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Abstract— Aerial robots have a wide range of applications,
such as collecting data in hard-to-reach areas. This requires
the longest possible operation time. However, because currently
available commercial batteries have limited specific energy of
roughly 300Whkg−1, a drone’s flight time is a bottleneck
for sustainable long-term data collection. Inspired by birds in
nature, a possible approach to tackle this challenge is to perch
drones on trees, and environmental or man-made structures, to
save energy whilst in operation. In this paper, we propose an
algorithm to automatically generate trajectories for a drone to
perch on a tree branch, using the proposed tethered perching
mechanism with a pendulum-like structure. This enables a
drone to perform an energy-optimised, controlled 180◦ flip
to safely disarm upside down. To fine-tune a set of reachable
trajectories, a soft actor critic-based reinforcement algorithm is
used. Our experimental results show the feasibility of the set of
trajectories with successful perching. Our findings demonstrate
that the proposed approach enables energy-efficient landing for
long-term data collection tasks.

I. INTRODUCTION

In recent years, interest in drones has grown in all kinds of

application areas [1]. Due to the independence and flexibility

of drones, they can often be used to tackle tasks in hard-to-

reach areas. A common example of inaccessible regions is

large forests that are spread all over the world. There is also

a growing demand for long-term spatial and temporal data

collection from forests [2] but the long-term navigation of

aerial robots is still a challenge to be resolved because of

battery limitations [3]. While current aerial robots can func-

tion within the battery life limitations, there is a multi-modal

approach proposed to expand the time for data collection by

perching and staying idle [4].

One of the biggest limitations of drone tasks is having

a limited flight time. This mainly depends on the ratio of

the total drone weight and the stored energy that can be

used to power the drone. As the maximum energy density

in available batteries has an upper limit, aerial robots cannot

fly for operations that require long-term data collection. To

tackle this limitation, there are initial studies considering

battery recharging and direct charging including multi-robot
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Fig. 1: Perched drone on a representative branch.

with charging stations for continuous missions [5], [6], mid-

air battery swap and releasing the exhausted ones [7], [8], and

powered over tether with a battery [9]. In terms of the power

resource; solar cell endowed drones [10], [11], and laser

beams to charge in mid-air [12], [13] are proposed. Recent

activities focus on alternative sources of energy including

fuel cells [14], [15] and multi-modality to sustain the data

collection process with the aerial robots. Furthermore, there

is ongoing research on battery chemistry, cell and pack

engineering to have longer flights [16]. The other solutions

are based on exploiting the aerodynamic interactions such

as dynamic soaring [17], [18] and ceiling/ground effect [19],

[20] as well as trajectory optimization [21].

One major category of aerial systems is the use of

multi-modal methods, in which the system either modifies

its structure or interacts physically with the surrounding

infrastructure [22]. This category draws inspiration from

observations of birds, which frequently perch on trees as

a means of conserving energy and increasing safety. By

applying a similar principle to drones, we can increase

their available operation time by having them fly only when

necessary and perch or land for the remainder of the time.

This allows the drone to conserve energy and remain in

the air for longer periods, ultimately improving its overall

performance.

The literature already presents various methods of perch-

ing drones on trees, including physically grabbing the branch

with a bistable mechanism [23], adhering to the branch

with microspines [24], using a hemispherical cage and high

friction material for support [25], and hanging from the



branch with an anchor-like construction [26]. Recently, a new

mechanism has been proposed for grasping the branch with

the drone’s bistable arm [27]. While these approaches have

primarily focused on designing and implementing grasping

mechanisms for perching on tree branches, this paper’s main

focus is on an automated method of perching a tethered drone

on a branch.

To achieve an automated approach for tethered perching,

we generated a set of feasible trajectories that can ensure

safe perching without the propellers touching the tether while

conserving energy. Additionally, we provided a reachable

region for the design of tether-based perching, taking into

account the weight of the tether and the diameter of the

branch. This independent landing capability enables the

drone to perform data collection tasks more efficiently. The

proposed approach combines analytical and learning-based

methods to safely perch the drone by approaching the target,

wrapping the tether around the branch, and performing a 180-

degree flip manoeuvre, as illustrated in Fig. 1. To the best of

our knowledge, this is the first implementation of a neural

network performing an automated tethered perching and flip

manoeuvre on branch-like natural or man-made structures.

