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Abstract

While decomposition techniques in mathematical programming are usually designed

for numerical efficiency, coordination problems within enterprise-wide optimization are

often limited by organizational rather than numerical considerations. We propose a

“data-driven” coordination framework which manages to recover the same optimum as

the equivalent centralized formulation while allowing coordinating agents to retain

autonomy, privacy, and flexibility over their own objectives, constraints, and variables.

This approach updates the coordinated, or shared, variables based on derivative-free

optimization (DFO) using only coordinated variables to agent-level optimal subproblem

evaluation “data.” We compare the performance of our framework using different

DFO solvers (CUATRO, Py-BOBYQA, DIRECT-L, GPyOpt) against conventional distrib-

uted optimization (ADMM) on three case studies: collaborative learning, facility loca-

tion, and multiobjective blending. We show that in low-dimensional and nonconvex

subproblems, the exploration-exploitation trade-offs of DFO solvers can be leveraged

to converge faster and to a better solution than in distributed optimization.
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1 | INTRODUCTION

Companies within the process industries rely on mathematical optimiza-

tion for their operations to remain competitive in an environment of

increasingly stringent safety, environmental, and economic require-

ments.1 This gives rise to the field of enterprise-wide optimization

(EWO) with the ultimate goal to coordinate all decision-making within a

company.2,3 EWO involves the integration of units across (1) all hierar-

chical levels of decision-making (from design, planning, scheduling, to

control), and (2) all geographically distributed (plants, warehouses, etc.)

or functional (sourcing, manufacturing, distribution) units. Convention-

ally, these separate entities are solved sequentially via one-way

information flow.4 For instance, higher-level planning might determine

the setpoints of lower-level scheduling without explicitly accounting for

lower-level constraints; or geographically separated plants might adjust

their operations to accommodate the needs of other bottleneck plants

in the value chain. These heuristics in coordinated decision-making,

while sometimes necessary for practicality and tractability, do not guar-

antee optimality of the integrated problem. However, integrated

model-based optimization traditionally requires the solution of a larger-

scale centralized optimization model, which quickly becomes computa-

tionally intractable in the number of decision variables and constraints.4

A centralized formulation could also in practice be obviated by organiza-

tional complexity (antitrust, privacy, and more).
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One way to alleviate the computational burden of model-based

integration is to relax constraints, or replace detailed formulations with

surrogate models that are easier to handle by numerical solvers.5–7 Usu-

ally, this would come at the expense of a degradation in solution quality.

However, since EWO aims to coordinate previously decoupled

decision-making, the resulting optimization formulations present mathe-

matical structures that can be exploited. The resulting problems com-

prise few complicating variables and constraints that lend themselves

well to decomposition and distributed optimization schemes.8 Decom-

position techniques consist of the iterative solution of a relaxed upper-

and reduced-order lower-level problem which can theoretically achieve

the same solution quality as the original formulation, while saving com-

putational time. Bilevel9,10 and Benders decomposition11–13 are among

the most prominent techniques for addressing complicating variables,

and typically decompose problems over time, and stochastic realizations

of uncertainty respectively. Lagrangean decomposition is particularly

useful for tackling complicating constraints, as well as complicating vari-

ables by reformulation. As such, it is also useful for decomposing prob-

lems by time, space, or products.14–17

Distributed optimization builds on the concepts of dual decomposi-

tion techniques (such as Lagrangean decomposition). It has many appli-

cations in problems that are separated by complicating constraints, such

as the integration of geographically dispersed warehouses or plants

along a supply chain.18 The Alternating Direction Method of Multipliers

(ADMM) has received special attention as a powerful tool enabling con-

siderable computational savings using minimal information exchange,

especially in convex optimization.19 ADMM repeatedly iterates

between the solution of private, localized, lower-level subproblems, and

an upper-level problem whose aim is to coordinate the solutions of the

private subproblems. The possibility for solving the subproblems in par-

allel gives rise to significant potential computational savings. Despite

often being applied in practice, ADMM loses its convergence guaran-

tees on nonconvex problems.20 Another drawback of ADMM is that

the method practically only leads to computational savings compared to

the centralized solution under special conditions, namely when the prob-

lem is decomposed into numerous, convex subproblems.19

Similarly to how the convergence of first-order gradient descent

solvers can be improved using acceleration or momentum, there are

several ways to speed up the convergence of ADMM using similar

schemes.21 Houska et al.22 have proposed ALADIN, an algorithm to

address ADMM's shortcomings: it speeds up—and includes theoretical

conditions for—global convergence to local minimizers on nonconvex

problems. ALADIN iterates between the parallel optimization of sub-

problems and sequential quadratic programming (SQP) steps for the

coordination around the local subproblem solutions.

While distributed optimization seems promising from a computa-

tional perspective, much of the literature discussing model-based

integration in EWO with relevant solution techniques fails to

consider communication and business considerations that could hin-

der their practical applicability.23–25 Distributed optimization is often

approached using a top-down coordination approach: Starting from a

centralized model, a decomposition is applied that is expected to lead

to computational savings. This presupposes that previously decoupled

decision-makers (1) are willing to share their local models; (2) accept

the risk of foregoing a certain degree of autonomy, flexibility, and

Nash equilibria for the pursuit of the “social optimum” of the central-

ized model; and (3) even have access to known, differentiable expres-

sions as part of their optimization model. Due to a significant increase

in computational power over the past few decades, software and

organizational rather than numerical considerations might become the

bottleneck in the integration of computational decision-making.26 In

fact, current decision-making architectures were often established

within a legal and organizational framework when operations were

(and often still are) guided by heuristics rather than numerical optimi-

zation. As such, the considered problem is rendered into a multiagent

coordination problem where each agent might represent a separate

legal entity with its own autonomy, agenda, technical constraints, and

organizational considerations.27,28

The organizational context matters when choosing the best coordi-

nation scheme. When all agents are willing to collaborate and share dif-

ferentiable model expressions, powerful distributed optimization

techniques can be leveraged for optimal numerical efficiency.29 When

coordinating (not necessarily collaborating) agents only have access to

black-box simulation tools for decision-making, “data-driven” or “black-
box” optimization tools need to be adapted for the coordination. There

are many reviews on data-driven or derivative-free optimization algo-

rithms.30,31 Some state-of-the-art methods have also been bench-

marked on typical process systems engineering (PSE) applications in

Reference 32, and have been introduced to solve multilevel problems

in References 33–35. van de Berg et al.36 show that derivative-free

optimization can be used for the data-driven coordination of black-box

subproblems in multiobjective problems arising in PSE.

In this work, we build upon van de Berg et al.36 to investigate

whether derivative-free optimization (DFO) can be used as a viable

alternative to distributed optimization solvers in the following coordina-

tion problems: each agent is willing to collaborate (i.e., sacrifice subop-

timality in their own objective for a “greater good”) and has their own

decision-making model, which does not have to be white-box—it could

be the black-box result of a third-party, proprietary simulation software.

In the context of EWO, this problem might arise when plants along the

same value chain need to coordinate on material streams given that

each plant has a separate objective that they optimize with the help of

third-party software. In this case, the model is not readily exploitable

for gradient information, such that solvers like ALADIN cannot be used

as it requires exact first-order gradient information of the subproblems

for its SQP step. The question arises if data-driven optimization

approaches perform best for these kinds of scenarios.

While the performance of different distributed optimization algo-

rithms have been compared with each other and with a centralized

solution,37 we thoroughly investigate under which conditions data-

driven optimization outperforms typical distributed optimization

solvers such as ADMM. As discussed in van de Berg et al.,36 any

(potentially imperfect) gradient information becomes increasingly

valuable in higher-dimensional decision spaces. Since ADMM's upper-

level coordination step involves subgradient information, we only

expect DFO to be competitive under specific conditions, that is, when
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the number of complicating variables is few relative to the number of

private decision variables. Our aim is not to outperform centralized

solution methods. In the methods we compare, computational effi-

ciency is sacrificed for agent privacy, autonomy, and flexibility.

This article is organized as follows: In Section 2, we illustrate our

data-driven methodology along with conventional ADMM. We also

explain our choice of DFO algorithms (CUATRO, Py-BOBYQA,

DIRECT-L, and GPyOpt) for our data-driven coordination problems. In

Section 3, we then introduce a motivating mathematical test function

and three case studies. In Section 4, we then present and discuss the

convergence of all algorithms. We also investigate how algorithm con-

vergence changes with the number of complicating variables, the

number of coordinating agents, and the topology of the subproblem

solution space.

2 | METHODOLOGY

2.1 | Problem statement

We are interested in solving the equivalent of the following central-

ized, integrated coordination problem:

min
x � 

XN
i¼1

fi xi,p, z
� �

s:t: gi xi,p, z
� �

≤0, i¼1…N

ð1Þ

where x��ℝnx refers to the decision variable vector within feasi-

bility set . As such, x includes not only the “local,” private decision

variables xi,p �i,p�ℝnxi of all N agents, but also the “global,” shared

variables z within the feasibility set Z�ℝnz . As such, the complete

decision vector comprises the following elements: x¼ x1,p, …, xN,p, z½ �.
The optimization is also subject to N local agent con-

straints gi :ℝ
nxi �ℝnz!ℝngi .

