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Abstract
The classification of point gap topology in all local non-Hermitian (NH) symmetry classes has
been recently established. However, many entries in the resulting periodic table have only been
discussed in a formal setting and still lack a physical interpretation in terms of their bulk-boundary
correspondence. Here, we derive the edge signatures of all two-dimensional phases with intrinsic
point gap topology. While in one dimension point gap topology invariably leads to the NH skin
effect, NH boundary physics is significantly richer in two dimensions. We find two broad classes of
non-Hermitian edge states: (1) infernal points, where a skin effect occurs only at a single edge
momentum, while all other edge momenta are devoid of edge states. Under semi-infinite boundary
conditions, the point gap thereby closes completely, but only at a single edge momentum. (2) NH
exceptional point dispersions, where edge states persist at all edge momenta and furnish an
anomalous number of symmetry-protected exceptional points. Surprisingly, the latter class of
systems allows for a finite, non-extensive number of edge states with a well defined dispersion
along all generic edge terminations. Concomitantly, the point gap only closes along the real and
imaginary eigenvalue axes, realizing a novel form of NH spectral flow.

1. Introduction

The study of non-Hermitian (NH) band theory has gained increasing attention in recent years, with
potential applications in optics [1–6], condensed matter physics [7–29], and quantum information
processing [30–35]. NH topological phases have attracted particular interest due to their unconventional
bulk-boundary correspondence [36–59]. One of the prime examples is the NH skin effect, in which an
extensive number of states localizes at the boundary of a one-dimensional (1D) system [60–69]. The NH
skin effect can be enhanced by symmetries, for example to a Z2 skin effect in 1D time reversal-symmetric
systems [66]. However, NH topological phases are not limited to 1D: NH internal symmetries give rise to a
total of 38 symmetry classes, which were topologically classified for all spatial dimensions in the seminal
works of references [40, 66, 70]. The physical consequence of this classification are new forms of dynamical
and topologically protected edge states. Intrinsically NH systems have a point-gapped bulk spectrum, in
which complex eigenvalues surround a region devoid of eigenstates [40, 50]. Crucially, such Hamiltonians
cannot be adiabatically deformed to purely (anti-) Hermitian limits. While the NH skin effect constitutes the
bulk-boundary correspondence of nontrivial 1D point gap topology, to date, there is no systematic study of
the boundary physics of two-dimensional (2D) NH systems.

In this paper, we derive the edge signature of all intrinsically point-gapped phases in 2D. These phases
cannot be trivialized by coupling to NH line-gapped phases or symmetry-preserving perturbations as long as
the point gap remains open [66]. To establish the bulk-boundary correspondence, we focus on the spectrum
with semi-infinite boundary conditions (SIBC). The SIBC spectrum is related to the ϵ-pseudospectrum,
which captures the behavior of a Hamiltonian under small perturbations of orderO(ϵ) [66, 69]. As such, it
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provides a robust observable for NH systems, which in general can be highly sensitive to infinitesimal errors.
Moreover, only the SIBC spectrum—and not the spectrum under open boundary conditions (OBC) – allows
for a one-to-one correspondence between the bulk topological invariants, calculated in periodic boundary
conditions (PBC), and boundary dispersion [71]. Our approach, therefore, differs from the OBC treatment
of Nakamura et al [72]. Depending on the NH symmetry class, the boundary response falls into one of two
classes:

(1) Infernal points (IPs): The point gap remains open at generic values of the edge momentum k∥, but
completely fills up with an extensive number of SIBC edge states at one of k∥ = 0,π (see figure 1(a)).

(2) Exceptional points (EPs): As k∥ is varied, the edge state disperses with a square-root singularity for real
and imaginary parts of the spectrum [73–75]. Concomitantly, the SIBC point gap only fills up along the
real and imaginary axes (see figure 2(a)).

Both types of edge states are topologically protected and anomalous in the sense that they cannot be realized
in a 1D lattice system. We begin by discussing case (1) for the specific example of NH symmetry class AII†,
highlighting the unique spectral signature and edge state. Next, we derive the general criterion for infernal
edge modes. As an example for a NH symmetry class without an IP, we then discuss case (2) in NH
symmetry class AIIIS− . Based on these two paradigmatic signatures, we identify the nature of edge state for
each NH symmetry class that allows for intrinsic point gap topology in table 1.