II. PROBLEM FORMULATION

This paper addresses the problem of estimating a complete

perching trajectory for a drone to safely connect to a branch

and shut down its motors. The tethered perching manoeuvre

is divided into two phases: approaching the target and

wrapping the tether around the branch, followed by a flipping

manoeuvre. The possibility of using reinforcement learning

to solve the flipping problem is explored while ensuring that

the drone’s propeller does not touch the tether. This approach

can enable long term environmental data collection, such as

biodiversity soundscape monitoring. The effectiveness of the

approach is evaluated by comparing the operational time of

the drone with and without perching. The paper presents

an automated tethered perching and flipping manoeuvre on

branch-like environmental structures using analytical and

learning-based approaches.

III. METHODOLOGY

To safely perch the drone on a branch-like structure, it is

necessary to wrap the tether around the target branch, which

can be broken down into two main steps as depicted in Fig.

2. The first step involves finding a manoeuvre that allows the

tether to wrap around the targeted branch. The second step

involves flipping the drone 180 degrees around the branch

and shutting down the motors once it is securely perched.

As these tasks can be approached independently, they were

each addressed separately.

A. Approaching

For the drone to successfully perch on the tree, the tether

needs to make sufficient contact with the branch. Sufficient

wrapping is largely determined by the moment when the

tether first comes into contact with the branch. The tethering

manoeuvre is only possible if the contact point and the

energy of the tether with the sensor weight allow it to be

wrapped around. At the same time, the energy should be kept

as low as possible to reduce the overall required energy.

Depending on the final relative position of the drone at the

final moment during the approaching step, the contact point

between the tether and the targeted branch will change. Eq.

(1) can be derived from the energy obtained from the sum of

the potential energy and the kinetic energy. The two cases

in Fig. 3 are equated based on energy conservation. This

formula describes the relationship between the length of the

tether L, the velocity v and the diameter of the targeted

branch. The contact angle θ and the lengths L1 and L2 are

shown in Fig. 3. In Eq. (1), the left-hand side is proportional

to the kinetic energy of the contact moment and must be

reduced to minimise the needed energy.
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The boundary conditions from this equation are deter-

mined by the symmetry of the branch. Depending on the

approaching direction of the drone, only the side of the

branch facing the drone is relevant as a contact point. As

the tether is mostly straight underneath the drone because of

the weight, the boundary conditions for θ are [0, π/2]. To

avoid colliding with the drone while wrapping and ensuring

the minimum length to perform n wraps around the branch,

the length can be determined as

L = 2ndπ. (2)

To successfully perch, the kinetic energy given in the

lowest point has to be sufficient to lift the weight above

the highest point while wrapping around the target. From

Eq. (1), the ideal contact angle for energy minimisation can

be determined to be π/2 within the given boundaries. At

the final point, the horizontal velocity of the drone must be

sufficient to ensure a wrapping of the tether.

To meet all these requirements, this manoeuvre was first

performed manually to get a better understanding of the

first step of the tethering manoeuvre. The successful manual

manoeuvre was then analysed for the positions and their

Fig. 2: Overview of the complete drone mission including the

tethering manoeuvre. Our methodology proposes a tethering

manoeuvre illustrated in the box with red dashed lines.



Fig. 3: Sketch of the first contact of the tether of the

drone with the branch and the moment in which the weight

overcomes the highest point of the spiral.

velocities to produce a trajectory which can lead to a

reproducible successful tethering manoeuvre of the drone.

The complexity of the task is addressed by imitating the

trajectory of the manual behaviour of the system. In this

approach, the drone performs a swing motion to wrap the

tether. The experimental results are imitated considering the

velocities for the swing motion.

It is important to make sufficient contact with the branch

and to hold the weight of the drone. The weight that can

be supported by the rope depends on the number of wraps

around the branch. The relation can be estimated with the

Euler-Eytelwein relation [28].

B. Flipping Over

In the last step, the drone is connected to the branch and

should be able to safely disarm without colliding with the

tether or the branch. The system can be moved to the point

which has the same height as the branch, but with a distance

of L/2 to the side. This point is easy to reach as the drone

does not need to act with aggressive manoeuvres until this

point. To ensure a safe flipping manoeuvre, the roll angle is

adjusted along the trajectory while keeping the thrust at lower

ranges. Therefore, the power requirements of the drone can

be minimised. At the lowest possible position of the drone,

the thrust is reduced to zero and the drone can be safely

disarmed.

The flipping over manoeuvre is tackled dynamically, us-

ing a reinforcement learning algorithm. Thus, this part of

the tethering manoeuvre is defined as a Markov Decision

Process. Thereby, the current state st ∈ S at each time t is

detected by the algorithm through the observation ot ∈ O.

