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Abstract

Kernelized Stein discrepancy (KSD) is a score-based discrepancy widely em-
ployed in goodness-of-fit tests. It is applicable even when the target distribution
has an unknown normalising factor, such as in Bayesian analysis. We show theo-
retically and empirically that the power of the KSD test can be low when the target
distribution has well-separated modes, which is due to insufficient data in regions
where the score functions of the alternative and the target distributions differ the
most. To improve its test power, we propose to perturb the target and alternative
distributions before applying the KSD test. The perturbation uses a Markov tran-
sition kernel that leaves the target invariant but perturbs alternatives. We provide
numerical evidence that the proposed approach can lead to a substantially higher
power than the KSD test when the target and the alternative are mixture distribu-
tions that differ only in mixing weights.

1 Introduction

Goodness-of-fit (GOF) testing concerns the question: given a target distribution P and a finite
sample drawn from a alternative distribution Q, is there evidence against the null hypothesis
H0 : Q = P ? A popular test statistic for GOF tests is kernelized Stein discrepancy (KSD),
which is a score-based statistical divergence and is applicable even if the model is unnormalised
(Chwialkowski et al., 2016; Liu et al., 2016).

However, KSD can fail to detect discrepancies when the target distribution has well-separated
modes. For example, when Q and P are mixtures with the same components but with different
mixing proportions, it has been observed that the KSD test would suffer from a low test power. This
is a consequence of the blindness of KSD to isolated components, which is a well-known prob-
lem for KSD and other score-based applications, such as density estimation (Wenliang et al., 2019;
Zhang et al., 2022) and quality measures for MCMC (Gorham et al., 2019). Neverthless, how the
blindness of KSD manifests itself in GOF tests is yet to be formalised.

The contribution of this paper is twofold. First, we show theoretically and numerically on a bimodal
Gaussian example that the power of KSD tests can converge to the test level as the mode separation
increases (Fig. 1a). This is different from the analyses in Wenliang and Kanagawa (2020) and
Gorham and Mackey (2017), which focus on the convergence of the sample KSD statistic but not
the test power. Second, we address this issue by introducing a perturbation operator. The operator
is designed to be a Markov transition kernel that leaves the target invariant but perturbs alternatives
to create discrepancies that can be more easily detected by KSD. We discuss how to perform GOF
tests with the proposed discrepancy, and show numerically that it can increase the test power against
multi-modal targets, sometimes substantially from the nominal level to almost 1.
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Figure 1: Power for a 1D bimodal Gaussian target distribution with mixing weight πp = 0.5 and
mode separation ∆. The alternative distribution is only the left component, from which samples
are drawn. pKSD is our proposed method; the others are existing methods. (a) Rejection rates and
target densities for varying ∆. (b) Density of the target distribution, as well as the density of the
alternative distribution before and after 10 steps of the perturbation described in Sec. 4.

2 Background
Kernelized Stein discrepancy Denote by Q and P two Borel probability measures supported on
X = Rd. We assume P admits a positive, continuously differentiable density p with respect to the
Lebesgue measure. A statistical divergence that measures how well samples from Q agree with P
is the Stein discrepancy (SD) (Stein, 1972; Gorham and Mackey, 2015)

S(Q,P ;F) = supf∈F |Ex∼Q[AP f(x)], (1)
where F is a set of functions on X , and AP is an operator acting on F . A natural candidate
for Apf(x) := ⟨∇ log p(x), f(x)⟩ + ⟨∇, f(x)⟩, where f : Rd → Rd is a continuously differen-
tiable, vector-valued function. When restricting F to the unit ball of a reproducing kernel Hilbert
space (RKHS) (Berlinet and Thomas-Agnan, 2011), S(Q,P ;F) is a statistical discrepancy, i.e.,
D(Q,P ;F) = 0 ⇐⇒ Q = P , and (1) can be solved efficiently (Liu et al., 2016; Chwialkowski
et al., 2016). Formally, let H be an RKHS associated with positive definite kernel k : X × X → R,
and Fd the unit ball of the d-times Cartesian product Hd := H× · · ·H. Choosing F = Fd and the
operator AP yields the (Langevin) kernelized Stein discrepancy (KSD): D(Q,P ) := S(Q,P ;Fd).

Assuming the kernel k has continuous first-order derivatives with respect to both arguments, KSD
attains a closed form: D(Q,P ) = Ex,x′∼Q[uP (x, x

′)], where x, x′ ∼ Q are independent random
variables, and uP is the Stein kernel: uP (x, x

′) := sp(x)
⊤k(x, x′)sp(x

′) + sp(x)
⊤∇x′k(x, x′) +

∇xk(x, x
′)⊤sp(x

′) +
∑d

i=1
∂2

∂xi∂x′
i
k(x, x′) (Chwialkowski et al., 2016, Thm. 2.1). Notably, uP

(hence also D(Q,P )) depends on p only through sp(x) = ∇ log p(x), so KSD is computable
even without the knowledge of the (possibly intractable) normalising constant of p. Given a fi-
nite sample {xi}ni=1 from Q, a consistent and unbiased estimator for D(Q,P ) is the U-statistic
D̂P := 1

n(n−1)

∑
1≤i ̸=j≤n uP (xi, xj).

