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Abstract

In this thesis we investigate critical phenomena for ensembles of identical interacting agents,

namely weakly interacting diffusions. These interacting systems undergo two qualitatively dif-

ferent scenarios of criticality, critical transitions and phase transitions. The former situation

conforms to the classical tipping point phenomenology that is observed in finite dimensional

systems and originates from a setting where negative feedbacks that stabilise the system pro-

gressively loose their efficiency, resulting in amplified fluctuations and correlation properties of

the system. On the other hand, phase transitions stem from the complex interplay between

the agents’ own dynamics, the coupling among them and the noise, leading to macroscopic

emergent behaviour of the system, and are only observed in the thermodynamic limit. Classi-

cally, phase transitions are investigated with the use of suitable macroscopic variables, called

order parameters, acting as effective reaction coordinates that capture the relevant features of

the macroscopic dynamics. However, identifying an order parameter is not always possible.

In this thesis we adopt a complementary point of view, based on Linear Response theory, to

investigate such critical phenomena. We are able to identify the conditions leading either to

a critical transition or a phase transition in terms of spectral properties of suitable response

operators. We associate critical phenomena to settings where the response of the system breaks

down. In particular, we are able to characterise these critical scenarios as settings where the

complex valued susceptibility of the system develops a non analytical behaviour for real val-

ues of frequencies, resulting in a macroscopic resonance of the system. We provide multiple

paradigmatic examples of equilibrium and nonequilibrium phase transitions where we are able

to prove mathematically and numerically the clear signature of a singular behaviour of the

susceptibility at the phase transition as the thermodynamic limit is reached. Being associated

to spectral properties of suitable operators describing either correlation or response properties,

these resonant phenomena do not depend on the specific details of the applied forcing nor on

the observable under investigation, allowing one to bypass the problem of the identification of

the order parameter for the system.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The investigation of dynamical phenomena in complex networks constructed according to dif-

ferent topologies is an extremely active research area [PG16, KAB+14, YRMK21]. Multiagent

systems, i.e. ensembles of interacting dynamical agents, are in this regard a fundamental

class of models commonly employed to investigate various phenomena in the natural sciences,

social sciences and engineering [NPT10, PT13, KjHGG11]. Applications of multiagent sys-

tems are ubiquitous, ranging from the more classical cooperation [Daw83] and synchronisation

[ABPV+05, PKRK03] phenomena but also including areas such as management of natural haz-

ards [SGL19] and of climate change impacts [Gei18], consensus formation [GPY17], algorithms

for sampling, optimization and the training of neural networks [RVE18, GINR20, BKPP21]

and emergent phenomena in neural networks and life sciences [CDPF15, DP19].

It is well known that high dimensional complex systems, possibly featuring interacting degrees

of freedom on multiple space and time scales, often exhibit abrupt changes in their behaviour, a

phenomenon that is commonly referred to as critical transition [Sch09a]. The concept of critical

transition encompasses a variety of fields of science, ranging from climate science, where they

are commonly referred to as “tipping points”, to ecology (“regime shifts”) and neuroscience

[FPS18]. Such transitions are often associated to undesirable and catastrophic events [Arn92],
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2 Chapter 1. Introduction

such as climate crisis, market crashes, death of ecosystems, etc [Sch09a, Sor06]. Incredible

efforts have been devoted to the understanding of the dynamics leading to tipping points, re-

sulting in the following fruitful conceptual classification of scenarios in which a system might

lose its stability [AWVC12]:

• Bifurcation (B-)tippings refer to situations where, as the parameters of the system change

parametrically, i.e. in an adiabatical way, the reference state becomes unstable and the

system is driven towards another, most likely unpredictable, state.

• Noise induced (N-)tippings arise instead when the system features some degree of random-

ness, leading the multiple stable attractors to become metastable and inducing transitions,

on some relevant timescales, between them.

• Shock (S-)tippings originate when the system is subjected to a strong and sudden exoge-

nous impact that drives it outside the basin of attraction of the unperturbed state. In

this critical scenario the geometry of the basins becomes a very relevant feature of the

dynamics since it is closely related to the concept of “minimal fatal shock” that breaks

the stable state of the system [HF20].

• As a last scenario, Rate induced (R-)tippings are not necessarily associated with bifurca-

tion or noise mechanisms but derive from sufficiently rapid changes to an external input,

that could potentially lead the system to not being able to track the branch of stable

attractors and tip to a different phase space region.