Together with the policy π(st), this observation leads to an

action at ∈ A. As feedback, the reward rt is provided from

the reward function R(st, at). This is aimed to be maximised

for all future steps from t to tmax by optimising the used

policy π∗. For the flipping over, the observation ot of the

state is given by the relative position of the drone to the

branch, its roll angle and the velocity. To reduce the gap

to the real-world application, sensor noise is added to the

position of the drone. The resulting action at determines

the change in the roll angle of the drone. The maximum

simulation time tmax is set to be 10 s.
To increase the learning performance of the reinforcement

algorithm, two different reward functions R1(st, at) and

R2(st, at) are defined and the weighted average is used.

R1(st, at) favours following the baseline of the algorithm by

minimising the difference in the roll rate between the given

baseline and the actual simulation. This baseline solution

gives a possible manoeuvre that has a constant roll rate over

the whole flipping step. The roll rate of the baseline is picked

manually. R2(st, at) rewards the algorithm for reaching the

final position quickly and safely, by rewarding the system

for permanently moving towards the final position.

R1(st, at) =

{

I(st, at), for t ⩽ tI

I(st, at) M(t), else

I(st, at) = 3× 105 × (0.1−min(|sα − s′
α
|, 0.1))4

M(t) =
tmax − t

tmax − tI

where sα and s′
α

are the roll angel of the current and the

baseline state; tmax is the maximum time of the simulation;

tI is the time where the final point should be reacted.

R2(st, at) =

{

RL +
∆Xtarget−0.005

lr
× 50, for

dtarget

ddrone
> 1

RL + ∆Xbranch

ddrone
× 100, else

where RL is the reward from the last step dtarget is the

distance to the target position; ddrone is the size of the drone;

∆Xtarget and ∆Xbranch is the change in the distance made to

the final position and to the branch, and lr is the length of

the rope.

In the first part of the training, the reinforcement learning

algorithm is only rewarded by R1(st, at) to learn to follow

the baseline solution. In this way, the algorithm showed

improved learning and performance as it started at a possible

solution. In the middle part, the algorithm transitions to

approximately 20% R1(st, at) and 80% R2(st, at). This

evolution of the weights during training is shown in Fig.

4. In the last part, the algorithm explores the solution space

and tries to improve the initially given baseline solution. The

main reason for our proposed method is based on having

a feasible baseline that can allow shorter training time.

However, our solution also improves energy efficiency and a

smooth set of trajectories by exploring with designed reward

function.

Real-world experiments were conducted to validate the

trajectories. The specifications of the drone used in the

experiment are detailed in Table I. A wooden framework

was utilized as a branch, capable of withstanding the forces

exerted during the tethering manoeuvre. To ensure safe flip-

ping and disarming, the shutting down phase was executed in

various attempts within the flight arena. Initially, the drone

was secured to the branch to prevent it from flying away

while descending. The baseline solution, which employs

manually crafted decrements for the roll rate, was utilized to

execute the final step. Once feasibility was established, the

set of learned trajectories generated by the neural network

was employed. Subsequently, approaching trajectories were

integrated to allow the tether to wrap around the branch,

resulting in successful and seamless flipping trajectories.

Multiple experiments were conducted at this stage with vary-

ing battery rates to confirm the feasibility of the trajectories.



C. Evaluation of the Tethering Manoeuvre Mechanism

To assess the usability of the proposed tethering manoeu-

vre, we compared the operational time of a drone equipped

with the perching capability to that of a standard free-flying

drone. The two systems differ in weight and functionalities,

with the tethered drone carrying the additional weight of the

perching mechanism and requiring extra energy to approach

the branch for each tethering manoeuvre. However, the

perching mechanism also extends the operational time by

enabling the drone to remain perched and conduct data

collection tasks. As the operational time of the two systems

approaches a certain threshold, they become equal. The

additional energy required to perch the drone was quan-

tified through the conducted experiments, with the energy

consumption of the drone hovering used as the baseline

measurement.

As an approximate estimate, we assume that the tether

increases the weight of the drone by 8%. To evaluate the

impact of this additional weight on flight time, we compare

the energy density of the drone. Energy density is defined

as the total energy available from the batteries divided by

the total weight of the drone. Since energy density and flight

time vary by drone manufacturer, we utilized available online

resources, including the xcopterCalc - Multikopter Calcula-

tor, to construct different drone models and approximate their

flight performance. Using this tool, we created a model of

the Astro Flight - 819M-9T drone. Our results show that

an increase in weight of approximately 8% reduces flight

time by roughly 12%. However, in our scenario, the system

involves a mock-up sensor for sound data collection, and the

additional weight of the tethering mechanism is the primary

component.

