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Figure 1: Our assistive cooking setup to study how eye gaze and posture can be used to infer trust-related mental states, which
can be included in the robot’s action selection method. (a) is an external view of the whole setup, with our custom mobile
manipulator. The scene camera gives us the view (b), which is then used to infer eye gaze and head pose shown in (d). The
motion capture system also provides us with the full body pose (c).

ABSTRACT

In Human-Robot Collaboration (HRC), trust is an essential factor
that can change over time, and robots capable of estimating a hu-
man’s trust and using that information to select their actions can
improve the quality of interaction. In this paper, we present our
early-stage research on a trust-aware policy for HRC applied to an
assistive cooking scenario. We propose to study how physiological
signals, such as eye gaze and posture, can be used to estimate the
human’s trust level. We describe our experimental platform and
the evaluation scenarios used to test the effectiveness of the policy.

CCS CONCEPTS

« Human-centered computing — Collaborative and social com-
puting; - Computer systems organization — Robotics.
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1 INTRODUCTION

In real-world scenarios of Human-Robot Collaboration (HRC), both
the human and the robot must trust each other’s abilities and in-
tentions in order to establish a successful collaboration [23]. Trust-
worthy autonomous systems are thus essential for ensuring safe,
reliable, and effective collaborations between humans and robots.
Collaborative cooking is an exciting application scenario for HRC
because it involves many opportunities for trust, such as knife han-
dling, sensitive information about dietary restrictions, or the risk of
destroying and wasting ingredients. Additionally, cooking requires
a variety of skills, from basic chopping to complex recipe following,
making it an ideal testbed for evaluating robot performance. While
current robots are still incapable of matching the human cooking
skills, recent progress in fields such as world perception, learning
or dexterous manipulation have led to the development of new
highly capable cooking robots; examples include NALA! or the
Moley kitchen?.

Despite a significant amount of research in the field, understand-
ing human trust remains a challenge for robots. This difficulty arises
from trust’s complexity as a subjective, multidimensional, dynamic,
and context-dependent concept [1]. While significant work has
explored the humans’ perception of assistive robots in collabora-
tive settings, relatively few studies successfully implemented trust
calibration mechanisms in real-world scenarios; for examples, see
[6, 21].

In this paper, we present our early-stage work on a trust-aware
policy for HRC applied to the collaborative cooking scenario. Our
goal is to study how human physiological signals such as eye gaze
and posture can be interpreted by the robot to estimate trust, and
included in its policy. We also present our plan for an experiment
to evaluate this framework, in the form of a between-group experi-
ment measuring trust levels and delegation ratios.

2 RELATED WORK

Robots’ ability to manage human trust is crucial in assistive cook-
ing scenarios. In this section, we review relevant ways researchers
have approached trust in HRC scenarios. Then, we focus on assis-
tive cooking specifically, highlighting the wide range of issues to
consider.

Trust is a multifaceted concept that has been studied across many
fields, including psychology, neuroscience, and economics [11, 19,
28]. It has also been extended to the domains of Human-Computer
Interaction and Human-Robot Interaction (HRI) [1, 29]. However,
defining and modelling trust is challenging due to its subjective,
context-dependent, and multidimensional nature [23]. Researchers
have proposed several definitions of trust over the years, but they
generally revolve around the interaction between a trustor and
a trustee in a given context, which involves a degree of risk or
uncertainty [14, 22, 24]. Recent studies suggest that humans extend
two main types of trust: performance-based trust and relation-based
trust [1]. It is moreover important to note that there is a difference
between reported trust, which is measured through questionnaires
or scales, and behavioural trust, which directly affects HRI [20].

!https://nalarobotics.com/nala-chef-one-point-one-product. html
Zhttps://www.moley.com/moley-kitchen/
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Theory of Mind (ToM) is a psychological concept that refers to
‘the ability to attribute mental states to oneself and others’ [25]. In
robotics, ToM has been applied to create robots capable of social
interactions [8—10]. In recent years, ToM has been used to enable
robots to decide whether they should trust the intentions or capa-
bilities of other agents [5, 21, 30], which is crucial for effective HRC.
Furthermore, [27] showed that some humans tend to place more
trust in a robot exhibiting a ToM. While the studies mentioned so
far rely on scenario-specific mechanisms to infer mental states, it
is also possible to rely on measures of physiological signals. For
instance, [3, 31] showed that eye-gaze patterns could be correlated
with mental states such as cognitive overload or confusion about a
task. Moreover, [31] demonstrated that these patterns also changed
significantly when the human observes a robot failure, which is
highly correlated with trust [15].

Finally, some recent studies have identified several crucial factors
that need to be considered to enhance the quality and efficiency
of HRC cooking tasks. These issues include managing people’s
expectations, accounting for human preferences, and recognis-
ing mistakes and recovery. For instance, [32] found that people’s
expectations for robot-prepared food were lower than those for
human-prepared food, but increasing robot anthropomorphism or
capabilities could mitigate this effect. Another study investigated
how robots could incorporate explicit human preferences such as
healthy eating into their action selection policy [4]. Additionally,
researchers have examined how humans perceive different types
of robot mistakes [2]. Most of these studies focused on manag-
ing initial expectations and post-mistake behaviours in supervised
cooking tasks, where humans provide instructions or feedback to
the robot. However, fully collaborative cooking tasks pose new
challenges.

