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Robust optimisation of combined rainwater harvesting and flood mitigation 
systems 
Qiao Yan Soh, Edward O’Dwyer, Salvador Acha, Nilay Shah 
 
Highlights 

- Formulation of a two-player optimisation for RWH and flood mitigation system 
design. 

- Utilises generalised rainfall parameters, reducing need for high resolution 
data. 

- System design, catchment type and climate independent system design 
framework. 

- Outperforms traditional design methods, eliminating overflow events in 
simulation. 

- 32% improvement in harvested water yields in comparison to traditional 
systems. 
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and flood mitigation systems2

Qiao Yan Soha,∗, Edward O’Dwyera, Salvador Achaa, Nilay Shaha3

aSargent Centre for Process Systems Engineering, Department of Chemical Engineering
Imperial College London, London, SW72AZ, United Kingdom

Abstract4

Combined large-scale rainwater harvesting (RWH) and flood-mitigation systems
are promising as a sustainable water management strategy in urban areas. These
are multi-purpose infrastructure that not only provide a secondary, localised wa-
ter resource, but can also reduce discharge and hence loads on any downstream
wastewater networks if these are integrated into the wider water network. How-
ever, the performance of these systems is dependent on the specific design used
for its local catchment which can vary significantly between different implemen-
tations. A multitude of design strategies exist, however, there is no universally
accepted standard framework. To tackle these issues, this paper presents a two-
player optimisation framework which utilises a stochastic design optimisation
model and a competing, high intensity rainfall design model to optimise pas-
sively operated RWH systems. A customisable tool set is provided, under which
optimisation models specific to a given catchment can be built quickly. This re-
duces the barriers to implementing computationally complex sizing strategies
and encouraging more resource-efficient systems to be built. The framework was
applied to a densely populated high-rise residential estate, eliminating overflow
events from historical rainfall. The optimised configuration resulted in a 32%
increase in harvested water yield, but its ability to meet irrigation demands was
limited by the operational levels of the treatment pump. Hence, with the inclu-
sion of operational levels in the optimisation model, the framework can provide
an efficient large-scale RWH system that is capable of simultaneously meeting
water demands and reducing stresses within and beyond its local catchment.

Keywords: Rainwater harvesting, Flood mitigation, Robust stochastic5

optimisation, Sustainable environmental engineering, Decision tool, Urban6

residential estates7

1. Introduction8

Rainwater harvesting (RWH) systems are a strong candidate for sustainable9

urban water management infrastructure as they allow both the provision of a10

secondary water resource to tackle issues of increasing water demands, and pro-11

tection against localised flooding when rainfall intensities and volumes increase12
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ofwith climate change[1, 2]. This is increasingly important with climate change13

heightening water stresses around the globe, with both the number and sever-14

ity of extreme weather events rising steadily. The UN Office for Disaster Risk15

Reduction found that, between 2011-21, 75% of people who were affected by16

natural disasters were impacted by droughts or flooding[3]. Water conservation17

through efficient use of existing water resources, along with effective flood man-18

agement strategies, are key towards minimising losses that may occur following19

these extreme weather events[4].20

The system of interest in this study is a RWH and flood mitigation system21

that is also connected to the wastewater treatment network, hereon referred to22

as a large-scale RWH system. This is differentiated from smaller, harvesting-23

focused systems which are typically implemented on the domestic household24

scale. However, the implementation of these large-scale RWH systems, espe-25

cially in densely populated and highly developed urban areas, has been slow for26

its potential[5]. This can be attributed to difficulties in the standardization and27

hence sharing of knowledge and expertise for these systems[6]. Performance28

guarantees necessary for investments to be made can be difficult to achieve29

without expert knowledge or detailed simulations for each RWH system imple-30

mentation and can involve lengthy processes that only add to the barriers for31

implementing these systems[7, 8].32

The performance of integrated RWH-flood mitigation systems is highly sen-33

sitive to its local environment and this is reflective in the range of possible34

system designs seen around the world[9, 10]. This is a key contributor towards35

the difficulties in sharing expertise for these systems[11, 12]. Hence, appropri-36

ately sizing these systems for their catchment of service remains a significant37

challenge for urban planners and water managers around the globe. The de-38

sign of RWH systems are key towards their effectiveness as a sustainable urban39

water management strategy, especially when they are expected to be operated40

passively[13]. A one-size-fits-all solution therefore does not exist and each im-41

plementation of a large-scale RWH system would require significant effort to42

guarantee that the configuration of the system infrastructure would not only43

be cost-effective, but also be able to adequately satisfy both the local water44

reuse and flood prevention objectives. Whilst a multitude of simulation and45

optimisation models have been developed to evaluate system performance and46

design high-performance systems, these are not easily transferable or applicable47

between catchments and specific RWH system implementations. Thus a gap48

remains for a standardised strategy for designing RWH systems[14].49

Cities, industry partners, and academics alike have sought to address the50

challenge of adequately sizing RWH systems within the realms of their abilities51

and available resources. As such, there exists a wide range of sizing strategies52

which vary widely in their complexity. On one hand, design guidelines laid out53

by cities and other urban centres typically present highly simplified methods54

with the aim of decreasing the barriers towards implementing these systems.55

This is seen in the system sizing guidelines used in Germany and Portugal[15]56

where RWH systems are sized using generalised parameters such as annual non-57

potable water demand and/or annual rainwater yield. These design strategies58
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rainfall seasonality and short-term tail-events are not at all considered[1].60

Conversely, strategies developed by industry partners and academic stud-61

ies would commonly look to develop more complex algorithms and models62

since these institutions are normally better equipped, with greater access to63

computational resources and expertise. These methods can be divided gener-64

ally into simulation-model-focused approaches, and optimisation-model-focused65

approaches. Simulation-based approaches[16, 17] use models to derive values66

for specific desired key-performance indicators for an indicative rainfall profile,67

recording the changes over a range of possible tank sizes and graphically iden-68

tifying an optimal selection[18]. Common indicators used include measures of69

reliability[19], supply efficiency[1], and water savings[20, 21]. More sophisticated70

models that use probabilistic and/or optimisation methods have since also been71

shown to be capable of determining an optimal RWH tank system, with the72

objectives typically minimising total costs [22, 23], or in deriving an estimated73

probability of satisfying local water demands [24] or overflow volumes[25, 26].74

However, existing models tend to have low time resolution, which could be75

sufficient if the objective was solely to optimise for a system size suitable for76

satisfying local water demands. Within that scope, the simulation time step was77

found to be insignificant [27] and a coarsely discretized mass balance such as the78

