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Abstract

Early diagnosis of disease can lead to improved health outcomes, including higher survival
rates and lower treatment costs. With the massive amount of information available in
electronic health records (EHRs), there is great potential to use machine learning (ML)
methods to model disease progression aimed at early prediction of disease onset and other
outcomes. In this work, we employ recent innovations in neural ODEs combined with
rich semantic embeddings of clinical codes to harness the full temporal information of
EHRs. We propose ICE-NODE (Integration of Clinical Embeddings with Neural Ordinary
Differential Equations), an architecture that temporally integrates embeddings of clinical
codes and neural ODEs to learn and predict patient trajectories in EHRs. We apply our
method to the publicly available MIMIC-III and MIMIC-IV datasets, and we find improved
prediction results compared to state-of-the-art methods, specifically for clinical codes that
are not frequently observed in EHRs. We also show that ICE-NODE is more competent
at predicting certain medical conditions, like acute renal failure, pulmonary heart disease
and birth-related problems, where the full temporal information could provide important
information. Furthermore, ICE-NODE is also able to produce patient risk trajectories over
time that can be exploited for further detailed predictions of disease evolution.

1. Introduction

With the wider availability of EHRs, and the massive amount of information they contain,
there is a rising demand to exploit such data using current advances in ML to improve
healthcare outcomes. For instance, many healthcare systems across the world suffer from
delayed cancer diagnosis, leading to lowered survival rates in cancer patients (Arnold et al.,
2019). In 2020, over 19 million people were diagnosed with cancer and around 10 million
people died from cancer (Ferlay et al., 2021). In England and Wales alone, over three hundred
and fifty thousand cancer cases are diagnosed yearly (averaged over 2016-2018), and from
those diagnosed with cancer in 2010-2011 only 50% survive for ten years or more (Cancer
Research UK). Employing new innovations in ML for disease progression modeling (DPM)
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Figure 1: A schematic view of ICE-NODE. The input is an EHR at three consecutive timestamps {t0, t1, t2}
ICE-NODE learns a neural ODE model from the clinical codes at each timestamp by generating
predictions at the observation times of the samples in the training set. Once the model is learnt,
it can generate a health state trajectory over time and continuous-time clinical embeddings that
can be used to predict clinical codes, enabling risk predictions for medical conditions over time
(e.g., for ‘Acute renal failure’ in this case).

has the potential to take advantage of the available data in patient histories to aid clinicians
in their quest for early prediction of disease onset.

Information in EHRs is stored as timestamped medical concepts of diverse type (e.g.,
symptoms, procedures, lab tests). The medical concepts in EHRs are stored using coding
schemes, such as SNOMED CT 1 or ICD2, which provide a comprehensive, interrelated
classification of diseases within a compactly structured data system.

The complexity of the information in EHRs poses a number of challenges for many ML
predictive models, which usually make strong assumptions about the data when dealing
with feature extraction and representation of clinical codes, and with the treatment of the
temporal dimension in the patient history. Many DPM methods (e.g. Cherry et al., 2020;
Weegar and Sundström, 2020) transform the EHR into a tabular format discarding the
temporal information altogether, whereas other approaches (e.g. Choi et al., 2018, 2016a)
only capture the sequential information within the EHR. recurrent neural networks (RNNs)
and other natural language processing (NLP)-inspired models usually underpin the methods
of this latter group. Yet, while these methods can aid in capturing the temporal ordering of
medical concepts, they do not capture the irregularity of time intervals between consecutive
timestamps. Such assumptions may limit the learning capabilities of models applied to such
temporal patterns, which might be important for particular medical conditions.

Recently, a new set of ML methods (Chen et al., 2018; Brouwer et al., 2019; Rubanova
et al., 2019; Kidger et al., 2020; Kidger, 2022) have developed a class of neural networks
that include ordinary differential equations (ODEs) through implicit layers, as opposed
to the common feed-forward static layers. Such neural ODEs models have the potential
to learn the dynamics of EHRs as sporadically observed time series, irregularly sampled
in time and feature dimensions. Indeed, neural ODEs have shown superiority over other
methods (including different variants of GRU and LSTM models) when applied to such time
series (Brouwer et al., 2019).

1. https://termbrowser.nhs.uk/

2. https://www.who.int/classifications/classification-of-diseases
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In this work, we aim to bring advanced ML methods apt for the analysis of sporadically
observed time series to the disease progression modeling task. Specifically, we propose
ICE-NODE, a model that learns from the timestamped sequences of diagnostic codes in
patient trajectories as they interact with healthcare providers. ICE-NODE takes into account
explicitly the temporal dimension in the EHRs using neural ODEs, with a flexible framework
that enables integrating advanced embedding modules for the medical concepts. Below, we
present, test, and analyse ICE-NODE with two different integrated modules for the embedding
of medical concepts: simple matrix embeddings and GRAM embeddings (Choi et al., 2017).

ICE-NODE achieves high predictive accuracy on unseen patient trajectories, outperforming
the state-of-the-art methods in certain DPM tasks. In particular, our analysis with ICE-NODE

identifies a set of diagnostic codes, including acute renal failure and pulmonary heart disease,
which are predicted with a significantly higher accuracy when the irregularity of time intervals
between timestamps is incorporated explicitly. Furthermore, we show that ICE-NODE enables
access to an inherent (hidden) temporal variable that describes the patient state at any
time between timestamps in the patient history. This feature can be exploited to generate
a time-continuous disease risk for the patient that could be used as an aid in clinical
decision-making (see Fig. 1 for an illustration). Studying and visualising the time-continuous
trajectories of multiple medical conditions in this way can enable better understanding of
the patient health state and the temporal interlinkages between conditions.

We apply our methodology to two publicly available, de-identified, EHRs datasets
available through PhysioNet (Goldberger et al., 2000): MIMIC-III (Johnson et al., 2016a,b),
which contains EHRs for more than 46K patients over an 11-year period, and MIMIC-
IV (Johnson et al., 2021), which contains EHRs for more than 256K patients over 11 years.
The source code of our ICE-NODE implementation, along with the numerical experiments in
this paper, is available at https://github.com/barahona-research-group/ICE-NODE.