In natural systems, the existence of transient chaos and unstable chaotic saddles has been iden-

tified as another source of uncertainty that accompanies multiple scenarios of critical transitions

[Feu08, KFT16, HVF21, LB17, LB20]. The importance of developing tools for predicting crit-

ical transitions has long been recognized. Such early warning signals include an increase in

variance and correlation time of the dynamical variables as the system approaches the transi-

tion point [DSvN+08, Kue11, SBB+09].
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Multiagent systems can also undergo an alternative scenario of criticality, namely phase transi-

tions, due to the appearance of complex emergent macroscopic behaviours stemming from the

coupling among the agents. This qualitative change of the properties of the system derives from

a different mathematical mechanism, i.e. exchange of stability in the thermodynamic limit of

nonunique stationary distributions as the parameters of the systems vary. Generally, phase

transitions are usually investigated by

a. identifying an order parameter, i.e. a suitable observable of the system able to capture

some degree of collective behaviour of the possibly high dimensional system,

b. verifying that in the thermodynamic limit, for some value of the parameters of the system,

the properties of such an order parameter undergo a sudden change.

An order parameter is essentially a “smart” projection operation from the full, high dimensional

dynamics to a low dimensional, effective dynamical system that keeps the relevant macroscopic

features of the exact system. As such, the notion of an order parameter is closely linked to

the concept of reaction coordinates and dimension reduction techniques for high dimensional

systems. It is important to point out that while order parameters can in many cases be easily

deduced for equilibrium systems using, e.g. symmetry arguments, the definition of reaction

coordinates for nonequilibrium system is far more challenging [MD05, BLP06, Rog21].

The goal of this thesis is to adopt a different and complimentary viewpoint for the investigation

of critical phenomena for multiagent systems. Inspired by the success of Linear Response The-

ory in explaining and predicting tipping points in high dimensional systems, such as the climate

[CNK+14, TLD18], we here also associate the nearing of a phase transition with the setting

where a very small cause leads to very large effects. More technically, as in the case of critical

transitions for finite dimensional systems, we associate phase transitions of the thermodynamic

limit of interacting systems to the breakdown of linear response properties and the development

of non analytical, singular behaviours of response functions (susceptibilities) of the system.

The methodology we will employ is based, from a mathematical standpoint, on the theory of
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Markov semigroups for stochastic differential equations (also known as transfer operator theory

in deterministic settings) and in particular to their spectral theory based on a generalisation of

the concept of Ruelle Pollicott resonances to stochastic systems. The response of the system

to arbitrary (weak) perturbations can be in fact related to spectral properties of the operators

describing the unperturbed reference dynamics. As a result, by adopting a response theory

perspective, we can identify critical settings in terms of universal properties of the dynamics

of the system, stemming from the spectral properties of suitable operators, rather than from

the specific details of the dynamics, applied forcings or of the observables under investigation.

We also provide extensive numerical simulations for the investigation of critical phenomena in

multiagent systems. The numerical perspective we adopt mirrors spectroscopic techniques that

are used for investigating the frequency dependence of the optical properties of materials and

is aimed at highlighting the development of singularities of the complex valued susceptibility

of the system as the thermodynamic limit is reached.

Outline and results of the thesis

We here briefly describe the main structure and achievements of this thesis. The next two

chapters provide an extensive summary of the literature regarding, respectively, weakly inter-

acting diffusions and linear response theory for finite dimensional systems. We have tried to

provide a coherent review of the topic, with a focus on the investigation on fluctuations and

critical phenomena.

In particular, in chapter 2 we introduce the class of interacting systems, namely weakly in-

teracting diffusions, under investigation. The main feature of weakly interacting diffusions is

that, in the thermodynamic limit, they are described by a nonlinear, nonlocal Fokker Planck

equation, commonly referred to as McKean Vlasov equation, that supports multistability of

invariant measures, as opposed to standard settings for stochastic finite dimensional systems

where the physical invariant measure is usually unique and ergodic. The McKean Vlasov equa-

tion represents a Law of Large Numbers that is obtained as a result of propagation of chaos

effects. Firstly, we provide an all rounded introduction on the propagation of chaos phenomenon

by approaching it from different perspectives, such as a physics-oriented many-body statisti-
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cal mechanical approach and a more mathematically rigorous formulation in terms of measure

valued processes. These are classical and well known results for weakly interacting diffusions.

