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Jointmomentmeasurements represent an objective biomechemical parameter in
joint health assessment. Inverse dynamics based on 3Dmotion capture data is the
current ’gold standard’ to estimate joint moments. Recently, machine learning
combined with data measured by wearable technologies such electromyography
(EMG), inertial measurement units (IMU), and electrogoniometers (GON) has been
used to enable fast, easy, and low-cost measurements of joint moments. This
study investigates the ability of various deep neural networks to predict lower limb
joint moments merely from IMU sensors. The performance of five different deep
neural networks (InceptionTimePlus, eXplainable convolutional neural network
(XCM), XCMplus, Recurrent neural network (RNNplus), and Time Series
Transformer (TSTPlus)) were tested to predict hip, knee, ankle, and subtalar
moments using acceleration and gyroscope measurements of four IMU
sensors at the trunk, thigh, shank, and foot. Multiple locomotion modes were
considered including level-ground walking, treadmill walking, stair ascent, stair
descent, ramp ascent, and ramp descent. We show that XCM can accurately
predict lower limb joint moments using data of only four IMUs with RMSE of
0.046 ± 0.013 Nm/kg compared to 0.064 ± 0.003Nm/kg on average for the other
architectures. We found that hip, knee, and ankle joint moments predictions had a
comparable RMSE with an average of 0.069 Nm/kg, while subtalar joint moments
had the lowest RMSE of 0.033 Nm/kg. The real-time feedback that can be derived
from the proposed method can be highly valuable for sports scientists and
physiotherapists to gain insights into biomechanics, technique, and form to
develop personalized training and rehabilitation programs.
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1 Introduction

Joint moments are an indirect measure of internal joint forces (Stensgaard Stoltze et al.,
2018; Holder et al., 2020) and have multiple clinical applications such as injury risk
assessment (Kiesel et al., 2007) and rehabilitation (Liu et al., 2018). In biomechanics,
inverse dynamic (ID) is the current gold standard approach to calculate joint moments
(Koopman et al., 1995; Forner-Cordero et al., 2006; Winter 2009) using data collected by an
optical three-dimensional (3D) motion tracking system with force plate measurements. Yet,
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TABLE 1 List of literature studies used machine learning to estimate lower limb joint moments.

Study Locomotion
tasks

Predictors Joint
moment

Discrete/
Continuous

Machine learning
algorithms

Validation
method

Performance

Johnson et al.
(2019b)

Walking, running,
and sidestepping

Marker
trajectories

Knee Peak moment Convolutional neural
network

80% training, 20%
testing of each task

RMSE (Nm/kg)

Knee flexion:
(0.67 ± 0.24)

Knee adduction:
(0.53 ± 0.25)

Liew et al. (2021) Running 3D angle, velocity,
and acceleration
of the joint

Hip, knee,
ankle, and
subtalar

Waveform Functional regression,
deep neural network*,
and transfer learning

80% training, 20%
testing overall
dataset

RMSE (Nm/kg)

Hip flexion: (0.24)

Hip
adduction: (0.19)

Knee
flexion: (0.25)

Ankle
plantarflexion:
(0.16)

Subtalar
inversion: (0.07)

Stetter et al.
(2020)

Walking, running,
cutting manoeuvre

IMU signals Knee Peak moment Fully connected neural
network with 2 hidden
layers

leave-one-subject-
out cross-validation

RMSE (Nm/kg)

Knee flexion:
(0.58–1.13)

Knee adduction:
(0.37–0.8)

Wang et al.
(2020)

Walking IMU signals Knee Waveform Fully connected neural
network with 2 hidden
layers*, and XGBoost

80% training, 10%
testing, and 10%
validation of
subjects

MAE%

Knee adduction:
0.002

Xiong et al.
(2019)

Treadmill walking EMG signals Hip, knee,
and ankle

Waveform Neural network with
3hidden layers

Split based on trials
overall subjects

NRMSE%

Hip flexion:
(7.8944)

Hip adduction:
(6.235)

Knee flexion:
(6.235)

Ankle
plantarflexion:
(6.6967)

Boswell et al.
(2021)

Walking Marker
trajectories

Knee Peak moment Fully connected neural
network with 10 hidden
layers

80% training, 10%−
development, and
10% testing sets of
subjects

MAE %

Knee
adduction 0.53

Camargo et al.
(2022)

Treadmill walking,
ascent/descent of
stairs and ramps

EMG and IMU
signals

Hip, knee,
and ankle

Waveform Fully connected neural
network with 2 hidden
layers, and XGBoost*

cross-validation
based on trails per
subject

MAE (average of
all joints Nm/kg)

0.06 ± 0.02

Boukhen-noufa
et al. (2022)

Walking 3D angle, velocity,
and acceleration
of segment centre
of mass

Knee Impulse Deep neural network
(Baseline model,
InceptionTime*,
Transfer learning, TS-
ResNet, GADF-xResnet)

75% training, 25%
testing, and 10%
validation overall
dataset

RMSE (Nm.s/kg)

2.46

*Reported performance, RMSE: root mean squared error, MAE: mean average error, NRMSE: normalized root mean squared error.
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the use of such methods is limited to a laboratory environment
(Simon, 2004), which makes it challenging to be applied in a clinical
or field setting.

