arXiv:1403.5946v3 [cs.DB] 19 May 2014

Metadata for Energy Disaggregation

Jack Kelly and William Knottenbelt
Department of Computing, Imperial College London, UK.
e-mail: jack.kelly @imperial.ac.uk

Abstract—Energy disaggregation is the process of estimating
the energy consumed by individual electrical appliances given
only a time series of the whole-home power demand. Energy
disaggregation researchers require datasets of the power demand
from individual appliances and the whole-home power demand.
Multiple such datasets have been released over the last few
years but provide metadata in a disparate array of formats
including CSYV files and plain-text README files. At best, the
lack of a standard metadata schema makes it unnecessarily
time-consuming to write software to process multiple datasets
and, at worse, the lack of a standard means that crucial
information is simply absent from some datasets. We propose a
metadata schema for representing appliances, meters, buildings,
datasets, prior knowledge about appliances and appliance models.
The schema is relational and provides a simple but powerful
inheritance mechanism.

I. INTRODUCTION

Research suggests that consumers are better able to reduce
their energy consumption if given an itemised, appliance-
by-appliance energy bill rather than a bill which only de-
scribes aggregate consumption [6]. Energy disaggregation is
the process of estimating the energy consumed by individual
appliances in a home given a time series of the whole-
home power demand. A typical use case would be to provide
consumers with an estimated itemised electricity bill without
requiring the expense of installing separate meters on every
appliance.

Research into energy disaggregation (also known as ‘non-
intrusive load monitoring’ or NILM) began with George Hart’s
pioneering work in 1984 [7], [8]. A recent resurgence has
been triggered by a combination of high energy bills and the
introduction of ‘smart electricity meters’. In the quest to design
and implement a high performance energy disaggregation
system, researchers require several types of data:

The primary requirement is for datasets which record the
power demand of whole homes as well as the ‘ground truth’
power demand of individual appliances within the home. In
2011, researchers at MIT released the first public dataset for
energy disaggregation research [10]. Since then, over ten more
datasets have been released [1]-[3], [9], [12], [14] and, in
March 2014, a project called Wiki Energy! launched to share
datasets online. These datasets have been well received but,
because each dataset uses a different file format, it is time
consuming to import multiple datasets. This is an issue be-
cause an important criteria for evaluating any machine learning
algorithm is how well it generalises across multiple datasets.

Thttp://wiki-energy.org/

A further challenge with existing datasets is that machine-
readable metadata is often minimal and uses a schema and
vocabulary unique to that dataset. At best, the lack of a
standard metadata schema makes it time-consuming to write
software to process multiple datasets. At worse, some datasets
simply lack sufficient metadata to allow the data to be properly
interpreted. For example, the mains wiring connecting meters
to each other and to appliances forms a tree (with the whole-
house meter at the root and appliances at the leaves). In some
datasets, this tree structure has more than two levels (i.e.
when an appliance turns on or off, the resulting change in
power consumption is sensed by more than two meters) yet
the metadata rarely specifies the wiring tree.

A secondary requirement is for data describing the be-
haviour of appliances (e.g. a probability distribution describ-
ing the typical times per day that each appliance is used).
This prior knowledge can be used to fine-tune the estimates
produced by a disaggregation system. Such data is currently
available in research papers and industry reports but not in a
machine-readable form.

Finally, consumers are unlikely to put effort into training
a disaggregation tool. As such, if open-source disaggregation
solutions such as NILMTK [4] are to be viable as consumer-
facing disaggregation solutions then researchers must dis-
tribute pre-trained models for each appliance. If these models
adhere to a standard metadata schema then multiple software
systems can exchange models.

Against this background, we propose the first draft of
a hierarchical metadata schema for energy disaggregation.
Specifically, our schema models electricity meters, appliances
(including prior knowledge such as probability distributions
describing typical times of use and parameters describing
inferred models of appliances), buildings and datasets.