IV. EXPERIMENTAL SETUP

All experiments were conducted indoors within the Aerial

Robotics Laboratory’s flight arena, using a Vicon motion

capture system. The specifications of the drone used for

testing can be found in Table I. During the experiments, a

Fig. 4: Figure shows the weighting during training of reward

functions R1(st, rt) which follows the base line solution and

the R2(st, rt) which enhance the exploring of the solution

space.

Flight Controller Pixhawk 4

Companion Computer
Raspberry Pi 4 with Ubuntu-18

Server & ROS Melodic

Diagonal Length 450 mm

Motor DJI 2312E 940KV

ESC DJI E-Series 420Lite

Propellers 9450

Battery 4S 1500 mAH LiPo

Total Take-off Weight 1.2 kg

TABLE I: Specification of the drone used in the flying arena

for the practical experiments.

tether measuring 1.6m was attached to the drone, and the

weight at the end of the tether was varied between 100 g and

200 g to simulate the weight of the sensor.

V. RESULTS

A. Approaching

The proposed solution is demonstrated to be feasible for

reproducible trajectories that enable the drone to approach

the branch, with the contact point of the drone at the

branch being centred, as shown in Fig. 1. By estimating

the waiting time, it can be concluded that an increase in

branch diameter or the number of wraps will lead to a

longer time needed to achieve full contact, as demonstrated

in Fig. 5. In our experiments, a rectangular branch was

used, with an equivalent radius of 0.036m with respect to

its circumference. Based on the trajectories observed in the

flight arena, it was determined that it takes approximately

1.6 s on average for the drone to make three wraps around

this branch.

B. Flipping Over

The learning framework proposed in this study was trained

and the resulting trajectories were utilized in real time.

During the manoeuvre, the drone was initially positioned at

a distance of L/2 from the branch, and the learned feasible

trajectories were then employed to execute a controlled flip

while maintaining low thrust.

Fig. 5: The figure shows the numerically calculated waiting

time from the first contact of the tether to the end of looping

around the targeted branch.



The development of the reward function during the neural

network training is depicted in Fig. 6, with respect to the

measured baseline at an epoch around 4100. The weights

assigned to the two reward functions, namely imitation and

exploration, are plotted in Fig. 4. The figure shows that the

algorithm initially learns to imitate the provided solution,

followed by a transition to exploring different possibilities,

ultimately resulting in a performance improvement of about

18% above the baseline. Moreover, the standard deviation

decreases over time during the imitation phase, while it peaks

during the transition phase and then decreases to a low level

of approximately 0.2.

Figure 7 (a) and (b) present a comparison between the

basic trajectory and the improved trajectory generated by the

neural network. The drone’s actual path is illustrated with a

dashed line while the angle of the drone at each point is

denoted by bars. The time elapsed during the manoeuvre is

depicted by grey shading, with the lighter shades indicating

the initial stage. The green circle in the centre of the figure

represents the target branch.

The real-world experiments demonstrated the feasibility of

both the baseline and the improved solution generated by the

neural network, resulting in a successful trajectory with the

drone reaching the lowest position without colliding with the

target or the rope. However, it was observed that the drone

often deviated from the intended path during the manoeuvre.

As shown in Fig. 8, the drone first moved to the starting

Fig. 6: Evolution of reward relative to the baseline of the

model.

(a) (b)

Fig. 7: Figure (a) shows the trajectory resulting from the

baseline imitated in the first learning phase. Figure (b) shows

an improved trajectory suggested by the neural network at

the end of the training.

Fig. 8: Experimental data of the drone’s position was mea-

sured throughout the automated tethering manoeuvre in the

flight arena. Gaps in the data occur when the motion capture

system has not captured the drone due to the target branch.

Fig. 9: The angles and thrust of the drone were recorded

while performing all steps of the tethering manoeuvre. The

thrust recorded here is a dimensionless parameter of the

drone that indicates the current motor load in relation to

the current maximum possible load (varies depending on the

battery status).

position (negative y position), descended towards the target,

and finally swung underneath the branch. Due to the drone’s

downward motion, the motion capture system occasionally

failed to detect it, resulting in data gaps.

C. Full Set of Trajectories

The complete tethering manoeuvre, consisting of all the

individual steps, was executed and evaluated in the flight

arena. Fig. 8 presents the resulting data, depicting the drone’s

trajectory from its starting point, which was set 2.5m away

from the target. After descending and reaching the starting

position of the tether, the drone swung the tether and

proceeded to the initial point for the flipping over phase.