Yield-After-Spill or Yield-Before-Spill algorithms using daily or monthly rain-79

fall would be adequate for estimating an optimal system size[28]. Under these80

models, the possibility of using RWH systems as a flood mitigation strategy81

through the use of coarse time resolution models is hence at best a secondary82

objective, rather than an objective of equivalent priority. In order to capture the83

occurrence of flash floods, which occur within the time frame of hours instead84

of days[29], models that have higher temporal resolution are needed.85

More recently, there has been increased interest in game-theoretic methods86

in optimisation, especially for problems with multiple stakeholders with indi-87

vidual objectives [30]. Game theory is commonly understood as the mathemat-88

ical modelling of interactions and strategies amongst rational agents, allowing89

the characterisation of how choices of one agent can impact that of another.90

This is an attractive feature as most global optimisation strategies have the91

implicit assumption that there is complete information, with clear strategies92

and mechanisms for finding a consensus between the multiple objectives [31].93

More specifically to water management systems, game theoretic optimisation94

approaches have been studied as a water resource allocation strategy and have95

been applied to the control and operation of a reservoir[32], a river basin[33],96

and drinking water transport networks[34]. Results from these studies have97

consistently shown that game theoretic optimisation can improve the both the98

individual and overall benefits received by their stakeholders and reduce the99

overall computational time to solution.100

This paper presents a two-player game-theoretic optimisation framework101

for sizing passively-operated RWH systems, which implements two compet-102

ing optimisation models to ensure that a robust system configuration is de-103

rived. Alternative strategies towards generating synthetic rainfall data would104
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consuming, with the quality dependent on the available rainfall data[35]. The106

competitive game allows an efficient derivation of rainfall patterns which re-107

moves the need for high resolution historical rainfall data for the optimisation-108

based sizing strategy to work effectively. This is aimed at improving the RWH109

system design process, allowing system designers to quickly derive an optimal110

design configuration using only a set of generalised rainfall parameters from the111

local catchment and a range of candidate system parameters. This work builds112

on the literature by providing novel presentations of:113

• An intuitive tool which allows optimisation models to be built and cus-114

tomised for individual large-scale RWH systems.115

• An optimisation-based system design and sizing strategy that minimises116

the prerequisites of familiarity and expertise in optimisation and compu-117

tational methods.118

• Reducing reliance of optimal system sizing on the accessibility and avail-119

ability of high-resolution rainfall data.120

These highlighted areas would contribute towards reducing the barriers to im-121

plementation and encourage improved designs of sustainable and efficient large-122

scale RWH systems in urban settings.123

The rest of the paper is organised as follows. Section 2 describes the method-124

ology and components of the two-player optimisation framework and outlines a125

case study to which the framework has been applied. Section 3 demonstrates126

the key results in characterising the behaviours of the framework and the perfor-127

mance of the derived systems in comparison to alternative system sizing method-128

ologies. Finally, Section 4 summarises the main conclusions, areas for improve-129

ments to the proposed framework, and its associated future developments.130

2. Methods131

A two-player approach is presented in this paper for optimally sizing and de-132

signing a multi-tank rainwater harvesting system, following a competitive game133

framework with two opposing players. The framework is implemented in Python134

using the Pyomo library[36] and the code is available upon request. Player One135

is a stochastic design optimisation model where its output strategy set is in136

the form of optimal system configurations, seeking an optimal tank design for a137

given set of rainfall patterns. Player Two is a deterministic optimisation model138

that derives a high intensity, high volume rainfall signal that can overwhelm a139

given tank design. Therefore, Player One’s objectives are to minimise overflow140

volumes and maximise rainwater yield over all rainfall input scenarios designed141

by Player Two, whilst Player Two aims to design a rainfall signal that would142

result in the maximum volume of overflow in the system configuration played143

by Player One.144

The overall workflow of the two-player framework is shown in Figure 1. The145

algorithm begins with Player Two designing a rainfall signal which results in146

the highest overflow volumes for the smallest system capacity from Player One’s147

4
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system configuration which minimises overflow volumes. With each rainfall149

profile designed in each iteration by Player Two, it is added to the set Player150

One considers in its optimisation process. This continues until one of the two151

possible convergence criteria is reached:152

(a) When Player Two is unable to find a rainfall pattern within the stipulated153

bounds that can generate overflow above a given acceptable threshold in154

the system configuration derived by Player One.155

(b) When Player One produces the same tank configuration as in the pre-156

vious iteration, signifying that it is not possible to achieve any further157

improvements to the overflow reduction performance through the system158

design.159

Figure 1: Flowchart summarising the proposed Two-player workflow.

A case study system based on an existing large-scale RWH system is used160

to demonstrate the behaviours and performance of the proposed two-player de-161

sign framework. The behaviours of the algorithm under various possible sets162

of user inputs are then characterised to ensure the framework behaves as in-163

tended. A selection of output system configurations are then evaluated using a164

simulation model to determine the effectiveness of the algorithm in producing165

well-performing RWH system configurations.166

The following subsections present the components of the two-player frame-167

work in further detail. Section 2.1 demonstrates the system configuration used168

to illustrate the working principles of the proposed two-player framework. De-169

tailed formulations of the constraints used in describing the system dynamics170

implemented in the optimisation models of both Player One and Two are then171

presented in Section 2.2 and further behavioural constraints for each player are172

described in Section 2.3 and Section 2.4. Finally, optimisation failure prevention173

and defaulting behaviours are outlined in Section 2.5 which helps to ensure the174
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models, for example as a result of a lack of solution time.176

2.1. Case study configuration177

The system configuration used in this study is a passively operated, under-178

ground large-scale RWH system which comprises a total of four distinct storage179

tanks, each dedicated to a specific performance goal as illustrated in Figure 2.180

The system serves a densely populated, high-rise residential estate in a tropical181

climate and is connected to the wastewater network to prevent long-term water182

retention to minimise pest growth. The ‘Separation’ tank serves as the initial183

receiver and filters the water into the ‘Harvesting’ and ‘Detention’ tanks based184

on the size and height of the openings between these tanks. The ‘Detention’185

tank is the main container used to temporarily hold excess water to be discarded186

from the catchment before it is released into the downstream public wastewater187

network. The ‘Harvesting’ tank stores captured water for local reuse, whilst the188

‘Treatment’ tank stores water that has been processed and is directly ready for189

use. The orifice which allows flows into the ‘Harvesting’ tank in this set up is190

designed to be above the bottom of the tank, such that any initial surface runoff191

containing sediments and dirt can be discarded, improving the cleanliness and192

quality of the water being harvested.

