Check for updates

Cite this: DOI: $10.1039 / \mathrm{d} 3 \mathrm{cp} 90185 \mathrm{~h}$

DOI: 10.1039/d3cp90185h
rsc.li/pccp

Correction: Lone pair driven anisotropy in antimony chalcogenide semiconductors

Xinwei Wang, ${ }^{\text {a }}$ Zhenzhu Li, ${ }^{\text {ab }}$ Seán R. Kavanagh, ${ }^{\text {ac }}$ Alex M. Ganose ${ }^{\mathrm{a}}$ and Aron Walsh*ab

Correction for 'Lone pair driven anisotropy in antimony chalcogenide semiconductors' by Xinwei Wang et al., Phys. Chem. Chem. Phys., 2022, 24, 7195-7202, https://doi.org/10.1039/D1CP05373F.

The authors regret that Fig. 5(b) was incorrect in the original manuscript due to a minor error in the code used for calculating the orientation-dependent radiative limit to photovoltaic conversion efficiency. The corrected figure is shown here. The optical absorption spectra of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ result in a weak orientation-dependent radiative limit of conversion efficiencies. When the film thickness is 500 nm , the difference between the maximum and minimum efficiencies along different directions is 1.31% and 2.40% for $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$, respectively. The authors note that the correction of $\mathbf{F i g}$. $\mathbf{5}(\mathbf{b})$ does not change the central conclusions of the paper.

Fig. 5 (a) Calculated optical absorption spectra of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3}$ arising from direct valence to conduction band transitions. The fundamental band gaps are shown in grey dotted lines. (b) Thickness-dependent maximum efficiencies based on the radiative limit of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ and $\mathrm{Sb}_{2} \mathrm{Se}_{3} . x, y$ and z refer to the direction of the electric polarisation vector of light.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

[^0]
[^0]: ${ }^{a}$ Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK. E-mail: a.walsh@imperial.ac.uk
 ${ }^{b}$ Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
 ${ }^{c}$ Thomas Young Centre and Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