Although we have made every effort to ensure that our
proposed schema and controlled vocabularies capture the
information present in all the datasets we are aware of, our
schema can undoubtedly be improved and so the schema
is presented as an open-source project’ (under a permissive
Apache 2.0 license) to which contributions are most welcome!

In this paper we first outline related work; then we describe
the design of our metadata schema; then look at the implemen-
tation of a schema validator and finally we discuss conclusions
and future work.

Zhttps://github.com/nilmtk/nilm_metadata


http://wiki-energy.org/
https://github.com/nilmtk/nilm_metadata

II. RELATED WORK

The general principal of using metadata to describe research
datasets is not new. For example, the not-for-profit organisa-
tion DataCite® (established in 2009) publishes the DataCite
Metadata Schema for describing research datasets.

In late-2013, the Nature Publishing Group launched a
journal called ‘Scientific Data** for describing datasets. The
machine-readable description of each dataset is captured using
the ISA_Tab metadata specification® which specifies a hier-
archical schema consisting of the ‘investigation’ (the project
context), the ‘study’ (a unit of research) and the ‘assay’ (an
analytical measurement).

Biology researchers have embraced the need for metadata
schemas and controlled vocabularies as demonstrated by, for
example, The Open Biological and Biomedical Ontologies
database® which aims to enable the creation of a suite of
interoperable reference ontologies for the biomedical domain.

Few metadata projects are specifically for energy datasets.
One notable project is Project Haystack’ which is an open
source initiative to develop taxonomies and tagging conven-
tions for building equipment and operational data. Amongst
other achievements, Haystack defines a language for describ-
ing electricity meters, including which parameters each meter
records and the relationships between meters and between
meters and loads. But Haystack is primarily targeted at large
commercial buildings rather than domestic buildings, and does
not define a controlled vocabulary for appliance names, let
alone more granular detail about appliances.

The UK Energy Research Council’s Energy Data Centre
provides a simple schema® based on the Dublin Core Metadata
Initiative’ (DCMI).

The Power Consumption Database!® is a community project
which aims to collect a database of appliance power consump-
tion information.

To summarise the related work: there are many metadata
projects for describing research datasets in general but only
a small number of metadata projects for describing energy
datasets. To the best of our knowledge, there are no existing
metadata schemas specifically for describing objects relevant
to energy disaggregation. Existing datasets for energy disag-
gregation do provide some metadata (e.g. a text file mapping
appliance names to recording channels) but this metadata
does not use a controlled vocabulary and often provides scant
details.

ITI. DESIGN

The NILM Metadata schema models several objects relevant
to energy disaggregation: electricity meters, appliances, prior

3http://www.datacite.org
4http://www.nature.com/scientificdata
Shttp://isa-tools.org
Shttp://www.obofoundry.org
"http://project-haystack.org
8http://ukedc.rl.ac.uk/format.html
%http://dublincore.org
1Ohttp://www.tpcdb.com

Metadata shipped Dataset Common

with dataset 31 metadata

*

Building
*Q g * 1 1\ ¢1
‘ Sensor H ElecMeter ‘i—*{Appliance‘ ‘ ApplianceType ‘
“ *Q\_/l w *U ' '
submeter of contains  contains

*

ApplianceModel

Fig. 1. UML Class Diagram showing the relationships between classes. A
dark black diamond indicates a ‘composition’ relationship whilst a hollow
diamond indicates an ‘aggregation’. For example, the relationship between
‘Dataset’ and ‘Building’ is read as ‘each Dataset contains any number of
Buildings and each Building belongs to exactly one Dataset’. We use hollow
diamonds to mean that objects of one class refer to objects in another class.
For example, each Appliance object refers to exactly one ApplianceType.
Instances of the classes in the shaded area on the left are intended to be
shipped with each dataset whilst objects of the classes on the right are
common to all datasets and are stored within the NILM Metadata project.
Some ApplianceTypes contain Appliances, hence the box representing the
Appliance class slightly protrudes into the ‘common metadata’ area on the
right.

knowledge about appliances, appliance models, buildings and
datasets. The schema specifies property names for each object,
the type for each value and controlled vocabularies (e.g. for
appliance names and categories).

