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Abstract
We prove a convergence theorem for U-statistics of degree two, where the data dimension d is
allowed to scale with sample size n. We find that the limiting distribution of a U-statistic undergoes
a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of
its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-
degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and
asymmetric distribution. Our bounds are valid for any finite n and d, independent of individual
eigenvalues of the underlying function, and dimension-independent under a mild assumption. As
an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD,
whose high-dimensional performance has been challenging to study. In a simple empirical setting,
our results correctly predict how the test power at a fixed threshold scales with d and the bandwidth.
Keywords: High-dimensional statistics, U-statistics, distribution testing, kernel method

1. Introduction

We consider a one-dimensional U-statistic of degree two built on n i.i.d. data points in Rd. Numer-
ous estimators can be formulated as a U-statistic: Modern applications include high-dimensional
change-point detection (Wang et al., 2022), sensitivity analysis of algorithms (Gamboa et al., 2022)
and convergence guarantees for random forests (Peng et al., 2022).

The asymptotic theory of U-statistics is well-established in the classical setting, where d is
fixed and small relative to n (e.g. Chapter 5 of Serfling (1980)). Classical theory shows that the
large-sample asymptotic of a U-statistic depends on its martingale structure and moments: For U-
statistics of degree two, this reduces to the notion of degeneracy, i.e. whether the variance of a
certain conditional mean is zero. Non-degenerate U-statistics are shown to have a Gaussian limit,
whereas degenerate ones converge to an infinite sum of weighted chi-squares.

However, these results fail to apply to the modern context of high-dimensional data, where d is
of a comparable size to n. The key issue is that the moment terms, which determine degeneracy, may
scale with d. Existing efforts on high-dimensional results either focus on U-statistics of a growing
degree (Song et al., 2019; Chen and Kato, 2019) and of growing output dimension (Chen, 2018)
or rely on very specific data structures (Chen and Qin, 2010; Yan and Zhang, 2022). In particular,
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Figure 1: Behaviour of P(X > t) for X = Dn, a non-degenerate U-statistic, versus X being different theoretical limits.
Left. KSD with RBF kernel, n = 50 and d = 2000. Right. MMD with linear kernel, n = 50 and d = 1000. The
left plot shows that P(Dn > t) disagrees with the non-degenerate limit from known classical results but aligns with the
degenerate limit from ours (moment-matched by a Gamma variable – discussed in Section 3.2). The right plot is when the
limit predicted by our result can be computed exactly as a shifted-and-rescaled chi-square and shows asymmetry, which
confirms a departure from Gaussianity. See the last paragraph of Section 4.3 and Appendix A for simulation details.

these articles focus on a comparison to some Gaussian limit in high dimensions, and the effect of
moments on a departure from Gaussianity has largely been ignored.

The practical motivation for our work stems from distribution tests, which typically employ U-
statistics as a test statistic. In the machine learning community, it has been empirically observed
that the power of kernel-based distribution tests can deteriorate in high dimensions, depending on
hyperparameter choices and the class of alternatives (Reddi et al., 2015; Ramdas et al., 2015). A
theoretical analysis in the most general case has not been possible, due to the lack of a general
convergence result for high-dimensional U-statistics. In the statistics community, there are similar
interests in analysing U-statistics used in mean testing of high-dimensional data (e.g. Chen and Qin
(2010); Wang et al. (2015)). All existing results, to our knowledge, are limited by very specific data
assumptions and a focus on obtaining Gaussian limits.

In this paper, we prove a general convergence theorem for U-statistics of degree two, which
holds in the high-dimensional setting and under very mild assumptions on the data. We observe a
high-dimensional analogue of the classical behaviour: Depending on a moment ratio, the limiting
distribution of U-statistics can take either the non-degenerate Gaussian limit, the degenerate limit
or an intermediate distribution. Crucially, this happens regardless of the statistic’s degeneracy, as
defined in the classical sense. We provide error bounds that are finite-sample valid and dimension-
independent under a mild assumption.

In the context of kernel-based distribution tests, we show that our results hold for Maximum
Mean Discrepancy (MMD) and for (Langevin) Kernelized Stein Discrepancy (KSD) under some
natural conditions. We investigate several examples under Gaussian mean-shift – a setting purposely
chosen to be as simple as possible to obtain good intuitions, while already capturing a rich amount
of complex behaviours. Our theory correctly predicts the high-dimensional behaviour of the test
power with a wider variance than classical results and, perhaps surprisingly, potential asymmetry
(see Fig. 1 for one such example). Our results enable us to characterise such behaviours based on
the size of d and hyperparameter choices.

1.1. Overview of results

Given some i.i.d. data {Xi}ni=1 drawn from a distribution R on Rd and a symmetric measurable
function u : Rd ×Rd → R, the goal is to estimate the quantity D := E[u(X1,X2)]. The U-statistic
provides an unbiased estimator, defined as
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Dn :=
1

n(n− 1)

∑
1≤i ̸=j≤n

u(Xi,Xj) . (1)

Our main result is Theorem 2. Loosely speaking, it says that as n, d → ∞, the statistic Dn

converges in distribution to a quadratic form of Gaussians:

Dn
d−→ W + Z +D , (2)

where W is some infinite sum of weighted and centred chi-squares and Z is some Gaussian. Define

ρd := σfull / σcond , where σfull =
√

Var[u(X1,X2)] and σcond =
√

VarE[u(X1,X2)|X1] ,

and recall that the classical notion of degeneracy is defined by σcond = 0. We next observe that in
(2), W + D is closely related to the classical degenerate limit, whereas Z + D gives exactly the
classical non-degenerate limit. It turns out that, up to a mild assumption, the type of asymptotic
distribution of Dn is completely determined by the ratio ρd. This is reminiscent of the classical
result, where the notion of degeneracy, i.e. whether σcond = 0, determines the limit of Dn. The
difference in high dimensions is that σfull and σcond may scale differently with d. Even if σcond ̸= 0,
ρd can grow to infinity as d grows, causing a non-degenerate Dn to behave like a degenerate U-
statistic. We show that, depending on ρd, (2) becomes

Dn
d−→W +D for ρd = ω(n1/2) and Dn

d−→ Z +D for ρd = o(n1/2) .

The second result is the classical Berry-Esséen bound for U-statistics, while the first result is new. It
recovers the classical degenerate limit as a special case but also applies to very general U-statistics
in high dimensions regardless of degeneracy.

The paper is organised as follows. Section 2 provides definitions and a sketch-of-intuition on
the role of moment terms in the limiting behaviour of Dn. Section 3 presents the main results along
with a proof overview in Section 3.3. Section 4.2 shows that these results apply to MMD and KSD
under some natural conditions and Section 4.3 studies the Gaussian mean-shift case in detail.

1.2. Related literature

Convergence results for U-statistics. Existing high-dimensional results focus either on a different
setting or on showing asymptotic normality under very specific assumptions on data; some refer-
ences are provided at the start of this section. The results that resemble our work more closely are
finite-sample bounds for classical degenerate U-statistics. Those works focus on providing bounds
under conditions on specific eigenvalues of a spectral decomposition of Dn, and we defer a list of
references to Remark 1. Among them, Yanushkevichiene (2012) provides a rate O(n−1/12) under
perhaps the least stringent assumption on eigenvalues, but the error is still pre-multiplied by the
inverse square-root of the largest eigenvalue. These eigenvalues are intractable and yet depend on d
through the data distribution, which make them hard to apply to high-dimensional settings. In the
classical setting where d is fixed, a recent work by Bhattacharya et al. (2022) proves a Gaussian-
quadratic-form limit similar to ours for a random quadratic polynomial, which includes a simple
U-statistic as a special case. However, their results are asymptotic and in particular do not identify a
parameter that leads to the phase transition. Our finite-sample results require a very different proof
technique and show how a moment ratio governs the transition.
High-dimensional power analysis for MMD and KSD. Some recent work has investigated the asymp-
totic behaviour of Dn for MMD. Yan and Zhang (2022) prove a convergence result under a specific
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data model and kernel choice, so that u(x,y) = g(∥x − y∥2) for some function g : R → R and
∥ • ∥2 being the vector norm. The dimension-independence of g enables a Taylor expansion argu-
ment reminiscent of delta method and therefore gives a Gaussian limit. Such structures are not
assumed in our work. A related work of Gao and Shao (2021) provides a finite-sample bound under
more general conditions. The results show asymptotic normality of a studentised version of Dn

rather than Dn itself, and the error bound is only valid if a moment ratio, analogous to excess kurto-
sis, vanishes with d (see their Theorem 13). Interestingly, this effect is obtained as a special case of
our results for much more general settings: In Section 3.2, we point out that the degenerate limit is
Gaussian if and only if the excess kurtosis vanishes. Another recent line of work (Kim and Ramdas,
2020; Shekhar et al., 2022) focuses on a studentisedDn that is modified to exclude half of the terms.
They show dimension-agnostic normality results at the cost of not using the full U-statistic Dn.

2. Setup and motivation

We use the asymptotic notations o,O,Θ, ω,Ω defined in the usual way (see e.g. Chapter 3 of Cor-
men et al. (2009)) for the limit n → ∞, where the dimension is allowed to depend on n; we make
the n-dependence explicit in the dimension dn whenever such asymptotics are considered.

2.1. Moment terms in high dimensions

Consider a U-statisticDn as defined in (1) with respect to (R, u) with meanD = E[u(X1,X2)]. For
ν ≥ 1, denote the Lν norms by ∥ • ∥Lν

:= E[| • |ν ]1/ν . The ν-th central moment of Dn are bounded
from above and below in terms of two types of moment terms (see Lemma 30 in the appendix):

Mcond;ν :=
∥∥E[u(X1,X2)|X2]− E[u(X1,X2)]

∥∥
Lν
,Mfull;ν :=

∥∥u(X1,X2)− E[u(X1,X2)]
∥∥
Lν
.

In the special case ν = 2, the definitions from Section 1.1 implies σcond =Mcond;2, σfull =Mfull;2

and ρd = σfull / σcond. The fact that these moments may scale with d has a significant effect on
convergence results: For example, bounds of the form moment

f(n) for some increasing function f of n
are no longer guaranteed to be small. This is yet another effect of the “curse of dimensionality”.
For U-statistics, the classical Berry-Esséen result (see e.g. Theorem 10.3 of Chen et al. (2011)) says
that, if σcond > 0, then for a normal random variable Z ∼ N (D, 4n−1σ2cond) and ν ∈ (2, 3], we
have

supt∈R

∣∣∣P( √
n

σcond
Dn < t

)
− P

( √
n

σcond
Z < t

)∣∣∣ ≤ 6.1Mν
cond;ν

n(ν−2)/2σν
cond

+
(1 +

√
2)ρd

2(n− 1)1/2
. (3)

Indeed, the error bound in the classical Berry-Esséen result is an increasing function of n−1/2ρd =
σfull/(n

1/2σcond), which is not guaranteed to be small as d grows.
The ratio Mcond;ν/σcond also appears in classical error bounds. However, we do not focus on

how this ratio scales, since it appears in Berry-Esséen bounds even for sample averages. Error
bounds in our main theorem will depend on similar ratios, and for our theorem to imply a conver-
gence theorem, the following assumption is required:

Assumption 1 There exists some ν ∈ (2, 3] and some constant C < ∞ such that for all n and d,
we have the uniform bounds Mfull;ν

σfull
≤ C and Mcond;ν

σcond
≤ C .
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2.2. Sketch of intuition

We motivate our results by noting that the variance of Dn defined in (1) satisfies

Var[Dn] = O
(E[(u(X1,X2)−D)(u(X1,X3)−D)]

n
+

E[(u(X1,X2)−D)(u(X1,X2)−D)]

n(n− 1)

)
= O

(σ2
cond

n
+

σ2
full

n(n− 1)

)
.

To study the asymptotic distribution of Dn, we need to understand how its asymptotic variance
behaves as n and d grow. Suppose we are in the classical non-degenerate setting, where d is fixed
and σcond > 0. The dominating term in Var[Dn] is O(n−1σ2cond). The contribution of the σ2full term
is small, i.e. the effect of the variance of each individual summand u(X1,X2) is negligible. In fact,
we can approximate Dn by replacing each argument in the summand by an independent copy X′

i of
Xi and applying CLT for an empirical average:

Dn = D +
1

n(n− 1)

∑
1≤i ̸=j≤n

(u(Xi,Xj)−D)

≈ D +
1

n

∑n

i=1

(
1

n− 1

∑
j ̸=i

(u(Xi,X
′
j)−D)

)
+

1

n

∑n

j=1

(
1

n− 1

∑
i ̸=j

(u(X′
i,Xj)−D)

)
= D +

2

n

∑n

i=1

(
E[u(Xi,X

′
j)|Xi]−D

)
≈ N

(
D ,

4σ2
cond

n

)
.

This argument underpins results on CLT for non-degenerate U-statistics. In the classical degenerate
setting, however, d is still fixed but σcond = 0, and the above argument fails to apply. Instead, one
considers a spectral decomposition u(x,y) =

∑∞
k=1 λkϕk(x)ϕk(y) for some eigenvalues {λk}∞k=1

and eigenfunctions {ϕk}∞k=1, and compares the distribution ofDn to a weighted sum of chi-squares:

Dn =
1

n(n− 1)

∑
1≤i ̸=j≤n

∑∞
k=1

λkϕk(Xi)ϕk(Xj)

=
∑∞

k=1
λk

((
1

n

∑n

i=1
ϕk(Xi)

)(
1

n

∑n

j=1
ϕk(Xj)

)
− 1

n2

∑n

i=1
ϕk(Xi)

2
)

≈ 1

n

∑∞
k=1

λk
((√

Var[ϕk(X1)] ξk + E[ϕk(X1)]
)2 − E[ϕk(X1)

2]
)
,

where ξk’s are i.i.d. standard normals. The limiting distributions in both settings enable one to
construct consistent confidence intervals for Dn and study P(Dn > t).

The key takeaway is that the asymptotic distribution ofDn depends on the relative sizes of σ2cond
and (n−1)−1σ2full. This comparison reduces to degeneracy when d is fixed, but is no longer so when
d grows. In the high-dimensional setting, σcond and σfull can scale with d at different orders, making
it possible for the ratio ρd to vary with d. In particular, a non-degenerate U-statistic with σcond > 0
may still satisfy ρd = ω(n1/2), i.e. (n − 1)−1σ2full/σ

2
cond → ∞ as n and d grow. In this case,

the classical argument for a non-degenerate Gaussian limit would fail and a degenerate limit would
dominate. This is exactly what we observe in the practical applications in Section 4.3, and motivates
the need for results that explicitly addresses the high-dimensional setting.

3. Main results

The main result presented in this section is a finite-sample bound that compares Dn to a quadratic
form of infinitely many Gaussians. The limiting distribution is a sum of the non-degenerate limit
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and a variant of the degenerate limit, and subject to Assumption 1, the error bound is independent
of ρd. In the case ρd = o(n1/2), the non-degenerate limit dominates and our result agrees with
the Gaussian limit given by a Berry-Esséen theorem for U-statistics. However when dimension
is high such that ρd = ω(n1/2), the degenerate limit dominates and implies a larger asymptotic
variance. We also discuss how to obtain consistent distribution bounds that reflect the effect of a
large dimension d on the original statistic Dn.

Our results rest on a functional decomposition assumption. For a sequence of Rd → R functions
{ϕk}∞k=1 and a sequence of real values {λk}∞k=1, we define the Lν approximation error for ν ≥ 1
and a given K ∈ N as

εK;ν :=
∥∥∑K

k=1
λkϕk(X1)ϕk(X2)− u(X1,X2)

∥∥
Lν
.

Assumption 2 There exists some ν ∈ (2, 3] such that, for any fixed n and d, as K → ∞, the Lν

approximation error εK;ν → 0 for some choice of {ϕk}∞k=1 and {λk}∞k=1.

Remark 1 (i) If Assumption 2 holds for some ν > 3, it certainly holds for ν = 3. We restrict
our focus to ν ∈ (2, 3] for simplicity. (ii) Assumption 2 always holds for ν = 2 by the spectral
decomposition of an operator on L2(Rd, R). For degenerate U-statistics with d fixed, the corre-
sopnding orthonormal eigenbasis of functions and eigenvalues are used to prove asymptotic results
(see Section 5.5.2 of Serfling (1980)) and finite-sample bounds (Bentkus and Götze, 1999; Götze and
Tikhomirov, 2005; Yanushkevichiene, 2012). In fact, these finite-sample bounds are dependent on
the specific λk’s, making the results hard to apply. Instead, we forgo orthonormality at the cost of a
convergence slightly stronger than L2. This allows for a much more flexible choice of {ϕk, λk}∞k=1

and is particularly well-suited for a kernel-based setting; see Remark 17 for a discussion.

Before stating the results, we introduce some more notations. For every K ∈ N, we define a
diagonal matrix of the first K “eigenvalues” and a concatenation of the first K “eigenfunctions” by

ΛK := diag{λ1, . . . , λK} ∈ RK×K , ϕK(x) := (ϕ1(x), . . . , ϕK(x))⊤ ∈ RK . (4)

We denote the mean and variance of ϕK(X1) by µK := E[ϕK(X1)] and ΣK := Cov[ϕK(X1)].

3.1. Result for the general case

Let ηKi , with i,K ∈ N, be i.i.d. standard Gaussian vectors in RK . In the general case, the limiting
distribution is given in terms of a quadratic form of Gaussians, defined by

UK
n :=

1

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi +D.

We also denote the dominating moment terms by

σmax := max{σfull, (n− 1)1/2σcond} , Mmax;ν := max{Mfull;ν , (n− 1)1/2Mcond;ν} .

We are ready to state our main result – a finite-sample error bound that compares Dn to the limiting
distribution of UK

n , where the error is given in terms of n and the moment terms.

6
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Theorem 2 There exists a constant C > 0 such that, for all u, R, d and n, if ν ∈ (2, 3] satisfies
Assumption 2, then the following holds:

supt∈R

∣∣∣P(√n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣
≤ C n−

ν−2
4ν+2

(
(Mfull;ν)

ν

σν
max

+
((n− 1)1/2 Mcond;ν)

ν

σν
max

) 1
2ν+1 ≤ 2

1
2ν+1C n−

ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

Remark 3 If ν = 3, the RHS is given by 23/7Cn−
1
14

(Mmax;3

σmax

)6/7. If Assumption 1 holds for ν, the

RHS can be replaced by C ′n−
ν−2
4ν+2 for some constant C ′ and is dimension-independent.

Remark 4 At first sight, one may be tempted to move limK→∞ inside P such that, instead of the
cumbersome expression of WK

n with finite K, one may deal with random quantities in a Hilbert
space. The reason to stick with WK

n is that in Assumption 2, convergence of the infinite sum is
required only in Lν and not almost surely. This makes verification of the assumption substantially
simpler in practice: In Appendix A, we illustrate how this assumption holds via a simple Taylor-
expansion argument coupled with suitable tail behaviour of the data to control error terms. The
same argument is not applicable if we instead require an almost sure convergence.

Theorem 2 immediately implies a convergence theorem:

Corollary 5 Let the dimension dn depend on n. Suppose Assumptions 1 and 2 hold for some ν > 2

and the sequential distribution limit Ū = limn→∞ limK→∞

√
n(n−1)

σmax
(UK

n −D) exists. Then

√
n(n− 1)

σmax
(Dn −D)

d−→ Ū as n→ ∞ .

UK
n is a quadratic form of Gaussians, which does not admit a closed-form c.d.f. in general and

whose limiting behaviour depends heavily on λk and ϕk. Nevertheless, the presence of Gaussianity
still allows us to obtain crude bounds that reflect how dimension d affects its distribution. By
combining such bounds with Theorem 2, we can bound the c.d.f. of the original U-statistic Dn.

Proposition 6 There exists constants C1, C2, C3 > 0 such that, for all u, R, d, n and K, if
ν ∈ (2, 3] satisfies Assumption 2, then for all ϵ > 0,

P(|Dn −D| > ϵ) ≥ 1− C1

(√
n(n− 1)

σmax

)1/2
ϵ1/2 − C2 n

− ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

,

P(|Dn −D| > ϵ) ≤ C3ϵ
−2
(

σmax√
n(n− 1)

)2
.

Remark 7 The second bound is a concentration inequality directly available via Markov’s inequal-
ity, whereas the first bound is an anti-concentration result. Anti-concentration results are generally
available only for random variables from known distribution families, and we obtain such a result
by comparing Dn to UK

n . The error bounds are free of any dependence on K and specific choices
of ϕk and λk. The trailing error term involving Mmax;ν/σmax is inherited from Theorem 2 and is
negligible, whereas the other error term is directly related to the inverse of the Markov error term.
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Proposition 6 provide two-sided bounds on how likely it is for Dn to be far from D. The next
corollary provides a more explicit statement.

Corollary 8 Let the dimension dn depend on n and fix ϵ > 0. Suppose Assumptions 1 and 2 hold
for some ν ∈ (2, 3]. As n → ∞, we have that P(|Dn − D| > ϵ) → 1 if σmax = ω(n) and
P(|Dn −D| > ϵ) → 0 if σmax = o(n).

Another way of formulating the bounds in Proposition 6 is the following: Similar to the intuition
for a Gaussian, when n is large (with dn depending on n), the distribution ofDn is not only concen-
trated in an interval aroundD with width being a multiple of σmax

n , but also “well spread-out” within
the interval. The probability mass gets concentrated around D when σmax = o(n), but spreads out
along the whole real line when σmax = ω(n); the latter only happens in a high dimensional regime.

To have a more precise understanding of the limiting behaviour of Dn, we need a better knowl-
edge of UK

n . By a closer examination of UK
n , we see that it is a sum of three terms: A sum of

weighted chi-squares with variance of the order n−1(n − 1)−1σ2full, a Gaussian with variance of
the order n−1σ2cond, and a constant D. The first term closely resembles the limit for degenerate U-
statistics when d is fixed, while the second term corresponds exactly to the Gaussian limit for non-
degenerate U-statistics. It turns out that, unless we are at the boundary case where ρd = Θ(n1/2),
we can always approximate UK

n by ignoring either the first or the second term. Ignoring the first
term gives exactly the Gaussian limit, where a well-established result has already been provided
in (3). Ignoring the second term gives an infinite sum of weighted chi-squares, which is discussed
next.

3.2. The case ρd = ω(n1/2)

Let {ξk}∞k=1 be a sequence of i.i.d. standard Gaussians in 1d, and for K ∈ N, let {τk;d}Kk=1 be the
eigenvalues of (ΣK)1/2ΛK(ΣK)1/2. The limiting distribution we consider is given in terms of

WK
n :=

1√
n(n− 1)

∑K

k=1
τk;d(ξ

2
k − 1) +D . (5)

Note that in this case, σmax = σfull. The next result adapts Theorem 2 by replacing UK
n with WK

n :

Proposition 9 There exists a constant C > 0 such that, for all u, R, d, n and K, if ν ∈ (2, 3]
satisfies Assumption 2, then the following holds:

supt∈R

∣∣∣P(√n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
WK

n > t
)∣∣∣

≤ C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5
+ n−

ν−2
4ν+2

(
(Mfull;ν)

ν

σν
full

+
((n− 1)1/2Mcond;ν)

ν

σν
full

) 1
2ν+1

)
.

Remark 10 In the case ν = 3, the error term above becomes

C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5
+ n−

1
14

(
(Mfull;3)

3

σ3
full

+

(
(n− 1)1/2Mcond;3

)3
σ3
full

) 1
7
)
.

In the case when Assumption 1 holds for ν, the error term is Θ
((

n−1
ρ2d

)1/5
+ n−

ν−2
4ν+2

)
.
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Remark 11 Proposition 9 agrees with the classical results for degenerate U-statistics. In those
results, {ϕk}∞k=1 are chosen such that they are orthonormal in L2(Rd, R) and E[ϕk(X1)] = 0. This
corresponds to ΣK being a diagonal matrix and the expression for τk;d can be simplified.

We seek to obtain a better understanding of the limiting distribution of Dn in the case ρd =
ω(n1/2). Write Wn := limK→∞WK

n as the distributional limit of WK
n as K → ∞. Provided that

Wn exists, Proposition 9 gives the convergence of Dn to Wn in the Kolmogorov metric. The next
lemma guarantees the existence of Wn.

Proposition 12 Fix n, d. If Assumption 2 holds for some ν ≥ 2 and |D|, σfull <∞, Wn exists.

While WK
n is a sum of chi-squares, the distributional limit W∞ := limn→∞ limK→∞WK

n may
actually be Gaussian. The crucial subtlety lies in the fact that the weights of WK

n may depend
on K and also on n (through d ≡ dn). In what is well-known in the probability literature as the
“fourth moment phenomenon” (Nualart and Peccati, 2005), the necessary and sufficient condition
for Gaussianity of W∞ is that the limiting excess kurtosis is zero. In our case, the limiting moments
can be computed easily when Assumption 2 holds for ν ≥ 4, as they depend only on moments of
the original function u and not on specific values of the intractable weights τk;d. Lemma 33 in the
appendix shows that E[WK

n ] = D for every K ∈ N, limK→∞ Var[WK
n ] = 2

n(n−1)σ
2
full and

lim
K→∞

E
[
(WK

n −D)4
]
=

12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] + σ4
full)

n2(n− 1)2
,

provided that Assumption 2 holds for ν ≥ 1, ν ≥ 2 and ν ≥ 4 respectively. If the excess kurtosis is
indeed zero, Gaussian is still the correct limiting distribution forDn, but now with a larger variance
(characterized by σfull) than the one naively predicted by the Gaussian CLT limit for non-degenerate
U-statistics. Meanwhile, when the excess kurtosis is not zero, the limiting distribution is an infinite
sum of weighted chi-squares. A naive example is the following:

Lemma 13 Suppose there exists a finite K∗ such that λk = 0 for all k > K∗. Then Wn = WK∗
n ,

which is a weighted sum of chi-squares.

A weighted sum of chi-squares does not admit a closed-form distribution function. Fortunately
in the case when τk;d ≥ 0 for all k, many numerical approximation schemes are available and used
widely. These methods generally rely on matching the moments of Wn, which can be computed
easily due to Proposition 12. The simplest example is the Welch-Satterthwaite method, which ap-
proximates the distribution of Wn by a gamma distribution with the same mean and variance. We
refer readers to Bodenham and Adams (2016) and Duchesne and De Micheaux (2010) for a review
of other moment-matching methods.

3.3. Proof overview

The proof for Theorem 2 consists of three main steps:
(i) “Spectral” approximation. We first use Assumption 2 to replace u(Xi,Xj) with the trun-

cated sum
∑K

k=1 λkϕk(Xi)ϕk(Xj), which gives a truncation error that vanishes as K → ∞;

9
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(ii) Gaussian approximation. The truncated sum is a simple quadratic form of i.i.d. vectors
in Rd, each of which can be approximated by a Gaussian vector. This is done by following
Chatterjee (2006)’s adaptataion of Lindeberg’s telescoping sum argument. Similar proof ideas
have been used to develop new convergence results in statistics and machine learning; exam-
ples include empirical risk (Montanari and Saeed, 2022) and bootstrap for non-asymptotically
normal estimators (Austern and Syrgkanis, 2020). This step introduces errors in terms of mo-
ment terms of UK

n , which are then related to those of Dn;
(iii) Bound the distribution of UK

n . Step (ii) introduces errors in terms of the distribution of UK
n ,

a quadratic form of Gaussians, over a short interval. These errors are then controlled by the
distribution bounds from Carbery and Wright (2001).

The proof for Proposition 9 is similar, except that we use an additional Markov-type argument to
remove the linear sum from UK

n and obtain the limit in terms of WK
n .

4. Kernel-based testing in high dimensions

Given two probability measures P and Q on Rd, we consider the problem of testing H0 : P = Q
against H1 : P ̸= Q through some measure of discrepancy between P and Q. We focus on
Maximum Mean Discrepancy (MMD) and (Langevin) Kernelized Stein Discrepancy (KSD), two
kernel-based methods that use a U-statistic Dn as the test statistic. It is well-known that σcond = 0
under H0 and the limit of Dn is a weighted sum of chi-squares (see Gretton et al. (2012) for MMD
and Liu et al. (2016) for KSD). Instead, we are interested in quantifying the power of Dn given as
PH1(Dn > t). The test threshold t is often chosen adaptively in practice, but we assume t to be
fixed for simplicity of analysis. The results in Section 3 offer two key insights to this problem:

(i) Dn may have different limiting distributions depending on ρd. In the non-Gaussian case, the
confidence interval and thereby the distribution curve can be wider than what a Berry-Esséen
bound predicts, and there may be potential asymmetry;

(ii) We can completely characterise the high-dimensional behaviour of the power in terms of ρd,
which in turn depends on the hyperparameters and the set of alternatives considered.

In this section, we first show that our results naturally apply to MMD and KSD. We then investi-
gate their high-dimensional behaviours in an example of Gaussian mean-shift under simple kernels.
Throughout, ∥ • ∥2 denotes the vector Euclidean norm, which is not to be confused with ∥ • ∥L2 .

4.1. Notations

We follow the kernel definition from Steinwart and Scovel (2012) as below:

Definition 14 A function κ : Rd × Rd → R is called a kernel on Rd if there exists a Hilbert space
(H, ⟨ • , • ⟩H) and a map ϕ : Rd → H such that κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H for all x,x′ ∈ H.

We give the minimal definitions of MMD and KSD, and refer interested readers to Gretton et al.
(2012) and Gorham and Mackey (2017) for further reading. Throughout, we let {Yj}nj=1 be
i.i.d. samples from P and {Xi}ni=1 be i.i.d. samples from Q. We also write Zi := (Xi,Yi) and
assume that κ is measurable. MMD with respect to κ is defined by

DMMD(Q,P ) := EY,Y′∼P [κ(Y,Y
′)]− 2EY∼P,X∼Q[κ(Y,X)] + EX,X′∼Q[κ(X,X

′)] .

A popular unbiased estimator for DMMD is exactly a U-statistic:

DMMD
n :=

1

n(n− 1)

∑
1≤i ̸=j≤n

uMMD(Zi,Zj) ,

10
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where the summand is given by uMMD
(
(x,y), (x′,y′)

)
:= κ(x,x′)+κ(y,y′)−κ(x,y′)−κ(x′,y).

To define KSD, we assume that κ is continuously differentiable with respect to both arguments, and
P admits a continuously differentiable, positive Lebesgue density p. The following formulation of
KSD is due to Theorem 2.1 of Chwialkowski et al. (2016):

DKSD(Q,P ) := EX,X′∼Q[u
KSD
P (X,X′)] ,

where we assume EX∼Q[u
KSD
P (X,X)] <∞ and the function uKSD

P : Rd × Rd → R is given by

uKSD
P (x,x′) =

(
∇ log p(x)

)⊤(∇ log p(x′)
)
κ(x,x′) +

(
∇ log p(x)

)⊤∇2κ(x,x
′)

+
(
∇ log p(x′)

)⊤∇1κ(x,x
′) + Tr(∇1∇2κ(x,x

′)) .

∇1 and ∇2 are the differential operators with respect to the first and second arguments of κ respec-
tively. The estimator is again a U-statistic, given by DKSD

n := 1
n(n−1)

∑
1≤i ̸=j≤n u

KSD
P (Xi,Xj).

4.2. General results

We show that a kernel structure allows Assumption 2 to be fulfilled under some natural conditions.
Let V1,V2

i.i.d.∼ R for some probability measure R on Rb and κ∗ be a measurable kernel on Rb. A
sequence of functions {ϕk}∞k=1 in L2(Rb, R) and a sequence of non-negative values {λk}∞k=1 with
limk→∞ λk = 0 is called a weak Mercer representation if∣∣∑K

k=1
λkϕk(V1)ϕk(V2)− κ∗(V1,V2)

∣∣→ 0 almost surely as K → ∞ .

Steinwart and Scovel (2012) show that such a representation exists if E[κ∗(V1,V1)] < ∞, whose
result is summarised in Lemma 37 in the appendix. To deduce from this the Lν convergence of
Assumption 2, we need the following assumptions on the kernel κ∗:

Assumption 3 Fix ν > 2. Assume E[κ∗(V1,V1)] < ∞ and let {λk}∞k=1 and {ϕk}∞k=1 be a weak
Mercer representation of κ∗ under R. Also assume that for some ν∗ > ν, ∥κ∗(V1,V2)∥Lν∗ < ∞
and supK≥1 ∥

∑K
k=1 λkϕk(V1)ϕk(V2)∥Lν∗ <∞ .

For MMD, we can use the weak Mercer representation of uMMD to show that our results apply:

Lemma 15 uMMD defines a kernel on R2d. Moreover, if Assumption 3 holds for κ∗ = uMMD under
P ⊗Q for some ν > 2, then Assumption 2 holds for min{ν, 3} with u = uMMD and R = P ⊗Q.

In the case of KSD, we use the representation of κ directly. We require some additional as-
sumptions for the score function ∇ log p(x) to be well-behaved and the differential operation on κ
to behave well under the representation.

Assumption 4 Fix n, d and ν > 2. Assume that Assumption 3 holds with ν for κ under Q, with
{λk}∞k=1 and {ϕk}∞k=1 as the weak Mercer representation of κ under Q and ν∗ being defined as
in Assumption 3. Further assume that (i) ∥∥∇ log p(X1)∥2∥L2ν∗∗ < ∞ for ν∗∗ = ν(ν+ν∗)

ν∗−ν ; (ii)
supk∈N ∥ϕk(X1)∥L2ν < ∞; (iii) ϕk’s are differentiable with supk∈N ∥∥∇ϕk(X1)∥2∥Lν < ∞; (iv)
AsK → ∞, we have the convergence

∥∥∥∥∑K
k=1 λk(∇ϕk(X1))ϕk(X2)−∇1κ(X1,X2)

∥∥
2

∥∥
L2ν

→ 0

as well as the convergence
∥∥∑K

k=1 λk(∇ϕk(X1))
⊤(∇ϕk(X2))− Tr(∇1∇2κ(X1,X2))

∥∥
Lν

→ 0.
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We can now form a decomposition of uKSD
P . Given {λk}∞k=1 and {ϕk}∞k=1 from Assumption 4 and

any fixed d ∈ N, define the sequences {αk}∞k=1 and {ψk}∞k=1 as, for 1 ≤ l ≤ d and k′ ∈ N,

α(k′−1)d+l := λk′ and ψ(k′−1)d+l(x) := (∂xl
log p(x))ϕk′(x) + ∂xl

ϕk′(x) . (6)

Lemma 16 If Assumption 4 holds for some ν > 2, then Assumption 2 holds for min{ν, 3} with
u = uKSD

P , R = Q, λk = αk and ϕk = ψk .