In this paper, we will focus on the largely unexplored and exciting
question of how eye gaze and posture could be used to infer human
trust in a real-life, complex collaborative task such as assistive
cooking.

3 DESIGN AND ETHICAL CONSIDERATIONS

In this section, we discuss our experimental setup, including the
design of the robot and the kitchen setup. Additionally, we highlight
the ethical considerations we took into account during the design
process. Finally, we detail the main axes of investigation we will
pursue.

3.1 System Description

3.1.1 Robot design. For our study, we designed and built AMIGA
(Assistive Mobile and Interactive Grasping Agent), which consists
of a mobile base, a robotic arm, a gripper, a laptop, a Jetson Orin, and
some power and network-related devices. To enable navigation,
we mounted a ZED 2i RGBD camera® and two RPLidar A1* on
the mobile base. The ZED 2i camera also provides odometry by
combining an embedded IMU and visual data. On top of the base, we
mounted a UR10e robotic arm® with seven degrees of freedom and
its DC controller. To handle the variety of shapes and textures in a

Shttps://www.stereolabs.com/zed-2i/
“https://www.slamtec.com/en/Lidar/A1
Shttps://www.universal-robots.com/products/ur10-robot/
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cooking environment, we attached a Robotiq 3f gripper® capable of
different types of grasps. A ZED 21 RGBD camera was attached to
the gripper to facilitate grasping. On the software side, the robot is
operated using ROS [26]. The arm’s motion is handled by Movelt
[7] with an analytical inverse-kinematics solver adapted from the
official Universal Robots one. We implemented a joint planning
and control for the arm and the gripper joints, which allows the
robot to grasp objects with a single smooth movement. Finally, we
trained a custom object detection module for our ingredients, based
on a YOLO v5 architecture [17], and ran it on a Jetson Orin using
the NVIDIA TensorRT engine.

3.1.2  Memory Module. In light of the significant correlation be-
tween a robot’s movement behaviour and trust [13, 16], our objec-
tive was to optimise the responsiveness and fluidity of its motions.
To eliminate the need for repeated object searching upon each
grasp trigger, we devised a memory module incorporating class-
aware Extended Kalman Filters and a forgetting mechanism. A
detection §; from the computer vision model is composed of a pose
pi = (xi,yi,z;), an object class ¢; € [1, N]] where N is the number
of classses, and a context vector y; of size N where each element is
the number of instances of that class detected in the same image.
To determine whether a new detection matches an existing filter,
the module uses a custom distance metric d inspired by [18] as
described in Equation 1 where D is a "critical distance" above which
2 detections of the same class are likely to be different instances.
It then feeds the detected position p; to the proper Kalman Filter,
which uses these noisy observations to estimate the actual position.
The restricted number of instances from each class enabled us to
accurately distinguish them.

llpi — prl Yi* Yk
d(5;,6) = + 1
(6. 0%) D Iyilllyell )

To prevent the Kalman Filters from infinitely tracking the false
positives from the object detection, we also developped a forgetting
mechanism. Every time a detection is matched to a tracked object
(or to a newly created one), the expiration time of that object in
memory is updated based on how many times it has been detected,
as described in Equation 2. We note t°* the expiration time, t"°"
the current time, nyjeqws the number of times the object has been
detected, and a, b, and c are parameters. This mechanism allows
the robot to forget about objects that have not been seen in a while,
while still keeping track of them if they are detected again.

tXP = "% 4 min(a + b * nf)iews, c) (2)
3.1.3  Kitchen setup. Our application scenario is a collaborative
task, where both the human and the robot act and cook together.
We set up a kitchen table with under-the-counter shelves on one
side and a rack to hang utensils above. Various kitchenware items
such as scales, bowls, and containers were placed on the table,
while ingredients were stored on the shelves. The robot stands
on the ingredients’ side, and the human stands on the other side.
To capture eye-gaze and head pose information from the human,
we mounted a ZED 2i RGBD camera on the table, connected to a
computer running RT-GENE [12]. We also equipped the room with

Shttps://robotiq.com/products/3-finger-adaptive-robot-gripper

an OptiTrack motion capture system to capture the human’s body
pose.

3.14  Assistive Cooking Policy. In order to investigate the relation
between ToM, trust, and the various physiological signals we mea-
sure, we need the robot to be capable of cooking with a human.
We achieved this by combining a set of parametrised skills and
primitives with a custom action selection method, which is out of
the scope of this paper.

3.2 Responsible Research

In conducting our study, we have taken several steps to ensure
responsible research practices. We have obtained ethical approval
from our institution’s research ethics committee, and all partici-
pants will provide informed consent before taking part in the study.

