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Abstract

The general position number of a graph G is the size of the largest set of vertices S such that
no geodesic of G contains more than two elements of S. The monophonic position number of
a graph is defined similarly, but with ‘induced path’ in place of ‘geodesic’. In this paper we
investigate some extremal problems for these parameters. Firstly we discuss the problem of
the smallest possible order of a graph with given general and monophonic position numbers.
We then determine the asymptotic order of the largest size of a graph with given general
or monophonic position number, classifying the extremal graphs with monophonic position
number two. Finally we establish the possible diameters of graphs with given order and
monophonic position number.
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1. Introduction

In this paper all graphs will be taken to be simple and undirected. The order of the graph
G will be denoted by n and its size bym. The clique number ω(G) of a graph G is the order of
the largest clique in G. An independent union of cliques in a graph G is an induced subgraph
H of G such that every component of H is a clique. The independent clique number αω(G)
is the order of a largest independent union of cliques in G. A simplicial vertex is a vertex
with neighbourhood that induces a clique in G. The distance d(u, v) between two vertices u
and v in a graph G is the length of the shortest path in G from u to v and a shortest path
is called a geodesic. An induced path is a path without any chords; we will also call such a
path monophonic. The number of leaves (or pendant vertices) of a graph G will be denoted
by ℓ(G). For any terminology not defined here, we refer the reader to [2].

The general position problem for graphs can be traced back to one of the many puzzles
of Dudeney [11]. This problem was introduced in the context of graph theory independently
by several authors [5, 13, 16]. A set S of vertices of a graph G is in general position if no
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geodesic of G contains more than two points of S; in this case S is a general position set,
or, for short, a gp-set. The general position problem asks for the largest possible size of a
gp-set for a given graph G; this number is denoted by gp(G). This problem has applications
in navigation in networks [16], social sciences [21] and the study of social networks [3]. Some
recent papers on the subject include [14, 15, 8, 19, 22].

In [9, 10] various problems in geodetic convexity in graphs were generalised to monophonic
paths. In the paper [18] the present authors introduced the ‘monophonic position number’
of a graph, which is defined similarly to the gp-number, but with ‘shortest path’ replaced
by ‘induced path’; a set S of vertices in a graph G is in monophonic position if there is no
monophonic path in G that contains more than two elements of S. A set satisfying this
condition is called a monophonic position set or simply an mp-set. The mp- and gp-numbers
of trees have a particularly simple form.

Theorem 1.1. [5, 18] For any tree T with leaf number ℓ(T ) we have mp(T ) = gp(T ) = ℓ(T ).

In this paper we consider three extremal problems for mp- and gp-sets. In [18] it was
shown that for any a, b ∈ N there exists a graph with mp-number a and gp-number b if and
only if 2 ≤ a ≤ b or a = b = 1; in Section 2 we discuss the problem of finding the smallest
possible order of a graph with given mp- and gp-numbers. In Section 3 we determine the
asymptotic order of the largest possible size of a graph with given order and mp-number. We
also give an exact value for the largest possible size of graphs with order n and mp-number
two and classify the extremal graphs, as well as showing that the largest size of a graph
with order n and given gp-number is linear in n. Finally in Section 4 we determine possible
diameters of graphs with given order and mp-number.

2. The smallest graph with given mp- and gp-numbers

In a previous paper [18] the authors proved the following realisation theorem.

Theorem 2.1. [18] For all a, b ∈ N there exists a graph with mp-number a and gp-number
b if and only if 2 ≤ a ≤ b or a = b = 1.

We now take this further by asking for the smallest possible order of a graph with given
mp- and gp- numbers. For 2 ≤ a ≤ b we will denote the order of the smallest graph G with
mp(G) = a and gp(G) = b by µ(a, b). Trivially µ(a, a) = a for a ≥ 2, so we assume that
a < b. We introduce three families of graphs that will give strong upper bounds on µ(a, b).

Lemma 2.2. For each r ≥ 3, there exists a graph with order n = 3r + 1, mp-number 2 and
gp-number 2r and a graph with order n = 3r, mp-number 2 and gp-number 2r − 1.

Proof. For r ≥ 3 we define the pagoda graph Pag(r) as follows. The vertex set of Pag(r)
consists of three sets A = {a1, a2, . . . , ar}, B = {b1, . . . , br}, C = {c1, . . . , cr} of size r and an
additional vertex x. The adjacencies of Pag(r) are defined as follows. For 1 ≤ i ≤ r we set
bi to be adjacent to aj and cj for j ̸= i. Also every vertex in C is adjacent to x. An example
Pag(4) is illustrated in Figure 1. For r ≥ 3 we will also denote the graph Pag(r) − {ar}
formed by deleting the vertex ar by Pag′(r).
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Figure 1: Pag(4) with the monophonic path P1,2 in blue

The order of Pag(r) is n = 3r + 1. We now show that for r ≥ 3 we have mp(Pag(r)) = 2
and gp(Pag(r)) = 2r. Trivially any two vertices constitute an mp-set and A ∪ C is a gp-set
of size 2r. It therefore suffices to show that mp(Pag(r)) ≤ 2 and gp(Pag(r)) ≤ 2r.

For a contradiction, let M be an mp-set in Pag(r) with size ≥ 3. For 1 ≤ i, j ≤ r and
i ̸= j let Pi,j be the monophonic path ai, bj, ci, x, cj, bi, aj. The existence of this path shows
that if x ∈ M , then M cannot contain two other vertices of Pag(r), so we can assume that
x ̸∈ M . Suppose that M contains two vertices from the same ‘layer’ A,B or C. For the
sake of argument say a1, a2 ∈ M ; the other cases are similar. The path P1,2 shows that
b1, b2, c1, c2 ̸∈ M . If another element of A, say a3, belonged to M , then we would have the
monophonic path a1, b2, a3, b1, a2, a contradiction. For 3 ≤ i ≤ r the path a1, bi, a2 is trivially
monophonic, so M ∩B = ∅. It follows that there must be a point ci ∈ M for some 3 ≤ i ≤ r.
However a1, b2, ci, b1, a2 is a monophonic path, another contradiction. As M cannot contain
≥ 3 points of Pag(r) we obtain the necessary inequality.