Remark 17 The benefits of formulating our results in terms of Assumption 2 are now clear: By
forgoing orthonormality, we can choose a functional decomposition e.g. in terms of the Mercer
representation of a kernel, which is already widely considered in this literature. The non-negative
eigenvalues from Lemma 37 also allow moment-matching methods discussed in Section 3.2 to be
considered. In fact, a Mercer representation is not even necessary: In Appendix A.1, we construct
a simple decomposition for the setup in Section 4.3 such that Assumption 2 can be verified easily.

4.3. Gaussian mean-shift examples

We study KSD and MMD under Gaussian mean-shift, where P = N (0,Σ) and Q = N (µ,Σ) with
mean µ ∈ Rd and covariance Σ ∈ Rd×d to be specified. Two simple kernels are considered in this
section, namely the RBF kernel and the linear kernel.

RBF kernel. We consider the RBF kernel κ(x,x′) = exp(−∥x−x′∥22/(2γ)), where γ = γ(d) is
a bandwidth potentially depending on d. A common strategy to choose γ is the median heuristic:

γmed := Median
{
∥V −V′∥22 : V,V′ ∈ V , V ̸= V′} ,

where the samples V = {Xi}ni=1 for KSD and V = {Xi}ni=1 ∪ {Yi}ni=1 for MMD. In Appendix A,
we include a further discussion of this setup as well as verification of Assumption 1 and Assump-
tion 2.

We focus on Σ = Id, where the d-dependence of the moment ratio ρd can be explicitly studied
for both KSD and MMD. Importantly, we give bounds in terms of the bandwidth γ and the scale of
mean shift ∥µ∥22, which reveal their effects on ρd and thereby on the behaviour of the test power.
The assumptions on γ and ∥µ∥22 in both propositions are for simplicity rather than necessity.

Proposition 18 (KSD-RBF moment ratio) Assume γ = ω(1) and ∥µ∥22 = Ω(1). Under the
Gaussian mean-shift setup with Σ = Id, the KSD U-statistic satisfies that

(i) If γ = o(d1/2), then ρd = exp
(

3d
4γ2 + o

(
d
γ2

))
Θ
(

d
γ∥µ∥22

+ d1/2

γ1/2∥µ∥2
+ 1
)

;

(ii) If γ = ω(d1/2), then ρd = Θ
(

d1/2(1+γ−1/2∥µ∥2)
∥µ∥2 (1+γ−1d1/2∥µ∥2)

+ 1
)

;

(iii) If γ = Θ(d1/2), then ρd = Θ
(

d1/2

∥µ∥22
+ d1/4

∥µ∥2 + 1
)

.

Proposition 19 (MMD-RBF moment ratio) Consider the Gaussian mean-shift setup with Σ =
Id and assume γ = ω(1) and ∥µ∥22 = Ω(1). For the MMD U-statistic, if γ = o(∥µ∥22) and
γ = o(d1/2), then ρd = Θ

(
exp

(
3d
4γ2 + o

(
d
γ2

)))
. If instead γ = ω(∥µ∥22), then

(i) For γ = o(d1/2), we have ρd = Θ
(

γ
∥µ∥22

exp
(

3d
4γ2 + o

(
d
γ2

)))
;

(ii) For γ = ω(d1/2), we have ρd = Θ
(

∥µ∥2 + d1/2

∥µ∥2+γ−1d1/2∥µ∥22

)
;

(iii) For γ = Θ(d1/2), we have ρd = O
(

d1/2

∥µ∥22

)
.
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Figure 2: Behaviour of P(X > t) for X = DMMD
n with

the RBF kernel versus X being the theoretical limits. Left.
n = 1000 and d = 2. Right. n = 50 and d = 1000.
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n and the theoretical limits. Middle. Distribution curves at γ = 4. Right. Distribution curves at γ = 16.

The case ∥µ∥2 = Ω(∥Σ∥2) = Ω(d1/2) is not very interesting, as it means that the signal-to-noise
ratio (SNR) is high and can even increase with d. WLOG we focus on a low SNR setting with
∥µ∥2 = Θ(1). In this case, it has been shown that the median-heuristic bandwith scales as γmed =
Θ(d) (Reddi et al., 2015; Ramdas et al., 2015; Wynne and Duncan, 2022). While Propositions 18
and 19 do not directly address the case γ = γmed due to its data dependence, they do show that
ρd = Θ(d1/2) for both KSD and MMD with a data-independent bandwidth γ = Θ(d)†. In this
case, the asymptotic distributions of DKSD

n and DMMD
n are (i) the non-degenerate Gaussian limit

predicted by (3) when d = o(n) and (ii) the degenerate limit from Proposition 9 when d = ω(n).
Intriguingly, in both results, different regimes arise based on how γ compares with the noise

scale ∥Σ∥2 = d1/2. In fact, a phase transition as γ drops from ω(d1/2) to o(d1/2) has been reported
in Ramdas et al. (2015) but with no further comments‡§. Our results offer one explanation: Such
transitions may happen due to a change in the dependence of ρd on γ, ∥µ∥2 and d. Fig. 4 shows a
transition across different limits as γ varies, where the transition occurs at around γ ∼ d1/2.

Linear kernel. Section 3.2 discussed that the limit of Dn can be non-Gaussian. This is true for
MMD with a linear kernel κ(x,x′) = x⊤x′: It satisfies Lemma 13 with K∗ = d and the limit is
a shifted-and-rescaled chi-square. Fig. 1 verifies this for some Σ ̸= Id by showing an asymmetric
distribution curve close to the chi-square limit. We remark that a linear kernel, while not commonly
used, is a valid choice here since DMMD = 0 iff P = Q under our setup.

Simulations. We set µ = (2, 0, . . . , 0)⊤ ∈ Rd, Σ = Id and γ = γmed for KSD with RBF and
MMD with RBF. The exact setup for MMD with linear kernel is described in Appendix A.4. The

†. In our experiments, the data-independent choice γ = d and the data-dependent γ = γmed yield almost identical
plots.

‡. Their bandwidth γRamdas is defined to equal our
√
2γ. Phase transition occurs at γRamdas = d1/4 in their Figure 1.

While their figure is for MMD with threshold chosen by a permutation test, ours is for KSD with a fixed threshold.
§. This was investigated in Ramdas (2015, Section 10.4) in a special case when γ = ω(∥µ∥22 + d) (case (ii) of Theo-

rem 19) and n = o(d5/2), where the author derived the test power of the RBF-kernel MMD for different SNRs.
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limits for comparison are the non-degenerate Gaussian limit in (3) (“Non-degen.”) and Gamma /
shifted-and-rescaled chi-square (“Degen. Gamma” / “Degen. Chi-square”) distributions that match
the degenerate limit in Proposition 9 by mean and variance. Fig. 1 plots the distribution curves for
KSD with RBF and MMD with linear kernel. Fig. 2 plots the same quantity for MMD with RBF.
Fig. 3 and Fig. 4 examine the behaviour of KSD with RBF as d or γ varies (as a data-independent
function of d, similar to Ramdas et al. (2015)). Results involving Dn are averaged over 30 random
seeds, and shaded regions are 95% confidence intervals¶. Code for reproducing all experiments can
be found at github.com/XingLLiu/u-stat-high-dim.git.
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The appendix is organised as follows. The first few appendices provide additional content:
Appendix A states additional results for Section 4.3 including moment computations and verifica-
tion of assumptions.
Appendix B presents auxiliary tools used in subsequent proofs.

The remaining appendices consist of proofs:
Appendix C proves our main theorem. Appendix C.1 provides a list of intermediate lemmas that
extends the proof overview in Section 3.3.
Appendix D proves the remaining results in Section 3.
Appendix E proves the results in Section 4.
Appendices F and G present proofs for the results in Appendices A and B respectively.

Throughout the appendix, we say that C is an absolute constant whenever we mean that it is a
number independent of all variables involved, including u, R, d, n and K.

Appendix A. Additional results for Gaussian mean-shift

In this section, we consider the Gaussian mean-shift setup defined in Section 4.3, where Q =
N (µ,Σ) and P = N (0,Σ) with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. We derive
analytical expressions of the moments of U-statistics for (i) KSD with RBF, (ii) MMD with RBF
and (iii) MMD with linear kernel. We also verify Assumption 2 for the three cases, which confirm
that our error bounds apply.

Remark on verification of Assumption 1. Recall that Assumption 1, which controls the mo-
ment ratios Mfull;ν/σfull and Mcond;ν/σcond for some ν ∈ (2, 3], is required for our bounds to
imply a convergence theorem. As discussed in the main text, this issue is not specific to our
theorem and is also relevant to e.g. Berry-Esséen bounds for sample averages of {f(Xi)}ni=1 for
f : Rd → R and d large. A detailed verification requires a careful calculation to control the order of
Mfull;ν , σfull,Mcond;ν and σcond. For KSD and MMD with the RBF kernel, a careful control of σfull
and σcond has already been done in the proof of Proposition 18 and Proposition 19, which involves
examining multiple cases depending on the relative sizes of γ, ∥µ∥2 and d followed by an elaborate
calculation. To perform this verification for all cases in full generality, in principle, one may expand
on those calculations and follow a similar tedious argument. In the sections below, we perform this
verification only for the setup in Fig. 1, i.e. KSD with the RBF kernel in the case ∥µ∥2 = Θ(1) and
γ = Ω(d) and MMD with the linear kernel in the general case. For MMD with the RBF kernel,
we discuss the relevance of this verification to Gao and Shao (2021), who has done a verification
of similar quantities but also in a special case. In Figure 6, we also include simulations verifying
Assumption 1 under the setups considered in Figure 1-3, where we demonstrate that the moment
ratios stay around 1 as the dimension varies from 1 to 2000.

A.1. A decomposition of the RBF kernel

For both MMD and KSD, the key in verifying the assumptions for the RBF kernel is a functional
decomposition. The usual Mercer representation of the RBF kernel is available only with respect
to a univariate zero-mean Gaussian measure and involves some cumbersome Hermite polynomials.
Since we do not actually require orthogonality of the functions in Assumption 2, we opt for a simpler
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functional representation as given below. We also assume WLOG that the bandwidth γ > 8, since
we only consider the case γ = ω(1) in our setup.

Lemma 20 Assume that γ > 8. Consider two independent d-dimensional Gaussian vectors U ∼
N (µ1, Id) and V ∼ N (µ2, Id) for some mean vectors µ1, µ2 ∈ Rd. Then, for any ν ∈ (2, 4] and
µ1, µ2 ∈ Rd, we have that

E
[∣∣∣ exp(− 1

2γ
∥U−V∥22

)
−

∏d

j=1

(∑K

k=0
λ∗kϕ

∗
k(Uj)ϕ

∗
k(Vj)

)∣∣∣ν] K→∞−−−−→ 0 .

where ϕ∗k(x) := xke−x2/(2γ) and λ∗k := 1
k! γk for each k ∈ N ∪ {0}.

To see that Lemma 20 indeed gives the functional decomposition we want in Assumption 2, we
need to rewrite the product of sums into a sum. To this end, let gd be the d-tuple generalisation of
the Cantor pairing function from N to (N ∪ {0})d and [gd(k)]l be the l-th element of gd(k). Given
{λ∗l }∞l=0 and {ϕ∗l }∞l=0 from Lemma 20, we define, for every k ∈ N and x = (x1, . . . , xd) ∈ Rd,

αk :=
∏d

l=1
λ∗[gd(k)]l and ψk(x) :=

∏d

l=1
ϕ∗[gd(k)]l(xl) . (7)

With this construction, for each K ∈ N, we can now write

∏d

j=1

(∑K

k=0
λ∗kϕ

∗
k(Uj)ϕ

∗
k(Vj)

)
=

∑K

k1,...,kd=0
(λ∗k1 . . . λ

∗
kd
)(ϕ∗k1(U1) . . . ϕ

∗
kd
(Ud))(ϕ

∗
k1(V1) . . . ϕkd(Vd))

=
∑K

k1,...,kd=0
αg−1

d (k1,...,kd)
ψg−1

d (k1,...,kd)
(U) ψg−1

d (k1,...,kd)
(V) .

Since the Cantor pairing function is such that minl≤d[gd(K)]l → ∞ as K → ∞, Lemma 20 indeed
gives a functional decomposition in terms of {αk}∞k=1 and {ψk}∞k=1 as

E
[∣∣∣ exp(− 1

2γ
∥U−V∥22

)
−

∑K

k=1
αkψk(U)ψk(V)

∣∣∣ν] K→∞−−−−→ 0 . (8)

We remark that both αk and ψk are independent of the mean vectors µ1 and µ2, which makes this
representation useful for a generic mean-shift setting.

A.2. KSD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, gradient of the log-density
is given by ∇ log p(x) = −x for x ∈ Rd and the U-statistic for the RBF-kernel KSD is

uKSD
P (x,x′) =

(
∇ log p(x)

)⊤(∇ log p(x′)
)
κ(x,x′) +

(
∇ log p(x)

)⊤∇2κ(x,x
′)

+
(
∇ log p(x′)

)⊤∇1κ(x,x
′) + Tr(∇1∇2κ(x,x

′))

= exp
(
− ∥x− x′∥22

2γ

)(
x⊤x′ +

1

γ
x⊤(x′ − x) +

1

γ
(x′)⊤(x− x′) +

(
d

γ
− ∥x− x′∥22

γ2

))
= exp

(
− ∥x− x′∥22

2γ

)(
x⊤x′ − γ + 1

γ2 ∥x− x′∥22 +
d

γ

)
. (9)

We first verify that Assumption 2 holds by adapting {αk}∞k=1 and {ψk}∞k=1 from Appendix A.1.
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Lemma 21 Assume that γ > 24. For k′ ∈ N, consider

λ(k′−1)(d+3)+1 = −γ + 1

γ2 αk′ , ϕ(k′−1)(d+3)+1(x) = ψk′(x)(∥x∥22 + 1) ,

λ(k′−1)(d+3)+2 =
γ + 1

γ2 αk′ , ϕ(k′−1)(d+3)+2(x) = ψk′(x)∥x∥22 ,

λ(k′−1)(d+3)+3 =
(
d

γ
+

γ + 1

γ2

)
αk′ , ϕ(k′−1)(d+3)+3(x) = ψk′(x) ,

and for l = 1, . . . , d, define

λ(k′−1)(d+3)+3+l =
γ2 + 2γ + 2

γ2 αk′ , ϕ(k′−1)(d+3)+3+l(x) = ψk′(x)xl .

Then Assumption 2 holds with any ν ∈ (2, 3] for u = uKSD
P , {λk}∞k=1 and {ϕk}∞k=1 defined above.

The following result (proved in Appendix F.2) provides analytical forms or upper bounds for
the moments of KSD U-statistic.

Lemma 22 (KSD moments) Let κ be a RBF kernel with bandwidth γ = ω(1), and let X,X′

be independent draws from Q. Under the mean-shift setup with an identity covariance matrix, it
follows that

(i) For every x ∈ Rd,

gKSD(x) := E[uKSD
P (x,X′)]

=
(

γ

γ + 1

)d/2
exp

(
− 1

2(γ + 1)
∥x− µ∥22

)(
2 + γ

1 + γ
µ⊤x− 1

1 + γ
∥µ∥22

)
;

(ii) The mean is given by DKSD(Q,P ) =
(

γ

γ + 2

)d/2
∥µ∥22 ;

(iii) The variance of the conditional expectation gKSD(X) is given by

σ2cond =

(
γ2

(1 + γ)(3 + γ)

)d/2(
(2 + γ)2

(1 + γ)(3 + γ)
∥µ∥22 +

(
1−

(
(1 + γ)(3 + γ)

(2 + γ)2

)d/2)
∥µ∥42

)
;

(iv) The variance of uKSD
P (X,X′) is given by

σ2full =
(

γ

4 + γ

)d/2(
d+

d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 +

(
1−

(
γ(4 + γ)

(2 + γ)2

)d/2)
∥µ∥42

+ o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

))
;

(v) For any ν > 2, there exist positive constants C1, C2 depending only on ν such that the ν-th
absolute moment of the conditional expectation satisfies

E[|gKSD(X)|ν ] ≤
(

γ

1 + γ

)νd/2 ( 1 + γ

1 + ν + γ

)d/2
(C1∥µ∥ν2 + C2∥µ∥2ν2 ) .
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Figure 5: Verifying the analytical expressions for the first two moments of KSD and MMD. Top. KSD moments derived
in Lemma 22. Bottom. MMD moments derived in Lemma 24. The ground truth is estimated using n = 4000 samples
for KSD and n = 10000 samples for MMD, respectively, and the reported results are averaged over 5 random seeds.
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Figure 6: Verifying Assumption 1 for ν = 3 for KSD and MMD with RBF kernels. All moment ratios appear to be
bounded by a dimension-independent constant. Left and middle-left. KSD moment ratios. Middle-right and right. MMD
moment ratios. The reported results are averaged over 5 random seeds.

(vi) For any ν > 2, there exist positive constants C3, C4, C5, C6 depending only on ν such that
the ν-th absolute moment of uKSD

P (X,X′) satisfies

E[|uKSD
P (X,X′)|ν ] ≤

(
γ

2ν + γ

)d/2 (
C3d

ν/2 + C4

(
d

γ

)ν
+ C5∥µ∥ν2 + C6∥µ∥2ν2

+ o
(
dν/2 +

dν

γν +
∥µ∥2ν2
γν

))
.

In particular, when ∥µ∥2 = Θ(1) and γ = Ω(d), Assumption 1 holds with any ν > 2 for uKSD
P

under Q.

A.3. MMD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, the MMD U-statistic with
a RBF kernel has the form

uMMD(z, z′) = κ(x,x′) + κ(y,y′)− κ(x,y′)− κ(x′,y)

= exp

(
−∥x− x′∥22

2γ

)
+ exp

(
−∥y − y′∥22

2γ

)
− exp

(
−∥x− y′∥22

2γ

)
− exp

(
−∥x′ − y∥22

2γ

)
, (10)

for z := (x,y), z′ := (x′,y′) ∈ R2d. We first verify that Assumption 2 holds again by adapting
{αk}∞k=1 and {ψk}∞k=1 from Appendix A.1.
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Lemma 23 Assume that γ > 8. Then Assumption 2 holds with any value ν ∈ (2, 3] and the
function u((x,y), (x′,y′)) = uMMD((x,y), (x′,y′)) for x,y,x′,y′ ∈ Rd, with the sequences of
values and functions given for each k ∈ N as γk = αk and ϕk(x,y) = ψk(x)− ψk(y).

We next compute the moments. The analytical form of the population MMD (i.e. the expecta-
tion) has been derived in previous works under both the Gaussian mean-shift setup with a general
covariance matrix Σ (Wynne and Duncan (2022, Proposition 2, Corollary 19); (Ramdas et al., 2015,
Proposition 1)) and an expression up to the learning term was also derived under a more general
mean-shift setup (Reddi et al., 2015, Lemma 1). We only consider the Gaussian mean-shift case
with Σ = Id but provide expressions for the second moments and a generic moment bound, while
making minimal assumptions on the kernel bandwidth compared to Reddi et al. (2015).

Lemma 24 (RBF-MMD moments) Let κ be a RBF kernel and let X,X′ ∼ Q and Y,Y′ ∼ P
be mutually independent draws. Under the mean-shift setup with an identity covariance matrix, it
follows that

(i) For every z = (x,y) ∈ R2d,

gmmd(z) := E[uMMD(z,Z′)]

=
(

γ

1 + γ

)d/2 (
e
− 1

2(1+γ)
∥x−µ∥22 + e

− 1
2(1+γ)

∥y∥22 − e
− 1

2(1+γ)
∥x∥22 − e

− 1
2(1+γ)

∥y−µ∥22
)
;

(ii) The mean is given by DMMD(Q,P ) = 2
(

γ

2 + γ

)d/2 (
1− exp

(
− 1

2(2 + γ)
∥µ∥22

))
;

(iii) The variance of the conditional expectation is given by

σ2cond = 2
(

γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
×
(
1 + exp

(
− 1

3 + γ
∥µ∥22

)
+ 2

(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− 1

2(2 + γ)
∥µ∥22

)
− 2 exp

(
− 7 + 5γ

4(1 + γ)(3 + γ)
∥µ∥22

)
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− 1

2 + γ
∥µ∥22

))
;

(iv) The variance is given by

σ2full = 2
(

γ

4 + γ

)d/2(
1 + exp

(
− 1

4 + γ
∥µ∥22

))
− 2

(
γ

2 + γ

)d
− 8

(
γ

3 + γ

)d/2 ( γ

1 + γ

)d/2
exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
− 2

(
γ

2 + γ

)d
exp

(
− 1

2 + γ
∥µ∥22

)
+ 8

(
γ

2 + γ

)d
exp

(
− 1

2(2 + γ)
∥µ∥22

)
.

While we do not verify Assumption 1 here, we remark that Gao and Shao (2021) also encounter
similar moment ratios when deriving finite-sample bounds for MMD with a studentised version of
U-statistic (see e.g. their Theorem 13). They show that those ratios are controlled under an elaborate
list of assumptions; in particular, those assumptions hold for the RBF kernel under a condition that
amounts to choosing γ = Θ(d) in our Gaussian mean-shift setup. For our case, as discussed, a
rigorous verification of Assumption 1 can be done by following the proofs of Propositions 18 and
19 to control Mcond;ν and Mfull;ν for any ν > 2. Fig. 6 also verifies Assumption 1 by simulation.
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A.4. MMD U-statistic with linear kernel

In this section, we consider the mean-shift setup with a general covariance matrix Σ ∈ Rd×d, i.e.,
Q = N (µ,Σ) and P = N (0,Σ). The MMD with a linear kernel κ(x,x′) = x⊤x′ has the form

uMMD(z, z′) = x⊤x′ + y⊤y′ − x⊤y′ − y⊤x′ ,

where z := (x,y), z′ := (x′,y′) ∈ R2d. In this case, Assumption 2 holds directly because we can
represent uMMD as

uMMD(z, z′) = (x− y)⊤(x′ − y′) =
∑d

l=1
(xl − yl)(x

′
l − y′l) =

∑d

l=1
γlψl(z)ψl(z

′) , (11)

where γl = 1, ψl(z) = xl − yl and ψl(z
′) = x′l − y′l.

We next compute the moment terms and verify that Assumption 1 holds. The next result, proved
in Appendix F.4, gives the analytical expressions of the first two moments of the linear-kernel MMD.

Lemma 25 (Linear-MMD moments) Let κ be a linear kernel, and let X,X′ ∼ Q and Y,Y′ ∼ P
be mutually independent draws. Write Z = (X,Y) and Z′ = (X′,Y′). Under the mean-shift setup,
it follows that

(i) For every z = (x,y) ∈ R2d, we have gmmd(z) := E[uMMD(z,Z′)] = µ⊤y − µ⊤x ;
(ii) The mean is given by DMMD(Q,P ) = ∥µ∥22 ;

(iii) The variance of the conditional expectation gmmd(Z) is given by σ2cond = 2µ⊤Σµ ;
(iv) The variance of uMMD(Z,Z′) is given by σ2full = 4Tr(Σ2) + 4µ⊤Σµ ;
(v) The third central moment of gmmd(Z) satisfies M3

cond;3 ≤ C(µ⊤Σµ)3/2 for some absolute
constant C ;

(vi) The third central moment of uMMD(Z,Z′) satisfies M3
full;3 ≤ C

(
Tr(Σ2) + µ⊤Σµ

)3/2 for
some absolute constant C .

In particular, Assumption 1 holds with ν = 3 for uMMD defined in (11) under Q.

In the last example in Section 4.3, we chose µ = (0, 10, . . . , 0) ∈ Rd and a diagonal Σ with
Σ11 = 0.5(d + 1), Σii = 0.5 for i > 1 and Σij = 0 otherwise. Note that by the invariance of
Gaussian distributions under orthogonal transformation, this is equivalent to choosing Σ as 0.5Id +
0.5Jd, where Id ∈ Rd×d is the identity matrix, Jd ∈ Rd×d is the all-one matrix and µ is transformed
by an appropriate orthogonal matrix of eigenvectors. Notably, this choice ensures the limit of uMMD

remains non-Gaussian. Indeed, when Q and P are Gaussian, the statistic DMMD
n can be written as a

sum of shifted-and-rescaled chi-squares, where the scaling factors are 0.5(d + 1), 0.5, . . . , 0.5, the
eigenvalues of Σ. As d grows, the eigenvalue 0.5(d + 1) dominates, and the limiting distribution
is then dominated by the first summand, thereby yielding a chi-square limit up to shifting and
rescaling. This is numerically demonstrated in the right figure of Fig. 1. As a remark, we do not
expect this exact setting to occur in practice; it should instead be treated as a toy setup to demonstrate
the possibility of non-Gaussianity and convey an intuition of when this may occur.

Appendix B. Auxiliary tools

B.1. Generic moment bounds

We first present two-sided bounds on the moments of a martingale, which are useful in bounding
ν-th moment terms of different statistics. The original result is due to Burkholder (1966), and the
constant Cν is provided by von Bahr and Esseen (1965) and Dharmadhikari et al. (1968).
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Lemma 26 Fix ν > 1. For a martingale difference sequence Y1, . . . , Yn taking values in R,

cν n
min{0,ν/2−1} ∑n

i=1
E[|Yi|ν ] ≤ E

[∣∣∑n

i=1
Yi
∣∣ν] ≤ Cν n

max{0,ν/2−1} ∑n

i=1
E[|Yi|ν ] ,

for Cν := max
{
2, (8(ν − 1)max{1, 2ν−3})ν

}
and some absolute constant cν > 0 that depends

only on ν.

The next moment computation for a quadratic form of Gaussians is used throughout the proof:

Lemma 27 (Lemma 2.3, Magnus (1978)) Given a standard Gaussian vector η in Rm and a sym-
metric m×m matrix A, we have that E[η⊤Aη] = Tr(A) and

E[(η⊤Aη)2] = Tr(A)2 + 2Tr(A2) , E[(η⊤Aη)3] = Tr(A)3 + 6Tr(A)Tr(A2) + 8Tr(A3) .

The next two results are used for the moment computation involving an RBF kernel.

Lemma 28 Fix mi ∈ Rd and ai > 0 for i = 1, 2. Let X ∼ N (m1, a
2
1Id), and let f : Rd → R be

a deterministic function such that E[|f(X)|] <∞. It follows that

E
[
f(X) exp

(
− ∥X−m2∥22

2a2
2

)]
=
(

a2
2

a2
1 + a2

2

)d/2
exp

(
− ∥m1 −m2∥22

2(a2
1 + a2

2)

)
E[f(W)] ,

where W ∼ N (m, a2Id) with m :=
a21a

2
2

a21+a22

(
1
a21
m1 +

1
a22
m2

)
and a2 := a21a

2
2

a21+a22
.

Lemma 29 Fix m1,m2 ∈ Rd and ai > 0 for i = 1, 2, 3. Let X ∼ N (m1, a
2
1Id) and X′ ∼

N (m2, a
2
2Id), and let f : Rd×Rd → R be a deterministic function with E[|f(X,X′)|] <∞. Then

E
[
f(X,X′) exp

(
−∥X−X′∥22

2a2
3

)]
=
(

a2
3

a2
1 + a2

2 + a2
3

)d/2
exp

(
− ∥m1 −m2∥22

2(a2
1 + a2

2 + a2
3)

)
E
[
f
(
W,W′ +

a2
2

a2
2 + a2

3

W
)]

,

where W ∼ N
(
m, a2Id

)
and W′ ∼ N

(
m′, (a′)2Id

)
are independent with

m :=
a2
1(a

2
2 + a2

3)

a2
1 + a2

2 + a2
3

(
1

a2
1

m1 +
1

a2
2 + a2

3

m2

)
, a2 :=

a2
1(a

2
2 + a2

3)

a2
1 + a2

2 + a2
3

,

m′ :=
a2
3

a2
2 + a2

3

m2 , (a′)2 :=
a2
2a

2
3

a2
2 + a2

3

.

B.2. Moment bounds for U-statistics

We first present a result that bounds the moments of a U-statistic Dn defined as in (1).

Lemma 30 Fix n ≥ 2 and ν ≥ 2. Then, there exist absolute constants cν , Cν > 0 depending only
on ν such that

E[|Dn − EDn|ν ] ≤ Cν n
ν/2(n− 1)−νMν

cond;ν + Cν (n− 1)−νMν
full;ν ,

E[|Dn − EDn|ν ] ≥ cνn(n− 1)−νMν
cond;ν + cνn

−(ν−1)(n− 1)−(ν−1)Mν
full;ν .

In other words,

E[|Dn − EDn|ν ] = O(n−ν/2Mν
cond;ν + n−νMν

full;ν) ,

E[|Dn − EDn|ν ] = Ω(n−(ν−1)Mν
cond;ν + n−2(ν−1)Mν

full;ν) .
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The next two results summarise how the moments of variables under the functional decomposi-
tion in Assumption 2 interact with the moments of the original statistic u under R:

Lemma 31 Let {ϕk}∞k=1, {λk}∞k=1 and εK;ν be defined as in Assumption 2. For X1,X2
i.i.d.∼ R,

write µk := E[ϕk(X1)] and let the moment terms D,Mcond;ν ,Mfull;ν be defined as in Section 2.1.
Then we have the following:

(i)
∣∣∑K

k=1 λkµ
2
k −D

∣∣ ≤ εK;1;
(ii) for any ν ∈ [1, 3], we have that

1

4
(Mcond;ν)

ν − ενK;ν ≤ E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν] ≤ 4((Mcond;ν)
ν + ενK;ν) ;

(iii) there exist some absolute constants c, C > 0 such that

E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ≤ 4C(Mfull;ν)
ν − 1

2
(Mcond;ν)

ν + (4C + 2)ενK;ν ,

E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ≥ c

4
(Mfull;ν)

ν − 8(Mcond;ν)
ν − (c+ 8)ενK;ν .

The next result assumes the notations of Lemma 31, and additionally denotes

ΛK := diag{λ1, . . . , λK} ∈ RK×K , ϕK(x) := (ϕ1(x), . . . , ϕK(x))⊤ ∈ RK .

Lemma 32 For µK := E[ϕK(X1)] and ΣK := Cov[ϕK(X1)], we have

σ2cond − 4σcondεK;2 − 4ε2K;2 ≤ (µK)⊤ΛKΣKΛK(µK) ≤ (σcond + 2εK;2)
2 .

(σfull − εK;2)
2 ≤ Tr((ΛKΣK)2) ≤ (σfull + εK;2)

2 .

In particular, for ν ∈ [1, 3] and two i.i.d. zero-mean Gaussian vector Z1 and Z2 in RK with variance
ΣK , there exists some absolute constant C > 0 such that

E[|(µK)⊤ΛKZ1|ν ] ≤ 7
(
σνcond + 8ενK;2

)
, E[|Z⊤

1 Λ
KZ2|ν ] ≤ 6

(
σνfull + ενK;2

)
,

E
[∣∣(ϕK(X1)− µK)⊤ΛKZ1

∣∣ν] ≤ 8C(Mfull;ν)
ν − (Mcond;ν)

ν + (8C + 4)ενK;ν .

The next lemma gives an equivalent expression for WK
n defined in (5) and also controls the

moments of WK
n .

Lemma 33 Let {ηKi }ni=1 be a sequence of i.i.d. standard Gaussian vectors in RK . Then
(i) the distribution of WK

n satisfies

WK
n

d
=

1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
+D ;

(ii) the mean satisfies E[WK
n ] = D for every K ∈ N;
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(iii) the variance is controlled as

2

n(n− 1)
(σfull − εK;2)

2 ≤ Var[WK
n ] ≤ 2

n(n− 1)
(σfull + εK;2)

2 ;

(iv) the third central moment is controlled as

E
[
(WK

n −D)3
]
≤ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)
3
)

n3/2(n− 1)3/2
,

E
[
(WK

n −D)3
]
≥ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)
3
)

n3/2(n− 1)3/2
;

(v) the fourth central moment is controlled as

E
[
(WK

n −D)4
]
≤ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

− 4M4
full;4 + 4(Mfull;4 + εK;4)

4 + (σfull + εK;2)
4
)
,

E
[
(WK

n −D)4
]
≥ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

+ 4M4
full;4 − 4(Mfull;4 + εK;4)

4 + (σfull − εK;2)
4
)
;

(vi) we also have a generic moment bound: For m ∈ N, there exists some absolute constant
Cm > 0 depending only on m such that

E
[
(WK

n )2m
]
≤ Cm

nm(n− 1)m
(σfull + εK;2)

2m + CmD
2m ;

(vii) if Assumption 2 holds for some ν ≥ 2 then limK→∞ Var[WK
n ] = 2

n(n−1)σ
2
full. If Assumption 2

holds for some ν ≥ 3, then

lim
K→∞

E
[
(WK

n −D)3
]
=

8E[u(X1,X2)u(X2,X3)u(X3,X1)]

n3/2(n− 1)3/2
,

and if Assumption 2 holds for some ν ≥ 4, then

lim
K→∞

E
[
(WK

n −D)4
]
=

12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] + σ4
full)

n2(n− 1)2
.

B.3. Distribution bounds

The following is a standard approximation of an indicator function for bounding the probability of
a given event; see e.g. the proof of Theorem 3.3, Chen et al. (2011).

Lemma 34 Fix anym ∈ N∪{0} and τ, δ ∈ R. Then there exists anm-times differentiable R → R
function hm;τ ;δ such that hm;τ+δ;δ(x) ≤ I{x>τ} ≤ hm;τ ;δ(x). For 0 ≤ r ≤ m, the r-th derivative

h
(r)
m;τ ;δ is continuous and bounded above by δ−r. Moreover, for every ϵ ∈ [0, 1], h(m) satisfies that

|h(m)
m;τ ;δ(x)− h

(m)
m;τ ;δ(y)| ≤ Cm,ϵ δ

−(m+ϵ) |x− y|ϵ ,

with respect to the constant Cm,ϵ =
(

m
⌊m/2⌋

)
(m+ 1)m+ϵ.
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The next bound is useful for approximating the distribution of a sum of two (possibly correlated)
random variables X and Y by the distribution of X alone, provided that the influence of Y is small.

