
1 
 

Economic and full environmental assessment of electrofuels via 

electrolysis and co-electrolysis considering externalities 

Diego Freire Ordóñez a,b*, Nilay Shah b, Gonzalo Guillén-Gosálbez c 

a Institute for Applied Sustainability Research, Av. Granados E13-55 e Isla Marchena, No. 44, Quito 170503, 

Ecuador 

b Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK 

c Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 

Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland 

dmf15@ic.ac.uk 

Graphical Abstract 

 

Abstract 

Electrofuels from CO2 and H2O have recently emerged as a promising alternative to reduce the carbon footprint 

of fossil fuels, yet their full economic and environmental performance remains unclear. Here, the production of 

renewable petrol from electrolysis and co-electrolysis-based processes is critically assessed, combining a palette 

of tools encompassing process simulation, costing evaluation, life-cycle assessment, and uncertainty analysis. 

Our results show that electrofuels are currently very expensive (10.4-fold higher cost compared to petrol), even 

when considering externalities (indirect cost of environmental impacts). Electrofuels could become cheaper than 

the fossil analogue, yet this would require relying on low-cost renewable electricity, which may find alternative 

uses. From an environmental perspective, we found that despite reducing the carbon footprint of the fossil 

counterpart, electrofuels could exacerbate impacts on human health due to burden-shifting. Overall, our work 
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highlights the need to embrace impacts beyond climate change to ensure a comprehensive assessment of 

alternative fuels, and to monetise them to underpin a fair comparison with the fossil analogue.     

Keywords: Electrolysis and co-electrolysis, Electrofuels, Techno-economic assessment, Life-cycle assessment, 

Uncertainty analysis, Monetisation of environmental impacts  

1. Introduction 

Worldwide energy demand has grown steadily in recent decades, leading to a substantial increase in the 

consumption of renewable and non-renewable energy sources. To meet this energy demand sustainably, 

research efforts are focusing on replacing conventional fossil energy with renewables, mainly in four different 

areas, i.e., power generation, heating, transportation, and rural energy services [1]. 

At present, transportation is responsible for about 19% of the global energy use and 23% of the energy-related 

CO2 emissions, shares projected to increase by approximately 50% by 2030, and by 80% by 2050 [2]. In this 

context, synthetic fuels based on CO2 have recently emerged as an attractive alternative to reduce fossil fuels 

consumption, mitigate climate change and enhance energy security [3,4] 

The term “synthetic fuel” applies to a manufactured fuel with approximately the same composition and specific 

energy as those of a natural fuel [5]. Biofuels converting biomass into high-energy-density fuels initially attracted 

substantial interest. Competition for food production, deforestation and land-use change [6], however, shifted 

the focus of recent research towards other renewable sources; these include wind and solar energy, where the 

excess of electricity due to their intermittency can be harnessed to produce synthetic fuels [7].  

Renewable and non-renewable synthetic fuels are being investigated, where the former are classified according 

to the share of electricity used in their production; specifically, the term “electrofuels” refers to those requiring 

a large amount of electricity [8]. Electrofuels are carbon-based fuels obtained from CO2 and water using 

electricity as the primary energy source to activate the inert CO2 molecule [9,10]. They could be used to store 

electricity in chemical molecules, or as feedstock to produce other high-value products [11]. Notably, the so-

called renewable electrofuels are considered nearly carbon-neutral concerning greenhouse gas emissions [12], 

as both the electricity and the carbon are provided by renewable sources [13].  

The production of electrofuels has been highly researched during the last years aiming at both mitigating 

resources deployment and decarbonising the transportation sector [14]. In passenger vehicles, using electricity 

as the energy source is considered a more sustainable and cleaner option compared to the use of fossil fuels [7]. 

Unfortunately, in some vehicles, such as ships and long-haul trucks, the required batteries may fail to meet 

current standards, such as high energy density, a high degree of autonomy, or a brief refuelling time [15]. Hence, 

electrofuels may find applications in commercial air transport along with long-distance transport, shipping, and 

the production of carbon-intensive structural materials [12,14], which are hard to electrify. Furthermore, 
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electrofuels can help to curb fossil CO2 emissions while addressing the issue of intermittency of renewables and 

its implications on the grid’s reliability [16,17].  

The deployment of these fuels, however, must still overcome some barriers. In this context, as stated by Albrecht 

et al. [18], the competitiveness of synthetic fuels on the market will rely on the fuel net production costs, the 

anticipated cost reduction potential, and the policies for climate change mitigation. Along these lines, Speight 

[19] claims that synthetic fuels could achieve profitability depending on the feedstock and the production 

process. Gauging the potential of electrofuels requires performing techno-economic and environmental 

analyses considering the entire production processes and featuring a similar level of detail and assumptions [18]. 

In this regard, several studies provide guidelines to conduct techno-economic analyses [18,20], environmental 

analyses [21–23], or both [24,25], specifically applicable to synthetic fuels. An exhaustive literature review on 

this topic (see Table 1) reveals that a standardised methodology has not been embraced yet, making it hard to 

carry out objective comparisons.  

Table 1 reviews recent works on liquid electrofuels, most of which have focused on green oxymethylene 

dimethyl ethers (OMEn), methanol, and Fischer-Tropsch (FT) fuels from CO2 and electrolytic H2.  
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Table 1. Literature review of the production of liquid electrofuels through process modelling. 
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Samavati 

et al. [26] 
Diesel  x   x x     x   x 

Al-

Qahtani 

et al. [27] 

Methanol x     x    x    x 

González-

Garay et 

al. [28] 

Methanol x      x   x  x   

Martín et 

al. [29] 
Methanol    x  x     x x   

Michailos 

et al. [24] 
Methanol x     x    x  x   

Zhang et 

al. [30] 
Methanol  x    x     x x   

Wang et 

al. [20] 

Methanol, 

gasoline 
 x    x     x x   

Albrecht 

et al. [18] 
Liquid fuel x    x x     x   x 

Alhyari et 

al. [31] 
Liquid fuel  x   x   x  x    x 

Albrecht 

et al. [32] 
Liquid fuel  x   x x     x   x 

Becker et 

al. [33] 
Liquid fuel  x   x x     x   x 

Cinti et al. 