We then introduce topics that are at the centre of current research from the applied mathe-

matics community. We define the notion of phase transitions for the thermodynamic limit of

such systems and show how the existence of such phase transitions, or, more specifically, the

presence of a non convex free energy landscape for equilibrium systems represents the natural

obstacle to uniform in time propagation of chaos. In particular we focus on the study of finite

size fluctuations by introducing a Central Limit Theorem around the McKean Vlasov equation.

While non critical fluctuations are expected to be Gaussian, the rigorous study of fluctuations

of finite systems at phase transitions (and their universality features) remains an open problem.

We conclude the chapter by introducing a Large Deviation Principle through a Macroscopic

Fluctuation Theory perspective and investigate the statistics of metastability phenomena, such

as first passage problems, within this framework. This Chapter should serve as an introduction

of the mathematical study of the complex dynamics of finite dimensional weakly interacting

systems.

Moreover, chapter 3 is devoted to an introduction of Response Theory, that is, the relation-

ship between forced and unforced fluctuations, for finite dimensional systems. We provide an

overview of the topic introducing the notions of Response Formulas and Fluctuation Dissipation

Theorems for both deterministic and stochastic systems. While such concepts are classical, well

known results in the physics community, they are commonly associated to systems near equi-

librium conditions. What might be less known is that such concepts can be defined and studied

in very general terms for systems in strong nonequilibrium conditions, as pioneered by David

Ruelle’s work on deterministic chaotic dynamical systems. In this chapter we review the condi-

tions for which one expects Response Theory and Fluctuation-Dissipation Theorems to hold for

general systems. In particular, we stress how smoothness properties of the invariant measure

supported by stochastic systems are at the core of the validity of Fluctuation-Dissipation The-

orems. The main result we recall in this chapter is the development of a Response Theory by

adopting a functional analysis, operator based framework. This allows us to introduce funda-
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mental concepts of ergodic theory such as the spectral decomposition of correlation functions,

power spectra and response functions in terms of the stochastic Ruelle Pollicott resonances, that

is, the discrete eigenvalues in suitable function spaces of the generator of the stochastic process.

The remaining chapters provide the original work developed in this thesis.

In chapter 4 we investigate from a mathematical perspective the development of critical phe-

nomena of weakly interacting diffusions. In particular we derive linear response formulas for

the thermodynamic limit of such systems which, mathematically, is equivalent to developing a

response theory for a non linear, non local Partial Differential Equation. The main result of

this section consists in obtaining a formula for the macroscopic susceptibility χ̃i(ω) describing

the response of the system to general forcings in terms of a decomposition of terms that can

be attributed either to external or to endogenous processes. We define critical conditions for

the system as settings where response properties of the system break down, that is, settings

where the macroscopic susceptibility develops a singularity for a real frequency ω ∈ R. The de-

composition of the macroscopic susceptibility allows us to identify conditions leading to either

critical transitions, characterised by a divergence of correlation properties of any microscopic

degree of freedom, and phase transitions, characterised by a divergence of response properties

due to endogenous processes mediated by the coupling among the agents resulting in a critical

slowing down of macroscopic observables of the system. Furthermore, we elucidate the prop-

erties and differences of critical and phase transitions of interacting systems by applying the

spectral decomposition introduced in Chapter 3 to response operators of the system. We also

provide dispersion relations for the thermodynamic limit of the ensemble of agents and their

modification at the phase transition point, as the singular behaviour of the susceptibility gives

an ulterior contribution to the Kramers-Kronig relations.

In Chapter 5 we study, both in a mathematical and numerical way, two paradigmatic examples

of equilibrium and nonequilibrium phase transitions. We here apply the theory developed in

the previous chapter to provide an analysis, based on the divergence of response operators, of

the development of phase transition phenomena for these two examples. However, the main
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focus of this chapter is to apply a computational probe experiment methodology, mirroring

spectroscopic techniques for the investigation of optical materials, to construct response opera-

tors for finite dimensional systems. We show how this provides a powerful approach to elucidate

the singular behaviour of response functions of the system, characterising the development of

a phase transition, as the system reaches the thermodynamic limit. In this chapter we clarify

the relationship between smooth microscopic degrees of freedom and their macroscopic singular

behaviour. In particular, the linear response experiment methodology that we apply here pro-

vides a conceptual foundation for the investigation of phase transitions for finite dimensional

systems through the mean field description given by the McKean Vlasov equation.