A UML Class diagram showing the relationship between
classes is shown in Figure 1 and a brief example metadata
instance is shown in Figure 2.

In the sections below, we describe our ‘dataset’ and ‘build-
ing’ schemas; the distinction between meters and appliances;
the representation of electricity meters; the representation of
the mains wiring; the inheritance mechanism for appliances;
categorisation; the containment mechanism that allows an
appliance to contain other appliances; prior knowledge; and
finally our representation of learnt models.

A. Dataset

NILM Metadata places the primary objects of interest
into a tree shaped hierarchy (Figure 1). At the root is a
dataset object. This contains buildings, each of which contains
electricity meters, many of which measure the power demand
of appliances.

This tree hierarchy captures all datasets we are aware of
except one: the ‘tracebase’ dataset [12] describes appliances
without their building context. To handle tracebase, meter
objects in NILM Metadata can be directly contained within
a dataset object (without requiring a building object).

The dataset schema records properties such as
publication_date*®, rights_1list*,


http://www.datacite.org
http://www.nature.com/scientificdata
http://isa-tools.org
http://www.obofoundry.org
http://project-haystack.org
http://ukedc.rl.ac.uk/format.html
http://dublincore.org
http://www.tpcdb.com

Mains feed into
house from
utility company

Key

ElecMeter
O Sensor

lighting circuit

120V
120V

~—

# buildingl.yaml

instance: 1

elec_meters:

- instance: 1
site meter: true,
sensors: [{data_location: la.csv}, {data_location:
device _model: Whole-House Meter Model FOO

1b.csv}]

- instance: 2
sensors: [{data_location: 2.csv}]
submeter_of: 1
appliances: [{type: kettle}
device model: Individual Appliance Monitor Model BAR

- instance: 3
submeter_of: 1
appliances: [{type: washing machine}
sensors: [{data_location: 3a.csv}, {data_location: 3b.csv}]
device model: Individual Appliance Monitor Model BAR

- instance: 4
sensors: [{data_location: 4.csv}]
submeter_of: 1

light, multiple: true}l

device_model: Circuit Monitor Model BAZ

5.csv}]

light, room: kitchen}]
device_model: Circuit Monitor Model BAZ

appliances: [{type:
kettle
- kitchen other ceiling lights - instance: 5
lights sensors: [{data_location:
hi hi submeter_of: 4
washing machine appliances: [{type:
(240V)
Fig. 2. The illustration on the left shows a cartoon mains wiring diagram for a domestic building. Black lines indicate mains wires. This home has a

split-phase mains supply (common in North America, for example). The washing machine draws power across both splits. All other appliances draw power
from a single split. The text on the right shows a minimalistic description (using the NILM Metadata schema) of the wiring diagram on the left.

geospatial_coverage®, temporal_coverage®,
funding, creators®, related_documents®,
timezone and geo_location (* the starred properties
are adapted from Dublin Core.)

B. Building

Buildings are identified by an integer property instance
(unique within the dataset). Each building may have
a list of rooms (using a controlled vocabulary for
room names), and some properties shared with dataset:
temporal_coverage, geo_location, timezone.
These properties default to the values set in the parent dataset
but can be overridden per building. Each building contains
a elec_meters property which stores a list of ElecMeter
objects.