[34] 
Liquid fuel  x   x   x   x   x 
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Fasihi et 

al. [35] 
Liquid fuel   x  x x     x   x 

Herz et al. 

[36] 
Liquid fuel  x   x x     x   x 

König et 

al. [37] 
Liquid fuel x    x x     x x   

Schemme 

et al [38] 
Liquid fuels x    x x     x x   

Bongartz 

et al. [39] 
OME1    x    x   x   x 

Burre et 

al. [40] 
OME3-5    x    x   x   x 

Hank et 

al. [41] 
OME3-5 x     x    x    x 

Zhang et 

al. [42] 

Methanol,  

jet fuel 
 x   x   x   x x   

 

Bearing the above in mind, we focus here on electrofuels obtained via FT, which can replace a wide range of 

fossil fuels without modifying the current infrastructure or motors due to their very similar properties [43]. As 

seen in Table 1, practically all the existing studies covering environmental assessments of FT fuels focused on 

their global warming potential. However, none of them provides full insight into the environmental impacts 

associated with their production, i.e., characterisation of impacts at the midpoint and endpoint levels, widely 

analysed in conventional LCA studies. Hence, the extent to which these fuels can contribute to sustainable 

development remains unclear, as a full comprehensive LCA encompassing a wide range of impact categories is 

lacking. Furthermore, these fuels’ economic assessments often omit the economic savings linked to lower 

environmental impacts (relative to their fossil analogues). Notably, reducing impacts results in lower indirect 

costs (i.e., externalities). However, quantifying these environmental savings is considered critical to ensure a fair 

comparison, as synthetic fuels from biomass or CO2 and electricity are currently more expensive than 
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conventional fossil fuels [44]. Indeed, the main motivation for adopting them is environmental rather than 

purely economic.  

In this regard, here we evaluate two technologies to produce electrofuels displaying very similar properties to 

those of conventional petrol. The technologies assessed combine either a PEM or a SOEC electrolyser, with an 

FT reactor to produce petrol from CO2 and renewable energy. As opposed to other works, a full LCA is here 

conducted for each production process based on the ReCiPe 2016 damage model, which covers 22 midpoint and 

3 endpoint indicators. The latter are monetised to uncover the real total cost of each fuel, thereby ensuring a 

fair comparison against the fossil business-as-usual (BAU) alternative.  

In the optimistic scenario, i.e., when omitting the impact embodied in wind energy by assuming the use of only 

surplus energy from intermittent wind, electrofuels outperform fossil petrol in the three endpoint categories of 

the LCA (human health, ecosystems, and resources). However, they are more expensive to produce than their 

fossil analogue, even when considering free wind energy. However, the inclusion of externalities would make 

them economically competitive due to the higher environmental impact of the fossil alternative. However, when 

the impact of wind is considered, electrofuels lead to burden-shifting toward human health. In the latter case, 

even when considering externalities, electrofuels are currently not cheaper with existing technology than the 

fossil alternative.  

The article is organised as follows. The assessment methodology, which combines process modelling, heat 

integration, and techno-economic and life-cycle analyses with the monetisation of impacts, is described first. 

The results are then assessed and thoroughly discussed, including an extensive comparison against the fossil-

based analogue in the UK. Finally, the current work’s main findings are highlighted in the conclusions section, 

along with some recommendations for future work. 

2. Methodology 

Here we carry out a techno-economic and environmental assessment of two promising electrofuel production 

processes by combining a palette of tools, as we did elsewhere [28,45–47]. Process simulation is employed to 

quantify the mass and energy flows associated with fuel production, which are used to evaluate their economic 

and environmental performance. The former is quantified via the total cost, while to estimate the latter, we 

apply LCA principles based on the ISO 14040 series (2006). We consider that the plant is located in the UK. A 

summary of the software, calculation tools, and references from previous studies used in each step of our 

research is shown in Appendix G, Table G-1. 

2.1. Model description 

Two flowsheets were built in Aspen Plus v10 [48] based on the conceptual process design presented by König et 

al. [37] and outlined in Fig. 1 (for the PEM electrolysis-based process), and in Fig. 2 (for the SOEC co-electrolysis-

based process), respectively. This model comprises pure components, i.e., H2O, CO2, H2, CO, and n-alkanes 

ranging from C1 to C30. The Peng-Robinson equation of state with Boston-Mathias alpha function (PR-BM) was 

chosen as the reference property method due to its suitability for hydrocarbons [18]. Furthermore, for both 

electrolysers, the property method electrolyte-NRTL (ELECNRTL) was selected to model the electrolysis reactions 
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[49]. In essence, the electrofuels are produced from syngas generated from CO2 and H2 through an FT reactor 

yielding a range of products (depending on the operating conditions and catalysts). We next describe the primary 

feedstock, then move to the description of the reaction step and, finally, to the separation phase. 

2.1.1. Feedstock: Syngas production from CO2 and H2 

The syngas is a gaseous mixture consisting mainly of hydrogen (H2), carbon monoxide (CO), and also a certain 

amount of carbon dioxide (CO2). This gas, used as intermediate in the production of a wide range of chemicals, 

including synthetic fuels, currently represents 2% of the total primary energy consumption in the chemical 

industry [50]. Here, syngas is used as the feedstock of the FT process. 

In syngas generation, CO is obtained from the reduction of CO2 through the reverse water-gas shift (rWGS) 

reaction [51]:  

CO2 + H2 ⇄ CO + H2O                 ΔH = 41.2 kJ/mol  (1) 

The production of methane often occurs due to two unwanted parallel reactions [52]: 

a) CO2 methanation (known as the Savatier reaction), Eq.  (2) 

CO2 + 4H2 ⇄ CH4 + 2H2O           ΔH = -165 kJ/mol  (2) 

b) CO methanation, Eq.  (3) 

CO + 3H2 ⇄ CH4 + H2O               ΔH = -206.2 kJ/mol  (3) 

In fossil-based syngas, methane is used as feedstock, while here we generate the syngas by instead mixing 

captured CO2 with electrolytic H2. Notably, two technologies are studied to produce synthetic syngas, as 

discussed below, namely electrolysis and co-electrolysis. 