Lemma 35 For two real-valued random variables X and Y , any a, b ∈ R and ϵ > 0, we have

P(a ≤ X + Y ≤ b) ≤ P(a− ϵ ≤ X ≤ b+ ϵ) + P(|Y | ≥ ϵ) ,

P(a ≤ X + Y ≤ b) ≥ P(a+ ϵ ≤ X ≤ b− ϵ)− P(|Y | ≥ ϵ) .

Theorem 8 of Carbery and Wright (2001) gives a general anti-concentration result for a polyno-
mial of random variables drawn from a log-concave density. The next lemma restates the result in
the case of a quadratic form of a K-dimensional standard Gaussian vector η.

Lemma 36 Let p(x) be a degree-two polynomial of x ∈ RK taking values in R. Then there exists
an absolute constant C independent of p and η such that, for every t ∈ R,

P
(
|p(η)| ≤ t

)
≤ Ct1/2(E[|p(η)|2])−1/4 ≤ Ct1/2(Var[p(η)])−1/4 .

B.4. Weak Mercer representation

In Section 4.2, we have used the weak Mercer representation from Steinwart and Scovel (2012). We
summarise their result below, which combines their Lemma 2.3, Lemma 2.12 and Corollary 3.2:

Lemma 37 Consider a probability measure R on Rb, V1,V2
i.i.d.∼ R and a measurable kernel κ∗

on Rb. If E[κ∗(V1,V1)] < ∞, there exists a sequence of functions {ϕk}∞k=1 in L2(Rb, R) and a
bounded sequence of non-negative values {λk}∞k=1 with limk→∞ λk = 0, such that as K grows,∣∣∑K

k=1 λkϕk(V1)ϕk(V2)− κ∗(V1,V2)
∣∣→ 0. The series converges R⊗R almost surely.

Appendix C. Proof of the main result

In this section, we prove Theorem 2. The proof is necessarily tedious as we seek to control “spec-
tral” approximation errors (i.e. the error from a truncated functional decomposition) and multiple
stochastic approximation errors at the same time. The section is organised as follows:

• In Appendix C.1, we list notations and key lemmas that formalise the steps in the proof outline
in Section 3.3;

• In Appendix C.2, we present the proof body of Theorem 2, which directly combines results from
the different lemmas;

• In Appendix C.3, C.4, Appendix C.5 and C.6, we present the proof of the key lemmas. Each
section starts with an informal sketch of proof ideas followed by the actual proof of the result.

C.1. Auxiliary lemmas

Recall that our goal is to study the distribution of

Dn :=
1

n(n− 1)

∑
1≤i ̸=j≤n

u(Xi,Xj) .
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The three results in this section form the key steps of the proof. We fix σ > 0 to be some normali-
sation constant to be chosen later.

1. “Spectral” approximation. For K ∈ N, we define the truncated version of Dn by

DK
n :=

1

n(n− 1)

∑
1≤i ̸=j≤n

∑K

k=1
λkϕk(Xi)ϕk(Xj)

=
1

n(n− 1)

∑
1≤i ̸=j≤n

(ϕK(Xi))
⊤ΛKϕK(Xj) .

We also denote the rescaled statistics for convenience as

D̃n :=

√
n(n− 1)

σ
Dn , D̃K

n :=

√
n(n− 1)

σ
DK

n .

The first lemma allows us to study the distribution of DK
n in lieu of that of Dn up to some approxi-

mation error that vanishes as K grows.

Lemma 38 Fix δ, σ > 0, K ∈ N and t ∈ R. Then

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K , ε′K :=
3n1/4(n− 1)1/4ε

1/2
K;1

σ1/2δ1/2
.

2. Gaussian approximation via Lindeberg’s technique. The distribution of DK
n is easier to

handle, as it is a double sum of a simple quadratic form of K-dimensional random vectors. Let
Z1, . . . ,Zn be i.i.d. Gaussian random vectors in RK with mean and variance matching those of
ϕK(X1), and denote Zik as the k-th coordinate of Zi. The goal is to replace DK

n by the random
variable

DK
Z :=

1

n(n− 1)

∑
1≤i ̸=j≤n

Z⊤
i Λ

KZj =
1

n(n− 1)

∑
1≤i ̸=j≤n

∑K

k=1
λkZikZjk .

Notice that DK
Z takes the same form as DK

n except that each ϕK(Xi) is replaced by Zi. Analogous
to D̃n and D̃K

n , we also define a rescaled version as

D̃K
Z :=

√
n(n− 1)DK

Z

σ
.

The second lemma replaces the distribution D̃K
n by that of D̃K

Z , up to some approximation error that
vanishes as n grows:

Lemma 39 Fix δ, σ > 0, K ∈ N, t ∈ R and any ν ∈ (2, 3]. Then

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K , P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,

where the approximation error is defined as, for some absolute constant C > 0,

Eδ;K :=
C

δνnν/2−1

(
(Mfull;ν)

ν + ενK;ν

σν +
(Mcond;ν)

ν + ενK;ν

(n− 1)−ν/2 σν

)
.
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3. Replace DK
Z by UK

n . As in the statement of Theorem 2, let {ηKi }ni=1 be the i.i.d. standard
normal vectors in RK , and recall the notations µK := E[ϕK(X1)] and ΣK := Cov[ϕK(X1)]. We
can then express DK

Z as

DK
Z =

1

n(n− 1)

∑
1≤i ̸=j≤n

(
(ΣK)1/2ηKi + µK

)⊤
ΛK
(
(ΣK)1/2ηKj + µK

)
=

1

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi

+ (µK)⊤ΛKµK .

This is similar to the desired variable UK
n except for the third term:

UK
n =

1

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi +D .

As before, we denote ŨK
n :=

√
n(n−1)UK

n

σ . The next lemma shows that the distribution of D̃K
Z can

be approximated by that of ŨK
n , up to some approximation error that vanishes as K → ∞.

Lemma 40 For any a, b ∈ R and ϵ > 0, we have that

P(a ≤ D̃K
Z ≤ b) ≤ P

(
a− ϵ ≤ ŨK

n ≤ b+ ϵ
)
+

εK;1

ϵ n−1/2(n− 1)−1/2σ
,

P(a ≤ D̃K
Z ≤ b) ≥ P(a+ ϵ ≤ ŨK

n ≤ b− ϵ)− εK;1

ϵ n−1/2(n− 1)−1/2σ
.

4. Bound the distribution of ŨK
n over a short interval. If we are to use Lemma 38 and Lemma

39 directly, we would end up comparing P(D̃n > t) against the probabilities P(ŨK
n > t+ 2δ) and

P(ŨK
n > t− 2δ) for some small δ > 0. It turns out these are not too different from P(ŨK

n > t): As
ŨK
n is a quadratic form of Gaussians, we can ensure it is “well spread-out” such that the probability

mass of ŨK
n within a small interval (t − 2δ, t + 2δ) is not too large. This is ascertained by the

following lemma:

Lemma 41 For a ≤ b ∈ R, there exists some absolute constant C such that

P(a ≤ ŨK
n ≤ b) ≤ C(b− a)1/2

(
1

σ2 (σfull − εK;2)
2 +

n− 1

σ2 (σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

.

C.2. Proof body of Theorem 2

Fix δ, σ > 0, K ∈ N and t ∈ R. By Lemma 38, we have that

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K , ε′K :=
3n1/4(n− 1)1/4ε

1/2
K;1

σ1/2δ1/2
.

By Lemma 39, we have

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K , P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,
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where the error term is defined as, for some absolute constant C ′ > 0,

Eδ;K :=
C′

δνnν/2−1

(
(Mfull;ν)

ν + ενK;ν

σν +
(Mcond;ν)

ν + ενK;ν

(n− 1)−ν/2 σν

)
.

To combine the two bounds, we consider the following decomposition:

P(D̃K
Z > t− 2δ) = P(D̃K

Z > t) + P(t− 2δ < D̃K
Z ≤ t) ,

P(D̃K
Z > t+ 2δ) = P(D̃K

Z > t)− P(t < D̃K
Z ≤ t+ 2δ) . (12)

This allows us to combine the earlier two bounds as∣∣P(D̃n > t)− P(D̃K
Z > t)

∣∣ ≤ max{P(t− 2δ ≤ D̃K
Z < t) ,P(t < D̃K

Z ≤ t+ 2δ)}+ Eδ;K + ε′K ,

which gives the error of approximating the c.d.f. of D̃n by that of D̃K
Z . Now fix some ϵ > 0. By

applying Lemma 40 and taking appropriate limits of the endpoints to change ≤ to <, ≥ to > and
taking the right endpoint to positive infinity, we can now approximate the c.d.f. of D̃K

Z by that of
ŨK
n :

P(t− 2δ ≤ D̃K
Z < t) ≤ P

(
t− 2δ − ϵ ≤ ŨK

n < t+ ϵ
)
+

εK;1

ϵ n−1/2(n− 1)−1/2σ
,

P(t ≤ D̃K
Z < t+ 2δ) ≤ P(t− ϵ ≤ ŨK

n < t+ 2δ + ϵ) +
εK;1

ϵ n−1/2(n− 1)−1/2σ
,

P(D̃K
Z > t) ≤ P

(
ŨK
n > t− ϵ

)
+

εK;1

ϵ n−1/2(n− 1)−1/2σ
,

P(D̃K
Z > t) ≥ P(ŨK

n > t+ ϵ)− εK;1

ϵ n−1/2(n− 1)−1/2σ
.

Substituting the bounds into the earlier bound and using a similar decomposition to (12), we get that
the error of approximating the c.d.f. of D̃n by that of ŨK

n is∣∣P(D̃n > t)− P(ŨK
n > t)

∣∣ ≤ max{P(t− ϵ ≤ ŨK
n < t) ,P(t < ŨK

n ≤ t+ ϵ)}
+max{P(t− 2δ − ϵ ≤ ŨK

n < t+ ϵ) ,P(t− ϵ < ŨK
n ≤ t+ 2δ + ϵ)}

+ Eδ;K + ε′K +
4εK;1

ϵ n−1/2(n− 1)−1/2σ
.

To bound the maxima, we recall that by Lemma 41, there exists some absolute constant C ′′ such
that for any a ≤ b ∈ R,

P(a ≤ ŨK
n ≤ b) ≤ C ′′(b− a)1/2

(
1

σ2 (σfull − εK;2)
2 +

n− 1

σ2 (σ2cond − 2σcondεK;2 − 4ε)
)−1/4

.

Substituting this into the above bound while noting (2δ + 2ϵ)1/2 ≤ 2δ1/2 + 2ϵ1/2, we get that∣∣P(D̃n > t)− P(ŨK
n > t)

∣∣
≤ C ′′(6ϵ1/2 + 4δ1/2

)( 1

σ2 (σfull − εK;2)
2 +

n− 1

σ2 (σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

+ Eδ;K + ε′K +
4εK;1

ϵ n−1/2(n− 1)−1/2σ
.
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We now take K → ∞. By Assumption 2, εK;2 → 0 in the first term and the two trailing error terms
vanish. The second error term becomes

Eδ;K → C′

δνnν/2−1

(
(Mfull;ν)

ν

σν +
(Mcond;ν)

ν

(n− 1)−ν/2 σν

)
.

By additionally taking ϵ → 0 in the first term and taking a supremum over t on both sides, we then
obtain

supt∈R

∣∣∣P(D̃n > t)− lim
K→∞

P(ŨK
n > t)

∣∣∣ ≤ 4C ′′δ1/2
(
σ2
full

σ2 +
σ2
cond

(n− 1)−1σ2

)−1/4

+
C′

δνnν/2−1

(
(Mfull;ν)

ν

σν +
(Mcond;ν)

ν

(n− 1)−ν/2 σν

)
.

Finally, we choose

δ = n−
ν−2
2ν+1

(
(Mfull;ν)

ν

σν +
(Mcond;ν)

ν

(n− 1)−ν/2 σν

) 2
2ν+1

and σ = σmax := max{σfull, (n−1)1/2σcond}. Then
(σ2

full
σ2 +

σ2
cond

(n−1)−1σ2

)−1/4 ≤ 1, and by redefining
constants, we get that there exists some absolute constant C > 0 such that

supt∈R

∣∣∣P(√n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣
≤ C n−

ν−2
4ν+2

(
(Mfull;ν)

ν

σν
max

+
(Mcond;ν)

ν

(n− 1)−ν/2 σν
max

) 1
2ν+1 (13)

≤ 2
1

2ν+1C n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

,

where we have recalled that Mmax;ν := max{Mfull;ν , (n− 1)1/2Mcond;ν}. This finishes the proof.

C.3. Proof of Lemma 38

Proof overview. The proof idea is reminiscent of the standard technique for proving that convergence
in probability implies weak convergence. We first approximate each probability by the expectation
of a δ−1 Lipschitz function h that is uniformly bounded by 1. This introduces an approximation
error of δ, while replaces the difference in probability by the difference E[h(D̃n) − h(D̃K

n )]. The
expectation can be further split by the events {|D̃n − D̃K

n | < ϵ} and {|D̃n − D̃K
n | ≥ ϵ}. In the first

case, the expectation can be bounded by a Lipschitz argument; in the second case, we can use the
boundedness of h to bound the expectation by 2P(|D̃n − D̃K

n | ≥ ϵ), which is in turn bounded by
a Markov argument to give the “spectral” approximation error. Choosing ϵ appropriately gives the
above error term.

Proof of Lemma 38 For any τ ∈ R and δ > 0, let hτ ;δ be the function defined in Lemma 34 with
m = 0, which satisfies

hτ+δ;δ(x) ≤ I{x>τ} ≤ hτ ;δ(x) .

By applying the above bounds with τ set to t and t− δ, we get that

P(D̃n > t)− P
(
D̃K

n > t− δ
)

= E[I{D̃n>t} − I{D̃K
n >t−δ}] ≤ E[ht;δ(D̃n)− ht;δ(D̃

K
n )] ,
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and similarly

P
(
D̃K

n > t+ δ
)
− P(D̃n > t) ≤ E[ht+δ;δ(D̃

K
n )− ht+δ;δ(D̃n)] .

Therefore, defining ξτ := |E[hτ ;δ(D̃n)− hτ ;δ(D̃
K
n )]|, we get that

P
(
D̃K

n > t+ δ
)
− ξt+δ ≤ P(D̃n > t) ≤ P

(
D̃K

n > t− δ
)
+ ξt .

To bound quantities of the form ξτ , fix any ϵ > 0 and write ξτ = ξτ,1 + ξτ,2 where

ξτ,1 :=
∣∣∣E[(hτ ;δ(D̃n)− hτ ;δ(D̃

K
n )
)
I{|D̃n−D̃K

n |≤ϵ}

]∣∣∣ ,
ξτ,2 :=

∣∣∣E[(hτ ;δ(D̃n)− hτ ;δ(D̃
K
n )
)
I{|D̃n−D̃K

n |>ϵ}

]∣∣∣ .
The first term can be bounded by recalling from Lemma 34 that hτ ;δ is δ−1-Lipschitz:

ξτ,1 ≤ δ−1E
[∣∣D̃n − D̃K

n

∣∣I{|D̃n−D̃K
n |≤ϵ}

]
≤ δ−1ϵP

(
|D̃n − D̃K

n | ≤ ϵ
)

≤ δ−1ϵ .

The second term can be bounded by noting that hτ ;δ is uniformly bounded above by 1 and applying
Markov’s inequality:

ξτ,2 ≤ 2E[I{|D̃n−D̃K
n |>ϵ}] = 2P(|D̃n − D̃K

n | > ϵ) ≤ 2ϵ−1E
[
|D̃n − D̃K

n |
]
.

By the definition of D̃n and D̃K
n , a triangle inequality and noting that X1, . . . ,Xn are i.i.d. , the

absolute moment term can be bounded as

E
[
|D̃n − D̃K

n |
]
=

√
n(n− 1)

σ
E
[
|Dn −DK

n |
]

=
1

σ
√

n(n− 1)

∥∥∥∑
1≤i ̸=j≤n

(
u(Xi,Xj)−

∑K

k=1
λkϕk(Xi)ϕk(Xj)

)∥∥∥
L1

≤
√

n(n− 1)

σ

∥∥∥u(X1,X2)−
∑K

k=1
λkϕk(X1)ϕk(X2)

∥∥∥
L1

= σ−1
√
n(n− 1) εK;1 .

Combining the bounds on ξτ,1, ξτ,2 and E[|D̃n−D̃K
n |] and choosing ϵ =

(√
n(n− 1)σ−1δεK;1)

1/2,
we get that

ξτ ≤ δ−1ϵ+ 2
√
n(n− 1) ϵ−1σ−1εK;1 =

3n1/4(n− 1)1/4ε
1/2
K;1

σ1/2δ1/2
=: ε′K ,

which yields the desired bound

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K .
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C.4. Proof of Lemma 39

For convenience, we denote Vi := ϕK(Xi) throughout this section.

Proof overview. The key idea in the proof rests on Lindeberg’s telescoping sum argument for
central limit theorem. We follow Chatterjee (2006)’s adaptataion of the Lindeberg idea for statistics
that are not asymptotically normal. As before, the difference in probability is first approximated by
a difference in expectation E[h(D̃K

n )− h(D̃K
Z )] with respect to some function h, which introduces

a further approximation error δ. The next step is to note that both D̃K
n and D̃K

Z can be expressed in
terms of some common function f̃ , such that

D̃K
n = f̃(V1, . . . ,Vn) , D̃K

Z = f̃(Z1, . . . ,Zn) .

Denoting g = h ◦ f̃ , we can then write the difference in expectation in terms of Lindeberg’s tele-
scoping sum as

E[h(D̃K
n )− h(D̃K

Z )] = E[g(V1, . . . ,V1)− g(Z1, . . . ,Zn)]

=
∑n

i=1

(
E[g(V1, . . . ,Vi−1,Vi,Zi+1, . . . ,Zn)

− g(V1, . . . ,Vi−1, Zi, Zi+1, . . . ,Zn)]
)
.

Since each summand differs only in the i-th argument, we can perform a second-order Taylor ex-
pansion about the i-th argument provided that the function h such that h is twice-differentiable. The
second-order remainder term is further “Taylor-expanded” to an additional ϵ-order for any ϵ ∈ [0, 1]
by choosing h′′ to be ϵ-Hölder. Write Di as the differential operator with respect to the i-th ar-
gument and denote f̃i(x) := f̃(V1, . . . ,Vi−1,x,Zi+1, . . . ,Zn). Then informally speaking, the
Taylor expansion argument amounts to bounding each summand as∣∣(summand)i

∣∣ ≤ E[Di(h ◦ f̃i)(0)(Vi − Zi)] +
1

2
E[D2

i (h ◦ f̃i)(0)(V2
i − Z2

i )]

+
1

6

(
Hölder constant of h′′

)
× E

[∣∣Dif̃i(0)Vi

∣∣2+ϵ
+
∣∣Dif̃i(0)Zi

∣∣2+ϵ]
,

where we have used the fact that f̃i is a linear function in expressing the last quantity. The first two
terms vanish because h ◦ f̃i is independent of

(
Vi,Zi

)
and the first two moments of Vi and Zi

match. The third term is bounded carefully by noting the moment structure of Vi and Zi to give the
error term 1

nEδ;K . Summing the errors over 1 ≤ i ≤ n then gives the Gaussian approximation error
bound in Lemma 39.

Proof of Lemma 39 For any τ ∈ R and δ > 0, let hτ ;δ be the twice-differentiable function defined
in Lemma 34 (i.e.m = 2), which satisfies

hτ+δ;δ(x) ≤ I{x>τ} ≤ hτ ;δ(x) .

By applying the above bounds with τ set to t− δ and t− 2δ, we get that

P(D̃K
n > t− δ)− P(D̃K

Z > t− 2δ) = E[I{D̃K
n >t−δ} − I{D̃K

Z >t−2δ}]

≤ E[ht−δ;δ(D̃
K
n )− ht−δ;δ(D̃

K
Z )] ,
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and similarly

P(D̃K
Z > t+ 2δ)− P(D̃K

n > t+ δ) = E[I{D̃K
Z >t+2δ} − I{D̃K

n >t+δ}]

≤ E[ht+2δ;δ(D̃
K
Z )− ht+2δ;δ(D̃

K
n )] .

Therefore, we obtain that

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + E′
δ;K , P(D̃K

n > t+ δ) ≥ P(D̃K
Z > t+ 2δ)− E′

δ;K ,

(14)

where E′
δ;K := supτ∈R |E[hτ ;δ(D̃K

n ) − hτ ;δ(D̃
K
Z )]|. The next step is to bound E′

δ;K , to which we
apply Lindeberg’s technique for proving central limit theorem. We denote the scaled mean as

µ̃ :=
E[V1]

σ1/2(n(n− 1))1/4
=

E[Z1]

σ1/2(n(n− 1))1/4
,

and define the centred and scaled versions of Vi and Zi respectively as

Ṽi :=
Vi

σ1/2(n(n− 1))1/4
− µ̃ , Z̃i :=

Zi

σ1/2(n(n− 1))1/4
− µ̃ .

We also define the function f : (RK)n → R by

f(v1, . . . ,vn) :=
∑

1≤i ̸=j≤n
(vi + µ̃)⊤ΛK(vj + µ̃) , where we recall ΛK := diag{λ1, . . . , λK} .

This allows us to express the random quantities in (14) as

D̃K
n = f(Ṽ1, . . . , Ṽn) , D̃K

Z = f(Z̃1, . . . , Z̃n) .

By defining the random function

Fi(v) := f(Ṽ1, . . . , Ṽi−1,v, Z̃i+1, . . . , Z̃n) for v ∈ RK and 1 ≤ i ≤ n ,

we can write E′
δ;K into Lindeberg’s telescoping sum as

E′
δ;K = supτ∈R |E[hτ ;δ ◦ f(Ṽ1, . . . , Ṽn)− hτ ;δ ◦ f(Z̃1, . . . , Z̃n)]|

= supτ∈R

∣∣∣∑n

i=1
E[hτ ;δ(Fi(Ṽi)− hτ ;δ(Fi(Z̃i))]

∣∣∣
≤ supτ∈R

∑n

i=1
|E[hτ ;δ ◦ Fi(Ṽi)− hτ ;δ ◦ Fi(Z̃i)]| .

Since hτ ;δ ◦ f is twice-differentiable, by a second-order Taylor expansion around 0 ∈ RK , there
exists random values θV , θZ ∈ (0, 1) almost surely such that

hτ ;δ ◦ Fi(Ṽi) =
∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

Ṽi +
1

2

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

Ṽ⊗2
i ,

hτ ;δ ◦ Fi(Z̃i) =
∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

Z̃i +
1

2

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

Z̃⊗2
i .
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Substituting this into the sum above gives

E′
δ;K ≤ supτ∈R

(∑n

i=1

∣∣∣E[∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

(
Ṽi − Z̃i)

]∣∣∣
+

1

2

∑n

i=1

∣∣∣E[∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

Ṽ⊗2
i − ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

Z̃⊗2
i

]∣∣∣ ) .
The first sum vanishes because the only randomness of the derivative comes from Fi, who is inde-
pendent of (Ṽi, Z̃i), and the mean of Ṽi and Z̃i match. To handle the second sum, we make use of
independence again and the fact that the second moment of Ṽi and Z̃i also match: By subtracting
and adding the term

E
[
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

(Ṽi)
⊗2
]

= E
[
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

(Z̃i)
⊗2
]
,

we can apply a triangle inequality to get that

E′
δ;K ≤ 1

2
supτ∈R

(∑n

i=1

∣∣∣E[(∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2

i

]∣∣∣
+

∑n

i=1

∣∣∣E[(∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Z̃⊗2
i

]∣∣∣ ) . (15)

The final step is to bound the two sums by exploiting the derivative structure of hτ ;δ and Fi. Note
that Fi is a linear function: its first derivative is given by

∂Fi(x) = 2
∑

1≤j<i
ΛKṼj + 2

∑
i<j≤n

ΛKZ̃j + 2(n− 1)ΛK µ̃ ∈ RK ,

which is independent of x, while its higher derivatives vanish. By a second-order chain rule, this
implies that almost surely∣∣∣(∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2

i

∣∣∣
=
∣∣∣(∂2hτ ;δ(Fi(θV Ṽi)

)
− ∂2hτ ;δ

(
Fi(0)

))
(∂Fi(0)

⊤Ṽi)
2
∣∣∣

≤
∣∣∂2hτ ;δ(Fi(θV Ṽi)

)
− ∂2hτ ;δ

(
Fi(0)

)∣∣ ∣∣∂Fi(0)
⊤Ṽi

∣∣2 .
For ν ∈ (2, 3], by the Hölder property of ∂2hτ ;δ from Lemma 34, we get that almost surely,∣∣∂2hτ ;δ(Fi(θV Ṽi))− ∂2hτ ;δ(Fi(0))

∣∣ ≤ 18× 3ν−2δ−ν |Fi(θV Ṽi)− Fi(0)|ν−2

= 18× 3ν−2δ−ν |∂Fi(0)
⊤(θV Ṽi)|ν−2

≤ 54δ−ν |∂Fi(0)
⊤Ṽi|ν−2 .

In the last inequality, we have used that θV takes value in [0, 1]. Combining the results, we get that
each summand in the first sum in (15) can be bounded as∣∣∣E[(∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2

i

]∣∣∣ ≤ 54δ−νE
[
|∂Fi(0)

⊤Ṽi|ν
]
.

The exact same argument applies to the summands of the second sum to give∣∣∣E[(∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Z̃⊗2
i

]∣∣∣ ≤ 54δ−νE
[
|∂Fi(0)

⊤Z̃i|ν
]
,
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so a substitution back into (15) gives

E′
δ;K ≤ 27δ−ν

∑n

i=1

(
E
[
|∂Fi(0)

⊤Ṽi|ν
]
+ E

[
|∂Fi(0)

⊤Ṽi|ν
])
.

We defer to Lemma 42 to show that there exists an absolute constant C ′ > 0 such that the moment
terms can be bounded as

E
[
|∂Fi(0)

⊤Ṽi|ν
]
+ E

[
|∂Fi(0)

⊤Z̃i|ν
]
≤ C′

nν/2

(
(Mfull;ν)

ν + ενK;ν

σν +
(Mcond;ν)

ν + ενK;ν

(n− 1)−ν/2 σν

)
. (16)

Combining with (14) and defining Eδ;K to be the upper bound for E′
δ;K , we get that

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K , P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,

where we have made the K-dependence explicit and define, for C := 27C ′,

Eδ;K :=
C

δνnν/2−1

(
(Mfull;ν)

ν + ενK;ν

σν +
(Mcond;ν)

ν + ενK;ν

(n− 1)−ν/2 σν

)
.

Lemma 42 (16) holds.

Proof of Lemma 42 We seek to bound E[|∂Fi(0)
⊤Ṽi|ν ] + E[|∂Fi(0)

⊤Z̃i|ν ] for ν ∈ (2, 3] and

∂Fi(0) = 2
∑

1≤j<i
ΛKṼj + 2

∑
i<j≤n

ΛKZ̃j + 2(n− 1)ΛK µ̃ ∈ RK .

We first focus on bounding the first expectation. By convexity of the function x 7→ |x|ν , we can
apply Jensen’s inequality to bound

E
[
|∂Fi(0)

⊤Ṽi|ν
]
= E

[∣∣∣2∑
j<i

Ṽ⊤
j Λ

KṼi + 2
∑

j>i
Z̃⊤
j Λ

KṼi + 2(n− 1)µ̃⊤ΛKṼi

∣∣∣ν]
≤ 1

3
E
[∣∣6∑

j<i
Ṽ⊤

j Λ
KṼi

∣∣ν]+ 1

3
E
[∣∣6∑

j>i
Z̃⊤
j Λ

KṼi

∣∣ν]+ 1

3
E
[∣∣6(n− 1)µ̃⊤ΛKṼ1

∣∣ν]
≤ 72

(
E
[∣∣∑

j<i
Ṽ⊤

j Λ
KṼi

∣∣ν]+ E
[∣∣∑

j>i
Z̃⊤
j Λ

KṼi

∣∣ν]+ E
[∣∣(n− 1)µ̃⊤ΛKṼ1

∣∣ν]) ,
where we have noted that ν ≤ 3. Since Ṽi’s are i.i.d., Z̃i’s are i.i.d. and all variables involved
are zero-mean, (Ṽ⊤

j Λ
KṼi)

i−1
j=1 forms a martingale difference sequence with respect to the filtra-

tion σ(Ṽi, Ṽ1), . . . , σ(Ṽi, Ṽ1, . . . , Ṽi−1), and so is (Z̃⊤
j Λ

KṼi)
n
j=i+1 with respect to the filtration

σ(Ṽi, Z̃i+1), . . . , σ(Ṽi, Z̃i+1, . . . , Z̃n). This allows the above two moments of sums to be bounded
via the martigale moment inequality from Lemma 26: There exists an absolute constant C0 > 0
such that

E
[
|∂Fi(0)

⊤Ṽi|ν
]

≤ C0

(
(i− 1)ν/2−1

∑i−1

j=1
E[|Ṽ⊤

j Λ
KṼi|ν ] + (n− i)ν/2−1

∑n

j=i+1
E[|Z̃⊤

j Λ
KṼi|ν ]

+ (n− 1)ν E[|µ̃⊤ΛKṼ1|ν ]
)

≤ C0(n− 1)ν/2
(
E[|Ṽ⊤

1 Λ
KṼ2|ν ] + E[|Z̃⊤

1 Λ
KṼ1|ν ] + (n− 1)ν/2E[|µ̃⊤ΛKṼ1|ν ]

)
.
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By the exact same argument, the other expectation we want to bound can also be controlled as

E
[
|∂Fi(0)

⊤Z̃i|ν
]

≤ C0(n− 1)ν/2
(
E[|Z̃⊤

1 Λ
KZ̃2|ν ] + E[|Z̃⊤

1 Λ
KṼ1|ν ] + (n− 1)ν/2E[|µ̃⊤ΛKZ̃1|ν ]

)
.

Finally, we relate these moments terms to moments of u(X1,X2), up to error terms that vanish as
K → ∞: Denoting µk := E[ϕk(X1)], we have that by Lemma 31,

E[|µ̃⊤ΛKṼ1|ν ] =
1

σνnν/2(n− 1)ν/2
E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν] ≤ 4((Mcond;ν)
ν + ενK;ν)

σν nν/2(n− 1)ν/2
,

and for some absolute constant C1 > 0,

E[|Ṽ⊤
1 Λ

KṼ2|ν ] =
1

σνnν/2(n− 1)ν/2
E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν]
≤ 4C1(Mfull;ν)

ν − 1
2
(Mcond;ν)

ν + (4C1 + 2)ενK;ν

σνnν/2(n− 1)ν/2
≤ 4C1(Mfull;ν)

ν + (4C1 + 2)ενK;ν

σνnν/2(n− 1)ν/2
.

For the moment terms involving the Gaussians Z̃1 and Z̃2, we apply Lemma 32 to show that

E[|µ̃⊤ΛKZ̃1|ν ] =
E[|(E[V1])

⊤ΛKZ1|ν ]
σνnν/2(n− 1)ν/2

≤ 7(σν
cond + 8ενK;2)

σνnν/2(n− 1)ν/2
≤ 7((Mcond;ν)

ν + 8ενK;ν)

σνnν/2(n− 1)ν/2
,

E[|Z̃⊤
1 Λ

KZ̃2|ν ] =
E[|Z⊤

1 Λ
KZ2|ν ]

σνnν/2(n− 1)ν/2
≤ 6(σν

full + ενK;2)

σνnν/2(n− 1)ν/2
≤ 6((Mfull;ν)

ν + ενK;ν)

σνnν/2(n− 1)ν/2
.

In the last inequalities for both bounds, we have noted that L2 norm is dominated by Lν norm since
ν > 2. Meanwhile by Lemma 32 again, there exists some absolute constant C2 > 0 such that

E[|Z̃⊤
1 Λ

KṼ1|ν ] =
E[|(V1 − E[V1])

⊤ΛKZ1|ν ]
σνnν/2(n− 1)ν/2

≤ 8C2(Mfull;ν)
ν + (8C2 + 4)ενK;ν

σνnν/2(n− 1)ν/2
.

Substituting the five moment bounds into the earlier bounds on E[|∂Fi(0)
⊤Ṽi|ν ] and E[|∂Fi(0)

⊤Z̃i|ν ]
and combining the constant terms, we get that there exists an absolute constant C > 0 such that

E
[
|∂Fi(0)

⊤Ṽi|ν
]
+ E

[
|∂Fi(0)

⊤Z̃i|ν
]
≤ C

nν/2

(
(Mfull;ν)

ν + ενK;ν

σν +
(Mcond;ν)

ν + ενK;ν

(n− 1)−ν/2 σν

)
.

C.5. Proof of Lemma 40

Proof overview. For convenience, we write

U0 :=
1

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi ,

so that

D̃K
Z =

√
n(n− 1)

σ
U0 +

√
n(n− 1)

σ
(µK)⊤ΛKµK , ŨK

n =

√
n(n− 1)

σ
U0 +

√
n(n− 1)

σ
D .
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To approximate the distribution of D̃K
Z by that of ŨK

n , the proof boils down to replacing (µK)⊤ΛKµK

by D. We use a Markov-type argument so that we obtain an error term that is separate from the dis-
tribution terms.

Proof of Lemma 40 Recall that Lemma 35 allows us to approximate the distribution of a sum of
two random variables by a single one provided that the other is negligible. Writing

D̃K
Z = ŨK

n + (D̃K
Z − ŨK

n ) = ŨK
n +

√
n(n− 1)

σ

(
(µK)⊤ΛKµK −D

)
,

we can apply Lemma 35 to obtain that for any a, b ∈ R and ϵ > 0,

P(a ≤ D̃K
Z ≤ b) ≤ P

(
a− ϵ ≤ ŨK

n ≤ b+ ϵ
)
+ P

(√
n(n− 1)

σ

∣∣(µK)⊤ΛKµK −D
∣∣ ≥ ϵ

)
,

P(a ≤ D̃K
Z ≤ b) ≥ P(a+ ϵ ≤ ŨK

n ≤ b− ϵ)− P
(√

n(n− 1)

σ

∣∣(µK)⊤ΛKµK −D
∣∣ ≥ ϵ

)
.