C. Meters are distinct from appliances

A tempting simplification would be to assume a one-to-
one relationship between electricity meters and appliances.
But we often observe one-to-many relationships (e.g. multiple
appliances plugged into a multi-way mains adapter which,
in turn, is connected to a single meter) and we occasionally
observe many-to-one relationships (e.g. in the US and Canada
many large domestic appliances like washing machines draw
a total of 240 volts from two 120 volt ‘split-phase’ supplies
found in a typical house and some datasets use two meters
per 240 volt appliance). We frequently observe situations
where some appliances are not submetered. To handle the
case where a single appliance receives more than one power
supply (e.g. split-phase or three-phase power), we allow each

ElecMeter object to contain between one and three Sensor
objects. Each Sensor models the physical sensors recording
data in the field. To handle the case where a single meter is
connected to multiple appliances, each ElecMeter can contain
any number of Appliance objects. The meter may also specify
a dominant_appliance property to specify if a single
appliance is on more often than other appliances on that meter.

D. ElecMeters and MeterDevices

Each MeterDevice object records properties which apply
to a specific model of electricity meter. For example, the
sample_period in seconds, the measurements recorded
by the meter (e.g. voltage, reactive power, active energy etc),
the meter manufacturer and model.

ElecMeter objects represent each physical meter installed
in a building. Each ElecMeter references exactly one
device_model. ElecMeter is also the place where any
pre-processing carried out on the data can be described (for
example, have gaps been filled? Or unrealistic values been
removed?)

E. Mains wiring

Each building in a typical dataset will have one meter which
records the aggregate, whole-building mains power demand.
Downstream of this meter might be meters which measure
entire circuits within the building (e.g. the lighting circuit).
Finally, there are often meters which measure individual
appliances. An example wiring diagram is shown in Figure 2.

As such, the mains wiring connecting meters with each
other can be described as a tree. Each ElecMeter can specify



either a submeter_of property (the numeric ID of the
upstream meter) or a site_meter property (a boolean flag
which is set to true if this meter measures the whole-
building aggregate). The property names ‘submeter_of’
and ‘site_meter’ are adapted from Project Haystack. The
wiring hierarchy can be any depth. In large, commercial
installations, a meter in one building may be downstream of
a meter in another building. This case can be handled by
specifying the numeric ID of the other building using the
upstream_meter_in_building property. If this prop-
erty absent then we assume the upstream meter is in the same
building.

F. Appliance and ApplianceType

With each dataset, we specify a set of Appliance objects.
Each Appliance object represents an appliance instance in
the dataset. Each Appliance object in a dataset has a type
property which refers to an ApplianceType object. Appliance-
Type objects are not shipped with the dataset; instead they
are stored within NILM Metadata and embody the controlled
vocabulary of appliance names and all the prior knowledge
about appliance types (e.g. the categories each appliance type
falls within, probability distributions describing the power
demand for the appliance etc).

G. Inheritance for ApplianceTypes

Electrical appliances can be described as a hierarchical tree
of objects. For example, a ‘wine cooler’ can be considered
a specialisation of a ‘fridge’ and, as such, inherits properties
from fridges.

Inheritance is a well-established technique in software en-
gineering for maximising code re-use. NILM Metadata im-
plements a simple but powerful form of inheritance known
as prototype-based inheritance (first implemented in the Self
programming language [5] and used in JavaScript). Objects in
prototype-based programming languages are not instances of a
class but, instead, inherit from any other object (the ‘parent’ or
‘prototype’ object). In NILM Metadata, each ApplianceType
object has a ‘parent’ from which it inherits properties. These
properties can be modified by the child and the child can
specify properties not specified by the parent. The inheritance
tree can be any depth.

Inheritance follows a small number of rules. If a property
is contained in the parent and absent in the child then it is
copied to the child. If a property is present in both parent and
child then it is handled differently depending on the type of
the property:

1) list (array) objects become the union of the parent and

child lists.

2) scalar objects in the child override (‘shadow’) properties

in the parent.

3) objects (dictionaries) are recursively updated using the

rules above.

Child objects can specify a do_not_inherit property (a
list of property names) to avoid inheriting named properties.