To overcome the limitation of traditional methods, recently,
machine learning approaches have been increasingly used to
quantify joint moments based on kinematic variables (Xiang et al.,
2022). Studies have used several sources to obtain these variables
(Table 1) ranging from: marker-based optical cameras of 3D
measurements (Johnson et al., 2019a; Boswell et al., 2021; Liew
et al., 2021; Boukhennoufa et al., 2022) or 2D measurements
(Dingenen et al., 2015; Boswell et al., 2021), wearable sensors such
as electromyography (EMGs) (Xiong et al., 2019; Camargo et al.,
2022), inertial measurement units (IMUs) (Stetter et al., 2020; Wang
et al., 2020; Camargo et al., 2022), and electrogoniometers (GON)
(Camargo et al., 2022) (Table 1). Optical motion capture systems are
limited largely to a laboratory setting and are expensive, time-
consuming to use, and subjected to errors associated with marker
placement. In contrast, a machine learning approach based on
wearable sensors allows for possible measurements outside
laboratory settings. Camargo et al. used combined EMG and IMU
sensor data with machine learning to estimate hip, knee, and ankle
joint moments (Camargo et al., 2022). Still, EMG sensors are very
sensitive to sensor placement (e.g., crosstalk problems) and so require
high expertise, in addition to time delay estimation issues. On the
contrary, IMU is a cost-effective, relatively portable method of
measurement that is not limited to a laboratory setting and can be
accessed in resource-constrained environments. Importantly,
machine learning based on IMU sensor data alone has shown
good accuracy when predicting knee joint moments (Stetter et al.,
2020) during walking and running. However, to the author’s
knowledge, no study has used IMU sensors alone to estimate joint
moments in the lower limb (hip, knee, ankle, and subtalar).

The majority of previous machine-learning studies have focused
on estimating joint moments during walking (Xiong et al., 2019;
Boswell et al., 2021; Boukhennoufa et al., 2022; Camargo et al., 2022)
or running (Liew et al., 2021), whilst some have also considered
cutting maneuvers (Johnson et al., 2019b; Stetter et al., 2020) or
turning (Stetter et al., 2020). However, dynamic movements such as
this do not necessarily reflect the type of ambulation that the general
population engages in while executing conventional daily tasks such
as climbing stairs and descending ramps. While climbing stairs can
often be regarded as a facile activity for young healthy individuals, it
can be a challenging task for elderly individuals. This represents a
clear gap in the literature as previously highlighted by Camargo et al.
(2022) who have recommended the extension of applications
beyond walking and running.

The type of machine learning algorithms used to predict joint
moments influences its prediction performance. Neural networks are
the most common algorithm used for joint moment prediction (Liew
et al., 2021; Xiong et al., 2019). Different neural network approaches
have been used and range from a shallow network with one or two
hidden layers (Stetter et al., 2020) and boosting (Wang et al., 2020;
Camargo et al., 2022) to a deep neural network (Boswell et al., 2021;
Boukhennoufa et al., 2022; Liew et al., 2021; Wang et al., 2020).
Shallow networks such as Ensemble learning, and Support Vector
Machines (SVM) have certain drawbacks. First, they work better with
relatively small data sets. Second, those approaches are very sensitive
to imbalanced data. Furthermore, shallow neural networks work well

for predicting scaler values and cannot accommodate temporal
variables, therefore researchers have opted to treat each value of a
time-series as an independent observation (Stetter et al., 2020). While
deep neural network structures introduce advantages in processing
time-series sensor data and require lower computational costs than
traditional machine-learning approaches (Xiang et al., 2022). A few
new deep neural networks were proposed as advanced time series
architectures for prediction and/or classification and regression
problems. For example, InceptionTime architecture predicted knee
abduction impulse during walking with 8.28% absolute mean square
error (Boukhennoufa et al., 2022). Another new proposed architecture
is eXplainable convolutional neural network (XCM) which
outperforms the state-of-the-art of Multivariate Time series
classifiers such as Long Short-Term Memory (LSTM) (Fauvel
et al., 2021) when evaluating its classification performance on
public UEA datasets (Bagnall et al., 2018). While Time Series
Transformer (TST) reported with either the best or the second
best classification performance compare to other models such as
XBoost, Inception, and ResNet when testing on several public time
series data sets from various domains (Zerveas et al., 2021). Recurrent
neural network (RNN) is commonly used in temporal problems (e.g.,
speech recognition) as it takes information from prior inputs to
influence the current input and output. Considering the recorded
superior classification performance of these architectures in real-
world data, yet not in biomechanics, the current study explores the
ability to use these new methods in estimating lower limb joint
moments based on IMU sensor data.