Note that |(µK)⊤ΛKµK −D| is deterministic. By a Markov inequality and the bound from Lemma
31, we get that

P
(√

n(n− 1)

σ

∣∣(µK)⊤ΛKµK −D
∣∣ ≥ ϵ

)
≤

√
n(n− 1)

ϵσ
E
[∣∣(µK)⊤ΛKµK −D

∣∣]
=

∣∣∑K

k=1
λKµ2

k −D
∣∣

ϵ n−1/2(n− 1)−1/2σ
≤ εK;1

ϵ n−1/2(n− 1)−1/2σ
.

Combining the two results gives the desired bounds.

C.6. Proof of Lemma 41

Proof overview. The key ingredient of the proof is Theorem 8 of Carbery and Wright (2001), which
gives an anti-concentration bound for the distribution of a polynomial of Gaussians in terms of its
variance. In Lemma 36, we have rewritten the result in the special case of a degree-two polynomial,
which allows us to control the distribution of ŨK

n in terms of its variance.

We introduce some matrix shorthands: For anym ∈ N, denoteOm as the zero matrix in Rm×m,
Jm as the all-one matrix in Rm×m and Im as the identity matrix in Rm×m. Define the nK × nK
matrix M as

M :=


OK ΛK . . . ΛK

ΛK OK
. . .

...
...

. . .
. . . ΛK

ΛK . . . ΛK OK

 = ΛK ⊗ (Jn − In) ,

as well as

µ :=
(
(µK)⊤, . . . , (µK)⊤

)⊤ ∈ RnK , Σ := ΣK ⊗ In ∈ RnK×nK , Λ := ΛK ⊗ In ∈ RnK×nK .

We also consider the concatenated nK-dimensional standard Gaussian vector

η :=
(
(ηK1 )⊤, . . . , (ηKn )⊤

)⊤
.
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Proof of Lemma 41 The goal is to bound the distribution function between a ≤ b ∈ R of

ŨK
n =

√
n(n− 1)

σ
UK
n =

1

σ
√

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj

+
2
√
n− 1

σ
√
n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi +

√
n(n− 1)

σ
D

=
1

σ
√

n(n− 1)
η⊤Σ1/2MΣ1/2η +

2
√
n− 1

σ
√
n
µ⊤ΛΣ1/2η +

√
n(n− 1)

σ
D .

For convenience, define

Q1 := η⊤Σ1/2MΣ1/2η , Q2 := µ⊤ΛΣ1/2η , Ũ0 :=
1

σ
√

n(n− 1)
Q1 +

2
√
n− 1

σ
√
n
Q2 .

Denote α := b−a
2 and β := a+b

2 . Rewriting the probability in terms of Ũ0, α and β, we get that

P(a ≤ ŨK
n ≤ b) = P

(
(β − α) ≤ Ũ0 +

√
n(n− 1)

σ
D ≤ (β + α)

)
= P

(∣∣∣Ũ0 +

√
n(n− 1)

σ
D − β

∣∣∣ ≤ α
)
.

Since Ũ0 +

√
n(n−1)

σ D− β is a degree-two polynomial of η, we can apply Lemma 36 to bound the
above probability: For an absolute constant C ′, we have

P(a ≤ ŨK
n ≤ b) ≤ C ′α1/2

(
Var[Ũ0]

)−1/4
, (17)

where the variance term can be expanded as

Var
[
Ũ0

]
=

1

n(n− 1)σ2 Var[Q1] +
4(n− 1)

nσ2 Var[Q2] +
4

nσ2 Cov[Q1, Q2] .

We now provide bound the individual terms in the variance. By noting that each summand in Q1

is zero-mean when i ̸= j and that each summand in Q2 is zero-mean, the covariance term can be
computed as

Cov[Q1, Q2] =
∑

1≤i ̸=j≤n

∑n

l=1
E
[
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj × (µK)⊤ΛK(ΣK)1/2ηKl

]
=

1

2
E
[
(ηK1 )⊤(ΣK)1/2ΛK(ΣK)1/2ηK1 × (µK)⊤ΛK(ΣK)1/2ηK1

]
.

Denote ξk as the k-th coordinate of ηK1 . Then the above expectation is taken over a linear combi-
nation of terms of the form ξk1ξk2ξk3 . If any of k1, k2, k3 is distinct from the other two indices,
the expectation is zero; if k1 = k2 = k3, the expectation is again zero by property of a standard
Gauassian. Therefore, we have

Cov[Q1, Q2] = 0 .
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On the other hand, the first variance can be computed by using the moment formula for a quadratic
form of Gaussian from Lemma 27 and the cyclic property of trace:

Var[Q1] = 2Tr
(
(Σ1/2MΣ1/2)2

)
= 2Tr

(
(ΣM)2

)
= 2Tr

(
(ΣKΛK)2 ⊗ (Jn − In)

2
)

= 2Tr
(
(ΣKΛK)2 ⊗ J2

n

)
− 4Tr

(
(ΣKΛK)2 ⊗ Jn

)
+ 2Tr

(
(ΣKΛK)2 ⊗ In

)
=
(
2n2 − 4n+ 2n

)
Tr
(
(ΣKΛK)2

)
= 2n(n− 1)Tr

(
(ΛKΣK)2

)
≥ 2n(n− 1)(σfull − εK;2)

2 .

In the last inequality, we have used the bound from Lemma 32 on Tr
(
(ΛKΣK)2

)
. The second

variance is on a Gaussian random variable and can be bounded by Lemma 32 again as

Var[Q2] = µ⊤ΛΣΛµ = n(µK)⊤ΛKΣKΛKµK ≥ n(σ2cond − 2σcondεK;2 − 4εK;2) .

This implies that

Var
[
Ũ0

]
≥ 2

σ2 (σfull − εK;2)
2 +

4(n− 1)

σ2 (σ2cond − 2σcondεK;2 − 4εK;2) .

Substituting this into (17) and redefining the constants, we get that there exists an absolute constant
C such that

P(a ≤ ŨK
n ≤ b) ≤ C(b− a)1/2

(
1

σ2 (σfull − εK;2)
2 +

n− 1

σ2 (σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

.

Appendix D. Proofs for the remaining results in Section 3

D.1. Proofs for variants and corollaries of the main result

The upper bound in Proposition 6 is a concentration inequality and is obtained by a standard argu-
ment via Chebyshev’s inequality. The lower bound is a combination of the anti-concentration bound
for a Gaussian quadratic form from Lemma 41 and Theorem 2.

Proof of Proposition 6 Denote ŨK
n :=

√
n(n−1)UK

n

σmax
. In Lemma 41, we have shown that for any

a, b ∈ R with a ≤ b, there exists some absolute constant C ′ such that

P(a ≤ ŨK
n ≤ b) ≤ C ′(b− a)1/2

(
1

σ2
max

(σfull − εK;2)
2 +

n− 1

σ2
max

(σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

.

Take K → ∞ and using Assumption 2 for ν ≥ 2, we get that εK;2 → 0. For a fixed ϵ > 0, set

a =

√
n(n−1)

σmax
D − ϵ and b =

√
n(n−1)

σmax
D + ϵ, we get that

lim
K→∞

P
(√

n(n− 1)

σmax
|UK

n −D| ≤ ϵ
)

≤
√
2C ′ ϵ1/2

(
σ2
full

σ2
max

+
(n− 1)σ2

cond

σ2
max

)−1/4
≤

√
2C ′ ϵ1/2 .
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Now by Theorem 2, there exists an absolute constant C ′′ such that

supt∈R

∣∣∣P(√n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣ ≤ C ′′ n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

By a triangle inequality, we get that

P
(√

n(n− 1)

σmax
|Dn −D| > ϵ

)
≥ P

(√
n(n− 1)

σmax
|UK

n −D| > ϵ
)
− 2C ′′ n−

ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

≥ 1−
√
2C ′ϵ1/2 − 2C ′′ n−

ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

By replacing ϵ with
√

n(n−1)

σmax
ϵ and redefining constants, we get the desired lower bound that there

exists absolute constants C1, C2 > 0 such that

P(|Dn −D| > ϵ) ≥ 1− C1

(√
n(n− 1)

σmax

)1/2
ϵ1/2 − C2 n

− ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

For the upper bound, we apply a Chebyshev inequality directly to Dn and bound the variance by
Lemma 30: There exists some absolute constant C ′

3 > 0 such that

P(|Dn −D| > ϵ) ≤ ϵ−2Var[Dn] ≤ C ′
3ϵ

−2
(

σ2
cond

n−1(n− 1)2
+

σ2
full

(n− 1)2

)
≤ C ′

3ϵ
−2
(
σmax

n− 1

)2
≤ C3ϵ

−2
(

σmax√
n(n− 1)

)2
.

In the last inequality, we have noted that 1
n−1 ≤ 2

n for n ≥ 2 and defined C3 = 2C ′
3. This finishes

the proof.

Theorem 2 provides an approximation of the distribution of Dn by that of a Gaussian quadratic
form. Proposition 9 combines Theorem 2 with a Markov argument, which makes a further approx-
imation of the Gaussian quadratic form by a weighted sum of chi-squares UK

n . The approximation
error introduced vanishes as n, d grow provided that ρd = ω(n1/2), i.e. n−1/2σfull = ω(σcond).

Proof of Proposition 9 We first seek to compare WK
n to the distribution of

UK
n =

1

n(n− 1)

∑
1≤i ̸=j≤n

(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi +D ,

where {ηKi }ni=1 are i.i.d. standard Gaussian vectors in RK . The first step is to write

UK
n =

√
n− 1√
n

W0 +D +
(
1−

√
n− 1√
n

)
W0 +W1 +W2 ,

where we have defined the zero-mean random variables

W0 :=
1

n(n− 1)

(∑n

i,j=1
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
,

W1 :=
1

n(n− 1)

(∑n

i=1
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKi − nTr(ΣKΛK)

)
,

W2 :=
2

n

∑n

i=1
(µK)⊤ΛK(ΣK)1/2ηKi .
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Fix ϵ0, ϵ1, ϵ2 > 0. We first use the bound from Lemma 35: For any a, b ∈ R, we have

P
(
a ≤

√
n(n− 1)

σfull

(√
n− 1√
n

W0 +D
)
≤ b
)

≤ P
(
a− ϵ0 − ϵ1 − ϵ2 ≤

√
n(n− 1)

σfull
UK
n ≤ b+ ϵ0 + ϵ1 + ϵ2

)
+ P

(√
n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ϵ0

)
+ P

(√
n(n− 1)

σfull
|W1| ≥ ϵ1

)
+ P

(√
n(n− 1)

σfull
|W2| ≥ ϵ2

)
and

P
(
a ≤

√
n(n− 1)

σfull

(√
n− 1√
n

W0 +D
)
≤ b
)

≥ P
(
a+ ϵ0 + ϵ1 + ϵ2 ≤

√
n(n− 1)

σfull
UK
n ≤ b− ϵ0 − ϵ1 − ϵ2

)
− P

(√
n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ϵ0

)
− P

(√
n(n− 1)

σfull
|W1| ≥ ϵ1

)
− P

(√
n(n− 1)

σfull
|W2| ≥ ϵ2

)
.

We now bound the error terms. By the Chebyshev’s inequality, the variance formula of a quadratic
form of Gaussians from Lemma 27 and the bound from Lemma 32, we get that

P
(√

n(n− 1)

σfull
|W1| ≥ ϵ1

)
≤ ϵ−2

1 Var
[√

n(n− 1)

σfull
W1

]
=

2

ϵ21(n− 1)σ2
full

Tr
(
(ΛKΣK)2

)
≤ 2(σfull + εK;2)

2

ϵ21(n− 1)σ2
full

.

Similarly, by the Chebyshev’s inequality, the variance formula of a Gaussian and the bound from
Lemma 32, we get that

P
(√

n(n− 1)

σfull
|W2| ≥ ϵ

)
≤ ϵ−2

2 Var
[√

n(n− 1)

σfull
W2

]
=

4(n− 1)

ϵ22σ
2
full

E
[
(µK)⊤ΛKΣKΛKµK

]
≤ 4(n− 1)(σcond + 2εK;2)

2

ϵ22σ
2
full

.

By Lemma 33, we can replace W0 by using the following equality in distribution:
√
n− 1√
n

W0 =
1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
d
=WK

n −D .

Finally, using a Chebyshev’s inequality together with the moment bound in Lemma 33, we get that

P
(√

n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ϵ0

)
≤ n(n− 1)

ϵ20σ
2
full

(
1−

√
n− 1√
n

)2
Var
[
W0

]
=

n2

ϵ20σ
2
full

(
1−

√
n− 1√
n

)2
Var
[
WK

n

]
≤ 2n(σfull + εK;2)

2

ϵ20(n− 1)σ2
full

(
1−

√
n− 1√
n

)2
≤ 2(σfull + εK;2)

2

ϵ20(n− 1)σ2
full

.
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In the last inequality, we have noted that
√
n−

√
n− 1 ≤ 1. Combining the above bounds, we get

that

P
(
a ≤

√
n(n− 1)

σfull
WK

n ≤ b
)

≤ P
(
a− ϵ0 − ϵ1 − ϵ2 ≤

√
n(n− 1)

σfull
UK
n ≤ b+ ϵ0 + ϵ1 + ϵ2

)
+

2(σfull + εK;2)
2

(n− 1)σ2
full

(
ϵ−2
0 + ϵ−2

1

)
+

4(n− 1)(σcond + 2εK;2)
2

ϵ22σ
2
full

,

P
(
a ≤

√
n(n− 1)

σfull
WK

n ≤ b
)

≥ P
(
a+ ϵ0 + ϵ1 + ϵ2 ≤

√
n(n− 1)

σfull
UK
n ≤ b− ϵ0 − ϵ1 − ϵ2)

− 2(σfull + εK;2)
2

(n− 1)σ2
full

(
ϵ−2
0 + ϵ−2

1

)
− 4(n− 1)(σcond + 2εK;2)

2

ϵ22σ
2
full

.

Taking b→ ∞ and a→ t from the right, we get that∣∣∣P(√n(n− 1)

σfull
WK

n > t
)
− P

(√
n(n− 1)

σfull
UK
n > t

)∣∣∣
≤ max

{
P
(
t− ϵ0 − ϵ1 − ϵ2 ≤

√
n(n− 1)

σfull
UK
n ≤ t

)
, P
(
t ≤

√
n(n− 1)

σfull
UK
n ≤ ϵ0 + ϵ1 + ϵ2

)}
+

2(σfull + εK;2)
2

(n− 1)σ2
full

(
ϵ−2
0 + ϵ−2

1

)
+

4(n− 1)(σcond + 2εK;2)
2

ϵ22σ
2
full

.

This allows us to follow a similar argument to the proof of Theorem 2 to approximate WK
n by UK

n .
To bound the maxima, we apply Lemma 41 with σ = σfull: There exists some absolute constant C ′

such that for any a ≤ b ∈ R,

P
(
a ≤

√
n(n− 1)

σfull
UK
n ≤ b

)
≤ C ′(b− a)1/2

(
1

σ2
full

(σfull − εK;2)
2 +

n− 1

σ2
full

(σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

.

By additionally noting that (ϵ0 + ϵ1 + ϵ2)
1/2 ≤ √

ϵ0 +
√
ϵ1 +

√
ϵ2, we get that

∣∣∣P(√n(n− 1)

σfull
WK

n > t
)
− P

(√
n(n− 1)

σfull
UK
n > t

)∣∣∣
≤ C ′(

√
ϵ0 +

√
ϵ1 +

√
ϵ2)
(

1

σ2
full

(σfull − εK;2)
2 +

n− 1

σ2
full

(σ2cond − 2σcondεK;2 − 4εK;2)
)−1/4

+
2(σfull + εK;2)

2

(n− 1)σ2
full

(
ϵ−2
0 + ϵ−2

1

)
+

4(n− 1)(σcond + 2εK;2)
2

ϵ22σ
2
full

.

Taking K → ∞ on both sides, the inequality becomes∣∣∣ lim
K→∞

P
(√

n(n− 1)

σfull
WK

n > t
)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣
≤ C ′(

√
ϵ0 +

√
ϵ1 +

√
ϵ2)
(
1 +

(n− 1)σ2
cond

σ2
full

)−1/4
+

2

n− 1

(
ϵ−2
0 + ϵ−2

1

)
+

4(n− 1)σ2
cond

ϵ22σ
2
full

≤ C ′(
√
ϵ0 +

√
ϵ1 +

√
ϵ2) +

2

n− 1

(
ϵ−2
0 + ϵ−2

1

)
+

4(n− 1)σ2
cond

ϵ22σ
2
full

.
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Choosing ϵ0 = ϵ1 = (n−1)−2/5 and ϵ2 =
(
(n−1)σ2cond/σ

2
full

)2/5, redefining constants and taking
a supremum over t ∈ R, we get that there exists some absolute constant C ′′ > 0 such that

supt∈R

∣∣∣ lim
K→∞

P
(√

n(n− 1)

σfull
WK

n > t
)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣
≤ C ′′

(
1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5)
.

The final step is to relate this bound to Dn. Consider the last step (13) of the proof of Theorem 2 in
Appendix C.2. If we set σ = σfull instead of σmax, we get that there exists some absolute constant
C ′′′ > 0 such that

supt∈R

∣∣∣P(√n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣
≤ C ′′′ n−

ν−2
4ν+2

(
(Mfull;ν)

ν

σν
full

+
(Mcond;ν)

ν

(n− 1)−ν/2 σν
full

) 1
2ν+1

.

Setting C = max{C ′′, C ′′′} and using a triangle inequality, we get the desired bound that

supt∈R

∣∣∣P(√n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
WK

n > t
)∣∣∣

≤ C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5
+ n−

ν−2
4ν+2

(
(Mfull;ν)

ν

σν
full

+
(Mcond;ν)

ν

(n− 1)−ν/2 σν
full

) 1
2ν+1

)
.

D.2. Proofs for results on Wn

Proof of Proposition 12 To prove the existence of distribution, we seek to apply Lévy’s continuity
theorem. We first verify that there exists a sufficiently large K∗ such that the sequence (WK

n )K≥K∗

is tight. Since Assumption 2 holds for some ν ≥ 2, we get that as K → ∞,

εK;2 := E
[∣∣∑K

k=1
λkϕk(X1)ϕk(X2)− u(X1,X2)

∣∣2]1/2 → 0 .

In particular, there exists some sufficiently largeK∗ such that εK;2 ≤ 1 for allK ≥ K∗. By Lemma
33, we have that for all K ≥ K∗,

Var[WK
n ] ≤ 2

n(n− 1)
(σfull + εK;2)

2 ≤ 2

n(n− 1)
(σfull + 1)2 .

Note that by assumption, we have |D|, σfull < ∞. This implies that the sequence (WK
n )K≥K∗ is

tight by a Markov inequality:

lim
x→∞

(
supK≥K∗ P

(∣∣WK
n

∣∣ > x
))

≤ lim
x→∞

(
x−2 supK≥K∗ E[(WK

n )2]
)

≤ lim
x→∞

2n−1(n− 1)−1(σfull + 1)2 +D2

x2 = 0 .

We defer to Lemma 43 to show that the characteristic function of (WK
n −D) converges pointwise

as K → ∞. This allows us to apply Lévy’s continuity theorem and obtain that Wn exists.
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Proof of Lemma 13 The result holds by noting that for all k > K∗, WK
n = WK∗

n almost surely,
and the latter random variable does not depend on K.

Lemma 43 The characteristic function of (WK
n −D) converges pointwise as K → ∞.

Proof of Lemma 43 Define ak := 1√
n(n−1)

τk;d and Tk := ak(ξ
2
k − 1), which allows us to write

WK
n =

1√
n(n− 1)

∑K

k=1
τk;d(ξ

2
k − 1) +D =

∑K

k=1
Tk +D .

Denote i =
√
−1 as the imaginary unit and Y as a chi-squared random variable with degree 1. Since

each Tk is a scaled and shifted chi-squared random variable with degree 1, it has the characteristic
function

ψTk
(t) = E[exp(it Tk)] = E[exp(iakY t)] exp(−iakt) = (1− 2iakt)

−1/2 exp(−iakt) .

Since Tk’s are independent, by the convolution theorem, the characteristic function of WK
n −D is

given by

ψWK
n −D(t) = exp

(
− i

∑K

k=1
akt
)∏K

k=1
(1− 2iakt)

−1/2 .

We want to prove that for every t ∈ R, ψWK
n −D(t) converges to some function as limit K → ∞.

By taking the principal-valued complex logarithm (i.e. discontinuity along negative real axis), we
get that

logψWK
n −D(t) =

∑K

k=1

(
− iakt−

1

2
log(1− 2iakt)

)
+ 2imKπ =: SK + 2imKπ , (18)

for some mK ∈ N for each K that adjusts for values at discontinuity. Now consider the real part of
the logarithm:

Re
(
logψWK

n −D(t)
)

= Re(SK) = − 1

2

∑K

k=1
log |1− 2iakt|

= − 1

2

∑K

k=1
log
√
1 + 4a2kt

2 = −1

4

∑K

k=1
log(1 + 4a2kt

2) .

Recall by Lemma 32 that∑K

k=1
a2k =

1

n(n− 1)

∑K

k=1
τ2k;d = Tr((ΣKΛK)2)

K→∞−−−−→ σ2full . (19)

Fix ϵ > 0. The above implies that there exists a sufficiently largeK∗ such that for allK1,K2 ≥ K∗,∑K2
k=K1

a2k < ϵ. Then for all K1,K2 ≥ K∗, we have

0 ≤
∑K2

k=K1
log(1 + 4a2kt

2) ≤ 4t2
∑K2

k=K1
a2k ≤ 4t2ϵ .

This implies that (Re(SK))K∈N is a Cauchy sequence and therefore converges. Now we handle the
imaginary part. First let m′

K ∈ Z be such that

Im
(∑K

k=1
log(1− 2iakt)

)
=

∑K

k=1
arctan(−2akt) + 2m′

Kπ .
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Then we have

Im(SK) =
∑K

k=1

(
− akt+

1

2
arctan(2akt)

)
−m′

Kπ =: IK −m′
Kπ . (20)

To show that IK converges, we first note that by a third-order Taylor expansion, we have that
arctan(x) = x+ 6(x∗)2−2

6(x2
∗+1)3

x3 for some x∗ ∈ [0, x] (we use this to denote [0, x] for x ≥ 0 as well as
[x, 0] for x < 0, with an abuse of notation). This implies that for all K1,K2 ≥ K∗, where K∗ is
defined as before,∣∣∣∑K2

k=K1

(
− akt+

1

2
arctan(2akt)

)∣∣∣ =
∣∣∣∑K2

k=K1

(
− akt+

1

2
arctan(2akt)

)∣∣∣
≤

∑K2

k=K1
supbk∈[0,ak]

∣∣∣1
2

24b2kt
2 − 2

6(4b2kt
2 + 1)3

8a3kt
3
∣∣∣

= 4t3
∑K2

k=K1
|ak|3

(
supbk∈[0,ak]

∣∣∣24b2kt2 + 6− 8

6(4b2kt
2 + 1)3

∣∣∣)
= 4t3

∑K2

k=K1
|ak|3

(
supbk∈[0,ak]

∣∣∣ 1

(4b2kt
2 + 1)2

− 4

3(4b2kt
2 + 1)2

∣∣∣)
≤ 20t3

∑K2

k=K1
|ak|3 ≤ 20t3

(∑K2

k=K1
(ak)

2
)3/2

≤ 20t3ϵ3/2 ,

where, in the last line, we have used the relative sizes of lp norms. This implies that IK converges.
To show that Eq. (20) converges, we need to show that mK in Eq. (20) is eventually constant. By
using Eq. (20) and a triangle inequality, we have that

π|m′
K+1 −m′

K | ≤ |IK+1 − IK |+
∣∣∣Im(SK+1)− Im(SK)

∣∣∣
= |IK+1 − IK |+

∣∣aK+1t+
1

2
log(1− 2iaK+1t)

∣∣ .
The first term converges to zero, since we have shown that IK converges. Since aK → 0 by Eq. (19)
and the complex logarithm we use is continuous outside {z : Re(z) > 0}, the second term above
also converges to zero. Therefore |m′

K+1 −m′
K | → 0, and since (m′

K)K∈N is an integer sequence,
(m′

K)K∈N converges. By Eq. (20), this implies that Im(SK) converges, and since we have shown
Re(SK) converges, we get that SK converges. Finally, to show that ψWK

n −D(t) converges, since
Re(SK) = Re

(
ψWK

n −D(t)
)
, we only need to show that Im

(
ψWK

n −D(t)
)

converges. By Eq. (18),
this again reduces to showing that mK is eventually constant. As before, by a triangle inequality,

2π|mK+1 −mK | ≤ |Im(SK+1)− Im(SK)|+
∣∣Im(logψWK+1

n −D(t))− Im(logψWK
n −D(t))

∣∣
= |Im(SK+1)− Im(SK)|+

∣∣aK+1t+
1

2
log(1− 2iaK+1t)

∣∣ K→∞−−−−→ 0 ,

where the convergence of both terms has been shown earlier. This proves that the characteristic
function ψWK

n −D(t) converges for every t ∈ R.

Appendix E. Proofs for Section 4

E.1. Proofs for the general results

Proof of Lemma 15 To prove the first result, note that since κ is a kernel, there exists a RKHS H
and a map Φ : Rd → H such that we can write

uMMD
(
(x,y), (x′,y′)

)
= ⟨Φ(x),Φ(y′)⟩H + ⟨Φ(y),Φ(y′)⟩H − ⟨Φ(x),Φ(y′)⟩H − ⟨Φ(x′),Φ(y)⟩H
= ⟨Φ(x)− Φ(y),Φ(x′)− Φ(y′)⟩H .
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Defining Φ∗
(
(x,y)

)
:= Φ(x) − Φ(y) proves that uMMD is a kernel. To prove the second result,

note that by the definition of a weak Mercer representation, we have that almost surely∣∣∑K

k=1
λkϕk(Z1)ϕk(Z2)− uMMD(Z1,Z2)

∣∣ K→∞−−−−→ 0 ,

which in particular implies convergence in probability. The argument uses the Vitali convergence
theorem. By Assumption 3, there exists some ν∗ > ν such that supK≥1 E[|

∑K
k=1 λkϕk(Z1)ϕk(Z2)|ν

∗
] <

∞ and E[|uMMD(Z1,Z2)|ν
∗
] <∞. By a triangle inequality and a Jensen’s inequality, we have

supK≥1 E
[∣∣∣∑K

k=1
λkϕk(Z1)ϕk(Z2)− uMMD(Z1,Z2)

∣∣∣ν∗]
≤ supK≥1 E

[∣∣∣ ∣∣∑K

k=1
λkϕk(Z1)ϕk(Z2)

∣∣+ ∣∣uMMD(Z1,Z2)
∣∣ ∣∣∣ν∗]

≤ 2ν
∗−1 supK≥1 E

[∣∣∑K

k=1
λkϕk(Z1)ϕk(Z2)

∣∣ν∗]+ 2ν
∗−1E

[∣∣uMMD(Z1,Z2)
∣∣ν∗] < ∞ .

This implies for any ν ∈ (2, ν∗), the sequence
((∑K

k=1 λkϕk(Z1)ϕk(Z2)−uMMD(Z1,Z2)
)ν)

K∈N
is uniformly integrable, and therefore converges to zero inL1(R2d, P⊗Q) by the Vitali convergence
theorem. Since convergence inLν implies convergence inLmin{ν,3}, we get that Assumption 2 holds
for min{ν, 3}.

Before we prove the next result, recall that {λk}∞k=1 and {ϕk}∞k=1 are defined as the weak Mercer
representation for the kernel κ under Q, and we have assumed that ϕk’s are differentiable. We have
also defined the sequence of values {αk}∞k=1 and the sequence of functions {ψk}∞k=1 in (6) as

α(k′−1)d+l := λk′ and ψ(k′−1)d+l(x) := (∂xl
log p(x))ϕk′(x) + ∂xl

ϕk′(x) ,

for 1 ≤ l ≤ d and k′ ∈ N. For convenience, we denote ψk′;l := ψ(k′−1)d+l in the proof below.

Proof of Lemma 16 Recall that ψk′;l(x) := (∂xl
log p(x))ϕk′(x) + ∂xl

ϕk′(x). Write ψ̃k′(x) :=
(ψk′;1(x), . . . , ψk′;n(x))

⊤. We first consider the error term with dK ′ summands for some K ′ ∈ N:

E
[∣∣∣∑dK′

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣ν]

= E
[∣∣∣∑d

l=1

∑K′

k′=1
λk′ψk′;l(X1)ψk′;l(X2)− uKSD

P (X1,X2)
∣∣∣ν]

= E
[∣∣∣∑K′

k′=1
λk′
(
ψ̃k′(X1)

)⊤(
ψ̃k′(X2)

)
− uKSD

P (X1,X2)
∣∣∣ν]

= E
[∣∣T1 + T2 + T3 + T4 − uKSD

P (X1,X2)
∣∣ν] ,

where the random quantities are defined in terms of X1,X2
i.i.d.∼ Q:

T1 :=
(
∇ log p(X1)

)⊤(∇ log p(X2)
)∑K′

k′=1
λk′ϕk′(X1)ϕk′(X2) ,

T2 :=
(
∇ log p(X1)

)⊤(∑K′

k′=1
λk′
(
∇ϕk′(X2)

)
ϕk′(X1)

)
,

T3 :=
(
∇ log p(X2)

)⊤(∑K′

k′=1
λk′
(
∇ϕk′(X1)

)
ϕk′(X2)

)
,

T4 :=
∑K′

k′=1
λk′
(
∇ϕk′(X1)

)⊤(∇ϕk′(X2)
)
.
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Recall that by Assumption 3, there exists some ν∗ > ν such that we have ∥κ∗(Z1,Z2)∥Lν∗ < ∞
and supK≥1 ∥

∑K
k=1 λkϕk(Z1)ϕk(Z2)∥Lν∗ < ∞. By using the proof of the second part of Lemma

15 above, for ν∆ := ν+ν∗

2 ∈ (ν, ν∗), we have

E
[∣∣∑K′

k′=1
λk′ϕk′(X1)ϕk′(X2)− u(X1,X2)

∣∣ν∆] K′→∞−−−−→ 0 .

Meanwhile by Assumption 4,
∥∥∥∇ log p(X1)∥2

∥∥
L2ν∗∗

<∞, where

ν∗∗ =
ν(ν + ν∗)

ν∗ − ν
=
(
1

ν
− 2

ν + ν∗

)−1
=
(
1

ν
− 1

ν∆

)−1
> ν .

By a Cauchy-Schwarz inequality and a Hölder’s inequality, we have that∥∥(∇ log p(X1)
)⊤(∇ log p(X2)

)∥∥
Lν∗∗

≤
∥∥ ∥∇ log p(X1)∥2

∥∥
L2ν∗∗

<∞ .

Now by a Hölder’s inequality and noting that (ν∗∗)−1 + (ν∆)−1 = ν−1, we can now bound the
error of using T1 to approximate the first term of uKSD

P as

E[|E1|ν ] := E
[∣∣T1 − (∇ log p(X1)

)⊤(∇ log p(X2)
)
u(X1,X2)

∣∣ν]
=
∥∥T1 − (∇ log p(X1)

)⊤(∇ log p(X2)
)
u(X1,X2)

∥∥ν
Lν

≤
∥∥(∇ log p(X1)

)⊤(∇ log p(X2)
)∥∥ν

Lν∗∗

∥∥∑K′

k′=1
λk′ϕk′(X1)ϕk′(X2)− u(X1,X2)

∥∥ν
L
ν∆

K′→∞−−−−→ 0 .

For T2, we consider a similar approximation error quantity and apply a Cauchy-Schwarz inequality:

E[|E2|ν ] := E
[∣∣T2 − (∇ log p(X1)

)⊤∇2κ(X1,X2)
∣∣ν]

= E
[∣∣∣(∇ log p(X1)

)⊤(∑K′

k′=1
λk′
(
∇ϕk′(X2)

)
ϕk′(X1)−∇2κ(X1,X2)

)∣∣∣ν]
≤ ∥∥∇ log p(X1)∥2 ∥νL2ν

∥∥∥∥∥∥∑K′

k′=1
λk′
(
∇ϕk′(X2)

)
ϕk′(X1)−∇2κ(X1,X2)

∥∥∥
2

∥∥∥ν
L2ν

K′→∞−−−−→ 0 ,

where we have noted that the first term is bounded since 2ν < 2ν∗∗ and used Assumption 4(iv). By
symmetry of κ and the fact that X1 and X2 are exchangeable, we have the same result for T3:

E[|E3|ν ] := E
[∣∣T3 − (∇ log p(X2)

)⊤∇1κ(X1,X2)
∣∣ν] K′→∞−−−−→ 0 .

Meanwhile, the second condition of Assumption 4(iv) directly says that

E[|E4|ν ] := E
[∣∣T4 − Tr

(
∇1∇2κ(X1,X2)

)∣∣ν] K′→∞−−−−→ 0 .

Combining the results and applying a Jensen’s inequality to the convex function x 7→ |x|ν , we have

E
[∣∣∣∑dK′

k=1
αkψk(X1)ψk(X2)−uKSD

P (X1,X2)
∣∣∣ν] = E

[∣∣E1 + E2 + E3 + E4

∣∣ν]
≤ E

[∣∣1
4
(4E1) +

1

4
(4E2) +

1

4
(4E3) +

1

4
(4E4)

∣∣ν]
≤ 4ν−1

(
E[|E1|ν ] + E[|E2|ν ] + E[|E3|ν ] + E[|E4|ν ]

) K′→∞−−−−→ 0 .
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Now consider K ∈ N that is not necessarily divisible by d, and let K ′ be the greatest integer such
that K ≥ dK ′. Then by a triangle inequality and a similar Jensen’s inequality as above, we get

E
[∣∣∣∑K

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣ν]

≤ 2ν−1E
[∣∣∣∑dK′

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣ν]

+ 2ν−1E
[∣∣∣∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣ν] . (21)

The first term is o(1) as K → ∞ by the previous argument, so we only need to focus on the second
term. The expectation can be bounded by noting that αk = λK′+1 ≥ 0 for all dK ′ + 1 ≤ k ≤ K
and using a triangle inequality followed by a Jensen’s inequality:

E
[∣∣∣∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣ν]
≤ (λK′+1)

νE
[(

1

K − dK′

∑K

k=dK′+1
(K − dK ′)|ψk(X1)ψk(X2)|

)ν]
≤ (λK′+1)

ν(K − dK ′)ν−1
∑K

k=dK′+1
E[|ψk(X1)ψk(X2)|ν ]

≤ (λK′+1)
νdν supk∈{dK′+1,...,dK′+d} E[|ψk(X1)ψk(X2)|ν ]

= (λK′+1)
νdν sup1≤l≤d E[|ψdK′+l(X1)|ν ]2 .