This generic problem formulation also implicitly allows for the inclu-

sion of equality constraints in Equation (1) through a reduction in the

degrees of freedom of the decision variables, or through an equivalent

reformulation into two inequalities. Additionally, Equation (1) also allows

for the incorporation of global, or shared, constraints and objectives. We

would call any constraint gglobal “shared” if it only depends on the

shared variables z. Similarly, shared objective terms might either mani-

fest as a separate term fglobal in a single agent objective, or be incorpo-

rated into the objectives of any M≤N agents as fglobal zð Þ
M .

2.2 | Problem reformulation

Problem (1) can be reformulated into:

min
z � Z

min
xi,p ,i¼1,…,N

XN
i¼1

fi xi,p, z
� �

s:t: gi xi,p, z
� �

≤0, i¼1…N

ð2Þ

After fixing z, the problem becomes block separable, which makes the

problem amenable to decomposition and distributed optimization.

This becomes evident when rewriting Equation (2) as its equivalent

constrained (bilevel) optimization problem in (3). The coordination

step involves an update in the shared variables z. At each iteration,

the subproblems are solved in private to find the optimal objective

Fi zð Þ and set of private variables x�i,p corresponding to a set of shared

variables z. Agents can maintain autonomy and flexibility by deciding

on their own objective and constraint functions which they do not

need to share with other agents. The only information that agents

share with a third-party coordinator is the optimal set of private vari-

ables and local copy of shared variables x�i,p and z�i (2.3) or the optimal

objective f� �ð Þ (2.4) corresponding to a suggested set of shared vari-

ables z. For simplicity's sake, we assume that the subproblems are

solved to global optimality. This is a necessary condition to find the

globally optimal proposed set of shared variables in the upper level. In

practice however, few industrial problems are provably solved to

global optimality and we could still find a “good” z in both frameworks

if this condition is not met. The bottleneck in achieving global optimal-

ity in our considered case studies is usually the coordination step

rather than violation of this assumption. The global optimality conver-

gence considerations in ADMM and the suggested framework are

addressed in further detail in Sections 2.3 and 2.4. On top of this, we

do not assume that the lower-level problems have to be solved by

exploiting known expressions. In fact, the subproblem optimization

could involve black-box queries such as proprietary simulations.

min
z � Z

F zð Þ

s:t: F zð Þ¼
XN
i

Fi zð Þ, where 8i� 1, …, Nf g :

Fi zð Þ¼ min
xi,p�i

f i xi,p, z
� �

s:t: gi xi,p, z
� �

≤0

ð3Þ

2.3 | ADMM by consensus

The conventional method that our proposed approach is benchmarked

against is ADMM in its consensus form, which is presented in Algorithm

1 and in more detail in Appendix (D.4). After initialization (step 1),

ADMM iterates over steps 2–7 until the evaluation budget is exhausted:

This involves the solution of subproblems in private and parallel (steps

3–5) to get the local copy of shared variables zi, and an update in the

shared variables z and scaled dual variables ui based on zi (step 6).

In step 4, each agent optimizes their copy of shared/complicating

variables zi that minimizes their private objective function while

penalizing any deviation from the suggested value of the complicating

variables zk :

xkþ1i,p ,zkþ1i  Fi z
k

� �
¼ argmin :

xi,p ,zi
f i xi,p, zi
� �þ ρ

2
zi�zkþuki
�� ��2

2
s:t: gi xi,p, zi

� �
≤0

ð4Þ

3 of 24 van de BERG ET AL.
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where �k k2 refers to the Frobenius norm, and ui to the scaled dual

variables of agent i. ρ
2 zi�zkþuki
�� ��2

2 is known as the proximal or pen-

alty term and is useful for stabilizing convergence in the shared vari-

ables z. It also makes the formulation robust against local constraints:

when there is no feasible set of xi,p that satisfy all constraints for a

given zk , the solution converges to the nearest feasible zi incurring a

penalization in the objective. After all subproblems are solved, the set

of suggested complicating variables is then updated to zkþ1 in the

coordination step (step 6) by averaging the set of optimal complicating

variables resulting from the agent subproblems zki . While the update

in the shared variables zkþ1 aims to ensure asymptotic primal feasibil-

ity, the update in the dual variables ukþ1i aims to ensure asymptotic

dual feasibility. Each agent's dual variables are updated to ukþ1i based

on the difference between uki and the local copy of shared variables

zkþ1i , and could be interpreted as an integral error term often encoun-

tered in control.

A common drawback of ADMM is that it can take many iterations

to converge to a high-accuracy solution and that it is in theory only

proven to converge to the global optimum when the original formula-

tion (and thus the subproblems) is convex.21,38,39 This begs the ques-

tion if the coordination step in z could be improved to speed up the

convergence or find a better solution quality for a given evaluation

budget.

2.4 | Data-driven coordination

Problem (3) views the coordination formulation as a bilevel optimiza-

tion instance. Derivative-free optimization (DFO) has already been

used to solve for the upper-level variables in multilevel problems,33–35

and as such presents a promising alternative to ADMM's subgradient

update step. The difference between the data-driven coordination

framework and ADMM is illustrated in Figure 1 and the data-driven

coordination framework is illustrated in more detail in Algorithm 2:

After initialization (step 1), our framework iterates over steps 2–11

until the evaluation budget is exhausted: In step 3, the upper level

aims to find the set of complicating variables that minimize the objec-

tive function subject to the optimal solution in parallel of the agent-

level subproblems in the private variables (steps 4–9).

Step 3 uses a DFO algorithm to update the shared variables z

with the aim to minimize the “black-box” upper-level objective F zð Þ in
Equation (3).

min
z � Z

F zð Þ ð5Þ

where the decision variables z are subject to box-bound constraints

Z. Any box-constrained derivative-free, black-box, data-driven, or

“zeroth-order” optimization algorithm can be used for the solution of

the upper level.30–32 Since the “black-box evaluations” are the result

of optimizations, these evaluations are considered expensive. The

number of evaluations nnext that are sampled at each iteration in step

3 depends on the exploitation-exploration trade-off as well as sam-

pling strategy of the DFO method used.

F zð Þ is obtained in steps 4–9 in a similar manner to Equation (3).

Fi zð Þ is treated as the result of private black-box simulations and F zð Þ is
equivalent to the sum of all optimal subproblem solutions in Equation (4),

with the exception that the objective omits any dual variables:

F zð Þ¼
XN
i

Fi zð Þ where Fi zð Þ¼ min :
xi,p ,zi

f i xi,p, zi
� �

þρ

2
zi�zk
�� ��2

2
s:t: gi xi,p, zi

� �
≤ 0 ð6Þ

The scaled dual is omitted as it only enhances convergence within

the rigorous stability scheme of ADMM,40 and can even degrade

ALGORITHM 1 Alternating Direction Method of Multipliers (ADMM) by consensus

van de BERG ET AL. 4 of 24
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convergence performance. The reason we still need to introduce the

proximal term and the local copies zi to be used instead of zk in

fi xi,p , zi
� �

and gi xi,p, zi
� �

is the same as for ADMM: gi xi,p, z
k

� �
might

not be feasible for the current iteration which would lead to a failure

of the subproblem. As such, the go-to Formulation we use in our pro-

posed methodology is (6). However, if we know that our initial guess

of z is feasible, we can use constraint-handling DFO solvers that can

use the binary subproblem feasibility information to explore the solu-

tion space. This is discussed in more detail in Section 2.4.2.

When the subproblems are solved to global optimality, the whole

optimization problem can be solved (heuristically or rigorously) to

global optimality depending on the function evaluation budget and

the convergence certificate of the DFO solver. Among the proposed

DFO solvers, only DIRECT-L has this asymptotic global convergence

property when no assumptions on the subproblem convexity is made.

Since convergence is limited by the number of expensive subproblem

calls, we do not include overly exploratory methods, such as particle

swarm methods. In the next section, we explore any analogies to

“data-driven” ADMM and ALADIN when quadratic surrogates

(CUATRO) are used for the DFO step. Additionally, we introduce the

other DFO algorithms used, whose choice is informed by van de Berg

et al.32: Py-BOBYQA as the trust region model-based method,

DIRECT-L as the direct method, and GPyOpt for Bayesian Optimiza-

tion. Figure 2 shows our selection of data-driven as well as distributed

optimization algorithms, and their mutual relations.