The current study aims to evaluate the performance of
recently proposed deep neural network architectures on
estimating lower limb joint moments during different
locomotion modes using inputs from inertial wearable sensors
only. Since the success of a model is measured by its ability to
generalize to new data (Halilaj et al., 2018), it is therefore critical
for a machine learning model performance to be assessed on
held-out data (observations) not used in the training (Xiang et al.,
2022). Therefore, to assess the effect of model training with and
without held-out observations at a subject level, the investigated
architectures were tested on two different methods. First the
“Typical-split” method: where the recorded data was randomly
split into training and test sets, allowing data from each subject to
contribute to both the training and test sets; and second the
“Leave-subjects-out” method: where all the records of each
subject are randomly assigned as a group to either the training
set or to the test set. The real-time feedback that can be derived
from the proposed method can be highly valuable for sports
scientists and physiotherapists to gain insights into
biomechanics, technique, and form to develop personalized
training and rehabilitation programs.

2 Material and methods

2.1 Dataset

The entire workflow of the current study (starting from data
collection up to joint moments prediction by machine learning
models) is illustrated in Figure 1. The dataset used in this study is
from an open-source biomechanics database (Camargo et al., 2021).
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The study involved 22 healthy adults with average age of 21 ±
3.4 years, body mass 68.3 ± 10.83 kg, and height 1.70 ± 0.07 m, full
details of each participant can be found in the original open-source
publication (Camargo et al., 2021).

Motion capture (200 Hz, Vicon. Ltd., Oxford, Uk), Ground
reaction forces (GRF) (1,000 Hz, Bertec, Ohio, United States),
and inertial measurement units (IMUs) (200 Hz, Yost, Ohio,
United States) data of all the 22 participants were used in this
study. A set of 32 motion markers were used for the lower body part,
while four IMUs were placed on the trunk, thigh, shank, and foot of
the right leg. Data of each participant were collected for multiple
locomotion modes: level-ground walking, treadmill walking, stair
ascent, stair descent, ramp ascent, and ramp descent. Level-ground
walking was captured at three different self-selected speeds with five
clockwise and five counterclockwise circuits, while treadmill walking
data were recorded for 28 different speeds with a range of
0.5–1.85 m/s and 0.05 m/s increment. For stair ascent and stair
descent modes, four different stair heights (102 mm, 127 mm,
152 mm, 178 mm) of a 6-step staircase were used and five sets of
trials were executed for each height with a total of 40 trials for each
motion mode. Ramp trials were collected for six different
inclinations angles (5.2°, 7.8°, 9.2°, 11°, 12.4°, and 18°) along a 5-
m long ramp and, again, five sets of trials for each inclination were
undertaken with a total of 60 trials for both ramp ascent and ramp
descent modes.

2.2 Generating kinetic and kinematic data

In addition to the raw data, Camargo and his colleagues
provided an open-access repository with musculoskeletal models
(MSKMs) generated in OpenSim (Delp et al., 2007) for all
participants, along with MATLAB scripts allowing for easy
analyses of the inverse kinetics and inverse dynamics data. In the
current study, the repository provided by Camargo’s study was used
to extract all the recorded trials from the raw data. Then, strides for
all locomotion modes were identified and sampled based on the
heel-strike and toe-off phases. Strides were then normalised and
sampled at 100-time points for a full gait cycle. For this study, only
strides that have associated GRF data were extracted and considered.
That was so it is possible to generate the associated kinetic data using
musculoskeletal models, which require GRF as an input. Five joint
moments were calculated by the musculoskeletal models (hip flexion
moment, hip adduction moment, knee flexion moment, ankle
plantarflexor moment, and subtalar inversion-eversion moment)
and considered in this study. These joint moments were later used as
the outcomes in the machine learning analysis. The associated IMUs
data of all the selected strides, represented by accelerations and
gyroscopes of four segments; trunk, thigh, shank, and foot, were then
extracted and used as the predictors in the machine learning
analyses. Accelerations and gyroscopes data were recorded in the
three planes of motion; sagittal, coronal (frontal), and transverse

FIGURE 1
Illustration of the Studyworkflow. Data collection included 3Dmotion capture data (marker trajectories and ground reaction forces) and four Inertial
measurement units (IMUs) (accelerations and gyroscopes) at the trunk, thigh, shank, and foot (Camargo et al., 2021). Joint moments of the hip, knee,
ankle, and subtalar was calculated by musculoskeletal models in OpenSim. Strides with outlier data were excluded from the study. Five different deep
neural networks (InceptionTimePlus, XCM, XCMplus, RNNplus, and Time Series Transformer plus (TSTPlus)) were trained to predict joint moments
(outputs) using the measured accelerations and gyroscopes (inputs).
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planes (represented by three axes x, y, and z). Therefore, the total
number of the predictors in the machine learning analysis was 24
(number of used IMUs multiplied by accelerations and gyroscopes
at the three axes).