In the last equality, we have noted that X1 and X2 are identically distributed. Now by the definition
of ψk, another Jensen’s inequality on x 7→ |x|ν and a Cauchy-Schwarz inequality, we have

E[|ψdK′+l(X1)|ν ] = E[|(∂xl
log p(X1))ϕK′+1(X1) + ∂xl

ϕK′+1(X1)|ν ]
≤ 2ν−1E[|(∂xl

log p(X1))ϕK′+1(X1)|ν ] + 2ν−1E[|∂xl
ϕK′+1(X1)|ν ]

≤ 2ν−1E[|∂xl
log p(X1)|2ν ]1/2 E[|ϕK′+1(X1)|2ν ]1/2 + 2ν−1E[|∂xl

ϕK′+1(X1)|ν ]
≤ 2ν−1E[∥∇ log p(X1)∥2ν2 ]1/2 E[|ϕK′+1(X1)|2ν ]1/2 + 2ν−1E[∥∇ϕK′+1(X1)∥ν2 ]
= 2ν−1∥∥∇ log p(X1)∥2∥νL2ν

∥ϕK′+1(X1)∥νL2ν
+ 2ν−1∥∥∇ϕK′+1(X1)∥2∥νLν

.

By Assumption 4(i), (ii) and (iii), all three norms are bounded, so E[|ψdK′+l(X1)|ν ] < ∞. By
the definition of λk from the weak Mercer representation, as K → ∞ and therefore K ′ → ∞,
λK′+1 → 0, which implies

E
[∣∣∣∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣ν] = o(1) .

This means that both terms in (21) converge to 0 as K → ∞. In other words,

E
[∣∣∣∑K

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣ν] K→∞−−−−→ 0 .

Since Lν-convergence implies Lmin{ν,3}-convergence and we have assumed that ν > 2, we get that
Assumption 2 holds for min{ν, 3} with respect to the uKSD

P , αk and ψk.
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E.2. Proof of Proposition 18

From Lemma 22, we can write the variance ratio as

σ2
full

σ2
cond

=
(

γ

4 + γ

)d/2 ( (1 + γ)(3 + γ)

γ2

)d/2 B

A
= C × B

A
,

where

A :=
(2 + γ)2

(1 + γ)(3 + γ)
∥µ∥22 +

(
1−

(
(1 + γ)(3 + γ)

(2 + γ)2

)d/2 )
∥µ∥42

= (1 + o(1)) ∥µ∥22 +
(
1− (1− α)d/2

)
∥µ∥42

B := d+
d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 +

(
1−

(
γ(4 + γ)

(2 + γ)2

)d/2 )
∥µ∥42 + o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

)
= d+

d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 +

(
1− (1− δ)d/2

)
∥µ∥42 + o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

)
C :=

(
γ

4 + γ

)d/2( (1 + γ)(3 + γ)

γ2

)d/2
=
(
(1 + γ)(3 + γ)

γ(4 + γ)

)d/2
,

and we have written (1+γ)(3+γ)
(2+γ)2

= 1 − α with α := 1
(2+γ)2

and γ(4+γ)
(2+γ)2

= 1 − δ with δ := 4
(2+γ)2

.
To simplify A and B, we first rewrite

1− (1− α)d/2 = 1− exp
(
−d

2
log (1− α)

)
(a)
= 1− exp

(
−d

2

(
1

(2 + γ)2
+O

(
1

γ4

)))
= 1− exp

(
− d

2(2 + γ)2
+O

(
d

γ4

))
. (22)

In (a), we have used a Taylor expansion by noting that γ is small by the stated assumption γ = ω(1).
Similarly we can obtain

1− (1− δ)d/2 = 1− exp
(
d

2
log(1− δ)

)
= 1− exp

(
d

2

(
− 4

(2 + γ)2
+O

(
1

γ4

)))
= 1− exp

(
− 2d

(2 + γ)2
+O

(
d

γ4

))
, (23)

C = exp
(
d

2
log
(
1 +

3

γ(4 + γ)

))
= exp

(
d

2

(
3

γ(4 + γ)
+O

(
1

γ4

)))
= exp

(
3d

2γ(4 + γ)
+O

(
d

γ4

))
. (24)

Therefore, the terms (1 − α)d/2, (1 − γ)d/2 and C can be small, large or close to a constant,
depending on whether γ2 grows faster than, lower than, or at the same rate as d. We now consider
the three cases individually.

Case 1: γ = o(d1/2). In this case, d
(2+γ)2

= ω(1), so we have (1−α)d/2 = o(1) and (1−δ)d/2 =
o(1). Therefore

A = (1 + o(1))∥µ∥22 + (1 + o(1))∥µ∥42 = Θ(∥µ∥22 + ∥µ∥42) = Θ(∥µ∥42) ,

and

B = d+
d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 + ∥µ∥42 + o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

)
= Θ

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥42

)
.
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Combining with the previous expressions for A, B and C yields

ρd =
σfull

σcond
=

√
C ×

√
B√
A

= exp
(

3d

4γ(4 + γ)
+O

(
d

γ4

))
Θ

(√
d

∥µ∥42
+

d2

γ2∥µ∥42
+

d

γ∥µ∥22
+ 1

)
(a)
= exp

(
3d

4γ2 + o
(

d

γ2

))
Θ

(√
d2

γ2∥µ∥42
+

d

γ∥µ∥22
+ 1

)
(b)
= exp

(
3d

4γ2 + o
(

d

γ2

))
Θ

(
d

γ∥µ∥22
+

d1/2

γ1/2∥µ∥2
+ 1

)
,

where in (a) we have used the fact that γ = o(d1/2), and in (b) we have noted that for a, b, c > 0,√
a+ b+ c ≤

√
a+

√
b+

√
c and by a Jensen’s inequality,

√
a+ b+ c ≥ 1√

3
(
√
a+

√
b+

√
c).

Case 2: γ = ω(d1/2). Since in this case d
γ2 is small, we can use Taylor expansion to approximate

the exponential term in (22) to get

1− (1− α)d/2 = 1− exp
(
− d

2(2 + γ)2
+O

(
d

γ4

))
= 1−

(
1− d

2(2 + γ)2
+O

(
d2

γ4

))
=

d

2(2 + γ)2
+ o
(

d

γ2

)
.

Using a similar argument applied to (23), we have

1− (1− δ)d/2 = 1− exp
(
− 2d

(2 + γ)2
+O

(
d

γ4

))
=

2d

(2 + γ)2
+ o
(

d

γ2

)
,

and (24) yields

C = exp
(

3d

2γ(4 + γ)
+O

(
d

γ4

))
= 1 +

3d

2γ(4 + γ)
+O

(
d2

γ4

)
= 1 + o(1) .

We therefore conclude that

A = (1 + o(1))∥µ∥22 +
(

d

2(2 + γ)2
+ o
(

d

γ2

))
∥µ∥42 = Θ

(
∥µ∥22 +

d

γ2 ∥µ∥
4
2

)
,

A similar argument shows that

B = d+
d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 + ∥µ∥42

(
2d

(2 + γ)2
+ o

(
d

γ2

))
+ o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

)
= Θ

(
d+

d∥µ∥22
γ

+ ∥µ∥22 +
d∥µ∥42
γ2

)
,

where in the last line we noted that γ = ω(d1/2) implies d2

γ2 = o(d). Combining the results gives

ρd =
σfull

σcond
=

√
C ×

√
B√
A

=
√
1 + o(1) Θ

(
d1/2 + γ−1/2d1/2∥µ∥2 + ∥µ∥2 + γ−1d1/2∥µ∥22

∥µ∥2 + γ−1d1/2∥µ∥22

)
= Θ

(
d1/2 + γ−1/2d1/2∥µ∥2
∥µ∥2 + γ−1d1/2∥µ∥22

+ 1
)

= Θ
(

d1/2(1 + γ−1/2∥µ∥2)
∥µ∥2 (1 + γ−1d1/2∥µ∥2)

+ 1
)
.
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Case 3: γ = Θ(d1/2). Since in this case d
γ4 is small, we have that exp

(
O
(

d
γ4

))
= 1 +O

(
d
γ4

)
by

a Taylor expansion. Substituting this into (22), we have

0 ≤ 1− (1− α)d/2 = 1− exp
(
− d

2(2 + γ)2

)(
1 +O

(
d

γ4

))
= 1− exp

(
− d

2(2 + γ)2

)
+O

(
d

γ4

)
= Θ(1) ,

where the last line holds as 1 − exp
(
− d

2(2+γ)2

)
= Θ(1). A similar argument applied to (23) and

(24) gives

0 ≤ 1− (1− δ)d/2 = 1− exp
(
− 2d

(2 + γ)2
+O

(
d

γ4

))
= Θ(1) ,

0 ≤ C = exp
(

3d

2γ(4 + γ)
+O

(
d

γ4

))
= Θ(1) .

Combining the above derivations yields

A = Θ(∥µ∥22 + ∥µ∥42) = Θ(∥µ∥42) ,

B = Θ
(
d+

d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 + ∥µ∥42

)
= Θ

(
d+ d1/2∥µ∥22 + ∥µ∥42

)
,

where in the equality for B we have used the fact that ∥µ∥22 = Ω(1) implies ∥µ∥22 = O(∥µ∥42) and
that γ = Θ(d1/2) implies d

γ = Θ(d1/2). Therefore,

ρd =
σfull

σcond
=

√
C ×

√
B√
A

= Θ

(√
d

∥µ∥42
+

d1/2

∥µ∥22
+ 1

)
= Θ

(
d1/2

∥µ∥22
+

d1/4

∥µ∥2
+ 1

)
.

This completes the proof.

E.3. Proof of Proposition 19

Recall the expressions of σ2cond and σ2full for MMD-RBF from Lemma 24, which allow us to rewrite
σ2cond = CA and σ2full = CB, where

A := 1 + exp
(
− 1

3 + γ
∥µ∥22

)
+ 2

(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− 1

2(2 + γ)
∥µ∥22

)
− 2 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− 1

2 + γ
∥µ∥22

)
B :=

(
3 + γ

4 + γ

)d/2(1 + γ

γ

)d/2(
1 + exp

(
− 1

4 + γ
∥µ∥22

))
−
(
3 + γ

2 + γ

)d/2(1 + γ

2 + γ

)d/2
− 4 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
−
(
3 + γ

2 + γ

)d/2(1 + γ

2 + γ

)d/2
exp

(
− 1

2 + γ
∥µ∥22

)
+ 4
(
3 + γ

2 + γ

)d/2(1 + γ

2 + γ

)d/2
exp

(
− 1

2(2 + γ)
∥µ∥22

)
C := 2

(
γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
.
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This implies that σ2full/σ
2
cond = B/A, so it suffices to calculate the leading terms in A and B,

respectively. We first write (3+γ)(1+γ)
(2+γ)2

= 1− 1
(2+γ)2

=: 1−α and (3+γ)(1+γ)
(4+γ)γ = 1+ 3

γ(4+γ) =: 1+β,
where α and β are small as γ = ω(1) by assumption. Rearranging A gives

A = 1 + exp
(
− 1

3 + γ
∥µ∥22

)
− 2 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
+ (1− α)d/2

(
2 exp

(
− 1

2(2 + γ)
∥µ∥22

)
− 1− exp

(
− 1

2 + γ
∥µ∥22

))
=: A1 + (1− α)d/2A2 ,

and similarly,

B = (1 + β)d/2
(
1 + exp

(
− 1

4 + γ
∥µ∥22

))
− 4 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
− (1− α)d/2

(
1 + exp

(
− 1

2 + γ
∥µ∥22

)
− 4 exp

(
− 1

2(2 + γ)
∥µ∥22

))
=: (1 + β)d/2B1 −B2 − (1− α)d/2B3 .

These expressions can be simplified further depending on the relative growth rates of d, γ and ∥µ∥22;
we consider these cases individually.

Case 1: γ = o(d1/2) and γ = o(∥µ∥22). Since γ = o(∥µ∥22), all exponential terms of the form

exp
(
− 1

a(b+γ)∥µ∥
2
2

)
, for any positive constants a, b, are o(1). Moreover, since we have assumed

that γ = ω(1), we can apply a Taylor expansion to yield

(1− α)d/2 = exp
(
d

2
log
(
1− 1

(2 + γ)2

))
= exp

(
d

2

(
− 1

(2 + γ)2
+O

(
1

γ4

)))
= exp

(
− d

2γ2 + o
(

d

γ2

))
. (25)

Therefore, when γ = o(d1/2), we have (1 − α)d/2 = o(1). Thus the dominating term in A is the
leading constant 1 and

A = 1 + o(1) .

To control B, we first consider a similar Taylor expansion by noting that γ = ω(1):

(1 + β)d/2 = exp
(
d

2
log
(
1+

3

γ(4 + γ)

))
= exp

(
d

2

(
3

γ(4 + γ)
+O

(
1

γ4

)))
= exp

(
3d

2γ(4 + γ)
+O

(
d

γ4

))
= exp

(
3d

2γ2 + o
(

d

γ2

))
. (26)

Since γ = o(d1/2), we have that (1 + β)d/2 = ω(1). All exponential terms and (1− α)d/2 are o(1)
by the calculations above, so

B = (1 + β)d/2 + o((1 + β)d/2) = Θ
(
exp

(
3d

2γ2 + o
(

d

γ2

)))
.

Combining the results for A and B gives

ρd =
σfull

σcond
=

√
B√
A

= Θ
(
exp

(
3d

4γ2 + o
(

d

γ2

)))
.
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Case 2: γ = o(d1/2) and γ = ω(∥µ∥22). Since γ = ω(∥µ∥22), we can bound A1 by first extracting
an exponential factor and then applying two second-order Taylor expansions:

A1 = 1 + exp
(
− 1

3 + γ
∥µ∥22

)
− 2 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
= 1 + exp

(
− 1

3 + γ
∥µ∥22

)(
1− 2 exp

(
γ

2(1 + γ)(3 + γ)
∥µ∥22

))
= 1 +

(
1− ∥µ∥22

3 + γ
+

∥µ∥42
2(3 + γ)2

+O
(∥µ∥62

γ3

))
×
(
− 1− γ∥µ∥22

(1 + γ)(3 + γ)
− γ2∥µ∥42

4(1 + γ)2(3 + γ)2
+O

(∥µ∥62
γ3

))
= 1− 1 +

(
1

3 + γ
− γ

(1 + γ)(3 + γ)

)
∥µ∥22

+
(
− 1

2(3 + γ)2
− γ2

4(1 + γ)2(3 + γ)2
+

γ

(1 + γ)(3 + γ)2

)
∥µ∥42 +O

(∥µ∥62
γ3

)
=

1

(1 + γ)(3 + γ)
∥µ∥22 +

−2 + γ2

4(3 + 4γ + γ2)2
∥µ∥42 +O

(∥µ∥62
γ3

)
.

Note that the first term is on the order γ−2∥µ∥22, the second term is on the order γ−2∥µ∥42 and the
third term is on the order γ−3∥µ∥62. Since γ−1∥µ∥22 = o(1) and ∥µ∥22 = Ω(1), the second term
dominates and we get that

A1 =
∥µ∥42
4γ2 + o

(∥µ∥42
γ2

)
. (27)

To control A2, we use a similar Taylor expansion to get that

A2 = 2 exp
(
− 1

2(2 + γ)
∥µ∥22

)
− 1− exp

(
− 1

2 + γ
∥µ∥22

)
= − 1 + exp

(
− 1

2 + γ
∥µ∥22

) (
2 exp

(
1

2(2 + γ)
∥µ∥22

)
− 1
)

= − 1 +
(
1− ∥µ∥22

2 + γ
+

∥µ∥42
2(2 + γ)2

+O
(∥µ∥62

γ3

)) (
1 +

∥µ∥22
2 + γ

+
∥µ∥42

4(2 + γ)2
+O

(∥µ∥62
γ3

))
=
(

1

4(2 + γ)2
+

1

2(2 + γ)2
− 1

(2 + γ)2

)
∥µ∥42 +O

(∥µ∥62
γ3

)
= − ∥µ∥42

4(2 + γ)2
+O

(∥µ∥62
γ3

)
. (28)

In particular, we haveA2 = O(γ−2∥µ∥42) = O(A1). Since γ = o(d1/2), we have (1−α)d/2 = o(1)
as before, which implies

A = A1 + (1− α)d/2A2 =
∥µ∥42
4γ2 + o

(∥µ∥42
γ2

)
.

To control B, recall we have shown in Case 1 that (1 + β)d/2 = ω(1) and (1 − α)d/2 = o(1) for
γ = o(d1/2). All exponential terms are O(1) and B1 = 2 + O(γ−1∥µ∥22) by a Taylor expansion.
By (26), we obtain that

B = (1 + β)d/2B1 −B2 − (1− α)d/2B3 = 2(1 + β)d/2 + o((1 + β)d/2)

= Θ
(
exp

(
3d

2γ2 + o
(

d

γ2

)))
.
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We hence conclude that

ρd =
σfull

σcond
=

√
B√
A

= Θ
(

γ

∥µ∥22
exp

(
3d

4γ2 + o
(

d

γ2

)))
.

Case 3: γ = ω(∥µ∥22) and γ = ω(d1/2). We first rewrite the expressions of A and B as

A = (A1 +A2)− (1− (1− α)d/2)A2 , (29)

B = (B1 −B2 −B3) + ((1 + β)d/2 − 1)B1 + (1− (1− α)d/2)B3 . (30)

Since γ = ω(d1/2), we can perform a further Taylor expansion on the expressions in (25) and (26):

(1− α)d/2 = exp
(
− d

2(2 + γ)2
+O

(
d

γ4

))
= 1− d

2(2 + γ)2
+O

(
d

γ4

)
, (31)

(1 + β)d/2 = exp
(

3d

2γ(4 + γ)
+O

(
d

γ4

))
= 1 +

3d

2γ(4 + γ)
+O

(
d

γ4

)
, (32)

On the other hand, since γ−1∥µ∥22 is small, we can consider performing Taylor expansions on each
exponential. By grouping the terms and extracting an appropriate exponential, we get that

A1 +A2 = exp
(
− 1

3 + γ
∥µ∥22

)
− exp

(
− 1

2 + γ
∥µ∥22

)
− 2 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
+ 2 exp

(
− 1

2(2 + γ)
∥µ∥22

)
= exp

(
− 1

2 + γ
∥µ∥22

)(
exp

(
1

(3 + γ)(2 + γ)
∥µ∥22

)
− 1
)

− 2 exp
(
− 1

2(2 + γ)
∥µ∥22

)(
− exp

(
− 1

2(6 + 11γ + 6γ2 + γ3)
∥µ∥22

)
+ 1
)

=
1

(3 + γ)(2 + γ)
∥µ∥22 + o

(
1

(3 + γ)(2 + γ)
∥µ∥22

)
+O

(∥µ∥22
γ3

)
=

∥µ∥22
(3 + γ)(2 + γ)

+ o
(∥µ∥22

γ2

)
. (33)

In the last line, we have used that the dominating term is of the order ∥µ∥22/γ2. For A2, we recall

from (28) that A2 = −∥µ∥42
4γ2 + o

(∥µ∥42
γ2

)
. Substituting the computations into (29) and using (31), we

obtain that

A = (A1 +A2)− (1− (1− α)d/2)A2

=
∥µ∥22

(3 + γ)(2 + γ)
+ o
(∥µ∥22

γ2

)
+
(

d

2(2 + γ)2
+O

(
d

γ4

))( ∥µ∥42
4(2 + γ)2

+ o
(∥µ∥42

γ2

))
= Θ

(∥µ∥22
γ2 +

d∥µ∥42
γ4

)
.
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We use a similar argument to compute B. By grouping terms appropriately and performing Taylor
expansions, we have

B1 −B2 −B3 = exp
(
− 1

4 + γ
∥µ∥22

)
− exp

(
− 1

2 + γ
∥µ∥22

)
− 4 exp

(
− 2 + γ

2(1 + γ)(3 + γ)
∥µ∥22

)
+ 4 exp

(
− 1

2(2 + γ)
∥µ∥22

)
= exp

(
− 1

4 + γ
∥µ∥22

)(
1− exp

(
− 2

(4 + γ)(2 + γ)
∥µ∥22

))
− 4 exp

(
− 1

2(2 + γ)
∥µ∥22

)(
− exp

(
− 1

2(6 + 11γ + 6γ2 + γ3)
∥µ∥22

)
+ 1
)
,

=
2∥µ∥22

(4 + γ)(2 + γ)
+ o
(

2∥µ∥22
(4 + γ)(2 + γ)

)
+O

(
∥µ∥22
γ3

)
=

2∥µ∥22
(4 + γ)(2 + γ)

+ o
(∥µ∥22

γ2

)
. (34)

By performing Taylor expansions again, we can control B1 and B3 as

B1 = 1 + exp
(
− 1

4 + γ
∥µ∥22

)
= 2 + o(1) , (35)

B3 = 1 + exp
(
− 1

2 + γ
∥µ∥22

)
− 4 exp

(
− 1

2(2 + γ)
∥µ∥22

)
= −2 + o(1) . (36)

Substituting the bounds into (30) and using the bounds in (31) and (32), we obtain that

B = (B1 −B2 −B3) + ((1 + β)d/2 − 1)B1 + (1− (1− α)d/2)B3

=
2∥µ∥22

(4 + γ)(2 + γ)
+ o

(
∥µ∥22
γ2

)
+
(

3d

2γ(4 + γ)
+O

(
d

γ4

))
(2 + o(1))

+
(

d

2(2 + γ)2
+O

(
d

γ4

))
(−2 + o(1))

=
2∥µ∥22

(4 + γ)(2 + γ)
+ o

(
∥µ∥22
γ2

)
+

2d(6 + 4γ + γ2)

γ(2 + γ)2(4 + γ)
+ o

(
d

γ2

)
= Θ

(∥µ∥22
γ2 +

d

γ2

)
.

The variance ratio can therefore be bounded as

ρd =
σfull

σcond
=

√
B√
A

= Θ
((

γ−2∥µ∥22 + γ−2d

γ−2∥µ∥22 + γ−4d∥µ∥42

)1/2 )
= Θ

(
(∥µ∥22 + d)1/2

(∥µ∥22 + γ−2d∥µ∥42)1/2
)

(a)
= Θ

( ∥µ∥2 + d1/2

∥µ∥2 + γ−1d1/2∥µ∥22

)
.

In (a), we have noted that for a, b > 0,
√
a+ b ≤

√
a+

√
b and, by the concavity of the square-root

function,
√
a+ b =

√
1
2(2a) +

1
2(2b) ≥

1√
2
(
√
a+

√
b).

Case 4: γ = ω(∥µ∥22) and γ = Θ(d1/2). We can directly make use of the computations from
Case 2 and 3 except that we control (1− α)d/2 and (1 + β)d/2 differently. Since

0 ≤ (1− α)d/2 = (1− 1

(2 + γ)2
)d/2 ≤ 1 ,
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we see that A = (A1 + A2) − (1 − (1 − α)d/2)A2 takes value between A1 + A2 and A1, whose
Taylor expansions under γ = ω(∥µ∥22) have been obtained in (33) and (27) respectively. Therefore,

A = Θ
(
(A1 +A2) +A1

)
= Θ

(∥µ∥42
γ2

)
.

To computeB, we first recall the Taylor expansion from (26) using γ = ω(1) and additionally make
use of γ = Θ(d1/2) to get

(1 + β)d/2 = exp
(

3d

2γ2 + o
(

d

γ2

))
= exp

(
Θ(1)

)
= O(1) .

By using the expressions from (34), (35) and (36), we get that

B = (B1 −B2 −B3) + ((1 + β)d/2 − 1)B1 + (1− (1− α)d/2)B3

=
2∥µ∥22

(4 + γ)(2 + γ)
+ o
(∥µ∥22

γ2

)
+ ((1 + β)d/2 − 1)(2 + o(1)) + (1− (1− α)d/2)(−2 + o(1))

= Θ
(∥µ∥22

γ2 + ((1 + β)d/2 + (1− α)d/2 − 2)
)

= O(γ−2∥µ∥22 + 1) = O(1) .

In the last equality, we have noted that γ−2∥µ∥22 = o(γ−1) = o(1) by assumption. By additionally
noting that γ = Θ(d1/2), the variance ratio can therefore be bounded as

ρd =
σfull

σcond
=

√
B√
A

= O
(

1

γ−1∥µ∥22

)
= O

(
d1/2

∥µ∥22

)
.

This completes the proof.

Appendix F. Proofs for Appendix A

F.1. Proofs for RBF decomposition and verifying Assumption 2

In this section, we prove Lemma 20, Lemma 21 and Lemma 23.
Proof of Lemma 20 We first focus on the one-dimensional RBF kernel, denoted as κ1, which can
be expressed for x, x′ ∈ R as

|κ1(x, x′)| =
∣∣ exp(−(x− x′)2/(2γ))

∣∣ =
∣∣∣ exp(xx′

γ

)
e−x2/(2γ)e−(x′)2/(2γ)

∣∣∣ .
By applying a Taylor expansion around 0 to the infinitely differentiable function z 7→ exp( zγ ) for
z ∈ R, we obtain that for any K ∈ N and every x, x′ ∈ R.∣∣∣κ1(x, x′)−∑K

k=0

1

k!

(
xx′

γ

)k
e−x2/(2γ)e−(x′)2/(2γ)

∣∣∣
≤ supz∈[0,xx′]

∣∣∣ 1

(K + 1)!

(
xx′

γ

)K+1
ez/γ

∣∣∣ e−x2/(2γ)e−(x′)2/(2γ) .

Fix ν ∈ (2, 4]. Consider two independent normal random variables U ∼ N (b1, 1) and V ∼
N (b2, 1) for some b1, b2 ∈ R, and recall that ϕ∗k(x) := xke−x2/(2γ) and λ∗k := 1

k! γk . The above
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then implies that

E
[∣∣∣κ1(U, V )−

∑K

k=0
λ∗kϕ

∗
k(U)ϕ∗k(V )

∣∣∣ν]
≤ E

[
supz∈[0,UV ]

∣∣∣ 1

(K + 1)!

(
UV

γ

)K+1
ez/γ

∣∣∣ν e−νU2/(2γ)e−νV 2/(2γ)
]

=
1

((K + 1)! γK+1)ν
E
[
|UV |ν(K+1)e−νU2/(2γ)−νV 2/(2γ)+supz∈[0,UV ] νz/γ

]
≤ 1

((K + 1)! γK+1)ν
E
[
|UV |ν(K+1)e−ν(|U |−|V |)2/(2γ)]

≤ 1

((K + 1)! γK+1)ν
E
[
|U |ν(K+1)

]
E
[
|V |ν(K+1)

]
.

In the last inequality, we have noted that U and V are independent and bounded the exponential
term from above by 1. By the formula of absolute moments of a Gaussian, we get that

E
[
|U − b1|ν(K+1)

]
= E

[
|V − b2|ν(K+1)

]
=

2(νK)/2

√
π

Γ
(
νK + 1

2

)
.

By a Jensen’s inequality applied to the convex function x 7→ |x|ν(K+1), we get that

E
[
|U |ν(K+1)

]
= E

[
|b1 + (U − b1)|ν(K+1)

]
= E

[∣∣∣1
2
(2b1) +

1

2
(2(U − b1))

∣∣∣ν(K+1)]
≤ 2ν(K+1)−1

(
bν(K+1) + E[|U − b1|ν(K+1)]

)
=

(2b1)
ν(K+1)

2
+

2
3
2
ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

)
.

Similarly, we get that

E
[
|V |ν(K+1)

]
≤ (2b2)

ν(K+1)

2
+

2
3
2
ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

)
. (37)

Substituting these moment bounds and noting that (K + 1)! = Γ(K + 2), we get that

E
[∣∣∣∣κ1(U, V )−

∑K

k=0
λ∗kϕ

∗
k(U)ϕ∗k(V )

∣∣∣∣ν]
≤ 1

γν(K+1)
(
Γ(K + 2)

)ν ( (2b1)ν(K+1)

2
+

2
3
2
ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

))
×
(
(2b2)

ν(K+1)

2
+

2
3
2
ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

))
=: T (A1 +B)(A2 +B) .

AsK grows, the dominating terms are the Gamma functions, so we only need to control their ratios.
By Stirling’s formula for the gamma function, we have Γ(x) =

√
2π xx−1/2e−x

(
1 + O(x−1)

)
for

x > 0. This immediately implies that

TA1A2 = Θ
(

(4b1b2/γ)
ν(K+1)

(K + 2)ν(K+3/2)e−ν(K+2)

)
= o(1)

as K → ∞. Meanwhile,

Γ
( ν(K+1)+1

2

)(
Γ(K + 2)

)ν = Θ
(
KνK/2

KνK

)
= Θ

(
K−νK/2

)
,
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which implies that

TA1B = Θ
(
(4
√
2b1/γ)

νKK−νK/2
)

= o(1) ,

since the dominating term is K−νK/2. Similarly, TA2B = o(1). On the other hand, another
application of Stirling’s formula gives that(

Γ
( ν(K+1)+1

2

)2(
Γ(K + 2)

)ν = (2π)−(ν−2)/2

( ν(K+1)+1
2

)ν(K+1)

(K + 2)ν(K+3/2)
e−ν(K+1)−1+ν(K+2)

(
1 +O(K−1)

)2(
1 +O(K−1)

)ν
= Θ

(
(ν/2)νKKνK

Kν(K+3/2)

)
= Θ

(
(ν/2)νKK−3ν/2

)
.

This implies that

TB2 = Θ
(
(8/γ)νK(ν/2)νKK−3ν/2

)
= Θ

(
(2ν/γ)νKK−3ν/2

)
= o(1) ,

where we have recalled that ν ≤ 4 and used the assumption that γ > 8. In summary, we have
proved that for ν ∈ (2, 4] and any fixed b1, b2 ∈ R,

E
[∣∣∣κ1(U, V )−

∑K

k=0
λ∗kϕ

∗
k(U)ϕ∗k(V )

∣∣∣ν] ≤ T (A1 +B)(A2 +B)
K→∞−−−−→ 0 .

To extend this to multiple dimensions, we note that for the vectors x = (x1, . . . , xd) ∈ Rd and
x′ = (x1, . . . , xd) ∈ Rd, the multi-dimensional RBF kernel can then be expressed as

κ(x,x′) = exp
(
− ∥x− x′∥22/(2γ)

)
=

∏d

l=1
exp

(
− (xl − x′l)

2/(2γ)
)

=
∏d

l=1
κ1(xl, x

′
l) .

Recall that we have defined the independent normal vectors U ∼ N (0, Id) and V ∼ N (µ, Id). Let
U1, . . . , Ud be the coordinates of U and V1, . . . , Vd be those of V, which are all independent since
the covariance matrices are Id. For 0 ≤ l ≤ d and K ∈ N, define the random quantities

Sj;K :=
∑K

k=0
λ∗kϕ

∗
k(Uj)ϕ

∗
k(Vj) and Wl;K :=

(∏l

j=1
κ1(Uj , Vj)

)(∏d

j=l+1
Sj;K

)
.

In particular κ(U,V) = Wd;K . Now by expanding a telescoping sum and applying a triangle
inequality followed by a Jensen’s inequality, we have

E
[
|κ(U,V)−W0;K |ν

]
= E

[∣∣∣∑d

l=1
(Wl;K −Wl−1;K)

∣∣∣ν]
≤ E

[(∑d

l=1
|Wl;K −Wl−1;K |

)ν]
≤ dν−1

∑d

l=1
E[|Wl;K −Wl−1;K |ν ]

= dν−1
∑d

l=1

(∏l−1

j=1
E[|κ1(Uj , Vj)|ν ]

)
E[|κ1(Ul, Vl)− Sl;K |ν ]

(∏d

j=l+1
E[|Sj;K |ν ]

)
.

In the last equality, we have used the independence of Uj’s and Vj’s. To bound the summands, we
first note that κ1 is uniformly bounded in norm by 1, which implies that E[|κ1(Uj , Vj)|ν ] ≤ 1. By
the previous result, E[|κ1(Ul, Vl) − Sl;K |ν ] = o(1) as K → ∞. By a triangle inequality and a
Jensen’s inequality, we have that

E[|Sj;K |ν ] ≤ E
[∣∣|κ1(Uj , Vj)|+ |Sj;K − κ1(Uj , Vj)|

∣∣ν]
≤ 2ν−1E

[
|κ1(Uj , Vj)|ν

]
+ 2ν−1E

[
|Sj;K − κ1(Uj , Vj)|ν

]
≤ 2ν−1 + o(1) .
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This implies that each summand satisfies(∏l−1

j=1
E[|κ1(Uj , Vj)|ν ]

)
E[|κ1(Ul, Vl)− Sl;K |ν ]

(∏d

j=l+1
E[|Sj;K |ν ]

)
= o(1)

as K → ∞. Since d is not affected by K, we have shown the desired result

E
[∣∣∣κ(U,V)−

∏d

j=1

(∑K

k=0
λ∗kϕ

∗
k(Uj)ϕ

∗
k(Vj)

)∣∣∣ν] = E
[
|κ(U,V)−W0;K |ν

] K→∞−−−−→ 0 .