Subtypes versus inheritance. Appliance objects have a
subtype property (which must be set to a member of the
appliance type’s subtypes set). What is the difference be-
tween a subtype and a child object? Subtypes are useful when
two related appliances are so similar that we can safely ignore
the differences for the purposes of energy disaggregation. For
example, an analogue radio and a digital radio are sufficiently
similar to mean that they can both be subtypes of the ‘radio’
object. On the other hand, an electric cooker has a significantly
different electricity load profile compared to a cooker fuelled
by natural gas, so these are separate objects.

Additional properties. Some appliances have rare proper-
ties. For example, a television might have a screen_size
property. We do not want to pollute the common ‘appli-
ance’ schema with these properties (because, for example,
it makes no sense for a cooker to be able to specify a
screen_size property!). Instead, appliance objects can
define an additional properties property. This is
specifies the schema for any additional properties (using JSSON
Schema). additional_properties is inherited using the
same rules as any other property.

H. Appliance categorisation

When analysing domestic power consumption, we often
want to group appliances into certain categories. For example,
we might want to ask ‘what is the total energy consumption
for all consumer electronics?’.

Domestic appliances are traditionally classified as one of
‘wet’, ‘cold’, ‘consumer electronics’, ‘ICT’, ‘cooking’, ‘light-
ing’ or ‘heating’.

An alternative classification is a simple binary classification
of ‘large appliances’ (e.g. dish washer) versus ‘small appli-
ances’ (e.g. a radio).

A more finely-grained classification based on the
electrical properties of appliances was proposed by
Tsagarakis ef al [13]. For example, the taxonomy proposed
by Tsagarakis er al. splits lighting into general incandescent
lamps, fluorescent lamps and light-emitting diode (LED)
sources. An appliance can have multiple classifications from
this taxonomy.

Yet another taxonomy for domestic appliances is the Google
product taxonomy'! (used on Google Shopping). This taxon-
omy is a tree which we represent as list of classifications.

NILM Metadata currently supports all four taxonomies
listed above and it would be trivial to add more. We spec-
ify a controlled vocabulary for the category names. Our
appliance schema specifies a categories property which
is an object with the following properties: traditional
(string), size (string), electrical (array of strings) and
google_shopping (array of strings). At present, all Ap-
plianceTypes the NILM Metadata have a ‘traditional’ classifi-
cation and many have classifications for the other taxonomies.

https://support.google.com/merchants/answer/16008 1


https://support.google.com/merchants/answer/160081

1. Appliances can contain other appliances

Some appliances can be modelled as a container of other
objects. For example, a washing machine can be modelled
as a drum motor and a water heating element (and a few
other components). Appliance (and ApplianceType) objects in
NILM Metadata have a components property which stores
an array of appliance objects. Containment is recursive and
can be of any depth.

Of course, all appliances can be decomposed into compo-
nents. Do we model each individual resistor and transistor?
No; the end-goal is to model appliances only in sufficient
detail to allow an energy disaggregation system to identify the
whole appliance given prior knowledge of the components. As
such, we only describe individual components if their electrical
behaviour is observable from a typical mains electricity meter.
It is also important that components be truly separate entities
from an electrical perspective. For example, a fridge freezer
should not be modelled as containing both a fridge and a
freezer because that would imply that a fridge freezer has
two separate compressors but - as far as we are aware - fridge
freezers typically have one compressor.

If an appliance contains multiple instances of the same
component then we use the count property in the component
to specify the number of instances. If an appliance contains
multiple instances of the same component but the exact
number of components is unknown then set multiple to
‘true’.

The container appliance inherits categories from each of
its components. This is useful mostly for the °‘electrical’
taxonomy. For example, if we model a washing machine as
a motor and a heater then the washing machine inherits the
appropriate electrical classifications from both the motor and
the heater.

Our representation of lighting exploits NILM Metadata’s
containment mechanism. We distinguish between the light
fitting (also called the luminaire or fixture) and the electric
lamp(s) within each fitting. We have a ‘light’ object which
contains any number of ‘lamps’ (of which there are several
kinds including ‘LED lamp’ and ‘incandescent lamp’). Light
objects can also contain a ‘dimmer’ object.