Generalisable Insights about Machine Learning in the Context of Healthcare

Medical conditions evolve in time and may interact with each other, and such complex
dynamical interactions are reflected in EHR patient histories. The main motivation behind
developing ICE-NODE is to deploy recent innovations in neural ODEs that allow us to take
into account the detailed temporal information and the full complexity of diagnostic codes
to learn the underlying dynamical health state of patients from timestamped diagnostic
codes collected through EHRs. In summary:

• We develop a framework that represents timestamped medical diagnostic codes from
patient histories and feeds them to a specialised neural ODE model to learn the
temporal evolution of medical conditions. ICE-NODE incorporates the full temporal
information of EHRs, unlike traditional methods that ignore time or use only sequential
orderings.

• We show through performance analysis that exploiting the full temporal information
results in a significant improvement in the prediction accuracy of disease onset for
particular medical conditions like acute renal failure and pulmonary heart disease.

• We learn time-continuous trajectories for disease risk prediction, and discuss opportu-
nities to exploit these trajectories for a better understanding of patient health.
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2. Related Work

The high explanatory potential of EHR data and their availability through databases such
as PhysioNet (Goldberger et al., 2000) has motivated a large body of research on learning
from EHRs, while tackling their complex and unstructured format (Xiao et al., 2018; Choi
et al., 2016b,a, 2017; Cai et al., 2018; Choi et al., 2018; Zhang et al., 2018; Peng et al., 2019;
Wang et al., 2019; Zhu and Razavian, 2019; Choi et al., 2020; Xu et al., 2020).

Many of the traditional DPM methods in the literature transform the unstructured EHRs
into a tabular format before applying common machine learning methods (Cherry et al.,
2020; Ferroni et al., 2019; Weegar and Sundström, 2020; Seneviratne et al., 2018). This
process involves careful feature engineering, whereby features from the EHRs are treated
and extracted based on prior knowledge by domain experts. Such methods have managed to
achieve accurate predictions on very specific DPM tasks, such as pancreatic cancer prediction
(Cherry et al., 2020), breast cancer prognosis (Ferroni et al., 2019), cervival cancer prediction
(Weegar and Sundström, 2020), and metastatic prostate cancer prediction (Seneviratne et al.,
2018). However, such methods suffer from issues of generalisability, including the fact that
the selection of features by domain experts may prevent discovering new features that could
help explain the disease progression. Additionally, ignoring the time dimension discards
critical information on how the features evolve with time, thus preventing opportunities to
learn the temporal patterns in EHRs.

A major challenge in learning from EHRs is thus to incorporate the temporal dimension
of the data. Until now, several methods have considered only the temporal ordering of the
clinical codes, discarding the irregular time intervals between timestamps. Those approaches
have enabled the application of a wide array of computational methods, mostly inspired by
research in NLP, where EHRs are seen as ‘text’ formed by a succession of ‘words’ (medical
codes). Inspired by the eponymous Doc2Vec algorithm (Le and Mikolov, 2014) for NLP,
Choi et al. (2016b) proposed Med2Vec, which learns latent clinical codes and visit-level
representations. In the same year, Choi et al. (2016a) developed the RETAIN model that
employs an attention mechanism integrated with RNN to learn to attend patient visits in
reverse time order mimicking the behaviour of physicians when screening patient history.
Later on, Choi et al. (2017) presented GRAM, a method that employs an attention mechanism
that has access to a medical ontology that organises the clinical codes into a hierarchical
structure. GRAM is motivated when the dataset contains clinical codes that are sparse and
rare, mitigating the risk of model overfitting on those rare codes. In (Choi et al., 2018), MIME
is presented as a multilevel representation learning method. The clinical codes in each visit
are separated into treatment codes and diagnosis codes, each fed into different passes to the
model. In a task for heart failure prediction, MIME outperformed both Med2Vec (Choi et al.,
2016b) and GRAM (Choi et al., 2017), which were both trained only on diagnostic codes.

Although several of the aforementioned methods exploit the temporal ordering of visits,
none of them use the length of delays between the visits and its potential impact in describing
the patient state. Zhang et al. (2018) proposed Patient2Vec, which applies time-binning
to patient visits and then employs a double attention mechanism: one to produce latent
representations from the clinical codes within each time bin, and a second one to integrate
the latent representation of the time bins into a sequence using a gated recurrent unit (GRU).
In the task of predicting future hospitalisation from an EHR, Patient2Vec (Zhang et al.,
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2018) outperformed RETAIN (Choi et al., 2016a). Although Patient2Vec uses some of the
temporal information, time-binning still imposes strong assumptions on the structure of
the data. In addition, Cai et al. (2018) developed a time-aware attention mechanism and
Peng et al. (2019) developed the TeSAN model; these two approaches exploit the time gaps
between successive patient visits based on the neural attention mechanism.

Our method departs from these methods by employing neural ODEs to model the
temporal evolution of the medical conditions without over-engineering the attention mecha-
nism, yet explicitly incorporating the time-intervals between consecutive timestamps. Our
proposed method strives to provide a simple framework that (i) flexibly incorporates several
information sources, such as timestamped procedures and timestamped numerical lab tests,
and (ii) provides a simple, direct reconstruction of time-continuous risk trajectories between
the consecutive timestamps.

3. Methods

In this section, we first describe the two main constituents of ICE-NODE: neural ODEs and
medical code embeddings. After that, We introduce the ICE-NODE model and architecture.

Notation. Throughout, we use [A,B] to denote the horizontal concatenation of two
vectors or matrices, and [A;B] for vertical concatenation. When writing functions, we use a
semicolon to separate the function input variables from its parameters, e.g., f(x;θ).

3.1. Neural ODEs

We use neural ODEs to learn from timestamped diagnostic codes from EHRs. In contrast to
RNN models, which only use the temporal ordering of medical codes, ODEs capture the
irregular intervals between timestamps, which range from days to months or even years.

We begin our design by assuming that each patient is described by a time-continuous
hidden state h(t) ∈ Rdh with dh dimensions. A system of ODEs is used to model the
temporal evolution of h(t) as:

dh(t)

dt
= fd (h(t); θd) (1)

where fd : Rdh 7→ Rdh is the dynamics function parametrised by θd ∈ Rdp , a vector of dp
parameters that can be learnt from data, as shown below.