2.4.1 | Data-driven distributed optimization

DFO algorithms can be classified into direct and model-based

methods. Direct methods optimize an expression by directly handling

function evaluations, while model-based methods rely on the interme-

diate construction and optimization of surrogates.30 While Formula-

tion (6) is applicable for both direct and model-based DFO solvers,

F IGURE 1 We can solve an equivalent centralized formulation either by ADMM or data-driven coordination (+). In either case, a coordinator
(□ ) iteratively sends an updated proposed set of shared variables zk (#) to all coordinating agents. The coordinating agents (Δ) then optimize their
private objective according to (*) or (**) for ADMM and data-driven coordination respectively. The subproblems differ in whether they include the

scaled dual variables ukþ1i —updated in the preceding step for ADMM—in their construction of the proximal term. Additionally, in ADMM, the
subproblems return the optimal local copies of the proposed shared variables zkþ1i , whereas our framework returns the optimal subproblem
objective evaluations ykþ1i ("). In both frameworks, the penalty parameter ρ determines the extent to which the deviation between the suggested
zk and optimal set of private variables zkþ1i is penalized. In the last step of the iteration, ADMM updates the proposed set of shared variables zkþ1

by averaging its local copies zkþ1i , while our data-driven framework updates zkþ1 using derivative-free optimization (DFO) and shared variable zkþ1

to optimal evaluation ykþ1i input–output data. In this case, we only show two coordinating agents, but this scheme can be generalized to any
number of coordinating agents.

5 of 24 van de BERG ET AL.
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model-based DFO methods can address Problem (5) by introducing

surrogates bF zð Þ in two different ways: One option would be to fit a

single surrogate over the sum of the subproblem evaluations, that is,

the optimal value of the subproblem objectives for a given proposed

set of shared variables z.

min
z � Z

bF zð Þ where bF zð Þ≈
XN
i

Fi zð Þ ð7Þ

A second alternative would be to allow for separate surrogates to be

fitted for each subproblem before the sum of surrogates is optimized

in the upper level.

min
z � Z

XN
i

bFi zð Þ where bFi zð Þ≈ Fi zð Þ ð8Þ

Similar to van de Berg et al.,36 we use convex quadratic surrogates

(bF zð Þ¼ z> Azþb> zþc, A�0�ℝnz�nz ,b�ℝnz�1,c�ℝ) within the

CUATRO framework. In this case, the approach used in Equation (7) is

similar to,41 and could be loosely referred to as “Data-driven

ADMM.” The approach in (8) could then be viewed as “Data-driven

ALADIN,” with a crucial difference: ALADIN's quadratic surrogate

coefficients are given by the gradient and Hessian (obtained via

automatic differentiation) of a second-order Taylor expansion

around the local subproblem solutions, while in our data-driven

counterpart, the surrogates are obtained via quadratic regression

based on the subproblem evaluations. Whenever possible, we

should leverage automatic differentiation to obtain gradient infor-

mation with respect to the shared variables as this is expected to

yield better convergence with a higher accuracy especially in

higher dimensions. In this work however, we cannot use ALADIN

or automatic differentiation as this makes the comparison to the

subproblem-agnostic ADMM and proposed approach unfair since

we are assuming that the subproblem expressions are not neces-

sarily known.

2.4.2 | CUATRO

We modified CUATRO—a quadratic trust-region surrogate-based

DFO algorithm—to be used within the “data-driven ADMM”
(ADMM_CUATRO) and “data-driven ALADIN” (ALADIN_CUATRO)

framework. The reader is referred to our previous work van de Berg

et al.32 for a detailed description of the algorithm. CUATRO is chosen

as our quadratic surrogate-based DFO algorithm because it leverages

(1) semidefinite programming, (2) a trust region framework, and

(3) explicit constraint handling. As such, the CUATRO framework can

be used flexibly.

ALGORITHM 2 Data-driven coordination framework

van de BERG ET AL. 6 of 24
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Explicit constraint handling

When CUATRO is used with explicit constraint handling, the local

copies of the shared variables zi in the objective evaluation and con-

straints from (6) are replaced by the exact shared variables z.

Fi zð Þ¼ min :
xi,p

fi xi,p, z
� �

s:t: gi xi,p, z
� �

≤0 ð9Þ

where Fi zð Þ is a tuple consisting of the objective and binary feasibility

evaluation: Fi :ℝnz!ℝ� 0, 1f g. 1 denotes if the evaluation for z is

feasible. This makes the subproblem less robust to local constraints,

but by returning solver status as feasibility evaluations on top of

objective evaluations, we can map the feasibility space in CUATRO by

quadratic discrimination and hence concentrate the search on the

expected feasible space. Quadratic discrimination—closely related to

linear discrimination but using quadratic discriminants—tries to find

the “hyperellipsoid” in the input space that best separates samples

belonging to different classes.42 As such, quadratic discrimination is

used to classify the binary feasibility evaluations arising from the suc-

cess or failure of subproblems. ADMM_CUATRO and ALADIN_CUA-

TRO are used with explicit constraint handling if a feasible starting

point can be found.

In summary, ADMM_CUATRO and ALADIN_CUATRO leverage

Formulations (7) and (8) in their surrogate construction respectively.

In both cases, the subproblems are formulated using Formulation (6)

unless a feasible initial guess is known and (9) is used. While we

benchmark data-driven ADMM and ALADIN against conventional

ADMM, we also benchmark them against other DFO algorithms for

the upper-level coordination instead of CUATRO. All other DFO algo-

rithms (Py-BOBYQA, GPyOpt, DIRECT-L) are presented in the next

section and use the general data-driven coordination framework (6)

without explicit constraint handling. The choice between (7) and (8) is

not relevant for DIRECT-L as it is not a model-based method, and

Py-BOBYQA and GPyOpt can only be used in the single-surrogate

data-driven framework (7).

2.4.3 | Py-BOBYQA

On top of CUATRO, we include another trust-region based method. van

de Berg et al.32 show that Py-BOBYQA43,44 can be competitive with

state-of-the-art DFO Python implementations especially in higher-

dimensional deterministic case studies. Py-BOBYQA is a Python imple-

mentation of Powell's BOBYQA. It iteratively constructs a linear-quadratic

regression-interpolation model for the objective, and determines the next

step by minimizing said model within a trust-region framework. The user

can manipulate how many evaluations are used for each surrogate, deter-

mining if the surrogates used resemble more linear or quadratic surro-

gates. We use Py-BOBYQA with its standard options but enable the

multiple restarts heuristic to avoid getting stuck in local minima.

F IGURE 2 Classification of
considered algorithms with
associated problem formulations
in parentheses: We can decide to
solve our equivalent centralized
formulation either via distributed
optimization, namely ADMM, or
via our proposed data-driven
coordination framework. Within

our framework, we can choose
any derivative-free optimization
(DFO) algorithm. We choose
DIRECT-L as a direct DFO
algorithm. Among model-based
DFO algorithms, we consider
Py-BOBYQA and CUATRO as
quadratic trust region frameworks
and GPyOpt as Bayesian
Optimization. We also distinguish
between ADMM_CUATRO and
ALADIN_CUATRO in the way
quadratic surrogates are
formulated. Each CUATRO
version also has the choice of
explicit constraint satisfaction
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2.4.4 | GPyOpt

Apart from exploitative, trust-region model-based DFO solvers, we

also include a Bayesian optimization (BO) implementation as a different

type of model-based DFO. BO is generally regarded as the go-to frame-

work for black-box optimization within chemical engineering45–50 due

to its data efficiency and ability to navigate the exploration-exploitation

trade-off. As such, BO manages to make significant progress in few

evaluations. However, it is known to scale poorly with the number of

dimensions and evaluation budget.32 Informed by Cartis et al.,44 we are

using GPyOpt as our implementation as we prioritize convergence

within the low-accuracy regime given our tight budget. GPyOpt51 is

a Python open-source library of BO and builds on GPy, a Python

framework for Gaussian process modeling. We use GPyOpt with its

default hyperparameters. The interested reader is referred to52 for

more information on Gaussian Processes and Bayesian Optimization.

2.4.5 | DIRECT-L

Finally, we also include a “direct” (model-free) DFO method. Informed by

van de Berg et al.,32 we choose DIRECT-L as a competitive direct solver

which displays consistency in convergence and a good exploitation-

exploration trade-off. This work's randomized DIRECT-L implementation

is taken from the NLopt nonlinear optimization package library.53 This

implementation is based on the 1993 DIviding RECTangles algorithm for

global optimization, originally written in FORTRAN.54 DIRECT is a

Lipschitzian, deterministic search algorithm, based on systematic partition-

ing of the search space into smaller hyperrectangles. DIRECT-L can in the-

ory find the global optimum to DFO problems when given

infinite function evaluations.55 In our examples, DIRECT-L often finds

global optimal solutions with a limited number of function evaluations,

even if this cannot be guaranteed. Thus, DIRECT-L is also supposed to

converge to the global optimum in our suggested framework given

enough evaluations. Gablonsky and Kelley56 then made the algorithm

biased toward local search for problems that only have a few local minima.

Johnson's NLopt's implementation uses a randomized version of the

locally biased DIRECT, which involves randomness in deciding on the

dimension to partition along next when function evaluations are close.