Figure 2: Multi-tank RWH system configuration.

193

Under this configuration, freshwater is used to supplement when there is194

insufficient volumes of water captured in the system to meet local non-potable195

water demand. In this study, the daily irrigation of green spaces within the196

residential estate is used as the only source of demand. This is assumed to197

be achieved through a drip irrigation system activated in the evenings when198

insolation levels are low. There are three main objectives for this system, which199

are:200

1. Minimise risk of surface overflows;201

6
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3. Maximise water availability for local reuse.203

The design variables for the optimisation models in Player One are therefore204

the tank areas and tank heights of all four tanks in the system, and the heights205

of the orifices that have an associated height parameter. More specifically, these206

are the flows that are labelled ‘SD2’, ‘SH’ and ‘DO2’ in Figure 2. Orifice areas207

are not implemented as a decision variable as these come in standard sizes and208

provide a smaller degree of freedom than the orifice heights. The inclusion of209

both the orifice heights and areas as decision variables would increase the size210

of the optimisation problem by introducing additional variables and a large set211

of constraints in accompaniment as more linearisations will be required. In this212

current implementation, the operational levels of the pump located at ‘HT’ are213

also not implemented as a decision variable, since this is viewed as an operational214

variable rather than a system design variable.215

2.2. Formulating optimisation model constraints for tank dynamics216

Both players in the algorithm abide by the same constraints surrounding the217

system dynamics. These include a mass balance for the tank, linear approxi-218

mations of orifice flow equations for each opening in the tank, the definition219

of when overflows occur in the tank, as well as a total discharge variable that220

adjusts the final outflow volumes to be consistent based on the available vol-221

ume of water available within the tank when there are multiple flow openings222

from the tank. The model is formulated as a Mixed Integer Linear Programme223

(MILP) to reduce the required computational time and increase the feasibility224

of the derived models. As the model is also stochastic, the problem size would225

increase exponentially as the number of scenarios increase, thus establishing226

that the derived model is linear is the most effective in ensuring that it remains227

tractable, especially in comparison to other optimisation model types such as228

the Mixed Integer Non-Linear Programme (MINLP), even if these may provide229

a more accurate representation of the system.230

The code structure for the two-player algorithm is built around a core file de-231

scribing the system dynamics, which is used to build a few generic tank system232

blocks. These blocks allow for optimisation models for different tank config-233

urations to be built quickly and can be quickly populated with data specific234

to the configuration to form a viable optimisation model. These basic blocks235

are implemented by the model files for both optimisation models used in this236

two-player algorithm, which ensures both players are constrained by the same237

system dynamics.238

The models are implemented in discrete time steps since rainfall data is239

typically collected using a relatively coarse temporal resolution. This however240

produces an inventory modelling problem where flows from the openings, which241

are dependent on the volume of water within the tank, V t, can change within the242

large time delta between time steps, resulting in an inaccurate representation of243

the mass flow dynamics. Therefore, an optimistic-pessimistic index α and β for244

the inflows It and outflows Ot from the tank respectively is introduced in the245

7
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represent this phenomenon. The values of α and β are derived empirically to247

improve the model performance. Whilst the overflow volumes W t are defined248

in this equation, this is insufficient to ensure that the model remains consistent,249

especially with the objective of maximising overflow volumes in the rainfall250

design model. Hence, a further definition of this behaviour is required and251

shown in Table 1.252

V t+1 +W t+1 =α(V t + It +W t) + (1− α)(V t+1 + It+1 +W t+1)

− βOt − (1− β)Ot+1
(1)

The discharge volumes from each orifice are characterised through non-linear253

orifice flow equations, which are functions of the coefficient of discharge Cd,254

orifice area θo, the gravitational constant g and the water level above the opening255

Lt in the form represented in Equation (2). However, the implementation of256

these equations would require the use of a Mixed Integer Non-Linear Programme257

(MINLP), which can be intractable and take a much longer solution time. To258

reduce the computational time and requirements of the derived optimisation259

models, a linear approximation is used in the form of Equation (3) such that a260

MILP can be implemented. The error resulting from such an approximation is261

low as the range of values used within these systems are typically limited by the262

depth in which these underground systems are allowed to reach. Since this is263

an approximation, the actual discharge from the tank is calculated later using a264

total discharge variable δ which ensures that the sum of all discharges calculated265

individually using Equation (3) is below the available volume of water in the266

tank at each time step.267

Do = Cdθo∆T
√
2gLt (2)

268

Dt
o = CdθoL

t∆T
√
2g (3)

These individual orifice discharge rates also need to be bound by the maxi-269

mum possible discharge rate of the orifice. This is dependent on the tank height,270

a decision variable, therefore these discharge bounds need to be implemented as271

constraints for the values to be calculated within the model.272

The remaining tank dynamics, such as the flow through orifices that sit above273

the bottom of the tank, pump operations, and overflow volume definitions are274

conditional events and are described by discontinuous dynamic equations. A275

summary of the discontinuous dynamics that can occur in a RWH system is276

described in Table 1, which follows either the f = max(x, y) selection logic, or277

a cases formulation type. For example, overflow events are discontinuous since278

these can only occur when the sum of the net inflow and existing volumes of279

water exceeds the capacity of the tank and should have a value of zero otherwise.280

The discontinuous expressions need to be formulated into algebraic expressions281

since conditional expressions are not valid as optimisation constraints, which282

are discussed further below.283

Equation (4) shows the formulation used to represent a max-value selection284

behaviour in the optimisation models, with minimisation behaviour following285

8
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Dynamics Mathematical Representation Formulation type

Conditional flows Dt
o =

{
Cdθo

√
2g(Lt − ηo)∆T Lt > ηo

0 Lt < ηo
max(Dt

o, 0)

Overflow W t =

{
It − C It − V > C

0 otherwise
max(W t, 0)

Total Discharge δt =

{
δ1 = V t + It

∑
oD

t
o > V t + It

δ2 =
∑

oD
t
o otherwise

min(δ1, δ2)

Pump (On/Off) Dt =





0 0 ≤ Lt ≤ roff

Dt−1 roff ≤ Lt ≤ ron

R ron ≤ Lt ≤ Lt

Cases

the opposite logic set. In this case, the selection logic assigns the variable f the286

value of x1 or x2 depending on which is larger, using the Big-M method where287

M is a large scalar value used to define a boundary that contains the feasible288

region of f , and ϕ is a binary variable that serves as the switch between the two289

possible values.290

f = max(x1, x2) generalised max equation (4)

f ≥ x1 (4a)

f ≥ x2 (4b)

f ≤ x1 + (1− ϕ)M (4c)

f ≤ x2 +Mϕ (4d)