GOF testing based on KSD Under mild regularity conditions (see e.g., Chwialkowski et al. (2016,
Thm. 2.1), Liu et al. (2016, Prop. 3.3)), KSD guarantees D(Q,P ) = 0 ⇐⇒ Q = P , and
hence testing H0 : Q = P against H1 : Q ̸= P is equivalent to H0 : D(Q,P ) = 0 against
H1 : D(Q,P ) ̸= 0. The KSD test uses D̂P as a test statistic, and uses a bootstrap procedure to
approximate the (intractable) asymptotic distribution of D̂P under H0; see, e.g., Liu et al. (2016).

3 Limitations of KSD in GOF tests
As all other hypothesis tests, the KSD test can be insensitive to certain families of alternatives. One
example is when the target and the alternative distributions are mixtures that differ only in the mixing
weights. This is a consequence of the “blindness” of KSD as a score-based discrepancy (Wenliang
and Kanagawa, 2020). It can be seen from the fact that KSD is upper-bounded by the Fisher diver-
gence (Johnson, 2004): F(q, p) := Ex∼Q[∥sp(x) − sq(x)∥22] (see Liu et al. (2016, Thm. 5.1)), so if
the set where the score difference ∥sp(x)− sq(x)∥22 is large has low Q-probability, the Fisher diver-
gence, thus also the KSD, will be small. The blindness of KSD has been highlighted in a number
of works (Wenliang and Kanagawa, 2020; Matsubara et al., 2021; Zhang et al., 2022; Gorham et al.,
2019); however, its implication to the test power in GOF testing has yet been formalised.

We show in Prop. 1 (proved in Appendix A) that this issue will cause the test power to converge to
the prescribed test level as mode separation increases, unless the sample size grows exponentially
fast.

2



Proposition 1. Let Q = N (0, Id) and P = P∆ = πN (0, Id) + (1 − π)N (∆, Id), respectively,
where π ∈ [0, 1] is the mixing proportion and ∆ ∈ Rd. Suppose the kernel k satisfies

max
{
Ex,x′∼Q[|k(x, x′)|], Ex,x′∼Q[∥∇x′k(x, x′)∥22], Ex,x′∼Q[∥∇xk(x, x

′)∥22]
}
< ∞. (2)

Let x1, x2, . . . be a sequence of i.i.d. samples from Q. Suppose ∆1,∆2, · · · ∈ Rd is a sequence with
∥∆ν∥2 → ∞ as ν → ∞. Let n1, n2, · · · ∈ N be such that nν = o

(
e∥∆ν∥2

2/64
)

. Then

nνD̂P∆ν
→d

∑∞
j=1 cj(Z

2
j − 1) (ν → ∞), (3)

where D̂P∆ν
is computed using x1, . . . , xnν , Zj ∼ N (0, 1) i.i.d. and {cj}j are the eigenvalues of

the Stein kernel uP under Q, i.e. solutions of cjϕj(x) = Ex′∼Q[uP (x, x
′)ϕj(x

′)] for non-zero ϕj .

Remark 1.1. The RHS of (3) is the limiting distribution of D̂P∆ under H0 (see, e.g., Liu et al.
(2016)); hence, Prop. 1 implies that, unless the sample size n grows prohibitively fast, the power of
the KSD test will converge to the test level as the two modes of p becomes more and more separated.
Remark 1.2. Assumption (2) is mild and holds for Inverse Multi-Quadrics (IMQ) and Radial Basis
Function (RBF) kernels when Q has a finite second moment. IMQ kernels are preferred as they have
desired tail properties to ensure a convergence determining KSD for distantly dissipative densities,
which include Gaussian mixtures with common covariance like the example in Prop. 1, c.f. Gorham
et al. (2019); Gorham and Mackey (2017); Hodgkinson et al. (2020). Prop. 1 does not contradict
this result, as it considers a different regime where a sequence of target distributions is of interest.

Fig. 1 provides numerical evidence for Prop. 1 by showing the rejection rate over 100 repetitions
at level α = 0.05. We observe that the power of the KSD test (with IMQ kernel whose bandwidth
is chosen by median heuristic (Gretton et al., 2012)) becomes indistinguishable from the prescribed
level for ∆ ≥ 6. The KSDAGG of Schrab et al. (2022), which uses an aggregated technique to
avoid bandwidth selection via heuristics, behaved similarly. Notably, this issue persists even if the
samples are drawn from both components but with an incorrect weight; see Fig. 3 in Appendix E.1.
In contrast, our proposed test, called pKSD, achieved an almost perfect power.

4 Kernelized Stein discrepancy test with perturbation

Prop. 1 highlights the myopia of the KSD test: it can only detect “local” discrepancies in regions
where we have observations. If the discrepancy is “global”, such as a missing mode or incorrect
mixing weight, it is necessary to turn this into a local discrepancy in order to improve the test
power. We propose to do so by perturbing both the alternative and the target distributions with
a Markov transition kernel K (Robert and Casella, 2004, Chapter 6) and performing KSD test
on the perturbed distributions. Given a probability measure Q, the perturbed measure under K is
(KQ)(·) :=

∫
X K(x, ·)Q(dx). In our paper, K may also be an iterated composition of an underlying

kernel, e.g. a Metropolis-Hastings kernel.