Now assume that K is any gp-set in Pag(r) with size ≥ 2r. For 1 ≤ i, j, k ≤ r, j ̸∈ {i, k},
let Qi,j,k be the geodesic ai, bj, ck, x. Suppose that x ∈ K. If also K ∩ C ̸= ∅, say c1 ∈ K,
then as c1, x, ci is a geodesic for 2 ≤ i ≤ r, it follows that K ∩ {c2, . . . , cr} = ∅. Also, letting
j ̸∈ {1, i} in the path Qi,j,1 also shows that K ∩ A = K ∩ (B − {b1}) = ∅, so that we would
have |K| ≤ 3 < 2r. Hence K ∩C = ∅. Furthermore if some bj lies in K, then for 1 ≤ i, k ≤ r
and j ̸∈ {i, k} the geodesic Qi,j,k contains x, bj and ai, so that we would have K ⊆ B∪{ai, x}
and |K| ≤ r + 2 < 2r. Therefore K ⊆ A ∪ {x} and |K| ≤ r + 1 < 2r. Therefore x is not
contained in any gp-set of Pag(r) of size ≥ 2r.

Suppose now that K ∩ B ̸= ∅, say b1 ∈ K. For 2 ≤ i, k ≤ r the existence of the geodesic
Qi,1,k shows that K cannot intersect both A−{a1} and C −{c1}. Therefore if |K| ≥ 2r+1,
K must either have the form A ∪ B ∪ {c1} or {a1} ∪ B ∪ C; however, a1, b2, c1 is a geodesic
that contains three points from both of these sets. It follows that |K| ≤ 2r. Furthermore, if
|K ∩ B| ≥ 2, say b2 ∈ K, then K ∩ ((A− {a1, a2}) ∪ (C − {c1, c2})) = ∅ and also K cannot
contain both ai and ci for i = 1, 2, so that |K| would be bounded above by r + 2, which is
strictly less than 2r, whereas if K contains a unique vertex of B, then again |K| ≤ r + 2;
therefore A ∪ C is the unique gp-set in Pag(r) with size 2r. In a similar fashion it can be
shown that the graphs Pag′(r) = Pag(r)−{ar} have order 3r, mp-number 2 and gp-number
2r − 1 for r ≥ 3.

We will now define a second family of graphs. We need a result from [18] on the mp- and
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Figure 2: C(0, 4, 5) with a largest gp-set in red

gp-numbers of the join of graphs.

Lemma 2.3. [18] The monophonic and general position numbers of the join G∨H of graphs
G and H is related to the monophonic and general position numbers of G and H by

mp(G ∨H) = max{ω(G) + ω(H),mp(G),mp(H)}

and
gp(G ∨H) = max{ω(G) + ω(H), αω(G), αω(H)}.

For r, s, t ≥ 0 let T (r, s, t) be the starlike tree that has r branches of length one, s branches
of length two and one branch of length t; in other words, T (r, s, t) is the tree containing a
vertex x such that T (r, s, t)− x consists of r copies of K1, s copies of K2 and one copy of Pt,
where Pt is the path of length t−1. We use T (r, s, t) as a ‘base graph’. We define the chalice
graph C(r, s, t) to be the join T (r, s, t) ∨K1, where K1 is a complete graph with vertex set
{y}. If t = 0 we will write C(r, s) for C(r, s, 0).

Lemma 2.4. If t ≥ 1 and r+ s ≥ 2, then C(r, s, t) has order n = r+2s+ t+2 and position
numbers mp(C(r, s, t)) = r + s+ 1 and gp(C(r, s, t)) = r + 2s+ t− ⌊ t

3
⌋. Also, if r + s ≥ 3,

then C(r, s) has order r + 2s+ 2, mp(C(r, s)) = r + s and gp(C(r, s)) = r + 2s.

Proof. By Theorem 1.1 we have mp(T (r, s, t)) = r+ s+1 if t ≥ 1 and mp(T (r, s, 0)) = r+ s.
Therefore by Lemma 2.3 if r + s+ t ≥ 1 we obtain

mp(C(r, s, t)) = mp(T (r, s, t) ∨K1) = max{3, r + s+ 1}

if t ≥ 1 and similarly mp(C(r, s)) = max{3, r + s}. Therefore if t ≥ 1 and r + s ≥ 2 then
mp(C(r, s, t)) = r + s + 1 and if r + s ≥ 3 then mp(C(r, s)) = r + s. As αω(T (r, s, t)) =
r + 2s+ t− ⌊ t

3
⌋, the result for the gp-number follows in a similar fashion.

We now provide a third family of extremal graphs.
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Figure 3: Mas(6, 5) with a largest mp-set in red

Lemma 2.5. For all a and b such that 3 ≤ b, 2b
3

≤ a < b there exists a graph G with
mp(G) = a, gp(G) = b and order n = b+ 2.

Proof. Let s ≥ ⌊ r
2
⌋. We define the mask graph Mas(r, s) as follows. Let R be a set of r

vertices and draw the complete graph Kr on R. Divide R into two parts R′ and R′′, where
|R′| = ⌈ r

2
⌉, |R′′| = ⌊ r

2
⌋. Let S be an independent set with S ∩ R = ∅ and |S| = s. Introduce

two new vertices x, y and connect x to every vertex in S∪R′ and y to every vertex in S∪R′′.
The order of Mas(r, s) is n = r + s+ 2. The graph Mas(6, 5) is shown in Figure 3.

As vertices in S are twins and vertices in R′ are adjacent twins, it is easily seen that
S ∪R′ is an mp-set in Mas(r, s). It follows that mp(Mas(r, s)) ≥ s+ ⌈ r

2
⌉. We show that this

mp-set is maximum. Suppose that M is an mp-set in Mas(r, s) containing ≥ s + ⌈ r
2
⌉ + 1

vertices. If M contains x, then M can contain points in at most one of the sets S,R′, R′′, so
|M | ≤ 1 + max{s, ⌈ r

2
⌉} ≤ s + ⌈ r

2
⌉. Similarly M cannot contain y. M does not intersect all

three of S,R′ and R′′, as any such three points are connected by a monophonic path, so that
again |M | ≤ s+ ⌈ r

2
⌉. Therefore mp(Mas(r, s)) = s+ ⌈ r

2
⌉.

The only geodesics between two elements of S or a vertex of S and a vertex of R have
length two and pass through x or y. Also the distance between vertices in R is one. It
follows that R ∪ S is in general position and it is clear that Mas(r, s) can contain no larger
gp-set. Thus gp(Mas(r, s)) = r + s. For given a, b in the above range setting r = 2(b − a)
and s = 2a− b yields the required graph.

