K7 star discovered by Hellier et al. (2011),
with planetary parameters of 2.034±0.052 Jupiter mass and
1.036±0.019 Jupiter radii as given by Gillon et al. (2012).
Due to its short 19.5-hour orbit and large planet-to-star flux
ratio, WASP-43b is a prime target for phase-resolved spec-
troscopic observations. The observation contains 15 phase
curves from the HST/WFC3 instrument, which are binned
in equally spaced bins of width 0.035 µm spanning the wave-
length range 1.1425-1.6325 µm, and two phase curves from
Spitzer/IRAC broad channels centred at 3.6 and 4.5 µm.

In this section, we describe the GCM used for simu-
lating synthetic phase curves in 2.1, our procedure for the
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Figure 1. Temperature (Kelvin) as a function of longitude and

latitude at three pressure levels in the WASP-43b GCM. The
super-rotating equatorial jet is clearly visible and shifts the ‘hot

spot’ eastward of the substellar point (where the star would be

perceived to be directly overhead). Note that the substellar point
is at 0 degree longitude. Such jet-like features would cause the

phase curve amplitudes to peak before secondary eclipses. Note

that the latitudinal distance is weighted by cos(latitude) to mimic
the effect that polar latitudes would appear foreshortened to us

because we observe WASP-43b from above the equator.

radiative transfer calculation in 2.2, and our method for cal-
culating disc-averaged spectra in 2.3. We describe our 2D
atmospheric temperature models in 2.4, our retrieval set-up
in 2.5, and our Bayesian inference scheme in 2.6.

2.1 GCM data

We use a GCM of WASP-43b to simulate synthetic phase
curves to validate our retrieval schemes. We can directly as-
sess the performance of our retrieval schemes by comparing
the atmospheric properties retrieved from the synthetic data
with the input GCM. The GCM is a cloud-free model calcu-
lated using SPARC/MITgcm (Showman et al. 2009) based
on the set-up of Parmentier et al. (2016), and used for vali-
dating the 2.5D retrieval scheme by Irwin et al. (2020). We
plot temperature as a function of longitude and latitude at
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Figure 2. Transmission weighting function of the WASP-43b
GCM atmosphere at the substellar point as a function of pres-

sure and wavelength channel. The first 15 HST/WFC3 channels

are in equally spaced bins of width 0.035 µm spanning the wave-
length range 1.1425-1.6325 µm, and the last two Spitzer/IRAC

broad channels are centred at 3.6 and 4.5 µm, respectively.

Table 1. Gas volume mixing ratios (VMRs) and opacity data

used to simulate synthetic phase curves. The VMRs are uniform
with longitude, latitude and altitude. For He and H2 collision-

induced absorption opacity, we use the coefficients from Borysow

et al. (1989) and Borysow & Frommhold (1989).

Molecule VMR Opacity Data

H2O 4.8 × 10−4 Barber et al. (2006)

CO2 7.4 × 10−8 Tashkun & Perevalov (2011)

CO 4.6 × 10−4 Rothman et al. (2010)

CH4 1.3 × 10−7 Yurchenko & Tennyson (2014)

He 0.162
H2 0.837

three pressure levels of the GCM in Fig. 1, and plot the
transmission weighting function at the substellar point as a
function of pressure and wavelength channel number in Fig.
2. The model is H2/He dominated and contains four spec-
trally active gas species: H2O, CO, CO2 and CH4, which
are expected to be the dominant opacity sources in the at-
mosphere of WASP-43b in the observed wavelengths. The
chemical abundance in the GCM is initially set according
to chemical equilibrium, resulting in significant variation
in CH4 abundance from dayside to nightside in the pho-
tospheric pressures. However, disequilibrium chemistry pro-
cesses such as horizontal quenching are expected to smooth
out such inhomogeneity (Cooper & Showman 2006; Agúndez
et al. 2014). Hence, we reset the abundance of all molecules
to be the latitudinally averaged abundances in the 0.1 to
1-bar pressure region (using cos(latitude) as the weight) at
the sub-stellar meridian, following Irwin et al. (2020). We
then use this model to simulate the synthetic data. By re-
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setting the chemical abundance to uniform values, we iso-
late the effect of temperature parameterisation in retrievals.
We discuss the motivation and implication of using uniform
abundance in section 3.3 and section 6.3.3. The volume mix-
ing ratios (VMRs) in our GCM-based model are presented
in Table 1. The synthetic phase curves are thus generated
from the thermal structure of the GCM and the uniform
VMRs, using the disc-averaging scheme described in section
2.3. The chemical abundance and thermal structure of this
GCM-based model are seen as the ‘ground-truths’ for our
retrieval tests in section 4.

2.2 Radiative transfer calculation

We use the correlated-k method (Lacis & Oinas 1991) to
accurately and efficiently implement our radiative transfer
calculations, following Irwin et al. (2008). Consider the mean
transmission for a homogeneous path of absorber amount m
in the wavelength bin [λ, λ + ∆λ],

T(m) = 1
∆λ

∫ λ+∆λ

λ
exp(−k(λ)m)dλ, (1)

where k(λ) is the absorption cross-section. T is the key
quantity that links opacity structure and thermal struc-
ture in thermal emission calculations. The cross-section k
is a rapidly varying function of λ, so it is computationally
expensive to numerically calculate equation (1). However,
since the ordering of k in the wavelength bin [λ, λ+∆λ] does
not affect the value of equation (1), we sort k in ascend-
ing order within each wavelength bin, which gives a mono-
tonic distribution of k that is easier to handle in quadrature
schemes. Mathematically, let the cumulative frequency dis-
tribution of k be g(k), then the inverse of g(k), which we
denote as k(g), is well-defined and monotonic. The function
k(g) is called the k-distribution, and can be tabulated on a
grid of pressures and temperatures for each spectrally active
molecule before calculations. During radiative transfer cal-
culations, the k-distributions of multiple gases are combined
with the random-overlapping-line approximation (Lacis &
Oinas 1991). Such approximation gives residuals insignif-
icant compared with measurement error, as found by Ir-
win et al. (2020) and Mollière et al. (2015). To calculate
T through an inhomogenous path, we first split the path
into multiple sub-paths (Irwin et al. 2008) that are suffi-
ciently homogeneous, then model each sub-path with the
absorber-amount weighted averaged sub-path properties. In
the monochromatic case, the transmission of each sub-path
can be multiplied together to give the transmission of the to-
tal path. However, to use the k-distribution technique where
we have reordered k, we need to additionally assume that
the wavelength regions of high opacity are correlated for all
sub-paths, which is the correlated-k approximation. This is
a good approximation for our set-up, as we are assuming
constant vertical distribution of chemical abundance in our
atmospheric model.

Using the k-distribution technique, the mean transmis-
sion of a sub-path as defined in equation (1) can be well-
approximated with a Gaussian quadrature scheme:

T(m) =
Ng∑
i=1

exp(−kim)∆gi, (2)

N  =2 N  =3

N  =4 N  =5

phase 45

Figure 3. Illustration of our disc averaging scheme at 45 degree
orbital phase (0 degree being the primary transit and 180 de-

gree the secondary eclipse). The visible region of the illuminated

dayside at this orbital phase is shaded pink, whereas the visible
nightside region is shaded in grey. The crosses mark the quadra-

ture points for disc integration, and the dashed circles mark the

positions of the zenith angle quadratures.

where ki is the ith quadrature point, ∆gi the corresponding
weight, and Ng the number of quadrature points. The total
transmission of an inhomogenous path is then

T(m) =
Ng∑
i=1

exp
(
−

Nlayer∑
j=1

ki jmj
)
∆gi, (3)

where we have multiplied the transmission of all Nlayer layers
together. We use k-distribution look-up tables (‘k-tables’)
with Ng = 20 generated from the line data summarised in
Table 1.