PEM electrolysis-based synthesis process (Case 1) 

In this technology, electrolytic H2 is produced first, according to Eq. (4) (see Fig. 1). We modelled the PEM 

electrolyser, including the PEM electrolysis unit and its balance of plant (BOP), based on the process studied by 

Michailos et al. [49]. This technology was chosen due to its high TRL and market availability [53]. 

H2O ⇄ H2 + 1
2

O2                       ΔH = +285.8 kJ/mol (4) 

Syngas is obtained next by combining H2 with CO2 in an rWGS reactor, according to Eq.(1). The rWGS reaction 

requires high temperatures to reach acceptable conversions. Previous works [54–59] studied how to improve 

the catalytic activity at low temperatures while maintaining a good CO selectivity. Here, a nickel-based catalyst 

with Al2O3 as support [60] is chosen owing to its high activity and competitive cost compared to noble metal-

active phase catalysts. 

SOEC co-electrolysis-based synthesis process (Case 2) 

This technology generates syngas directly from CO2 and H2O, according to Eq. (4) and Eq. (5) (see Fig. 2). A SOEC, 

including the electrolysis unit and its BOP, was simulated based on the design proposed by Samavati [61]. The 
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motivation for considering the co-electrolysis technology, still under demonstration [53], is two-fold [6]: (i) 

SOECs may attain larger efficiencies in the future compared to AEs and PEM electrolysers; and (ii) they can be 

used for both, electrolysis and co-electrolysis.  

CO2 ⇄ CO + 1
2

O2                     ΔH = +283.2 kJ/mol (5) 

As in the previous case, H2O and CO2 undergo an electrochemical conversion to produce syngas, as shown in 

Eq.(1). 

In this work, we followed a simple stoichiometric modelling approach for the electrolysers subsystems, which 

was previously applied to PEMs [49] and SOECs [61]. This approach consists of modelling those subsystems based 

on the existing reactor types and calculation blocks in Aspen Plus v10, which allow quantifying the mass/energy 

inputs and outputs, including the electricity demand for the electrolysers under thermoneutral conditions, i.e.,  

the electricity and thermal energy demand of the electrolysis reactions are both covered by electricity [36], here 

generated from wind power. The electrochemical nature of the electrolysis process is, therefore, not modelled 

in detail. However, this simplified modelling is consistent with the scope of the analysis and provides a reliable 

basis for the techno-economic and environmental assessment [49], which is our main focus. We assume an 

electrical efficiency of 70% for the PEM electrolyser [18] and 82% for the SOEC [62], and an efficiency of 96% for 

the AC/DC conversion [37]. To account for the fluctuations of wind power and to guarantee the continuous 

operation of the synthesis plant, salt caverns are included in the production processes to store syngas [63,64] 

and hydrogen [37,65] at the exit of the SOEC and the PEM electrolysers, respectively. Both syngas and hydrogen 

are produced and stored when wind power is available (considering its full amount, or only the excess above a 

given value for the more optimistic scenario) and utilised depending on the plant requirements [37,63]. The 

capacity of the caverns, based on a wind power plant of 46.8% full load fraction, is considered to be 11% of the 

annual H2 consumption, and their start-up costs, 5-fold the cost of the cavern  [37]. The electricity demand of 

the chemical plant is covered by grid power in order to ensure its continuous operation. 

With regards to CO2, it can be captured via several technologies [66–68]: (i) Post-combustion, where CO2 is 

captured from flue gas streams after combustion; (ii) oxy-fuel, which uses nearly pure oxygen instead of air for 

fuel combustion; and (iii) pre-combustion, where CO2 is captured from the reformed synthesis gas of the 

upstream gasification units. 

In this research, post-combustion capture was chosen as capture technology. Data for this process was taken 

from the work by Irribarren et al. [69], which studied CO2 capture from coal-fired power plants. 
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Fig. 1. PEM-based process flowsheet (Case 1). The PEM subsystem includes the electrolysis unit and the 

corresponding BOP based on [49] 

 

Fig. 2. SOEC-based process flowsheet (Case 2). The SOEC subsystem includes the electrolysis unit and the 

corresponding BOP based on [61] 

2.1.2. Chemical synthesis: Fischer-Tropsch (FT) process 

The FT process entails a set of polymerisation reactions that transform CO and H2 into liquid hydrocarbons [70] 

according to the following reactions: 

Hydrogenation of CO to form n-paraffins: 

nCO + (2n+1)H2 → CnH2n+2 + nH2O               n=1,2,…,∞ (6) 

Hydrogenation of CO to form 1-olefins: 



10 
 

nCO + 2nH2 → CnH2n + nH2O                           n=2,3,…,∞ (7) 

Hydrogenation of CO to form oxygenates: 

nCO + 2nH2 → CnH2n+2O + (n-1)H2O               n=1,2,…,∞ (8) 

The ratio of two successive reaction rates is here assumed to follow a constant growth factor known as the chain 

growth probability, α. This factor is connected via the Anderson–Schulz–Flory distribution to the weight fraction, 

wn, which determines the distribution of the products, as follows: [70] 

wn = n(1-α)2αn-1 (9) 

Where n denotes the carbon number or chain length.  

In terms of catalyst, iron and cobalt are the preferred choices for FT industrial applications, while nickel and 

ruthenium could also be used, mainly when the focus lies on the production of high molecular weight 

hydrocarbons [61]. Accordingly, a cobalt-based catalyst [71] is considered herein. The specific FT design 

parameters used in this study [37] are given in Appendix B, Fig. B-1. 

2.1.3. Wax hydrocracking (HC) 

HC is a catalytic cracking process that is often combined with the FT process. Here, long hydrocarbon chains are 

broken and rearranged while adding H2 to aromatics and olefins to produce naphthenes and alkanes [72]. This 

process is regarded as a primary petroleum refining method for the conversion of heavy hydrocarbons into 

gasoline and middle distillate. Indeed, the middle distillate currently available on the market is mostly produced 

by crude oil hydrocracking [73]. The products of HC are saturated hydrocarbons, from ethane and LPG to heavier 

hydrocarbons (mostly isoparaffins), depending on the reaction temperature, pressure, and catalyst activity [72].  