The total number of the extracted strides of all participants
including all locomotion modes was 27,845 strides. Data were then
cleaned in MATLAB (R2021a) by removing the outliers from the
extracted strides to prepare them for themachine learning analysis. The
process of cleaning the data was done in two stages. During the first
stage, the flat signals (or in other words the missing signal) were
identified using the standard deviation of the derivatives, and the
associated stride was excluded. In the second stage, the outliers in the
remaining signals were detected based on the Median Absolute
Deviations (MAD) (Leys et al., 2013) and replaced by the next non-
outlier value. To account for the variation among individuals, the data
cleaning process was done at the participant level, then the cleaned data
of all participants were combined to form the final data for themachine
learning analysis. The final data included 21,787 strides.

2.3 Machine learning modeling

All analyses were performed in Python (version 3.9.0), with
packages (Numpy v1.20.3, Pandas v1.3.4, Scipy v1.7.1). All ML
models were trained using either Keras (version 2.6.0) or Tsai
(version 0.3.1) from fastai with Google Collab.

2.3.1 Data pre-processing
All time-series data of both predictors and outcome were

segmented between heel strike and toe-off. And strides were
sampled to have a 100-time points for a full gait cycle. The total
number of observations in the dataset was 21,787 corresponding to
21,787 participants’ strides. The predictor dataset was organized into a
3D array shape 21787 × 24 × 101, where the second dimension was
the number of predictors, and the third dimension was the number of
time points. The outcome dataset was organized into a 2D array shape
21787 × 5 × 101, where the second dimension was the number of
outcomes, and the third dimension was the number of time points.

Following the purpose of the current study, two approaches were
used to generate the training and testing data sets.

(1) Typical-split method: data of the strides of all the 22 participants
were combined for both the predictor and outcome datasets,
then each set was split into training (80%, n = 16,340) and
testing (20%, n = 5,447).

(2) Leave-subjects-out method: split was done at a participant level,
where each of the predictor and outcome datasets was split into
training set involving strides of 17 participants (n = 17,053) and
testing sets involving strides of the left five participants (n =
4,734). The decision of the selected number of participants for
training and testing sets was done so that the resulting size of
each set is close to the size of training and testing sets using the
Typical-split method.

2.3.2 Algorithms
The baseline 2D neural network model architecture can be

found in Table 2. The model hyperparameters were selected
based on initial exploratory analysis. Neural network weights
were initialized with Xavier initialization. The Xavier
initialization technique involves generating a random number
from a uniform probability distribution (U) that falls between the
range of -1n√ and 1n√, where “n” denotes the number of inputs
that the node receives −1/ �

n
√

and 1/
�
n

√
. A batch size of 2048, a

learning rate of 3e−3, and an Adam optimiser were used. A sensitivity
analysis for the selected number of epochs was conducted using
three tested epochs (10, 30, and 50). The relative difference of the
root mean squared error of the predictions using 10 epochs and
50 epochs was about 75% difference. No considerable reduction of
the model error occurred when using more than 50 epochs, and
hence, 50 epochs was selected. The mean squared error was used as
the loss criteria.

In addition to the baseline model, five different model
architectures were evaluated: InceptionTimePlus, XCM (Fauvel
et al., 2021), XCMplus, RNNplus (Conv1d + Stacked LSTM
architecture), and Time Series Transformer plus (TSTPlus)
(Zerveas et al., 2021). For all deep learning models, the final layer

TABLE 2 Baseline model architecture and parameters.

Layer Description Output size

Input Batch × 101 × 24

Conv1 Conv2D (N = 64, F = 3 × 3, S = 1, P = valid, A = ReLu) Batch × 99 × 22 × 64

Conv2 Conv2D (N = 128, F = 3 × 3, S = 1, P = valid, A = ReLu) Batch × 97 × 20 × 128

Max pooling 2D Conv2D (2 × 2) Batch × 48 × 20 × 128

Flattening operation Batch × 61,440

Dense Layer 1 512, dropout 0.1, ReLu Batch × 512

Dense Layer 2 256, dropout 0.1, A = ReLu Batch × 256

Dense Layer 3 101, dropout 0.1, A = Linear Batch × 101

Xavier initialization, batch size = 2048

learning rate: 0.003, Epochs: 50

N: number of filters, F: filter size, S: stride, P: padding, A: activation function.
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of this network consists of a linear layer with 100 units, to predict the
joint moment at each time-point of the gait cycle. Cyclical learning
rate method was used to find the appropriate learning rate. The loss
was plotted with respect to an increasing value of the learning rate.
The learning rate was chosen to be in the interval that resulted in the
lowest loss, which was found to be between 1e−5 to 1e−4. The learning
rate took the value of 1e−5 at the first epoch and then gradually
increased to reach a final value of 1e−4 at the last epoch. For all the
tested architectures, 50 epochs were selected to allow for direct
comparison with the baseline model.