2.5 | Algorithms and software implementation

We use Pyomo57,58 as Python-based optimization software with the

numerical solvers Ipopt59 or Gurobi60 to optimize the continuous or

mixed-integer lower-level subproblems given by (4), (6), or (9). Information

from these problem instances are then extracted to be used in the upper-

level distributed optimization or DFO. We use readily available Python

packages for GPyOpt, Py-BOBYQA, and DIRECT-L, and an in-house

Python implementation of ADMM and CUATRO. The generalized frame-

work for our proposed framework and its comparison to ADMM is found

in Figure 1, while Figure 2 illustrates how the DFO methods fit into our

framework. The code for the algorithms and benchmarking is available

under https://github.com/OptiMaL-PSE-Lab/Data-driven-coordination.

2.6 | Game-theoretical and other considerations

Coordination problems are interdisciplinary in nature, and are rooted

in a rich body of literature within the field of game theory.61,62 While

we are less interested in the game-theoretical underpinnings of these

problems, we need to state some assumptions that justify our pro-

posed method and investigated case studies. First, ADMM and our

proposed “data-driven coordination” techniques involve an upper-

level, centralized “coordination” step. This presumes the existence of

a coordinator agent or software that is acting in good faith, which

should be a reasonable assumption in EWO. We are also assuming

that all agents are honest-but-curious, that is, that no agent is trying

to trick the coordinator or launch any adversarial “attacks,” which is

the scope of a whole subfield of literature.63

Finally, we want to acknowledge that coordination within busi-

ness settings is subject to many different kinds of other consider-

ations: While we investigate algorithms that share as little information

as possible, the coordinator-agent and indirectly agent–agent

exchange requires an involved legal framework and software infra-

strucutre.64 While ADMM and our proposed data-driven coordination

algorithms in principle allow for privacy-preservation, this would in

practice require a thorough investigation into differential privacy and

cryptography schemes. The interested reader is referred to Rodrí-

guez-Barroso et al.65 and66 for a thorough discussion.

3 | CASE STUDIES

Data-driven coordination is expected to shine in applications that are

low-dimensional and nonconvex. As such, we start with a motivating

example before presenting three EWO-specific examples. We use the

motivating example in Section 3.2 to provide an ideal use case for

data-driven coordination and illustrate how decomposition might

work in practice for distributed optimization and data-driven coordi-

nation. We then benchmark all solvers on this motivating example and

investigate the effect of starting points and the penalty parameter ρ

on convergence before comparing the algorithm solution times and

overhead of all methods. In the collaborative model training in

Section 3.3, we analyze the effect of increasing the number of agents

and shared variables. In the facility location problem in Section 3.4,

we show the effect of different organizational considerations and

increasing subproblem size on the convergence. Finally, in the multia-

gent coordination in Section 3.5, we analyze the effect of (non)con-

vexity and solution topology on the convergence. In Section 4, we

then summarize the case-study specific results.

3.1 | Convergence plots

For each application, we lay out the case study with any relevant

background before we present the numerical experiments and their

results. For each case study configuration, we show best function

evaluation vs. number of function evaluation and convergence to the

centralized solution optimum vs. number of function evaluation plots

van de BERG ET AL. 8 of 24
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for all algorithms. We use number of function or subproblem evalu-

ations interchangeably with iterations since in both frameworks,

each agent solves their subproblem as an optimization instance at

each iteration. This way we also normalize against the computa-

tional time required for the subproblem solutions. This type of

analysis hinges on the assumption that convergence relies only on

the number of shared variables and the topology of the best func-

tion evaluation to shared variable mapping rather than the size of

the subproblems. This will be discussed in greater detail in

Section 3.4.6.

Since the underlying subproblems are deterministic, we only need

to include a single realization of the deterministic methods ADMM

and Py-BOBYQA. While CUATRO randomly samples function evalua-

tions within the trust region, we also only include a single realization

of both CUATRO versions at the default seed. For DIRECT-L

and GPyOpt however, we include five realizations each on all case

studies. We plot their median evaluation with their min–max range

shaded. While the best function evaluation plots illustrate low-

accuracy convergence (especially relevant for a tight function eval-

uation budget), convergence plots are needed to compare high-

accuracy convergence.

3.2 | Motivating example

We first consider the following synthetic toy problem:

min :
x1,x2,x3

x1�7ð Þ2þ x1x3�3ð Þ2þ x2þ2ð Þ2þ x2x3�2ð Þ2

s:t: x1 ≥0, x1þx3¼5

�10≤ x1,x2,x3 ≤10
ð10Þ

We can see that after fixing x3, the problem becomes trivially separa-

ble into two subproblems. This means that this problem can be refor-

mulated into a one-dimensional DFO problem. As such, we introduce

z to take the place of x3, and introduce local copies of z, namely zI and

zII. Then, we penalize the deviation between z and its local copy using

a proximal term in the objective:

1ð Þ F1 zð Þ¼ min :
x1,zI

x1�7ð Þ2þ x1z
I�3

� �2þ ρ

2
zI� z
� �2

s:t: x1 ≥0, x1þ zI¼5, �10≤ x1,z
I ≤10

2ð Þ F2 zð Þ¼ min :
x2,zII

x2þ2ð Þ2þ x2z
II
2�2

� �2þ ρ

2
zII� z
� �2

s:t:�10≤ x2,z
II ≤10

ð11Þ

Py-BOBYQA, DIRECT-L, GPyOpt aim to find z that optimizes

F1 zð ÞþF2 zð Þ. ADMM uses the same subproblems with the exception

that the proximal term includes the addition of uI and uII following (4).

For a trivial problem like this, we can find a feasible starting point in

the upper-level variables for Problem (10). We use z¼4:5 as starting

point, for which we can find x1 and x2 in the subproblems that

satisfy all of the constraints. As such, we use ADMM_CUATRO and

ALADIN_CUATRO in its constrained form, meaning that we omit zI

and zII as decision variables, omit the proximal term in the subproblem

objective, replace zI and zII with z in the objective and constraints, and

return the solver status as a binary feasibility evaluation on top of the

objective as described in (9):

1ð Þ F1 zð Þ¼ min :
x1

x1�7ð Þ2þ x1z�3ð Þ2

s:t: x1 ≥ 0, x1þ z¼5, �10≤ x1,z≤10

2ð Þ F2 zð Þ¼ min :
x2

x2þ2ð Þ2þ x2z�2ð Þ2

s:t:�10≤ x2,z≤10

ð12Þ

Figure 3, which plots the upper-level objective evaluation of the bile-

vel formulation (3) as a function of the shared variable z, shows an

inflection point around z¼3:75 which can hinder the convergence of

ADMM and hence call for our proposed methods.

3.2.1 | Base case

The motivating example encompasses all of the properties that call for

data-driven coordination. The problem uses a penalty parameter ρ of

1000, is one-dimensional with a starting point at z¼4:5, and an inflec-

tion point around z¼3:5, which might hinder convergence of purely

exploitative methods. Figure 4C shows the solution space conver-

gence of CUATRO and ADMM. While ADMM fails to pass the inflec-

tion point, all data-driven methods apart from ADMM converge to a

near-optimal solution. The best function evaluation plot (Figure 4A)

shows that the DFO variants converge to a low-accuracy solution in

the following order from first to last: DIRECT-L, GPyOpt (Bayesian

Optimization), Py-BOBYQA, ALADIN_CUATRO, and ADMM_CUATRO.

In this one-dimensional case study, initial exploration in DIRECT-L

and GPyOpt encourages escaping the saddle point as quickly as possi-

ble. Figure 4B then shows that both CUATRO versions achieve a con-

vergence of around 10�8 and 10�10 for the ADMM and ALADIN

versions respectively, while the other DFO variants only achieve a

median convergence up to 10�3 or 10�5. This is due to the small

trust region radius of the two CUATRO versions in later iterations

favoring fine-tuning.

F IGURE 3 Upper-level objective of the motivating example as a
function of the shared variable

9 of 24 van de BERG ET AL.
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3.2.2 | Effect of the starting point

In general, the relative performance of distributed optimization

and data-driven coordination depends on the initial guess. We

repeated the analysis on the same motivating example using

the same penalty parameter, but starting from an initial guess of

z¼�5:0 instead.

In Figures 4A and 5A, we see that the low-accuracy con-

vergences of the DFO variants are very similar between the two

starting points. When starting from z¼�5:0, the more exploitative

solvers ADMM_CUATRO, ALADIN_CUATRO, and Py-BOBYQA

converge in around 10 fewer evaluations. This is expected since

the solution space with the initial guess seems to be better-

behaved to the left of the optimum (Figure 3). ADMM however

displays better performance and manages to converge to a low-

accuracy solution in 50 evaluations, since it does not get stuck at

an inflection point. While there might be a specific penalty

parameter tuning where ADMM could outperform most DFO

methods, the DFO methods can be said to more efficiently

explore the solution space than ADMM when the number of

shared variables is this small.