The second discontinuous event type of operational cases can be described291

through the behaviours of the pump, which moves water through the treatment292

system, operated using an on-off controller. The pump activates when the water293

level in the tank exceeds a high ‘on-point’ level and turns off when it falls294

below the ‘off-point’ threshold. If the water level lies between these two points,295

it maintains its previous state. This can be represented mathematically by296

Equation (5), which demonstrates three possible dynamic equations fi(x) for297

9
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Dt =





f1(x
t) a ≤ xt ≤ b

f2(x
t) b ≤ xt ≤ c

f3(x
t) c ≤ xt ≤ d

generalised case equation (5)

ρt1 + ρt2 + ρt3 = 1 (5a)

f = f1(x
t
1)ρ

t
1 + f2(x

t
2)ρ

t
2 + f3(x

t
3)ρ

t
3 (5b)

xt = xt1 + xt2 + xt3 (5c)

aρt1 < xt < bρt1 (5d)

bρt2 < xt < cρt2 (5e)

cρt3 < xt < dρt3 (5f)

The operational region that the monitored value xt lies in at time t is given299

by a binary variable ρti, which is determined through the set of Equations (5d)300

to (5f) which establishes the bounds that define each region. Equation (5a)301

stipulates that only one region can be selected at any one time, and the discharge302

function is finally calculated as a linear combination of the three case functions303

as in Equation (5b), where only one function should be activated at any one304

time, corresponding to the values of their binary variables.305

Finally, to ensure that the model is physical, a volume conservation con-306

straint is implemented for each tank model. This follows the logic presented in307

Equation (6) and prevents the system from generating nonphysical sources of308

water within the model.309

αI0s + (1− α)Iτs − βδ0s − (1− β)δτs +
τ−1∑

1

Its

= V τ
s − V 0

s + (1− α)W 0
s + αW τ

s

(6)

For both the stochastic design optimisation and the rainfall design models,310

additional model constraints are implemented to define their individual design311

spaces. The stochastic design model requires additional constraint definitions312

to aid the system parameter selection, whilst the rainfall design model requires313

generalised rainfall parameters that define the feasible space for generating rea-314

sonable rainfall patterns.315

2.3. Player One: Stochastic design optimisation model316

The stochastic optimisation model is given a set of possible values for each317

of the system design parameters, which are the tank areas, tank heights, and318

orifice heights. The model then selects an optimal system parameter set from319

this collection that would be best to handle the set of rainfall profiles considered320

in each iteration, further constrained through a given upper bound on the total321

system capacity.322

The design optimisation model in Player One has been decomposed into in-323

dividual tank blocks, each corresponding to a single water tank in the multi-tank324
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Figure 3: Flow of information between modularised optimisation models.

system presented in Section 2.1. This allows non-linear flows between tanks to be325

excluded from the optimisation models and processed using a Python function326

outside of the optimisation models, such that each individual tank optimisation327

model is implementable as a mixed integer linear programme (MILP)[37]. The328

interactions and flow of information between each individual optimisation model329

are demonstrated in Figure 3.330

The modularised optimisation framework further allows the dedicated tanks331

to be designed accordingly with each of their corresponding individual purposes,332

on top of the overall system objectives outlined in Section 2.1. The specific tank333

purposes and their corresponding implemented model objectives of each of the334

component tanks for the multi-tank RWH system are shown in Table 2.335

However, in the practical implementation of the schematic shown in Figure 3,336

the optimisation models solved first would see a larger allowable capacity, and337

hence be given a larger possible design space. Meanwhile, downstream tanks338

can only use any remaining allowable capacities to determine an optimal config-339

uration for their respective objectives. Hence, there is inherently a prioritisation340

and bias towards designing the tanks which are optimised first. This means that341

the ‘Separation’ tank, and its objective would inevitably be given the highest342

priority. As such, the model was designed to minimise surface overflows as this343

is a critical system objective. In the implemented case study, the next priority344

was to provide higher harvested water yields and satisfy demands. Therefore,345

the Harvesting and Treatment tank branches have been set to be solved next,346

with the Detention tank being implemented as the last step in the optimisation347

chain.348

Each tank model is given a set of tank parameter options that it is allowed349

to select from to form an optimal tank configuration. This is implemented350

using a binary selection logic shown in Equation (7) for each system design351

parameter P k, each with a possible set of n values pki = {pk1 , pk2 , . . . , pkn}, and352

a corresponding set of binary variables ψk
i = {ψk

1 , ψ
k
2 , . . . , ψ

k
n} to select one353

11
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system.

Tank Design Specifications Model Objectives
Separation

• Prevent flooding on catchment
surface.

• Reduce required tank sizes.

Minimise total overflow
over all input scenarios,
with a wasted capacity
penalty.

min


∑

t,S

W t
S + PC




Detention
• Ensure discharge from system
is below allowable rates.

Minimise tank capacity

min (C + PW )

Harvesting
• Increase water availability
• Increase volume of usable wa-
ter

Maximise pump output
over all scenarios

max


∑

t,S

Dt
s




Treatment
• Increase water availability
• Satisfy local water demands

Minimise freshwater use
over all scenarios

min


∑

t,S

F t
S




optimal parameter value, as defined in Equation (8).354

P k =
∑

i

pki ψ
k
i (7)

∑

i

ψk
i = 1 (8)

The capacity C and volume V t variables need to be defined such that the355

mass balance equations in Equation (1) and overflow equations in Table 1 can356

be represented linearly. As the tank area and tank heights of the system are357

decision variables and are defined through a binary selection of an optimal value358

from a given parameter set, the multiplication of these design variables needs359

to be defined through the following sets of constraints.360

The relationship between the volume V t and water levels Lt in the tank is361

12
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∑
aiλ

a
i , the tank area. Whilst this362

multiplication of variables results in a non-linear constraint, it can be linearised363

with the introduction of a dummy variable zti and a large upper bound valueM .364

The value of the upper bound value M needs to be sufficiently large to contain365

all possible values of Lt. The relationship is defined in Equation (9) and follows366

the logic set in Equations (10a) to (10d).367

function definition V t = LtA = Lt
∑

m

amλm (9)