Lastly, inspired by the close analogy between the notion of order parameters and reaction

coordinates of reduced models, in chapter 6 we provide a dimension reduction technique for

the thermodynamic limit of weakly interacting diffusions based on a cumulant expansion of the

infinite dimensional probability distribution. This well known procedure results in a parametri-

sation of the dynamics in terms of a low number of cumulants that act as effective reaction

coordinates. We show that the low dimensional dynamics returns the correct diagnostic proper-

ties since it produces a quantitatively accurate representation of the stationary phase diagram of

the system that we compare with exact analytical results and numerical simulations. Moreover,

we prove that the reduced order dynamics yields the prognostic, i.e., time dependent properties

too as it provides the correct response of the system to external perturbations. By adopting

a linear response perspective for the reduced dynamics and identifying settings where the sus-

ceptibilities of the reduced system exhibit a resonant behaviour, we pinpoint and characterise

phase transition phenomena and, ultimately, show how the issue of finding an order parameter

can be bypassed in this approach.

1.2 Statement of Originality and publications

I declare that this thesis is my own work and that work by others has been properly referenced.

The thesis is based on the following three publications [LPZ20, ZLP21, ZPLA23]:
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• V. Lucarini, G. A. Pavliotis, and N. Zagli. Response theory and phase transitions for the

thermodynamic limit of interacting identical systems. Proc. R. Soc. A., 476, 2020.

• Niccolò Zagli, Valerio Lucarini, Grigorios A. Pavliotis. Spectroscopy of phase transi-

tions for multiagent systems. Chaos: An Interdisciplinary Journal of Nonlinear Science,

31(6):061103, 2021.

• Niccolò Zagli, Valerio Lucarini, Grigorios A. Pavliotis, Alexander Alecio. Dimension

reduction of noisy interacting systems, Phys. Rev. Res., 5:013078, Feb 2023.

and has led to writing of the following publication [ZLP23]:

• Niccolò Zagli, Valerio Lucarini, Grigorios A. Pavliotis. Response Theory Identifies Reac-

tion Coordinates and Explains Critical Phenomena in Noisy Interacting Systems. arXiv:2303.09047v1,

2023.

1.2.1 Copyright statement

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes. Please seek permission from the

copyright holder for uses of this work that are not included in this licence or permitted under

UK Copyright Law.



Chapter 2

Weakly Interacting Diffusions

2.1 The class of models

We consider an ensemble of N identical interacting M -dimensional systems {xk(t)}Nk=1 ⊂ RM .

The dynamics of the N particle system (see Figure 2.1) is described by the following stochastic

differential equations:

dxki = Fi,α(x
k)dt− θ

N

N∑
l=1

∂xki U
(
xk − xl

)
dt+ σŝij({xl}Nl=1)dWj, (2.1)

where k = 1, . . . , N , i = 1, . . . ,M and the Einstein summation convention is used. In the

following, we consider a chaotic initial condition, such that all the particles at time t = 0

are statistically independent and identically distributed according to a distribution ρin, that

is xk(t = 0) ∼ ρin(x
k). The smooth vector field Fα : RM → RM , possibly depending on a

parameter α, determines the individual dynamics of each of the interacting systems. Moreover,

the N systems undergo an all-to-all coupling given by the pair-wise symmetric interaction po-

tential U : RM → R, with U(x) = U(−x) . The coefficient θ modulates the intensity of such

a coupling, which attempts at synchronising all systems. The interaction potential U can be

either long or short range, see the list of examples below. Additionally, {Wi}Ni=1, are indepen-

dent Brownian motions. We here use the Ito’s conventions. It is well known that different

9



10 Chapter 2. Weakly Interacting Diffusions

noise conventions result in different stability properties of stochastic differential equations with

multiplicative noise. In many systems with a separation of timescale, the Stratonovich conven-

tion arises naturally as the timescale separation grows to infinity. However, there are situations

where neither the Ito nor the Stratonovic interpretation are correct [Pav14, Ch. 5]. We will

not delve here into these interesting modelling issues and we will just mention that there exists

a systematic way to pass from different interpretation of the noise by suitably modifying the

drift term [Pav14]. The results of this thesis can be applied seamlessly to any interpretation of

the noise. We will investigate in chapter 6 a model with multiplicative noise with Stratonovich

interpretation. ŝij(·) is the N -particle volatility matrix, and the parameter σ > 0 controls the

intensity of the stochastic forcing. The N -particle volatility matrix is a block diagonal matrix

composed of identical blocks s : RM → RM×M

ŝ
(
{xk}

)
=



s(x1) 0 . . . 0

0 s(x2) . . . 0

...
...

. . .
...