2. Infernal edge modes

We begin our survey of edge modes with the specific example of NH symmetry class AII†, which was also
discussed in the appendix of Okuma et al [66]. This class is characterized by a pseudo-time-reversal
symmetry UT H(k)TU†

T =H(−k), where UT is a unitary operator obeying UT U∗
T =−1. The intrinsic

point gap topology is classified by a Z2 invariant ν(E0) ∈ {0,1} [40], where E0 is any eigenvalue inside the
point gap. Relying on the topological equivalence between a NH Hamiltonian H and an extended Hermitian
Hamiltonian (EHH) H̄, defined as [76, 77]

H̄=

(
0 H− E0

H† − E∗0 0

)
, (1)

we can derive the signature of the nontrivial point gap phase with ν= 1. The presence of a point gap of H
around E= E0 results in a gapped spectrum of H̄ around zero energy. (We only refer to the eigenvalues of H̄
as energies because the eigenvalues of the NH Hamiltonian H involve not only energies but also lifetimes.)
On the other hand, the existence of exact topological zero-energy eigenvalues in H̄ corresponds to protected
states at E= E0 within the NH point gap. The EHH for NH class AII† is in Hermitian symmetry class DIII,
regardless of the choice of E0. Class DIII Hermitian systems are also Z2-classified in 2D [78], so that a
nontrivial point gap in NH class AII† maps to a topological superconductor phase in class DIII. This phase
hosts helical boundary modes that cross zero energy at a time-reversal invariant momentum (TRIM) (see
figure 1(d). Crucially, due to the time-reversal (TRS), particle-hole (PHS) and chiral symmetry (CS) of
Hermitian class DIII, the Kramers pair cannot be moved away from the TRIM and zero energy. In the NH
SIBC spectrum, this zeromode corresponds to a single edge-localized state at complex eigenvalue E0 in the
point gap (see figure 1(c) [66]. By repeating this construction for all E0 within the point gap, we obtain a
number of modes localized at the boundary that scales with the linear system size. However, since the helical
crossing of the EHH edge mode cannot move away from the TRIM even as E0 is varied, this extensive
accumulation of modes appears only for a single edge momentum k∥ ∈ {0,π} (see figure 1(a). For all other
momenta, the point gap remains empty (see figure 1(b). This dispersion with k∥ constitutes an intrinsically
NH edge state that we dub IP in reminiscence of the infinitely steep surface dispersion observed in some 3D
NH point-gapped systems [53]. (See the supplemental material [79] for a discussion of the OBC and
ϵ-pseudospectrum associated with an IP.)

The derivation outlined above is completely general and does not rely on a particular model
Hamiltonian, but only the respective symmetry class as well as the presence of a topologically nontrivial
point gap. In order to further rationalize the IP, we now consider a representative Hamiltonian for class AII†

and solve for the edge state within a Dirac approximation. The full Hamiltonian is given in the supplemental
material [79], for our purposes it is enough to consider its expansion to first order around k= 0:

H(k) = [im+∆]σ0 + kxσx − kyσz. (2)

Here,m and∆ are real parameters, σµ are the Pauli matrices (µ= 0,x,y,z), and UT = iσy.
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Figure 1. Edge infernal points. (a) Infernal point mode localization in hybrid real and momentum space for a model with
nontrivial point gap topology in NH symmetry class AII† [79]. An extensive number of eigenmodes accumulate at the boundary
of the system for edge momentum k∥ = 0,π, indicated by a peak of the summed density ρ(r⊥,k∥) =

∑
α,i |⟨r⊥,i|ψα(k∥)⟩|2,

where α ranges over all eigenstates |ψα(k∥)⟩ of the OBC Hamiltonian, r⊥ is the lattice coordinate perpendicular to the edge, and
i runs over all sublattice and orbital degrees of freedom. This system has two nontrivial point gaps in PBC, one of which
contributes the peak at k∥ = 0 while the other contributes the peak at k∥ = π. (b), (c) Spectrum in the complex plane under PBC
(blue) and SIBC (blue and red). Boundary-localized states fill the SIBC spectral point gap at a single boundary momentum k∥ = 0
for the upper point gap and k∥ = π for the lower point gap. Bulk states are depicted for all momenta in panels b and c. (d) For
any eigenvalue E0 inside the point gap around E0 = 0, the EHH OBC spectrum exhibits one helical zeromode per edge at k∥ = 0.