2.3.2.1 InceptionTimePus
The InceptionTimePus model is a collection of deep

Convolutional Neural Network (CNN) models that are inspired
by the Inception-v4 architecture used in computer vision (Fawaz
et al., 2020). The InceptionTime model comprises two distinct
residual blocks, each consisting of three Inception modules, as
opposed to the conventional fully convolutional layers. The input
to each residual block is connected linearly to the following block’s
input, creating a shortcut connection. The model then uses a Global
Average Pooling layer to average the output of the multivariate time-
series across the entire time dimension. Each of the Inception
modules includes a bottleneck of 1D CNN layer with 32 output
channels, kernel size of 1, and stride of 1 to decrease parameter
dimensionality. This is followed by three 1D CNN layers of
32 output channels, kernel sizes of 39, 19, and 9 respectively,
padding of 19, 9, and 4, respectively, and a stride of 1 for all cases.

2.3.2.2 XCM
The XCM method extracts both 2D convolution filters for

observed variables and 1D convolution filters for time directly
from input data, leading to more accurate features and better
prediction performance than the sequential approach (Fauvel
et al., 2021). However, fully connected layers used in CNN
architecture for classification can lead to overfitting and a high
number of trainable parameters. To address this, XCM uses 1D
global average pooling to reduce the number of parameters and
improve generalization ability. The non-fully padded convolution
filters used in other methods can lead to imprecise identification of
important regions in input data, so XCM uses fully padded filters for
better results. The upper part of the model uses 2D convolution
filters to extract features per observed variable and is composed of a
2D convolutional block, batch normalization, and ReLU activation
layers. The lower part uses 1D convolution filters to extract
information relative to time and captures the interaction between
different time series. The output feature maps from these two parts
are concatenated to form a feature map, which is passed through a
1D convolution block and global average pooling before performing
classification with a softmax layer.

2.3.2.3 XCMplus
A variant of XCM, similar to XCM except that the 2D and 1D

convolution blocks are in sequence.

2.3.2.4 RNNplus
The concept of integrating a feature extractor into the RNN

network was inspired by the approach devised by the UPSTAGE
team which secured a 3rd place finish in Kaggle’s Google Brain -

Ventilator Pressure Prediction Competition, it consists of employing
a Conv1d + Stacked LSTM architecture.

The Time Series Transformer Plus model is a basic encoder-
decoder Transformer utilised for time series prediction. Unlike other
Transformer models, it does not have any head on top and instead
adds a distribution head for probabilistic forecasting. This implies
that the model learns a distribution, from which one can sample
instead of directly outputting values. It comprises two blocks: an
encoder that accepts a context length of time series values as input
(known as past values), and a decoder that predicts a prediction
length of time series values into the future (known as future values).
During training, pairs of (past values and future values) are provided
to the model. Along with the raw values, additional features can also
be provided to the model such as past time features and future time
features, which serve as “positional encodings” for the Transformer
encoder and decoder respectively. Static categorical features and
static real features can also be used as categorical and real-valued
features that are static over time.

2.3.3 Predictive performance
The predictive performance of all the tested architectures using

Typical-split and Leave-subjects-out methods was quantified by
comparing the five joint moments in the test set, against their
predicted values using RMSE and relative RMSE (relRMSE)
expressed as a percentage (%) of the average peak-to-peak amplitude
for the outcomes (Ren et al., 2008), and Pearson correlation coefficient
(cor) (Johnson et al., 2019a; Johnson et al., 2019b).

RMSE �
��������������������∫T

0
uobs t( ) − upred t( )[ ]2dt

T

√
relRMSE � RMSE

0.5 ∑2
i�1 max0<t<T ui t( )( ) −min0< t<T ui t( )( )( )[ ] × 100%

where T is the stance phase period between initial contact and toe-off,
while uobs(t) is the value at the tth time point of the observed outcome,
upred(t) is the value at the tth time point of the predicted outcome, and i
represents either the observed or predicted outcomes.

3 Results

3.1 Predictors and outcomes

The waveform plots of the accelerations and gyroscopes measured
by the IMUs, and all joint moments calculated by the musculoskeletal
models of the entire dataset can be found in the SupplementaryMaterial
(Supplementary Figure S1; Supplementary Figure S2; Supplementary
Figure S3). The observed and predicted standard deviation (SD)
waveform for all joint moments using Typical-split and Leave-
subjects-out methods can be found in the Supplementary Material
(Supplementary Figure S4; Supplementary Figure S5).