To evolve the hidden state h(t) from timestamp t0 to t1, we write the following initial
value problem (IVP):

h(t1) = h(t0) +

∫ t1

t0

fd (h(t); θd) dt , (2)

where h(t0) is the initial hidden state at t0, to be estimated from the data as shown in
Section 3.3. In general, the IVP in Eq. (2) is solved numerically at all timestamps tk using
an IVPSolve routine:

h(tk) = IVPSolve (fd,θd,h(tk−1), [tk−1, tk]) + ε , (3)

where ε is the numerical approximation error. In this work, we use adaptive-step Runge-Kutta
4(5) (Dormand and Prince, 1980) to perform the numerical integrations.
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In Section 3.3, we develop a model that learns to predict a diagnostic code at time t
from the patient state h(t), which is also learnt from the data. The algorithm therefore
uses the data (i.e., the observed diagnostic codes collected at timestamps tk) to learn the
parameters θ∗d of the dynamics function in Eq. (1) by minimising a loss function over the
whole dataset with terms

L(h(tk)) = L (IVPSolve(fd,θd,h(tk−1), [tk−1, tk])) .

The loss function is minimised using stochastic gradient descent (SGD), which requires
computing the gradient ∇θdL using deep learning libraries (e.g., PyTorch or JAX) with
reverse-mode automatic differentiation (AD) (Baydin et al., 2018). AD efficiently constructs
a computational graph linking the inputs of the function with all the intermediate operations
leading to the output of the function, on which backpropagation can then be applied to
obtain the gradient. However, when applied to a loss function that depends on an ODE
solver (3), this requires storing all the intermediate values of the IVPSolve iterations, which
may cause problems with computer memory. Fortunately, an efficient algorithm (Chen et al.,
2018) based on the adjoint method computes the gradient using a time-backward IVP from
tk to tk−1 and only requires storing the final value h(tk).

3.2. Clinical Embeddings module

Central to our tasks here is to learn highly informative embeddings for the clinical codes that
conform our data. Let us consider the set of all possible clinical codes, C, with cardinality
C = |C|. The aim of the embedding is to find a transformation that represents a set of clinical
codes c ⊆ C through a fixed-size vector g ∈ Rde , which provides a compact representation
that retains high information content about the clinical codes. We start with a multi-hot
encoding of the set of clinical codes c as a binary vector v ∈ {0, 1}C with coordinates equal
to 1 for the codes present in c and coordinates equal to 0 elsewhere. This large, sparse,
binary vector v is then transformed into a compact representation g, i.e., an embedding is
obtained. There is a large array of embedding techniques in the literature. We now describe
briefly the two methods used in this work.

Simple matrix embedding. A straightforward approach is to transform v ∈ {0, 1}C
into a compact representation g ∈ Rde by using an affine map fM : {0, 1}C 7→ Rde :

g = fM (v;θM ) = WM v + bM (4)

where WM ∈ Rde×C is a learnable matrix, bM ∈ Rde is a learnable vector, and θM denotes
the concatenation [WM , bM ].

GRaph-based Attention Model (GRAM) embedding. Several of the most widely used
clinical coding schemes, such as SNOMED-CT and ICD, can be organised into a medical
ontology, i.e., a hierarchy of codes where high level (parent) codes represent abstract medical
concepts and, as we go down the hierarchy, children codes represent increasingly detailed
and precisely described medical concepts. Mathematically, this hierarchy is represented
by a directed acyclic graph (DAG), which we denote as G. Choi et. al (Choi et al.,
2017) proposed the GRAM algorithm, where each medical concept is represented as a convex
combination of vectors of ‘basic embeddings’ of the code itself and all of its ancestors in
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G. This approach enriches the embedding by retaining information about the ancestry of
the code, and mitigates the risk of overfitting rare medical concepts in the training dataset.
In summary, the method obtains a set of basic embeddings θE = [e1; . . . ; eC ] ∈ RC×de , one
for each medical code ci ∈ C. (To initialise the learning process, the basic embeddings θE
can be randomly initialised, or obtained with GloVe (Pennington et al., 2014).) The final
embedding of a medical code ci is given by the convex combination:

gi =
∑

j∈A(i)

αijej , with
∑

j∈A(i)

αij = 1, αij ≥ 0, (5)

where A(i) is the set of coordinates for the union of the medical concept ci and all of its
ancestors in G. The weights αij ∈ R are computed with the softmax function:

αij =
exp (fR(ei, ej))∑

k∈A(i) exp (fR(ei, ek))
, (6)

where the self-attention fR : Rde×Rde 7→ R estimates the relatedness between the embeddings.
Originally, the authors implemented the function fR as a multilayer perceptron (MLP) with
a single hidden layer of size `:

fR(ei, ej ;θR) = uT
R tanh

(
WR

[
ei
ej

]
+ bR

)
, (7)

where WR ∈ R`×2de , bR ∈ R` and uR ∈ R`. Here, θR denotes [WR, bR,uR]. Note that the
vertical concatenation [ei; ej ] preserves the child-ancestor order. In this work, we also used
a less parametrised variant suggested in (Kim et al., 2021, Appendix F.2) with stability
guarantees:

fr(ei, ej ;θr) = exp

(
−||(ei − ej)

Tθr||22√
`

)
, (8)

where θr ∈ R`×de .
Given basic embeddings θE and attention parameters θR (or θr if (8) is used), the

embedding of the codes ci ∈ C is given by the matrix

G(θE ,θR) = [g1; . . . ; gC ] ∈ RC×de .

To transform the multi-hot binary vector v ∈ {0, 1}C , representing the set of multiple
medical concepts c ⊆ C, into the embedding space we just apply the transformation

g = fG(v;θE ,θR) = tanh
(
vG(θE ,θR)

)
(9)

Remark. ICE-NODE does not assume a particular embedding method; hence g (i.e., the
embedding of v) can be computed via (4) or (9). The particular choice in the numerical
experiments is made explicit in Section 4.

3.3. The ICE-NODE model

ICE-NODE is the architecture that we propose to model the timestamped clinical codes
contained in EHRs using neural ODEs coupled with a clinical code embedding module to
predict diagnostic codes at a given future timestamp tf .

7
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Figure 2: Schematic representation of the ICE-NODE framework to model patient histories of
timestamped clinical concepts, as recorded in their EHR. The health state h(tk−1) is
integrated with an ODE solver and learnable dynamics function fd to obtain a future version
h(t−k ), i.e. just before time tk. The memory state hm(t−k ) is then updated to accommodate
the new information at time tk by applying an update transformation fU , which incorporates
the memory state itself hm(t−k ), the integrated embedding state he(t−k ), and the embeddings of
the clinical concepts g(tk) at the timestamp tk. This ‘Integrate-Update’ cycle is repeated for
subsequent timestamps.