To speed up calculations, we use channel-averaged k-
tables for the 15 channels of HST/WFC3 and the 2 chan-
nels of Spitzer/IRAC. Irwin et al. (2020) find that such an
approach produces an excellent approximation, resulting in
residuals much less than typical measurement uncertainties
of observations using these facilities. Apart from the above
molecular opacity, we additionally include collision-induced
absorption of H2-H2 pairs and H2-He pairs using the coeffi-
cients of Borysow et al. (1989) and Borysow & Frommhold
(1989), as well as Rayleigh scattering for a H2/He dominated
atmosphere using data from Allen (1976).

2.3 Disc-average scheme

The disc-averaged spectral radiance (W m−2 sr−1 µm−1) of
an inhomogeneous atmosphere for a distant observer is

R̄(λ) = 1
π

∫ 2π

φ=0

∫ 1

µ=0
R(λ, µ, φ)µdµdφ, (4)

where µ = cos(θ) is the cosine of the zenith angle1 θ, and φ

is the azimuth angle. To carry out sampling-based Bayesian

1 The zenith angle is defined as the angle between the local nor-

mal of the atmosphere and the line of sight.
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2D Temperature Models for Analysing Phase Curves 5

parameter estimation, we need to evaluate R̄(λ) for many
different model atmospheres to approximate the posterior
distributions, so it is important to have a numerical inte-
gration scheme for equation (4) that is both accurate and
computationally inexpensive. We use the method of Irwin
et al. (2020): the zenith integration with respect to µ is done
with a Gauss-Lobatto quadrature scheme with Nµ quadra-
ture points, while the azimuthal integration with respect to
φ is done with a Trapezium rule quadrature scheme with
Nφ quadrature points. For the trapezium rule integration,
the quadrature points are placed on the circles correspond-
ing to each zenith quadrature point such that the arc-length
between neighbouring points is ∼ Rplt/Nµ (Fig. 3). Overall,
our numerical integration scheme for equation (4) is given
by:

R̄(λ) = 2
Nµ∑
i

Nφ∑
j

R(λ, µi, φi j )µi∆µiwi j, (5)

where µi are the Lobatto quadrature points for the zenith
integration, ∆µi are the corresponding quadrature weights,
φi j are the Trapezium rule quadrature points for the azimuth
integration (which are different for each zenith angle), and
wi j are the Trapezium rule quadrature weights for the jth
azimuthal angle and the ith zenith angle. We assume that
the orbit of the planet is exactly edge-on, and that the at-
mosphere is symmetric about the equatorial plane, which is
defined to be in the orbital plane. As a result, we only need
to evaluate the integration over half of the visible disc and
multiply the result by a factor of two. The quadrature points
for Nµ = 2, 3, 4, 5 are shown in Fig. 3.

For atmospheric models that partition the atmosphere
in longitude into several regions each modelled with a single
TP and abundance profile, our disc average routine can be
further simplified. For example, if the planet is divided into
a uniform dayside and a uniform nightside, as illustrated in
Fig. 3, then all the quadrature points on the same zenith
angle ring (blue dashed circles) in the same region have the
same radiance. The azimuth integration is then a matter of
calculating what fraction of the zenith angle rings are in each
region. This greatly speeds up the disc averaging routine for
the simple models in 2.4.

2.4 2D atmospheric temperature models

We describe four parametric temperature models for the at-
mospheres of hot Jupiters. Model 4 is our proposed model,
and the other three simpler models are included for compari-
son. While all of the models use the one-dimensional analyt-
ical TP profile of Guillot (2010) to describe temperature as a
function of pressure, they can also be easily interfaced with
other parametric TP profiles. The Guillot profile is given by
equation (29) of Guillot (2010)

T4 =
3T4

int

4

( 2
3
+τ

)
+

3T4
irr

4
f
[ 2
3
+

1
γ
√

3
+

( γ
√

3
− 1
γ
√

3

)
e−γτ

√
3
]
, (6)

where τ is the infrared optical depth defined by

τ(P) = κthP
g

. (7)

The TP profile has four free parameters: κth is the mean
infrared opacity, γ is the ratio between the mean visible and

Figure 4. Schematics of model 1 and model 2. Model 1 (top

panel) is defined by equation (9) and divides the atmosphere into

a dayside and a nightside. Each region is then modelled with a
single representative TP profile. The dayside central longitude δ

is allowed to vary, and the dayside width (longitudinal extent) is

fixed to be 180◦. Model 2 (bottom panel) is defined by equation
(10) and generalises model 1 by allowing the dayside width to

vary, which now spans 180◦ × ε in longitude.

mean infrared opacities, Tint is the internal heat flux, and f
is a catch-all parameter of order unity that models the effects
of albedo (on the dayside) and the redistribution of stellar
flux due to atmospheric circulation (on both the dayside and
the nightside). We assume the change in gravity g is negligi-
ble in the pressure range probed by emission spectroscopy,
so that τ is linear in P. Finally, Tirr is the irradiation tem-
perature defined by

Tirr =
( Rstar

a

)1/2
Tstar, (8)

where a is the orbital semi-major axis, and Rstar and Tstar
are the host star radius and temperature. In section 3.1,
we show that the Guillot profile is able to approximate the
temperature-pressure profiles found in the WASP-43b GCM
well enough to reproduce the synthetic data. For all models,
we place the sub-stellar point at the origin in our longitude-
latitude coordinate system. We denote longitude by Λ. All
models describe the thermal structure with two TP pro-
files: a representative dayside profile and a representative
nightside profile. Note that temperature is set to be uni-
form as a function of latitude on isobars, and we treat the
retrieved temperature profiles as latitudinally averaged tem-
perature profiles. In our models, the centres of ‘dayside’ and
the ‘nightside’ can shift away from the substellar point and
the anti-stellar point, respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad2555/7251485 by W

ithers user on 05 Septem
ber 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

6 J. Yang et al.

Figure 5. Temperature as a function of pressure and longitude

in two examples of model 3 and model 4. Model 3 (top panel)
is defined by equation (11) . Model 4 (bottom panel) is defined

by equation (12); in this example n is set to be 1.75. Note that

model 4 is equivalent to model 3 if n is being set to 1.

2.4.1 Model 1

Model 1 (Fig. 4, top panel) our simplest model in which the
dayside and nightside are both set to span 180 ◦ in longi-
tude. The centre of the dayside region (O′) is allowed to shift
eastward or westward by some longitude δ relative to the
substellar point, representing the effect of atmospheric dy-
namics, in particular equatorial jets, on redistributing heat
around the atmosphere. The dayside is thus bound by the
meridians Λ = δ − 90◦ and Λ = δ + 90◦. Within each re-
gion, temperature is only a function of pressure. Note that
in all our models, the ‘dayside’ denotes the region of the at-
mosphere modelled by the dayside TP profile and does not
necessarily coincide with the physically illuminated dayside.
The model contains 9 parameters: 4 parameters for each of
the two TP profiles and 1 parameter δ for the longitudinal
offset. Note that model 1 is equivalent to the ‘2TP-Crescent’
approach of Feng et al. (2020) when applied to all phases si-
multaneously. In summary, model 1 is given by:

T =

{
Tnight(P) if Λ > δ + 90◦ or Λ < δ − 90◦,
Tday(P) otherwise.