The hydrocracking of FT wax, a long paraffinic chain (>C21) [74] obtained in the FT process,  has been extensively 

investigated for middle distillate production. FT wax possesses several advantages over conventional crude oil 

as a feedstock for hydrocracking, such as the possibility of producing first-rate middle distillate with low content 

of sulphur and aromatic compounds [73]. Metal/acid bifunctional catalysts are commonly used, among which 

NiMo and NiW catalysts supported on solid acids are particularly suitable for middle distillate production [73]. 

Nevertheless, considering that the FT wax is a sulfur-free product, Pd and Pt-loaded catalysts could also be used, 

both showing excellent performance owing to their elevated hydrogenation/dehydrogenation activity for heavy 

hydrocarbon cracking [74–76]. Hence, a platinum-based catalyst [77] is considered in this study. The yield 

distribution considered in the hydrocracker model [37] is given in Appendix B, Fig. B-1. For the required H2, we 

consider H2 coming from wind power produced elsewhere. 

2.1.4. Product separation and upgrading 

The resulting FT gas and the product from hydrocracking should undergo a distillation/flash separation to obtain 

fuels with similar properties to those of conventional fuels. Hence, six flash separators are considered in the 

separation step, as shown in Fig. 1 and Fig. 2. 
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2.2. Heat integration (HI) 

Process integration based on mass/recycle targeting, minimum heating, and cooling utilities, and cogeneration 

targets can be applied to improve further the environmental performance of the process [78]. In our case, the 

potential energy-savings due to HI are estimated using the pinch technology as implemented in Aspen Energy 

Analyzer v10 [79]. Once the flowsheets are modelled, and utilities are assigned, the software constructs the 

composite curves and calculates the energy targets. A heat recovery temperature approach of 10°C was selected 

in both technologies. Each production process is assessed with and without HI, and the potential savings are 

then factored in the economic assessment. 

2.3. Economic analysis 

2.3.1. Net production cost (NPC) 

The NPC of the electrofuels is obtained from the capital (CAPEX) and operational (OPEX) expenditures, which 

are calculated using the Aspen Process Economic Analyzer v10 [80]. The installed costs of the electrolysers and 

reactors were estimated following the guidelines given by Albrecht et al. [18]. The purchased cost is obtained 

from Eq. (10), using the data in Appendix A, Table A-2. All costs, including raw materials, utilities, products, and 

equipment, were updated to 2018. In contrast, the cost of the electrolysers, i.e., total direct costs accounting 

for purchased costs, installation, piping, civil works, steel, instrumentation, electricals, insulation, and paint (see 

Table A-2), were estimated based on their projected cost to 2020 [62] and the most recent annual plant cost 

index available at the moment, i.e., CEPCI2019 = 607.5 [81]. The chemical engineering plant cost index (CEPCI), 

which was first introduced in 1963, is a regularly-updated composite index obtained from different sub-indexes 

related to equipment, construction, labour, buildings and engineering costs. It is commonly utilised to adjust the 

purchased costs of equipment from one period to another [81].  

PC = PCref⋅ � S
Sref

�
D

⋅ �CEPCl2018
CEPClref

� (10) 

Here the notation used is as follows: PC denotes the purchased cost of the equipment, PCref represents the same 

purchased cost expressed in monetary units of the reference year, S denotes the scale for the capacity in 2018, 

Sref expresses the reference scale, and D is a scaling factor. The chemical engineering plant cost index for 2018 

(CEPCI2018) is assumed to be equal to 603.1, for 2018 [82]. 

With the purchased costs, Aspen Process Economic Analyzer estimates the fixed capital investment (FCI), as well 

as the total operation cost (TOC), based on the data presented in Appendix A. The FCI includes the cost of the 

purchased equipment and its installation, as well as other related costs, such as piping, civil works, steel, 

instrumentation, electricals, insulation, paint, general and administrative overheads, contract fees, design, 

engineering and procurement, and contingencies (see Fig. 4). The TOC considers the cost of raw materials, 

utilities, revenues for byproducts, and other operating costs, such as operating labour cost, maintenance cost, 

operating charges, plant overhead, and general and administrative expenses (see Fig. 5). 

The annualised capital cost (ACC) is then calculated from Eq. (11), with the data in Appendix A, Table A-1. 
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ACC = FCI· i·(1+i)t

(1+i)t-1
 (11) 

Where i denotes the interest rate and t, the plant lifetime. 

Finally, the total annualised cost (TAC) is calculated by summing up the TOC and the ACC, while the net 

production cost (NPC) of the electrofuels is calculated by dividing the TAC by their annual production (AP), as 

shown in the equations below: 

TAC = TOC + ACC  (12) 

NPC = ���
��

 (13) 

The NPC of electrofuels is expressed in USD per gasoline gallon equivalent (GGE), a standard indicator widely 

used to compare alternative fuels against conventional gasoline. Hence, this metric quantifies the mass of fuel 

required to equal the energy output of one gallon of liquid gasoline [37]. Therefore, this indicator enables a 

more consistent comparison between the NPC of the produced electrofuels and conventional petrol (see Table 

B-1). 

2.3.2. Uncertainties in cost data 

A sensitivity analysis was carried out to identify the most critical variables in the economic assessment. Monte 

Carlo sampling was applied next to study the impact of changes in these variables on the outcome of the analysis, 

modelling the main contributors towards the CAPEX and OPEX expenditures via a normal distribution with a 

standard deviation of 20% [83].  

2.3.3. Abatement cost of carbon emissions 

The abatement cost of carbon emissions, that is, the carbon tax that would make electrofuels match the 

production cost of their fossil-based analogue, can be determined from the fuels’ costs and carbon footprint as 

follows. First, the global warming potential (expressed in kgCO2-eq kgfuel-1) of the fuel is quantified from the LCA at 

the midpoint level. Then, the carbon tax that should be established so that the electrofuel and conventional 

petrol would both display the same total cost is calculated by Eq. (14)  

Carbon tax = �
������������������������

������������������������
� (14) 

Where GWP and NPC denote the global warming potential and net production cost, respectively. 