Notation. Each patient i is represented as a sequence of timestamped clinical codes
{
(
tk, c(i, tk)

)
}tk∈T (i), where tk is the k-th timestamp in the temporally-ordered set of times-

tamps T (i) in the EHR of patient i, and c(i, tk) ⊆ C is the set of medical concepts present
at tk for this particular patient. To simplify notation, we will drop the patient index
i when suitable. The binary (multi-hot) representation of {

(
tk, c(tk)

)
}tk∈T is denoted as

{
(
tk,v(tk)

)
}tk∈T . The embedding module transforms each set of clinical codes c(tk) into their

embeddings g(tk), and hence we obtain the set of timestamped embeddings {
(
tk, g(tk)

)
}tk∈T .

The dh-dimensional hidden state for the patient h(t) = [hm(t);he(t)] is structured to consist
of two components: a memory state hm(t) ∈ Rdm and an embedding state he(t) ∈ Rde , such
that dm + de = dh.

3.3.1. ICE-NODE Architecture

The initial hidden state h(t0) ∈ Rdh at the first timestamp t0 is given by h(t0) =
[hm(t0);he(t0)] = [0; g(t0)], where the memory state is initialised with zeros and the
embedding state is initialised with the embedding of the set of medical codes observed at t0.

We next evolve h(t0) by integration over [t0, t1), i.e., to a time t−1 just before t1:

h(t−1 ) =

[
hm(t−1 )
he(t

−
1 )

]
= IVPSolve(fd,θd,h(t0), [t0, t1]). (10)

To this evolved state, we apply a decoding function fD : Rde 7→ [0, 1]C to obtain the predicted
clinical codes at time t1:

v̂(t1) = fD(he(t
−
1 );θD). (11)
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This prediction can then be scored against the observed codes v(t1) in the dataset.
To accommodate the new information gathered at each timestamp into h(t), we update

the memory state:
hm(t+1 ) = fU (hm(t−1 ),he(t

−
1 ), g(t1);θU ), (12)

where t+1 is a time just after the observation timestamp t1, and fU : Rdm ×Rde ×Rde 7→ Rdm

adjusts the memory state hm(t−1 ) to incorporate the new information at t1. The steps
(10)-(11)-(12) are then repeated for all remaining timestamps in T .

After fitting all the timestamps in the history of a patient, we apply a final integration (10)
from the last timestamp in T until the future timestamp tf , to obtain the hidden health
state h(tf ). This is followed by the decoding step (11) to produce the diagnostic predictions
v̂(tf ).

3.3.2. Training ICE-NODE

The training is carried out by minimising the following loss function, which includes the
cross-entropy comparing the predictions v̂(tk) and the observations v(tk) of the codes at
timestamps tk ∈ {t1, . . . , t|T |−1} and a regularisation term that enforces the smoothness of
the dynamics:

L =
1

|T | − 1

|T −1|∑
k=1

Lv(tk) + αKRK(tk;θd), (13)

where the cross-entropies are:

Lv(tk) = v(tk)T log (v̂(tk)) + (1− v(tk))T log (1− v̂(tk)), (14)

and the regularisation term is given by:

RK(tk;θd) =

∫ tk

tk−1

∥∥∥∥dKh(t)

dtK

∥∥∥∥2
2

dt . (15)

The regularisation term RK (Kelly et al., 2020), which is inspired by insights from adaptive-
step solvers, diminishes the magnitude of the higher order derivatives and increases both
trajectory smoothness and step size. This allows us to efficiently concentrate on a smaller
subspace of dynamic trajectories. In general, the hyperparameter K must be no larger
than m, the order of the ODE solver (Runge-Kutta with m = 4 here), but since we further
assume that the health state h(t) has vanishing derivatives above second-order, we set
K = 3. Finally, αK is the hyperparameter that sets the relative weight of the regularisation
term (15). It is set here to a large value of αK = 1000 to enforce vanishing derivatives of
order K ≤ 3.

For each training iteration, we randomly sample (with replacement) a fixed number of
patients B from the total of N patients in the training set. The loss (13) is then averaged
over the B sampled patients and the gradients are computed, which are then passed to the
optimiser to update the parameters. Here, we use the Adam optimiser (Kingma and Ba,
2014), which achieves remarkably better convergence than both SGD and Adamax (Kingma
and Ba, 2014). We find that convergence is improved by using two independent learning
rates for the Adam optimiser: one for the dynamics parameters, and a separate one for the

9



ICE-NODE

other parameters of ICE-NODE. Appendix B describes in detail the training settings. We also
describe in Appendix B the strategy for hyperparameter optimisation, including the use of
the optuna framework (Akiba et al., 2019), to settle on an optimal choice of functions and
their configuration for the dynamics function fd (10), the decoding function fD (11), and
the update function fU (12).

4. Experiments

4.1. Description of the datasets

MIMIC-III (Johnson et al., 2016a,b): Medical Information Mart for Intensive Care
III (MIMIC-III) is a publicly available dataset that contains EHRs for over 46.5K patients
who had at least one admission at Beth Israel Deaconess Medical Center (BIDMC) between
2001 and 2012. For each admission, the patient can be discharged on the same day or stay
for a longer time, but in all cases MIMIC-III stores all the diagnosis codes related to the
entire stay and links them to the discharge timestamp. This manner of information collection
adds a degree of uncertainty to the timestamps associated with long stays; if a patient stays
for two months, they will be discharged with a set of diagnosis codes, but this does not
indicate precisely when the diagnoses were made during those two months. We therefore
restrict our study to patients (i) who had at least two admissions, and (ii) whose admissions
were all at most 2 weeks long. With these restrictions, our dataset includes 4.4K patients.
MIMIC-III uses the ICD-9 coding scheme to store the diagnosis codes, which we convert
into the Clinical Classifications Software (CCS)3 multi-level (i.e. hierarchical) scheme. This
conversion reduces substantially the complexity of the data—whereas ICD-9 provides over
15K diagnosis codes, CCS contains 589 diagnosis codes. When we use GRAM embeddings, we
thus employ the corresponding DAG G of the CCS hierarchical scheme for the analysis of
the set of clinical codes C.

MIMIC-IV (Johnson et al., 2021): Medical Information Mart for Intensive Care IV
(MIMIC-IV) is another publicly available dataset that contains EHRs for over 256K patients
who had a critical care or emergency admission in BIDMC between 2008 and 2019. After
applying the same rules for patient selection as for MIMIC-III, we end up having EHRs for
over 70K patients. MIMIC-IV uses the ICD-10 coding scheme, which we map to ICD-9 4

and eventually to the CCS coding scheme, so that models trained on MIMIC-III can be
tested on MIMIC-IV and vice versa.