(9)

2.4.2 Model 2

Model 2 (Fig. 4, lower panel) is similar to model 1, with the
only difference being that the ‘width’ (longitudinal extent)
of the dayside is now a free parameter. We introduce a scal-
ing parameter ε, so that the dayside is now bounded by the
meridians Λ = δ − 90◦ × ε and Λ = δ + 90◦ × ε and spans
180◦ × ε in longitude. The model contains 10 parameters: 4
parameters for each TP profile, 1 parameter δ for the lon-
gitudinal offset, and 1 parameter ε for the dayside width.
Parameterising the dayside area fraction has been shown
to be effective in analysing disc-averaged emission spectrum
of tidally-locked hot Jupiters by Taylor et al. (2020), and
this approach has been applied to phase curve analysis by
Feng et al. (2020) in their ‘2TP-Free’ model, albeit only in
the phase-by-phase approach. Model 2 is our way of im-
plementing the dayside area fraction parameterisation self-
consistently when fitting all phases of phase curves simulta-
neously. In summary, model 2 is given by:

T =

{
Tnight(P) if Λ > δ + 90◦ε or Λ < δ − 90◦ε,
Tday(P) otherwise.

(10)

2.4.3 Model 3

Model 3 (Fig. 5, upper panel) is an extension of model 2,
where the temperature is now a continuous function of lon-
gitude across the dayside boundary. The dayside is bound
by the meridians Λ = δ − 90◦ × ε and Λ = δ + 90◦ × ε. Within
the dayside, temperatures at each pressure level vary with
the cosine of longitude. Outside the dayside, the TP is set to
be a single nightside profile. In summary, model 3 is given
by:

T =

{
Tnight(P) if Λ > δ + 90◦ or Λ < δ − 90◦,
Tnight(P) + (Tday(P) − Tnight(P)) cos(Λ−δε ) otherwise.

(11)

2.4.4 Model 4

Model 4 is a generalisation of model 3, where we allow the
exponent of the cosine term in equation (11) to be a vari-
able, so that we parameterise how strongly temperatures
vary with longitude on isobars:

T =

{
Tnight(P) if Λ > δ + 90◦ or Λ < δ − 90◦,
Tnight(P) + (Tday(P) − Tnight(P)) cosn(Λ−δε ) otherwise.

(12)

The parameters for the temperature models, together with
the other parameters of our atmospheric models, are sum-
marised in Table 2.

2.5 Retrieval set-up

We run retrievals on two sets of data: (1) synthetic
HST/WFC3 and Spitzer/IRAC phase curves simulated
from the GCM-based model of WASP-43b described in sec-
tion 2.1, and (2) observed HST/WFC3 and Spitzer/IRAC
phase curves of WASP-43b as presented in Stevenson et al.
(2017). For each set of data, we run four retrievals using
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2D Temperature Models for Analysing Phase Curves 7

Table 2. Parameters of our atmospheric models. All models have 4 parameters for gas VMRs, with the other parameters specifying
the thermal structure. Model 1 has 13 parameters in total, whereas model 2 and model 3 have 14 parameters in total. Model 4 has 15

parameters in total.

Parameter Description Model Usage Range

δ Dayside longitudinal offset all [-45◦,45◦]
ε Dayside longitudinal width scaling 2,3,4 [0.5,1.2]

n Dayside longitudinal variation exponent 4 [0,2]
log κth,day Mean infrared opacity (dayside) all [-4,2]

logγday Ratio of visible and infrared opacities (dayside) all [-4,1]

log fday Heat redistribution parameter (dayside) all [-4,1]
Tint,day Internal heat flux (dayside) all [100,1000]

log κth,nigtht Mean infrared opacity (nightside) all [-4,2]

logγnight Ratio of visible and infrared opacities (nightside) all [-4,1]
log fnight Heat redistribution parameter (nightside) all [-4,1]

Tint,night Internal heat flux (nightside) all [100,1000]

log VMRH2O Log10 volume mixing ratio of H2O all [-8,-2]
log VMRCO2 Log10 volume mixing ratio of CO2 all [-8,-2]

log VMRCO Log10 volume mixing ratio of CO all [-8,-2]

log VMRCH4 Log10 volume mixing ratio of CH4 all [-8,-2]

each of the atmospheric models described in section 2.4. We
fit the spectra at all phases simultaneously using spectra
generated from the parametric atmospheric models. We use
Nested Sampling (Feroz & Hobson 2008) to calculate the
posterior distribution of the atmospheric model parameters
and the Bayesian evidence of the model, described in section
2.6. In appendix B, we also compare our retrieval results to
the phase-by-phase retrieval approach, where the spectrum
at each orbital phase is analysed independently.

For all of our retrievals, the atmospheric model is de-
fined from 20 to 10−3 bar, on 20 points equally spaced in
log pressure. The atmospheric models have two components:
a temperature model and a chemical abundance model. In
each of our retrieval schemes, we test a different temperature
model described in section 2.4. On the other hand, all of our
retrieval schemes share the same chemical abundance model,
which assumes a H2/He dominated atmosphere and contains
four spectrally active gases: H2O, CO2, CO, CH4. The abun-
dance model is parameterised by the volume mixing ratios
of the spectrally active gases, assumed to be constant with
respect to pressure, longitude and latitude. Furthermore, we
do not include clouds/hazes in any of our models, and we
assume aerosols with no significant spectral features to be
degenerate with the other components of our atmospheric
models. The limitations of these assumptions are discussed
in section 6. The model parameters and their prior ranges
are listed in Table 2, and we prescribe uniform priors for all
of our model parameters.

2.6 Bayesian parameter estimation

We extract information from phase curves using Bayesian in-
ference. Consider a set of phase curve data D that we wish to
analyse. Suppose we have a parametric atmospheric model
M with parameter space Θ, so that for each point θ ∈ Θ
we can calculate model phase curves f (M(θ)), where f is our
‘forward model’ that encapsulates all the modelling steps re-
quired to generate model phase curves from an atmospheric
model. The probability distribution of the parameters of M
given D is

Pr(θ, M |D) = Pr(D|θ, M)Pr(θ |M)
Pr(D) , (13)

where P(θ) ≡ Pr(θ, M |D) is the posterior distribution, L(D) ≡
Pr(D |θ, M) is the likelihood, π(θ) ≡ Pr(θ |M) is the prior, and
Z ≡ Pr(D |M) is the evidence. To proceed, we define the log
likelihood function as

logL(θ) = −1
2

Nobs∑
i=1

(Di − f (M(θ)i)2

σ2
i

, (14)

where Nobs is the total number of data points in the observed
phase curves, Di and f (M(θ))i are the ith points of the ob-
served and model phase curves, respectively, and σi is the
associated measurement uncertainty. The Bayesian evidence
is then given by