2.4. Life-cycle assessment (LCA) 

The standard LCA methodology [84] is applied to quantify the environmental impact of the different fuels, as 

described in detail next. All the calculations were implemented in SimaPro v9.0 [85] interfacing with Ecoinvent 

3.5.     

2.4.1. Goal and scope definition 

A cradle-to-gate scope is considered, under the assumption that both fuels will be eventually combusted; hence, 

including other downstream processes would add no discriminatory power to the analysis. The functional unit 
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is 1 kg of electrofuel. The choice of this functional unit was made following standard guidelines defined for 

carbon capture and utilisation (CCU) projects, which recommend mass-based functional units due to their 

widespread use for trading chemicals, materials and minerals [86]. Likewise, as shown in Appendix B, the 

composition and properties of the produced e-petrol and fossil counterpart are assumed to be very similar, 

which further justifies the choice of our functional unit as the basis for comparison. Ideally, the same analysis 

could be done by defining as the functional unit the energy content (i.e., 1 MJ) or, even better, a given distance 

travelled (i.e., one km travelled, which would consider the engine efficiency of each fuel type). However, these 

alternative functional units would require additional process- and vehicle-dependent data. 

As shown in Fig. 1 and Fig. 2, a fraction of the external recycle, which contains gaseous hydrocarbons and 

unreacted species, is combusted in the burner to generate energy. Likewise, a portion of the produced oxygen 

is utilised as an oxidising agent (for 20%-excess oxygen combustion). Hence, we consider natural gas and 

compressed air to be avoided products, as shown in Appendix D, Table D-1. The environmental burdens are 

economically allocated among the produced oxygen and the electrofuels, depending on the assumed cost of the 

wind power, e.g., at zero-cost electricity, 26%-74% and 29%-71%, respectively, for the PEM and the SOEC cases, 

while at 0.16 USD/kWh, the resulting allocation percentages are 5%-95% and 4%-96%, respectively. The impact 

embodied in the caverns, the PEM and SOEC electrolysers was omitted, as it was shown that their contribution 

to the total impact is rather low [87–89]. 

2.4.2. Life-cycle inventory (LCI) 

The LCIs of elementary flows are obtained by combining the mass and energy flows of the foreground system 

with data of the background system. The latter includes those surrounding processes providing inputs (raw 

materials and utilities) to the main process. Information on the foreground system is retrieved from the 

simulation model of the primary process implemented in Aspen Plus. In contrast, background data are retrieved 

from Ecoinvent (see Appendix D, Table D-1). The LCI of the conventional low-sulphur petrol (BAU) is directly 

taken from Ecoinvent 3.5. The allocation at the point of substitution (APOS) system model is considered for all 

inputs and outputs of the production processes.  

2.4.3. Environmental impact assessment (EIA) 

The ReCiPe 2016 [90] method is applied as implemented in SimaPro, following a hierarchist perspective [91] and 

focusing on the following midpoints indicators: global warming on human health, stratospheric ozone depletion, 

ionising radiation, ozone formation on human health, fine particulate matter formation, human carcinogenic 

toxicity, human non-carcinogenic toxicity, water consumption on human health, mineral resource scarcity, fossil 

resource scarcity, global warming on terrestrial ecosystems, global warming on freshwater ecosystems, ozone 

formation on terrestrial ecosystems, terrestrial acidification, freshwater eutrophication, marine eutrophication, 

terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, land use, water consumption on terrestrial 

ecosystems, and water consumption on aquatic ecosystems. These are aggregated into three endpoints, i.e., 

human health, ecosystems, and resources.  
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2.4.4. Uncertainty analysis of environmental data  

Following standard practice, uncertainties in the LCI entries are evaluated through Monte Carlo simulations in 

SimaPro. The pedigree matrix is applied to determine the parameters of the underlying lognormal distributions 

that model the LCI elementary flows (i.e., feedstock, emissions, and waste) [92]. 

2.5. Monetisation of endpoints (externalities) 

Endpoint impact categories are monetised according to the methodology proposed by Weidema [93], as already 

done in previous works [45,94]. In essence, this approach translates the LCA-endpoint impact categories into 

monetary units through the application of economic penalties to each indicator [93]:  

 The economic penalty factor for human health, i.e., 7.4×104 EUR2003 per 1 DALY, is equivalent to the 

undiscounted willingness-to-pay value for a life year under small risk increase from involuntary exposure. 

 For the ecosystems quality indicator, the conversion factor, i.e., 9.5×106 EUR2003 per 1 lost species.year, was 

derived from a single Japanese choice model, and it is equivalent to a 2%-expenditure of the potential 

income. For the uncertainty, the low and high-range values are given by the Externe study and an 

experiment in which the 10% protection target from the Convention of Biological Diversity is employed, 

respectively. 

 The monetary factor for the resources depletion indicator, i.e., 8.62×10-1 EUR2003 per 1 USD2000, was 

obtained from a forecast of future energy prices, based on the marginal costs of oil production technologies 

at the time of the study and assuming that the predicted long-term energy costs would not exceed 0.023 

EUR2003/MJ (80 USD2000/barrel). 

3. Results and discussion 

We start by analysing the economic performance of the fuels to then focus on their environmental assessment. 
  

3.1. Process model results 

A summary of the primary energy and mass flows of the production processes is given in Table 2. The product 

composition profiles (Fig. B-1), along with some estimated properties (Table B-1), can be seen in Appendix B.  

Table 2. Summary of energy and mass flows from the simulation of the production processes. 