Proof of Lemma 21 We first rewrite uKSD
P as

uKSD
P (x,x′) = e−∥x−x′∥22/(2γ)

(
x⊤x′ − γ + 1

γ2 ∥x− x′∥22 +
d

γ

)
= e−∥x−x′∥22/(2γ)

(
− γ + 1

γ2 (∥x∥22 + ∥x′∥22) +
γ2 + 2γ + 2

γ2 x⊤x′ +
d

γ

)
= e−∥x−x′∥22/(2γ)

(
− γ + 1

γ2 (∥x∥22 + 1)(∥x′∥22 + 1) +
γ + 1

γ2 ∥x∥22∥x′∥22

+
γ2 + 2γ + 2

γ2

∑d

l=1
xlx

′
l +
(
d

γ
+

γ + 1

γ2

))
.

For K ′ ∈ N, write SK′ :=
∑K′

k′=1 αk′ψk′(X1)ψk′(X2), and define the following random variables
comparing each set of eigenvalue and eigenfunction to the corresponding term in uKSD

P :

TK′;1 =
∑K′

k′=1
λ(k′−1)(d+3)+1 ϕ(k′−1)(d+3)+1(X1)ϕ(k′−1)(d+3)+1(X1)

− e−∥X1−X2∥22/(2γ)
(
− γ + 1

γ2 (∥X1∥22 + 1)(∥X2∥22 + 1)
)

= − γ + 1

γ2 (∥X1∥22 + 1)(∥X2∥22 + 1)SK′ ,

TK′;2 =
∑K′

k′=1
λ(k′−1)(d+3)+2 ϕ(k′−1)(d+3)+2(X1)ϕ(k′−1)(d+3)+2(X1)

− e−∥X1−X2∥22/(2γ)
(
γ + 1

γ2 ∥X1∥22∥X2∥22
)

=
γ + 1

γ2 ∥X1∥22∥X2∥22 SK′ ,

TK′;3 =
∑K′

k′=1
λ(k′−1)(d+3)+3 ϕ(k′−1)(d+3)+3(X1)ϕ(k′−1)(d+3)+3(X1)

− e−∥X1−X2∥22/(2γ)
(
d

γ
+

γ + 1

γ2

)
=
(
d

γ
+

γ + 1

γ2

)
SK′ ,

TK′;3+l =
∑K′

k′=1
λ(k′−1)(d+3)+3+l ϕ(k′−1)(d+3)+3+l(X1)ϕ(k′−1)(d+3)+3+l(X1)

− e−∥X1−X2∥22/(2γ)
(
γ2 + 2γ + 2

γ2 (X1)l(X2)l
)

=
(
γ2 + 2γ + 2

γ2 (X1)l(X2)l

)
SK′
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for l = 1, . . . , d, where we have denoted the l-th coordinates of X1 and X2 by (X1)l and (X2)l
respectively. We now bound the approximation error with (d + 3)K ′ summands for K ′ ∈ N and
ν ∈ (2, 3]. Fix some ν1 ∈ (ν, 4] and let ν2 = 1/(ν−1 − ν−1

1 ). By using the quantites defined above,
a Jensen’s inequality to the convex function x 7→ |x|ν and a Hölder’s inequality to each E[|TK′;l|ν ],
we have

E
[∣∣∑(d+3)K′

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣ν]

= E
[∣∣∑d+3

l=1
TK′;l

∣∣ν]
≤ (d+ 3)ν−1

∑d+3

l=1
E[|TK′;l|ν ]

≤ (d+ 3)ν−1E[|SK′ |ν1 ]ν/ν1
( (

γ + 1

γ2

)ν
E[(∥X1∥22 + 1)ν2 ]ν/ν2 E[(∥X2∥22 + 1)ν2 ]ν/ν2

+
(
γ + 1

γ2

)ν
E
[
∥X1∥2ν22

]ν/ν2E[∥X2∥2ν22

]ν/ν2 + ( d

γ
+

γ + 1

γ2

)ν
+

∑d

l=1

(
γ2 + 2γ + 2

γ2

)ν
E
[
|(X1)l|ν2

]ν/ν2E[|(X2)l|ν2
]ν/ν2) .

The only K ′-dependence above comes from E[|SK′ |ν1 ]ν/ν1 = ∥SK′∥νLν1
, which converges to 0 as

K ′ grows by Lemma 20. Therefore

E
[∣∣∑(d+3)K′

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣ν] K′→∞−−−−→ 0 .

Now for K ∈ N not necessarily divisible by d + 3, we let K ′ be the largest integer such that
dK ′ ≤ K. By a triangle inequality and a Jensen’s inequality, we have

E
[∣∣∑K

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣ν]

≤ E
[(∣∣∑(d+3)K′

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣+ ∣∣∑K

k=(d+3)K′+1
λkϕk(X1)ϕk(X2)

∣∣)ν]
≤ 2ν−1E

[∣∣∑(d+3)K′

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣ν]

+ 2ν−1E
[∣∣∑K

k=(d+3)K′+1
λkϕk(X1)ϕk(X2)

∣∣ν] .
The goal is to show that the bound converges to 0 as K grows. We have already shown that the first
term is o(1), so we focus on the second term. The expectation in the second term can be bounded
using a Jensen’s inequality as

E
[∣∣∑K

k=(d+3)K′+1
λkϕk(X1)ϕk(X2)

∣∣ν] ≤ E
[(∑K

k=(d+3)K′+1
|λkϕk(X1)ϕk(X2)|

)ν]
≤ (K − (d+ 3)K ′)ν−1

∑K

k=(d+3)K′+1
E
[(
λkϕk(X1)ϕk(X2)

)ν]
≤ dν supk∈{(d+3)K′+1,...,(d+3)K′+(d+3)} E

[(
λkϕk(X1)ϕk(X2)

)ν]
= dν sup1≤l≤d+3 E

[(
λ(d+3)K′+lϕ(d+3)K′+l(X1)ϕ(d+3)K′+l(X2)

)ν]
.

By observing the formula for λk and ϕk, we see that there exists someK-independent constant Cd,γ

such that for 1 ≤ l ≤ d+ 3,

|λ(d+3)K′+l| ≤ Cd,γαK′+1 and |ϕ(d+3)K′+l| ≤ Cd,γψK′+1(x)(∥x∥22 + ∥x∥2 + 1) .
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This allows us to obtain the bound

E
[∣∣∑K

k=(d+3)K′+1
λkϕk(X1)ϕk(X2)

∣∣ν]
≤ dνC2

d,γα
ν
K′+1E[(ψK′+1(X1)ψK′+1(X2))

ν (∥X1∥22 + ∥X1∥2 + 1)ν(∥X2∥22 + ∥X2∥2 + 1)ν ]

(a)
= dνC ′

d,γ

(∏d

l=1
λ∗[gd(K′+1)]l

)ν
E
[(∏d

l=1
ϕ∗[gd(K′+1)]l

(
(X1)l

)
ϕ∗[gd(K′+1)]l

(
(X2)l)

))ν
× (∥X1∥22 + ∥X1∥2 + 1)ν(∥X2∥22 + ∥X2∥2 + 1)ν

]
(b)

≤ dνC ′
d,γE

[
(∥X1∥22 + ∥X1∥2 + 1)2ν(∥X2∥22 + ∥X2∥2 + 1)2ν

]1/2
×
(∏d

l=1
λ∗[gd(K′+1)]l

)ν
E
[(∏d

l=1
ϕ∗[gd(K′+1)]l

(
(X1)l

)
ϕ∗[gd(K′+1)]l

(
(X2)l)

))2ν]1/2
(c)
= dνC ′

d,γE
[
(∥X1∥22 + ∥X1∥2 + 1)2ν(∥X2∥22 + ∥X2∥2 + 1)2ν

]1/2
×

∏d

l=1

(
λ∗[gd(K′+1)]l

)ν (∏d

l=1
E
[(
ϕ∗[gd(K′+1)]l

(
(X1)l

) )2ν]E[(ϕ∗[gd(K′+1)]l

(
(X2)l

) )2ν])1/2
(d)
= dνC ′

d,γE
[
(∥X1∥22 + ∥X1∥2 + 1)2ν(∥X2∥22 + ∥X2∥2 + 1)2ν

]1/2
×

∏d

l=1

((
λ∗[gd(K′+1)]l

)ν E
[(
ϕ∗[gd(K′+1)]l

(
(X1)l

) )2ν])
,

where we have used the definitions of αk and ψk from (7) in (a), a Cauchy-Schwarz inequality in
(b), the independence of (X1)l and (X2)l for 1 ≤ l ≤ d due to the identity covariance matrix in (c)
and finally the fact that X1 and X2 are identically distributed in (d). The only quantity that depends
on K ′ now is (

λ∗[gd(K′+1)]l

)ν E
[(
ϕ∗[gd(K′+1)]l

(
(X1)l

) )2ν]
for 1 ≤ l ≤ d. We now seek to bound this quantity. Recall from Lemma 20 that λ∗k :=

1

k! γk , and

for V ∼ N (b, 1), we have

E[(ϕ∗k(U))2ν ] = E
[
|U |2νke−νU2/γ

]
≤ E

[
|U |2νk

]
≤ (2b)2νk

2
+

23νk

2
√
π
Γ
(
2νk + 1

2

)
.

where we have used a bound similar to (37) in the proof of Lemma 20. By Stirling’s formula for the
gamma function, we have Γ(x) =

√
2π xx−1/2e−x

(
1 +O(x−1)

)
for x > 0, which implies

(λ∗k)
ν E[(ϕ∗k(U))2ν ] ≤ 1

(k!)ν γνk

(
(2b)2νk

2
+

23νk

2
√
π
Γ
(
2νk + 1

2

))
= O

((
8

γ

)νk (νk)νke−νk

(k + 1)ν(k+1/2)e−ν(k+1)

)
= O

((
8ν

γ

)νk)
= O

((
24

γ

)νk)
= o(1)

as k → ∞, where we have used the assumption that γ > 24. By construction of gd in (7), as
K ′ → ∞, min1≤l≤d[gd(K

′ + 1)]l → ∞, which implies that(
λ∗[gd(K′+1)]l

)ν E
[(
ϕ∗[gd(K′+1)]l

(
(X1)l

) )2ν] K′→∞−−−−→ 0 .

62



A HIGH-DIMENSIONAL CONVERGENCE THEOREM FOR U-STATISTICS

Therefore

E
[∣∣∑K

k=(d+3)K′+1
λkϕk(X1)ϕk(X2)

∣∣ν] K→∞−−−−→ 0 ,

which finishes the proof that

E
[∣∣∑K

k=1
λkϕk(X1)ϕk(X2)− uKSD

P (X1,X2)
∣∣ν] K→∞−−−−→ 0 .

In other words, Assumption 2 holds.

Proof of Lemma 23 Fix ν ∈ (2, 3]. Consider the independent Gaussian vectors X1,X2
i.i.d.∼ P ≡

N (0, Id) and Y1,Y2
i.i.d.∼ Q ≡ N (µ, Id). Write Z1 = (X1,Y1), Z2 = (X2,Y2) and

TK(x,x′) := e−∥x−x′∥22/(2γ) −
∑K

k=1
αkψk(x)ψk(x

′)

for K ∈ N, and recall that

uMMD(Z1,Z2) = e−∥X1−X2∥22/(2γ) − e−∥X1−Y2∥22/(2γ) − e−∥X2−Y1∥22/(2γ) + e−∥Y1−Y2∥22/(2γ) .

Then by a triangle inequality and Jensen’s inequality, we get that

E
[∣∣∣uMMD(Z1,Z2)−

∑K

k=1
λkϕk(Z1)ϕk(Z2)

∣∣∣ν]
= E

[∣∣∣uMMD(Z1,Z2)−
∑K

k=1
αk

(
ψk(X1)− ψk(Y1)

)(
ψk(X2)− ψk(Y2)

)∣∣∣ν]
= E

[∣∣TK(X1,X2)− TK(X1,Y2)− TK(X2,Y1) + TK(X2,Y2)
∣∣ν]

≤ 4ν−1
(
E[|TK(X1,X2)|ν ] + E[|TK(X1,Y2)|ν ] + E[|TK(X2,Y1)|ν ] + E[|TK(Y1,Y2)|ν ]

)
.

Since each expectation is taken with respect to a product of two Gaussian distributions with identity
covariance matrices, by Lemma 20 and (8), they all decay to 0 as K → ∞. This proves that

E
[∣∣∣uMMD(Z1,Z2)−

∑K

k=1
λkϕk(Z1)ϕk(Z2)

∣∣∣ν] K→∞−−−−→ 0 ,

and therefore Assumption 2 holds.

F.2. Proof for Lemma 22

We restate the KSD U-statistic for RBF under our Gaussian mean-shift setup from (9):

uKSD
P (x,x′) = exp

(
− 1

2γ
∥x− x′∥22

)(
x⊤x′ − γ + 1

γ2 ∥x− x′∥22 +
d

γ

)
. (38)

F.2.1. PROOF FOR g(x)

Fix x ∈ Rd. Taking expectation of uKSD
P (x,X′) with respect to the distribution of X′,

g(x) = E[uKSD
P (x,X′)]

= E
[
exp

(
− 1

2γ
∥x−X′∥22

)(
x⊤X′ − 1 + γ

γ2 ∥x−X′∥22 +
d

γ

) ]
=
(

γ

1 + γ

)d/2
exp

(
− 1

2(1 + γ)
∥x− µ∥22

)
E
[
x⊤W′ − 1 + γ

γ2 ∥x−W′∥22 +
d

γ

]
.
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where the third line follows by applying Lemma 28, and W′ ∼ N
(

1
1+γ

(
µ+ 1

γx
)
, γ
1+γ Id

)
. The

proof is completed by calculating the expectation as

E
[
x⊤W′ − 1 + γ

γ2 ∥x−W′∥22 +
d

γ

]
= E

[
x⊤W′ − 1 + γ

γ2

(
∥W′∥22 − 2x⊤W′ + ∥x∥22

)
+

d

γ

]
=

γ

1 + γ

(
µ+

1

γ
x
)⊤

x− γ + 1

γ2

(
γd

1 + γ
+

γ2

(1 + γ)2

∥∥µ+
1

γ
x
∥∥2
2
− γ

1 + γ

(
µ+

1

γ
x
)⊤

x+ ∥x∥22
)
+

d

γ

=
2 + γ

1 + γ
µ⊤x− 1

1 + γ
∥µ∥22 .

F.2.2. PROOF FOR DKSD(Q,P )

Noting that DKSD(Q,P ) = E[gKSD(x)], we can apply Lemma 28 again to yield

DKSD(Q,P ) =
(

γ

1 + γ

)d/2
E
[
exp

(
− 1

2(1 + γ)
∥X− µ∥22

)(
2 + γ

1 + γ
µ⊤X− 1

1 + γ
∥µ∥22

) ]
=
(

γ

1 + γ

)d/2 (1 + γ

2 + γ

)d/2
E
[
2 + γ

1 + γ
µ⊤W − 1

1 + γ
∥µ∥22

]
,

where W ∼ N
(
1+γ
2+γ

(
µ+ 1

1+γµ
)
,
1 + γ

2 + γ
Id

)
. We then have

DKSD(Q,P ) =
(

γ

1 + γ

)d/2 (1 + γ

2 + γ

)d/2 (
µ⊤
(
µ+

1

1 + γ
µ
)
− 1

1 + γ
∥µ∥22

)
=
(

γ

2 + γ

)d/2
∥µ∥22 ,

as required.

F.2.3. PROOF FOR σ2cond

We first calculate the second moment as

E[g(X)2] =
(

γ

1 + γ

)d
E
[
exp

(
− 1

1 + γ
∥X− µ∥22

)(
2 + γ

1 + γ
µ⊤X− 1

1 + γ
∥µ∥22

)2 ]
=
(

γ

1 + γ

)d (1 + γ

3 + γ

)d/2
E
[ (

2 + γ

1 + γ
µ⊤W − 1

1 + γ
∥µ∥22

)2 ]
where in the last line we have applied Lemma 28 while setting W ∼ N

(
m, 1+γ

3+γ Id
)

and m :=
1+γ
3+γ

(
µ+ 2

1+γµ
)
= µ. This gives

E[g(X)2] =
(

γ

1 + γ

)d (1 + γ

3 + γ

)d/2
E
[ (

2 + γ

1 + γ

)2
(µ⊤W)2 +

1

(1 + γ)2
∥µ∥42 −

2(2 + γ)

(1 + γ)2
∥µ∥22µ⊤W

]
=
(

γ

1 + γ

)d (1 + γ

3 + γ

)d/2 ((2 + γ

1 + γ

)2
µ⊤
(
1 + γ

3 + γ
Id + µµ⊤

)
µ+

1

(1 + γ)2
∥µ∥42

− 2(2 + γ)

(1 + γ)2
∥µ∥42

)
=

(
γ2

(1 + γ)(3 + γ)

)d/2 (
(2 + γ)2

(1 + γ)(3 + γ)
∥µ∥22 + ∥µ∥42

)
.
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We hence obtain

σ2cond = E[g(X)2]−DKSD(Q,P )2

=

(
γ2

(1 + γ)(3 + γ)

)d/2 (
(2 + γ)2

(1 + γ)(3 + γ)
∥µ∥22 + ∥µ∥42

)
−
(

γ

2 + γ

)d
∥µ∥42

=

(
γ2

(1 + γ)(3 + γ)

)d/2(
(2 + γ)2

(1 + γ)(3 + γ)
∥µ∥22 +

(
1−

(
(1 + γ)(3 + γ)

(2 + γ)2

)d/2)
∥µ∥42

)
.

F.2.4. PROOF FOR σ2full

For simplicity, we define Z := X− µ and Z′ := X′z− µ so that Z,Z′ are independent copies from
N (0, Id). By (38), the second moment can be simplified as

E[uKSD
P (X,X′)2]

= E
[
exp

(
− 1

γ
∥X−X′∥22

)(
X⊤X′ − γ + 1

γ2 ∥X−X′∥22 +
d

γ

)2]
= E

[
exp

(
− 1

γ
∥Z− Z′∥22

)(
(Z+ µ)⊤(Z′ + µ)− γ + 1

γ2 ∥Z− Z′∥22 +
d

γ

)2]
=
(

γ

4 + γ

)d/2
E
[(

(W + µ)⊤(W′ + α1W + µ)− α2∥(1− α1)W −W′∥22 +
d

γ

)2]
︸ ︷︷ ︸

=:T

,

where in the last line we have applied Lemma 29, and

W ∼ N
(
0,

1 + γ/2

2 + γ/2
Id

)
, W′ ∼ N

(
0,

γ

2 + γ
Id

)
, α1 :=

1

1 + γ/2
, α2 :=

γ + 1

γ2 .

We now aim to compute the expectation T by first taking an expectation over W′:

T = E
[(

(W + µ)⊤(W′ + α1W + µ)− α2∥(1− α1)W −W′∥22 +
d

γ

)2]
= E

[(
− α2

∥∥W′∥∥2
2
+
(
W + µ+ 2α2(1− α1)W

)⊤
W′

+ (W + µ)⊤(α1W + µ)− α2(1− α1)
2∥W∥22 +

d

γ︸ ︷︷ ︸
=:βW

)2]

= E
[
α2
2

∥∥W′∥∥4
2
+
(
(W + µ+ 2α2(1− α1)W)⊤W′

)2
+ β2W

− 2α2

(
W + µ+ 2α2(1− α1)W

)⊤
W′∥∥W′∥22 − 2α2βW

∥∥W′∥∥2
2

+ 2βW(W + µ+ 2α2(1− α1)W)⊤W′
]
.

Since W′ is zero-mean, independent of W and follows a distribution symmetric around zero,
E[W′] = E[W′∥W′∥22] = 0. Since ∥W′∥22 ∼ γ

2 + γ
χ2
d where χ2

d is a chi-squared distribution

with d degrees of freedom, we have E[∥W′∥22] =
γ

2+γd and E[∥W′∥42] =
γ2

(2+γ)2
(2d+ d2). We also
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have E[W′W′⊤] = γ
2+γ Id. Thus

T = E
[
α2
2

∥∥W′∥∥4
2
+
(
(W + µ+ 2α2(1− α1)W)⊤W′

)2
+ β2W − 2α2βw

∥∥W′∥∥2
2

]
= E

[
α2
2

γ2

(2 + γ)2
(2d+ d2) +

γ

2 + γ
∥2α2(1− α1)W +W + µ∥22 + β2W − 2α2βW

γ

2 + γ
d

]
(a)
= E

[
(1 + γ)2

γ2(2 + γ)2
(2d+ d2) +

γ

2 + γ

∥∥∥ 2(1 + γ)

γ(2 + γ)
W +W + µ

∥∥∥2
2
+ β2W − 2βW

1 + γ

γ(2 + γ)
d

]
= E

[
(1 + γ)2

γ2(2 + γ)2
(2d+ d2) +

γ

2 + γ

∥∥∥∥2 + 4γ + γ2

γ(2 + γ)
W + µ

∥∥∥∥2
2

+ β2W − 2βW
1 + γ

γ(2 + γ)
d

]
(b)
=

(1 + γ)2

γ2(2 + γ)2
(2d+ d2) +

(2 + 4γ + γ2)2

γ(2 + γ)2(4 + γ)
d+

γ

2 + γ
∥µ∥22 + E

[
β2W − 2βW

1 + γ

γ(2 + γ)
d
]

=
(1 + γ)2

γ2(2 + γ)2
d2 +

(
2(1 + γ)2

γ2(2 + γ)2
+

(2 + 4γ + γ2)2

γ(2 + γ)2(4 + γ)

)
d+

γ

2 + γ
∥µ∥22 + E

[
β2W − 2βW

1 + γ

γ(2 + γ)
d
]
.

In (a), we have substituted in α1 = 2/(2 + γ) and α2 = (γ + 1)/γ2, and in (b) we have taken the
expectation of the second term. Now re-express βW as

βW =
2

2 + γ
∥W∥22 +

(
2

2 + γ
+ 1
)
µ⊤W + ∥µ∥22 −

γ + 1

γ2

(
1− 2

2 + γ

)2
∥W∥22 +

d

γ

=
(

2

2 + γ
− γ + 1

(2 + γ)2

)
∥W∥22 +

4 + γ

2 + γ
µ⊤W + ∥µ∥22 +

d

γ

=
γ + 3

(2 + γ)2
∥W∥22 +

4 + γ

2 + γ
µ⊤W + ∥µ∥22 +

d

γ
.

By noting that odd moments of W vanish, we get that

E[−2βW
1 + γ

γ(2 + γ)
d] = − 2(1 + γ)

γ(2 + γ)
d
(

γ + 3

(2 + γ)(4 + γ)
d+ ∥µ∥22 +

d

γ

)
= − 2(1 + γ)

γ(2 + γ)

(
γ + 3

(2 + γ)(4 + γ)
+

1

γ

)
d2 − 2(1 + γ)

γ(2 + γ)
d∥µ∥22 ,

and

E[β2W] =
(γ + 3)2

(2 + γ)2(4 + γ)2
(2d+ d2) +

4 + γ

2 + γ
∥µ∥22 +

(
∥µ∥22 +

d

γ

)2
+

2(γ + 3)

(2 + γ)(4 + γ)

(
∥µ∥22 +

d

γ

)
d

=
(

(γ + 3)2

(2 + γ)2(4 + γ)2
+

1

γ2 +
2(γ + 3)

(2 + γ)(4 + γ)γ

)
d2 +

(
2(γ + 3)2

(2 + γ)2(4 + γ)2

)
d

+
(
2

γ
+

2(γ + 3)

(2 + γ)(4 + γ)

)
d∥µ∥22 +

4 + γ

2 + γ
∥µ∥22 + ∥µ∥42 .

The coefficient of d2 in T can then be computed by noting γ = ω(1) as

(1 + γ)2

γ2(2 + γ)2
− 2(1 + γ)

γ(2 + γ)

(
γ + 3

(2 + γ)(4 + γ)
+

1

γ

)
+
(

(γ + 3)2

(2 + γ)2(4 + γ)2
+

1

γ2 +
2(γ + 3)

(2 + γ)(4 + γ)γ

)
=

(2 + γ)2

γ2(4 + γ)2
=

1

γ2 + o
(

1

γ2

)
.

Similarly, the coefficient of d in T can be computed as(
2(1 + γ)2

γ2(2 + γ)2
+

(2 + 4γ + γ2)2

γ(2 + γ)2(4 + γ)

)
+
(

2(γ + 3)2

(2 + γ)2(4 + γ)2

)
= 1 + o(1) ,

66



A HIGH-DIMENSIONAL CONVERGENCE THEOREM FOR U-STATISTICS

the coefficient of d∥µ∥22 in T can be computed as

− 2(1 + γ)

γ(2 + γ)
+
(
2

γ
+

2(γ + 3)

(2 + γ)(4 + γ)

)
=

2(2 + γ)

γ(4 + γ)
=

2

γ
+ o
(
1

γ

)
,

the coefficient of ∥µ∥22 in T can be computed as

γ

2 + γ
+

4 + γ

2 + γ
= 2 + o(1) ,

and finally the coefficient of ∥µ∥42 in T is 1. Combining the five computations of coefficients, we
get that

T = 4d+
d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 + ∥µ∥42 + o

(
d+

d2

γ2 +
d∥µ∥22

γ
++∥µ∥22

)
,

and therefore the desired quantity is given as

σ2full = E[uKSD
P (X,X′)2]−DKSD(Q,P )2

=
(

γ

4 + γ

)d/2
T −

(
γ

2 + γ

)d
∥µ∥42

=
(

γ

4 + γ

)d/2
T −

(
γ

4 + γ

)d/2 (γ(4 + γ)

(2 + γ)2

)d/2
∥µ∥42

=
(

γ

4 + γ

)d/2(
d+

d2

γ2 +
2d∥µ∥22

γ
+ 2∥µ∥22 +

(
1−

(
γ(4 + γ)

(2 + γ)2

)d/2)
∥µ∥42

+ o

(
d+

d2

γ2 +
d∥µ∥22

γ
+ ∥µ∥22

))
.

F.2.5. PROOF FOR UPPER BOUND ON E[|gKSD(X)|ν ]

Fix ν > 2. We can apply Lemma 28 to rewrite the ν-th moment of gKSD(Z) as

E[|gKSD(X)|ν ] =
(

γ

1 + γ

)νd/2
E
[
exp

(
− ν

2(1 + γ)
∥X− µ∥22

) ∣∣∣2 + γ

1 + γ
µ⊤X− 1

1 + γ
∥µ∥22

∣∣∣ν]
=
(

γ

1 + γ

)νd/2 ( (1 + γ)/ν

1 + (1 + γ)/ν

)d/2
E
[∣∣∣2 + γ

1 + γ
µ⊤W − 1

1 + γ
∥µ∥22

∣∣∣ν]︸ ︷︷ ︸
=:T

,

where W ∼ N
(
m, a2Id

)
with m := (1+γ)/ν

1+(1+γ)/ν

(
µ+

ν

1 + γ
µ
)
+ µ and a2 := (1+γ)/ν

1+(1+γ)/ν = 1+γ
1+ν=γ .

Defining V :=W − µ so that V ∼ N (0, a2Id), we have

T = E
[∣∣∣2 + γ

1 + γ
µ⊤(V + µ)− 1

1 + γ
∥µ∥22

∣∣∣ν] = E
[∣∣∣2 + γ

1 + γ
µ⊤V − ∥µ∥22

∣∣∣ν]
(i)

≤ 2ν−1
((

2 + γ

1 + γ

)ν
E[|µ⊤V|ν ] + ∥µ∥2ν2

)
= 2ν−1

(
Cν

(
2 + γ

1 + γ

)ν
aν∥µ∥ν2 + ∥µ∥2ν2

)
,

where (i) follows by the fact that |u+ v|ν ≤ 2ν−1(|u|ν + |v|ν) for any u, v ∈ R, and in the last line
we have computed the expectation by noting that µ⊤V follows a univariate Gaussian distribution
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N (0, a2∥µ∥22) and using its moment formula to yield E[|µ⊤V|ν ≤ Cνa
ν∥µ∥ν2 for some constant

Cν that depends only on ν. Combining these and substituting the definition of a2 gives

E[|gKSD(X)|ν ]

≤ 2ν−1
(

γ

1 + γ

)νd/2 ( (1 + γ)/ν

1 + (1 + γ)/ν

)d/2(
Cν

(
2 + γ

1 + γ

)ν ( 1 + γ

1 + ν + γ

)ν/2
∥µ∥ν2 + ∥µ∥2ν2

)
≤
(

γ

1 + γ

)νd/2 ( 1 + γ

1 + ν + γ

)d/2 (
23ν/2−1Cν∥µ∥ν2 + 2ν−1∥µ∥2ν2

)
,

where in the last line we have used the assumption that ν > 2 to yield the inequality(
2 + γ

1 + γ

)ν ( 1 + γ

1 + ν + γ

)ν/2
=
(
2 + γ

1 + γ

)ν ( 2 + γ

1 + ν + γ

)ν/2
= 2ν/2 × 1 = 2ν/2 .

Defining the constants C1 := 23ν/2−1Cν and C2 := 2ν−1 completes the proof.

F.2.6. PROOF FOR UPPER BOUND ON E[|uKSD
P (X,X′)|ν ]

Fix ν > 2. Define Z := X−µ and Z′ := X′−µ so that Z,Z′ are independent draws from N (0, Id).
Using (9), we can write the ν-th central moment as

E[|uKSD
P (X,X′)|ν ]

= E
[∣∣∣ exp(− 1

2γ
∥X−X′∥22

)(
X⊤X′ − γ + 1

γ2 ∥X−X′∥22 +
d

γ

)∣∣∣ν]
= E

[
exp

(
− ν

2γ
∥Z− Z′∥22

) ∣∣∣(Z+ µ)⊤(Z′ + µ)− γ + 1

γ2 ∥Z− Z′∥22 +
d

γ

∣∣∣ν]
=
(

γ/ν

2 + γ/ν

)d/2
E
[∣∣∣(W + µ)⊤(W′ + (1− α2)W + µ)− α1∥W −W′ − (1− α2)W∥22 +

d

γ

∣∣∣ν]︸ ︷︷ ︸
=:T

,

(39)

where the last line follows by using Lemma 29 and defining the quantities α1 := γ+1
γ2 , α2 := γ

ν+γ ,
α3 :=

γ
2ν+γ , and

W′ ∼ N
(
0,

γ/ν

1 + γ/ν
Id

)
= N (0, α2Id) , W ∼ N

(
0,

γ/ν

2 + γ/ν
Id

)
= N (0, α3Id) ,

while also noting that 1− α2 =
γ/ν

1+γ/ν × ν
γ = ν

ν+γ = 1− α2. By a Jensen’s inequality, we get that

T = E
[∣∣∣(W + µ)⊤(W′ + (1− α2)W + µ)− α1

∥∥α2W −W′∥∥2
2
+

d

γ

∣∣∣ν]
= E

[∣∣∣(W + µ)⊤W′ + (1− α2)∥W + µ∥22 + α2(W + µ)⊤µ− α1∥α2W −W′∥22 +
d

γ

∣∣∣ν]
≤ 5ν−1E

[∣∣(W + µ)⊤W′∣∣ν + |1− α2|ν∥W + µ∥2ν2 + αν
2

∣∣(W + µ)⊤µ
∣∣ν

+ αν
1∥α2W −W′∥2ν2 +

(
d

γ

)ν]
,

where the last line follows from a Jensen’s inequality applied to the convex function x 7→ |x|ν .
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We next seek to bound the expectation of each term individually. To bound E
[∣∣(W+µ)⊤W′∣∣ν],

we note that (W− µ)⊤W′ conditioning on W follows a normal distribution N (0, α2∥W− µ∥22).
Hence, using the moment formula of univariate Gaussians, we have

E
[∣∣(W + µ)⊤W′∣∣ν] = E

[
E
[∣∣(W + µ)⊤W′∣∣ν∣∣W]]

= E
[
Cνα

ν
2∥W + µ∥ν2

]
,

for some constant Cν constant depending only on ν. By the convexity of the function x 7→ ∥x∥ν2 ,
we can bound the above term as

E
[
Cνα

ν
2∥W + µ∥ν2

]
≤ 2ν−1Cνα

ν
2

(
E
[
∥W∥ν2

]
+ ∥µ∥ν2

)
(i)

≤ Cνα
ν
2α

ν
3

(
E
[
∥W∥2ν2

])1/2
+ Cνα

ν
2∥µ∥ν2

(ii)
= Cνα

ν
2α

ν
3(d

ν/2 + o(dν/2)) + Cνα
ν
2∥µ∥ν2

(iii)

≤ Cνd
ν/2 + o(dν/2) + Cν∥µ∥ν2 ,

where (i) holds by a Jensen’s inequality, in (ii) we have noted that α−1
3 ∥W∥22 follows a chi-squared

distribution with d degrees of freedom and used the formula for its ν-th moment, and (iii) follows
since α2 = γ

ν+γ < 1 and α3 = γ
2ν+γ < 1. The expectation of the second term can be bounded

using a similar argument as

E
[
∥W + µ∥2ν2

]
≤ 2ν−1

(
E
[
∥W∥2ν2

]
+ ∥µ∥2ν2

)
= 2ν−1

(
αν
3d

ν + o(dν) + ∥µ∥2ν2
)

≤ 2ν−1dν + o(dν) + 2ν−1∥µ∥2ν2 .

The expectation of the third term is

E
[∣∣(W + µ)⊤µ

∣∣ν] = E
[∣∣W⊤µ+ ∥µ∥22

∣∣ν] ≤ 2ν−1
(
E
[∣∣W⊤µ

∣∣ν]+ ∥µ∥2ν2
)

= 2ν−1
(
α
ν/2
3 ∥µ∥ν2 + ∥µ∥2ν2

)
≤ 2ν−1∥µ∥ν2 + 2ν−1∥µ∥2ν2 ,

where the second last line holds as µ⊤W is a univariate Gaussian with zero-mean and variance
α3∥µ∥22, and the last line holds again as α3 ≤ 1. It then remains to bound E

[
∥α2W − W′∥2ν2

]
.

Noting that α2W−W′ ∼ N (0, α2(α3+1)Id), the random variable α−1
2 (α3+1)−1∥α2W−W′∥22

follows a chi-squared distribution with d degrees of freedom. A similar argument as before gives

E
[
∥α2W −W′∥2ν2

]
≤ αν

2(α3 + 1)ν
(
dν + o(dν)) ≤ 2νdν + o(dν) ,

where in the last inequality we have used the fact that α2(α3 + 1) < 2. Combining these terms, we
can bound T as

T ≤ 5ν−1
[(
Cνd

ν/2 + o(dν/2) + Cν∥µ∥ν2
)
+ |1− α2|ν2ν−1

(
dν + o(dν) + ∥µ∥2ν2

)
+ 2ν−1

(
∥µ∥ν2 + ∥µ∥2ν2

)
+ αν

12
ν
(
dν + o(dν)) +

(
d

γ

)ν]
.