Z =
∫
Θ

L(θ)π(θ)dnθ, (15)

where the integral is over the n-dimensional parameter space
Θ. We can approximately calculate the posterior distribu-
tion and the evidence by sampling the parameter space Θ,
which is a computationally expensive task for phase curve
retrievals because Θ is high-dimensional and f (M(θ)) is ex-
pensive to calculate. The Nested Sampling algorithm (Feroz
& Hobson 2008) is an efficient way to carry out these tasks,
which starts by rewriting the evidence in terms of the prior
volume X, defined as

X(λ) =
∫
L(θ)>λ

π(θ)dnθ. (16)

The evidence is then given by∫ 1

0
L(X)dX, (17)

where L(X) is a monotonic function and can be evaluated
with simple quadrature schemes, and the likelihood contours
L(Xi) are approximated by sampling the parameter space
within nested ellipsoids. Numerically, the evidence is given
by

Z ≈
Niter∑
i=1
L(Xi)wi, (18)

where Xi ∈ [0, 1] are a decreasing sequence of quadrature
points (starting from 1) and wi the corresponding weights,
and Niter is determined by some convergence criterion.
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The nested sampling algorithm discards the point with the
lowest-likelihood at each iteration, so the posterior can be
generated by assigning weights to those points by

pi =
L(Xi)wi

Z
. (19)

For all of our retrievals, we use the Python interface Py-
MultiNest (Buchner et al. 2014) to implement nested sam-
pling with 1000 sampling live points.

3 PRELIMINARY TESTS

Before testing our retrieval schemes on synthetic
HST/WFC3 and Spitzer/IRAC phase curves, we in-
vestigate if simplified atmospheric models can reproduce
the phase curves generated from the GCM described in
section 2.1. We show that we can reproduce these GCM
phase curves to well within realistic measurement uncer-
tainties: (1) if we replace the TP profiles in the GCM at all
locations with best-fit 1D Guillot profiles; (2) if we replace
the TP profiles in the GCM on the same meridian with the
latitudinally averaged TP profile of that meridian; and (3)
if we replace the volume mixing ratios of all gases with a
uniform profile. These results justify our use of 2D models
coupled with the Guillot profile in our retrievals, and in
section 4, we show that such 2D models can adequately
model synthetic HST/WFC3 and Spitzer/IRAC phase
curves.

3.1 Replace GCM TP profiles with 1D model fits

We use the Guillot TP profile (Guillot 2010) as the basis
of our 2D temperature models described in section 2.4. We
demonstrate here that this profile is flexible enough to ap-
proximate the range of TP profiles found in our WASP-43b
GCM with the following procedure. First, we directly fit
the 1D TP profile to the TP profiles of the GCM on all
longitude-latitude grid points in the pressure range 20-10−3

bar, which covers the support of the transmission weighting
function. We find that extending the pressure range has neg-
ligible effects on the spectra. We then generate phase curves
from the total collection of best-fit 1D profiles, and compare
them to those generated directly from the GCM. Both sets
of phase curves are simulated using the volume mixing ratios
of the original GCM, which are set via chemical equilibrium.
In Fig. 6, we compare the phase curves simulated from the
best-fit 1D profiles (blue curves) with the phase curves sim-
ulated directly from the GCM (black curves). We overplot
the measurement errors of Stevenson et al. (2017) on the
phase curves simulated directly from the GCM. We see that
the phase curves simulated from the 1D best-fit profiles can
match the GCM phase curves to within error at almost all
phases.

3.2 Replace GCM thermal structure with
latitudinally-averaged thermal structure

In the 2D models described in section 2.4, the atmospheric
temperature varies with longitude and pressure only, and
we prescribe that temperature is constant with respect to
latitudinal variation. The key point is that we interpret the
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Figure 6. Comparison of the phase curves simulated from sim-
plified models to the phase curves simulated from the original

WASP-43b GCM (black), where abundance is set by chemical

equilibrium. The blue curves are simulated from the best-fit Guil-
lot profiles. The green curves are simulated from latitudinally-
averaged TP profiles from 0◦ to 45◦, using cos(latitude) as the

weight. The yellow curves are simulated with uniform abundance
listed in Table 1, which are the synthetic data we retrieve on in

section 4. The orange curves are simulated with the abundance
listed in Table 1, but with the methane abundance multiplied

by 40, which illustrates the fact that models with uniform gas

abundance can match the phase curves produced from a chemical
equilibrium model. Note that the error bars on the GCM phase

curves are the estimated observational uncertainties of Stevenson
et al. (2017).

retrieved thermal structure as a latitudinally averaged ther-
mal structure, as we have very limited sensitivity to latitudi-
nal variation of atmospheric properties in the data. We now
demonstrate that the latitudinally-averaged thermal struc-
ture of the GCM can reproduce the synthetic data, which
justifies our choice of 2D temperature models. To this end,
we replace all the TP profiles on the same meridian with
some latitudinally averaged TP structure. We find that if
we pick the TP profile averaged from 0 degree latitude to
45 degree latitude using cos(latitude) as the weight, the re-
sulting 2D temperature model could produce phase curves
(green curves, Fig. 6) that agree with the phase curves sim-
ulated directly from the GCM (black curves, Fig. 6) to mea-
surement uncertainties quoted in Stevenson et al. (2017).

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad2555/7251485 by W

ithers user on 05 Septem
ber 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

2D Temperature Models for Analysing Phase Curves 9

Figure 7. Top panel: temperature as a function of longitude and

pressure in the WASP-43b GCM at the equator. Lower panel: lat-
itudinally averaged TP profiles from 0 to 45 degree latitude, using

cos(latitude) as the weight. Since the retrieved thermal structure

resemble the latitudinally averaged profiles, we would underpre-
dict the hot spot offset at the equator for typical hot Jupiter

GCMs from synthetic data.

Note that both sets of phase curves are simulated using the
chemical equilibrium VMRs of the original GCM. In con-
clusion, we find that a 2D temperature model can repro-
duce HST/WFC3 and Spitzer/IRAC quality phase curves
simulated from our WASP-43b GCM. Furthermore, we ex-
pect the retrieved thermal structure using a 2D model to
resemble the latitudinally averaged thermal structure of the
atmosphere. In Fig. 7, we plot the GCM temperature as a
function of pressure and longitude at the equator on the top,
compared to the latitudinally averaged temperature (from 0
degree latitude to 45 degree latitude using cos(latitude) as
the weight) on the bottom. In section 4, we compare the re-
trieved thermal structure from the synthetic data with this
latitudinally averaged GCM thermal structure.

3.3 Replace chemical equilibrium VMRs with
constant VMRs

As mentioned in section 2.1, the chemical equilibrium abun-
dance of the original WASP-43b GCM is expected to be
homogenised by horizontal quenching (Cooper & Showman
2006; Agúndez et al. 2014), and Irwin et al. (2020) reset the
GCM gas abundances at all altitudes and locations to be the
latitudinally averaged abundances in the 0.1-1-bar pressure
region (using cos(latitude) as the weight) at the sub-stellar
meridian. We now compare the phase curves simulated us-
ing uniform abundance as those used by Irwin et al. (2020)
(yellow curves) with those simulated using the chemical equi-
librium abundance (black curves) in Fig. 6. We see the main
difference is that the different distributions of CH4 result in
significantly different phase curves at 3.6 µm. This effect has
been investigated by Steinrueck et al. (2019), who explore
if disequilibrium effects such as the quenching of CH4 can
explain why GCMs systematically overestimate phase curve
amplitudes compared to observations. We echo the finding
of Steinrueck et al. (2019) that phase curves observed in the
wavelength range covered by the 3.6 µm Spitzer channel are
an effective diagnostic for disequilibrium methane chemistry
on hot Jupiters.