We want to stress that the full bulk Hamiltonian of this model [79] includes non-trivial non-Hermitian
momentum dependent terms not present in its Dirac expansion. Therefore, this Hamiltonian does not
simply result from an imaginary shift of a Hermitian model. In fact, a simple imaginary shift of a Hermitian
topological insulator always results in a line-gapped NH model. Here we focus on intrinsically point-gapped
NH systems to exclude such a scenario.

To obtain the edge states ofH(k), we consider OBC in x-direction, and model the transition to the
surrounding vacuum by a domain wall inm, whose sign governs the bulk NH topology [66, 80].
Consequently we solve {

[im(x)+∆]σ0 − i∂xσx − kyσz
}
ψ(x) = Eψ(x), (3)

with E ∈ C, for the right eigenfunction ψ(x). Here, the massm(x) =m0sgn(x),m0 > 0, changes sign at x= 0.
Defining

ω2
+ = [m0 + i(ky + E−∆)]︸ ︷︷ ︸

α+

[m0 − i(ky − E+∆)]︸ ︷︷ ︸
α−

, (4)

the normalizable solution in the right half plane (+) reads

ψ+(x) =
1

N
e−ω+x

[
ω+

α+
,−1

]T
, (5)

whereN is a normalization constant. Similarly, defining

ω2
− = [m0 + i(ky − E+∆)]︸ ︷︷ ︸

β+

[m0 − i(ky + E−∆)]︸ ︷︷ ︸
β−

, (6)

the normalizable solution in the left halfspace (−) reads

ψ−(x) =
1

N
eω−x

[
ω−

β−
,−1

]T
. (7)

Matching the solutions across the domain wall yields

ψ+(0) = ψ−(0) ⇔ α−

α+
=
β+
β−

. (8)

We now have to distinguish three cases: first, when neither β− nor α+ are equal to zero, the matching
constraint implies ky = 0. However, all possible (real and imaginary) energies E are allowed. Furthermore,
the case β− = 0 is not admissible because the solution should decay in the vacuum. In the bulk however, this
case might be tolerated, so we can consider α+ = 0. From equation (8), finite β± ̸= 0 additionally implies
α− = 0, again resulting in ky = 0. Consequently, away from ky = 0 no edge state solution exists. At ky = 0,
however, we obtain infinitely many boundary modes, with arbitrary E ∈ C. Concomitantly, the entire NH
point gap fills with edge-localized states at a single momentum, the defining characteristic of an IP. This
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Table 1. NH bulk-boundary correspondence in 2D. We list all NH symmetry classes with intrinsic point gap topology [40]. The
symmetry class labels refer to a given NH Altland–Zirnbauer (AZ) class or its AZ† counterpart, in some cases supplemented by an
additional sublattice symmetry (SLS) S, which for NH systems is different from the AZ chiral symmetry (CS) [40]. The subscript of SLS
determines whether SLS commutes (+) or anticommutes (−) with the respective AZ symmetry. If both time-reversal symmetry (TRS)
and particle-hole symmetry (PHS) are present, the first subscript refers to TRS and the second one to PHS. The symmetry classes are

identified by the square of TRS, acting as UT H(k)∗U†
T =H(−k), and PHS, defined by UPH(k)TU†

P =−H(−k), or TRS†, denoted

by UT H(k)TU†
T =H(−k), and PHS†, expressed as UPH(k)∗U†

P =−H(−k) (second column). Their intrinsic point gap
classification (third column) is reproduced from Okuma et al [66]. The edge states are identified as either an infernal point (IP) or an
anomalous number of exceptional points (EP) per edge and point gap. Their multiplicity is denoted in parentheses.

Symmetry Classification

Class TRS(†) PHS(†) CS 2D 1D Edge mode

AII† −1 — — Z2 Z2 IP (1x)
DIII† −1 +1 1 Z2 Z2 IP (1x)
BDIS+− +1 +1 1 Z2 Z2 IP (1x)
DS− — +1 — Z2 Z2 IP (1x)
AIIIS− — — 1 Z2 0 EP (1x)
DIIIS+− −1 +1 1 Z2 0 EP (2x)
CIIS−+ −1 −1 1 Z2 0 EP (2x)
CIIS+− −1 −1 1 Z2 0 EP (2x)
CIS−+ +1 −1 1 Z2 0 EP (2x)

result holds irrespective of the specific model Hamiltonian used above as long as the point gap is not closed
and the symmetries of class AII† are preserved: see the supplemental material [79] for an explicit study on
the persistence of the IP under generic symmetry-allowed perturbations to equation (2) respecting the point
gap topology, i.e. they do not close or close and reopen the point gap, including traceless Pauli matrices with
imaginary and k-dependent prefactors. We can also calculate the left eigenstates ofH(k) in equation (2),
which are the right eigenstates ofH(k)†. The overlap between left and right eigenstates vanishes, similar to
the NH skin effect in 1D [66].