Perturbed kernel Stein discrepancy Given a Markov transition kernel K, the perturbed kernel-
ized Stein discrepancy (pKSD), D(Q,P ;K), is defined as

D(Q,P ;K) := D(KQ,KP ) = supf∈Fd |Ex∼KQ[AKP f(x)]|, (4)
assuming KP admits a continuously differentiable density so that its score function is well defined.
Notably, KQ need not have a (Lebesgue) density for (4) to exist. The next result (proved in Ap-
pendix B) shows that pKSD with an appropriately chosen K admits a closed-form solution.
Proposition 2 (pKSD close form). Assume K is a perturbation operator for which KP at-
tains a (Lebesgue) density that is continuously differentiable. If Ex∼KQ[uKP (x, x)] < ∞, then
D(Q,P ;K) = Ex,x′∼KQ[uKP (x, x

′)], where uKP is the Stein kernel for KP as defined in Sec. 2.

The choice of K is paramount. A desirable choice should ensure (i) the score function of KP is well
defined and efficiently evaluatable, and (ii) the test can achieve a high power against alternatives with
wrong mixing weights. To this end, we propose to use a transition kernel that is P -invariant and
relies on a jump proposal to perturb alternatives. A transition kernel K is P -invariant if KP = P .
This means the score function sKp = sp is unchanged after perturbation, thus (i) is trivially satisfied.
For (ii), the “jump proposal” leverages local geometric information of the modes of p and proposes
inter-modal jumps to create local discrepancy that KSD can detect. The resulting pKSD no longer
separates probability measures; we will address this major limitation in the full version of the paper.
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Choosing the transition kernel We consider transition kernels of the Metropolis-Hastings (MH)
type (Metropolis et al., 1953; Hastings, 1970). At a current state x, a new state x′ is proposed
by first randomly selecting two modes of p indexed by u1, u2, then mapping (x, u) to (x′, u′) =
h(x, u), where u := (u1, u2), and h is a deterministic, invertible function that is differentiable with
differentiable inverse. The proposed state x′ = x′(x, u) is hence deterministic given x and u. The
transition kernel is K(x,A) =

∑
u∈U δx′(A)g(u)α(x, x′)+δx(A)r(x), where α(x, x′) is an accept-

reject rule, δx(A) = 1 if x ∈ A and 0 otherwise, r(x) = 1 −
∑

u∈U g(u)α(x, x′), and the sum is
over pairs of distinct mode indices U := {(i, j) : 1 ≤ i ̸= j ≤ M}. Crucially, α is designed to
satisfy the detailed balance condition to guarantee P -invariance. See Appendix C.2 for details.

Choosing the proposal h We use a proposal h that creates local discrepancy by making inter-
modal jumps. Denote by µ1, . . . , µM ∈ Rd the mode vectors, and A1, . . . , AM ∈ Rd×d the inverse
of the Hessian matrices of − log p at those points. Given u = (u1, u2) ∼ Uniform(U), the proposal
is defined as h(x, u) = (A

1/2
u2 A

−1/2
u1 (x − θµu1

) + θµu2
, u), where θ > 0 is a fixed constant. Intu-

itively, when p is a mixture of elliptic distributions such as Gaussian or multivariate t-distributions,
each Am is the covariance matrix of a component, and h sends x from mode µu1

to the “correspond-
ing” location in µu2 . The proposed method relies on estimates of the mode vectors and Hessians,
and two hyperparameters (jump scale θ and number of transition steps T ). Appendix C.3 to C.4
discuss how to estimate/tune them in practice, as well as limitations of the proposed method.

GOF Tests with pKSD The P -invariance implies that pKSD reduces to KSD under H0. There-
fore, the null distribution of the pKSD statistic remains identical to that of KSD, and the p-value
can be estimated with the same bootstrap technique in KSD tests given sample {x̃i}ni=1 from the
perturbed distribution KQ, which can be drawn by running 1-step transitions under K starting from
xi ∼ Q. The complete algorithm of GOF testing with pKSD is given in Algorithm 1 in Appendix.

5 Experiments
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Figure 2: True and inferred locations of sensors
before and after perturbation. Black triangles and
crosses mark the location of the unobserved and
observed sensors, respectively.

We apply our method to hyperparameter selec-
tion for a MCMC sampler in a Bayesian in-
ference task of sensors localisation (Tak et al.,
2018). The goal is to approximate a poste-
rior distribution on the locations of 4 sensors
given noisy observations of pairwise distances.
The full experimental setup is in Appendix E.2.
Tak et al. (2018) approached this problem with
a Metropolis algorithm called RAM, which is
based on alternating repelling-attracting propos-
als and depends on hyperparameter σ > 0 (called scale). Tak et al. (2018) used σ = 1.08. We aim
to test the estimation quality of RAM using different values of σ under a fixed computational bud-
get. We see from Table 1 that, for σ = 0.1 and 1.08, KSD test and KSDAGG test only reject once
or none in 10 repetitions. This is inconsistent with the posterior plot (Fig. 2) as some modes are
clearly missing (before perturbation). On the other hand, pKSD rejects most tests by creating local
discrepancy around the missing modes. In contrast, with σ = 0.5, there is no clear evidence that the
posterior samples have missed any modes, and the samples before and after perturbation also look
similar. The results match this observation, with at most one rejection for all three methods.

