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Abstract

Deep brain stimulation (DBS) is an effective technique for
treating motor symptoms in neurological conditions like
Parkinson’s disease and dystonic and essential tremor
(DT and ET). The DBS delivery could be improved if re-
liable biomarkers could be found. We propose a deep
learning (DL) framework based on EEGNet to search for
digital biomarkers in EEG recordings for discriminating
neural response from changes in DBS parameters. Here
we present a proof-of-concept by distinguishing left and
right arm movement in raw EEG recorded during a DBS
programming session of a DT patient. Based on the
classification of 1s segments from six-channel EEG, we
achieve an average accuracy of up to 93.8%. In addition,
we propose a simple, yet effective model-agnostic filter-
ing strategy for explaining the network’s performance,
showing which frequency band features it mostly uses to
classify the EEG.
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Introduction

Deep brain stimulation (DBS) is an effective treatment for dys-
tonic tremor (DT) and essential tremor (ET), where the tha-
lamus usually is the target of stimulation (Tan et al., 2019).
Tremors in these conditions are, however, primarily present
during voluntary movement and sustained postures only, and
today’s constant DBS is therefore not ideal.

To improve DBS delivery, measurable biomarkers for both
tremors and movement are needed; these are thought to be
related to specific frequency bands in brain activity recordings.
Tan et al. (2019) showed that in local field potentials (LFPs)
from the stimulation cite of ET patients with DBS (turned off)
the theta band (4-7 Hz) was the most informative for postural
tremors. Similarly, postural and kinetic tremors in DT patients
are characterized as being in the delta-theta range (< 7 Hz)
(Deuschl, Ma, Brin, & Committee, 1998). From EEG record-
ings of the motor cortex of healthy persons, the theta band

has also been associated with movement initiation (Popovych
et al., 2016) and motor learning (van der Cruijsen et al., 2021).

EEG-based brain machine interfaces (BCIs) have in-
creased in popularity due to to the data’s high temporal res-
olution and its non-invasiveness (Huang, Chang, Yan, Yang,
& an Huayan Pei, 2022). Deep learning (DL)-based methods
for decoding these signals achieve high performance in, for
instance, motor task classification, and are advantageous for
their use of the raw EEG directly (Lawhern et al., 2018).

We have recorded EEG from a person with DT performing
various arm movements and sustained postures while receiv-
ing DBS. We use a DL model based on EEGNet to classify left
vs. right arm activity from recordings under varying DBS; this
serves as a first step in the search for reliable cortical biomark-
ers that discriminate neural response from DBS changes. We
then propose a simple, yet effective model-agnostic method to
explain what the trained network uses to achieve high classi-
fication accuracy; we show that it extracts and uses spectral
features from multiple bands, most notably the theta band.

Methods
The dataset was collected at Charing Cross Hospital. It con-
sists of EEG measurements from a patient with DT attending a
∼1h-long programming session of the DBS parameters. Dur-
ing the session, the patient is performing various arm tasks
while a clinician varies the stimulation. These tasks mostly
consisted of sustained postures with one arm stretched or
bended but also movement like nose tapping. Each session
was continuously recorded using the DSI-7 dry electrode EEG
headset from Wearable Sensing, containing seven electrodes
Pz (ref.), P3, C3, F3, F4, C4, and P4, according to the 10-
20 system, with a sample frequency of 300 Hz. The whole
session was also recorded with a video camera. The video
was uploaded to Captiv L-7000 Premier and manually anno-
tated with DBS parameter information and movement tasks.
By synchronizing the video and the EEG recordings, these
annotations were then transferred to the EEG data.

Pre-processing First, samples with five or more non-
changing (”dead”) channel values were removed. Non-
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movement samples were discarded, the remaining data was
split into trials based on time gaps in the data above 0.1s or
changes in movement or stimulation. Each trial was linearly
interpolated, notch filtered at 50 Hz to remove line noise, and
bandpass (BP) filtered in three different ways: i) full range:
5-90 Hz, ii) theta: 4-8 Hz, and iii) beta: 13-30 Hz.

Training As a baseline model, the CNN-based EEGNet-8,2
by Lawhern et al. (2018) was chosen based on its design that
enables learning of both spectral and spatial features in EEG
recordings that then can be used to classify the data.

The EEGNet was trained on continuous 1s segments of
EEG. The stimulation parameters were constant within each
segment but varied between segments. In a cross-validation
fashion, the model was trained for and averaged over 60 folds.
For each fold, a validation set containing 16 segments of each
class was randomly chosen. Then, for 600 epochs, a train-
ing set of 64 segments from each class, not overlapping with
any of the validation data, was randomly chosen, and random
Gaussian noise with amplitude of 0.01σ was added to each
EEG channel in each segment to make the net more robust.
The epoch where the validation loss was at its lowest was
chosen from each fold when averaging.

Explanability To examine whether the net was able to learn
spectral information, a filtering technique was proposed. By
filtering the validation data with various cutoff frequencies and
examining its effect on the classification loss and accuracy,
we were able to demonstrate which specific frequency bands
the model uses. To validate the results we also re-trained the
model on the narrow band passed data (in the theta and beta
bands) and compared the model’s performance.

Results

The net was trained separately on the three different (BP) fil-
terings of the raw data and the average validation accuracies
were i) 93.8%, ii) 88.7%, and iii) 92.4%. Figure 1 shows the
accuracy and loss from a net trained on i) when sliding a BP
filter of width 4 Hz across the full frequency range of the valida-
tion data, and lowpass filtering (LP) the same data at different
cutoffs. In a similar fashion Figure 2 and Figure 3 show the
results from when a BP filter of width 4 Hz was run across all
frequencies, for ii) and iii), respectively.

Discussion

Our results suggest that when trained on the full frequency
range (5-90 Hz), the net uses mostly features in the theta band
(4-8 Hz) to classify arm activity (Fig 1). Since tremors in DT
patients lie in this range we hypothesize that the net mainly
uses features related to the arm tremors (Deuschl et al.,
1998) and not the voluntary movement. A peak around 20-30
Hz (beta) is also visible, indicating that voluntary movement-
related features are included to improve the classification.
Some information also seems to be located around 65 Hz,
which is half the stimulation frequency. Oscillations at this
frequency have been related to cortical non-movement DBS

Figure 1: For the net trained on the full range (5-90 Hz), the
plots show the average validation loss and accuracy when fil-
tering the validation data with a 4 Hz-wide BP filter (top) and
a LP filter with increasing cutoff (bottom).

Figure 2: For the net trained on the frequencies in the theta
range (4-8 Hz), the plot shows the average validation loss and
accuracy when filtering the validation data with a BP filter of
width 4 Hz.

response in patients with dyskinesia by (Swann et al., 2016).
As the average classification accuracies and Figures 2 and

3 show, good performance is also reached when using only
the theta or the beta band data to train the net. This suggests
that both bands contain relevant information for the discrimi-
nation but, when exposed to the full range the network learns
more from the theta band (Fig 1). This is presumably due to
the tremor, but, higher power in this band might also be the
reason hence more experimenting is needed.
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Figure 3: For the net trained on the frequencies in the beta
range (13-30 Hz), the plot shows the average validation loss
and accuracy when filtering the validation data with a BP filter
of width 4 Hz.
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