We first prove a lower bound that shows that the graphs with order b+2 from Lemmas 2.4
and 2.5 are extremal.

Lemma 2.6. For 2 ≤ a < b we have µ(a, b) ≥ b+ 2.

Proof. Suppose that a = mp(G) < gp(G) = b and that G has order n. As b > a, G is not
a complete graph and so n ≥ b + 1. Let K be a gp-set with order b. As a ̸= b there must
exist vertices x, y, z ∈ K such that there exists a monophonic x, z-path passing through y;
let P be the shortest such path in G. As P is monophonic, there is no edge from x to z and
thus d(x, z) ≥ 2. Any geodesic contains at most two points of K, so if d(x, z) ≥ 3, then this
geodesic would contain at least two vertices outside of K and n ≥ b + 2, so we can assume
that d(x, z) = 2. As P is not a geodesic, the length of P is at least three. We chose P to be a
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a/b 2 3 4 5 6 7 8 9 10 11

2 2 (1) 5 (1) 7 (1) 9 (4) 10 (2) 12 13

3 - 3 (1) 6 (12) 7 (7) 8 (2) 10 (150)

4 - - 4 (1) 7 (43) 8 (41) 9 (8) 10 (2)

5 - - - 5 (1) 8 (104) 9 (133) 10 (62) 11 12

6 - - - - 6 (1) 9 (219) 10 (325) 11 12 13

7 - - - - - 7 (1) 10 (421) 11 12 13

8 - - - - - - 8 (1) 11 12 13

9 - - - - - - - 9 12 13

10 - - - - - - - - 10 13

Table 1: µ(a, b) (number of non-isomorphic solutions in brackets)

shortest monophonic path containing three points of K, so P must contain a vertex outside
of K. As P is induced, the x, z geodesic is internally disjoint with P and we have exhibited
at least two vertices of G not lying in K.

Table 1 shows the values of µ(a, b) for some small a and b. This data is the result of
computational work by Erskine [12]. Lemmas 2.4 and 2.5 yield the following upper bounds
on µ(a, b). We conjecture that equality holds for each of these bounds.

Theorem 2.7.

• For a ≥ 2, µ(a, a) = a.

• µ(2, 3) = 5 and for b ≥ 4 we have µ(2, b) ≤ ⌈3b
2
⌉+ 1, with equality for 4 ≤ b ≤ 8.

• For 3 ≤ a < b and b
2
≤ a we have µ(a, b) = b+ 2.

• For 3 ≤ a < b
2
we have µ(a, b) ≤ b− a+ 2 + ⌈ b

2
⌉.

Proof. If a = b the complete graph Ka has the required properties. The smallest graph with
(a, b) = (2, 3) is C5 and computer search shows that the graph H(3) with order 7 from [18]
is a smallest graph with (a, b) = (2, 4). For r ≥ 3 by Lemma 2.2 we have mp(Pag(r)) = 2,
gp(Pag(r)) = 2r and mp(Pag′(r)) = 2 and gp(Pag′(r)) = 2r − 1, which gives the stated
upper bound for a = 2.

Let 3 ≤ a < b and b
2
≤ a. By Lemma 2.4 the graph C(r, s) has mp(C(r, s)) = r + s and

gp(C(r, s)) = r+2s. Solving r+ s = a, r+2s = b yields the values r = 2a− b and s = b− a.
Therefore, as C(r, s) has order r+ 2s+ 2, we have µ(a, b) ≤ b+ 2. Combined with the lower
bound Lemma 2.6 we have equality.

Let b > 2a. For even b consider the graph C(0, a− 1, 3b+4
2

− 3a) and for b odd the graph
C(0, a − 1, 3b+5

2
− 3a). Again by Lemma 2.4 these graphs have mp-number a, gp-number b

and order as given in the statement of the theorem.

The constructions in this section can be used to partially characterise the possible numbers
of vertices of graphs with given mp- and gp- numbers.

6



Lemma 2.8. If there exists a graph G with order n, mp(G) = a and gp(G) = b with a largest
mp-set M and a largest gp-set K such that there is a simplicial vertex v ∈ M ∩K, then for
any n′ ≥ n there exists a graph G′ with order n′, mp(G′) = a and gp(G′) = b.

Proof. Suppose that there exists a graph G with mp(G) = a and gp(G) = b and order n
and that there exist maximal mp- and gp-sets M and K such that M ∩ K is non-empty
and contains a simplicial vertex v of G. It is shown in [18] that if G′ is a graph obtained
from G by adding a pendant vertex to a simplicial vertex of G, then mp(G′) = mp(G) and
gp(G′) = gp(G). Hence if we add a leaf to v then the resulting graph G′ has order n+1 and
has the same mp- and gp-number as G. The new leaf in G′ is also a simplicial vertex and
by [18] there are largest mp- and gp-sets of G′ containing v; therefore we can repeatedly add
leaves to construct a graph with mp-number a, gp-number b and any order n′ ≥ n.

Corollary 2.9.

• For a ≥ 1, there exists a graph G with mp(G) = gp(G) = a and order n if and only if
a = n = 1 or 2 ≤ a ≤ n.

• For 3 ≤ a < b and b
2
≤ a there exists a graph G with mp(G) = a, gp(G) = b and order

n if and only if n ≥ b+ 2.

• For 3 ≤ a < b
2
there exists a graph G with mp(G) = a, gp(G) = b and order n if

n ≥ b− a+ 2 + ⌈ b
2
⌉.

• There is a graph G with mp(G) = 2 and gp(G) = 3 and order n if and only if n ≥ 5.
For b ≥ 4 there exists a graph G with mp(G) = 2 and gp(G) = b and order n if
n ≥ 2b+ 1.

Proof. Adding leaves to simplicial vertices of the chalice graphs and cliques yields the first
three results by Lemma 2.8. The cycles show that there is a graph with mp-number 2 and
gp-number 3 if and only if n ≥ 5.

For larger gp-numbers, since Lemma 2.8 does not apply to the small constructions with
mp-number a = 2, we make use of the ‘half-wheel’ construction from [18]. For b ≥ 2 the half-
wheel Hb is constructed from a cycle C2b of length 2b, with vertices labelled by the elements
of Z2b in the natural manner, by adding one new vertex x and joining it to every vertex of
the cycle that has an even label. It is shown in [18] that for b ≥ 4 this graph has mp-number
two and gp-number b. It is easily seen that these position parameters are not changed if we
extend the path 0, 1, 2 on the cycle C2b into a path of length n− 2b+ 1.