6 Conclusion
Table 1: Number of rejected GOF tests over 10
repetitions with level 0.05.

RAM scale 0.1 0.3 0.5 0.7 0.9 1.08 1.3

KSD 0 0 0 1 0 0 1
KSDAGG 1 0 0 2 1 1 4

pKSD (ours) 10 4 1 1 1 6 6

We formalise the failure of the KSD test when
the target distribution has well-separated modes
via a concrete example of bimodal Gaussian.
To increase its power, we propose to perturb
both the alternative and the target distributions using a Markov process, which creates local discrep-
ancies that KSD can detect but no longer guarantee separation of probability measures. In the full
version of the paper, we will extent pKSD to a statistical divergence that indeed separates measures,
and include more experiments to examine the test power against different types of alternatives.
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Appendix

A Proof of Proposition 1

Prop. 1 states that, when a sample completely misses one mode of a bimodal Gaussian target and the
sample size n does not grow fast enough with the inter-modal distance ∥∆∥2, the distribution of the
kernelized Stein discrepancy statistic will converge to the null distribution, even though the sample
is clearly not representative for the target. To prove this result, we need the following lemma.
Lemma 3. Under the same assumptions in Prop. 1, we have Ex∼Q[∥sp∆

(x) − sq(x)∥22] =

o
(
e−∥∆∥2

2/32
)

.

The above lemma states that the expected square error between the score functions (i.e. the Fisher
divergence) between Q and P∆ decays with a rate at least exponentially fast in the inter-modal
distance ∥∆∥2. We now use this lemma to prove Prop. 1; the proof of this lemma is provided later
in this section.

Proof of Prop. 1. Fixing positive integer ν, we can write nνD̂P∆ν
= nνD̂Q + nν(D̂P∆ν

− D̂Q).
Under the stated assumption of the kernel k and, one can check that Ex,x′∼Q[uQ(x, x

′)2] < ∞
when Q is the standard normal distribution, so we can apply Liu et al. (2016, Thm 4.1) to conclude
that, as ν → ∞,

nνD̂Q →d

∑∞
j=1 cj(z

2
j − 1) , (5)

where zj , cj are as defined in Prop. 1. If we could show that nν(D̂P∆ν
− D̂Q) → 0 in probability as

ν → ∞, then the desired result would follow from Slutsky’s Theorem (Casella and Berger, 2001)
and (5).

To do so, we fix ϵ > 0 and denote by PrQ the probability under Q. We also omit the dependence of
n and ∆ on ν for brevity. The Markov inequality yields

PrQ(n|D̂P∆
− D̂Q| ≥ ϵ)

≤ n
ϵ Ex1,...,xn∼Q[|D̂P∆

− D̂Q|]

= n
ϵ Ex1,...,xn∼Q

∣∣∣ 1
n(n−1)

∑
1≤i ̸=j≤n uP∆(xi, xj)− uQ(xi, xj)

∣∣∣
≤ n

ϵ
1

n(n−1)

∑
1≤i ̸=j≤n Exi,xj∼Q|uP∆

(xi, xj)− uQ(xi, xj)|
= n

ϵ Ex,x′∼Q|uP∆(x, x
′)− uQ(x, x

′)|
≤ n

ϵ {Ex,x′∼Q|sp∆(x)
⊺sp∆(x

′)− sq(x)
⊺sq(x′)||k(x, x′)|

+ Ex,x′∼Q|(sp∆(x)− sq(x))
⊺∇x′k(x, x′)|

+ Ex,x′∼Q|(sp∆
(x′)− sq(x

′))⊺∇xk(x, x
′)|}

≤ n
ϵ

{(
Ex,x′∼Q[(sp∆

(x)⊺sp∆
(x′)− sq(x)

⊺sq(x′))2]
)1/2 (Ex,x′∼Q[k(x, x

′)2]
)1/2

+
(
Ex∼Q[∥sp∆

(x)− sq(x)∥22]
)1/2 (Ex,x′∼Q[∥∇x′k(x, x′)∥22]

)1/2
+
(
Ex∼Q[∥sp∆

(x)− sq(x)∥22]
)1/2 (Ex,x′∼Q[∥∇xk(x, x

′)∥22]
)1/2 }

. (6)

We bound each of the three terms individually. For the first term, we have

Ex,x′∼Q[(sp∆
(x)⊺sp∆

(x′)− sq(x)
⊺sq(x′))

2
]

= Ex,x′∼Q[(sp∆
(x)⊺(sp∆

(x′)− sq(x
′)) + (sp∆

(x)− sq(x))
⊺sq(x′))

2
]

≤ 2Ex,x′∼Q[(sp∆
(x)⊺(sp∆

(x′)− sq(x
′)))

2
]︸ ︷︷ ︸

T1

+2Ex,x′∼Q[((sp∆
(x)− sq(x))

⊺sq(x′))
2
]︸ ︷︷ ︸

T2

,

where the last line follows from the fact that (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R. Now,

T1 ≤ 2Ex,x′∼Q[∥sp∆
(x)∥22∥sp∆

(x′)− sq(x
′)∥22]

≤ 2
(
2Ex∼Q[∥sp∆

(x)− sq(x)∥22] + 2Ex∼Q[∥sq(x)∥22]
)
Ex′∼Q[∥sp∆

(x′)− sq(x
′)∥22],
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where the first line follows from the Cauchy-Schwarz inequality, and the last line holds because

∥sp∆
(x)∥22 = ∥sp∆

(x)− sq(x) + sq(x)∥22 ≤ 2∥sp∆
(x)− sq(x)∥22 + 2∥sq(x)∥22.