To proceed, we note that αν
1 =

(γ+1
γ2

)ν
=
(
1
γ +

1
γ2

)ν
= 1

γν +o
(

1
γν

)
and that (1−α2)

ν =
(

ν
ν+γ )

ν =
1
γν + o

(
1
γν

)
, since γ = ω(1) by assumption. Therefore,

|1− α2|ν2ν−1
(
dν + o(dν) + ∥µ∥2ν2

)
= 2ν

dν

γν + 2ν
∥µ∥2ν2
γν + o

(
dν

γν +
∥µ∥2ν2
γν

)
,
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and

αν
12

ν
(
dν + o(dν)) =

dν

γν + o
(
dν

γν

)
.

It then follows by grouping and rearranging that T can be bounded as

T ≤ 5ν−1
[
Cνd

ν/2 + o(dν/2) + Cν∥µ∥ν2 + 2ν
dν

γν + 2ν
∥µ∥2ν2
γν + o

(
dν

γν +
∥µ∥2ν2
γν

)
+ 2ν−1

(
∥µ∥ν2 + ∥µ∥2ν2

)
+

dν

γν + o
(
dν

γν

)
+
(
d

γ

)ν]
= 5ν−1

[
Cνd

ν/2 + (2 + 2ν)
(
d

γ

)ν
+ (Cν + 2ν−1)∥µ∥ν2 + 2ν−1∥µ∥2ν2

+ o
(
dν/2 +

dν

γν +
∥µ∥2ν2
γν

)]
= C3d

ν/2 + C4

(
d

γ

)ν
+ C5∥µ∥ν2 + C6∥µ∥2ν2 + o

(
dν/2 +

dν

γν +
∥µ∥2ν2
γν

)
,

where in the last line we have redefined the constants: C3 := 5ν−1Cν , C4 := 5ν−1(2 + 2ν),
C5 := 5ν−1(Cν + 2ν−1) and C6 := 10ν−1. The proof is finished by substituting this bound into
(39) to yield

E[|uKSD
P (X,X′)|ν ] ≤

(
γ

2ν + γ

)d/2 (
C3d

ν/2 + C4

(
d

γ

)ν
+ C5∥µ∥ν2 + C6∥µ∥2ν2

+ o
(
dν/2 +

dν

γν +
∥µ∥2ν2
γν

))
.

F.2.7. PROOF FOR VERIFYING ASSUMPTION 1

First note that when γ = Ω(d), for any fixed a, b, c > 0, we have that by a Taylor expansion,(
a+ γ

b+ γ

)d/c
=
(
1 +

a− b

b+ γ

)d/c
= exp

(
d

c
log
(
1 +

a− b

b+ γ

))
= exp

(
d(a− b)

c(b+ γ)
+ o
(

d

γ2

))
= exp

(
d(a− b)

c(b+ γ)

)(
1 + o

(
d

γ2

))
= Θ(1) .

Using this together with the assumption ∥µ∥2 = Θ(1) and the moment bounds in Lemma 22(iii)-
(vi), we get that

σ2cond = Θ

((
γ2

(1 + γ)(3 + γ)

)d/2(
(2 + γ)2

(1 + γ)(3 + γ)
+

(
1−

(
(1 + γ)(3 + γ)

(2 + γ)2

)d/2)))
= Θ(1) ,

σ2full = Θ

((
γ

4 + γ

)d/2(
d+

d2

γ2 +
2d

γ
+

(
1−

(
γ(4 + γ)

(2 + γ)2

)d/2)
+ o

(
d+

d2

γ2 +
d

γ

)))
= Θ

(
d+

d2

γ2 +
2d

γ

)
= Θ

(
d+

d2

γ2

)
,

and for ν ∈ (2, 3],

Mν
cond;ν ≤ E[|gKSD(X)|ν ] = O

((
γ

1 + γ

)νd/2 ( 1 + γ

1 + ν + γ

)d/2 )
= O(1) ,

Mν
full;ν ≤ E[|uKSD

P (X,X′)|ν ] = O
((

γ

2ν + γ

)d/2 (
dν/2 +

(
d

γ

)ν))
= O

(
dν/2 +

dν

γν

)
.
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This implies that

Mcond;ν

σcond
= O(1) , and Mfull;ν

σfull
= O

((
d1/2 +

d

γ

)−1(
d1/2 +

d

γ

))
= O(1) .

In other words, Mcond;ν

σcond
and Mfull;ν

σfull
are both bounded by finite, d-independent constants, which

verifies Assumption 1.

F.3. Proof for Lemma 24

F.3.1. PROOF FOR gmmd(z)

Recall that the MMD U-statistic is uMMD(z, z′) = κ(x,x′) + κ(y,y′) − κ(x,y′) − κ(x′,y) for
z := (x,y) and z′ = (x′,y′). Taking expectation with respect to the second argument, we have

gmmd(z) := E[uMMD(z, Z ′)] = E[κ(x,X′) + κ(y,Y′)− κ(x,Y′)− κ(X′,y)]

= E
[
exp

(
− ∥x−X′∥22

2γ

)
+ exp

(
− ∥y −Y′∥22

2γ

)
− exp

(
− ∥x−Y′∥22

2γ

)
− exp

(
− ∥X′ − y∥22

2γ

)]
.

We can apply Lemma 28 to compute each term. For example, setting a1 = 1,a2 = γ,m1 = µ and
m2 = x in Lemma 28, the first term simplifies to

E
[
exp

(
−∥x−X′∥22

2γ

)]
=
(

γ

1 + γ

)d/2
exp

(
− 1

2(1 + γ)
∥x− µ∥22

)
.

Computing similarly the other terms yields the desired result:

gmmd(z) =
(

γ

1 + γ

)d/2 [
e
− 1

2(1+γ)
∥x−µ∥22 + e

− 1
2(1+γ)

∥y∥22 − e
− 1

2(1+γ)
∥x∥22 − e

− 1
2(1+γ)

∥y−µ∥22
]
.

F.3.2. PROOF FOR DMMD(Q,P )

This is a special case of Ramdas et al. (2015, Proposition 1) with µ1 = 0, µ2 = µ and Σ = Id.
Alternatively, applying Lemma 28 to compute each term in E[g(Z)] yields the same result.

F.3.3. PROOF FOR σ2cond

For Z = (X,Y), the second moment of g(Z) is

E[g(Z)2] =
(

γ

1 + γ

)d
E
[(
e
− 1

2(1+γ)
∥x−µ∥22 + e

− 1
2(1+γ)

∥y∥22 − e
− 1

2(1+γ)
∥x∥22 − e

− 1
2(1+γ)

∥y−µ∥22
)2]

=
(

γ

1 + γ

)d
E
[
exp

(
− ∥X− µ∥22

1 + γ

)
+ exp

(
− ∥Y∥22

1 + γ

)
+ exp

(
− ∥X∥22

1 + γ

)
+ exp

(
− ∥Y − µ∥22

1 + γ

)
+ 2 exp

(
− ∥X− µ∥22

2(1 + γ)

)
exp

(
− ∥Y∥22

2(1 + γ)

)
− 2 exp

(
− ∥X− µ∥22 + ∥X∥22

2(1 + γ)

)
− 2 exp

(
− ∥X− µ∥22

2(1 + γ)

)
exp

(
− ∥Y − µ∥22

2(1 + γ)

)
− 2 exp

(
− ∥X∥22

2(1 + γ)

)
exp

(
− ∥Y∥22

2(1 + γ)

)
− 2 exp

(
− ∥Y∥22 + ∥Y − µ∥22

2(1 + γ)

)
+ 2 exp

(
− 1

2(1 + γ)
∥X∥22

)
exp

(
− 1

2(1 + γ)
∥Y − µ∥22

)]
.
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We can compute each term by applying Lemma 28. Noting that Y− µ and X are equal in distribu-
tion, and also that Lemma 28 depends on m1 and m2 only through their difference, we have

E
[
exp

(
−∥X− µ∥22

1 + γ

)]
= E

[
exp

(
−∥Y∥22

1 + γ

)]
=
(
1 + γ

3 + γ

)d/2
,

E
[
exp

(
−∥X∥22

1 + γ

)]
= E

[
exp

(
−∥Y − µ∥22

1 + γ

)]
=
(
1 + γ

3 + γ

)d/2
exp

(
− ∥µ∥22

3 + γ

)
,

E
[
exp

(
−∥X− µ∥22

2(1 + γ)

)]
= E

[
exp

(
− ∥Y∥22

2(1 + γ)

)]
=
(
1 + γ

2 + γ

)d/2
,

E
[
exp

(
− ∥X∥22

2(1 + γ)

)]
= E

[
exp

(
−∥Y − µ∥22

2(1 + γ)

)]
=
(
1 + γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2(2 + γ)

)
.

It remains to calculate the expectations of the sixth and ninth terms, which involve two differently
centred quadratic forms of X and Y respectively. The sixth term simplifies to

E
[
exp

(
−∥X− µ∥22 + ∥X∥22

2(1 + γ)

)]
= E

[
exp

(
− 1

2(1 + γ)

(
2∥X∥22 − 2µ⊤X+ ∥µ∥22

))]
= E

[
exp

(
− 1

1 + γ

∥∥∥X− µ

2

∥∥∥2
2

)]
exp

(
− ∥µ∥22

4(1 + γ)

)
=
(
1 + γ

3 + γ

)d/2
exp

(
− ∥µ∥22

4(3 + γ)

)
exp

(
− ∥µ∥22

4(1 + γ)

)
=
(
1 + γ

3 + γ

)d/2
exp

(
− 2 + γ

(2(3 + γ)(1 + γ)
∥µ∥22

)
, (40)

and a similar calculation gives,

E
[
exp

(
−∥Y∥22 + ∥Y − µ∥22

2(1 + γ)

)]
=
(
1 + γ

3 + γ

)d/2
exp

(
− 2 + γ

(2(3 + γ)(1 + γ)
∥µ∥22

)
.

Combining the above identities yields

E[g(Z)2] =
(

γ

1 + γ

)d(
2
(
1 + γ

3 + γ

)d/2
+ 2

(
1 + γ

3 + γ

)d/2
exp

(
− ∥µ∥22

3 + γ

)
+ 2

(
1 + γ

2 + γ

)d
− 4

(
1 + γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
− 4

(
1 + γ

2 + γ

)d
exp

(
− ∥µ∥22

2(2 + γ)

)
+ 2

(
1 + γ

2 + γ

)d
exp

(
− ∥µ∥22

2 + γ

))
= 2

(
γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
×
(
1 + exp

(
− ∥µ∥22

3 + γ

)
+
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
− 2 exp

(
− (2 + γ)∥µ∥22

2(3 + γ)(1 + γ)

)
− 2

(
1 + γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2(2 + γ)

)
+
(
1 + γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2 + γ

))
.
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By noting that DMMD(Q,P )2 = 4
( γ
2+γ

)d(
1− exp

(
− ∥µ∥22

2(2+γ)

))2
, we hence obtain

σ2cond = E[g(Z)2]−DMMD(Q,P )2 = E[g(Z)2]− 4
(

γ

2 + γ

)d [
1− exp

(
− ∥µ∥22

2(2 + γ)

)]2
= 2

(
γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
×
(
1 + exp

(
− ∥µ∥22

3 + γ

)
+ 2

(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2(2 + γ)

)
− 2 exp

(
− 7 + 5γ

4(1 + γ)(3 + γ)
∥µ∥22

)
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
−
(
3 + γ

2 + γ

)d/2 (1 + γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2 + γ

))
,

as required.

F.3.4. PROOF FOR σ2full

The second moment is

E[uMMD(Z,Z ′)2]

= E
[
exp

(
−∥X−X′∥22

γ

)
+ exp

(
−∥Y −Y′∥22

γ

)
+ exp

(
−∥X−Y′∥22

γ

)
+ exp

(
−∥X′ −Y∥22

γ

)
+ 2 exp

(
−∥X−X′∥22

2γ
− ∥Y −Y′∥22

2γ

)
− 2 exp

(
−∥X−X′∥22

2γ
− ∥X−Y′∥22

2γ

)
− 2 exp

(
−∥X−X′∥22

2γ
− ∥X′ −Y∥22

2γ

)
− 2 exp

(
−∥Y −Y′∥22

2γ
− ∥X−Y′∥22

2γ

)
− 2 exp

(
−∥Y −Y′∥22

2γ
− ∥X′ −Y∥22

2γ

)
+ 2 exp

(
−∥X−Y′∥22

2γ
− ∥X′ −Y∥22

2γ

)]
= E

[
exp

(
−∥X−X′∥22

γ

)
+ exp

(
−∥Y −Y′∥22

γ

)]
+ 2E

[
exp

(
−∥X−Y′∥22

γ

)]
+ 2E

[
exp

(
−∥X−X′∥22

2γ
− ∥Y −Y′∥22

2γ

)]
− 4E

[
exp

(
−∥X−X′∥22

2γ
− ∥X−Y′∥22

2γ

)]
− 4E

[
exp

(
−∥Y −Y′∥22

2γ
− ∥X−Y′∥22

2γ

)]
+ 2

(
E
[
exp

(
−∥X−Y′∥22

2γ

)])2

,

where the second equality follows by the fact that X,X ′ and Y, Y ′ are respectively independent
copies from Q and P . To calculate each term, we apply Lemma 29 to yield

E
[
exp

(
−∥X−X′∥22

γ

)]
= E

[
exp

(
−∥Y −Y′∥22

γ

)]
=
(

γ/2

2 + γ/2

)d/2
=
(

γ

4 + γ

)d/2
,

E
[
exp

(
−∥X−X′∥22

2γ

)]
= E

[
exp

(
−∥Y −Y′∥22

2γ

)]
=
(

γ

2 + γ

)d/2
,

E
[
e
− ∥X−Y′∥22

γ

]
=
(

γ

4 + γ

)d/2
exp

(
− ∥µ∥22

4 + γ

)
, E

[
e
− ∥X−Y′∥22

2γ

]
=
(

γ

2 + γ

)d/2
exp

(
− ∥µ∥22

2(2 + γ)

)
.
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Let T1 := E
[
exp

(
− ∥X−X′∥22

2γ − ∥X−Y′∥22
2γ

)]
and T2 := E

[
exp

(
− ∥Y−Y′∥22

2γ − ∥X−Y′∥22
2γ

)]
, which

are the only remaining terms to compute. The first term can be simplified as

T1 = E
[
E
[
exp

(
−∥X−X′∥22

2γ

) ∣∣∣X]E[ exp(−∥X−Y′∥22
2γ

) ∣∣∣X]]
(a)
= E

[(
γ

1 + γ

)d/2
exp

(
− ∥X∥22

2(1 + γ)

)
×
(

γ

1 + γ

)d/2
exp

(
−∥X− µ∥22

2(1 + γ)

)]
=
(

γ

1 + γ

)d
E
[
exp

(
− ∥X∥22

2(1 + γ)

)
exp

(
−∥X− µ∥22

2(1 + γ)

)]
(b)
=
(

γ

1 + γ

)d (1 + γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
=
(

γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
,

where in (a) we have applied Lemma 28 to compute the conditional expectations, and (b) follows
from substituting (40). The second term can be simplified with a similar calculation as,

T2 =
(

γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
.

Collecting all terms gives

E[uMMD(Z,Z ′)2] = 2
(

γ

4 + γ

)d/2
+ 2

(
γ

4 + γ

)d/2
exp

(
− ∥µ∥22

4 + γ

)
+ 2

(
γ

2 + γ

)d
− 8

(
γ

1 + γ

)d/2 ( γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
+ 2

(
γ

2 + γ

)d
exp

(
− ∥µ∥22

2 + γ

)
.

By noting that

DMMD(Q,P )2 = 4
(

γ

2 + γ

)d(
1− exp

(
− ∥µ∥22

2(2 + γ)

))2
= 4
(

γ

2 + γ

)d(
1− exp

(
− ∥µ∥22

2 + γ

)
+ 2 exp

(
− ∥µ∥22

2(2 + γ)

))
,

the variance takes the following form after subtracting DMMD(Q,P )2 and collecting similar terms

σ2full = E[uMMD(Z,Z ′)2]−DMMD(Q,P )2

= 2
(

γ

4 + γ

)d/2(
1 + exp

(
− ∥µ∥22

4 + γ

))
− 2
(

γ

2 + γ

)d
− 8
(

γ

1 + γ

)d/2( γ

3 + γ

)d/2
exp

(
− 2 + γ

2(3 + γ)(1 + γ)
∥µ∥22

)
− 2
(

γ

2 + γ

)d
exp

(
− ∥µ∥22

2 + γ

)
+ 8
(

γ

2 + γ

)d
exp

(
− ∥µ∥22

2(2 + γ)

)
,

which completes the proof.
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F.4. Proof of Lemma 25

With a linear kernel and under the stated assumption, the MMD statistic is

uMMD(z, z′) = x⊤x′ + y⊤y′ − x⊤y′ − y⊤x′ , where z = (x,y), z′ = (x′,y′) ∈ R2d .

F.4.1. PROOF FOR gmmd(z) AND DMMD(Q,P )

The expression for gmmd can be computed as

gmmd(z) = E[uMMD(z,Z′)] = E[x⊤X′ + y⊤Y′ − x⊤Y′ − y⊤X′] = µ⊤x− µ⊤y .

The formula for DMMD(Q,P ) then follows as

DMMD(Q,P ) = E[uMMD(Z,Z′)] = E[gmmd(Z)] = E[µ⊤X− µ⊤Y] = µ⊤µ = ∥µ∥22 .

F.4.2. PROOF FOR σ2cond

A direct computation gives

E[gmmd(Z)2] = E
[
(µ⊤X)2 + (µ⊤Y)2 − 2µ⊤Xµ⊤Y

]
= µ⊤(Σ + µµ⊤)µ+ µ⊤Σµ = 2µ⊤Σµ+ ∥µ∥42 .

Therefore, σ2cond = E[gmmd(Z)2]−DMMD(Q,P )2 = 2µ⊤Σµ, as required.

F.4.3. PROOF FOR σ2full

The second moment is

E[uMMD(Z,Z′)2] = E
[
(X⊤X′)2 + (Y⊤Y′)2 + (X⊤Y′)2 + (Y⊤X′)2

+ 2X⊤X′Y⊤Y′ − 2X⊤X′X⊤Y′ − 2X⊤X′Y⊤X′

− 2Y⊤Y′X⊤Y′ − 2Y⊤YY⊤X′ + 2X⊤Y′Y⊤X′]
= E

[
(X⊤X′)2 + (Y⊤Y′)2 + (X⊤Y′)2 + (Y⊤X′)2

]
.

In the last equality, we have noted that the cross-terms vanish since X,X′,Y and Y′ are mutually
independent and X,X′ are zero-mean. A direct computation gives

E
[
(X⊤X′)2

]
= Tr

(
E[XX⊤X′(X′)⊤]

)
= Tr(Σ2) ,

E
[
(Y⊤Y′)2

]
= Tr

(
E[YY⊤Y′(Y′)⊤]

)
= Tr

(
(Σ + µµ⊤)2

)
= Tr(Σ2) + 2µ⊤Σµ⊤ + ∥µ∥42 ,

E
[
(X⊤Y′)2

]
= E

[
(Y⊤X′)2

]
= Tr(E[Y(Y′)⊤X(X′)⊤]) = Tr(Σ2) + µ⊤Σµ .

Therefore, E[uMMD(Z,Z′)2] = 4Tr(Σ2) + 4µ⊤Σµ+ ∥µ∥42, and

σ2full = E[uMMD(Z,Z′)2]−DMMD(Q,P )2 = 4Tr(Σ2) + 4µ⊤Σµ ,

which completes the proof.
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F.4.4. PROOF FOR UPPER BOUND ON M3
cond;3

The 3rd absolute centred moment of gmmd(Z) satisfies

M3
cond;3 = E[|gmmd(Z)− E[gmmd(Z)]|3] = E[|µ⊤Y − µ⊤X− µ⊤µ|3] =E[|µ⊤Y − µ⊤V|3] ,

where we have defined V := X−µ so that V ∼ N (0,Σ). Noting that |a+ b|3 ≤ 23−1(|a|3 + |b|3)
for any a, b ∈ R by Jensen’s inequality, we can bound the above as

M3
cond;3 = E

[∣∣µ⊤Y − µ⊤V
∣∣m] ≤ 4E[|µ⊤Y|3 + |µ⊤V|3] (a)= 8C ′(µ⊤Σµ)3/2

(b)
= C(µ⊤Σµ)3/2 .

In (a) we have noted that the absolute 3rd moment of a univariate normal variable N (0, σ2) is given
as C ′σ3 for some absolute constant C ′. In (b), we have defined C := 8C ′.

F.4.5. PROOF FOR UPPER BOUND ON M3
full;3

For any z = (x,y), z′ = (x′, z′) ∈ R2d we have

uMMD(z, z′) = x⊤x′ + y⊤y − x⊤y′ − y⊤x′ = (x− y)⊤(x′ − y′) .

Write V := X−µ and V′ := X−µ so that V,V′ i.i.d.∼ N (0,Σ). We can compute the 3rd absolute
central moment as

M3
full;3 = E[|uMMD(Z,Z′)− E[uMMD(Z,Z′)]|3]

= E[|(X−Y)⊤(X′ −Y′)− µ⊤µ|3]
= E[|(V + µ−Y)⊤(V′ + µ−Y′)− µ⊤µ|3]
= E[|(V −Y)⊤(V′ −Y′) + µ⊤(V′ −Y′) + (V −Y)⊤µ|3] .

By a Jensen’s inequality applied to the convex function x 7→ |x|3 and a Hölder’s inequality, we get
that

M3
full;3 ≤ 9

(
E
[
|(V −Y)⊤(V′ −Y′)|3

]
+ E

[
|µ⊤(V′ −Y′)|3

]
+ E

[
|(V −Y)⊤µ|3

])
≤ 9
(
E
[
|U⊤U′|3

]
+ 2E

[
|U⊤µ|3

])
.

In the last line, we have used that U := V − Y and U′ := V′ − Y′ are identically distributed.
In fact they are both N (0, 2Σ). The second expectation can be computed by the formula for the
absolute 3rd moment of a univariate Gaussian as

E
[
|U⊤µ|3

]
= C ′(µ⊤Σµ)3/2

where C ′ is some absolute constant. Similarly the first expectation can be computed first by noting
that U⊤U′ conditioning on U is a univariate Gaussian and secondly by using the moment formula
for a Gaussian quadratic form Lemma 27:

E
[
|U⊤U′|3

]
= E

[
E[|U⊤U′|3|U]

]
= C ′E

[
(U⊤ΣU)3/2

]
≤ C ′E

[
(U⊤ΣU)3

]1/2
= C ′(Tr(Σ2)3 + 6Tr(Σ2)Tr(Σ4) + 8Tr(Σ6)

)
≤ 15C ′Tr(Σ2)3 .
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In the last line, we have noted that Tr(Am) ≤ Tr(A)m for m ∈ N and positive semi-definite
matrix A, which holds by expressing each trace as a sum of eigenvalues and applying the Hölder’s
inequality. Combining the two computations and redefining constants, we get that for some constant
C,

M3
full;3 ≤ C

(
Tr(Σ2)3 + (µ⊤Σµ)3/2

)
≤ C

(
Tr(Σ2) + µ⊤Σµ

)3/2
.

F.4.6. PROOF FOR VERIFYING ASSUMPTION 1

By the bounds from (iii)-(vi), there exists absolute constants C1, C2 such that

Mcond;3

σcond
≤ C

1/3
1 (µ⊤Σµ)1/2

21/2(µ⊤Σµ)1/2
= 2−1/2C

1/3
1 ,

Mfull;3

σfull
≤ C

1/3
2

(
Tr(Σ2) + µ⊤Σµ

)1/2
2
(
Tr(Σ2) + µ⊤Σµ

)1/2 = 2−1C
1/3
2 ,

which prove that Assumption 1 holds with ν = 3.

Appendix G. Proofs for Appendix B

G.1. Proofs for Appendix B.1

The proof of Lemma 26 combines the following two results:

Lemma 44 (Theorem 2, von Bahr and Esseen (1965)) Fix ν ∈ [1, 2]. For a martingale differ-
ence sequence Y1, . . . , Yn taking values in R,

E
[∣∣∑n

i=1
Yi
∣∣ν] ≤ 2

∑n

i=1
E[|Yi|ν ] .

Lemma 45 (Dharmadhikari et al. (1968)) Fix ν ≥ 2. For a martingale difference sequence
Y1, . . . , Yn taking values in R,

E
[∣∣∑n

i=1
Yi
∣∣ν] ≤ Cνn

ν/2−1
∑n

i=1
E[|Yi|ν ] ,

where Cν = (8(ν − 1)max{1, 2ν−3})ν .

Proof of Lemma 26 We first consider the upper bound. For ν ∈ [1, 2], the result follows directly
from the Von Bahn-Esseen inequality as stated below in Lemma 44, and for ν > 1, the result follows
directly from Lemma 45. As for the lower bound, by Theorem 9 of Burkholder (1966), there exists
an absolute constant cν > 0 depending only on ν such that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[(∑n

i=1
Y 2
i

)ν/2]
.

For ν ∈ [1, 2], by applying Jensen’s inequality on the concave function x 7→ xν/2, we get that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[( 1
n

∑n

i=1
nY 2

i

)ν/2] ≥ cν n
ν/2−1

∑n

i=1
E[|Yi|ν ] .

For ν > 2, by noting that (a+ b)ν/2 ≥ aν/2 + bν/2 for a, b ≥ 0, we get that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[∑n

i=1

(
Y 2
i

)ν/2] ≥ cν
∑n

i=1
E[|Yi|ν ] .
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Combining the two results above give the desired bound.

Proof of Lemma 28 A direct computation gives

E
[
f(X) exp

(
− 1

2a2
2

∥X−m2∥22
)]

=
1

(2π)d/2ad
1

∫
f(x) exp

(
− 1

2a2
2

∥x−m2∥22
)
exp

(
− 1

2a2
1

∥x−m1∥22
)
dx

=
1

(2π)d/2ad
1

∫
f(x) exp

(
−1

2

(
∥x∥22
a2
2

+
∥m2∥22
a2
2

− 2m⊤
2 x

a2
2

+
∥x∥22
a2
1

+
∥m1∥22
a2
1

− 2m⊤
1 x

a2
1

)
︸ ︷︷ ︸

=:T

)
dx .

Simplifying T by completing the square yields

T = − 1

2

(
∥x∥22
a2
2

+
∥x∥22
a2
1

− 2m⊤
2 x

a2
2

− 2m⊤
1 x

a2
1

)
− 1

2

(
∥m2∥22
a2
2

+
∥m1∥22
a2
1

)
= − a2

1 + a2
2

2a2
1a

2
2

(
∥x∥22 −

2a2
1a

2
2

a2
1 + a2

2

(
m2

a2
2

+
m1

a2
1

)⊤
x+

a4
1a

4
2

(a2
1 + a2

2)
2

∥∥∥m2

a2
2

+
m1

a2
1

∥∥∥2
2

)

− 1

2

(
∥m2∥22
a2
2

+
∥m1∥22
a2
1

− a2
1a

2
2

a2
1 + a2

2

∥∥∥m2

a2
2

+
m1

a2
1

∥∥∥2
2

)
︸ ︷︷ ︸

=:T ′

= − a2
1 + a2

2

2a2
1a

2
2

∥∥∥∥x− a2
1a

2
2

a2
1 + a2

2

(
m1

a2
1

+
m2

a2
2

)∥∥∥∥2
2

− 1

2(a2
1 + a2

2)
∥m1 −m2∥22 ,

where we have simplified T ′ as

T ′ =
∥m2∥22
a2
2

+
∥m1∥22
a2
1

− a2
1

a2
2(a

2
1 + a2

2)
∥m2∥22 −

a2
2

a2
1(a

2
1 + a2

2)
∥m1∥22 +

2

a2
1 + a2

2

m⊤
1 m2

=
1

a2
1 + a2

2

∥m1 −m2∥22 .

Substituting this into E
[
f(X) exp

(
− 1

2a22
∥X−m2∥22

)]
, we have

E
[
f(X) exp

(
− 1

2a2
2

∥X−m2∥22
)]

=
1

(2π)d/2ad
1

exp

(
−∥m1 −m2∥22

2(a2
1 + a2

2)

)∫
f(x) exp

(
−a2

1 + a2
2

2a2
1a

2
2

∥∥∥∥x− a2
1a

2
2

a2
1 + a2

2

(
m1

a2
1

+
m2

a2
2

)∥∥∥∥2
2

)
dx

=

(
a2
2

a2
1 + a2

2

)d/2

exp

(
−∥m1 −m2∥22

2(a2
1 + a2

2)

)
E[f(W)] ,

where W ∼ N
(

a21a
2
2

a21+a22

(
m1

a2
1

+
m2

a2
2

)
,

a2
1a

2
2

a2
1 + a2

2

Id

)
, which completes the proof.
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Proof of Lemma 29 Rewriting by the tower rule,

E
[
f(X,X′) exp

(
− 1

2a2
3

∥X−X′∥22
)]

= E
[
E
[
f(X,X′) exp

(
− 1

2a2
3

∥X−X′∥22
) ∣∣∣∣X]]

= E

[(
a2
3

a2
2 + a2

3

)d/2

exp
(
− 1

2(a2
2 + a2

3)
∥X−m2∥22

)
E
[
f
(
X,W′ +

a2
2

a2
2 + a2

3

X
)∣∣∣X]] ,

where the last line follows by applying Lemma 28 to the inner expectation, and where W′ ∼
N
(

a23
a22+a23

m2,
a22a

2
3

a22+a23
Id

)
. Applying Lemma 28 again gives

E
[
f(X,X′) exp

(
− 1

2a2
3

∥X−X′∥22
)]

=

(
a2
3

a2
2 + a2

3

)d/2(
a2
2 + a2

3

a2
1 + a2

2 + a2
3

)d/2

exp
(
− 1

2(a2
1 + a2

2 + a2
3)
∥m1 −m2∥22

)
× E

[
E
[
f(W,W′ +

a2
2

a2
2 + a2

3

W)
∣∣∣W]]

=

(
a2
3

a2
1 + a2

2 + a2
3

)d/2

exp
(
− 1

2(a2
1 + a2

2 + a2
3)
∥m1 −m2∥22

)
E
[
f
(
W,W′ +

a2
2

a2
2 + a2

3

W
)]

,

where W ∼ N
(

a2
1(a

2
2 + a2

3)

a2
1 + a2

2 + a2
3

(
1

a2
1

m1 +
1

a2
2 + a2

3

m2

)
,
a2
1(a

2
2 + a2

3)

a2
1 + a2

2 + a2
3

Id

)
.

G.2. Proofs for Appendix B.2

Proof of Lemma 30 Consider the sequence of sigma algebras with F0 being the trivial sigma
algebra and Fi := σ(X1, . . . , Xi) for i = 1, . . . , n. This allows us to define a martingale difference
sequence: For i = 1, . . . , n, let

Yi := E[Dn|Fi]− E[Dn|Fi−1] .

This implies that E[|Dn−EDn|ν ] = E
[∣∣∑n

i=1 Yi
∣∣ν]. By Lemma 26, we get that for some universal

constants c′ν , C
′
ν ,

c′ν
∑n

i=1
E[|Yi|ν ] ≤ E[|Dn − EDn|ν ] ≤ C ′

ν n
ν/2−1

∑n

i=1
E[|Yi|ν ] . (41)

To compute the ν-th moment of Yi, recall that Dn = 1
n(n−1)

∑
j,l∈[n],j ̸=l u(Xj ,Xl), which implies

E[|Yi|ν ] = E
[∣∣E[Dn|Fi]− E[Dn|Fi−1]

∣∣ν]
=

1

nν(n− 1)ν
E
[∣∣∑

j,l∈[n],j ̸=l

(
E[u(Xj ,Xl)|Fi]− E[u(Xj ,Xl)|Fi−1]

)∣∣ν]
(a)
=

2

nν(n− 1)ν
E
[∣∣∑

j∈[n],j ̸=i

(
E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1]

)∣∣ν]
=:

2

nν(n− 1)ν
E[|Si|ν ] .
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In (a), we have used that each summand is zero if both j and l do not equal i, and that u is symmetric.
In the case j < i, we can compute each summand of Si as

E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1] = u(Xi,Xj)− E[u(X1,Xj)|Xj ]

= Aij −Bj +Bi ,

where Aij := u(Xi,Xj)− E[u(Xi,X1)|Xi] and

Bi := E[u(Xi,X1)|Xi]− E[u(X1,X2)] = E[u(X1,Xi)|Xi]− E[u(X1,X2)]

by symmetry of u. In the case j > i, we can compute each summand as

E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1] = E[u(X1,Xi)|Xi]− E[u(X1,X2)] = Bi .

Therefore

Si =
∑

j<i
(Aij −Bj) + nBi .

ConsiderR1 := nBi andR2 :=
∑

j<i(Aij−Bj), which forms a two-element martingale difference
sequence with respect to the filtration σ(Xi) ⊆ σ(Xi,X1 . . . ,Xi−1). By Lemma 26 again, there
exist constants c∗ν and C∗

ν depending only on ν such that

E[|Si|ν ] = E
[∣∣∑2

l=1
Rl

∣∣ν] ≤ C∗
ν

(
E[|nBi|ν ] + E

[∣∣∑
j<i

(Aij −Bj)
∣∣ν])

= C∗
ν

(
nνMν

cond;ν + E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν]) ,
E[|Si|ν ] = E

[∣∣∑2

l=1
Rl

∣∣ν] ≥ c∗ν

(
E[|nBi|ν ] + E

[∣∣∑
j<i

(Aij −Bj)
∣∣ν])

= c∗ν
(
nνMν

cond;ν + E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν]) .
Now consider Tj := Aij − Bj for j = 1, . . . , i − 1, which again forms a martingale difference
sequence with respect to σ(Xi,X1), . . . , σ(Xi,X1 . . . ,Xi−1). Then by Lemma 26 again, there
exist constants c∆ν and C∆

ν depending only on ν such that

E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν] ≤ C∆
ν (i− 1)ν/2−1

∑i−1

j=1
E[|Aij −Bj |ν ] = C∆

ν (i− 1)ν/2Mν
full;ν ,

E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν] ≥ c∆ν
∑i−1

j=1
E[|Aij −Bj |ν ] = c∆ν (i− 1)Mν

full;ν .