Notably, an IP cannot be realized in a 1D lattice system with a finite-dimensional unit cell Hilbert space.
Instead, such an edge mode realizes an anomalous dispersion whose discontinuity and TRIM skin effect
capitalizes on a topologically nontrivial 2D bulk. To generalize beyond the specific example given above, we
investigate the presence of infernal edge modes in all NH symmetry classes with intrinsic point gap topology.
We find that a point gap-nontrivial 2D system in a given NH symmetry class exhibits an IP if and only if this
symmetry class also has a nontrivial 1D point gap classification [79]. The NH symmetry classes satisfying
this criterion are summarized in table 1.

3. Exceptional edge modes

We next consider the example of NH symmetry class AIIIS− , which contains a CS UCH(k)U†
C =−H(k)† as

well as a sublattice symmetry SH(k)S† =−H(k) with {UC ,S}= 0 [40]. This symmetry class quantizes the
2D point gap topological invariant C1 ∈ Z [40]. However, the classification of intrinsic point gap topology in
AIIIS− is only Z2, corresponding to C1 mod 2: all phases with even C1 can be trivialized by coupling to
line-gapped phases [66]. To derive the topological edge state of the phase where |C1|= 1, we again rely on the
EHH for a given eigenvalue E0 inside the point gap (equation (1)). Importantly, and unlike for symmetry
classes protecting infernal edge modes, the EHH enjoys distinct Hermitian symmetries depending on the
choice of E0 [79]. For purely real (E0 ∈ R) or imaginary energies (E0 ∈ iR), the EHH can be
block-diagonalized into two matrix blocks that are mapped to each other under CS (see below for
details) [79]. Each block individually only satisfies Hermitian class A, which is Z-classified in 2D [78]. The
EHH associated with |C1|= 1 then corresponds to an insulator with Chern number C=±1 in each of the
two blocks, giving rise to a total of one right and one left-moving chiral mode per edge. These modes are
protected from gapping out due to the symmetries present for E0 ∈ R (E0 ∈ iR), and cross zero energy at
distinct edge momenta depending on the particular choice of E0 (see figure 2(b), left). The corresponding
NH SIBC spectrum therefore exhibits edge states dispersing as a function of the edge momentum. However,
the edge states cross the point gap only along the real and imaginary axis (see figure 2(a)). Away from these
axes, the SIBC spectrum shows no in-gap states, because the EHH symmetries reduce for generic E0 ∈ C and
do not anymore prevent hybridization between the two chiral edge modes [78, 79] (see figure 2(b), right).
We note that even though the NH edge states only traverse the point gap along special axes, they cannot be
moved away from these axes or out of the point gap due to the symmetry of NH class AIIIS− .
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Figure 2. Edge exceptional points. (a) Spectrum in the complex plane under PBC (blue) and SIBC (blue and red) for a model
exhibiting nontrivial point gap topology in NH class AIIIS− [79]. Boundary-localized states fill the SIBC spectral point gap along
the real and imaginary axis. (b) The corresponding EHH OBC spectrum for E0 along the real and imaginary axis inside the point
gap contains one left- and one right-moving chiral mode per edge (left) and gap for generic complex E0 ∈ C (right). The
momenta at which these modes cross zero energy move as a function of E0, corresponding to a dispersing NH edge state via
equation (1). (c) Real (red) and imaginary (blue) dispersion of the corresponding NH edge state in OBC, exhibiting a single
exceptional point. The bulk states are not shown for clarity.

