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Abstract: 

Digital biomarkers based on accurate tracking of motor 
behaviour can provide a cost-effective, objective, and 
robust measure for Parkinson’s Disease progression, 
changes in care needs, and the effect of interventions. 
Markerless motion capture technology offers a 
promising approach for running it in the home. This 
technology uses depth sensors to capture movement 
unobtrusively and generate objective and quantifiable 
movement features. Here we present a 4-month long 
case study during which the patient visits our lab every 
month to perform mobility tasks and daily living tasks. 
Our data suggest accurate tracking of symptom 
fluctuations during both task types. This is a promising 
proof-of-concept towards passive tracking in-the-home 
of Parkinsonian symptom fluctuations.  
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Background 

Parkinson's disease (PD) is a neurodegenerative 
disorder that is characterised by a progressive 
deterioration of motor function, including fluctuations in 
symptoms such as tremors, bradykinesia, and rigidity. 
While medications such as Levodopa can alleviate the 
symptoms of PD, motor fluctuations can occur as the 
medication wears off (Parkinson Study Group, 2004), 
particularly in patients with longer disease duration 
(Shragg & Quinn, 2000). However, there is currently no 
accurate method for continuous monitoring of motor 
symptoms. The standard clinical measure for 
longitudinal tracking of motor symptoms is the motor 
examination section of the Unified Parkinson’s Disease 
Rating Scale (UPDRS), which is completed by trained 

clinicians. However, the infrequency of UPDRS 
assessments means that motor fluctuations may not be 
detected promptly. Moreover, less frequent motor 
symptoms such as freezing of gait may not manifest 
during UPDRS assessments performed intermittently in 
a clinic setting. 

Previous studies have used wearable devices to 
measure PD motor fluctuations in home settings 
(Ramesh & Bilal, 2022; Hassayeni et al., 2021). 
However, this approach is complicated by the need for 
multiple wearable sensors for optimal measurement 
and compliance. Therefore, we employed a full-body 
tracking markerless motion capture (MMC) approach, 
which allows for continuous and unobtrusive 
measurement which is highly suitable for use in real-
world settings.  

Here we present a case study of a single participant 
with PD over four monthly visits to the ‘Living Lab’, a lab 
space with a studio flat layout, equipped with smart 
sensors. We focus on the analysis of two primary 
features obtained from 3D joint position data during 
standard physical performance tasks versus during 
daily life activities. These features include shoulder 
slope and ankle distances, taken frame-by-frame during 
each task. Our objective was to investigate the 
influence of symptom fluctuations on motor 
performance during ADL tasks by analysing the 
features and their variations.  

198
This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



 

Figure 1: UPDRS motor examination scores of the 
participant during on and off-medication states over 4 
monthly visits. 

Methods 

Data Collection A patient with PD attended four 
monthly visits to the living lab. On each visit, they 
arrived shortly before medication intake. After the 
medication started to take effect and the participant felt 
On, the UPDRS was administered by a certified 
clinician. They then performed the Short Physical 
Performance Battery (SPPB: https://sppbguide.com/) 
which includes standard mobility tasks such as walking 
4 metres and rising from a chair, followed by the ADL 
tasks: making tea and toasts. The participant remained 
in the lab while the medication wore off and repeated 
the tasks before their next medication intake. During the 
entire session, we recorded their body movements with 
six Azure Kinect DK depth cameras and used 
Microsoft’s SDK to extract full skeleton data from each 
frame at 30Hz. 

Data Analysis After defining one of the cameras as the 
‘main’, data from the other cameras were aligned to it in 
time and space using temporal resampling and 
transformation matrices. We then merged the 
information from the different cameras using the level of 
confidence for each camera in each time frame towards 
the weighted average. Finally, in a hypothesis-driven 
approach, we computed different features which an 
occupational therapist would look at while observing a 
patient during a clinical assessment. Here we focus on 
two features: 1) Spine curve area– we quantified it by 
computing the area between the curvature of the spine 
and the direct line from the pelvis to the neck, 
normalised by the length of this line. 2) The front-back 
distance between the ankles, during walking, its peaks 
are the step length, but here we look not only at the 
peaks but the full distribution of those distances.  

Results 

In each of the visits, the participant indeed showed a 
fluctuation in their symptoms throughout their 
medication cycle, as demonstrated by their UPDRS 
scores taken during the On and Off medication states 
(Fig. 1). The fourth visit was shortly after their 
medication dosage was increased at clinical review, 
which might explain the better UPDRS scores and lower 
fluctuations.  

In all visits, during the 4-metre walk task, the spine 
curve area was higher and more variable while the 
participant was off medication, suggesting they had a 
marginally increased stooped posture and oscillated 
more while walking off medication. A similar trend was 
evident during the ADL task of making tea (Fig. 2). 

Similarly, in all visits the ankle distance was longer 
and more variable while the participant was off 
medication, suggesting longer and more variable steps 
(Fig. 3). Here on the other hand, during the tea task we 
see the opposite pattern of smaller distances off 
medication, with the smallest being in visit 3 when the 
symptoms were most severe according to the UPDRS 
scores. This suggests that opposite patterns of this 
feature occurred during instructed walks compared to 
spontaneous walks as part of ADL performance.    

 

 
 

Figure 2: Spine curve area during 4-metre walk (top) 
and tea task (bottom) for on and off medication states 
over 4 monthly visits. 
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Figure 3: Ankle distance during 4-metre walk (top) 
and tea task (bottom) for on and off medication states 
over 4 monthly visits. 

 

Discussion 

In this study, we recorded movement and posture with 
an MMC setup and extracted features that can capture 
symptom fluctuation. Our preliminary analysis has 
shown that it is feasible to detect changes in movement 
and posture attributable to motor fluctuations using our 
setup. Our findings also demonstrate that fluctuations in 
motor symptoms and consequently impairments in 
motor performance can be detected by the identified 
features during mobility tasks and daily activities in 
individuals with PD, but the interpretation of the same 
features might be different in different tasks. Studies 
with larger sample sizes are required for further 
evaluation and clinical validation towards the 
development of digital biomarkers for symptom 
fluctuations.  

Acknowledgments 

The work was supported by the UK Dementia Research 
Institute, Care Research & Technology Centre. S.H. is 
supported by the Edmond and Lily Safra Fellowship. 
J.J.J. is supported by the Imperial Health Charity and 
NIHR Imperial Biomedical Research Centre.  

 

References  

Hssayeni, M. D., Jimenez-Shahed, J., Burack, M. A., & 
Ghoraani, B. (2021). Dyskinesia estimation during 
activities of daily living using wearable motion 
sensors and deep recurrent networks. Scientific 
reports, 11(1), 7865. 

Parkinson Study Group. (2004). Levodopa and the 
progression of Parkinson's disease. New England 
Journal of Medicine, 351(24), 2498-2508. 

Ramesh, V., & Bilal, E. (2022). Detecting motor 
symptom fluctuations in Parkinson’s disease with 
generative adversarial networks. NPJ digital 
medicine, 5(1), 138. 

Schrag, A., & Quinn, N. (2000). Dyskinesias and motor 
fluctuations in Parkinson's disease: A community-
based study, Brain, 123 (11), 2297–2305. 

 

200