Energy flows Mass flows 

Streams 
Case 1: PEM  Case 2: SOEC Unit 

Streams 
Case 1: PEM  Case 2: SOEC Unit 

Value Value 

Inputs:       Inputs        

Electricity:    CO2 235.59 235.59 t/h 
   Electrolyser 1780.20 1708.02 MW H2O 337.75 210.80 t/h 
   Auxiliaries 75.33 75.46 MW H2 0.27 0.30 t/h 
Other utilities:       

   Cooling water 243.50 182.30 MW      

   Propane refrigeration 9.69 7.23 MW      
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Outputs:    Outputs:    

Electrofuel 679.47 619.29 MW 

Electrofuel  55.43 51.16 t/h 
Oxygen 181.32 218.73 t/h 
Flue gas 97.88 51.19 t/h 
Wastewater 238.98 125.61 t/h 

3.2. Heat integration 

Fig. 3 shows the composite curves of both processes. In both cases, the heating demand can be fully satisfied                             

with internal heat exchange. For the non-heat integrated processes, this demand would amount 397.8 MW for 

the PEM-based case, and 357.6 MW for the SOEC-based case. Cooling requirements can be reduced to 253.2 

MW and 189.5 MW, respectively, for the PEM and SOEC cases, compared to 650.9 MW and 547.1 MW in the 

base case without heat integration.  This analysis, therefore, shows that the heating and cooling savings for the 

PEM and SOEC cases are quite significant (i.e., 39.4 MUSD and 5.2 MUSD, and 31.5 MUSD and 5.1 MSUD, 

respectively).   
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Fig. 3. Composite curves: A. PEM-based process; B. SOEC-based process. 

3.3. Economic analysis 

Two different scenarios are considered in the economic assessment. The first assumes free wind electricity, as 

a potential utilisation of the surplus electricity linked to the fluctuating wind power, which needs to be re-

dispatched to avoid the stressing of electric grids [95,96]. The second considers the cost of wind power to be 

0.16 USD/kWh, which is currently the average cost of offshore wind power in the UK [97]. 
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3.3.1. Annualised costs 

The annualised costs are summarised in Fig. C-1, whereas the corresponding breakdowns are given in Fig. 4 and 

Fig. 5. The PEM and the SOEC-based cases show similar ACC. The TOC calculated for the actual price of wind 

power is approximately 15-18-fold higher compared to that estimated under the assumption of zero-cost 

electricity (see Fig. 5). As expected, the application of heat integration reduces the TOC, especially when zero-

cost wind power is considered, i.e., a nearly 22%-reduction when heat integration is applied. However, when 

the actual price of electricity is considered, the potential reductions are in the range of 1.4 to 1.7%. For free wind 

electricity, the TOC of the PEM-based process is approximately 23% higher than that of the SOEC-based process, 

compared to only 5% above for an electricity price of 0.16 USD/kWh [97]. 

With regards to the CAPEX (see Fig. 4), its main contributor in terms of equipment is always the FT reactor, 

followed by the electrolyser. Meanwhile, the most significant contributor to the OPEX is the captured CO2, for 

the case of free electricity, and wind electricity, when its cost is accounted for (see Fig. 5). 
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Fig. 4. Breakdown of the annualised capital costs (ACC) associated with the electrofuels.  
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Fig. 5. Breakdown of the total operation cost (TOC). 

3.3.2. Net production costs (NPC) 

The NPCs are given in Fig. 6. The externalities shown in Fig. 6A include the environmental impacts of the wind 

power required by the electrolysers, while in Fig. 6B, those impacts are omitted. The latter case assumes that 

only surplus electricity from wind is utilised and its corresponding impacts are allocated to the electricity 

supplied to the grid line (see 3.4). For the heat integrated processes, excluding externalities and assuming zero-

cost wind electricity, conventional petrol emerges as the cheapest option (approximately 1.71 USD/gal [98]), 

followed by the PEM-based fuel (2.60 USD/GGE), and then by the SOEC-based fuel (2.94 USD/GGE). As shown in 

Fig. 6A, when externalities are considered, however, the electrofuels outperform the fossil petrol, with the PEM-

based fuel showing the lowest cost (3.67 USD/GGE vs 3.81 USD/GGE, for the PEM and the SOEC-based fuels, 

respectively, and 4.04 USD/gal for the petrol). Accounting for the cost of wind electricity increases the cost of 

the electrofuels sharply, from 2.60 to 17.73 USD/GGE for the PEM-based fuel, and from 2.94 to 18.87 USD/GGE 

for the SOEC-based fuels, making them much more expensive than fossil petrol, even when considering 

externalities (19.10 USD/GGE vs 20.00 USD/GGE, for the PEM and the SOEC-based fuels, respectively). The same 
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conclusions stand for the case when the environmental impacts of wind power are omitted for the calculation 

of the externalities (Fig. 6B).
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Fig. 6. NPC including externalities. A: Externalities including the environmental impacts embodied in wind 

power; B: Externalities omitting the environmental impacts embodied in wind power. GGE stands for gasoline 

gallon equivalent  
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3.3.3. Uncertainty analysis 

The sensitivity analysis, conducted for the NPCs of the electrofuels without externalities, reveals that the cost of 

wind electricity and, to a lesser extent, the CO2 cost and the potential selling price of oxygen are the most critical 

parameters in the economic assessment. The results of the Monte Carlo assessment are shown in Appendix C, 

Table C-1, and Fig. C-2. The standard deviation of the NPC is 2.95 USD/GGE for the PEM-based fuel, and 3.27 

USD/GGE for the SOEC-based fuel, while the coefficients of variation are 16.67% and 17.42%, respectively.  
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Fig. 7. Sensitivity analysis of cost parameters; electrolyser wind power cost: 0.16 USD/kWh. 

3.3.4. Abatement cost of carbon emissions  

The abatement costs vary in the range 169.98-2587.85 USD tCO2-eq−1, when the wind power environmental 

impacts are omitted, and 198.60-3286.45 USD tCO2-eq−1, when those impacts are assessed, depending on the 

case and excluding externalities (see Appendix F). We note that these values lie above the current estimated 

social cost of carbon emissions, i.e., 62.35 USD tCO2-eq−1 [99]. The abatements costs, i.e., the estimated carbon 

taxes, along with the NPCs of the fuels, are shown in Fig. 8 for each scenario.  
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Fig. 8. Carbon tax assessment for each scenario. 