3.2 Machine learning models performance

The performance of the all the tested machine learning models
represented by RMSE, relRMSE, and correlation coefficient to
predict hip, knee, ankle, and subtalar joint moments can be
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found in Table 3. Across all joints, the average ±SD of the RMSE for
the baseline model was 0.067 ± 0.022 Nm/kg, InceptionTimePlus
0.066 ± 0.015 Nm/kg, RNNplus 0.064 ± 0.015 Nm/kg, TSTPlus
0.064 ± 0.015 Nm/kg, XCM 0.046 ± 0.013 Nm/kg, XCMplus 0.059 ±
0.016 Nm/kg using Typical-split method. While the average ±SD of
the RMSE using Leave-subjects-out methods for the baseline model
was 0.131 ± 0.034 Nm/kg, InceptionTimePlus 0.159 ± 0.045 Nm/kg,
RNNplus 0.151 ± 0.057 Nm/kg, TSTPlus 0.162 ± 0.063 Nm/kg,
XCM 0.137 ± 0.042 Nm/kg, XCMplus 0.151 ± 0.053 Nm/kg.

Generally, the best prediction performance was found for the XCM
model using both Typical-split and Leave-subject-out methods. While
the worst performancewas found for the baselinemodel when using the
Typical-split and baseline model and TSTPlus when using Leave-
subjects-out methods. On average across all joint moments, XCM
improved RMSE, relRMSE, and correlation compared to the model
with the worst prediction by 31%, 30%, and 2%, respectively when using
Typical-split method, and by 16%, 7%, and 3% respectively when using
Leave-subject-out method.

TABLE 3 Prediction performance of all the tested machine learning models using typical-split and Leave-subjects-out methods.

Model type Joint moment Typical-split Leave-subjects-out

RMSE (Nm/kg) relRMSE cor RMSE (Nm/kg) relRMSE cor

Baseline
Model

Ankle 0.076 5% 0.989 0.131 9% 0.981

Subtalar 0.029 14% 0.924 0.072 32% 0.646

Knee 0.071 7% 0.968 0.145 16% 0.876

Hip_flexion 0.081 7% 0.966 0.148 13% 0.938

Hip_adduction 0.078 9% 0.97 0.158 18% 0.949

Inception Ankle 0.074 5% 0.989 0.151 9% 0.966

Time Subtalar 0.041 16% 0.855 0.09 30% 0.489

Plus Knee 0.076 7% 0.963 0.213 21% 0.778

Hip_flexion 0.074 6% 0.973 0.162 13% 0.917

Hip_adduction 0.067 7% 0.978 0.178 18% 0.943

RNNPlus Ankle 0.073 5% 0.99 0.124 8% 0.977

Subtalar 0.038 15% 0.875 0.088 30% 0.514

Knee 0.074 7% 0.967 0.239 23% 0.769

Hip_flexion 0.071 6% 0.976 0.137 11% 0.941

Hip_adduction 0.065 7% 0.983 0.166 18% 0.952

TSTPlus Ankle 0.073 5% 0.991 0.147 9% 0.975

Subtalar 0.038 15% 0.876 0.085 28% 0.583

Knee 0.075 7% 0.966 0.255 23% 0.791

Hip_flexion 0.072 6% 0.976 0.138 11% 0.937

Hip_adduction 0.064 7% 0.983 0.187 20% 0.943

XCM Ankle 0.051 3% 0.995 0.124 8% 0.982

Subtalar 0.024 11% 0.945 0.076 28% 0.629

Knee 0.051 5% 0.983 0.182 19% 0.828

Hip_flexion 0.055 5% 0.985 0.133 11% 0.94

Hip_adduction 0.051 6% 0.987 0.17 19% 0.958

XCMPlus Ankle 0.065 4% 0.992 0.127 8% 0.979

Subtalar 0.03 13% 0.917 0.076 29% 0.617

Knee 0.069 7% 0.97 0.216 20% 0.821

Hip_flexion 0.069 6% 0.976 0.161 13% 0.924

Hip_adduction 0.061 7% 0.982 0.175 0.191 0.956
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The variation of the joint moments for multiple locomotion
modes as predicted by the machine learning models using Leave-
subject-out method can be found in the Supplementary Material
(Supplementary Figure S6; Supplementary Figure S7;
Supplementary Figure S8) represented by RMSE, relRMSE, and
correlation coefficient.

3.3 Typical-split vs leave-subjects-out
methods

The prediction performance of all the tested machine learning
models was reduced when using Leave-subjects-out methods over
the Typical-split method (Figure 2; Figure 3). The range (maximum
and minimum) of the relRMSE across all the tested machine
learning models was 11%–16% for subtalar moment, 3%–5% for
ankle moment, 5%–7% for knee moment, 5%–7% for hip
flexion–extension, 6%–9% hip adduction-abduction, using
Typical-split method. While the range of the relRMSE was 28%–
32% for subtalar moment, 8%–9% for ankle moment, 16%–23% for
knee moment, 11%–13% for hip flexion–extension, 18%–20% hip
adduction-abduction when using Leave-subjects-out methods as
shown in Table 3.