3. Extremal size for graphs with given position numbers

In this section we investigate the largest possible size of graphs with given mp- or gp-
number; it turns out that this problem has interesting connections with both Turán problems
and Ramsey theory, which are fundamental areas of extremal graph theory.

Definition 3.1. For a ≥ 2 and n ≥ a we define mex(n; a) (respectively gex(n; a)) to be the
largest possible size of a graph with order n and mp-number (resp. gp-number) a.
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By Theorem 1.1 both of these functions are well-defined. First we determine the asymp-
totic behaviour of the function mex(n; a). As any clique in a graph is in monophonic position,
we have the lower bound mp(G) ≥ ω(G). It follows that any graph with mp-number a is
Ka+1-free. The largest possible size of a Ka+1-free graph was determined by Turán.

Theorem 3.2. [20] The number of edges of a Ka+1-free graph H is at most(
n− r

2

)
+ (a− 1)

(
r + 1

2

)
,

where r = ⌊n
a
⌋. Equality holds if and only if H is isomorphic to the Turán graph Tn,a, which

is the complete a-partite graph with every partite set of size ⌊n
a
⌋ or ⌈n

a
⌉.

The size of the Turán graph Tn,a will be denoted by tn,a. We will show that mex(n; a)
has the same asymptotic behaviour as the largest size of a Ka+1-free graph; our strategy is
to construct a graph with small mp-number by discarding a linear number of cliques from
the Turán graph Tn,a. We need a lemma on the mp-numbers of complete multipartite graphs
that extends the result on complete bipartite graphs from [18].

Lemma 3.3. For integers r1 ≥ r2 ≥ · · · ≥ rt the mp-number and gp-number of the complete
multipartite graph Kr1,r2,...,rt are given by

gp(Kr1,r2,...,rt) = mp(Kr1,r2,...,rt) = max{r1, t}.

Proof. Let the partite sets of Kr1,r2,...,rt be W1,W2, . . . ,Wt and let M be a maximum mp-set
of Kr1,r2,...,rt . Suppose that M contains two vertices u1, u2 in the same partite set W . Then
M cannot contain any vertex v in any other partite set, for u1, v, u2 is a monophonic path.
Hence in this case |M | ≤ |W | ≤ r1. If M contains at most one vertex from every partite
set then |M | ≤ t. For the converse, observe that Kr1,r2,...,rt contains a clique of size t, so
that |M | ≥ t. Each partite set is also an mp-set, so that |M | ≥ r1. The proof for gp-sets is
identical.

Corollary 3.4. For a ≤ n ≤ a2 we have mex(n; a) = tn,a and gex(n; a) = tn,a, whilst
mex(n; a) < tn,a and gex(n; a) < tn,a for n ≥ a2 + 1.

Proof. If a graph contains a clique of size ≥ a + 1, then it will have mp- and gp-number
≥ a + 1. Therefore any graph with mp- or gp-number a is Ka+1-free and it follows from
Turán’s Theorem that gex(n; a) ≤ tn,a and mex(n; a) ≤ tn,a. As the Turán graph is the
unique extremal graph, we have equality if and only if the Turán graph has mp-number a.
By Lemma 3.3, Tn,a does have mp-number a for a ≤ n ≤ a2, but for n ≥ a2 +1 Tn,a has mp-
and gp-number ⌈n

a
⌉ ≥ a+ 1.

We now present the main theorem of this section. Take the Turán graph Tn,a and label
the partite sets T1, T2, . . . , Ta, where |Ti| = ⌈n

a
⌉ for 1 ≤ i ≤ s and |Ti| = ⌊n

a
⌋ for s+1 ≤ i ≤ a,

where s = n− ⌊n
a
⌋a. For 1 ≤ i ≤ a we denote the vertices of Ti by uij, where 1 ≤ j ≤ ⌈n

a
⌉ if

i ≤ s and 1 ≤ j ≤ ⌊n
a
⌋ if s+ 1 ≤ i ≤ a. For each j in the range 1 ≤ j ≤ ⌊n

a
⌋ delete the edges

of the clique of order a on the vertices uij, 1 ≤ i ≤ a, from Tn,a. This yields a new graph T ∗
n,a

with size tn,a − ⌊n
a
⌋
(
a
2

)
.
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Theorem 3.5. For a ≥ 2 and n ≥ a2 + 1 we have

tn,a −
⌊n
a

⌋(a
2

)
≤ mex(n; a) ≤ tn,a − 1.

Thus mex(n; a) ∼ (1− 1
a
)n

2

2
.

Proof. We prove the lower bound by showing that the graph T ∗
n,a has the required mp-number.

Considering the vertices uii for 1 ≤ i ≤ a, we see that T ∗
n,a contains a clique of size a, so

certainly mp(T ∗
n,a) ≥ a. For the converse, let M be a largest mp-set of T ∗

n,a. Suppose that
M contains two vertices uij and uik from the same partite set Ti. Then M cannot contain a
vertex ui′j′ from a different partite set Ti′ where j′ ̸∈ {j, k}, as uij, ui′j′ , uik is a monophonic
path. We have mex(5; 2) = 5, so the lower bound holds for n = 5 and a = 2; otherwise
for n ≥ a2 + 1 we have ⌊n

a
⌋ ≥ 3. Hence let 1 ≤ l ≤ ⌊n

a
⌋ and l ̸∈ {j, k}. Then for any

i′ ∈ {1, 2, . . . , a} − {i} the path P = uij, ui′k, uil, ui′j, uik is monophonic, so M ⊆ V (Ti).
However the path P shows that no three points of the partite set Ti can all lie in M , so that
|M | ≤ 2. Therefore we can assume that any largest mp-set has at most one vertex in each
partite set, so that mp(T ∗

n,a) ≤ a, completing the proof.

In general the construction used in Theorem 3.5 is not optimal; for example mex(10, 3) =
31, whereas Theorem 3.5 gives a lower bound of 24. We now give an exact formula for
mex(n; 2).