We now show that the NH edge dispersion realizes a single EP (also evident from the numerical result of
figure 2(c)). Due to the absence of a NH skin effect at all edge momenta, we can derive the edge state by
writing down the effective edge EHH and then inverting equation (1) to obtain the effective edge NH
Hamiltonian. At E0 = 0, the EHH for NH class AIIIS− features three distinct chiral symmetries, ŪC , Σ̄C , and
S̄ that satisfy the algebra {ŪC , Σ̄C}= 0, {ŪC , S̄}= 0, and [Σ̄C , S̄] = 0 [79]. The minimal EHH matrix
dimension that realizes this algebra is 4. Using the Pauli matrices τµ,σµ (µ= 0,x,y,z), one possible
representation is given by ŪC = τxσz, Σ̄C = τzσ0, and S̄ = τ0σx, which conforms with the basis choice in
equation (1) where Σ̄C is diagonal. We now combine the three chiral symmetries to form two commuting
unitary symmetries Ū1 = ŪCS̄ and Ū2 = ŪCΣ̄C that both square to−1. Correspondingly, at E0 = 0, all
eigenstates of the effective edge EHH H̄edge(k) are labelled by a pair of quantum numbers (±i,±i) that
denote the eigenvalues of Ū1 and Ū2, respectively. Any of the three chiral symmetries anti-commute with
both unitary symmetries, and therefore flip both their eigenvalues. In the common eigenbasis of Ū1 and Ū2

given by {|i, i⟩, | − i,−i⟩, |i,−i⟩, | − i, i⟩}, we therefore posit

H̄edge(k) =

(
vkσz 0
0 ∆σz

)
, (9)

where v is the Fermi velocity of the chiral modes and∆> 0 is a constant energy. Without loss of generality,
this Hamiltonian realizes a single pair of left- and right-moving chiral modes together with a pair of gapped
bands at energies±∆ that are necessary to conform with the symmetry realization chosen above. To satisfy
the chiral symmetries, the two chiral modes appear with opposite eigenvalues of Ū1 and Ū2, preventing them
from hybridization at all real E0 ∈ R (where only Ū1 survives), and all imaginary E0 ∈ iR (where only Ū2

survives), but not at generic E0 ∈ C. To obtain the corresponding NH Hamiltonian, we transform
equation (9) back to the basis of equation (1) in which the common eigenvectors of Ū1 and Ū2 read
ψ(λ1i,λ2i) = (1,λ1λ2,−λ2i,λ1i)T/2 for λ1,2 =±1. The transformed matrix then assumes the canonical EHH
form of equation (1), from which one can extract the effective NH edge Hamiltonian

Hedge(k) =
i

2
(vk−∆)σz +

1

2
(vk+∆)σy. (10)

The NH spectrum Eedge(k) =±
√
vk∆ indeed realizes a single EP as k is varied, analogous to the numerical

result of figure 2(c).
We note that EPs generically occur in 2D rather than 1D, because two momenta must be tuned to ensure

a two-fold degeneracy between NH bands absent symmetry [81]. However, imposing NH symmetry class
AIIIS− reduces the number of degeneracy constraints to one, thereby ensuring that also in the 1D case EPs
can only be annihilated in pairs [73–75]. As a consequence, the presence of a single EP in figure 2(c) and
equation (10) implies an anomaly: any odd number of EPs cannot be realized in a regularized lattice system
due to the NH fermion doubling theorem [82].

We furthermore note that trivial and non-trivial unpaired EPs can also exist beyond the restrictions of
the fermion doubling theorem as recently shown in [83]. The EPs discussed here are, however, stable to any
symmetry-allowed perturbation that does not close the point gap as it is ramped up, and do not rely on a
braiding of eigenvalues in 2D momentum space [83]. Instead, they appear on the 1D boundary of a 2D
system and are a direct consequence of the anomalous edge states of the corresponding EHH. Hence, edge
EPs cannot be realized in any purely 1D model and correspond to an anomaly also in the NH setting.
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Figure 3. Experimental signatures. (a) Spectrum under OBC in r⊥-direction (L⊥ = 50) and PBC in r∥-direction (L∥ = 50) for

the infernal point model of figure 1 in presence of disorder with ϵ= 10−6t (section 4), where t is the mean hopping strength [79].
In contrast to the SIBC spectrum where the point gap is fully covered by edge-localized states, the infernal point manifests as a
ellipse of eigenvalues in the complex plane. Its minimal distance from the point gap center—the separation of the ‘perihelion’
from E=∆ [79]—increases with L⊥L∥ and ϵ, as shown in panel (b) (where L≡ L⊥ = L∥). (c) Infernal point localization in real
space. Notwithstanding the presence of disorder, an extensive number of eigenmodes accumulate at the boundary of the system in
r⊥-direction, indicated by a peak of the summed density ρ(r⊥, r∥) =

∑
α,i |⟨r⊥, r∥, i |ψα⟩|2, where α ranges over all eigenstates

|ψα⟩ of the real-space Hamiltonian, and i runs over all degrees of freedom within the unit cell. (d) Spectrum under OBC in
r⊥-direction (L⊥ = 10) and PBC in r∥-direction (L∥ = 240) for the exceptional point model of figure 2 in presence of disorder

with ϵ= 10−6t (section 4), where t is the mean hopping strength [79]. Unlike for the infernal point, this spectrum approaches
the corresponding SIBC spectrum (figure 2) in the thermodynamic limit even at finite disorder. This observation remains valid
for both larger system sizes and ϵ > 10−6.