0 0 · · · s(xN)


, (2.2)

where s represents the one-particle volatility matrix. This preserves the exchangeability prop-

erties of the N systems and, in particular, does not introduce a coupling among them through

the noise. If Fα(y) = −∇Vα(y), we interpret Vα as the confining potential [Pav14]. In some

cases, equation (2.1) describes an equilibrium statistical mechanical system, in particular if

Fα = −∇Vα(y) and ŝij is proportional to the identity. More generally, equilibrium conditions

are realised when the drift term - the deterministic component on the right hand side of equa-

tion (2.1) - is proportional to the gradient of a function defined according to the Riemannian

metric given by the N -particle diffusion matrix Σ̂ij(·) = ŝik(·)ŝjk(·) [Gra77].

As previously mentioned, interacting systems are ubiquitously used in multiple areas of sci-

ence. Below we provide a list of common examples of weakly interacting diffusions models.

Undoubtedly, the list is not exhaustive but could serve the reader to appreciate the vast range

of applications for which such models have been employed.

• Order-Disorder continuous phase transitions in ferromagnetic-like models. The paradig-
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matic example for such models is the Desai-Zwanzig model [DZ78, Shi87, Daw83] defined

byM = 1, a local double well dynamics given by a confining potential Vα(x) =
x4

4
−αx2

2
, a

Curie-Weiss quadratic interaction potential U(x) = x2

2
and thermal noise ŝij = δij, where

δij is the Kronecker delta. See also section 2.6 for a more in-depth analysis of the model.

Moreover, in chapter 6 we will investigate a variant of this model [VdBPAHM94] that

features multiplicative noise acting on the system. More complicated settings have also

been investigated, such as multiwell and random energy landscapes Vα(x) [GKPY19] or

two-scale periodic potentials [GP18].

• Opinion Dynamics models, such as the noisy Hegselmann-Krause model [WLEC17, GPY17,

RH02], defined on the torus TM rather than RM (M = 1), and characterised by Fα(x) = 0,

thermal noise and a short range interaction potential U(x) ∝
(
min{0, |x| − R

2
}
)2
, where

R represents the radius of attraction of each agent. Due to the interactions, two agents

whose opinions are close enough will merge, creating mesoscopic clusters of opinions. If

the thermal noise is low enough, such clusters perform a motion similar to random walk

and will merge as soon they get close to other clusters, eventually reaching a consensus.

As the noise increases, the ordering effect given by the coupling becomes progressively less

inefficient and the system transitions to an asymptotic state characterised by a uniform

distribution of opinions. In fact, this model exhibits a discontinuous phase transition for

low enough R [CGPS20]. Similar cluster formation phenomena, and relative discontinu-

ous phase transitions, have been studied in [MA01, GRVE22], for 2 dimensional particle

systems with gaussian interaction potential.

• Phase synchronisation of globally coupled oscillators such as the (noisy) Kuramoto model

[ABPV+05, CGPS20], where the interaction potential is periodic U(x) ∝ cos (x). In-

teresting variants of the model have also been studied where the introduction of a new

harmonic in the potential [VKP15] gives rise to a non trivial dynamics, featuring self-

consistent partial synchrony or switching properties [CP17].

• Synchronisation of periodic or chaotic oscillators [Sak00, PKRK03, Pec98, PC15, ELP17,

TKP01]. Given a quadratic interaction potential U(x) = x2

2
and assuming that the
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N → + ∞

Figure 2.1: Weakly interacting diffusions. The local dynamics of each subsystem, given by the
smooth vector field Fα(x), is in general dissipative and can support a wide range of complex
behaviours, including deterministic chaos, as depicted in this figure.

local dynamics dx/dt = Fα(x) supports a unique attractor that is chaotic, the theory

of synchronisation provides a strong link between synchronisation regimes and Lyapunov

exponents of Fα(x). In particular, the N systems undergo complete synchronization for

any N ≥ 2 in the absence of noise (σ = 0) if θ > Λ1, where Λ1 > 0 is the first Lyapunov

exponent of the dynamics given by Fα(x). We observe that the onset of synchronisation

has also been investigated for more complicated global coupling in [OSBA02].