Theorem 3.6. For n ≥ 6 we have mex(n; 2) =
⌈
(n−1)2

4

⌉
. For odd n the unique extremal

graph is given by T ∗
n,2, whilst for even n the unique extremal graph is T ∗

n,2 with one edge added
between the partite sets.

Proof. It is easily verified that for even n the graph formed from the construction in Theo-
rem 3.5 by adding an extra edge between the partite sets (i.e. the graphKr,r minus a matching
of size r − 1) has mp-number two, so that mex(2r; 2) ≥ r2 − r + 1 and mex(2r + 1; 2) ≥ r2.
Computer search confirms that these are the unique extremal graphs for 5 ≤ n ≤ 12 [12].

Now we prove the upper bound. The stability result of [4] states that for n ≥ 2a+ 1 any
K(a+1)-free graph with ≥ tn,a − ⌊n

a
⌋+2 edges must be a-partite. In particular, for n ≥ 5 any

triangle-free graph with order 2r and size ≥ r2− r+2 or order 2r+1 and size ≥ r2+2 must
be bipartite. Let G be any bipartite graph with partite sets X and Y , where |X| ≥ |Y |, and
monophonic position number two. Suppose that there are ≥ 2 vertices x1, x2 in X that are
connected to every vertex of Y . Then for any x3 ∈ X − {x1, x2} the set {x1, x2, x3} is in
monophonic position. It follows that at most one vertex of X is adjacent to every vertex of
Y , so that the size of G is at most ⌊n2

4
⌋ − ⌈n

2
⌉ + 1. Therefore mex(2r; 2) = r2 − r + 1 and

r2 ≤ mex(2r + 1; 2) ≤ r2 + 1.
Suppose that G is a graph with order n = 2r + 1, size r2 + 1 and mp-number two. By

the previous argument G is not bipartite. For any graph H with k vertices v1, v2, . . . , vk and
positive integers n1, n2, . . . , nk we let H[n1, n2, . . . , nk] denote the blow-up graph obtained
from H by replacing the vertex vi by a set Vi of ni vertices and joining every vertex in Vi

to every vertex in Vj if and only if vi ∼ vj in H. It is shown in [1] that the only non-
bipartite triangle-free graphs with order 2r + 1 and size r2 + 1 are given by the blow-up
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C5[r − 1, k, 1, 1, r − k] of the 5-cycle, where 1 ≤ k ≤ r − 1. The union of the partite sets
with size k and r− k in this expanded graph is in monophonic position, so for r ≥ 3 no such
graph exists. Hence mex(2r + 1; 2) = r2 for r ≥ 3.

We now classify the extremal graphs. Again by [1] the only non-bipartite triangle-free
graphs with order 2r and size r2−r+1 are the blow-ups C5[r−2, k, 1, 1, r−k] (1 ≤ k ≤ r−1)
and C5[r− 1, k, 1, 1, r−k− 1] (1 ≤ k ≤ r− 2), which both have mp-number ≥ 3 for r ≥ 3, so
any extremal graph must be bipartite. Applying our counting argument for bipartite graphs
shows that both parts of the bipartition must have size r and there is a matching of size r−1
missing between X and Y ; hence the graph T ∗

2r,2 with an edge added between the partite sets
is the unique extremal graph.

Now let G be a graph with order n = 2r+1, mp-number two and size r2. For n = 7, 9 or
11 the result can be shown by computer search [12] or a slightly more involved argument, so
we assume that r ≥ 6. First we show that G must be bipartite. Let δ be the minimum degree
of G and x be a vertex of G with degree δ. There must be a vertex of degree ≤ r−1 in G, for
otherwise the size of G would be at least 1

2
(2r+ 1)r > r2. Thus δ ≤ r− 1. Then G′ = G− x

is a triangle-free graph with order 2r and size r2 − δ ≥ r2 − r + 1. It follows that either G′

is bipartite, or δ = r − 1 and G′ is isomorphic to one of the blow-ups C5[r − 2, k, 1, 1, r − k]
(1 ≤ k ≤ r − 1) or C5[r − 1, k, 1, 1, r − k − 1] (1 ≤ k ≤ r − 2).

Suppose that G′ is bipartite with bipartition (X ′, Y ′), where we make no assumption
about the relative sizes of X ′ and Y ′. Write a = |NG(x) ∩X ′| and b = |NG(x) ∩ Y ′|, where
a+ b = δ. If either a = 0 or b = 0, then G is bipartite. G′ has size at most |X ′||Y ′| ≤ r2 and,
as G is triangle-free, there are at least ab edges missing between NG(x)∩X ′ and NG(x)∩Y ′,
so the size r2 of G is bounded above by r2 + a + b − ab. It follows that ab ≤ a + b, so that
either a = 1 or b = 1, or else a = 2, b = 2. If a = 2, b = 2, then we have equality in the
preceding bound, so that G′ must be isomorphic to the complete bipartite graph Kr,r with
the four edges between NG(x)∩X ′ and NG(x)∩Y ′ deleted, in which case the neighbourhood
N(x) of x is a set of four vertices in monophonic position, a contradiction. Hence without
loss of generality we can assume that a = 1; let x′ be the neighbour of x in X ′. As there
are b edges missing between NG(x) ∩X ′ and NG(x) ∩ Y ′, the size of G is bounded above by
|X ′||Y ′|+1; thus if either set X ′ or Y ′ has size ≤ r−2, then the size of G would be too small,
so we can take |X ′| ≥ r − 1. As before, at most one vertex in X ′ − {x′} can be adjacent to
every vertex of Y ′, so there are at least a further r− 3 edges missing between X ′ − {x′} and
Y ′, implying that r2 ≤ r2 − r + 4, or r ≥ 4. This shows that for r ≥ 5 if the graph G′ is
bipartite, then G is bipartite.

Now consider the case δ = r− 1 and G′ = C5[r− 2, k, 1, 1, r− k]. There must be at least
one edge in G from x to the partite set of size r − 2 in G′, for otherwise this set of r − 2
vertices would be in monophonic position in G. As G is triangle-free, this means that x has
no edges to the sets of size k or r − k. Both of these sets will thus constitute mp-sets in
G, so that k ≤ 2 and r − k ≤ 2, so that r ≤ 4. Similar reasoning shows that G′ cannot be
isomorphic to the blow-up C5[r − 1, k, 1, 1, r − k − 1] for r ≥ 6. Therefore for r ≥ 6 we can
assume that G is bipartite with bipartition (X, Y ), where |X| > |Y |.