By Lemma 3 we know that Ex∼Q[∥sp∆(x)− sq(x)∥22] = o
(
e−∥∆∥2

2/32
)

. Also, direct computation

gives that Ex∼Q[∥sq(x)∥22] = 1. A similar argument shows that T2 = o
(
e−∥∆∥2

2/32
)

for some

constant a2. We therefore conclude that the first term of (6) is o
(
e−∥∆∥2

2/64
)

.

With a similar argument and by the boundedness assumptions on the kernel k, we conclude that the
second and third terms of (6) are both o(e−∥∆∥2

2/64). Combining all the above, we conclude that
there exists a universal constant a3 such that, for sufficiently large ∥∆∥2,

PrQ(n|D̂P∆ − D̂Q| ≥ ϵ) ≤ n
ϵ a3e

− ∥∆∥22
64 ,

which goes to 0 if n = o
(
e∥∆∥2

2/64
)

. This shows that nν(D̂P∆ν
− D̂Q) → 0 in probability as

ν → ∞, so the desired result follows.

Proof of Lemma 3. For any δ > 0, define Bδ := {x ∈ Rd : ∥x∥2 ≤ δ}. We have the following
decomposition

Ex∈Q[∥sp∆(x)− sq(x)∥22]
= Ex∼Q[δx(Bδ)∥sp∆(x)− sq(x)∥22] + Ex∼Q[δx(Rd\Bδ)∥sp∆(x)− sq(x)∥22] (7)

The rest of the proof proceeds with bounding the two terms separately. We first note that standard
computation gives

p∆(x)
q(x) =

π exp(− 1
2∥x∥

2)+(1−π) exp(− 1
2∥x−∆∥2)

exp(− 1
2∥x∥2)

= π + (1− π) exp
(
∆⊺x− 1

2∥∆∥2
)
,

and

∥sp∆
(x)− sq(x)∥22 =

∥∥∥∥ (1−π)∆ exp(∆⊺x− 1
2∥∆∥2

2)
π+(1−π) exp(∆⊺x− 1

2∥∆∥2
2)

∥∥∥∥2
2

=
(1−π)2∥∆∥2

2

(1−π+π exp(−∆⊺x+ 1
2∥∆∥2

2))
2 .

For x ∈ Bδ , Cauchy-Schwarz inequality implies ∆⊺x ≤ ∥∆∥2∥x∥2 ≤ δ∥∆∥2. Hence

∥sp∆(x)− sq(x)∥22 ≤ (1−π)2∥∆∥2
2

π2 exp(−2∆⊺x+∥∆∥2
2)

≤ (1−π)2∥∆∥2
2

π2 exp(−2δ∥∆∥2+∥∆∥2
2)
,

and the first term of (7) can be bounded as

Ex∼Q

[
δx(Bδ)∥sp∆(x)− sq(x)∥22

]
≤ Ex∼Q

[
δx(Bδ)

(1−π)2∥∆∥2
2

π2 exp(−2δ∥∆∥2+∥∆∥2
2)

]
≤ (1−π)2∥∆∥2

2

π2 exp(−2∆δ+∆2) ,

where the last inequality follows from the fact that Ex∼Q[δx(Bδ)] ≤ 1.

To bound the second term of (7), we note that for x ∈ Rd\Bδ ,

∥sp∆
(x)− sq(x)∥22 ≤ (1−π)2∥∆∥2

2

(1−π)2 = ∥∆∥22.

Therefore,

Ex∼Q

[
δx(Bδ)∥sp∆(x)− sq(x)∥22

]
≤ ∥∆∥22Ex∼Q [δx(Bδ)] ≤ ∥∆∥22 exp

(
− δ2

2

)
,

by the tail probability of Gaussian distributions (e.g., Wainwright (2019, Prop. 2.5)). Combining
these results we have

Ex∈Q[∥sp∆
(x)− sq(x)∥22] ≤

(1−π)2∥∆∥2
2

π2 exp(−2∆δ+∆2) + ∥∆∥22 exp
(
− δ2

2

)
= (1− π)2π−2∥∆∥22 exp

(
− 1

3∥∆∥22
)
+ ∥∆∥22 exp

(
− 1

18∥∆∥22
)
,

where the last line follows by choosing δ = ∆/3. Noting the RHS of the last inequality is
o
(
− 1

32∥∆∥22
)

completes the proof.
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Algorithm 1 Goodness-of-Fit Test with pKSD (the proposed method).

Require: Training set {xtrain,j}ntrain
j=1 , test set {xtest,j}ntest

j=1, target P , number of transition steps T ,
candidate jump scales {θ1, . . . , θL}, sizes of training and testing sets ntrain and ntest, resp.

Output Whether the null hypothesis is rejected.
Estimate the mode {µ1, µ2, . . . , µM} and Hessians {A1, . . . , AM} using Algorithm 2.
Use {xtrain,j}ntrain

j=1 to find θ∗ ∈ argmaxθ∈{θ1,...,θL} D̂P,K(T )
θ

/σ̂u.