3.2.1 During the Study. We have taken steps to ensure the safety of
all participants during the study. We will have a researcher present
at all times to monitor the experiment and intervene if necessary.
In addition, we have obtained authorisation to bring in participants
from diverse backgrounds, not limited to engineering or students,
to account for diversity in our study. To protect the privacy and
confidentiality of our participants, we will anonymise data as soon
as each participant is finished with the experiment. Any personal
information collected during the study will be kept secure.

3.2.2 Potential Applications. As with any research that involves
technology, we recognise the potential implications and applica-
tions of our study beyond its immediate scope. While our focus
is on developing assistive technologies for cooking, we acknowl-
edge that our findings could be used in a variety of applications.
We will continue to evaluate the potential implications of our re-
search and consider the ethical implications of any potential future
applications.

3.3 Policy Design

In order to implement our trust-aware action selection method, we
must take into consideration several challenges. Firstly, real-time
processing is crucial given the nature of our problem. While our
system already currently operates in real-time, the motion capture
system may potentially send too much data or create synchroniza-
tion issues with its 10 cameras. Therefore, we plan to implement fail
safes to prevent these issues from disrupting real-time processing,
such as reducing the number of cameras, down-sampling the data,
or setting up a local time server.

The second challenge we must address is the cold start problem.
When we interact with a participant for the first time, we lack
any prior knowledge of their mental state and dynamics, making
it difficult to estimate the correlation between their physiological
signals, mental states and trust. To overcome this challenge, we plan
to study different approaches such as bootstrapping or collaborative
filtering.

Another challenge we face is the noise present in physiologi-
cal signals, such as eye gaze, which is linked to multiple mental
states and factors other than trust. To minimize the impact of noise,
we aim to analyze participant-specific variations in a controlled
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Figure 2: A session for our evaluation scenario. Questionnaires in steps 1, 3 and 5 are used to get a measure of subjective trust.
Step 2 allows the human to calibrate his/her trust by observing the robot’s proficiency levels. Step 4 is used to get a measure

of objective trust using the delegation ratio.

environment, allowing us to better model their mental state. Addi-
tionally, we will explore other techniques to improve the accuracy
of our trust estimation, such as data filtering or signal processing.

Lastly, we must consider the mental state representation and
how to model estimated trust. In the literature, several approaches
exist, including latent variable and Markovian function. We plan to
explore these options and select the most suitable approach for our
system.

3.4 Evaluation Scenarios

To evaluate the effectiveness of our action selection method, an
experiment will be conducted in which participants collaborate
with a robot to prepare a salad. The robot will either use the basic
policy or the enriched policy that includes physiological signals for
action selection. Two research hypotheses will be tested.

H1: participants interacting with the robot aware of their physi-
ological signals will report higher levels of trust than those in the
control group.

H2: participants interacting with the robot aware of their physi-
ological signals will have a higher delegation ratio than those in
the control group.

In designing this experiment, we considered several factors. Trust
is a dynamic factor that can be influenced by failures and successes,
but initial expectations also play a significant role [15]. Therefore,
each participant needs an initial interaction to calibrate their trust.
We cannot have one participant perform too many sessions or suffer
from fatigue, which might skew the results, especially since we use
eye gaze and posture to measure trust. Additionally, objective and
subjective measures of trust sometimes diverge; hence, we plan to
collect both. Finally, our metric benefits from past interactions with
the human, providing another good reason to have two sessions.

To address these considerations, we propose a between-group
experiment consisting of five steps for each participant, for an
estimated total duration of up to two hours:

(1) Initial set of questionnaires related to trust and personal
information

(2) First cooking session

(3) Second set of trust-related questionnaires

(4) Second cooking session, where the participant has a choice
to delegate certain actions, enabling us to use delegation
ratio as an objective trust measure

(5) Final set of questionnaires

As subjective measures, we rely on previously established ques-
tionnaires such as those from [23].

4 PRELIMINARY RESULTS

To evaluate the performance of our policy’s modules, we conducted
a series of preliminary studies. In these studies, we assessed the
robot’s ability to assist the human in making a salad, as described in
the evaluation scenarios outlined in subsection 3.4. We found that
our custom policy can select a relevant action with 82% accuracy,
and can successfully perform actions 69% of the time. Additionally,
we developed the gaze following module, which can accurately de-
tect when the human is looking at the robot in real-time, provided
the human’s head configuration allows for accurate eye gaze detec-
tion. We are currently in the process of setting up a motion-capture
system to collect body pose data and are exploring various methods
to integrate these signals into the policy.

5 CONCLUSION AND FUTURE WORK

In this paper, we have presented our early-stage work on a trust-
aware policy for HRC applied to the collaborative cooking scenario.
Our goal is to study the validity of a policy using physiological
signals to estimate the human’s trust level and select appropriate
actions. We have established an experimental platform with a robot
capable of cooking with a human and sensors installed in the en-
vironment to collect the necessary data for our ToM-based policy.
Furthermore, we have designed evaluation scenarios to validate
the effectiveness of our policy. Moving forward, our research will
focus on implementing and testing our policy to create a robust
and reliable solution that can enhance interaction quality and task
performance in various HRC scenarios.
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