J.  Prior knowledge

Prior knowledge can be exploited to improve disaggrega-
tion performance. Examples of prior knowledge include: the
distribution of on-powers of an appliance; the typical time of
use per day or per week; correlations with other appliances
(e.g. the computer monitor is often on when the computer is
on).

NILM Metadata specifies a ‘prior’ object which holds
several properties, the two most important of which are
distribution_of_data (the distribution of the data ex-
pressed as normalised frequencies per discrete bin (for con-
tinuous variables) or per category (for categorical variables))
and model (which describes a model fitted to describe the
probability density function (for continuous variables) or the
probability mass function (for discrete variables)). We can also

specify the source of data (is it a subjective guess, or the
result of primary data analysis, or taken from a published
paper?), whether the prior is specific_to a country and
what training_data was used to generate the prior.

Each ‘appliance’ object has a ‘distributions’ property which
is an object with the following properties (each property
is an array of priors): on_power, on_duration,
off_duration, usage_hour_per_day,
usage_day_per_week, usage_month_per_year,
rooms, subtypes, appliance_correlations,
ownership, ownership_per_country,
ownership_per_continent

We store an array of priors (rather than a single prior) for
each distribution. This allows us to store multiple beliefs about
each distribution (which could be combined using Bayesian
statistics). For example, we might find several published
papers which provide evidence about the distribution over
the power consumption of an appliance. Furthermore, NILM
Metadata collects all relevant priors as it descends the inheri-
tance hierarchy for each object (for example, a ‘wine cooler’
might not have any priors associated with it but it will inherit
prior knowledge from its parent ‘fridge’ object). Of course,
priors from a distant ancestor are less relevant than priors from
a recent ancestor so, as we traverse the inheritance tree, we
tag each prior with a distance property (a positive integer
indicating the number of ‘generations’ away the prior is from
the appliance in question).

K.  Learnt models of appliances

End-users of domestic disaggregation software are unlikely
to put any effort into training the system. This means that
we must use either a supervised learning algorithm with pre-
trained models or an unsupervised disaggregation algorithm
(which must still have some form of prior appliance model to
be able to provide human-readable names for each appliance).
As such, we specify a simple ‘appliance model’. This has
properties such as model_type (a controlled vocabulary
with terms such as ‘HMM’ for hidden Markov model),
training_data, date_prepared etc. The model’s pa-
rameters are stored in a parameters object.

For each model type (e.g. ‘HMM’) and for each appliance
type (e.g. ‘fridge’), our ‘appliance model’ schema can be used
to fully specify an appliance model that has been learnt from
the data. This allows the model parameters to be inferred and
shared by a researcher and then any user can take advantages
of these models for disaggregation. The end result is that
only a small number of researchers need to put effort into
generating models and then anyone with an internet connection
can make use of the models in a disaggregation system.

IV. IMPLEMENTATION

The syntactic elements of the schema are specified using
JSON Schema Draft 4!2. The code which implements the se-
mantics of NILM Metadata and performs validation is written

2http://json-schema.org/


http://json-schema.org/

in Python. We make use of the jsonschema'? package for
validation and PyYAML'* for loading YAML files. Metadata
instances can be written in JSON or YAML.

Prior to validating each appliance, the properties ob-
ject specified by the ‘appliance’ schema is updated with
concatenated additional_properties specified by the
appliance’s ancestors.

A. File organisation

To make the metadata reasonably easy for a human to
navigate, we propose splitting the metadata into separate files,
all contained within a metadata folder. Each metadata
will have exactly one dataset .yaml file and some number
of building<I>.yaml files (where I is an integer).