Set t = |X|. Our bipartite counting argument shows that at most one vertex of X is
adjacent to every vertex of Y and so there are at most f(t) = t(2r+1−t)−(t−1) = −t2+2rt+1
edges in G. We have f(r+1) = r2 and f is decreasing for t ≥ r, so |X| = r+1 and, as we have
equality in the bound, exactly r vertices in X have one edge missing to Y , with the remaining
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Figure 4: A graph with order 10, gp-number 3 and largest size

vertex of X adjacent to every vertex of X. Suppose that two vertices of X are non-adjacent
to the same vertex of Y , say x1 ̸∼ y1 and x2 ̸∼ y1; then for any x3 ∈ X − {x1, x2} the set
{x1, x2, x3} would be in monophonic position. It follows that the missing edges between X
and Y constitute a matching of size r in the complement of G and we recover our construction
T ∗
2r+1,2.

We turn now to the largest size of graphs with given general position number. As the
only graphs with gp-number two are C4 and paths of length at least 2, we trivially have
gex(4; 2) = 4 and gex(n; 2) = n − 1 for n ≥ 5. A graph with order n = 10, general position
number 3 and largest size is shown in Figure 4. In contrast to the quadratic size of extremal
graphs with given mp-number, the function gex(n; a) is O(n). This can be shown by a simple
upper bound on the maximum degree of such a graph that comes from Ramsey theory. The
Ramsey number R(s, t) is the smallest value of n such that any graph with order n contains
either a clique of size s or an independent set of size t; taking the complement of the extremal
graphs we trivially have the symmetry R(s, t) = R(t, s).

Theorem 3.7. For a ≥ 3 the function gex(n; a) is bounded above in terms of the Ramsey

number R(a, a+ 1) by gex(n; a) ≤ R(a,a+1)−1
2

n.

Proof. Let G be a graph with order n, gp-number a, size gex(n; a) and maximum degree ∆.
Suppose that G has a vertex x with degree d(x) ≥ R(a, a + 1) and let X be the subgraph
induced by N(x). Then X contains either a clique of order a, which together with x would
give a clique of size a+ 1, or else X has an independent set of size a+ 1; either of these sets
constitutes a general position set with more than a vertices. Thus ∆ ≤ R(a, a + 1)− 1 and

gex(n; a) ≤ R(a,a+1)−1
2

n.

It seems unlikely that the bound in Theorem 3.7 is tight; improving this bound is an
interesting problem.

We now briefly consider the problem of the smallest size of graph with given position
numbers. Finding the smallest size of a graph with given mp- or gp-number is trivial by
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Figure 5: S(3, 3) (left) with a largest gp-set in red (right)

Theorem 1.1; however, if we specify both the mp- and gp-number this problem becomes more
difficult. We will denote the smallest possible size of a graph G with order n, mp(G) = a
and gp(G) = b by ex−(n; a; b); by Corollary 2.9 this number exists for sufficiently large n.
Trivially ex−(a; a; a) =

(
a
2

)
and ex−(n; a; a) = n− 1 for n ≥ a + 1. Also using cycles we see

that ex−(n; 2; 3) = n for n ≥ 5. For other values of a and b we conjecture that the following
construction is extremal.

Theorem 3.8. If b and a have the same parity, then for n ≥ 5b−3a
2

+4 we have ex−(n; a; b) ≤
n + b−a

2
+ 1. If a and b have opposite parities, then for n ≥ 5b−3a+11

2
we have ex−(n; a; b) ≤

n+ b−a+3
2

.

Proof. For r ≥ 2 and t ≥ 0 we define a graph S(r, t) as follows. Take a cycle C5r+1 of length
5r + 1 and identify its vertex set with Z5r+1 in the natural way. Join the vertex 0 to the
vertices 3+5s for all s ∈ N in the range 0 ≤ s ≤ r−1. Finally append a setW = {w1, . . . , wt}
of t pendant vertices to the vertex 0. An example is shown in Figure 5. We claim that S(r, t)
has mp(S(r, t)) = t+ 2 and gp(S(r, t)) = 2r + t.

The set W ∪ {1,−1} is obviously in monophonic position, so mp(S(r, t)) ≥ t + 2. Let
M be any maximum mp-set of S(r, t). By a result of [18] on triangle-free graphs any set in
monophonic position in S(r, t) is an independent set. The path 1, 2, 3, . . . , 5r− 1, 5r in C5r+1

is monophonic in S(r, t) and hence contains at most two points of M , so if the mp-number
of S(r, t) is any greater than t + 2, then M contains three vertices of C5r+1, one of which is
0, so that M ∩W = ∅ and t = 0. A simple argument shows that the mp-number of S(r, 0)
is two. Thus mp(S(r, t)) = t+ 2.

Consider now the set {2 + 5s, 4 + 5s : 0 ≤ s ≤ r − 1} ∪W . The vertices of this set are
at distance at most four from each other and it is easily verified that none of the geodesics
between them pass through other vertices of the set. Thus gp(S(r, t)) ≥ 2r + t. Let K
be a gp-set of S(r, t) that contains ≥ 2r + t + 1 vertices. For 0 ≤ s ≤ r − 1 the set
S[s] = {1 + 5s, 2 + 5s, 3 + 5s, 4 + 5s, 5 + 5s} on C5r+1 contains at most two vertices of K. It
follows that K must contain the vertex 0, two vertices in each of the aforementioned sets and
every vertex of W . As the vertices of W have shortest paths to the vertices of K in S[0], we
must have t = 0. For r ≥ 3, if 0 ≤ s < s′ ≤ r − 1 and s + 2 ≤ s′, then vertices in S[s] have
shortest paths to the vertices in S[s′] passing through 0, so 0 ̸∈ K and gp(S(r, t)) = 2r + t.

12



Also gp(S(2, 0)) = 4. If a and b have the same parity and b > a the graph S( b−a
2

+ 1, a− 2)
therefore has the required parameters. By Corollary 2.8 if a ≥ 3 we can add a path to a
vertex of W to give a graph with any larger order n′ ≥ n and the same mp- and gp-numbers.
If a = 2 then lengthening one of the sections of length five on C5r+1 accomplishes the same
aim. If a and b have opposite parities, then shortening one of the sections of length five on
C5r+1 in the above constructions by one vertex yields the required graph.