Perturb {xtest,j}ntest
j=1 with the selected kernel K(T )

θ∗ , and use (8) to compute test statistic D̂
P,K(T )

θ∗
.

Compute bootstrap samples using (9) and find the (1− α)-quantile γ̂1−α.
Reject the null hypothesis if D̂

P,K(T )

θ∗
≥ γ̂1−α.

Algorithm 2 Finding mode vectors (Pompe et al., 2020, Algorithm 3)

Require: Initial points s1, . . . , sM0
, small positive value β.

Output Approximates for mode vectors {µ1, . . . , µM}.
Run BFGS to minimise − log p(x) with initial points s1, . . . , sM0

.
Denote the estimated local optima by m1, . . . ,mM0

and their corresponding Hessian matrices by
A1, . . . , AM0

.
Set µ1 := m1, Aµ1

:= A1,M = 1.
for i = 2, . . . ,M0 do

if minj∈{1,...,M}
1
2 ((µj −mi)

⊺Aµj (µj −mi) + (µj −mi)
⊺Ai(µj −mi)) < β then

k := argminj∈{1,...,M}
1
2 ((µj −mi)

⊺Aµj
(µj −mi) + (µj −mi)

⊺Ai(µj −mi)).
if p∗(µk) < p∗(mi) then

Set µk := mi and Aµk
:= Ai.

end if
else

µM+1 := mi and AµM+1
:= Ai.

M := M + 1.
end if

end for

B Proof of Proposition 2

Under the stated assumptions, this follows directly from Chwialkowski et al. (2016, Thm. 2.1) ap-
plied to KQ and KP .

C Details of Proposed Method

C.1 Estimating pKSD

Proposition 2 is a general result and applies to any perturbation operator K for which the density of
KP is well-defined. In particular, it applies to pKSD where K is a P -invariant Markov transition
kernel (in which case KP = P ).

Given i.i.d. {xi}ni ∼ Q, a sample {x̃i}ni=1 from KQ can be drawn by running 1-step transitions
under K starting from each xi. Prop.2 then suggests estimating D(Q,P ;K) by the following U-
statistic:

D̂P,K := 1
n(n−1)

∑
1≤i ̸=j≤n uKP (x̃i, x̃j). (8)

Estimating the p-value In the standard KSD tests, the asymptotic distribution of the test statistic
D̂P under H0 has no closed form. Liu et al. (2016) proposed to approximate it using a bootstrap
technique (Huskova and Janssen, 1993) via the bootstrap samples

D̂b
P := 1

n2

∑
1≤i ̸=j≤n

(
wb

i − 1
) (

wb
j − 1

)
uP (xi, xj), (9)

where (wb
1, . . . , w

b
n) ∼ Mult

(
n; 1

n , . . . ,
1
n

)
follows a multinomial distribution. Since pKSD reduces

to KSD under H0 due to P -invariance, the null distribution of pKSD statistic can be approximated
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using the same bootstrap technique, with {xi}ni=1 replaced with the perturbed sample {x̃i}ni=1 (see
Section 4).

C.2 Choosing the transition kernel

Denoting by B(X ) the Borel σ-algebra on X , a Markov transition kernel is a function K : X ×
B(X ) → [0, 1] such that (i) for all x ∈ X , K(x, ·) is a probability measure on (X ,B(X )), and
(ii) for all A ∈ B(X ), K(·, A) is a measurable function on X . In our example, K may also be an
iterated composition of an underlying kernel, e.g. a Metropolis-Hastings kernel. Given a probability
measure Q, the perturbed measure is (KQ)(A) :=

∫
X K(x,A)Q(dx), for measurable set A.

As discussed in Section 4, we choose a transition kernel of the form

K(x,A) =
∑

u∈U δx′(A)g(u)α(x, x′) + δx(A)r(x),

where x′ = x′(x, u) is the proposed state, α(x, x′) is an accept-reject rule that guarantees P -
invariance, δx(A) = 1 if x ∈ A and 0 otherwise, and r(x) = 1 −

∑
u∈U g(u)α(x, x′). When

g is defined on a continuous space, the same argument follows by replacing the summation with
integration. The accept-reject rule α is designed to satisfy the detailed balance condition:∫

x∈A

∑
u∈U δx′(B)p(x)g(u)α(x, x′)dx =

∫
x′∈B

∑
u′∈U δx(A)p(x′)g′(u′)α(x′, x)dx′, (10)

for all A,B ∈ B(X ). One valid choice of α(x, x′) for which (10) holds is

α(x, x′) = min
(
1, p(x′)g′(u′)

p(x)g(u)

∣∣∣∂(x′,u′)
∂(x,u)

∣∣∣) , (11)

where ∂(x′, u′)/∂(x, u) denotes the Jacobian of the transformation from (x, u) to (x′, u′). See
Appendix C.5 for the proof. Accept-reject rules of the form (11) are also used in Reversible-Jump
MCMC (Green, 1995; Green and Hastie, 2009) and generalise the well-known MH rule, for which
the determinant of the Jacobian is 1. A similar trick can be used to generalise other accept-reject
rules such as the Barker’s rule (Peskun, 1973; Tierney, 1998; Livingstone and Zanella, 2021).