The synthetic phase curves we use to validate our re-
trieval schemes are simulated from uniform gas VMRs as
listed in Table 1 and are the same synthetic phase curves
in Irwin et al. (2020). To further justify our use of uniform
gas abundance in our model, we show that if we multiply
the CH4 abundance of Irwin et al. (2020) by a factor of 40,
the resultant phase curves (orange curves) agree well with
the phase curves simulated from the equilibrium chemistry
VMRs (black curves). This suggests that while using uniform
VMRs can adequately fit HST/WFC3 and Spitzer/IRAC
quality phase curves, this approach can lead to significantly
biased CH4 abundance. The limitation of the constant chem-
istry assumption is discussed in 6.3.3.

4 APPLICATION TO SYNTHETIC PHASE
CURVES

We validate our retrieval schemes with synthetic data sim-
ulated from the GCM-based model of WASP-43b described
in section 2.1. Each retrieval scheme is identified with one
of the temperature models described in section 2.4, while
all other aspects of the retrieval schemes are identical, so
we refer to each retrieval scheme by the temperature model
used. The synthetic phase curves are simulated at the same
wavelengths as those presented in Stevenson et al. (2017),
and we use their measurement uncertainties to set the un-
certainties of the synthetic data. We do not add random
noise to the synthetic phase curves. We assess the retrieval
schemes on three criteria: (1) the goodness of fit to the syn-
thetic phase curves; (2) the accuracy of the retrieved chem-
ical abundance; (3) the goodness of fit of the retrieved ther-
mal structure to the latitudinally averaged GCM thermal
structure in Fig. 7. Overall, apart from model 1, all other
models can fit the synthetic phase curves within measure-
ment uncertainties at almost all wavelengths and all orbital
phases, and can accurately constrain the abundance of H2O
and CH4, as well as retrieve the latitudinally averaged ther-
mal structure of the GCM.
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Figure 8. Results from the retrievals of synthetic phase curves
generated from the WASP-43b GCM. Here we plot the best-fit

model phase curves calculated from the posterior medians and

compared them to the synthetic data. The synthetic data is shown
with the measurement uncertainties of Stevenson et al. (2017).
The models are described in section 2.4.

We plot the phase curves generated from the medians of
the posterior distributions of the model parameters in Fig.
8. It is clear that model 1, where the dayside2 width is fixed
at 180◦, gives the worst spectral fit to the synthetic data.
The phase curve amplitudes retrieved by model 1 are too
small at most wavelengths, whereas the other models mostly
retrieve the correct phase curve amplitudes. It can be seen
in Fig. 10 that model 1 is not flexible enough to approximate
the thermal structure of the GCM, which has a hot region
significantly narrower than 180 degree in longitude. This also
leads model 1 to retrieve a biased high H2O abundance, as
the model tries to match the amplitudes of the synthetic
phase curves by pushing the photosphere higher, where the
day/night flux contrast is larger. We thus demonstrate that
the dayside area fraction is an important parameter in phase
curve retrievals, and the exclusion of its implementation can
lead to significant biases in retrieved molecular abundance.

2 We reiterate that the ‘dayside’ in our models denotes the region

of the atmosphere modelled by the dayside profile and does not
necessarily coincide with the permanently illuminated ‘physical

dayside’.

Figure 9. Results from the retrievals of synthetic phase curves
generated from the WASP-43b GCM. Here we plot the posterior

distributions of the retrieved gas VMRs using different retrieval

schemes, and we mark the abundance used to simulated the syn-
thetic data with black lines (‘truths’).

We plot the posterior distributions of gas VMRs using
different retrieval schemes in Fig. 9. As mentioned previ-
ously, model 1 retrieves biased H2O abundance due to the
inflexibility of the temperature parameterisation, namely the
fixed dayside fraction. The other models produce precise
and accurate constraints on H2O, as well as accurate upper
bounds on CH4. None of the models can constrain CO and
CO2 from the data, as CO and CO2 have weak opacities in
the HST/WFC3 wavelengths and their retrieved abundance
are mainly driven by the two Spitzer wavelengths. Hence,
their abundance are more susceptible to degeneracy with
the thermal structure and are therefore poorly constrained.

We plot the retrieved thermal structures, calculated
with the median parameters of the posterior distributions,
in Fig. 10. We compare the retrieved thermal structures to
the appropriate latitudinally-averaged TP structure of the
GCM, since we have shown that the appropriately aver-
aged GCM TP structure can reproduce the synthetic phase
curves generated directly from the GCM. As described in
3.2, the average is between 0 and 45 degree latitude and
with cos(latitude) as the weight. It is now clear that model
1 performs badly because the width of the hot region in
the GCM is significantly narrower than the dayside width
prescribed by model 1. Model 2 can accurately approximate
the typical dayside and nightside TP profiles; however, since
model 2 contains a discontinuity at the dayside/nightside
boundary, there are large jumps in temperature on isobars
around the day/night boundary. Hence, the fits at those re-
gions deviate significantly from the GCM. Model 3 and 4, by
virtue of being continuous models, avoids this problem and
can approximate the latitudinally averaged GCM structure
to well within ± 300 K at most pressures and longitudes.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad2555/7251485 by W

ithers user on 05 Septem
ber 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T
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Figure 10. Results from the retrievals of synthetic phase curves generated from the WASP-43b GCM. The rows from top to bottom
correspond to model 1, model 2, model 3, and model 4, respectively. Left column: retrieved temperature structures, which are calculated

using the median parameters of the posterior distributions. Middle column: latitudinally averaged TP profile of the GCM from 0 to 45

degree latitude, using cos(latitude) as the weight. Right column: difference between right and middle columns.

However, both models perform relatively poorly in the deep
atmosphere as the retrieved deep atmosphere temperatures
are too low (right column, Fig. 10). This leads to incor-
rectly retrieved phase curve amplitudes at the wavelengths
with the deepest photospheres. By computing the transmis-
sion weighting function in Fig. 2, we find the three channels
at 1.2475 µm, 1.2825µm, 1.3175µm are sensitive mainly to
the deep atmosphere at close to 10 bar, whereas most other
channels are sensitive to lower pressure levels. In Fig. 8, we
can see that the phase curve fits at these three channels
by model 3 and model 4 have lower flux than the synthetic
phase curves. The retrieved deep atmosphere temperature is
biased because there are more data points constraining the
TP profile at lower pressure levels, and the TP profile used
cannot satisfy all constraints equally well. We expect that
the biased deep atmosphere temperature can be resolved by
using a more sophisticated TP profile. However, this issue
does not lead to significantly biased retrieved abundance and
our precision is still in line with past studies.