Therefore

E[|Si|ν ] ≤ C∗
νn

νMν
cond;ν + C∗

νC
∆
ν (i− 1)ν/2Mν

full;ν ,

E[|Si|ν ] ≥ c∗νn
νMν

cond;ν + c∗νc
∆
ν (i− 1)Mν

full;ν ,

which yield the following bounds on the ν-th moment of Yi:

E[|Yi|ν ] ≤ 2C∗
ν

(
(n− 1)−νMν

cond;ν + C∆
ν n

−ν(n− 1)−ν (i− 1)ν/2Mν
full;ν

)
,

E[|Yi|ν ] ≥ 2c∗ν
(
(n− 1)−νMν

cond;ν + c∆ν n
−ν(n− 1)−ν (i− 1)Mν

full;ν

)
,
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To sum these terms over i = 1, . . . , n, we note that since ν/2 > 0,

∑n

i=1
(i− 1)ν/2 ≤

∫ n

0
xν/2dx =

n1+ν/2

1 + ν/2
,

∑n

i=1
(i− 1) =

n(n− 1)

2
.

Define Cν := 2C′
νC

∗
ν max{1,C∆

ν }
1+ν/2 and cν := c′νc

∗
ν min{1, c∆ν }. By summing the bounds on E[|Yi|ν ]

and substituting into (41), we get the desired bounds

E[|Dn − EDn|ν ] ≤ Cν n
ν/2−1

(
n(n− 1)−νMν

cond;ν + n−ν(n− 1)−νn1+ν/2Mν
full;ν

)
= Cν n

ν/2(n− 1)−νMν
cond;ν + Cν (n− 1)−νMν

full;ν ,

E[|Dn − EDn|ν ] ≥ cνn(n− 1)−νMν
cond;ν + cνn

−(ν−1)(n− 1)−(ν−1)Mν
full;ν .

Proof of Lemma 31 The first result is directly obtained from linearity of expectation and Jensen’s
inequality: ∣∣∣D −

∑K

k=1
λkµ

2
k

∣∣∣ =
∣∣∣E[u(X1,X2)]−

∑K

k=1
λkE[ϕk(X1)]E[ϕk(X2)]

∣∣∣
=
∣∣∣E[u(X1,X2)−

∑K

k=1
λkϕk(X1)ϕk(X2)

]∣∣∣
≤ E

∣∣∣u(X1,X2)−
∑K

k=1
λkϕk(X1)ϕk(X2)

∣∣∣ = εK;1 .

To prove the next few bounds, we first derive a useful inequality: For a, b ∈ R and ν ≥ 1, by
Jensen’s inequality, we have

|a+ b|ν =
∣∣1
2
(2a) +

1

2
(2b)

∣∣ν ≤ 1

2
|2a|ν + 1

2
|2b|ν = 2ν−1(|a|ν + |b|ν) .

By a triangle inequality followed by applying the above inequality again with a replaced by |a|− |b|
and b replaced by |b|, we have

|a+ b|ν ≥ ||a| − |b||ν ≥ 2−(ν−1)|a|ν − |b|ν .

Since ν ∈ [1, 3], we have 2ν−1 ∈ [1, 4]. Therefore

1

4
|a|ν − |b|ν ≤ |a+ b|ν ≤ 4(|a|ν + |b|ν) . (42)

Now to prove the conditional bound, we make use of the fact that X1,X2 are i.i.d. to see that

E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν]
= E

[∣∣∣∑K

k=1
λk
(
E[ϕk(X1)ϕk(X2)|X1]− E[ϕk(X1)ϕk(X2)]

)∣∣∣ν]
= E

[∣∣∣E[u(X1,X2)|X1]− E[u(X1,X2)] + ∆K;1 −∆K;2

∣∣∣ν] , (43)

where

∆K;1 :=
∑K

k=1
λkE[ϕk(X1)ϕk(X2)|X1]− E[u(X1,X2)|X1] ,

∆K;2 :=
∑K

k=1
λkE[ϕk(X1)ϕk(X2)]− E[u(X1,X2)] .
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Moments of the two error terms can be bounded by Jensen’s inequality applied to x 7→ |x|ν with
respect to the conditional expectation E[ • |X2] and the expectation E[ • ]:

E[|∆K;1|ν ],E[|∆K;2|ν ] ≤ E
[∣∣∣u(X1,X2)−

∑K

k=1
λkϕk(X1)ϕk(X2)

∣∣∣ν]
=
∥∥∥u(X1,X2)−

∑K

k=1
λkϕk(X1)ϕk(X2)

∥∥∥ν
Lν

= ενK;ν .

On the other hand,

(Mcond;ν)
ν = E

[∣∣E[u(X1,X2)|X1]− E[u(X1,X2)]
∣∣ν] .

Therefore applying (42) gives

1

4
(Mcond;ν)

ν − ενK;ν ≤ E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν] ≤ 4((Mcond;ν)
ν + ενK;ν)

For the last bound, we start by considering the following quantity, which can be thought of as
the truncated version of Mν

full;ν :

mK := E
[∣∣∣∑K

k=1
λk(ϕk(X1)ϕk(X2)− µ2k)

∣∣∣ν]
= E

[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)ϕk(X2) +

∑K

k=1
λkµk(ϕk(X2)− µk)

∣∣∣ν]
=: E[|T2 + T1|ν ] .

Since {T1, T2} forms a two-element martingale difference sequence with respect to σ(X2) ⊆
σ(X1,X2), by Lemma 26, there exists absolute constants c′ν , C

′
ν > 0 depending only on ν such

that

c′ν
(
E[|T1|ν ] + E[|T2|ν ]

)
≤ mK ≤ C ′

ν

(
E[|T1|ν ] + E[|T2|ν ]

)
.

Similarly, by writing

E[|T2|ν ] = E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)ϕk(X2)

∣∣∣ν]
= E

[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk) +

∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν]
= E[|R2 +R1|ν ] ,

and noting that {R1, R2} forms a two-element martingale difference sequence with respect to
σ(X1) ⊆ σ(X1,X2), by Lemma 26, there exists absolute constants c′′ν , C

′′
ν > 0 depending only

on ν such that

c′′ν
(
E[|R1|ν ] + E[|R2|ν ]

)
≤ E[|T2|ν ] ≤ C ′′

ν

(
E[|R1|ν ] + E[|R2|ν ]

)
.

Combining the results and setting A = supν∈[1,3]C
′
ν max{C ′′

ν , 1} and a = infν∈[1,3] c
′
ν min{c′′ν , 1},

we have shown that

a
(
E[|T1|ν ] + E[|R1|ν ] + E[|R2|ν ]

)
≤ mK ≤ A

(
E[|T1|ν ] + E[|R1|ν ] + E[|R2|ν ]

)
.
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Notice that the quantity we would like to control is exactly

E[|R2|ν ] = E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ,
and that E[|T1|ν ] = E[|R1|ν ]. By setting c = A−1 and C = a−1, this allows us to obtain a bound
about E[|R2|ν ] as

cmK − 2E[|T1|ν ] ≤ E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ≤ CmK − 2E[|T1|ν ] .

Now notice that

E[|T1|ν ] = E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)µk

∣∣∣ν] ,
which has already been controlled by the second result of the lemma as

1

4
(Mcond;ν)

ν − ενK;ν ≤ E[|T1|ν ] ≤ 4((Mcond;ν)
ν + ενK;ν) .

On the other hand, we can use an exactly analogous argument by using (42) and applying Jensen’s
inequality to control the errors to show that

1

4
(Mfull;ν)

ν − ενK;ν ≤ mK ≤ 4((Mfull;ν)
ν + ενK;ν) .

Applying these two results to the previous bound gives the desired bounds:

E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ≤ 4C(Mfull;ν)
ν − 1

2
(Mcond;ν)

ν + (4C + 2)ενK;ν ,

E
[∣∣∣∑K

k=1
λk(ϕk(X1)− µk)(ϕk(X2)− µk)

∣∣∣ν] ≥ c

4
(Mfull;ν)

ν − 8(Mcond;ν)
ν − (c+ 8)ενK;ν .

Proof of Lemma 32 To compute the first bound, we rewrite the expression of interest as a quantity
that we have already considered in the proof of Lemma 31:

(µK)⊤ΛKΣKΛK(µK) = (µK)⊤ΛKE
[(
ϕK(X1)− µK

)(
ϕK(X1)− µK

)⊤]
ΛK(µK)

= E
[((

ϕK(X1)− µK
)⊤

ΛKµK
)2]

= E
[(∑K

k=1
λk(ϕk(X1)− µk)µk

)2]
= E

[(
E[u(X1,X2)|X2]− E[u(X1,X2)] + ∆K;1 −∆K;2

)2]
,

where we have used the calculation in (43) with ν = 2 and defined the same error terms

∆K;1 :=
∑K

k=1
λkE[ϕk(X1)ϕk(X2)|X2]− E[u(X1,X2)|X2] ,

∆K;2 :=
∑K

k=1
λkE[ϕk(X1)ϕk(X2)]− E[u(X1,X2)] .
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Since we are dealing with the second moment, we can provide a finer bound by expanding the
square explicitly:

(µK)⊤ΛKΣKΛK(µK) = VarE[u(X1,X2)|X2] + E[(∆K;1 −∆K;2)
2]

+ 2E
[(
E[u(X1,X2)|X2]− E[u(X1,X2)]

)
(∆K;1 −∆K;2)

2
]
.

Then by a Cauchy-Schwartz inequality, we get that∣∣∣(µK)⊤ΛKΣKΛK(µK)− VarE[u(X1,X2)|X2]
∣∣∣

= 2
∣∣E[(E[u(X1,X2)|X2]− E[u(X1,X2)]

)
(∆K;1 −∆K;2)

2
]∣∣+ E[(∆K;1 −∆K;2)

2]

≤ 2
√

VarE[u(X1,X2)|X2]
√

E[(∆K;1 −∆K;2)2] + E[(∆K;1 −∆K;2)
2] .

The variance term is exactly σ2cond. Since the individual error terms have already been bounded in
the proof of Lemma 31 as E[∆2

K;1],E[∆2
K;2] ≤ ε2K;2, by a triangle inequality and a Cauchy-Schwarz

inequality, we have

|E[(∆K;1 −∆K;2)
2]| = |E[∆2

K;1]− 2E[∆K;1∆K;2] + E[∆2
K;2]|

≤ |E[∆2
K;1]|+ 2

√
|E[∆2

K;1]||E[∆2
K;2]|+ |E[∆2

K;2]| ≤ 4ε2K;2 .

Combining the bounds gives∣∣(µK)⊤ΛKΣKΛK(µK)− (σcond)
2
∣∣ ≤ 4ε2K;2 + 4σcondεK;2 ,

which rearranges to give

σ2cond − 4σcondεK;2 − 4ε2K;2 ≤ (µK)⊤ΛKΣKΛK(µK) ≤ σ2cond + 4σcondεK;2 + 4ε2K;2

≤ (σcond + 2εK;2)
2 .

The second bound is obtained similarly by giving a finer control than the bound in Lemma 31.
We first rewrite the expression of interest by using linearity of expectation and the cyclic property
of trace:

Tr((ΛKΣK)2) = Tr
(
ΛKE

[
ϕK(X1)ϕ

K(X1)
⊤]ΛKE

[
ϕK(X2)ϕ

K(X2)
⊤])

= E
[(
ϕK(X1)

⊤ΛKϕK(X2)
)2]

= E
[(∑K

k=1
λkϕk(X1)ϕk(X2)

)2]
.

Again by expanding the square explicitly, we get that

Tr((ΛKΣK)2) = E
[(∑K

k=1
λkϕk(X1)ϕk(X2)− ū(X1,X2) + ū(X1,X2)

)2]
= E

[(∑K

k=1
λkϕk(X1)ϕk(X2)− ū(X1,X2)

)2]
+ E

[
ū(X1,X2)

2
]
+ 2∆K;3

= ε2K;2 + σ2full + 2∆K;3 ,

where we have defined the additional error term as

∆K;3 := E
[(∑K

k=1
λkϕk(X1)ϕk(X2)− ū(X1,X2)

)
ū(X1,X2)

]
.
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By a Cauchy-Schwarz inequality, we get that∣∣Tr((ΛKΣK)2)− σ2full − ε2K;2

∣∣ = 2|∆K;3|

≤ 2

√
E
[(∑K

k=1
λkϕk(X1)ϕk(X2)− ū(X1,X2)

)2]√E
[
ū(X1,X2)2

]
= 2εK;2σfull .

Combining the above two bounds yields the desired inequality that

(σfull − εK;2)
2 ≤ Tr((ΛKΣK)2) ≤ (σfull + εK;2)

2 .

To prove the third bound, note that (µK)⊤ΛKZ1 is a zero-mean normal random variable with
variance given by (µK)⊤ΛKΣKµK , which is already bounded above. By applying the formula of
the ν-th absolute moment of a normal distribution and noting that ν ≤ 3, we obtain

E[|(µK)⊤ΛKZ1|ν ] =
2ν/2√

π
Γ
(
ν + 1

2

)(
(µK)⊤ΛKΣKΛKµK

)ν/2
≤ 2ν/2√

π
(σfull + 2εK;2)

ν
(a)

≤ 2ν/2√
π
max{1, 2ν−1}

(
σνcond + 2νενK;2

) (b)

≤ 7(σνcond + 8ενK;2) .

In (a), we have noted that given a, b > 0, for ν/2 ∈ (0, 1], (a + b)ν/2 ≤ aν/2 + bν/2 and for
ν/2 > 1, the bound follows from Jensen’s inequality. In (b), we have noted that ν ≤ 3. This
finishes the proof for the third bound.

To prove the fourth bound, we can first condition on Z2:

E[|Z⊤
1 Λ

KZ2|ν ] = E
[
E[|Z⊤

1 Λ
KZ2|ν |Z2]

]
.

The inner expectation is again the ν-th absolute moment of a conditionally Gaussian random vari-
able with variance Z⊤

2 Λ
KΣKΛKZ2, so again by the formula of the ν-th absolute moment of a

normal distribution, we get that

E[|Z⊤
1 Λ

KZ2|ν ] ≤ 2ν/2√
π
E
[(
Z⊤
2 Λ

KΣKΛKZ2

)ν/2] ≤ 2ν/2√
π
E
[(
Z⊤
2 Λ

KΣKΛKZ2

)2]ν/4
.

We have noted that ν ≤ 3 and used a Hölder’s inequality. The remaining expectation is taken over
a quadratic form of normal variables. Writing Σ∗ = (ΣK)1/2ΛK(ΣK)1/2 for short, the second
moment can be computed by the formula from Lemma 27 as

E
[(
Z⊤
2 Λ

KΣKΛKZ2

)2]
= Tr(Σ2

∗)
2 + 2Tr

(
Σ4
∗
) (a)

≤ 3Tr(Σ2
∗)

2 = 3Tr
(
(ΛKΣK)2

)2
.

Note that in (a), we have used the fact that the square of a symmetric matrix, Σ2
∗, has non-negative

eigenvalues, and therefore Tr(Σ4
∗) ≤ Tr(Σ2

∗)
2. Since we have already bounded Tr((ΛKΣK)2)

earlier, substituting the above result into the previous bound, we get that

E[|Z⊤
1 Λ

KZ2|ν ] ≤ 2ν/2√
π
E
[(
Z⊤
2 Λ

KΣKΛKZ2

)2]ν/4 ≤ 2ν/23ν/4√
π

Tr
(
(ΛKΣK)2

)ν/2
≤ 2ν/23ν/4√

π
(σ2full + ε2K;2)

ν/2

≤ 2ν/23ν/4√
π

max{1, 2ν/2−1}
(
σνfull + ενK;2

)
≤ 6

(
σνfull + ενK;2

)
.
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In the last two inequalities, we have used the same argument as in the proof for the third bound to
expand the term with ν-th power. This gives the desired bound.

To prove the final bound, we first condition on X1:

E
[∣∣(ϕK(X1)− µK)⊤ΛKZ1

∣∣ν] = E
[
E
[∣∣(ϕK(X1)− µK)⊤ΛKZ1

∣∣ν∣∣X1

]]
.

The inner expectation is the ν-th absolute moment of a conditionally Gaussian random variable
with variance (ϕK(X1)− µK)⊤ΛKΣKΛK(ϕK(X1)− µK), so by the formula of the ν-th absolute
moment of a normal distribution with ν ≤ 3, we get that

E[|(ϕK(X1)− µK)⊤ΛKZ2|ν ]

≤ 2ν/2√
π
E
[(
(ϕK(X1)− µK)⊤ΛKΣKΛK(ϕK(X1)− µK)

)ν/2]
=

2ν/2√
π
E
[(
(ϕK(X1)− µK)⊤ΛKE

[
(ϕK(X2)− µK)(ϕK(X2)− µK)⊤

]
ΛK(ϕK(X1)− µK)

)ν/2]
(a)

≤ 2ν/2√
π
E
[∣∣(ϕK(X1)− µK)⊤ΛK(ϕK(X2)− µK)

∣∣ν]
=

2ν/2√
π
E
[∣∣∑K

k=1
λkϕk(X1)ϕk(X2)

∣∣ν]
(b)

≤ 8C(Mfull;ν)
ν − (Mcond;ν)

ν + (8C + 4)ενK;ν .

In (a), we have applied Jensen’s inequality to the convex function x 7→ |x|ν/2 to move the inner
expectation outside the norm. In (b), we have applied the bound in Lemma 31 and noted that
2ν/2√

π
< 2 for ν ∈ [1, 3]. This gives the desired result.

Proof of Lemma 33 For the first equality in distribution, we recall that {τk;d}Kk=1 are the eigenval-
ues of (ΣK)1/2ΛK(ΣK)1/2 and {ξk}Kk=1 are a sequence of i.i.d. standard Gaussian variables. Let
{ηik}i∈[n],k∈[K] be a set of i.i.d. standard Gaussian variables. Since Gaussianity is preserved under
orthogonal transformation, we have

1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )⊤(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
d
=

1

n3/2(n− 1)1/2

(∑K

k=1

∑n

i,j=1
τk;dηikηjk − nTr((ΣK)1/2ΛK(ΣK)1/2)

)
=

1

n3/2(n− 1)1/2

∑K

k=1
τk;d

((∑n

i=1
ηik
)(∑n

j=1
ηjk
)
− n

)
d
=

1

n1/2(n− 1)1/2

∑K

k=1
τk;d(ξ

2
k − 1) = WK

n −D ,

which proves the desired statement.

We now use the expression above for moment computation. The expectation is given by E[WK
n ] =

D for every K ∈ N. The variance can be computed by noting that the quantity is a quadratic form
in Gaussian, applying Lemma 27 and using the cyclic property of trace:

Var[WK
n ] =

1

n(n− 1)
Var
[
(ηK1 )⊤(ΣK)1/2ΛK(ΣK)1/2ηK1

]
=

2

n(n− 1)
Tr
(
(ΛKΣK)2

)
.
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By Lemma 32, we get the desired bound that

2

n(n− 1)
(σfull − εK;2)

2 ≤ Var[WK
n ] ≤ 2

n(n− 1)
(σfull + εK;2)

2 .

The third central moment can be expanded using a binomial expansion and noting that each
summand is zero-mean:

E
[
(WK

n −D)3
]
=

1

n3/2(n− 1)3/2
E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)3]
=

1

n3/2(n− 1)3/2
E
[∑K

k=1
τ3k;d(ξ

2
k − 1)3

]
=

8

n3/2(n− 1)3/2

∑K

k=1
τ3k;d .

Meanwhile, the sum can be further expressed as∑K

k=1
τ3k;d

= Tr
((

(ΣK)1/2ΛK(ΣK)1/2
)3)

= Tr
((

ΣKΛK
)3)

= Tr
((

E
[
ϕK(X1)(ϕ

K(X1))
⊤]ΛK

)3)
= E

[
(ϕK(X1))

⊤ΛKϕK(X2) (ϕ
K(X2))

⊤ΛKϕK(X3) (ϕ
K(X3))

⊤ΛKϕK(X1)
]

= E
[(∑K

k=1
λkϕk(X1)ϕk(X2)

)(∑K

k=1
λkϕk(X2)ϕk(X3)

)(∑K

k=1
λkϕk(X3)ϕk(X1)

)]
=: E[S12S23S31] .

We now approximate each Sij term by u(Xi,Xj). For convenience, denote Uij = u(Xi,Xj) and
∆ij = Sij − Uij . Then∑K

k=1
τ3k;d = E

[
(U12 +∆12)(U23 +∆23)(U31 +∆31)

]
= E[U12U23U31] + E[U12U23∆31] + E[U12∆23U31] + E[U12∆23∆31]

+ E[∆12U23U31] + E[∆12U23∆31] + E[∆12∆23U31] + E[∆12∆23∆31] .

Recall that εK;3 = E[|∆ij |3]1/3 for i ̸= j by definition. Then by a triangle inequality followed by a
Hölder’s inequality, we get that∣∣∣∑K

k=1
τ3k;d − E[u(X1,X2)u(X2,X3)u(X3,X1)]

∣∣∣
≤
∣∣E[U12U23∆31]

∣∣+ ∣∣E[U12∆23U31]
∣∣+ ∣∣E[U12∆23∆31]

∣∣
+
∣∣E[∆12U23U31]

∣∣+ ∣∣E[∆12U23∆31]
∣∣+ ∣∣E[∆12∆23U31]

∣∣+ ∣∣E[∆12∆23∆31]
∣∣

≤ 3E[|u(X1,X2)|3]2/3εK;3 + 3E[|u(X1,X2)|3]1/3ε2K;3 + ε3K;3

= 3M2
full;3εK;3 + 3Mfull;3ε

2
K;3 + ε3K;3 .

This implies that∑K

k=1
τ3k;d ≤ E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)
3 ,∑K

k=1
τ3k;d ≥ E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)
3 ,
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which gives the desired bounds:

E
[
(WK

n −D)3
]
≤ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)
3
)

n3/2(n− 1)3/2
,

E
[
(WK

n −D)3
]
≥ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)
3
)

n3/2(n− 1)3/2
.

The fourth central moment can again be expanded using a binomial expansion and noting that
each summand is zero-mean:

E
[
(WK

n −D)4
]

=
1

n2(n− 1)2
E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)4]
=

1

n2(n− 1)2

(
E
[∑K

k=1
τ4k;d(ξ

2
k − 1)4

]
+ 3E

[∑
1≤k ̸=k′≤K

τ2k;d(ξ
2
k − 1)2τ2k′;d(ξ

2
k′ − 1)2

])
=

1

n2(n− 1)2

(
60

∑K

k=1
τ4k;d + 12

∑
1≤k ̸=k′≤K

τ2k;dτ
2
k′;d

)
=

1

n2(n− 1)2

(
48

∑K

k=1
τ4k;d + 12

∑
1≤k,k′≤K

τ2k;dτ
2
k′;d

)
=

12

n2(n− 1)2

(
4
∑K

k=1
τ4k;d +

(∑K

k=1
τ2k;d
)2)

.

Since we have already controlled
∑K

k=1 τ
2
k;d = Tr

(
(ΣKΛK)2

)
, we focus on bounding the first sum.

Using notations from the third moment, we can express the sum as

∑K

k=1
τ4k;d = E

[(∑K

k=1
λkϕk(X1)ϕk(X2)

)(∑K

k=1
λkϕk(X2)ϕk(X3)

)
(∑K

k=1
λkϕk(X3)ϕk(X4)

)(∑K

k=1
λkϕk(X4)ϕk(X1)

)]
= E[S12S23S34S41]
= E

[
(U12 +∆12)(U23 +∆23)(U34 +∆34)(U41 +∆41)

]
.

A similar argument as before shows that∣∣∣∑K

k=1
τ4k;d − E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

∣∣∣
≤ 4M3

full;4εK;4 + 6M2
full;4ε

2
K;4 + 4Mfull;4ε

3
K;4 + ε4K;4 .

This implies that

∑K

k=1
τ4k;d ≤ E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]−M4

full;4 + (Mfull;4 + εK;4)
4 ,∑K

k=1
τ4k;d ≥ E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] +M4

full;4 − (Mfull;4 + εK;4)
4 .

On the other hand, by Lemma 32, we have

(σfull − εK;2)
2 ≤

∑K

k=1
τ2k;d = Tr((ΛKΣK)2) ≤ (σfull + εK;2)

2 .
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Combining the results give the desired bounds:

E
[
(WK

n −D)4
]
≤ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

− 4M4
full;4 + 4(Mfull;4 + εK;4)

4 + (σfull + εK;2)
4
)
,

E
[
(WK

n −D)4
]
≥ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

+ 4M4
full;4 − 4(Mfull;4 + εK;4)

4 + (σfull − εK;2)
4
)
.

For the generic moment bound, we first use a Jensen’s inequality to get that

E
[
(WK

n )2m
]
= E

[(
1

n1/2(n− 1)1/2

∑K

k=1
τk;d(ξ

2
k − 1) +D

)2m]
≤ 22m−1

nm(n− 1)m
E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)2m]
+ 22m−1D2m .

Denote the set of all possible orderings of a length-2m sequence consisting of elements from [K]
by P(K, 2m) and denote its elements by p. Consider the subset

P ′(K, 2m) := {p ∈ P(K, 2m) : every element in p appears at least twice } .

By noting that ξk − 1 is zero-mean and {ξk}Kk=1 are independent, we can re-express the sum first as
a sum over P(K, 2m) and then as a sum over P ′(K, 2m):

E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)2m]
=

∑
p∈P(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]
=

∑
p∈P ′(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]
+

∑
p∈
(
P(K,2m)\P ′(K,2m)

) (∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]
=

∑
p∈P ′(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]
.

Write C ′
m as the 2m-th central moment of a chi-squared random variable with degree 1, which

depends only on m and not on K or τk;d. By a Hölder’s inequality and the bound from Lemma 32,
we get that

E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)2m]
≤ C ′

m

∑
p∈P ′(K,2m)

(∏
k∈p τk;d

)
≤ C ′

m

(
2m

m

)(∑K

k=1
τ2k;d
)m

= C ′
m

(
2m

m

)
Tr
(
(ΛKΣK)2

)m ≤ C ′
m

(
2m

m

)
(σfull + εK;2)

2m .

Writing Cm := 22m−1max{1, C ′
m

(
2m
m

)
}, we get the desired bound that

E
[
(WK

n )2m
]
≤ Cm

nm(n− 1)m
(σfull + εK;2)

2m + CmD
2m .
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Finally, if Assumption 2 is true for some ν ≥ 2, we have εK;2 → 0 asK grows. TakingK → ∞
in the bound for second moment gives

lim
K→∞

Var[WK
n ] =

2

n(n− 1)
σ2full .

If Assumption 2 holds for ν ≥ 3, similarly we have

lim
K→∞

E
[
(WK

n −D)3
]
=

8E[u(X1,X2)u(X2,X3)u(X3,X1)]

n3/2(n− 1)3/2
.

If Assumption 2 holds for ν ≥ 4, we have

lim
K→∞

E
[
(WK

n −D)4
]
=

12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] + σ4
full)

n2(n− 1)2
.

G.3. Proofs for Appendix B.3

Proof of Lemma 34 Write δ′ := δ/(m + 1) for convenience. Define the m-times differentiable
function

hm;τ ;δ(x) := (δ′)−(m+1)
∫ x+δ′

x

∫ y1+δ′

y1
. . .

∫ ym−1+δ′

ym−1

∫ ym+δ′

ym
I{y>τ} dy dym . . . dy1 .

In the case m = 0, the function is h0;τ ;δ(x) := δ−1
∫ x+δ
x I{y>τ} dy. By construction, hm;τ ;δ(x) =

0 for x ≤ τ − δ, hm;τ ;δ(x) ∈ [0, 1] for x ∈ (τ − δ, τ ] and hm;τ ;δ(x) = 1 for x > τ . This implies
I{x>τ} ≤ hm;τ ;δ(x) ≤ I{x>τ−δ} and therefore the desired inequality

hm;τ+δ;δ(x) ≤ I{x>τ} ≤ hm;τ ;δ(x) .

Next, we prove the properties of the derivatives of hm;τ ;δ. Denote recursively

Jm+1(x) :=
∫ x+δ′

x
I{y>τ}dy , Jr(x) :=

∫ x+δ′

x
Jr+1(y) dy for 0 ≤ r ≤ m .

Since hm;τ ;δ(x) = (δ′)−(m+1)J0(x) and ∂
∂xJi(x) = Ji+1(x + δ′) − Ji+1(x) for 0 ≤ i ≤ m, by

induction, we have that for 0 ≤ r ≤ m,

h
(r)
m;τ ;δ(x) = (δ′)−(m+1) ∂r

∂xr J0(x) = (δ′)−(m+1)
∑r

i=0

(
r

i

)
(−1)i Jr+1

(
x+ (r − i)δ′

)
. (44)

Note that Jm+1 is continuous, uniformly bounded above by δ′, and satisfies that Jm+1(x) = 0 for
x outside [τ − δ′, τ ]. By induction, we get that for 0 ≤ r ≤ m, Jr+1 is continuous, bounded above
by (δ′)m+1−r and satisfies that Jr+1(x) = 0 for x outside [τ − (m+ 1− r)δ′, τ ]. This shows that
h
(r)
m;τ ;δ is continuous and h(r)m;τ ;δ(x) = 0 for x outside [τ − δ, τ ], and the uniform bound

∣∣h(r)m;τ ;δ(x)
∣∣ ≤ (δ′)−r

∑r

i=0

(
r

i

)
=
( 2

m+ 1

)r
δ−r ≤ δ−r .
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Finally to prove the Hölder property of h(m)
m;τ ;δ(x), we first note that Jm+1 is constant outside x ∈

[τ − δ′, τ ] and linear within the interval with Lipschitz constant 1. The formula in (44) suggests that
h
(m)
m;τ ;δ(x) is piecewise linear and the Lipschitz constant in the interval [τ−(m−i+1)δ′, τ−(m−i)δ′]

is given by the Lipschitz constant of the i-th summand. Therefore, h(m)
m;τ ;δ is also Lipschitz with

Lipschitz constant

Lm := (δ′)−(m+1)max0≤i≤m

(
m

i

)
= (δ′)−(m+1)

(
m

⌊m/2⌋

)
.

For x, y ∈ [τ − δ, τ ], we then have

|h(m)
m;τ ;δ(x)− h

(m)
m;τ ;δ(y)| ≤ Lm|x− y| = Lmδ

∣∣x− y

δ

∣∣
≤ Lmδ

∣∣x− y

δ

∣∣ϵ = Lmδ
1−ϵ|x− y|ϵ , (45)

where we have noted that
∣∣x−y

δ

∣∣ ≤ 1 and ϵ ∈ [0, 1]. (45) is trivially true for x, y both outside

[τ − δ, τ ] since h(m)
m;τ ;δ evaluates to zero. Now consider x ∈ [τ − δ, τ ] and y < τ − δ. We have that

|h(m)
m;τ ;δ(x)− h

(m)
m;τ ;δ(y)| = |h(m)

m;τ ;δ(x)− h
(m)
m;τ ;δ(τ − δ)|

(45)
≤ Lmδ

1−ϵ(x− τ + δ)ϵ

≤ Lmδ
1−ϵ|x− y|ϵ .

Similarly for x ∈ [τ − δ, τ ] and y > τ , we have that

|h(m)
m;τ ;δ(x)− h

(m)
m;τ ;δ(y)| = |h(m)

m;τ ;δ(x)− h
(m)
m;τ ;δ(τ)|

(45)
≤ Lmδ

1−ϵ(τ − x)ϵ ≤ Lmδ
1−ϵ|x− y|ϵ .

Therefore (45) holds for all x, y. The proof for the derivative bound is complete by computing the
constant explicitly as

Lmδ
1−ϵ = (δ′)−(m+ϵ)

(
m

⌊m/2⌋

)
= δ−(m+ϵ)

(
m

⌊m/2⌋

)
(m+ 1)m+ϵ ,

and therefore

|h(m)
m;τ ;δ(x)− h

(m)
m;τ ;δ(y)| ≤ Cm,ϵ δ

−(m+ϵ) |x− y|ϵ , (46)

with respect to the constant Cm,ϵ =
(

m
⌊m/2⌋

)
(m+ 1)m+ϵ.

Proof of Lemma 35 By conditioning on the size of Y , we have that for any a, b ∈ R and ϵ > 0,

P(a ≤ X + Y ≤ b) = P(a ≤ X + Y ≤ b , |Y | ≤ ϵ) + P(a ≤ X ≤ b , |Y | ≥ ϵ)

≤ P(a− ϵ ≤ X ≤ b+ ϵ) + P(|Y | ≥ ϵ) ,

and by using the order of inclusion of events, we have the lower bound

P(a ≤ X + Y ≤ b) ≥ P(a+ ϵ ≤ X ≤ b− ϵ , |Y | ≤ ϵ)

= P(a+ ϵ ≤ X ≤ b− ϵ)− P(|Y | ≥ ϵ) .
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G.4. Proof for Appendix B.4

Proof of Lemma 37 By Lemma 2.3 of Steinwart and Scovel (2012), the assumption that κ∗ is mea-
surable and E[κ∗(V1,V1)] < ∞ implies the RKHS H associated with κ∗ is compactly embedded
into L2(Rd, R). By Lemma 2.12 and Corollary 3.2 of Steinwart and Scovel (2012), for some index
set I ⊆ N, there exists a sequence of non-negative, bounded values {λk}k∈I that converges to 0
and a sequence of functions {ϕk}k∈I that form an orthonormal basis of L2(Rd, R) such that∑

k∈I λkψk(V1)ψk(V2) = κ∗(V1,V2) ,

where the equality holds almost surely when I is finite and the convergence holds almost surely
when I is infinite. We can extend I to N by adding zero values of λk and ϕk whenever necessary
and drop the requirement that {ϕk}∞k=1 forms a basis, which gives the desired statement.
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