Summary: Table 1 presents descriptive statistics of the two datasets constructed from
MIMIC-III and MIMIC-IV. For both datasets, we randomly split patients into train-
ing:validation:testing with ratios 0.70 : 0.15 : 0.15. Appendix A includes consort diagrams
for the extraction of the training-validation-test splits from both datasets.

3. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

4. https://www.nber.org/research/data/icd-9-cm-and-icd-10-cm-and-icd-10-pcs-crosswalk-or-

general-equivalence-mappings
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Table 1: Summary statistics for the two datasets used in our experiments.

Statistics MIMIC-III MIMIC-IV

No. of patients (Np) 4,385 70,027
No. of admissions (Na) 10,954 265,637
Avg. admissions per patient (Na/Np) 2.47 3.66
Avg. (±std.) weeks between admissions 66.1 (±97.3) 53.8 (±85.8)
Avg. (±std.) days of stay 5.9 (±3.5) 3.2 (±2.8)
Avg. no. of ICD-9 diagnostic discharge codes 11.65 11.46
Avg. no. of CCS diagnostic discharge codes 10.84 9.75

4.2. Methods for benchmarking

Our numerical experiments have been compared and benchmarked against state-of-the-art
baseline methods. In most cases, we have implemented a version that uses matrix embed-
dings (4) and a version that uses GRAM embeddings (9). The latter versions are denoted by
adding the letter /G to the corresponding acronyms.

The baseline methods considered are:

LogReg: We implement a standard logistic regression with elastic net regularisation. This
method takes as an input a binary vector encoding the occurrence of diagnostic codes in the
past. We consider this model as a representative of models that do not exploit the sequential
nor the full temporal information of the EHRs.

RETAIN: This method (Choi et al., 2016a) learns patient visits in reverse time order using
an attention mechanism using the temporal ordering of the codes, but ignoring the irregular
time intervals between them.

GRU & GRU/G: Based on the architecture developed by Choi et al. (2017), we have imple-
mented two versions: the original one with GRAM embeddings, denoted GRU/G, and another
one with matrix embeddings, denoted GRU. Again, this method only uses the time ordered
information but not the full temporal information in the data.

These baseline methods are compared against our model in different versions:

ICE-NODE & ICE-NODE/G: We use our model, as developed above, with both matrix
embeddings and GRAM embeddings, using the full temporal information available in the
EHRs.

ICE-NODE UNIFORM& ICE-NODE UNIFORM/G: We have also considered a variant of ICE-NODE
where we fix the intervals between consecutive timestamps to be one week in two versions:
one with matrix embeddings, denoted ICE-NODE UNIFORM, and one with GRAM embeddings,
denoted ICE-NODE UNIFORM/G. These versions ignore the irregularity of the temporal sam-
pling, and just preserve the ordering. We use this variant particularly to assess whether a
clinical code prediction is improved by incorporating the full information of the timestamps,
or if using only the temporal ordering is sufficient.
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4.3. Analysis of prediction performance

We analysed the different versions of our proposed model along with the baseline models
through three experiments:

• Experiment A: Training and testing on MIMIC-III

• Experiment B: Training and testing on MIMIC-IV

• Experiment C: Training on MIMIC-IV followed by testing on the entire MIMIC-III

Evaluating the prediction performance of disease progression models with respect to
a large number of clinical codes is a nontrivial problem. While one model can be the
most competent in predicting a particular set of clinical codes, the same model can be
outperformed by another model in predicting a different set of clinical codes. Typically,
researchers often focus on a specific category of diseases, and compare the predictability
between multiple models.

Alternatively, other evaluations are geared towards systematically evaluating all medical
codes, yet controlling for their different frequency, since predicting very common medical
codes can be less informative. Clinical codes are then partitioned into quantiles according
to their frequency in the dataset, such that the model predictability can be estimated for
different percentile ranges separately, from the infrequent to the most frequent codes. With
this evaluation method, Choi et al. (2017) showed that their algorithm (denoted here as
GRU/G) is specifically competent in predicting clinical codes that are observed rarely in the
training data. We have applied this approach to evaluate the performance of the methods
for Experiments A and B. We report the results in Table 2, where we show the averaged
top-15 prediction accuracy (i.e., for each clinical code, we score 1 if it is correctly detected in
the top-15 predictions by the model at each visit, and 0 otherwise). We find that ICE-NODE
is particularly competent in predicting codes that are infrequent in the training dataset (i.e.,
in the 0-20 and 20-40 quantiles) while still performing well in more frequent codes.

As an additional measure of performance, we have also carried out a quantification of the
relative competency at the code level using the area under the receiver operating characteristic
curve (AUC) values achieved by the different methods and the DeLong test (DeLong et al.,
1988). This test allows us to establish the statistical significance of the difference between
the AUC values obtained for any given pair of models. Figure 3 summarises the results of
this analysis for Experiments A-C. We find that most well-predicted codes are predicted well
by all methods, yet different methods are more competent at predicting particular codes.

4.4. Time-continuous risk trajectories

Through its use of neural ODEs, ICE-NODE stands out from the baseline methods by a
qualitative advantage; namely, the possibility of using the learnt hidden patient state h(t)
to carry out time-continuous predictions of, e.g., disease risk. By sampling h(t) (10) at
arbitrary times, we can apply the prediction function (11) to generate a risk trajectory for a
selected patient history. Two examples of such trajectories for two patients in the datasets
with conditions where ICE-NODE outperforms the other methods are shown in Figure 4(a),
and further examples can be seen in Appendix D.
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Table 2: Top-15 prediction accuracy for clinical codes according to their frequency in the
training set. The clinical codes are partitioned into five quantiles, according to their frequency
in the training set. For each admission, we score the top-15 codes. The top performing method
for each quantile group is highlighted in dark green and the second best method in light green.

(a) Accuracy of Experiment A (training and testing on MIMIC-III).

Model
Clinical codes frequency (quantile ranges)

0-20 20-40 40-60 60-80 80-100

LogReg 0.164 0.454 0.544 0.683 0.777
RETAIN 0.208 0.415 0.579 0.778 0.926
GRU 0.214 0.400 0.556 0.768 0.900
GRU/G 0.204 0.403 0.546 0.778 0.906
ICE-NODE UNIFORM 0.211 0.422 0.566 0.786 0.909
ICE-NODE UNIFORM/G 0.206 0.419 0.565 0.782 0.907
ICE-NODE 0.219 0.425 0.578 0.782 0.902
ICE-NODE/G 0.205 0.421 0.569 0.782 0.907

(b) Accuracy of Experiment B (training and testing on MIMIC-IV).