3.2.3 | Effect of the penalty parameter

A major drawback of ADMM is its sensitivity to the penalty parame-

ter ρ. In theory, convergence is guaranteed for convex problems no

matter the value of the penalty parameter. In practice however, if the

penalty parameter ρ is too high, the local copies of the shared vari-

ables zi are restricted in how much they can move away from the sug-

gested set z at each iteration leading to slow convergence. If the

penalty parameter ρ is too low and the local copies are allowed to

move too much, then the convergence might display oscillating

and—in nonconvex problems—even divergent behavior. These

phenomena can be observed in Figure 5B,C for ρ¼100,000 and

ρ¼10 respectively compared to the base penalty parameter of

ρ¼1,000. The difficulty of tuning ρ is exacerbated by the nonconvex

nature of the motivating example. ρ only manages to escape the local

(A) (B)

(C)

F IGURE 4 Convergence plots for the motivating example starting at z¼4:5 and ρ¼1000. For DIRECT‐L and GPyOpt, the median best
evaluation with shaded min–max range is given over 5 runs. (A) Best function evaluation versus number of function evaluations for all methods.
(B) Convergence versus number of function evaluations for all methods. (C) Evaluation versus shared variable solution space for ADMM,
ADMM_CUATRO, and ALADIN_CUATRO

van de BERG ET AL. 10 of 24
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minimum of the saddle point if the penalty parameter is low. How-

ever, this leads to “oscillation” around the solution. If ρ is too high,

ADMM might display too slow convergence even to the local minimum.

Given this difficulty, in the following case studies, we do not perform

extensive hyperparameter tuning on ρ. We start from a small ρ and

increase it until an acceptable solution is found.

The relative performance of the DFO methods generally dis-

plays less sensitivity to ρ. When comparing Figures 4A and 5B, we

see that the convergence of DFO algorithms is only slightly slowed

down on the motivating example. There is still a trade-off in the

choice of ρ: High penalty parameters might lead to ill-conditioned

solution spaces when some suggested shared variables are excessively

penalized and lead to different orders of magnitudes in the evalua-

tions; Low penalty parameters have another potential problem in both

ADMM and DFO solvers. When ρ is small, the penalty occurred by

having the local copies zi deviate from their proposed set z could be

penalized less than the gain in objective value achieved at the optimal

zi rather than z. This means that we can find slightly better evaluations

than in the centralized formulation. This could manifest as sudden

increases in the convergence plots as is the case for DIRECT-L in

Figure 4B after around 20 evaluations. In practice, this deviation

between the local copies and proposed set of shared variables should

be within accepted numerical tolerances for industrially relevant

applications.

3.2.4 | A note on computational time

The overhead of ADMM and DFO solvers in coordinating the solution

of the subproblems becomes negligible as the size of the subproblems

increases. Even on very cheap problems, the algorithm overhead of

most methods is insignificant compared to the total subproblem solu-

tion time: In the motivating example, we have two subproblems that

require on average 0.3583 s (in sequence) to be solved at each itera-

tion or “function evaluation.” Since we are using an evaluation budget

of 50 in the motivating example, the average total subproblem solu-

tion time is around 17.92 s. The total algorithm solution times and

overhead times of all methods are given in seconds on the motivating

(A) (B)

(C)

F IGURE 5 Best function evaluation vs. number of function evaluations convergence plots for different variations of the motivating example.
For DIRECT‐L and GPyOpt, the median best evaluation with shaded min–max range is given over 5 runs. (A) Motivating example starting at
z = −5.0 and ρ = 1000. (B) Motivating example starting at z = 4.5 and ρ = 100,000. (C) Motivating example starting at z = 4.5 and ρ = 10
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problem as follows: DIRECT-L (17.95/0.03), ADMM (18.37/0.45),

Py-BOBYQA (18.76/0.84), ADMM_CUATRO (20.95/3.04), ALADIN_-

CUATRO (24.95/7.04), GPyOpt (50.04/32.13).

DIRECT-L and ADMM have the best solution times since they

do not require optimization in their coordination step to propose

the new iteration of shared variables as opposed to the model-

based DFO methods. Bayesian optimization solvers are also known

to present significant overhead when the evaluation budget is

high.32 As such, in small case studies, the overhead of some

methods, especially GPyOpt, might become the bottleneck. How-

ever, it is safe to assume that the algorithm overhead becomes

negligible in most practical subproblems where total subproblem

solution times exceed tens of seconds.

3.3 | Collaborative model training

3.3.1 | Federated learning

The first case study is motivated by Federated Learning (FL).67 FL

is a subfield within Machine Learning (ML), popularized by Google,

where multiple clients collaborate under the supervision of a cen-

tralized coordinator to train a model while respecting privacy con-

siderations. As such, the aim could be to train a text prediction ML

model on decentralized edge devices' (i.e., phones) data while pre-

serving user privacy. For deep neural networks, this usually

involves an iteration over the following steps as described in the

FedAVG and FedSGD68 algorithms: The model is broadcast to a

selection of training agents. The agents perform a model parameter

update on local data based on a stochastic gradient descent step

obtained by backpropagation. These model updates are then aver-

aged among all participating agents, potentially preceded by an

encryption or differential privacy step. The interested reader is

referred to Kairouz et al.64 for an overview of typical FL

challenges.

3.3.2 | Cross-silo “learning”

We are more interested in a “cross-silo”64 rather than “cross-device”
setting, where the number of participating agents is fewer but the pri-

mary bottleneck resides in the model update computation, rather than

in communication. Additionally, first-order methods such as stochastic

gradient descent may not always be applicable if models cannot be

(cheaply) differentiated for gradient information (i.e., if the model to

be trained is constrained or dynamic). As such, we investigate a gener-

alized coordination scheme for collaborative model training using dis-

tributed optimization or data-driven coordination. Similar to ADMM,

the conventional FL scheme also involves an averaging step of the

model parameters as “shared variables.” But as opposed to

FedAVG,68 the subproblem local variable update cannot be obtained

under closed form. Instead, we fall back on the more general optimiza-

tion formulation used in (4).

3.3.3 | Case study

Our considered case study is based on69,70 and addresses collabora-

tive linear regression with a nonconvex truncated loss term aug-

mented by a 1-norm regularization term. The centralized problem is

trivially separable such that:

Fi zð Þ¼ min :
zi

ζ

2Mi

XMi

j¼1
log 1þ yi,j�z>i xi,j

� �2
ζ

 ! !
þξi zik k1þ

ρ

2
zi�zk k22

ð13Þ

The truncated loss term is used to make the regression more robust

against outliers, while the regularization term penalizes nonsparsity in

the regression coefficients. In the linear regression, xi,j �ℝd denotes

the jth sample's predictors of the ith agent, and are normally distrib-

uted. z denotes the regression coefficients. yi,j �ℝ denotes the jth

observed data sample of the ith agent, and is synthesized according to

yj¼ z�> xi,jþvi,j where vi,j is random Gaussian noise with standard

deviation spanning a tenth of the number of dimensions. z� denotes

the ground truth model coefficients, sampled uniformly from �1, 1½ �d,
where d denotes the dimensionality of the problem, namely the num-

ber of model coefficients. We use 3000 data samples in total, such

that each of the N agents has Mi¼3,000=N data samples. ζ and ξi,

which control the level of truncation and regularization are set to

3 and 0.01 respectively.

3.3.4 | Experiments

The subproblems do not contain any local constraints. The objectives

in (13) are again tailored toward the implementation of ADMM

according to (4). CUATRO is used in its standard, nonconstrained

form because the problem itself is not constrained. Starting from an

initial solution of z¼ 0, …, 0½ � > , we investigate the following configu-

rations of the case studies: We first explore how the comparison of

the different algorithms changes with increasing dimensionality

(d¼2,10,50) at a fixed number of agents (N¼2). The second set of

experiments explores what happens when the number of agents is

increased (N¼2,4,8) when the dimensionality of the prediction coeffi-

cients is fixed (d¼6). All configurations use a penalty parameter ρ

of 10.

3.3.5 | Effect of the number of shared variables

Much of the algorithm convergence discussion in this

section follows that of the motivating example because both prob-

lems present a nonconvex objective. The DFO variants perform par-

ticularly well on the lower two-dimensional case study (Figure 6A),

taking up to 20 evaluations to converge compared to the 100 of

ADMM. The convergence plot (Figure 6D) shows that Py-BOBYQA

and both CUATRO variants converge to a high degree of accuracy in

20 evaluations, which takes DIRECT-L around 40 evaluations to

van de BERG ET AL. 12 of 24
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reach. ADMM and GPyOpt only reach a (median) convergence of

10�5 and 10�7 respectively compared to 10�10 of the other three

methods. Like in the motivating example, GPyOpt displays significant

variance in its final convergence.

Figure 6B shows that when the dimensionality is increased to

10, the CUATRO variants lose their competitiveness with ADMM.