B. Example

# dataset.yaml
name: UK—DALE
long_name: >
UK Domestic Appliance—Level
meter_devices:

Electricity

— model: EnviR
manufacturer: Current Cost
measurements :
— physical_quantity: power
ac_type: apparent

lower_limit: O
upper_limit: 30000

# buildingl .yaml
instance: 1
rooms :

— {name: kitchen,
— {name: lounge,
elec_meters :

instance: 1}
instance: 1}

— instance: 1
device_model: EnviR
site_meter: true
Sensors :

— data_location: housel/channel_1.dat

— instance: 2
device_model:
submeter_of: 1
Sensors :

— data_location:
preprocessing:
— {filter: clip, maximum: 4000}
appliances:
— type: light
components :
— type: LED lamp
count: 10
nominal_consumption: {on_power: 10}

EnviR

housel/channel_2 . dat

manufacturer: Philips
year_of_manufacture: 2011
— type: dimmer

on_power_threshold: 10
main_room_light: true
dates_active:
— {start: 2012, end: 2013}
V. CONCLUSIONS
We have proposed the first draft of a metadata schema for
representing objects relevant to energy disaggregation. The

Bhttps://github.com/Julian/jsonschema
http://pyyaml.org/wiki/Py YAML

schema adapts ideas from DCMI, Project Haystack, ISA_Tab
and DataCite; and adds new elements relevant to energy
disaggregation (only a few of these elements are required
to be instantiated). We also propose a simple but powerful
inheritance mechanism to minimise duplication of information
and effort. The schema has successfully been used to capture
metadata for the UK-DALE (Domestic Appliance-Level Elec-
tricity) Dataset [11].

Whilst NILM Metadata is fit for use now, there will in-
evitably be use-cases that we have neglected hence we warmly
welcome contributions from the community! NILM Metadata
is open-source to facilitate collaboration and is available at
github.com/nilmtk/nilm_metadata

VI. FUTURE WORK

It is currently difficult (if not impossible) to directly com-
pare any pair of disaggregation algorithms published in the
literature. This is because different researchers tend to use
different datasets and different performance metrics. Even if
a pair of researchers use the same dataset, they might use
different segments of that dataset! If raw disaggregation results
and metadata describing the results and training procedures
could be published with each research paper then the com-
munity could begin to objectively rank the performance of
disaggregation algorithms. Such ranking is common in other
fields of machine learning such as machine vision. (Ranking
energy disaggregation algorithms is a complex task and we
certainly do not pretend that the introduction of metadata is
sufficient!) As such, we plan to fully integrate out NILM
Metadata schema and object database with the open source
disaggregation toolkit NILMTK [4] and to design a schema
for describing disaggregation results using a combination of
our existing ‘appliance‘ and ‘prior‘ schemas.

Furthermore, NILMTK [4] already implements the import
and export of appliance models using a simple schema. We
plan to explore implementing our proposed ‘appliance models’
schema in NILMTK.

REFERENCES

[1] Kyle Anderson, Adrian Ocneanu, Diego Benitez, Derrick Carlson,
Anthony Rowe, and Mario Berges. BLUED: A Fully Labeled Public
Dataset for Event-Based Non-Intrusive Load Monitoring Research. In
Proceedings of the 2nd KDD Workshop on Data Mining Applications
in Sustainability (SustKDD), Beijing, China, August 2012.

[2] Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant
Shenoy, and Jeannie Albrecht. Smart*: An open data set and tools for
enabling research in sustainable homes. In The 1st KDD Workshop on
Data Mining Applications in Sustainability (SustKDD), Beijing, China,
2011.

[3] Nipun Batra, Manoj Gulati, Amarjeet Singh, and Mani B Srivastava.
It’s Different: Insights into home energy consumption in India. In
Proceedings of the Fifth ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Buildings, BuildSys ’13, 2013. doi:10.
1145/2528282.2528293.