5 APPLICATION TO REAL PHASE CURVES

In section 4, we test the performance of our 2D retrieval
schemes against synthetic data. We find that we can ac-
curately constrain the abundance of H2O and CH4 from
synthetic data simulated from a GCM, provided that the
temperature model is flexible enough to approximate the
thermal structure of the GCM atmosphere. We now ap-
ply the retrieval schemes to the observed HST/WFC3 and
Spitzer/IRAC phase curves of Stevenson et al. (2017). We
again look at the spectral fits and the retrieved chemical
abundance and thermal structure.

We plot the phase curves generated from the medians
of the posterior distributions of model parameters in Fig.
11. The model fits to the real data are worse than the model
fits to the synthetic data, partly because we do not add ran-
dom noise to our synthetic data. Furthermore, there are two
interesting points of comparison with the fits to synthetic
data. First, in the case of real data, model 1 can fit the
phase curves almost as well as model 2, whereas in the case
of synthetic data, model 1 fits the phase curves markedly
worse than model 2. The reason that model 1 cannot fit the
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Figure 11. Retrieval results of the real phase curves. The re-
trieved phase curves are calculated from the posterior medians

and compared to the real data. The models are described in 2.4.

synthetic data is because the GCM used to generate the data
has a hot region that is significantly narrower in longitudinal
extent than the width of dayside region in model 1, which is
fixed at 180◦. However, the thermal structure retrieved from
the real data by both models is consistent with a hot day-
side region that spans approximately 180◦ in longitude. This
is the reason why model 1 could perform as well as model
2 on the real data, while failing to do so on the synthetic
data. Second, model 3 produces the poorest fits to the real
data, and often produces phase curve maxima that are too
large while simultaneously under-produce the amplitudes of
the intermediate phases. Since model 3 prescribes that tem-
peratures on isobars vary sinusoidally with longitude on the
dayside, the misfits suggest that temperature must vary less
strongly with longitude on isobars. This is confirmed by the
retrieved thermal structure of model 4.

We plot the posterior distributions of gas VMRs using
different retrieval schemes in Fig. 12. The retrieved H2O
abundances are consistent across models. We take model 4
as our fiducial model, which gives a constraint of 5.6×10−5–
4.0 × 10−4 at 1σ. As with the synthetic data, we cannot
constrain the abundance of CO and CO2, but we can place
an upper bound on the VMR of CH4 at ∼10−6. We plot the
retrieved thermal structures, calculated with the median pa-
rameters of the posterior distributions, in Fig. 13. The re-

Figure 12. Retrieval results of the real phase curves. Posterior
distributions of the retrieved gas VMRs.

trieved dayside temperatures of model 4 suggest that the
dayside thermal structure of WASP-43b is relatively homo-
geneous, meaning that temperature does not vary strongly
as a function of longitude on isobars. On the other hand, the
retrieved temperatures on the nightside are extremely cold,
which is likely due to thick cloud coverage that lifts the pho-
tosphere to lower pressure levels. We discuss the results of
our retrievals in the next section.

6 DISCUSSIONS

We compare our results to previous retrieval studies of
WASP-43b, discuss the effects of nightside clouds, and detail
the limitations of our retrieval model in this section.

6.1 Comparison with previous retrievals

We present a summary of past retrieval studies of WASP-43b
in Table 3. We focus on the studies which analyse the HST
transmission, secondary eclipse and phase curve data (GO
Program 13467, PI: Jacob Bean, Kreidberg et al. 2014),
Spitzer secondary eclipse data (Program ID 70084, Blecic
et al. 2017), and Spitzer phase curve data (Programs 10169
and 11001, PI: Kevin Stevenson, Stevenson et al. 2017).
We present the constraints on the abundance of H2O at 1σ
for the studies that publish such a result. While all of the
H2O abundance constraints overlap, our constraint is on the
lower end compared to past studies. Additionally, we find
two points of discussion.

Firstly, we find that multiple studies support the hy-
pothesis that WASP-43b has no optically-thick clouds on
the dayside. Kreidberg et al. (2014) analyse the transmission
spectrum from HST/WFC3, and find that the day-night ter-
minator of WASP-43b contains no significant clouds at the
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Figure 13. Retrieval results of the real phase curves. The rows from top to bottom correspond to model 1, model 2, model 3, and
model 4, respectively. Left column: retrieved temperature structures, which are calculated using the median parameters of the posterior

distribution. Middle column: latitudinally averaged TP profile of the GCM from 0 to 45 degree latitude, using cos(latitude) as the weight.

Right column: difference between right and middle columns.

Table 3. Summary of previous retrieval studies of WASP-43b. The emission data analysed by Kreidberg et al. (2014) refer to the

HST/WFC3 secondary eclipse data as presented in Kreidberg et al. (2014) and the Spitzer secondary eclipse data from Blecic et al.
(2014). The transmission data refer to the HST/WFC3 primary transit data as presented in Kreidberg et al. (2014). The phase curves

refer to the HST/WFC3 and Spitzer phase curves as presented in Stevenson et al. (2017). We note the constraints on the abundance of
H2O at 1σ for the studies that publish such a result. For the studies that analysed phase curves, we note the retrieval methods.

Reference Data H2O 1σ Range Notes

Kreidberg et al. (2014) transmission 3.3 × 10−5–1.4 × 10−3

Kreidberg et al. (2014) emission 3.1 × 10−4–4.4 × 10−3

Kreidberg et al. (2014) transmission + emission 2.4 × 10−4–2.1 × 10−3

Stevenson et al. (2017) phase curves, nightside 2.5 × 10−5–1.1 × 10−4 phase-by-phase

Stevenson et al. (2017) phase curves, dayside 1.4 × 10−4–6.1 × 10−4 phase-by-phase

Irwin et al. (2020) phase curves 2 × 10−4–1 × 10−3 ‘2.5D model’

Feng et al. (2020) phase curves 1.1 × 10−4–3.9 × 10−3 2D model

Changeat et al. (2021) phase curves + transmission ‘1.5D model’
Chubb & Min (2022) phase curves + transmission 3D model

This work phase curves 5.6 × 10−5–4.0 × 10−4 2D model
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pressure levels probed by transmission spectroscopy. Since
the dayside is hotter than the terminator region and likely
has comparable chemical inventory, this suggests that the
dayside may be free from significant cloud coverage as well.
More directly, Fraine et al. (2021) find a very low dayside ge-
ometric albedo (<0.06) using HST WFC3/UVIS secondary
eclipse data in the optical wavelengths, and report a non-
detection of clouds on the dayside at P > 1 bar. Further-
more, Stevenson et al. (2014) estimate the Bond albedo of
WASP-43b to be 0.18+0.07

−0.12 by computing the day-and night-
side bolometric fluxes from the model spectra retrieved from
the HST/WFC3 phase curves. These findings provide justi-
fications for our cloud-free retrieval scheme on the dayside,
in accordance with the prediction from modelling work that
a cloud-free hot spot should dominate the dayside of hot
Jupiters (Parmentier et al. 2016).