Figure 6E illustrates how DIRECT-L displays a similar median conver-

gence speed to ADMM. Py-BOBYQA and GPyOpt make substantial

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 6 Effect of the number of shared variables on the truncated regression case study. For DIRECT‐L and GPyOpt, the median best
evaluation with shaded min–max range is given over 5 runs. (A) Best function evaluation versus number of function evaluations using 2 agents
and 2 shared variables. (B) Best function evaluation versus number of function evaluations using 2 agents and 10 shared variables. (C) Best
function evaluation versus number of function evaluations using 2 agents and 50 shared variables. (D) Convergence versus number of function
evaluations using 2 agents and 2 shared variables. (E) Convergence versus number of function evaluations using 2 agents and 10 shared variables.
(F) Convergence versus number of function evaluations using 2 agents and 50 shared variables

13 of 24 van de BERG ET AL.
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progress in the first 20 evaluations. The best final convergence reali-

zation of GPyOpt matches that of ADMM (10�7), while Py-BOBYQA

is the best at fine-tuning solution accuracy (10�10).

In the 50-dimensional case, we would expect ADMM to signifi-

cantly outperform all DFO variants given its competitive advantage as

a subgradient method, which becomes increasingly important in

higher dimensions. However, in Figure 6C, we see that after around

100 evaluations, Py-BOBYQA is the only variant to find the optimum.

This makes sense given that the starting point of the case study

z¼ 0, …, 0½ � is already quite close to the optimal solution. This gives

exploitative methods (ADMM and Py-BOBYQA) the upper hand.

Finally, ADMM, despite making consistent progress, is slower at fine-

tuning the optimum than Py-BOBYQA.

3.3.6 | Effect of the number of agents

Starting with a dimensionality of six and two coordinating agents, we

observe a similar convergence pattern in Figure 7A,D to the

10-dimensional case in the previous section (Figure 6B,E). ADMM,

Py-BOBYQA, ALADIN_CUATRO and GPyOpt display a similar relative

performance, while ADMM_CUATRO makes consistent progress and

matches the convergence found for BO and Py-BOBYQA in 35 and

55 evaluations respectively.

Overall, we observe that with an increasing number of coordinat-

ing agents, the optimality gap increases between the final total func-

tion evaluation and the centralized optimum. There will always be

small numerical differences between zi and z, which are penalized in

the proximal terms ρ
2 zi�zk k22. With an increasing number of agents,

the relative importance of these proximal terms is strengthened,

which becomes even more apparent when the optimal objective eval-

uation is close to the starting point as is the case for these problems.

The relative performance of the DFO algorithms with respect

to each other and ADMM does however not seem to change with

an increasing number of coordinating agents. ALADIN_CUATRO

makes poor progress, DIRECT-L tracks the convergence of ADMM,

while Py-BOBYQA and ADMM_CUATRO quickly find the best

function evaluations. GPyOpt again makes quick initial progress but

displays a lot of variance in best evaluation found. It is interesting

to see that for this particular case, the convergence speeds of

Py-BOBYQA, ADMM_CUATRO, and GPyOpt tend to remain similar

even with an increasing number of agents.

3.4 | Facility location

3.4.1 | Value chains

A key part of EWO is the design and operation of supply chains.71 In an

idealized setting, all stakeholders within a given value chain are willing

to collaborate and share model information with a centralized coordina-

tor. In practice however, antitrust and game-theoretical considerations

might prevent stakeholders from fully collaborating. There is ample

literature about “Stackelberg Leader-Follower games,”72 where supply

chain agents' take the first step' in deciding on the optimal location of

their plants subject to other players reacting optimally with respect to

their private objective. Yet, there is much value to be captured in mov-

ing away from these “Nash equilibria,” and approaching a coordinated

optimum along the “Pareto front.” To this end, a coordinator can opti-

mize a (fairness-guided) game-theoretical operator that scalarizes and

trades off the conflicting criteria of competing stakeholders.73–76

This is especially relevant for the design of emerging supply

chains with distinct characteristics such as biomass77,78 or (bio)phar-

maceutical value chains.79,80 These “social optima” are often obtained

as the result of centralized optimization formulations, which can be

decomposed for numerical tractability, or in our case to fit organiza-

tional considerations.

3.4.2 | Case study

We consider a continuous facility location problem in two-

dimensional continuous space, which belongs to the general class of

Capacitated Multifacility Weber Problems. The objective is to find the

location, production, and connecting flows of all facilities that mini-

mize a total cost. These “shared” variables are few relative to the

number of private variables and parameters, the latter including local

cost parameters, technical upper and lower bounds, binary variables,

and distances to/from facilities to name but a few. We use the same

formulation as Lara et al.81 with some key differences. In particular,

we assume the presence of two suppliers and markets each. We fix

the number of facilities to be built to either one or two, which still

gives rise to a Generalized Disjunctive Problem (GDP). We also define

the distances between agents and facilities using the 1-norm, rather

than the 2-norm for computational efficiency. The GDP is finally

reformulated into an MINLP using big-M constraints, implemented in

Pyomo,57,58 and solved using Gurobi.60 The entire formulation can be

found in Appendix E.

3.4.3 | Decomposition

In our first experiment, we compare two different decompositions, moti-

vated by two separate business scenarios. In the first scenario, the two

types of nodes, suppliers and markets, each consisting of two nodes, are

part of the same legal entity and are able to share model information.

For each problem, we need to find the following shared variables: The

two-dimensional location of the facilities (2K variables) and their pro-

duction (K variables). For our case, where the number of processing

facilities is set to one or two (K¼1,2), the problem contains either

three or six shared variables and can be decomposed into two sub-

problems. The exact decomposition can be found in Appendix E.

In our second scenario, we consider all of the four nodes (supplier

and customer) to be their own separate legal entity with privacy con-

siderations. As such, we need to decompose the problem into four.

Unfortunately, the presence of complicating constraints—linking the

van de BERG ET AL. 14 of 24
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total amount transported to and from a facility—prevent each agent

from independently deciding on the amount that is transported

between their node and the facilities. As such, the transport variables

fi,k and fk,j become part of the set of shared variables. This would in

principle add another 4K shared variables. However, these complicat-

ing constraints on the transport variables, only depending on the

shared variables, can be used to reduce the number of degrees of

freedom in the shared variables, such that these problems involve five

(A)

(B)

(C)

(D)

(E)

(F)

F IGURE 7 Effect of the number of agents on the truncated regression case study. For DIRECT‐L and GPyOpt, the median best evaluation
with shaded min–max range is given over 5 runs. (A) Best function evaluation versus number of function evaluations using 2 agents and 6 shared
variables. (B) Best function evaluation versus number of function evaluations using 4 agents and 6 shared variables. (C) Best function evaluation
versus number of function evaluations using 8 agents and 6 shared variables. (D) Convergence versus number of function evaluations using 2
agents and 6 shared variables. (E) Convergence versus number of function evaluations using 4 agents and 6 shared variables. (F) Convergence
versus number of function evaluations using 8 agents and 6 shared variables
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or ten shared variables when one or two facilities are built respec-

tively. The exact decompositions can again be found in Appendix E.

In our second experiment, we investigate the effect of increasing

subproblem size on the relative algorithm convergence vs. number of

subproblem evaluations while keeping the number of shared variables

constant. We start from the scenario where we want to build two pro-

cessing facilities in the presence of two agents, meaning the number

of shared variables is set to 6. Then, we increase the number of sup-

pliers and customers from two to five nodes each (Ni¼Nj¼2,3,4,5,6).

This increases the number of private variables and constraints in the

subproblems and the CPU time required to solve them. Yet, this

should have no major effect on the solution topology given the similar

nature of the subproblem optimization structure.

3.4.4 | Two agents: supply and customer nodes
belong to the same supply and demand decision-
makers

Figure 8A shows that for the two-agent three-dimensional case, the

exploitative methods ADMM and Py-BOBYQA display a similar con-

vergence speed and are the only methods to converge quickly to

the optimum. The two CUATRO versions converge to the same

similar suboptimal point. The median DIRECT-L run manages to find

the same optimum as ADMM and Py-BOBYQA after around

90 evaluations. GPyOpt only makes little progress. Figure 8B then

shows that in the six-dimensional case, Py-BOBYQA and ADMM

again outperform both CUATRO variants and Bayesian Optimiza-

tion. As expected, the subgradient information of ADMM leads to

faster convergence compared to Py-BOBYQA when the dimension-

ality is increased. Interestingly, DIRECT-L outperforms both

exploitative methods, suggesting that the optimum is close to the

center of one of the initial partitions used by DIRECT-L, which

depends mostly on the user-given box bounds on the shared

variables. The convergence vs. number of function evaluations

plots are omitted since they do not provide any additional informa-

tion, as ADMM, Py-BOBYQA, and DIRECT-L converge to around

the same accuracy.

3.4.5 | Four agents: each supplier and customer
node as a separate decision-maker

Figure 9A,B shows a significantly different relative algorithm perfor-

mance for the four-agent case to that seen in the two-agent case of

the last section. This is partially caused by the inclusion of additional

shared variables in the form of facility to agent node transport links

that need to be coordinated between all supplier and customer nodes.