4. The diameters of graphs with given order and mp-number

In [17] Ostrand proved the well-known realisation result that for any two positive integers
a, b with a ≤ b ≤ 2a there exists a connected graph with radius a and diameter b. Similar
realisation results for the diameters of graphs with given position or hull numbers are given
in [6, 7]. This raises the following question: what are the possible diameters of a graph with
given order and monophonic position number? We now solve this problem, beginning with
mp-numbers a ≥ 3.

Theorem 4.1. For any integers a and n with 3 ≤ a ≤ n− 1, there exists a connected graph
G with order n, mp-number a and diameter D if and only if 2 ≤ D ≤ n− a+ 1.

Proof. For a ≥ 3 the only connected graph with monophonic position number a = n is the
complete graph Kn with diameter one. It was shown in [18] that the mp-number of a graph
with order n and longest monophonic path with length L is bounded above by n − L + 1;
rearranging, it follows that L ≤ n − a + 1. As any geodesic in G is induced, it follows that
n−a+1 is the largest possible diameter of a graph G with order n and mp(G) = a. It remains
only to show existence of the required graphs for the remaining values of the parameters.
For a = n− 1 and D = 2 this follows easily by considering the star graph K1,n−1, so we can
assume that a ≤ n − 2. For n ≥ 2, Theorem 1.1 shows that any caterpillar graph formed
by adding a − 2 leaves to the internal vertices of a path of length n − a + 1 has order n,
mp-number a and diameter D = n− a+ 1.

For a ≥ 3 we can construct a graph F (n, a, n−a) with order n, mp-number a and diameter
D = n − a as follows. Take a path P of length n − a; let V (P ) = {u0, u1, . . . , un−a}, where
ui ∼ ui+1 for 0 ≤ i ≤ n− a− 1. Introduce a set Q of a− 1 new vertices v1, v2, . . . , va−1 and
join each of them to u0 and u1. An example is shown in Figure 6.

We claim that the set Q∪ {un−a} is an mp-set. Any monophonic path P ′ from un−a to a
vertex of Q must pass through u1, which is adjacent to every member of Q, and so P ′ cannot
terminate in another vertex of Q. Similarly any monophonic path between two vertices of Q
passes through either u0 or u1 and hence cannot include any other vertex of Q or un−a. Thus
mp(F (n, a, n− a)) ≥ a.

Conversely, if M is any mp-set in F (n, a, n−a) with size ≥ a+1, then M contains at most
two vertices from P and so has size exactly a+1 and consists of Q together with two vertices
x, y of P . If x = ui, y = uj, where 1 ≤ i < j ≤ n−a, then there is an induced path from y to
Q through x, which is impossible. Hence we can take x = u0. However v1 ∼ u0 ∼ v2 would
be a monophonic path in M , so we conclude that mp(F (n, a, n− a)) = a.

Finally for 2 ≤ D ≤ n− a− 1 we define the flagellum graph F (n, a,D) as follows. Take a
path P of length D − 2 with vertices {x0, x1, . . . , xD−2}, where xi ∼ xi+1 for 0 ≤ i ≤ D − 3.
Let Cs be a cycle with length s = n − D − a + 3 and vertex set {u0, u1, . . . , us−1}, where
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Figure 6: A graph F (12, 7, 5) with order n = 12, mp-number 7 and diameter D = 5

Figure 7: F (16, 6, 7)

ui ∼ ui+1 for 0 ≤ i ≤ s − 1 and addition is carried out modulo s. Join x0 to every vertex
of Cs, so that Cs ∪ {x0} induces a wheel. Finally append a set Q = {v1, v2, . . . , va−2} of
a− 2 pendant edges to xD−2; an example is shown in Figure 7. This graph has order n and
diameter D; we now show that mp(F (n, a,D)) = a.

It is simple to verify that the set Q ∪ {u0, u1} is an mp-set and so mp(F (n, a,D)) ≥ a.
Suppose that M is an mp-set with size ≥ a+ 1. M contains at most two points of P . If M
contains two points of P then M∩(Cs∪Q) = ∅ and |M | = 2 < a. Suppose that M contains a
point of P . Then M cannot contain points of both Cs and Q or else the point of P contained
in M would lie on a monophonic path between any point of M in Cs and any point of M in
Q. Any mp-set contains at most two points of Cs, so if M contains a point of Cs, it follows
that a+ 1 ≤ |M | ≤ 3 ≤ a, which is impossible. Therefore M must contain a point of Q; but
as |Q| = a− 2 we have |M | ≤ 1+ (a− 2) = a− 1. Thus M ∩P = ∅. Therefore M consists of
at most two points of Cs and at most a− 2 points of Q, so that |M | ≤ 2 + (a− 2) = a.

We now determine the possible diameters of graphs with mp-number two.

Theorem 4.2. There exists a graph with order n, monophonic position number a = 2 and
diameter D ≥ 3 if and only if D = n− 1 or 3 ≤ D ≤ ⌊n

2
⌋.

Proof. It follows from [18] that for n ≥ 2r + 1 and r ≥ 3 we have mp(H(n, r)) = 2, where
H(n, r) is the half-wheel graph defined in Section 2. Moreover H(n, r) has order n and
diameter D = 3+ ⌈n

2
⌉ − r if r ≥ 4 and diameter ⌈n

2
⌉ − 1 if r = 3. Varying r from 3 to ⌊n−1

2
⌋

we obtain graphs with order n, mp-number 2 and all diameters in the range 4 ≤ D ≤ ⌈n
2
⌉−1.

For odd n we have ⌈n
2
⌉−1 = ⌊n

2
⌋. For even n ≥ 4 the cycle Cn has mp-number 2 and diameter

⌊n
2
⌋.
Theorem 3.5 shows that for n ≥ 3 the graph T ∗

n,2, which is a complete bipartite graph
K⌈n

2
⌉,⌊n

2
⌋ minus a matching of size ⌊n

2
⌋, has mp-number 2; as this graph has diameter D = 3,
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we have proven existence for all D in the range 3 ≤ D ≤ ⌊n
2
⌋. For n ≥ 2 the path with length

n− 1 is a graph with order n, mp-number 2 and diameter n− 1. This proves the existence of
graphs with mp-number 2 and all values of the diameter D claimed in the statement of the
theorem.