Model
Clinical codes frequency (quantile ranges)

0-20 20-40 40-60 60-80 80-100

LogReg 0.019 0.347 0.606 0.869 0.943
RETAIN 0.362 0.483 0.621 0.806 0.928
GRU 0.355 0.491 0.633 0.808 0.917
GRU/G 0.357 0.491 0.628 0.809 0.921
ICE-NODE UNIFORM 0.376 0.486 0.598 0.773 0.904
ICE-NODE UNIFORM/G 0.370 0.485 0.593 0.779 0.903
ICE-NODE 0.375 0.493 0.605 0.774 0.904
ICE-NODE/G 0.374 0.491 0.601 0.776 0.906

5. Discussion

The results in Table 2 suggest significant competency of the different variants of ICE-NODE,
especially in predicting clinical codes that are rare in the training data. We also find
that using GRAM embeddings for ICE-NODE does not achieve the hoped-for improvement
over matrix embeddings in our current analysis. However, this initial conclusion might
be due to the use of the simple CCS hierarchical coding scheme with its computationally
manageable vocabulary (589 diagnosis codes). However, the use of such a simple coding
scheme might have resulted in a loss of information. Therefore, ICE-NODE/G might still add
value if more complex hierarchical coding schemes, such as ICD-9 (15K diagnosis codes),
ICD-10 (70K diagnosis codes), or SNOMED-CT (383K diagnosis and procedure codes),
were to be used. Employing such detailed coding schemes could enable the uncovering of new
disease prognosis patterns, offering new opportunities for the predictive models to improve
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(c) Experiment C

Figure 3: (a)-(c) Relative prediction of medical codes for the different models for Experiments
A-C. AUC values of all clinical codes are computed for each model and a DeLong test (p-
value=0.01) is carried out to establish the statistical significance of the difference in prediction
between each pair of models. Clinical codes predicted with AUC>0.9 by at least one model are
assigned to the model with maximum AUC and to any other model with no significant difference
(according to DeLong test). Frequencies of clinical codes in the training set are shown at the top.
(a) In Experiment A, 27 codes are predicted with an AUC>0.9 by at least one model: 21 of those
codes are predicted equivalently well by all 8 models, whereas the rest are predicted differently
by some models. (b) In Experiment B, 84 codes are predicted with an AUC>0.9 by at least
one model; of those, only 4 codes are predicted well by LogReg, whereas 39 codes are predicted
equivalently well by the four models that incorporate temporal or sequence information. Some
codes are predicted well by several models (39/2/11/2/18); other codes are predicted well only
by one model (4/1/3). (c) In Experiment C, 50 codes are predicted with an AUC>0.9 by at least
one model: 32 codes are predicted equivalently well by all models (but not by LogReg). There
are 4 codes in (b) (‘Pulm hart dx ’, ‘Other ear dx ’, ‘Early labor ’, ‘Forceps del ’), and 1 code in (c)
(‘Ac renal fail ’) that are only predicted well by ICE-NODE (marked in red). The AUC values for
the codes in red are shown in Fig. 7 (Appendix C).
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Figure 4: Two predicted risk trajectories for patients in the test set: (a) Predicted risk trajectory of code
‘Ac renal fail ’ for patient with subject id=3600 in the test set of MIMIC-III. The history of this
patient consists of three hospital stays (i.e., admissions-discharges) with diagnosis of ‘Ac renal
fail ’ at the third discharge. After the first discharge, ICE-NODE predicts a risk for this diagnosis
with a probability slightly higher than 0.5. After the second discharge, the risk has jumped to
above 0.55 with continuously increasing risk throughout roughly 80 days, before the last hospital
stay; (b) Predicted risk trajectory of ‘Pulm hart dx ’ for the patient with subject id=13286711

in the test set of MIMIC-IV. In this case, the history consists of five hospital stays with diagnosis
of ‘Pulm hart dx ’ at the fifth and last hospital stay. The risk for this condition kept increasing
since the first discharge despite negative reporting for this code throughout.

their representation learning and hence their prediction performance. From this point, our
discussion and subsequent analysis will focus only on models with matrix embeddings.

We have used ICE-NODE UNIFORM as a variant of ICE-NODE where all time-intervals
between consecutive timestamps are fixed to one week, as a mean to evaluate within our
framework the impact of incorporating the irregular intervals in the modeling, beyond
using sequential information alone. Figure 3 shows that there is no clinical code predicted
by ICE-NODE UNIFORM with a significantly higher AUC than ICE-NODE in any of the three
experiments (A-C), whereas ICE-NODE significantly outperforms ICE-NODE UNIFORM in 17
clinical codes in Experiment B and 7 clinical codes in Experiment C. The results in Table 2
and Fig. 3 show that the inclusion of temporal information (sequential only or full timestamps)
is strongly advantageous, as seen by the reduced performance of LogReg. Furthermore,
the analysis of Experiment B in Fig. 3(b) shows that many clinical codes (18 out of 84)
are predicted better by both GRU and RETAIN than by ICE-NODE. This suggests that for
these clinical codes, the temporal-order information is sufficient without incorporating the
irregular intervals, which, in turn, may have added noisy information in the learning of
ICE-NODE, thus undermining its performance.

The results for Experiment C (training on MIMIC-IV and predicting on MIMIC-III as
a test set) in relation to Experiment B (training and testing on splits of MIMIC-IV) in
Fig. 3 also suggest better generalisation properties for ICE-NODE across datasets. Specifically,
ICE-NODE is competent in predicting 62 clinical codes in Experiment B, and this number is
reduced by 12 in Experiment C when predicting across datasets. For RETAIN and GRU, this
number is reduced by 27 and 30, respectively.
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Finally, we have shown that ICE-NODE produces time-continuous risk trajectories for
each patient and each clinical code starting from the initial discharge from hospital. This
feature may enable the use of the framework to gain data-informed insights to questions
such as “How will the risk of renal failure evolve within two weeks from now?” or “Will
the patient undergo an alarming risk of renal failure? and when will the risk exceed 0.5?”.
Appendix D shows additional exemplars of such predicted trajectories.