[4] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knot-
tenbelt, Alex Rogers, Amarjeet Singh, and Mani Srivastava. NILMTK:
An Open Source Toolkit for Non-intrusive Load Monitoring. In
Fifth International Conference on Future Energy Systems (ACM e-
Energy), Cambridge, UK, 2014. arXiv:1404.3878, doi:10.
1145/2602044.2602051.


https://github.com/Julian/jsonschema
http://pyyaml.org/wiki/PyYAML
https://github.com/nilmtk/nilm_metadata
http://dx.doi.org/10.1145/2528282.2528293
http://dx.doi.org/10.1145/2528282.2528293
http://arxiv.org/abs/1404.3878
http://dx.doi.org/10.1145/2602044.2602051
http://dx.doi.org/10.1145/2602044.2602051

[5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
SELF a dynamically-typed object-oriented language based on proto-
types. ACM SIGPLAN Notices, 24(10):49-70, October 1989. doi:
10.1145/74878.74884.

Corinna Fischer. Feedback on household electricity consumption: a tool
for saving energy? Energy Efficiency, 1(1):79-104, May 2008. doi:
10.1007/s12053-008-9009-7.

G. W Hart. Nonintrusive Appliance Load Data Acquisition Method.
Technical report, MIT Energy Laboratory Technical Report, September
1984.

G.W. Hart. Nonintrusive appliance load monitoring. Proceedings of
the IEEE, 80(12):1870-1891, December 1992. doi:10.1109/5.
192069.

Chris Holcomb. Pecan Street Inc.: A Test-bed for NILM. In First
International Workshop on Non-Intrusive Load Monitoring, 2012.

J. Zico Kolter and Matthew J. Johnson. REDD: A Public Data Set
for Energy Disaggregation Research. In ACM Special Interest Group
on Knowledge Discovery and Data Mining, workshop on Data Mining
Applications in Sustainability, San Diego, CA, USA, 2011.

Jack Kelly and William Knottenbelt. UK-DALE: A dataset recording UK
Domestic Appliance-Level Electricity demand and whole-house demand.
ArXiv e-prints, April 2014. arXiv:1404.0284.

Andreas Reinhardt, Paul Bauman, Daniel Burgstahler, Matthias Hollick,
Hristo Chonov, Marc Werner, and Ralf Steinmetz. On the Accuracy of
Appliance Identification Based on Distributed Load Metering Data. In
Proceedings of the 2nd IFIP Conference on Sustainable Internet and
ICT for Sustainability, pages 1-9, Pisa, Italy, 2012.

G. Tsagarakis, A. J. Collin, and A. E. Kiprakis. A Statistical Survey
of the UK Residential Sector Electrical Loads. International Journal
of Emerging Electric Power Systems, 14:509-523, September 2013.
arxXiv:1306.0802, doi:10.1515/1jeeps-2013-0078.
Jean-Paul Zimmermann, Matt Evans, Jonathan Griggs, Nicola King, Les
Harding, Penelope Roberts, and Chris Evans. Household Electricity
Survey. A study of domestic electrical product usage. Technical Report
R66141, DEFRA, May 2012.


http://dx.doi.org/10.1145/74878.74884
http://dx.doi.org/10.1145/74878.74884
http://dx.doi.org/10.1007/s12053-008-9009-7
http://dx.doi.org/10.1007/s12053-008-9009-7
http://dx.doi.org/10.1109/5.192069
http://dx.doi.org/10.1109/5.192069
http://arxiv.org/abs/1404.0284
http://arxiv.org/abs/1306.0802
http://dx.doi.org/10.1515/ijeeps-2013-0078

	I Introduction
	II Related work
	III Design
	III-A  Dataset
	III-B  Building
	III-C  Meters are distinct from appliances
	III-D  ElecMeters and MeterDevices
	III-E  Mains wiring
	III-F  Appliance and ApplianceType
	III-G  Inheritance for ApplianceTypes
	III-H  Appliance categorisation
	III-I  Appliances can contain other appliances
	III-J  Prior knowledge
	III-K  Learnt models of appliances

	IV Implementation
	IV-A  File organisation
	IV-B  Example

	V Conclusions
	VI Future work
	References