C.3 Choosing the proposal

In our proposal h(x, u) = (A
1/2
u2 A

−1/2
u1 (x−θµu1

)+θµu2
, u), two modes (indexed by u = (u1, u2))

are chosen randomly for a given current state, so a proposed state can potentially lie in a low-density
region. This can hence lead to a low acceptance probability. A similar proposal considered in
Pompe et al. (2020), called deterministic jumps, addresses this problem by recording an auxiliary
variable for the mode index and augmenting the state space to X × {1, 2, . . . ,M(M − 1)}, so that
at every step it is guaranteed to propose a new state belonging to a different mode. However, the
same trick cannot be used in our case because the augmented density no longer has a well-defined
score function. In our experiment, we find that our jump proposal can achieve a significant increase
in power against mixtures of elliptical distributions that disagree in the weights.

C.4 Further Details

Tuning the jump scale Fixing T ≥ 1, we can follow the same argument in Jitkrit-
tum et al. (2017, Prop. 4) to approximate the test power with D̂

P,K(T )
θ

/σ̂u, where σ̂2
u :=

4
n3

∑n
i=1

(∑n
j=1 uP (x̃i, x̃j)

)2

− 4
n4

(∑n
i,j=1 uP (x̃i, x̃j)

)2

with x̃i ∼ K(T )Q, which is an esti-
mate of the asymptotic standard deviation σu (see also Schrab et al., 2022, Eq. 8). Since the
objective is not differentiable with respect to θ, we propose to choose θ from a grid of values
{θl}Ll=1 near 1, a heuristic we find to work well in our experiments. The objective is hence
maxθ∈{θ1,...,θL} D̂P,K(T )

θ

/σ̂u.

Estimating the mode vectors and Hessians To estimate the mode locations and Hessians at those
points, we follow Pompe et al. (2020) to minimise − log p by running in parallel a sequence of
optimisers initiated at different starting points. The optimiser used is BFGS (Nocedal and Wright,
2006), which returns both the local optima and approximated Hessians at those points. The optima
are then merged if their Mahalanobis distance weighted by the approximated Hessian is smaller than
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a pre-specified threshold. In our experiments, we initialise the optimisers from a set of size ntrain,
half of which is drawn randomly from the training set and the other half sampled uniformly from a
hyper cube [L1, U1]× · · · × [Ld, Ud]. The full procedure is described in Appendix D.

Choice of number of transitions The number of transitions T affects how many perturbed sam-
ples are accepted across all transition steps, thus impacting the performance of the pKSD test. In-
tuitively, T should be set to a large value when the acceptance rate is low, which would happen if
the estimates of the modes and local Hessians of the target distribution are inaccurate, or the target
distribution cannot be approximated by a mixture of elliptic distributions.

We propose two heuristics to choose this hyper-parameter in practice: i) tuning this parameter on
the training set by selecting from a pre-specified grid of values, or ii) setting it to a large value (e.g.,
T = 1000) if the computational budget allows.

One concern with ii) is that the candidate distribution might converge to the limiting distribution
(which, for our choice of transition kernel, is the target distribution P ) as T → ∞, so a large T
could drive the perturbed distribution close to P , making it harder to distinguish. This is however
not a major concern, as the target distribution P is not the only limiting distribution of the transition
kernel due to non-irreducibility, so the data distribution Q will not necessarily converge to P as
T → ∞. Although this does not offer a theoretical guarantee, some empirical evidence is provided
by the experiments we conducted.

Limitations The jump proposal of the transition kernel used in pKSD is constructed specif-
ically for targets that are mixtures of elliptic distributions and relies on estimates of the loca-
tion and local geometry of modes, so it may suffer from a low acceptance rate for targets with
more complicated geometrical structure. One future direction is to study alternative proposals
that relaxes these assumptions. Another limitation is that pKSD is not a valid discrepancy, as
D(Q,P ;K) = 0 ≠⇒ Q = P . Understanding in which distribution class pKSD does have this
guarantee is another worthwhile research question.

C.5 A sufficient condition

We first give a sufficient condition for the detailed balance equation (10). For simplicity, we write
x′ = x′(x, u) and x = x(x′, u′), so that the dependence of x′ on u and of x on x′ is implicit.
Proposition 4. Let p be a probability density function on X ⊂ Rd. Suppose that h is a deterministic,
invertible function that is differentiable with differentiable inverse. Furthermore, let g be a known
density defined on some discrete space U . Consider a Markov transition kernel of the form

K(x,A) =
∑

u∈U δx′(A)g(u)α(x, x′) + δx(A)r(x), (12)

where x′ = x(x, u), δx(A) = 1 if x ∈ A and 0 otherwise, and r(x) = 1−
∑

u∈U g(u(x, x′))α(x, x′).
Then an accept-reject rule α(x, x′) satisfies the detailed balance condition (13) if

p(x)g(u)α(x, x′) = p(x′)g(u′)α(x′, x)
∣∣∣∂(x′,u)
∂(x,u)

∣∣∣ , (13)

Proof. The proof follows largely from Green and Hastie (2009, Sec. 1.2.1), which shows the claim
when the density g is defined on a continuous space. By the invertibility of the transformation h, a
change-of-variable formula can be applied to the right-hand-side of (10) to yield∫

x∈A

∑
u∈U δx′(B)p(x)g(u)α(x, x′)dx =

∫
x′∈B

∑
u′∈U δx(A)p(x′)g′(u′)α(x′, x)

∣∣∣∂(x′,u′)
∂(x,u)

∣∣∣ dx′.