Future Work In relation to this last point, the user of ICE-NODE might be interested in
studying time-continuous trajectories of multiple continuous simultaneously, to gain insights
on how multiple medical conditions co-develop with time, and whether causal or correlational
relationships might exist between conditions or other confounding conditions might explain
these developments. This opens a future research direction to investigate whether the
predicted, time-continuous trajectories can be reliable for causal discovery and/or causal
inference tasks. This task becomes more challenging as the number of conditions studied
increases but could help generate hypotheses on how medical conditions develop and interact
supported by ICE-NODE data-based predictions.

Limitations Using neural ODEs can be sensitive to noisy information compared to the
baseline models. This could explain why 18 out of 84 clinical codes in Experiment B are
better predicted with two of the baseline models. The noise sources that can limit ICE-NODE
learning capacity can be attributed to two reasons. First, for some clinical codes, the
temporal-order could be sufficient for predictability, and incorporating the time-intervals is
unnecessary and a source of variability. Second, mislabeled codes (false positives) and/or
unreported codes (false negatives) in the ground-truth can misguide the prediction of the
clinical codes trajectories. Since neural ODEs integrate trajectories based on noisy initial
conditions, the sensitivity to noise increases with a longer time-interval until the next hospital
discharge. Another limitation in this work concerns the training itself. We have observed
that training ICE-NODE improves remarkably when using two learning rates (one for the
parameters of the dynamics and another for the rest of the parameters). This burdens the
task of searching for optimal hyperparameters, hence further improvements for ICE-NODE

could be possible. At present, we do not have a sound explanation for this behaviour in the
training.

When this research was finished, we learned of research by Peng et al. (2021) using
neural ODEs to predict clinical codes of future visits. Even though that work exploits the
temporal dimension, we discuss in Appendix E their design which is pragmatically optimised
for predicting future codes without producing time-continuous trajectories for the patient
state, in contrast to our work.

6. Conclusions

We have presented a new disease progression model (ICE-NODE) that learns from timestamped
clinical codes using neural ODEs, and fully exploits the time dimension by incorporating
the irregular time-intervals between the timestamps, as opposed to only exploiting the
temporal-order. We have provided performance analyses by applying ICE-NODE (and the
baselines) on MIMIC-III and MIMIC-IV. These analyses have identified a set of clinical
codes that are predicted with improved performance using ICE-NODE, such as ‘Ac renal fail’
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and ‘Pulm hart dx’. Our analyses also show better generalisation properties for ICE-NODE

across datasets. We have finally discussed the implications of obtaining time-continuous
risk trajectories for diseases, to improve the understanding of disease development and
interactions. We have provided pointers for future directions of research on exploiting these
trajectories to reveal potential causal relations between the medical conditions as they evolve
with time.
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Appendix A. Consort Diagrams

MIMIC-III (v1.4) 
Assessed for eligibility (n=46,520)

Exclude cases that have at least one hospital stay
longer than two weeks  (n=3103) 

Allocation: 

70% Training split (n=3069)
15% Validation split (n=658)
15% Test split (n=658)

Exclude cases with only one admission 
(n=38,983)

Exclude with date-time integrity checks (n=49): 
- e.g., overlapping admission-discharge intervals

Shuffle (n=4385)

Figure 5: Consort diagram for the cohort extracted from MIMIC-III for our experiments.

MIMIC-IV (v1.0) 
Assessed for eligibility (n=256,878)

Exclude cases that have at least one hospital stay
longer than two weeks  (n=13,173) 

Allocation: 

70% Training split (n=49,018)
15% Validation split (n=10,504)
15% Test split (n=10,505)

Exclude cases with only one admission 
(n=171,080)

Exclude with date-time integrity checks (n=2598): 
- e.g., overlapping admission-discharge intervals

Shuffle (n=70,027)

Figure 6: Consort diagram for the cohort extracted from MIMIC-IV for our experiments.
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Appendix B. ICE-NODE: Implementation Details & Optimal Configuration

This section provides implementation details and description for the hyperparameter search
task to find the optimal configuration of ICE-NODE and ICE-NODE/G, in addition to their
corresponding variants ICE-NODE UNIFORM and ICE-NODE UNIFORM/G. However, the source
code in https://github.com/barahona-research-group/ICE-NODE can be consulted for
a better comprehension and the additional details of the optimal configuration finding for
GRU, GRU/G, RETAIN, and LogReg. The implementation of our method and the baselines relies
on the automatic differentiation engine of JAX library (Bradbury et al., 2018), which also
provides the scalable gradient computation of neural ODEs using the adjoint method (Chen
et al., 2018).

We used the optuna library (Akiba et al., 2019) to run the hyperparameter optimisation
harnessing distributed runs across multiple nodes. We used the Tree-structured Parzen
Estimator algorithm (Bergstra et al., 2011) with the default parameters as in optuna5. We
specified the averaged visit AUC metric on the validation partition of MIMIC-III as the
hyperparameter optimisation objective.

The hyperparameter space is divided into four categories:

• the clinical embeddings module,

• the dynamics function,

• the decoder function,

• and the training settings.

Two main tasks are conducted: the first task is focused on optimising the configuration
of ICE-NODE (with the matrix embeddings). The optimal configuration found for ICE-NODE
is reused for ICE-NODE UNIFORM. The second task is focused on ICE-NODE/G, but the op-
timisation here is focused only on optimising the configuration of the GRAM embeddings,
while the other configurations are fixed to the optimal configuration found for ICE-NODE

in the first task. Similarly, the final optimal configuration of ICE-NODE/G is reused for
ICE-NODE UNIFORM/G.

B.1. The Clinical Embeddings Module

Matrix Embeddings for ICE-NODE The only hyperparameter of the matrix embed-
dings is the embeddings vector size, i.e. de in Equation (4). The search domain of de is
[30, 60, 90, . . . , 300]. The optimal value is found to be de = 300.

GRAM Embeddings for ICE-NODE/G The optimisation of the configuration of GRAM em-
beddings considered three hyperparameters:

hyperparameter type domain optimal value

de: embedding dimension integer [30, 60, 90, . . . , 300] 300
attention method categorical [tanh(7), l2(8)] tanh

`: hidden layer dimension integer [50, 100, . . . , 300] 200

5. https://optuna.readthedocs.io/en/stable/reference/generated/optuna.samplers.TPESampler.h

tml
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We use the GloVe initialisation of the basic embeddings that has been described in (Choi
et al., 2017).