Additionally, these shared variables introduce ill-behavior in the new

solution space, which could be due to the way the shared variables

are handled. In the multiagent coordination case study, the number of

shared variables is kept the same, but any infeasibilities in the shared

variables are implicitly penalized through the proximal term. In this

case study, complicating constraints are handled by reducing the

degrees of freedom in the shared variables using material balances on

the facility nodes. The choice on how best to handle complicating

constraints is case study-specific. As a rule of thumb however, reduc-

ing the degrees of freedom using constraints favors convergence for

data-driven methods, as ADMM struggles to deal with ill-behaved solu-

tion spaces. However, the DFO variants are not guaranteed to

outperform ADMM even in lower dimensions when constraints are

handled this way.

In fact, for the lower-dimensional case in Figure 9A, only Py-

BOBYQA manages to navigate the solution space better than ADMM

and is the only method to converge to the optimum. GPyOpt finds a

similar optimum to ADMM, while the other DFO variants display

worse performance to ADMM. Figure 9B shows a peculiar conver-

gence pattern for the 10-dimensional case, apart for

(A) (B)

F IGURE 8 Facility location convergence plots with two decision‐makers. For DIRECT‐L and GPyOpt, the median best evaluation with shaded
min–max range is given over 5 runs. (A) Best function evaluation versus number of function evaluations using 2 agents and 3 shared variables. (B)
Best function evaluation versus number of function evaluations using 2 agents and 6 shared variables
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ALADIN_CUATRO which again makes no progress whatsoever. Py-

BOBYQA displays similar convergence patterns to ADMM, and both

find a slightly better optimum than ADMM_CUATRO. GPyOpt's final

evaluations compete with ADMM. DIRECT-L is the only method to

converge to the optimum in its median evaluation but displays signifi-

cant variability in its convergence. Like in the higher-dimensional two-

agent case, the solution space topology and input-bounds give rise to

partitions whose center is close to the optimum. Convergence

vs. number of function evaluation plots are omitted again as they pro-

vide no additional information.

3.4.6 | Effect of the subproblem size

In the previous two- and four-agent configurations, the performance

of most DFO solvers would deteriorate relative to that of ADMM as

the number of shared variables increases. In Figure 10, we show the

effect of increasing size while keeping the number of shared variables

constant by increasing the number of supplier and customer nodes

rather than the number of processing facilities. We see that the per-

formances of ADMM, Py-BOBYQA, and GPyOpt remain constant for

the most part, while the performance of DIRECT-L only slightly

decreases in the run of four nodes. The relative performances of

ADMM_CUATRO and ALADIN_CUATRO as compared to ADMM

deteriorate only in the runs with three and four supplier and customer

nodes. This could be explained by the introduction of additional pri-

vate constraints in the subproblems that can make the solution space

more ill-conditioned due to stricter penalization of certain proposed

shared variables. Despite the more restricted feasible solution space,

the solution topology should not change too much since the subprob-

lems remain mixed-integer quadratic programs where only similar

types of variables and constraints are introduced.

Comparing our analyses on increasing the number of shared vari-

ables and the subproblem size suggests that DFO algorithms scale

better relative to ADMM with an increase in subproblem size rather

than number of shared variables. These results also strengthen our

argument that the relative performance of ADMM and DFO solvers

depends on the evaluation budget, number of shared variables and

solution topology rather than subproblem size. As such, our conclu-

sions on the relative performance of ADMM and DFO solvers on

smaller case studies extend to larger subproblems as long as the num-

ber of shared variables and the solution topologies remain similar.

3.5 | Multiobjective coordination

3.5.1 | Case study

We consider the same synthetic problem as van de Berg et al.36 where

two stakeholders want to find the feedstock composition that optimizes

a sum consisting of a cost and environmental impact term. Since both

stakeholders are secretive about the intricacies of their proprietary

optimization and simulation software, we can either use ADMM or

data-driven coordination. In our considered case study, after fixing the

feedstock composition variables z, the problem becomes trivially

decomposable. Agent A optimizes an economic blending problem, while

Agent B optimizes the output of an environmental input simulation.

FA zð Þ¼ min :
zI � ℝnz ,y � 0, 1f gnz

Xnz
i

zIiCiþ ρ

2
zIi� zi
� �2� �

ð14aÞ

s:t:
Xnz
i

zIi ¼1, lqual ≤ z
I> Aqual ≤uqual ð14bÞ

0≤ zI ≤ y,
Xnz
i

yi ≤Nint ð14cÞ

FB zð Þ¼ min :
zII � ℝnz

Xnz
i

eiz
II
i
ai þ

X
j � Ji

xixjþ ρ

2
zIIi � zi
� �2 !

ð15Þ

(A) (B)

F IGURE 9 Facility location convergence plots with four decision‐makers. For DIRECT‐L and GPyOpt, the median best evaluation with shaded
min–max range is given over 5 runs. (A) Best function evaluation versus number of function evaluations using 4 agents and 5 shared variables. (B)
Best function evaluation versus number of function evaluations using 4 agents and 10 shared variables
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Essentially, the economic blending problem minimizes the feedstock

cost given component costs Ci , as well as upper and lower quality

constraints (uqual,lqual) for quality matrix Aqual. Each dummy composi-

tion variable zIi is also subject to its binary variable yi, which is active if

the associated feedstock is non-zero. The number of active composi-

tion variables is constrained by Nint. As such, Agent A's formulation is

a mixed-integer convex quadratic problem. Agent B's objective term is

composed of a sum of linear or quadratic terms (each feedstock vari-

able has its own power ai � 1, 2f g). Additionally, each feedstock i has

its sparse set of bilinear interactions Ji. The cost, quality, and environ-

mental data are adopted from an animal feedstock database.82

3.5.2 | Black-box simulations in the subproblems

If the proximal term in the environmental subproblem is strongly

penalized with a very high ρ, its optimal solution tends toward the

solution corresponding to zII ¼ z. In this case, since the environmental

subproblem does not involve any local constraints, the solution to this

problem could theoretically be the result of a black-box simulation

rather than optimization problem.

In practice, our data-driven alternatives could readily handle

problems where the lower-level is obtained via simulation

instead of an optimization, since progress only relies on objective

evaluations. ADMM however relies on an update in the local cop-

ies of the shared variables. If the lower-level is obtained via a

simulation, then zII is never updated from the suggested z. So at each

iteration, z only approaches zI rather than a compromise between zI

and zII, essentially omitting any environmental considerations.

Hence, for ADMM, the subproblems need to be given by optimiza-

tion. For convergence toward a collaborative optimum, zII needs to

slightly shift away from the suggested z toward the “selfish” solution

of the environmental problem optimized without economic

considerations.

As such, in Section 3.5.3, we do not include the case where the

subproblem is given by simulation, as this would bias the comparison

between ADMM and the data-driven framework in favor of the data-

driven coordination.

(A) (B)

(C) (D)

F IGURE 10 Facility location best function evaluation vs. number of function evaluation plots with two decision‐makers and six shared
variables at with an increasing number of supplier and customer nodes. For DIRECT‐L and GPyOpt, the median best evaluation with shaded min–
max range is given over 5 runs. (A) 2 nodes per supplier and customer. (B) 3 nodes per supplier and customer. (C) 4 nodes per supplier and
customer. (D) 5 nodes per supplier and customer
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(A) (C)

(B) (D)

(E) (G)

(F) (H)

F IGURE 11 Multiagent coordination convergence plots. For DIRECT‐L and GPyOpt, the median best evaluation with shaded min–max range
is given over 5 runs. (A) Best function evaluation versus number of function evaluations on 10‐dimensional convex version. (B) Best function
evaluation versus number of function evaluations on 25‐dimensional convex version. (C) Convergence versus number of function evaluations on
10‐dimensional convex version. (D) Convergence versus number of function evaluations on 25‐dimensional convex version. (E) Best function
evaluation versus number of function evaluations on 10‐dimensional nonconvex version. (F) Best function evaluation versus number of function
evaluations on 25‐dimensional nonconvex version. (G) Convergence versus number of function evaluations on 10‐dimensional nonconvex
version. (H) Convergence versus number of function evaluations on 25‐dimensional nonconvex version
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3.5.3 | Experiments

We perform the mixed-integer, nonconvex coordination problem

given by (14) and (15) on an increasing number of shared, feedstock

variables (nz¼5,10,15,20,25). Additionally, we perform the same

experiment on a nonlinear but convex version of the previous prob-

lem. This is obtained by relaxing all mixed-integer constraints in (14c),

and by omitting the bilinear terms in the environmental problem (15).

Figure 11 gives the best function evaluation and convergence plots for

the 10- and 25-dimensional multiagent coordination problems in their con-

vex and nonconvex variant. All configurations use a penalty parameter ρ

of 5000.