Secondly, we find that while some studies find variable
H2O abundance as a function of longitude, this might be
the result of the 1D phase-by-phase approach used by these
studies. For example, Stevenson et al. (2017) analyse the
same HST/WFC3 and Spitzer phase curves as in this work,
and apply a 1D phase-by-phase retrieval approach, where
the spectrum at each orbital phase is retrieved indepen-
dently and assuming uniform abundance and TP structure
for each phase. They find the H2O abundance varies between
the dayside and the nightside phases, and give a constraint
of 2.5×10−5–1.1×10−4 at 1σ on H2O for the nightside and a
constraint of 1.4×10−4–6.1×10−4 at 1σ for the dayside. How-
ever, the 1D retrieval approach, where uniform atmospheric
condition is assumed for the visible atmosphere under obser-
vation, is now known to give biased results in the analysis of
disc-averaged hot Jupiter spectra (Blecic et al. 2017; Taylor
et al. 2020). Furthermore, the phase-by-phase approach is
not geometrically self-consistent and under-utilises the con-
straints from the fact that hemispheres observed at neigh-
bouring phases overlap (Irwin et al. 2020). In Fig. B1 in the
appendix, we plot our phase-by-phase retrieval results of the
synthetic data, and show that the retrieved H2O abundance
varies as a function of orbital phase even though the true
abundance is uniform across the planet in the GCM used to
simulate the synthetic data. In Fig. B2, we plot our phase-
by-phase retrieval results of the observed HST/WFC3 and
Spitzer phase curves, and find a similar result that the re-
trieved H2O abundance is higher on the dayside than on the
nightside as Stevenson et al. (2017).

6.2 The influence of nightside clouds

By comparing the synthetic phase curves simulated from the
cloud-free WASP-43b GCM with the observed phase curves,
we see that the GCM phase curves under-predict the phase
curve amplitudes and over-predict the phase curve maxi-
mum offsets. The mismatch in phase curve offsets suggest
that the strength of heat circulation is weaker on WASP-43b
than predicted by the GCM, and the low nightside bright-
ness temperatures further suggest significant nightside cloud
coverage. According to Parmentier et al. (2020), when night-
side clouds are present, the day-to-night heat transport be-
comes extremely inefficient, and the nightside photosphere
is lifted to higher altitude. This could explain the low night-
side temperatures and small phase curve offsets observed on
WASP-43b.

6.3 Limitations and future work

We have introduced a new 2D retrieval scheme (model 4),
where the atmospheric temperature is parameterised by
equation (12). We now discuss the limitations of our retrieval
scheme and directions for future work.

6.3.1 Aerosol model

We do not explicitly model the effects of clouds in our re-
trieval scheme. Past studies (e.g., Burningham et al. 2017;
Mollière et al. 2020) have shown that flexible TP profiles can
mimic the spectral contribution of clouds in low-resolution
spectroscopy. We have assumed clouds with uniform-with-
wavelength spectral features in the observed wavelengths are
fully degenerate with thermal structure and chemical abun-
dance. Disentangling this degeneracy is beyond the scope
of this work. We recognise that the lack of cloud param-
eterisation is likely the most significant source of error in
our retrieved atmospheric properties, though we expect the
retrieved dayside properties are reliable as both transmis-
sion spectroscopy and broadband emission observation of
WASP-43b find no evidence of clouds on WASP-43b (Krei-
dberg et al. 2014; Fraine et al. 2021). Recent studies have
shown that clouds play an important role in shaping the
phase curves of hot Jupiters when they are present on the
nightside (Parmentier et al. 2020; Roman et al. 2021), and
we plan to include aerosols in our retrieval scheme and val-
idate such scheme with cloudy GCMs in future work.

6.3.2 Temperature model

Our atmospheric temperature model is strongly parame-
terised to keep the retrieval timescale tractable. We discuss
here the limitations of the parameterisation.

Firstly, our model is ‘two dimensional’, meaning that
temperature varies with pressure and longitude, but not with
latitude. We then interpret the retrieved thermal structure
as a latitudinally averaged thermal structure weighted to-
wards the low latitude regions, as described in section 3.2.
Irwin et al. (2020) show that the HST + Spitzer phase
curves of WASP-43b do not allow the retrieval of the lat-
itudinal variation of atmospheric properties, so the thermal
structure of WASP-43b remains poorly constrained. How-
ever, JWST phase curves may allow latitudinal variation to
be probed, especially when analysed in conjunction with the
eclipse mapping technique (e.g., Rauscher et al. 2018). The
joint analysis of eclipse mapping data and phase curves will
provide the most detailed constraints on the 3D structure
of hot Jupiter atmospheres. We plan to upgrade our current
2D model to include latitudinal variation in order to analyse
phase curves and eclipse maps jointly in our future work, in
particular the JWST/MIRI data of WASP-43b.

Secondly, we assume both north-south symmetry about
the equator and east-west symmetry about the dayside cen-
tral meridian in our temperature model. The assumption of
north-south symmetry is based on the GCM of Parmentier
et al. (2016) described in section 2.1, which exhibits negli-
gible differences between the northern and southern hemi-
spheres. The symmetry between the northern and southern
hemispheres has been seen in other hot Jupiter GCM stud-
ies as well (Amundsen et al. 2016; Roman et al. 2021; Men-
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donça 2020). However, the simulations of Cho et al. (2021)
suggest that the atmospheres of hot Jupiter may be highly
turbulent, and the atmospheric thermal structures may ex-
hibit significant time variability that breaks the north-south
symmetry. Repeated observations of hot Jupiters can de-
tect such time-variation. Since we have not validated our
retrieval scheme on such turbulent atmospheres, our tem-
perature model would require further testing when time-
variation is present. The east-west symmetry, on the other
hand, limits the flexibility of our model to capture certain
thermal structures seen in GCMs, for example, temperature
decreasing faster with longitude in the westward direction
than in the eastward direction, or pressure-dependent hot
spot shift (when the hottest hemispheres in each pressure
level do not align). In the case of retrieving synthetic phase
curves, these two effects only mildly limit our spectral fits,
as shown in Fig. 8. Furthermore, as seen in Fig. 9 and Fig.
10, the chemical abundance and thermal structure retrieved
are not significantly biased, and are in line with literature
results in terms of precision (e.g., Feng et al. 2020; Irwin
et al. 2020). Nevertheless, we expect such a approach would
not be appropriate for data of higher quality than the ones
we have analysed. As we plan to apply our retrieval schemes
to JWST -quality data, particularly the MIRI observation of
WASP-43b, we plan to make modifications to our schemes
to include such secondary structures.

6.3.3 Chemistry model

We assume that the chemical abundance of gas species
are constant with location and constant with pressure in
our atmospheric model as we focus on the parameterisa-
tion of atmospheric temperature in this work. The validity
of this assumption depends on the gas species, the char-
acteristics of the planetary atmosphere and the pressure
range we are interested in. The chemical and dynamical
modelling work of Cooper & Showman (2006) and Agún-
dez et al. (2014) suggest that for H2O and CO, which
are predicted to be the most abundant spectrally active
molecules on hot Jupiters in the pressure ranges probed
by low-resolution spectroscopy (∼10-10−3bar), the constant
abundance assumption is valid as atmospheric circulation
effectively homogenises their abundance. The assumption
holds less well for CO2, though we do not expect this to
be a significant source of error, as the variation in CO2
abundance in the models of Agúndez et al. (2014) is less
than one order of magnitude. The case of CH4 is most prob-
lematic: although its abundance shows negligible variation
with longitude, the vertical variation is significant (Agúndez
et al. 2014). More recently, Baeyens et al. (2021) calculated
a grid of pseudo-2D chemistry models for hot Jupiter at-
mospheres, and their results enable us to directly assess the
constant chemistry assumption for a WASP-43b-like atmo-
sphere (Figure 18, Baeyens et al. 2021). Their model sug-
gests that the variations of H2O, CO, and CO2 abundance
are well within one-order of magnitude in the pressure range
100-10−4bar, both with respect to longitude and with respect
to pressure. This pressure range should more than cover the
pressure range probed by low-resolution infrared emission
spectroscopy of WASP-43b. Since typically even the best
molecular abundance constraints from HST + Spitzer data
have uncertainties around one order of magnitude, we con-