B.2. The Dynamics Function

The configuration of the dynamics function considered two hyperparameters
hyperparameter type domain optimal value

dm: memory state size integer [10, 20, 30, . . . , 100] 30
architecture categorical [mlp2, mlp3, gru] mlp3

While each architecture is defined as following:

• mlp2: is an MLP with two layers, where each layer has (i) the dimensionality dh =
dm + de, (ii) the activation function tanh, and (iii) no bias term.

• mlp3: is same as mlp2 but with three layers.

• gru: is a minimal GRU described in (Brouwer et al., 2019, Appendix G), and originally
authored by Zhou et al. (2016).

B.3. The Decoder Function

The decoder function is implemented as a MLP, where: (i) hidden layers has the dimen-
sionality of de and followed by LeakyReLU activation, while (ii) the output layer has the
dimensionality C (i.e. the coding scheme vocabulary size) and followed by sigmoid activation.
The only hyperparameter here is the number of layers. The domain of search was limited to
[2, 3], and the optimal number of layers found is 2.

B.4. The Update Function

The update function of ICE-NODE in Equation (12) adjusts the memory state to accommodate
the new information at the new timestamp, and it is implemented as following:

hm(t+k ) = fU (hm(t−k ),he(t
−
k ), g(t1);θU )

= GRU(WU

[
hm(t−k )
g(tk)

]
+ bU ,hm(t−k );θU ),

where WU ∈ Rde×2de and bU ∈ Rde updates the concatenation [hm(t−k ); g(tk)] to a space
with the same dimensionality Rde . GRU : Rde ×Rdm 7→ Rdm is an implementation of a GRU
cell (Cho et al., 2014)6, which computes the updated memory state. No new hyperparameter
to tune for the update function, as the dimensions de and dm are already included above.

B.5. The Training settings

For each training iteration, we randomly sample, with replacement, a fixed number of
patients B from the total of N patients in the training partition. With a slight abuse of
terminology, we use the term ‘epoch’ to refer to a number of training iterations equals

6. https://dm-haiku.readthedocs.io/en/latest/api.html#gru
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to dN/Be, where d.e is the ceiling operator. The number of ‘epochs’ is fixed to 60. The
hyperparameters of the training settings is listed below:

hyperparameter type domain optimal value

optimiser categorical [adam, adamax, sgd] adam

η1: dynamics learning rate float LogUniform[10−5, 10−2] 7.15× 10−5

η2: the other learning rate float LogUniform[10−5, 10−2] 1.14× 10−3

decay rate float LogUniform[0.1, 0.9] 0.3
B: batch size integer [2, 4, 8, 16, . . . , 256] 256

Early stopping for model selection through the training iterations Since we rely
on iterative methods for training our models we adopt the early stopping7 strategy to avoid
overfitting our model after a large, fixed number of iterations. Throughout the training
iterations, we evaluate the averaged visit AUC on the EHRs of the validation set. The
visit AUC is evaluated for each visit after the first discharge in the patient history, and it
estimates the probability of assigning risk scores to the actual clinical codes issued at that
visit with higher risk values than those of the unreported clinical codes. This metric is used
to guide the model selection throughout the training iterations.

7. https://en.wikipedia.org/wiki/Early stopping
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Appendix C. AUC values for clinical codes highlighted in Figure 3

Birth asphyx

Oth heart dx

gu cong anom

0.85 0.90 0.95
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ICE-NODE/G
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ICE-NODE_UNIFORM/G
LogReg
RETAIN

(a) Experiment A

Early labor

Forceps del

Other ear dx

Pulm hart dx
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AUC
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ICE-NODE
ICE-NODE_UNIFORM

LogReg
RETAIN

(b) Experiment B

Ac renl fail
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AUC

GRU
ICE-NODE
ICE-NODE_UNIFORM

LogReg
RETAIN

(c) Experiment C

Figure 7: AUC values for clinical codes highlighted in red in Figure 3. The 3 codes in (a) are detected
equally well by all methods that use either sequence or full temporal information but not by
LogReg, which ignores time altogether. The codes in (b) and (c) are only predicted well by
ICE-NODE, but not by methods that use only sequence information or by LogReg.
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Appendix D. Further Examples of ICE-NODE Predicted Risk Trajectories
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Figure 8: The predicted risk trajectory of ‘Pulm hart dx ’ for the patient with subject id=50093 in the test
partition of MIMIC-III. The history of this patient consists of six hospital stays (i.e. admissions-
discharges) and the patient was diagnosed with ‘Pulm hart dx ’ for the first time at the fourth
hospital stay onward. After the initial discharge, ICE-NODE has predicted a risk for this diagnosis
with a probability slightly lower than 0.65. The risk increased after the second discharge despite
a negative reporting of ‘Pulm hart dx ’, but decreased after another negative reporting at the
third discharge, after which the risk alarmingly increased with time until the fourth hospital stay.
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Figure 9: The predicted risk trajectory of ‘Pulm hart dx ’ together with ‘Uterus cancr ’ for the patient with
subject id=11052692 in the test partition of MIMIC-IV. The history of this patient consists of
four hospital stays and the first diagnosis of ‘Uterus cancr ’ was made at the second hospital stay,
while ‘Pulm hart dx ’ at the third hospital stay.
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Appendix E. Discussion on recent related work by Peng et al. (2021)

When this research was finished, we learned that a solution based on neural ODEs and
transformers has been employed by Peng et al. (2021) to capture information about irregular
intervals within the EHRs. Briefly, their approach aims to produce a representation vot for
each t-th visit. Using f to denote multiple computational modules, their representation is
generated as

vot = f(vcodet ,vLoSt ,vIntervalt )

where vcodet is the clinical code representation of that visit; vIntervalt is the final solution of a
certain IVP from the discharge timestamp of the previous visit to the current admission
timestamp, and vLoSt (LoS is short for length-of-stay) is the final solution of a certain IVP
from the visit admission timestamp until the discharge timestamp. The visit representation
vot is then used to predict the clinical codes of the next visit using one-layer softmax.

Whereas this approach exploits the temporal dimension pragmatically to produce accu-
rate predictions for next visits, it fuses three different representations, including the ones
that capture the irregular intervals in the EHR. Hence it lacks the advantage of produc-
ing intermediate representations spanning the time intervals between visits. In contrast,
ICE-NODE can retrieve the patient state at any arbitrary time, allowing for the retrieval of
time-continuous trajectories.
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