We investigate all 2D NH symmetry classes with intrinsic point gap topology and find that exceptional
edge modes arise whenever there is no IP, as summarized in table 1 (see the supplemental material [79] for
details). Notably, certain NH symmetry classes show two EPs on their boundary. This edge response is,
however, still anomalous because 1D lattice systems in these symmetry classes can only support a multiple of
four EPs.

4. Experimental relevance

In our discussion of infernal and exceptional edge modes, we have so far focussed on the SIBC spectrum
because it is equal to the ϵ-pseudospectrum of the corresponding OBC system [66, 69] for an ϵ that is
exponentially small in the linear system size L (see also section 1). For clarity, we here only assume OBC in
one direction and maintain PBC in the other, and consider full OBC later. We now study to what extent
infernal and EPs are measurable at the boundaries of realistic experimental samples where L is
thermodynamically large but ϵ remains finite. Notably, we focus on a single-particle picture. The extensive
accumulation of states at an IP violates Pauli’s exclusion principle for fermionic many-body systems, and is
hence modified in this context [84]. Bosonic or classical platforms will, however, still realize an essentially
single-particle skin effect. At the same time, EPs survive even in a generic (bosonic and fermionic)
many-body setting, similar to the boundary states of a Hermitian topological insulator.

We model the error ϵ by introducing uniformly distributed on-site disorder Vϵ =
∑

r,i δr,i|r, i⟩⟨r, i| to the
respective real-space Hamiltonian [85], with δi drawn uniformly from the range [−ϵ,+ϵ]. Here, r ranges over
all unit cells and i labels intra-unit cell degrees of freedom.

We find that infernal and exceptional edge modes differ drastically in their response to small finite
disorder. For IP systems with OBC along one direction, the point gap remains empty as long as the linear
system size L is sufficiently large and ϵ> 0 is a finite L-independent constant (we assume a quadratic system
of area L2 for simplicity). This can be understood by noting that at any given L and ϵ, the OBC edge states
form an ellipse in the complex plane (figure 3(a)) whose minimal radius increases with L and ϵ (figure 3(b)).
We conclude that the spectral signature of edge IPs is highly sensitive to disorder in the thermodynamic limit
and difficult to observe. However, the localization profile of eigenstates prevails even when they do not cover
the point gap: an extensive number of eigenstates still accumulates at the OBC edges irrespective of the
presence of disorder (figure 3(c)). In stark contrast, we find that edge EPs are unaffected by the presence of
finite disorder: their OBC spectrum hosts edge states along real and imaginary axes in the complex plane
(figure 3(d)) and approaches the SIBC spectrum in the thermodynamic limit. Similarly, their real space
localization in OBC for one and two directions is not altered (see the supplemental material [79] for the
analog of figure 3(c) for an edge EP).

For OBC in two directions, the IP edge loses also its skin effect in addition to its in-gap states [69]. On the
other hand, the EP system remains largely unaffected in full OBC and still displays in-gap states along the
real and imaginary axes [79].
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5. Discussion

We have derived the edge modes of 2D NH phases with intrinsic point gap topology, providing a physical
interpretation of the classification in references [40, 66, 70]. We find anomalous IP and EP edge modes that
drastically differ in their real-space localization profile, dispersion with parallel edge momentum, and
spectral stability to finite disorder. They both capitalize on a nontrivial NH bulk, in the sense that neither of
them can be realized in a 1D NH lattice model. Several questions deserve further study: Can one set up a field
theory for the IP anomaly, which seems to involve an effective edge HamiltonianHedge(k)∝ δ(k)? What is
the fundamental physical difference between the types of point gap topology that induce skin effects,
necessitating a SIBC treatment, and those that give rise to continuous NH dispersions, more similar in spirit
to the Hermitian case and well-behaved in OBC? What are their dynamical consequences, e.g. in terms of
wavepacket propagation? Are there NH edge modes that are qualitatively distinct from IPs and EPs in 3D
systems or in presence of crystalline symmetries? Answering these questions is crucial for leveraging NH
band topology in a realistic practical setting.
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