3.4. Life-cycle assessment (LCA) 

Consistent with the economic assessment, we evaluated the LCAs of the production processes for two different 

scenarios: (i) omitting the environmental impacts of the wind electricity powering the electrolysers; and (ii) 

including those impacts. The former case assumes that the required electricity is surplus electricity linked to 

fluctuating wind power [95,96]; consequently, the associated environmental impacts are, in this case, fully 

allocated to the grid electricity. The LCA results at the endpoint level are shown in Fig. 9, and at the midpoint 

level in Fig. 11, whereas their corresponding breakdowns are shown in Fig. 10, and in Fig. 12, Fig. 13 and Fig. 14, 

respectively.  

3.4.1. Analysis at the endpoint level 

As shown in Fig. 9A, when the impacts of the wind electricity are omitted, both electrofuels outperform fossil 

petrol in all the endpoint categories, i.e., human health, resources, and ecosystems, where the gap is wider in 

the latter category. Hence, in this case, there is no burden-shifting, i.e., no detrimental side effects linked to the 

shift from one technology to the other [100,101]. 

However, when the impact of wind power is accounted for (see Fig. 9B), both electrofuels outperform their fossil 

analogue in only two out of three endpoint categories, i.e., ecosystems and resources, at the expense of 

worsening the performance in human health.  
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Comparing both electrofuels, it can be observed how the SOEC fuel has a lower environmental impact on human 

health and ecosystems, and a slightly higher impact in the resources category, for both scenarios. The reason 

for this is that, at the operating conditions assumed, the co-electrolysis-based process is more efficient due to 

its relatively lower consumption of feedstock (4.3 kgCO2/kgfuel and 6.1 kgH2O/kgfuel vs 4.6 kgCO2/kgfuel and 4.1 

kgH2O/kgfuel, for the PEM and the SOEC-based fuels, respectively), despite displaying similar utilities consumption 

rates (33.5 kWhelectricity/kgfuel, 4.4 kWhcooling water/kgfuel and 0.17 kWhpropane refrigeration/kgfuel vs 34.9 kWhelectricity/kgfuel, 

3.6 kWhcooling water/kgfuel and 0.14 kWhpropane refrigeration/kgfuel, for the PEM and the SOEC-based fuels, respectively). 

Furthermore, co-electrolysis also leads to less emissions (1.8 kgflue gas/kgfuel and 4.3 kgwastewater/kgfuel vs 1.0 kgflue 

gas/kgfuel and 2.5 kgwastewater/kgfuel, for the PEM and the SOEC-based fuels, respectively), as shown in Table 2.  

Fig. 10 shows the breakdown in the endpoints, while the corresponding uncertainty intervals, given by the 

2.5/97.5 percentiles, are shown in Appendix E, Fig. E-1, for both scenarios. As seen, in the human health and the 

ecosystems categories, the main contributor is the electricity, followed by the steel and the propane 

refrigeration. In contrast, in resources,  the main contributor is the CO2 followed by the electricity and the 

propane refrigeration. Note that natural gas, compressed air, and CO2 lead to environmental credits in some 

endpoint impact categories. The main negative contribution of CO2 is due to the carbon captured used to 

produce the electrofuels. At the same time, natural gas and compressed air are considered avoided products 

(recall that a portion of the purge gas is burnt with part of the produced oxygen from the electrolysers, as 

explained in section 2.4.1). 
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impacts; B: Including wind power environmental impacts 
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Fig. 10. ReCiPe 2016 LCA breakdown of each production process at the endpoint level per kg of fuel. 

3.4.2. Analysis at midpoint level 

As observed in Fig. 11, the environmental profiles of the PEM and the SOEC-based fuels at the midpoint level 

are close to each other for both scenarios. In both cases, omitting or not the impact of wind power, fossil petrol 

performs notably worse in the following three midpoint categories: global warming on human health, global 

warming on terrestrial ecosystems, and fossil resource scarcity. Note that the global warming indicators take 

negative values in both electrofuels due to the captured CO2 and the cradle-to-gate scope that neglects the 

emissions during fuel combustion in vehicles.  

Those negative values in the climate change midpoints, however, are counterbalanced by positive impacts in 

other midpoint categories, e.g., fine particulate matter, ozone formation on terrestrial ecosystems, terrestrial 

acidification, freshwater eutrophication, human carcinogenic and non-carcinogenic toxicity, and land use. This 

latter finding confirms that burden-shifting also takes place in different midpoint indicators. 
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Analysing the breakdown of midpoints (Fig. 12, Fig. 13 and Fig. 14), we find that the environmental impacts 

related to the captured CO2 and the electricity consumption are the major contributors in most midpoints. This 

is due to the fact that the CO2 is allocated part of the burdens associated with electricity generation in coal 

power plants. Furthermore, the impact of propane refrigeration, which includes the electricity consumption of 

the refrigeration cycle and a propane makeup to compensate for an annual leakage of propane of around 4% 

[102], is quite substantial in some midpoint categories, e.g., ionisation radiation and ozone formation.   
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Fig. 11. ReCiPe 2016 LCA comparison at the midpoint level per kg of fuel. A: Omitting wind power 

environmental impacts; B: Including wind power environmental impacts 
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Fig. 12. ReCiPe 2016 LCA at the midpoint level of each production process; contributions to human health 

damage.  