368

function implementation V t =
∑

i

amz
t
m (10a)

ztm ≤ λmM (10b)

dummy variable definitions ztm ≤ Lt (10c)

ztm ≥ Lt − (1− λm)M (10d)

The volume variable is bound by the tank capacity and is a function of the369

discretised tank height H =
∑
hiϕ

h
i and tank area A, as demonstrated in Equa-370

tion (11). With the binary selection formulation of both decision variables, this371

can be similarly linearised into the form shown in Equation (12a) with the aid372

of a dummy variable ym,j = λmϕj that behaves according to the logic of multi-373

plying two binary variables, achieved through the set shown in Equations (12b)374

to (12d).375

function definition C = HA =
∑

i

hiϕi
∑

m

amλm (11)

376

linear formulation C =
∑

i,j

hiajyim (12a)

ymj ≤ λm (12b)

dummy variable definitions ymj ≤ ψj (12c)

ymj ≥ λm + ψj − 1 (12d)

The height of the orifices ηo must be within the height of the tank. Since377

this is a design variable, the optimal orifice height needs to be determined by378

multiplying a scalar value ω in the range of [0, 1] with the final selected orifice379

height, as defined in Equation (13). The algebraic formulation of this equation380

would follow the same logic as in the calculation of the capacity variable.381

ηo =
∑

i

ωiψiH =
∑

i

ωiψi

∑

j

hjϕj (13)

With the competing objectives of minimising surface overflows and min-382

imising tank capacities, penalties are designed for each of the individual tank383
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models. For the ‘Separation’ tank, the objective is to minimise the total over-385

flows with the lowest possible tank capacity and a function was implemented386

to penalize any completely unused, and hence wasted tank capacities. This is387

realised by defining the maximum wasted tank capacity ΩS as the difference388

between the tank capacity and the maximum volume of water held in the tank389

for each provided scenario, as in Equation (14) and assigning a penalty cost390

based on a tiered cost function, following Equation (15).391

ΩS = C −maxV t
S (14)

PC =





ρ1 0 ≤ ΩS ≤ 0.1C

ρ2 0.1C ≤ ΩS ≤ 0.5C

ρ3 0.5C ≤ ΩS ≤ C

(15)

Finally, whilst the main objectives of the remaining tanks are not related392

to the surface overflows, overflows from these tanks would back-flow into their393

source tanks and can result in surface overflow. A threshold-based overflow394

penalty function is therefore implemented following Equation (17) which pe-395

nalises excess overflow volumes χt, defined as overflow volumes above a given396

threshold value ζ with a scalar cost CW as shown in Equation (16).397

χt = max(W t − ζ, 0) (16)

PW =
∑

t

χtCW (17)

These penalty functions are implemented to achieve a balance between the398

competing overall system objectives and individual component objectives and399

can be adjusted on an individual implementation basis to reflect the desired400

prioritisation and biases required in a given tank system design.401

2.4. Player Two: Rainfall design model402

Acting as Player Two in the framework, the rainfall design model is a second403

optimisation model which looks to maximise an overflow response for a given404

input system configuration. With the system presented in Section 2.1, the405

tank component responsible for directly demonstrating surface overflows is the406

‘Separation’ tank. Hence, only this tank is implemented in the rainfall design407

optimisation model to reduce the complexity of the optimisation problem and408

in turn to reduce solution times.409

By only implementing the ‘Separation’ tank in the rainfall design model in410

Player Two, the possibility of water not being able to flow into the downstream411

tanks when these are full is ignored. As such, the partial system model would412

provide a conservative calculation of overflow in comparison to a full system im-413

plementation. This means that all overflow calculated from this partial system414

model will result in overflows from a full model, but overflows could still occur415

for profiles which this model calculates no overflows for.416
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alised rainfall description parameters need to be implemented on top of the tank418

dynamics described in Section 2.2. Values of these parameters in this study are419

derived using historical data collected for the given service catchment area, and420

are:421

• maximum simulation horizon volume;422

• maximum 2-hour window volume;423

• maximum increment and decrement rates between time steps;424

• maximum volume in a single time step.425

Other generalised parameters can also be utilised in the rainfall design model,426

such as the average rainfall volumes, or time-based constraints to dictate the427

shape of the derived rainfall, for example when rainfall would only occur during428

certain periods in the day, such as to represent different storm types. The rainfall429

design parameters used can be altered based on what data and information are430

available for the region, as long as the set is sufficient in characterising realistic431

rainfall patterns.432

2.5. Failure prevention and substitution function433

With the modularised design optimisation model, failures in the optimisation434

of downstream tanks can occur if there is no feasible combination of parameters435

from the parameter options after solutions have been found for the upstream436

tanks. The risk of such occurrences is reduced by reserving sufficient capacity437

for at least the smallest total capacity for all downstream tanks.438

In the event of a failure, however, a set of parameters would still be required439

to allow the two-player algorithm to continue. As such, an output substitution440

function was implemented to return a set of tank parameters whenever an opti-441

misation model fails to output a feasible solution. After every tank optimisation442

attempt, the algorithm determines if a valid output has been produced. If the443

tank has downstream tanks, the optimisation model for these is skipped, and444

the source of the failure is recorded. This allows optimisation models for parallel445

flow streams to continue running.446

The defaulting algorithm is called after all optimisation models have been447

attempted. This is implemented such that the derived substitute configuration448

would maximise the total allowable capacity of the system and distributes this449

capacity between the tanks within the set that needs substitute parameters.450

This procedure is outlined below.451

1. Calculate the remaining capacity that the algorithm is allowed to assign,452

TA, to the defaulting set S.453

2. Determine a matrix Cj of possible capacities for each tank j in the set454

using their input parameters, and all possible total capacities T .455

T S =
∑

j

Cj =
∑

j

AjHj (18)

3. Identify the selected capacity CS , defined as the maximum possible ca-456

pacity from the parameter combinations, that is under the total capacity457
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after setting all ineligible options to zero.459

Cs = max(T s > TA) (19)