We now show that there is no graph with order n, mp-number 2 and diameter D, where
⌊n
2
⌋ < D < n − 1. Suppose that G is such a graph and let u and v be vertices at distance

D. Assume that G is 2-connected. Then u and v are joined by internally disjoint paths of
length ≥ D, so that n ≥ 2D > n, which is impossible.

Hence G contains a cut-vertex w. Suppose that d(w) ≥ 3. Then choose a set M of three
neighbours of w such that the vertices of M are not all contained in the same component of
G−w; it is easily seen that M is an mp-set. Hence we must have d(w) = 2. Each neighbour
of w is either a leaf of G or a cut-vertex, so repeating this reasoning shows that G is a path,
which contradicts D < n− 1.

Lemma 4.3. If there exists a graph with order r ≥ 4, monophonic position number a = 2 and
diameter D = 2, then there exist graphs with monophonic position number a = 2, diameter
D = 2 and orders 3r, 3r + 1 and 3r + 2.

Proof. Let H be a graph with order r ≥ 4, monophonic position number 2 and diameter
D = 2. Label the vertices of H as h1, h2, . . . , hr. We will construct new graphs with orders
3r, 3r + 1 and 3r + 2 with mp-number 2 and diameter D = 2 from H as follows.

First we define the graph G(H) with order 3r + 2. Let X = {x1, x2, . . . , xr} and Y =
{y1, y2, . . . , yr} be two new sets of vertices disjoint from V (H). On X ∪ Y draw a complete
bipartite graph with partite sets X and Y and then delete the perfect matching xiyi, 1 ≤
i ≤ r. For 1 ≤ i ≤ r join both xi and yi to the vertex hi by an edge. Finally add two new
vertices z1 and z2, join z1 to each vertex of X by an edge, join z2 to each vertex of Y and
lastly add the edge z1z2 between the two new vertices. An example of this construction for
H = C4 is displayed in Figure 8.

It is easily seen that G has diameter D = 2. To show that the mp-number of G is 2
it is sufficient to show that for any set M of three vertices of G there is an induced path
containing each vertex of M . It is evident that for any vertex v ∈ V (G) − {z1, z2} there is
an induced path in G containing z1, z2 and v, so we can assume that |M ∩ {z1, z2}| ≤ 1.

The map fixing every element of H, interchanging xi and yi for 1 ≤ i ≤ r and swapping
z1 and z2 is an automorphism of G, which reduces the number of cases that we need to check.
Suppose that M is a set of three vertices of G(H) containing one of z1, z2; say z1 ∈ M .
Without loss of generality we have the following nine possibilities for M ′ = M − {z1}: i)
M ′ = {x1, x2}, ii) M ′ = {x1, h1}, iii) M ′ = {x1, h2}, iv) M ′ = {x1, y1}, v) M ′ = {x1, y2}, vi)
M ′ = {h1, h2}, vii) M ′ = {h1, y1}, viii) M ′ = {h1, y2} and ix) M ′ = {y1, y2}.

Consider the following two cycles. For 1 ≤ i, j ≤ r, where i ̸= j, we define C(i, j) to be
the cycle z1, xi, yj, hj, xj, z1 and, if P is a shortest path in H from hi to hj, then D(i, j) is
the cycle formed from the path P from hi to hj, followed by the path hj, xj, z1, xi, hi. Both
of these cycles are induced and so can contain at most two points of M . By varying the
parameters i and j we see that the first seven configurations for M ′ above are not possible.

For viii) let P be a shortest path in H from h1 to h2. By assumption r ≥ 4, so as P has
length at most two, there exists a vertex of H, say h3, not appearing in P . Then the path
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Figure 8: The graph G(C4)

P , followed by the path h2, y2, x3, z1 contains all three vertices of M . Finally for case ix) the
induced path y1, x2, z1, x1, y2 contains all three vertices of {z1, y1, y2}.

We can now suppose that M ∩ {z1, z2} = ∅. Observe that the subgraph of G induced by
X ∪Y is isomorphic to the graph T ∗

2r,2 from the proof of Theorem 3.5, so we can also assume
that M ̸⊆ X ∪ Y . Furthermore, as mp(H) = 2, we can take M ̸⊆ V (H). For all 1 ≤ i, j ≤ r
and i ̸= j there is an induced cycle xi, hi, yi, xj, hj, yj, xi, so M must contain vertices with
at least three different subscripts i ∈ {1, . . . , r}. Therefore without loss of generality we
are left with the following three cases: i) M = {x1, x2, h3}, ii) M = {x1, y2, h3} and iii)
M = {x1, h2, h3}.

For cases i) and ii), let P ′ be the shortest path in H from h3 to {h1, h2}; without loss
of generality P ′ is a h2, h3-path that does not pass through h1. Then in case i) x1, z1, x2, h2

followed by P ′ contains all three points of M = {x1, x2, h3} and in case ii) the path x1, y2, h2

followed by P ′ contains all three vertices of M = {x1, h3, y2}.
For case iii), if P ′ is a shortest h2, h3-path in H, then x1, y2, h2 followed by P ′ contains all

three vertices of M = {x1, h2, h3} unless d(h2, h3) = 2 and P ′ is the path h2, h1, h3, in which
case the path h3, y3, x1, y2, h2 suffices.

This analysis also shows that the graphs G′(H) = G(H)−{z2} with order 3r+1 and the
graph G′′(H) = G(H)− {z1, z2} with order 3r also have mp-number 2 and diameter D = 2.
Hence for any r ≥ 4 if there is a graph with order r, mp-number 2 and diameter D = 2 there
also exists such a graph for orders 3r, 3r + 1 and 3r + 2.

Theorem 4.4. There is a graph with order n, monophonic position number a = 2 and
diameter D = 2 if and only if n ∈ {3, 4, 5, 8} or n ≥ 11.

Proof. The statement of the theorem has been verified by computer search for all n ≤ 32 [12].
Let n ≥ 33 and assume that the result is true for all orders < n. Write n = 3r + s, where s
is the remainder on division of n by 3. Then r ≥ 11 and by the induction hypothesis there
exists a graph with order r, mp-number 2 and diameter D = 2. Then by Lemma 4.3 there
exists a graph with order n, mp-number 2 and diameter D = 2. The theorem follows by
induction.
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The computer search used in this proof suggests the following stronger result.

Conjecture 4.5. For any n ≥ 11, there is a circulant graph with order n, monophonic
position number a = 2 and diameter D = 2.
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