Now define UB := {u : x′ ∈ B} and similarly for UA. We have that (x, u) ∈ A × UB =⇒
(x′, u′) = h(x, u) ∈ B × UA, and, similarly, (x′, u′) ∈ B × UA =⇒ (x, u) ∈ A × UB . We
therefore conclude that a sufficient condition is

p(x)g(u)α(x, x′) = p(x′)g(u′)α(x′, x)
∣∣∣∂(x′,u)
∂(x,u)

∣∣∣ ,
thus showing the claim.

In particular, it follows that the detailed balance condition holds with (11) by verifying that it satisfies
(13). This can be viewed as a generalisation of the Metropolis-Hastings (MH) rule α(x, x′) =

min
(
1, p(x′)g′(u′)

p(x)g(u)

)
.
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Figure 3: One-dimensional bimodal Gaussian example with ∆ = 6 and πp = 0.5.

D Finding mode vectors via optimisation and merging

Finding local modes In practice, the mode locations of a non-trivial target distribution and the
Hessians are rarely available. Pompe et al. (2020) describes a general approach to estimate these
quantities by running in parallel a sequence of the optimisers initiated at different starting points,
and merging the optima found. This is done by minimising the objective − log p using the BFGS
algorithm (Nocedal and Wright, 2006), which returns both the local minima and the approximated
Hessian at those points. In our experiments, we run BFGS for at most 1000 iterations with each
initial point.

Mode merging Starting the optimisation procedure from each initial point will lead to an end
point close to the true local maxima, but are numerically different from each other. Pompe et al.
(2020) proposed to merge two optima points mi and mj if the Mahalanobis distance weighted by
the averaged Hessians at those points is below a given threshold β. The full procedure is given in
Algorithm 2 for completeness.

Choosing starting points The BFGS can be initiated from either a random sample uniformly
drawn on a product of intervals [L1, U1]×· · ·× [Ld, Ud] in X , or simply the training set {xtrain,i}ntrain

i=1 .
The first approach will allow modes not covered by the training data to be detected, and the second
approach can lead to faster convergence of the optimisation algorithm when the modes of Q and P
overlaps. To combine the best of the two worlds with the same computational budget, we initialise
the points by a set of size ntrain, half of which is drawn randomly drawn from the training set and the
other half initialised uniformly from [L1, U1]× · · · × [Ld, Ud].

E Experimental details

E.1 Multivariate Gaussian mixture: supplementary plots

In correct mixing ratios in 1 dimension We repeat the same experiment in Figure 1, where,
instead of varying ∆, we fix ∆ = 6 and draw samples from the same mixture but with different
mixing weights πq . The mixing weight for the target distribution is kept at πp = 0.5 as before. We
observe that the problem of low power of KSD test and KSDAGGtest persists even if the samples
are drawn from both components but with a different weight; see Figure 3 in Sec. 5.

Level and power experiments in 50 dimensions We include supplementary experiments where
we study the power and level of pKSD. The target distribution is the same in the multivariate Gaus-
sian mixture example in Sec. 5 in 50 dimensions, with density p(x) ∝ πp exp

(
− 1

2∥x∥
2
2

)
+ (1 −

πp) exp
(
− 1

2∥x−∆e1∥22
)
, where πp = 0.5, ∆ = 6, and e1 ∈ Rd is a vector with 1 in the first co-

ordinate and 0 in others. Samples are drawn either from the same distribution (level experiment), or
from only the left component (power experiment). The probability of rejection over 100 repetitions
is plotted in Fig. 4. We can see that under the null hypothesis, all tests have the prescribed test level
α = 0.05. When samples completely miss one mode, pKSD achieves a significantly higher power
for all sample sizes, whereas the power of KSD and KSDAGG remains close to the level.
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Figure 4: Level (left) and power (right) experiments with the multivariate Gaussian mixture example.

E.2 Sensor network localisation

The Bayesian inference task for sensor network localisation follows the same setup in Tak et al.
(2018). This is a modified version of the example from Ihler et al. (2005), which has been used
as a benchmark for MCMC samplers designed for multimodal targets (Pompe et al., 2020; Ahn
et al., 2013; Lan et al., 2014). Here, six sensors x1, . . . , x6 are located in [0, 1]2, four of which have
unknown locations and the remaining two are known. We observe distance yij between two sensors
xi, xj with probability exp(−∥xi − xj∥22/(2× 0.32)). If observed, the distance follows a Gaussian
distribution yij ∼ N (∥xi − xj∥, 0.022). As in Tak et al. (2018), we use a diffuse bivariate Gaussian
prior distribution N (0, 102I2) for each xi. Let wij be the binary random variable for which wij = 1
if the distance yij is observed and 0 otherwise. The full posterior is

π(x1, . . . , x4|y, w) ∝ exp
(
−

∑4
k=1 x⊺

kxk

2×102

)
Πi<jfij(xi, xj |yij , wij),

where w = {wij}, y = {yij} and

fij(xi, xj |yij , wij) =
[
exp

(
− (yij−∥xi−xj∥2)

2

2×0.022

)
exp

(
−∥xi−xj∥2

2

2×0.32

)]wij
[
1− exp

(
−∥xi−xj∥2

2

2×0.32

)]1−wij

.
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