29 
 

Pe
tr

ol
PE

M
SO

EC

-9.00 -6.00 -3.00 0.00 3.00

Global warming: Terrestrial ecosys. (×10⁹), species.yr

Results:  Omitting wind power impacts  Including all impacts
BAU:  Petrol
Process materials:  H2O  H2 from wind power  CO2  Steel
Catalysts:  rWGS catalyst  FT catalyst  HC catalyst
Utilities:  Electricity  Cooling water  Propane refrigeration
Avoided products:  Compressed air  Natural gas
By-products:  Wastewater

Pe
tr

ol
PE

M
SO

EC

-2.00 -1.00 0.00 1.00

Global warming: Freshwater ecosys. (×10¹³), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 0.40 0.80 1.20

Ozone formation: Terrestrial ecosys. (×10⁹), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 1.00 2.00 3.00

Terrestrial acidification (×10⁹), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 0.40 0.80 1.20

Freshwater eutrophicat. (×10⁹), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 1.00 2.00 3.00

Marine eutrophication (×10¹³), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 3.00 6.00 9.00

Terrestrial ecotoxicity (×10¹¹), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 0.30 0.60 0.90

Freshwater ecotoxicity (×10¹⁰), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 0.80 1.60 2.40

Marine ecotoxicity (×10¹¹), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 2.50 5.00 7.50

Land use (×10¹⁰), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 1.00 2.00 3.00

Water consumpt.: Terrest. ecosys. (×10¹⁰), species.yr

Pe
tr

ol
PE

M
SO

EC

0.00 0.40 0.80 1.20 1.60

Water consumpt.: Aquatic ecosys. (×10¹⁴), species.yr

 

Fig. 13. ReCiPe 2016 LCA at the midpoint level of each production process; contributions to ecosystems 

damage.  
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Fig. 14. ReCiPe 2016 LCA at the midpoint level of each production process; contributions to resource 

availability damage.  

3.4.3. Comparative uncertainty analysis 

As shown in Appendix E, Fig. E-1, uncertainties at the endpoint level are quite pronounced, particularly in human 

health and ecosystems, resulting in large confidence intervals that make it hard to discriminate between 

technologies. To facilitate the analysis, Fig. 15 shows the pairwise probabilities of one technology outperforming 

the fossil fuel in each impact category. More precisely, the figure displays the results of comparing the 

electrofuels with conventional petrol in each impact category across scenarios. In the figure, bars denote the 

percentage of samples (each corresponding to a different realisation of the uncertain parameters) in which one 

technology outperforms the fossil fuel. For each pairwise comparison, a total of 1000 Monte Carlo runs were 

simulated using Simapro v9.0, assuming a 95% confidence level. 

Comparisons for water indicators are inconclusive due to the large degree of uncertainty involved, which 

propagates to the human health and ecosystem endpoint indicators. These results are consistent with previous 

studies highlighting the significant uncertainties found in the water flows reported in Ecoinvent [103]. According 

to the literature, an alternative should emerge as superior in at least 90% of the Monte Carlo samples [92] to 

attain a satisfactory level of discrimination. However, lower values would also be acceptable.  

In the first scenario (omitting the impact of wind energy), the 90%-criterion is met in all the midpoints except 

for water consumption. In contrast, for the second scenario, the criterion is met in all the midpoints except for 

water consumption and stratospheric ozone depletion. Because of this, the ecosystems and human health 

endpoint impact categories do not meet the same criterion either. We find that in ecosystems, the SOEC-based 

fuel is better than fossil petrol with a 59.6% vs 98.8% probability, for the first scenario and the second scenario, 

respectively. Likewise, the PEM-based fuel outperforms fossil petrol with a 48.6% vs 85.1% probability, for the 

first and the second scenario, respectively.  
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Furthermore, the electrofuels outperform the BAU in human health, with probabilities of 35.3% vs 93.9% and 

24.6% vs 78.3%, for the SOEC and the PEM-based fuels, for the first and the second scenario, respectively. 

Accordingly, the endpoint values are less reliable than the midpoint ones due to the highly uncertain water 

flows.     
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Fig. 15. ReCiPe 2016 LCA. Relative environmental uncertainty.  
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4. Conclusions 

This study assessed the economic and environmental performance of two electrofuels produced from CO2 and 

wind energy using the PEM and SOEC technologies, respectively. The total cost (NPC) and a range of LCA 

indicators based on the ReCiPe 2016 were studied considering economic and environmental uncertainties. 

Our results show that electrofuels are yet economically unappealing under the current market conditions in the 

UK, i.e., 0.16 USD/kWhwind electricity and 1.71 USD/galfossil petrol (at least ca. 10.4-fold higher NPC than that of fossil 

petrol). This holds true also when considering free surplus wind energy (at least ca. 1.5-fold higher NPC than 

that of fossil petrol). The SOEC-based fuel was found to be slightly more expensive than the PEM-based fuel due 

to the higher annual production of the latter (ca. 6.4% to 13.0% more costly, depending on the wind electricity 

price). However, including externalities in the economic assessment would make electrofuels cheaper than their 

fossil analogue under the free wind energy scenario (petrol cost ca. 0.9-fold higher), but not when considering 

the current cost of wind electricity, i.e., 0.16 USD/kWhwind electricity.  

Electrofuels could become economically appealing under a tax on CO2 emissions as high as 212.57 USD tCO2-

eq−1 for the zero-cost electricity case, and 3286.45 USD tCO2-eq−1 when not relaying on the excess of wind 

energy. The costs of wind electricity and captured CO2 and the revenue from a potential sale of O2 were found 

to be the main variables impacting the most the cost of electrofuels. Notably, the expected drop in the cost of 

wind electricity and captured carbon could help to make electrofuels more appealing. 

According to the LCA results, when the environmental impacts of wind power are omitted, both electrofuels 

outperform the fossil petrol simultaneously in all the endpoint categories, i.e., human health, ecosystem quality, 

and resources. However, when those impacts are considered, burden-shifting takes place at the endpoint level, 

since both electrofuels show better performance in ecosystems and resources compared to fossil petrol at the 

expense of worsening human health. Likewise, burden-shifting would take place at the midpoint level. The SOEC 

technology outperforms the PEM in human health and ecosystems but is worse in resources. This is mainly due 

to the fact that natural gas leads to higher environmental credits in the PEM-based process compared to the 

SOEC-based process. The main contributors to the total impact in both electrofuels correspond to the captured 

CO2 and the required electricity. 

Overall, this work points towards the need to embrace the whole range of LCA categories in the environmental 

assessment of alternative fuels in order to avoid the occurrence of burden shifting. It also highlights the necessity 

to include externalities in their assessment in order to uncover their real cost. Even considering them, subsidies 

would most likely be still required to make alternative fuels economically competitive, although to a lesser 

extent. From a more technological side, further research is required to develop more efficient and cheaper 

renewable energy harvesting systems and electrolysers that could help to close the economic gap with the fossil 

analogue.   
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