4. If the size of set S ≥ 1, find the set of individual tank capacities that460

has the lowest set variance to distribute the total capacity between all the461

tanks that are in the defaulting set S. This minimises presumptions made462

about the system behaviour and dynamics, providing a default configura-463

tion unbiased to any of its objectives.464

5. For each tank, identify the row and column indices for elements in the465

matrix that corresponds to the capacity selected based on Equation (19).466

If there are multiple possible combinations of tank and area parameters467

which correspond to the same tank capacity, select the combination with468

the largest area parameter which should provide a lower outflow rate from469

the tank. This reduces the risk of overflows and stresses to any downstream470

tanks and systems.471

In summary, the behaviour of the substitution function implements an in-472

tuitive design principle for the RWH systems. This sought to maximise the473

allowable capacity to reduce overflow risks, but also opting for a tank system474

which maximises the area parameter over the height parameter, which serves to475

reduce discharge rates that can result in downstream stresses.476

3. Results and Discussion477

In order to determine the performance and behaviours of the proposed algo-478

rithm under different possible input sets that a user might provide, the impact479

of two framework parameters were characterised using the case study described480

in Section 2.1. These framework parameters are:481

• Solution times: The time limit provided for both optimisation models482

to find an optimal solution. Sufficient time should be given to ensure that483

the optimisation algorithm can search the given design spaces thoroughly,484

whereas a longer search time can help with identifying a higher-quality485

solution.486

• Convergence threshold: The overflow volume at which the system is487

defined to have converged. For a system to be robust under the time488

step sizes of both the optimisation model and a high-resolution simulation489

model, this value would be zero.490

The behaviour of each optimisation model parameter is characterised indi-491

vidually. An initial input set of parameters, denominated here as a ‘Control’492

experiment, is used as the basis from which parameter values are adjusted for493

each of the parameters characterised. This is shown in Table 4 and provides a494

platform for comparing behaviours between all characterisation experiments.495

Each of the optimisation framework parameters is evaluated and discussed496

in the following subsections to characterise the behaviour of the two-player al-497

gorithm. This is measured using the following model behavioural indicators:498
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whether this is through achieving convergence or in reaching the maxi-500

mum possible number of iterations. This is ideally minimised to reduce501

computational requirements.502

• Number of iterations: The number of global iterations required to find503

convergence. A smaller number of iterations would lead to faster solution504

times. However, a larger iteration number does imply multiple rainfall505

profiles have been used to determine the optimal system configuration,506

and hence could be preferable as a measure of the reliability of the system507

output.508

• Convergence and type: Indicates whether convergence has been found509

through the system design or rainfall overflow maximisation models. Con-510

vergences from the rainfall design phase would be preferable for a robust511

solution, whilst convergences in the design would provide the best possible512

overflow reduction performance under the given design constraints.513

• Failures in stochastic design phase: A list of tank nodes where no514

solutions were found within the given time limits. Ideally, there would be515

no failures in the optimisation models as that would allow the algorithm516

to best be able to calculate an optimal balance for all the tank modules.517

Finally, a selection of the derived system capacities from the characterisa-518

tion experiments is evaluated for their performance under 700 different historical519

rainfall profiles, which represents the upper-ranges of rainfall volumes that the520

system can expect to service. This was executed using a high time-resolution521

simulation model which represents the detailed system dynamics through im-522

plementing mass balance and orifice flow equations. The rainfall profiles were523

extracted, based on their date-stamp, from a historical time series to generate524

24-hour long rainfall profile segments with timestep sizes of 5 minutes. Each525

of these segments is utilised as a possible rainfall profile and simulated to de-526

termine the performance of the system under a wide range of rainfall types it527

can expect to manage. The performance metrics of interest for the case study528

system, as outlined in Section 2.1 pertains to the system’s ability to reduce529

overflow risks, provide water availability, and satisfy a given irrigation demand.530

These metrics and the system performances are discussed further in Section 3.4.531

3.1. Impact of time limits532

Both optimisation models will require sufficient time to find a solution, and533

a lower time limit can reduce the solution quality as the optimiser may be534

unable to search the design space thoroughly. To characterise the impact and535

determine the minimum solution time, experiments running both higher and536

lower solution time limits to the values used in the ‘Control’ experiment are537

discussed in this section. The time limit shown for the stochastic design models538

is for each individual tank optimisation module.539

The results are summarised in Table 3, which demonstrates that the stochas-540

tic optimisation model generally requires more than 600s for each tank optimi-541

sation, to ensure that there is sufficient time for a solution to be found. This542

17



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofis especially important in reducing the reliance on the defaulting algorithm, for543

when the number of iterations increase and the problem grows exponentially.544

Solutions containing a defaulted parameter would not be a guaranteed optimal545

solution and hence should be avoided as much as possible.

Table 3: Summary of behaviours for optimisation model time limits. Altered parameter values
highlighted in bold.

Experiment
RR1 RR2 C SO1 SO2

Parameters
RR Time limit (s) 30 180 60 60 60
SO Time limit (s) 600 600 600 300 900

Indicators
Time taken 2:43:01 1:56:23 2:47:41 1:40:34 2:07:12

Number of iterations 8 6 8 9 6
Convergence type RR SO RR SO SO

Failures Det Det Det All -
Total capacity (m3) 900 890 900 900 840

546

When examining the total algorithm run time and number of iterations used547

to determine a solution in these experiments, it can be observed that an increase548

in model allowable time limits can help to improve the derived solution quality,549

and in turn, reduce the number of iterations required to find an optimal solution.550

This reduction in the number of required iterations can help to reduce the total551

algorithm run time, as observed by comparing these behaviours from the RR1552

experiment with that of RR2, and separately when comparing the Control and553

SO2 experiments. Lastly, the total capacities found by each of the experiments554

have shown that it is highly impacted by the defaulting algorithm, with all ex-555

periment runs that showed failure demonstrating capacities much either exactly556

or very close to the total allowable capacity given for the system, whilst the557

only experiment with no failures from the stochastic design optimisation model558

providing a smaller tank option. This shows that in preventing failures from559

the optimisation models, a better balance between the multi-objectives of the560

system will be derived, as expected from the design of the defaulting algorithm561

behaviours.562

On the other hand, changes to the time limits allowed for the rainfall design563

model have shown that it has minimal impact on the output rainfall patterns.564

An inspection of these outputs demonstrated that the rainfall patterns generated565

during the RR time limit experiments are identical to those found in the control566

experiment, with the only difference with the design model producing more567

iterations when the algorithm has deemed it necessary. This shows that under568

the given set of rainfall parameters, there is a set of rainfall patterns that is569

globally optimal in generating overflow events.570
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The algorithm stops when the rainfall design model is unable to find a rain-572

fall pattern that can create overflows above a given convergence threshold value.573

This parameter is key towards how quickly the algorithm can converge and pro-574

duce a solution and is significant in ensuring that the output system configura-575

tion adequately satisfies the overflow prevention objectives.576

Figure 4 demonstrates the maximum overflow volumes calculated in each577

iteration of the rainfall design model in the ‘Control’ experiment and shows578

that there is a rapid decay in the overflow generated within the first optimisation579

iteration. Increasing the threshold levels at which convergence is defined was580

demonstrated to reduce the number of iterations required and hence the time581

and computational resources required to produce a solution. For the same582

set of input parameters, the convergence behaviour follows the overflow graph583

exactly, where termination was called after iterations 1, 4, and 5 for threshold584

definitions of 100 m3, 50 m3 and 10 m3 respectively. The outputs from each

Figure 4: Calculated overflow levels from RR model.