3.4 Joint moment predictions

Among all outcomes, the subtalar inversion-eversion moment
was with the lowest RMSE with an average of 0.033 Nm/kg using

Typical-split method and 0.081 Nm/kg when using Leave-subjects-
out method. While all other joint moments showed a comparable
result with an average RMSE of 0.069 Nm/kg using Typical-split
method and ranging between 0.134 Nm/kg and 0.208 Nm/kg when
using Leave-subjects-out method.

4 Discussion

This study introduced newly proposed deep neural network
architectures to estimate various lower limb joint moments from
inertial wearable sensors. The XCM deep neural network
demonstrated highly accurate prediction using four Inertial
measurement units only. This encouraging finding can therefore
enable clinicians and practitioners to bypass the use of a
computationally expensive Inverse dynamic approach to estimate
joint moments and reduce the laborious nature of executing this
process. Accordingly, our work represents a significant progress
towards the use of machine learning for clinical applications.

The XCM performance was noticeably superior to all of the
tested deep neural networks when predicting hip, knee, ankle, and
subtalar moments with a very low level of error of an average RMSE
of 0.046 ± 0.013 Nm/kg. In support of this, Camargo et al. (2022)
also reported very good prediction accuracy for hip, knee, and ankle
joint moments using wearable sensor data with MAE of 0.06 ±
0.02 Nm/kg. However, their predictions were based on data
combined from IMU, EMG, and GON sensors, while our study
proposed a model that can accurately predict joint moments using a
reduced number of wearable sensors, in this case, IMUs only. The

FIGURE 2
Mean of the predicted joint moment waveforms for the hip, knee, ankle, and subtalar by baseline model, InceptionTimePlus, XCM, XCMplus,
RNNplus, and Time Series Transformer plus (TSTPlus) using Typical-split method.
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excellent prediction of the XCM could be because it extracts features
related to the observed variable (using 2D convolutional filters)
and time (using 1D convolutional filters) directly from the input
data instead of using 2D and 1D filters in sequence, an approach
used by the other tested models used in this study and their study.
Utilizing a sequence of 2D and 1D convolution filters implies that
temporal aspects (extracted as feature maps from 1D convolution
filters) are separated from the processed features associated with
observed variables (feature maps from 2D convolution filters).
Consequently, the temporal features are unable to fully integrate
the timing details from the input data, resulting in only partial
representation of the essential information required to distinguish
between distinct classes. In contrast to the 2D/1D sequential
approach, XCM directly extracts features pertaining to observed
variables (via 2D convolution filters) and temporal information
(via 1D convolution filters) from the input data. This inclusive
methodology incorporates all pertinent information, resulting in
the generation of more discerning features. Consequently, XCM
demonstrates improved classification performance on average,
outperforming the 2D/1D sequential approach (Fauvel et al.,
2021). Furthermore, Camargo et al. predicted the anticipated
joint moments in future time using a fixed-size window of
250 m rather than along a full gait cycle. In the future, it would
be interesting to see how well XCM can perform to predict the
anticipated joint moments rather than the instant time. While
comparable performance was found between the rest architectures

with no noticeable differences across all joint moments with an
average RMSE±SD of 0.064 ± 0.003, XCM improved joint moment
prediction by 28% compared to Camargo et al. best prediction and
by 23% in comparison to the rest architectures used in this study.
Accordingly, our findings showcase the strength of XCM to predict
joint moments during different locomotion modes using IMUs
sensors only. This is particularly applicable in real-time
applications that make use of joint moments in clinical
assessments.

In general, the prediction of all of the tested models was
comparable to previous studies (Camargo et al., 2022; B. X. W;
Liew et al., 2021; Xiong et al., 2019) despite the differences in
machine learning approaches, predictor types, and locomotion
modes. Apart from subtalar inversion-eversion moment, the
same order of magnitude for the error predicted for hip, knee,
and ankle joints, was observed across all our tested models with an
average RMSE±SD of 0.068 ± 0.003 Nm/kg when using the Typical-
Split method and 0.165 ± 0.033 Nm/kg using Leave-subjects-out
method. A similar finding was reported by Camargo et al. (2022) and
Xiong et al. (2019). Camargo et al. also found no noticeable
difference between the error predicted for the three joints with
an average MAE±SD of 0.07 ± 0.01 Nm/kg using a shallow neural
network (2 hidden layers) and 0.06 ± 0.02 Nm/kg using XGBoost
algorithm during same locomotion modes used in our study.
However, based on the present findings, a Typical-Split method
resulted in 59% lesser RMSE than a Leave-subjects-out method,

FIGURE 3
Mean of the predicted joint moment waveforms for the hip, knee, ankle, and subtalar by baseline model, InceptionTimePlus, XCM, XCMplus,
RNNplus, and Time Series Transformer plus (TSTPlus) using Leave-subject-out method.
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suggesting that the prediction performance of could be more
optimistic. Similar to Camargo et al. study and the current study,
Xiong et al. (2019) also found comparable differences in the
prediction errors for hip, knee, and ankle joints during walking
with an average normalized RMSE of 6.915% ± 0.657 using a shallow
neural network (3 hidden layers). Unfortunately, neither nor
predicted the subtalar inversion-eversion moment. However, in
agreement with our findings, this particular joint moment was
previously reported with a relatively lower predicted error to
compare to other joints during running (Liew et al., 2021).