clude that for H2O, CO, and CO2 it is valid to assume
constant chemistry for HST + Spitzer data based on the
cited modelling work. As for CH4, the model of Baeyens
et al. (2021) suggests that for a WASP-43b like atmosphere
while the CH4 abundance is significant in the deep atmo-
sphere (at pressure level greater than about 1 bar), its abun-
dance rapidly decreases with decreasing pressure. If this is
the case, then our retrieved upper bound of CH4 abundance
at around 10−6 would not reflect the true CH4 abundance of
the atmosphere, which would be highly pressure-dependent.
Apart from the interplay between circulation and equilib-
rium chemistry, photochemistry and molecular dissociation
can also affect the spatial distribution of molecular abun-
dance. However, we only expect dissociation to be significant
in much more strongly irradiated planets than WASP-43b,
and we expect photochemical products to be insignificant
in the pressure region probed by emission spectroscopy. For
JWST data, we expect that the constant abundance approx-
imation could still be valid for H2O, CO, and CO2 when
analysing emission spectroscopy of hot Jupiters, based on
the current modelling work. However, more sophisticated pa-
rameterisation of abundance variation is necessary for CH4,
and for joint analysis of transmission and emission data
where a large pressure range is probed.

7 CONCLUSIONS

We propose a novel 2D temperature parameterisation for the
retrievals of hot Jupiter phase curves, which is described by
equations (12). The temperature model is a function of pres-
sure and longitude, and can be used to retrieve the chemical
composition and latitudinally averaged thermal structure of
hot Jupiters atmospheres from phase curves. The model is
built on two TP profiles, signifying the representative pro-
files for the dayside and the nightside. In our model, the tem-
perature is uniform on isobars on the nightside, and varies
with cosn(longitude/ε) on isobars on the dayside, where n
and ε are free parameters. Both the dayside central longi-
tude and dayside fraction (longitudinal extent) are free pa-
rameters of our model. We first apply our proposed retrieval
scheme, together with several other 2D models for compar-
ison, to synthetic phase curves simulated from a cloud-free
GCM of WASP-43b, representing a more realistic atmo-
spheric model than the typically simple models used for val-
idating retrieval schemes in the literature. We find that the
models that allow variable dayside longitudinal extent can
fit synthetic HST/WFC3 and Spitzer/IRAC phase curves
to within typical measurement uncertainties, as well as ac-
curately and precisely constraining the water and methane
abundance. The retrieved thermal structures using these
models are good approximations to the latitudinal-average
of the GCM thermal structure weighted towards the low lati-
tude regions. We then apply our retrieval schemes to retrieve
information from the observed phase curves of WASP-43b
presented in Stevenson et al. (2017). We constrain the abun-
dance of water to be 5.6×10−5–4.0×10−4 at 1σ using model 4,
as well as an upper bound on CH4 at ∼ 1×10−6. We find that
the latitudinally averaged dayside TP structure of WASP-
43b is likely to be homogeneous (meaning that temperature
does not vary strongly as a function of longitude on isobars)
and non-inverted. We expect the nightside of WASP-43b
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to be covered by thick clouds due to the extremely low re-
trieved nightside temperature, in agreement with previous
studies. We have thus demonstrated the efficacy of our re-
trieval scheme, which simultaneously fits all orbital phases
of a set of phase curves at a modest computation cost.
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APPENDIX A: NEMESISPY

The radiative transfer transfer calculations, disc-averaging
and temperature models are all implemented by our open-
source Python software nemesispy, available at https:

//github.com/Jingxuan97/nemesispy or from the Python
Package Index at https://pypi.org/project/nemesispy.
The package is based on the FORTRAN NEMESIS library
(Irwin et al. 2008), with substantial code refactoring to im-
prove computational speed, as well as new developments, in-
cluding the implementation of several 2D retrieval schemes
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for analysing exoplanet phase curves. The most computa-
tionally expensive routines are compiled to machine code at
runtime using a just-in-time (JIT) compiler3, so that the
speed of our code is on par with compiled languages.

APPENDIX B: COMPARISON WITH
PHASE-BY-PHASE RETRIEVALS

We show the retrieval results using the 1D phase-by-phase
approach, where the spectrum at each orbital phase is in-
dependently analysed with a uniform TP and abundance
profile. The TP profile used for the 1D retrievals is the same
Guillot profile that we use for the 2D retrievals. In Fig. B1,
we present the retrieved molecular abundance from the syn-
thetic phase curves, where the truths are marked by hori-
zontal black lines. We see that the retrieved H2O abundance
using the 1D phase-by-phase approach varies significantly
with orbital phases, and is biased at several orbital phases.
We echo the findings of past studies (Blecic et al. 2017; Tay-
lor et al. 2020) that the 1D phase-by-phase approach could
lead to significantly biased molecular abundance. In Fig. B2,
we present the retrieved molecular abundance from the real
phase curves presented in Stevenson et al. (2017). We find
a similar trend as Stevenson et al. (2017), that H2O abun-
dance is higher for the dayside phases than for the nightside
phases. We plot the abundance constraints from model 4 on
the figures for comparison. We can see from Fig. B1 that
model 4 performs markedly better than the 1D approach on
synthetic phase curves both in terms of accuracy and preci-
sion in retrieved molecular abundance.

APPENDIX C: FULL POSTERIOR PLOTS

We include the full posterior distributions of all models for
the retrievals of the synthetic data. We additionally include
the full posterior distribution of model 4 for the retrievals of
the observed data.

3 https://numba.pydata.org/numba-doc/latest/user/jit.

html
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Figure B1. Retrieved molecular abundance from the synthetic phase curves using the 1D phase-by-phase approach (blue), compared to

the retrieved abundance using model 4 (red). The vertical lines mark the 1 σ confidence intervals. The true abundances used to generate
the data are marked by the black horizontal lines.
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Figure B2. Retrieved molecular abundance from the observed phase curves presented in Stevenson et al. (2017) using the 1D phase-by-

phase approach (blue), compared to the retrieved abundance using model 4 (red). The vertical lines mark the 1 σ confidence intervals.
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Figure C1. Full posterior distribution of the model parameters of model 1 for the retrievals of the synthetic phase curves. The parameters
are summarised in Table 2.
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Figure C2. Full posterior distribution of the model parameters of model 2 for the retrievals of the synthetic phase curves. The parameters

are summarised in Table 2.
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Figure C3. Full posterior distribution of the model parameters of model 3 for the retrievals of the synthetic phase curves. The parameters

are summarised in Table 2.
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Figure C4. Full posterior distribution of the model parameters of model 4 for the retrievals of the synthetic phase curves. The parameters
are summarised in Table 2.
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Figure C5. Full posterior distribution of the model parameters of model 4 for the retrieval of the observed phase curves. The parameters
are summarised in Table 2.
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