585

of the threshold definitions also provided an insight into the behaviours of the586

algorithm when there is a softer threshold on the overflow constraint. As the587

threshold is increased and more overflow is allowed in the optimisation model,588

the ‘Separation’ tank size is reduced from 450 m3 to 360m3, freeing up allowable589

capacities to be used in the other tanks in the system. In addition, with lower590

threshold overflow volumes, both the height of the secondary outlets of the591

‘Separation’ and ‘Detention’ tanks, ‘SD2’ and ‘DO2’ are reduced significantly592

from 1.2 m and 0.6 m, to 0.9 m and 0.1 m respectively to reduce the risk of593

overflow events in both tanks.594
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necessarily correspond to any overflow event in the simulation model. Whilst596

the same system dynamics are implemented in both models, the optimisation597

model utilises a much coarser 5-minute step size in comparison to the one-second598

step size used in the simulation model. This results in a disparity of overflow599

behaviours, where a higher rainfall inflow volume is required to generate an600

overflow event in the simulation model than in the optimisation model. Since601

the simulation model is of much higher time resolution and hence accuracy,602

this means that the convergence threshold used in the two-player algorithm can603

be much higher than the actual desired threshold volume. Through adjusting604

this optimisation model parameter, the algorithm run time can be improved and605

computational requirements reduced by requiring a smaller number of iterations606

without significantly impacting the overflow risk reduction performance of the607

derived optimal configuration.608

3.3. Algorithm behavioural dependencies and tuned input parameter set609

With each set of characterisation experiments, the main dependencies for610

each behaviour can be summarised through the following:611

• The number of iterations required to find convergence is a major factor in612

determining the probability of receiving an optimisation error and the time613

taken to derive a solution, but this is also dependent on the convergence614

threshold of the two-player optimisation framework.615

• The number of failures encountered in the stochastic optimisation models616

increases with the number of iterations required as the time required to617

derive a solution increases exponentially between each iteration. Thus,618

there is a need to ensure there is sufficient time for the stochastic op-619

timisation model to find a solution and maximise the capabilities of the620

stochastic optimisation model since the defaulting algorithm would always621

aim to maximise the allowed system capacities. This suggests that there622

should be an implemented lower bound for the time limit allowable for623

this parameter.624

• The maximum number of iterations allowed for the algorithm is a key625

factor in ensuring that the algorithm is not allowed to run forever and626

should be a sufficiently large number to best allow the algorithm to con-627

verge. Through the characterisation experiments, it was found that 6-8628

iterations were sufficient in providing convergence in most cases.629

With the behaviours of the algorithm characterised, a ‘tuned’ input set as630

shown in Table 4 was used to derive an optimal system design for the case631

study to demonstrate the potential of utilising the two-player algorithm, in632

comparison to an alternative system design strategy. The objectives were to633

minimise the total system capacity as much as possible on top of the overflow634

and harvesting objectives. A non-zero overflow threshold value was implemented635

to reduce the computational requirements, and a value lower than the time step636

size difference was selected to decrease the likelihood of observing overflows in637

the more accurate simulation model. As the characterisation experiments also638
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more time, this was increased to 900 s for each tank optimisation. As the640

rainfall design model was minimally impacted by the solution time, hence this641

was maintained at 30 s. Under this set of ‘tuned’ parameters, the stochastic642

optimisation model had succeeded in all iterations and converged following the643

non-zero threshold level. This gave a total system capacity of 590 m3.

Table 4: Input parameter values and sets used in the ‘Control’ and ‘Tuned’ experiments.

Input Parameters ‘Control’ ‘Tuned’

Total Allowable Capacity 900 m3 600 m3

SO Time Limit 600 s 900 s
RR Time Limit 60 s 60 s

Parameter Set Space ‘Large’ ‘Small’
Penalty Weights Unscaled High

Convergence Threshold 0 m3 180 m3

644

3.4. Performance of output configurations645

A selected set of output configurations, generated using a range of different646

input parameters, was evaluated using the simulation model for their perfor-647

mance in meeting the objectives of overflow reduction and demand satisfaction.648

These are derived from the behavioural characterisation experiments, where ex-649

periments 1 and 2 tested the size of the set of input design space, experiments650

3 to 5 adjusted the weight given to the penalty function of the ‘Separation’651

tank, while experiments 6 to 8 were derived under increased overflow conver-652

gence threshold levels. The configurations were selected to determine (a) the653

overflow mismatch levels between the optimisation and simulation models, and654

(b) the performance of a wide range of possible system configurations that is655

found through the two-player algorithm. Four statistical indices were collected,656

each defined as:657

• Overflow risk: The percentage of simulated scenarios that demonstrated658

any occurrences of overflow.659

• Harvesting potential: The percentage of simulated scenarios that har-660

vested any amount of rainwater.661

• Demand satisfaction: The percentage of simulated scenarios where the662

irrigation demand is fully met.663

• Demand non-fulfilment: The percentage of simulated scenarios where664

all 47 m3 of the irrigation demand is met completely using the freshwater665

supply.666

Figure 5 plots the four statistical indices found for each of the simulated667

configurations derived from the selected experiments. It demonstrates that the668

configuration 2, derived under the ‘Small Parameter Set’ inputs has the best669
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strates overflow, albeit only in 1% of the simulated cases and with a maximum671

volume of 49.4 m3.

Figure 5: Statistical indicator values for each experiment.