A recent systematic review recommended considering the
variation among individuals when training a machine learning
model (Xiang et al., 2022). This was confirmed by the current
study. Leave-subjects-out methods increased the maximum
relRMSE across all the tested models by 16% for subtalar joint
moment, 4% for ankle joint moment, 16% for knee moment, 6% for
hip flexion-extension moment, and 11% hip adduction-abduction
moment, compared to Typical-split method. That might be because
the model can find an association between the unique movement
features of a subject, hence reducing prediction error. The effect can
be seen more when looking at the prediction for each joint. For
example, the increase in the subtalar error was the highest as the
kinematics of this joint varies considerably among individuals
(Brockett and Chapman, 2016) compared to other joints. Similar
findings were observed in previous studies for classifications (e.g.,
healthy and diseased subjects) based on voice measurements (Neto
et al., 2019) and activity recognition (Saeb et al., 2017), where model
classification ability was reduced when ignoring subjects variability
during model training. However, the purpose of the model is the
most important determinant in the decision of which data should be
used to train the model. For example, for subject-specific machine
learning models, split based on trials or repetitions are more
appropriate (Camargo et al., 2022). While if the model’s purpose
is to be generalized for the public, then subject variations must be
considered.

This study includes several limitations. Hyperparameter tuning
has not been explored in the current study, hence, our findings can
provide a more conservative estimation of the predictive
performance of the machine learning models. Additionally, the
temporal dependencies in our data have not been explored. The
data of the current study includes multiple consecutive repetitions of
multiple locomotion modes of each participant, which means data
from consecutive repetitions could be highly correlated (Dorschky
et al., 2023) and so the model may be overfitting to one fold
(Domingos, 2012). However, Johnson et al. reported that cross-
validation over five k-folds versus one-fold of multiple repetitions,
but of one locomotion mode (sidestepping), showed a very similar
average correlation when predicting knee joint moment (Johnson
et al., 2019a). Future studies may further investigate the effect of
cross-validation on model prediction when multiple locomotion
modes are considered. The characteristics of the participants (e.g.,
sex, age group, health status, type of activities engaged in) may be
important determinants in model prediction accuracy. A machine-
learned model used for prediction purposes must be trained on data
that has similar characteristics to the data needed to be predicted.
Our data included all healthy participants within the same group,
but various locomotion activities were included. Yet, all the activities
we considered were at the same level of intensity with no vigorous

activities. In term of model prediction, a recent study reported that
including data on walking and running was no better than including
walking or running alone (B. X. Liew et al., 2023). Nevertheless, a
more diverse dataset in machine learning can benefit the model by
improving generalization, reducing bias, and enhancing robustness
to variations in individual characteristics. It allows the model to
learn from a wider range of ages, health statuses, and activities,
resulting in improved performance and fairness. However, careful
data curation and evaluation are essential to address challenges and
biases that may arise from the diverse dataset. Inclusion of subject
characteristics into a multi-input model should be investigated in
the future. Signals measured by IMU sensors are sensitive to
participant anthropometrics and soft tissue characteristics
(Godfrey et al., 2008), thus proper sensor placement is crucial to
ensure accurate and reliable data collection. Furthermore,
maintaining consistent sensor placement across multiple sessions
can be challenging. Nevertheless, this challenge can be overcome by
implementing standardized placement guidelines and providing
training on sensor placement and calibration. Future work on
assessing the effects of inter-participant variabilities on input
signals for the machine learning models as well as variable
selection to identify the most parsimonious combination of
sensors is needed. Finally, testing and validating the use of IMU
sensors combined with machine learning in uncontrolled, real-
world environments require addressing real-world variability,
identifying suitable ground truth measurements, performing
comparative analysis, and analyzing prediction errors and
uncertainties. These steps contribute to building confidence in
the model’s predictive capabilities and its suitability for real-
world applications.

In conclusion, XCM deep neural network can accurately predict
the waveform of lower limb joint moments during walking, ramp,
and stairs using inertial wearable sensors only such as IMUs. The
portability of the IMU sensors is a vast advantage allowing for wider
adoption in the practical setting. One of the most significant benefits
of making deep neural network architectures available to field
practitioners relates to the ease of estimating lower limb joint
moments during different locomotion modes. Not only does this
enable fast measurement, but it also facilities excellent accuracy and
detailed motion analysis for athletes or other patients and so sports
scientists and physiotherapists can gain insights into biomechanics,
technique, and form. This information can be used to identify areas
where clients may be at risk of injury, as well as to develop
personalized training programs that can help them optimize their
performance.
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