Finally, the drone executed the 180-degree flip using the

learned trajectories. The transitions between each step were

determined based on the respective running time.

In the flight arena, the drone attempted to approach

the targeted branch twenty-one times. Sixteen out of these



Fig. 10: This graph shows the normalised reduction in battery

state-of-charge while performing the tethering manoeuvre

compared to the drone just hovering in the air.

twenty-one attempts resulted in successful perching of the

drone. Throughout the whole manoeuvre, the drone operated

in fully autonomous mode. However, in the remaining five

attempts, the drone failed to make sufficient contact with the

targeted branch, resulting in a collision of the tether with

itself as it wrapped around the branch. This collision caused

the tether to bounce back instead of performing complete

loops around the branch.

D. Energy Consumption for Tethering Manoeuvre

To further evaluate the system’s performance, an estima-

tion of the energy consumption during the tethering manoeu-

vre was conducted. The battery voltage was used as an indi-

cator, with the baseline measured from the drone hovering in

the air. As shown in Fig. 10, the overall energy consumption

during the tethering manoeuvre did not exhibit a significant

difference when compared to the energy consumption during

hovering.

E. Discussion

The flight behaviour of the drone was found to be influ-

enced by the dynamics of the tether. It was observed during

the experiments that the non-slip condition between the rope

and the branch after the initial contact might not hold true.

In this case, the drone continues to pull the tether while it is

not fully attached, resulting in a slip that reduces the energy

required at the first contact point. To account for this, Eq. (1)

needs to be corrected by including the term that reflects this

effect. To compensate for the slip, the drone was positioned

lower over the branch during the experiment, which increased

the initial contact point and resulted in the slip of the tether

along the branch. Another observation was that the final

deceleration of the drone from the maximum velocity to the

minimum range did not solely rely on the drone, as the tether

made sufficient contact with the branch to hold the drone

while still in flight, thus automatically reducing the drone’s

velocity. This phenomenon can be observed in Fig. 8, where

the final point in the second swing is not reached.

The feasibility of flipping over was demonstrated in the

second section, with the neural network showing improved

performance compared to the baseline approach. The neural

network was able to generate stable trajectories for the

flipping over phase. Comparing the baseline solution with

a trajectory produced by the neural network in Fig. 7, the

drone’s angle is seen to be increased during the latter. This

results in earlier attainment of the final conditions and thus,

energy savings.

To enhance the performance of the neural network, it

is suggested to vary the length of the rope and the thrust

during training, which simulates the conditions in a real

environment. By doing so, the algorithm can adapt to these

changes and potentially yield a better solution. This approach

can further improve the performance of the algorithm and

enable it to handle a broader range of initial conditions.

The solution presented in this paper has demonstrated the

capability to produce a feasible trajectory for the tethering

manoeuvre. The results showed that the drone successfully

perched in sixteen out of twenty-one attempts, indicating

the repeatability of the performed manoeuvre. The only

observed cause of failure was when the tether struck itself

during alignment in the in-plane configuration, resulting in

unsuccessful perching. To mitigate this issue, the geometry of

the weight could be modified to reduce the probability of the

tether hitting itself. Alternatively, performing figure-of-eight-

like trajectories in the x and y planes could also decrease the

likelihood of the tether colliding with itself during loops.

VI. CONCLUSION

This paper presents a drone tethering manoeuvre approach

that significantly reduces energy consumption during long-

term aerial data collection operations. However, the drone

must carry additional weight in the form of a tether and

weight, necessitating at least 12% perching time to achieve

energy-saving benefits. Future work will test the proposed

manoeuvre under real-life conditions, considering space and

take-off constraints. The proposed tethering manoeuvre has

the potential to expand drone applications by reducing energy

usage and increasing operational time. Future studies will

also explore mechanisms for recovering from the upside-

down position, including cutting the tether to place the sensor

on the environment.
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Hydraulik: mit vorzüglicher Rücksicht auf ihre Anwendung in der

Architektur aufgesetzt. Fleischer, 1842.

https://aip.scitation.org/doi/abs/10.1063/1.5066949

	Introduction
	Problem Formulation
	Methodology
	Approaching
	Flipping Over
	Evaluation of the Tethering Manoeuvre Mechanism

	Experimental Setup
	Results
	Approaching
	Flipping Over
	Full Set of Trajectories
	Energy Consumption for Tethering Manoeuvre
	Discussion

	Conclusion
	References