672

All other experiments eliminated overflow completely from the simulated673

historical rainfall days. This includes configurations 6 to 8 which are derived674

under non-zero overflow thresholds, each corresponding to an optimisation in-675

stance that demonstrated overflow. This confirms that a higher overflow thresh-676

old value can be used with the optimisation models without impacting the ro-677

bustness of the system whilst improving the harvesting potential of the output678

system configuration. The threshold overflow level at which this is true is a679

function of the time step size difference between the simulation model and the680

optimisation models.681

Finally, the performance of the system derived using the ‘tuned’ input pa-682

rameter set was compared to that of an existing system. The exact method for683

deriving the existing system is not known and is assumed to be a more traditional684

sizing strategy, without the use of optimisation-based methods. The statistical685

indicator values are shown in Figure 6, demonstrating that the ‘tuned’ system686

configuration can completely eliminate overflow for historical rainfall days, with687

more days in which it is capable of completely meeting irrigation demands with688

the harvested rainwater.689

However, the existing configuration can harvest water from a wider range of690

rainfall types, having collected any amount of water from 99.3% of the simulated691

scenarios in comparison to the 77.4% under the ‘tuned’ input configuration. Ad-692

ditionally, the ‘tuned’ input configuration had demonstrated significantly more693

days in which it required freshwater from the mains supply to completely sat-694

isfy the daily irrigation demand, with 56% of the simulated scenarios showing695

no demand being met by harvested rainwater in comparison to 16% from the696

existing configuration. The poorer performance in satisfying demand in more697
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Figure 6: Statistical performance indicator values for two-player optimised system configura-
tion and an existing configuration.

scenario types for the ‘tuned’ input parameter set was found to be a result of the698

on/off operating levels of the pump that connects the ‘Harvesting’ and ‘Treat-699

ment’ tanks. These levels were not included in the optimisation models as these700

were viewed as part of the operational policy of the system, rather than the701

design of the system configuration. With the operational levels calibrated for a702

smaller ‘Harvesting’ tank with a smaller tank area, the implementation of these703

levels in a tank with a larger area implies that a much higher rainfall volume,704

which is not attainable beyond a given total rainfall volume, would be required705

to activate the pumps.706

4. Conclusions707

This paper presented a two-player algorithm for the robust sizing and design708

of a multi-tank RWH and flood-mitigation system, incorporating a stochastic709

design optimisation model and a high intensity rainfall design model. This was710

developed to reduce reliance on the availability of high-resolution rainfall data in711

computationally-intensive optimisation-based system design and sizing strate-712

gies and allows efficient systems to be designed even for catchments with minimal713

rainfall data. The optimisation tools presented in this study were structured714

to improve the system design process, in turn reducing the barriers to imple-715

mentation of more efficient and sustainable large-scale RWH systems. This716

sought to build on existing literature and work by improving the accessibility717

and availability of more advanced computational methods to system designers718

and experts that may not be familiar with such strategies, allowing the bene-719

fits of implementing these methods to be reaped without a significant learning720

curve. This is crucial towards building a more sustainable and resilient urban721
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minimising possible flood risks.723

The framework was applied to a large-scale RWH system that would service724

a densely populated high-rise residential estate which uses the harvested water725

yields for irrigating its green spaces. Using this case study, the behaviours726

and interactions of the algorithm were characterised for a range of possible727

model inputs which limits search times and convergence thresholds. From the728

characterisation experiments, it was found that:729

• If failures are encountered in the stochastic optimisation model, the de-730

faulting algorithm will always seek to maximise the allowable design space.731

• Failures were found to be mostly a function of the time limit provided732

to the stochastic optimisation models, hence the stochastic optimisation733

model needs to be given sufficient time to search for a solution. This was734

found to be approximately 900 s for each individual tank optimisation735

module and would help in producing higher quality solutions, which in736

turn can reduce the number of iterations required for finding a converged737

optimal solution.738

• The overflow convergence threshold can be larger than zero and still pro-739

vide a robust performance under the simulation model due to the large740

time-step size used in the optimisation models. This is a function of the741

time step size difference between the simulation and optimisation models.742

The performance of the output configurations were evaluated, which showed743

that a stochastically optimal configuration can significantly reduce overflow744

risks, with no overflow events in the simulated historical rainfall scenarios. In745

comparison, the existing system configuration, derived using more traditional746

sizing strategies demonstrated overflow events in 7.6% of the simulated scenar-747

ios. Whilst the rainwater harvesting potential of the configuration derived under748

the proposed can be improved to provide water over a wider range of possible749

rainfall types, it was found that this had been limited by the operational levels750

of the pump that serves between the ‘Harvesting’ and ‘Treatment’ tanks and751

is a parameter that can be easily transformed into a decision variable in the752

optimisation modules.753

Therefore, further improvements to the algorithm in achieving the technical754

objectives of controlling water volumes could be implemented and are sum-755

marised through the following:756

• The inclusion of more system parameters and hence the degrees of free-757

dom, such as the operational levels of pumps so that the solutions are not758

constrained by assumptions and designs made with previous systems.759

• A reward function can be implemented to provide more information to760

the optimisation model about the multi-objectives.761

Further work looks at integrating the algorithm and models demonstrated762

in this paper with the derivation of optimal control policies, such that a holistic763

tool can be developed for the simultaneous optimisation of the design and control764

of RWH systems. The implementation of optimal control policies would require765

active operation and can be realised for example with the use of sensors and766

24



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofactuators. With the integrated design and control optimisation providing a767

high degree of freedom, improvements to RWH system performances can be768

maximised by providing the system with efficient infrastructure design with769

added flexibility to contain and provide water availability over a large range of770

possible rainfalls.771

List of Symbols772

773

Sets774

j Tank index775

o Orifice index776

S Scenario index777

t Time step index778

τ Time set index subset without initial timestep779

Parameters780

am Tank area option m (m2)781

Cd Coefficient of discharge782

CW Cost of excess overflow ($)783

g Gravitational constant784

hi Tank height option i (m)785

M Scalar value of big-M method786

R Pump Rate (m3/s)787

ron Pump operation on-level (m)788

roff Pump operation off-level (m)789

ωk Orifice height option k (m)790

α Inflow weighting factor791

β Outflow weighting factor792

∆T Time step size (s)793

ζ Threshold overflow volume (m3)794

Continuous Variables795

θo Area of orifice o (m2)796

A Tank Area (m2)797

C Tank Capacity (m3)798

Dt
o Discharge from orifice o during time step t (m3)799

F t Freshwater used in time step t (m3)800

H Tank height (m)801

It Inflow to tank during time step t (m3)802

Lt Level of water in tank during time step t (m)803

Ot Outflow to tank during time step t (m3)804

PC Penalty cost for wasted capacities805

PW Penalty cost for excess overflow volumes806

V t Volume of water in tank during time step t (m3)807

W t Overflow volume from tank during time step t (m3)808

δt Total discharge from tank in time step t (m3)809
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ofηo Height of orifice o (m)810

χt Excess overflow in time step t (m3)811

Binary Variables812

ϕ Binary variable for tank height selection813

ψ Binary variable for orifice height selection814

λ Binary variable for tank area selection815
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