Figure 11A,C shows that all methods manage to find at least a low-

accuracy optimum in the convex 10-dimensional variant. However,

ADMM converges considerably faster than the fastest DFO variant

(20 and 200 evaluations for ADMM and Py-BOBYQA to achieve the

same accuracy respectively). It makes sense that both ADMM and

Py-BOBYQA outperform more explorative methods for the considered

configuration given their purely exploitative behavior. This case also

highlights the respective strengths of ADMM and Py-BOBYQA. ADMM

is in general very fast to converge to a neighborhood of a local opti-

mizer. However, ADMM struggles to fine-tune the optimum. When the

evaluation budget allows for it, Py-BOBYQA takes more evaluations to

find this neighborhood, but is more efficient at finding a better solution

quality. Figure 11C shows that ADMM's final convergence is orders of

magnitude worse than that of Py-BOBYQA (102 and 100 respectively).

The discussion of the 25-dimensional convex configuration follows

that of the 10-dimensional convex one. The relative performance of

the algorithms is very similar, with the exception that ADMM's final

convergence still displays a considerable optimality gap (Figure 11B).

Py-BOBYQA is the only method to converge to a high-accuracy solu-

tion given its exploitative nature and its ability for fine-tuning.

The 10-dimensional nonconvex configuration presents conditions that

favor data-driven approaches. The relative performance of the algorithms

in Figure 11E is similar to that of its convex counterpart in Figure 11A with

two notable exceptions: ADMM and Py-BOBYQA—both purely exploit-

ative methods—converge to a local minimizer in 100 evaluations. ADMM

is slightly quicker again, but Py-BOBYQA finds a slightly better solution.

ADMM_CUATRO and the median run of DIRECT-L, due to their extensive

initial exploration manage to escape a local minimizer and converge to a

low-accuracy neighborhood of the global optimum. The discussion of the

higher-dimensional nonconvex case again follows that of its convex coun-

terpart. ADMM and Py-BOBYQA are the only methods again to converge

to at least a near-optimal solution. Py-BOBYQA finds a better solution

quality, but takes significantly longer than ADMM. This emphasizes the

importance of (sub)gradient information with increasing dimensionality.

4 | GENERAL OBSERVATIONS AND
DISCUSSION

In this section, we present general observed trends that summarize

the case-study specific observations of Figures 4–11. A high-level

comparison between the performance of the data-driven coordination

framework and ADMM based on problem considerations is summa-

rized in Table 1.

ADMM. ADMM manages to converge to at least a local minimizer

if given enough function evaluations. If the proposed starting point is

far from the optimum, initial progress with ADMM is generally fast.

However, ADMM is found to be ill-suited for fine-tuning near-optimal

solutions, which is in line with literature.19,21

Data-driven coordination. The performance of all data-driven coor-

dination alternatives improves with respect to ADMM the more ill-

behaved the solution space and the lower the dimensionality in the

shared variables is. For the EWO case studies, we investigate a lower-

and higher-dimensional configuration respectively, where for the

lower-dimensional case, there is always at least one DFO variant that

outperforms ADMM. Understanding the way these algorithms

approach the exploration-exploitation trade-off is key to this observa-

tion. The coordination step in ADMM is purely exploitative. It cheaply

extracts subgradient information from the subproblems to approach

the coordinated optimum as quickly as possible. The relative perfor-

mance of DFO algorithms against ADMM and explorative

vs. exploitative methods is determined by the mathematical properties

of the case study.

DFO variants. Highly explorative frameworks like Bayesian Opti-

mization perform well in lower-dimensional applications, where thor-

ough exploration is more likely to be rewarded by faster

convergence to the optimum. The exploration of some DFO algo-

rithms can also be useful in escaping local optima. DIRECT-L, as a

global optimization algorithm, usually makes slow progress as its

function evaluations are used to thoroughly explore all partitions of

the solution space, unless the optimum happens to be in the center

TABLE 1 Performance comparison between ADMM and data-
driven coordination based on mathematical problem and desired
solution characteristics

Consideration ADMM Data-driven coordination

Number of

shared

variables z

Scales better with

higher dimensions

Shines in lower

dimensions

Convergence

speed

Quick initial progress

but dependent on

penalty

parameter ρ

Can use exploitative DFO

solver to better

fine-tune optimum

Convergence

guarantee

Guaranteed for

convex problems.

Depends on DFO solver,

e.g., DIRECT-L for

global convergence

guarantee

Solution space

topology in

z

Can get stuck at

nonconvexities

Can use explorative DFO

solver to escape local

minima

Organizational

and

software

Requires numerical

optimization for

the subproblem

solution

More flexibility in the

subproblem solution

(black-box simulation,

heuristic evaluation,

etc.)
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of one of the initial partitions. CUATRO, with its decreasing trust

region framework, encourages extensive initial exploration and later

exploitation. ADMM_CUATRO usually displays superior perfor-

mance over ALADIN_CUATRO. However, the choice between these

two variants is in practice more motivated by organizational consid-

erations concerning the sharing of either agent-level objective or

surrogate information.

Py-BOBYQA. The previously discussed DFO algorithms tend

to outperform ADMM only in lower-dimensional applications.

Py-BOBYQA is the only DFO algorithm that has the potential to be

competitive with ADMM in higher-dimensional applications given its

similar focus on exploitation. As such, Py-BOBYQA tends to converge

to the same local optima as ADMM. While ADMM displays faster

convergence to low-accuracy regimes of the solution, Py-BOBYQA

can find higher-accuracy solutions at the expense of more function

evaluations.

Significance of the penalty parameter ρ. In theory, the value of the

penalty parameter ρ should not influence the quality of the solutions

found. In fact, the penalty term should approach zero at the optimum,

since the local copies of the shared variables zi should approach the

suggested shared variables z. In practice however, the choice of the

penalty parameter ρ influences the accuracy and speed of conver-

gence. If ρ is too weak, more deviation between zi and z is allowed at

the theoretical optimum, which can lead to potential infeasibility in

the returned solution. Some DFO variants find a better total evalua-

tion than would theoretically be possible from the centralized solu-

tion, which explains why some algorithms do not display

monotonically decreasing performance in the convergence plots.

However, increasing ρ slows down convergence, since at each itera-

tion zi is bound closer to z. As such, the conclusions on the relative

convergence of the considered methods are influenced by ρ. There is

ample literature on how ρ influences the convergence of ADMM.38

There are multiple heuristics that can speed up ADMM, such as itera-

tively increasing ρ to allow for more exploration and faster conver-

gence initially while encouraging fine-tuning in later iterations.39

However, ρ is kept constant across our algorithm benchmarking since

our analysis is based on comparing function evaluations. In ADMM,

each sample should in principle make consistent progress toward a

local minimizer. For the DFO methods however, we have no guaran-

tee that the points we are sampling in later iterations present better

function evaluations. By changing ρ between iterations, the same

sample would if resampled in a later iteration potentially return a

worse evaluation due to a higher ρ. Hence, from the perspective of

DFO solvers, changing ρ between iterations would lead to “noise” or

“stochasticity” which would hinder their convergence.

5 | CONCLUSION

Our proposed “data-driven” framework is shown to be able to find

the same solution as the equivalent centralized formulation for

optimization-based coordination problems. Our approach differs

from ADMM in that it uses derivative-free optimization (DFO)

to find the shared variables that optimize lower-level subproblem

evaluations. We consider CUATRO, Py-BOBYQA, DIRECT-L, and

GPyOpt as DFO solvers and benchmark them against ADMM as a

distributed optimization solver on a motivating example and three

case studies with expensive subproblems. We examine the effect

that dimensionality and solution topology in the shared variables

have on the relative algorithm performance. We also discuss

organizational considerations and how they inform the choice of

coordinating algorithm: autonomy and flexibility, privacy, software,

black-box subproblems, and organizational structure. We show that

our approach outperforms ADMM when the number of shared

variables between agents is few, and when the shared variable

to shared objective evaluations call for exploration rather than

exploitation. As opposed to distributed optimization, our method

does not need the capacity for numerical optimization at the agent-

level, since the subproblems can also be obtained as the result of

a black-box objective simulation. We argue that our approach is

especially relevant when the decomposition is limited by organiza-

tional rather than numerical considerations.

Our work is the first to benchmark several “data-driven” algo-

rithms against distributed optimization on multiple case studies rele-

vant to enterprise-wide optimization. While the relative performance

of DFO algorithms is in line with current literature, there are several

avenues for future work: A practical implementation of a “data-
driven” approach would require a more thorough investigation into

privacy (differential privacy, cryptography, and more) and into how

much agent-level data could be inferred from optimal subproblem

evaluations or variables. ADMM loses its convergence guarantees

when the subproblems are ill-behaved. As such, our data-driven opti-

mization approach might have a competitive advantage if the sub-

problem evaluations are not solved to global optimality, if evaluations

are noisy and potentially inconsistent, or if they might change over

time. This would be the case when objective evaluations are obtained

by querying human decision-makers as opposed to optimization or

simulation software. This would enable coordination between busi-

ness units where some decision-makers still use expert-guided heuris-

tics rather than numerical optimization.
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