• Other applications of identical interacting agents include life sciences [DP19], formation

of swarms [CCH14], collective periodic behaviours for non oscillatory agents [CDPF15],

bacterial chemotaxis, dynamical network [CGPS20], self gravitating systems [Cha14,

TBDR05], optimisation and sampling [RVE18, KPP19, GINR20]. Furthermore, such

particle systems are used very commonly for general diffusion-aggregation problems, see

[CCY19] and references therein and [EK16].
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2.2 The thermodynamic (mean field) limit

An arbitrary state, at any arbitrary time t, of the N particle system is uniquely determined

by specifying the whole collection {xk(t)}Nk=1, solution of equations (2.1). Such an approach is

clearly unfeasible as soon as the number of particles exceeds a certain (low) threshold, since

one has to track the time evolution of N ×M degrees of freedom. An alternative perspective is

to consider the statistical properties of the system by introducing a measure µN for the system

that satisfy the N particle Fokker-Planck equation [Ris89, Pav14]

∂µN
∂t

= LNµN , (2.3)

where the N particle Fokker-Planck operator is given by

LN (·) = −
N∑
k=1

M∑
i=1

∂

∂xki

((
Fi,α(x

k)− θ

N

N∑
l=1

∂xki U
(
xk − xl

))
·
)
+
σ2

2

N∑
k

M∑
i,j=1

∂2

∂xki x
k
j

(
sij(x

k)·
)
.

(2.4)

We assume that the above N particle Fokker Planck equation describes a hypoelliptic diffusion

process1, giving rise to a smooth probability distribution [Pav14, Ch. 6]. In this case, the

measure µN is absolutely continuous to the Lebesgue measure and it is possible to define the N

particle probability distribution ρN({xk)}, t) of the system satisfying the same Fokker-Planck

equation

∂ρN
∂t

= LNρN ,

ρN
(
{xk}, 0

)
=

N∏
k=1

ρin(x
k).

(2.5)

The above Fokker Planck equation describes a system of N exchangeable agents. More specif-

ically, a system {xk(·)}Nk=1 is said to be exchangeable if the probability law of {xk(·)}Nk=1 is

identical to that of {xπ(k)(·)}Nk=1 for every permutation π of 1, 2, . . . , N , that is ρN
(
{xk}, t

)
=

ρN
(
{xπ(k), t

)
. As a matter of fact, equations (2.1) with a chaotic initial condition, or equiv-

1The precise mathematical definition of a hypoelliptic diffusion process and the conditions on the drift and
diffusion coefficients guaranteeing hypoellipticity, namely Hörmander’s condition, can be found in chapter 3.
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alently equations (2.3), define an exchangeable system {xk(t)}Nk=1. We remark that the mean

field techniques described in this section to obtain the thermodynamic limit of the ensemble

of agents can be extended to more general settings where the exchangeability assumption is no

longer strictly valid. One could potentially consider settings, see for example [DP19, PH96],

where a source of quenched disorder is introduced in the dynamics (2.1) as each agent is set to

depend on a (set of) parameter(s) hk drawn from a known probability distribution g(h), that

is hk ∼ g(h) ∀k = 1, . . . , N. Such microscopic architecture of the system given by g(h) can

be interpreted either as an intrinsic property of the system, such as the natural frequencies of

an ensemble of oscillators, or as a model error feature arising from partial knowledge of the

microscopic properties of the agents. A generalisation of the result of the thesis to such local

quenched disorder has been obtained by the author (et al.) in [ZLP23].

Moreover, an interesting topic that has recently become an active research area is represented

by weakly interacting diffusion on graphs, that is, ensemble of weakly diffusions whose interac-

tions are mediated by an underlying microscopic network [JPS22, CDG20, Cop22, BW22] with

a graphon structure [Lov12]. Furthermore we assume that, fixed N , the Fokker-Planck equation

(2.5) describes an ergodic process and, in particular, admits an unique stationary solution ρ̄N

such that

lim
t→+∞

ρN({xk)}, t) = ρ̄N . (2.6)

Ergodicity and uniqueness of the stationary solution can be related to spectral properties of the

N particle Fokker-Planck operator, see chapter 3 for an in-depth analysis of spectral properties

of transfer operators. It is clear that the stationary distribution ρ̄N , even if it’s known, contains

an incredible amount of information and its computation can be demanding. Indeed, we are

usually not interested in the distribution of the states of all the particles but in the distribution

of suitable averages of these states. As is customary in kinetic theory, we consider a subset of

n particles and we denote it as X(n) = (x1, . . . ,xn). We then introduce the reduced probability

distributions

ρn(X
(n), t) :=

N !

n! (N − n)!

∫
ρN
(
{xk}

)
dX(n), (2.7)
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where the integration is performed over all the possible values of (x1, . . . ,xn). The hierarchy of

equations one can obtain for the ρn with n = 1, . . . , N starting from (2.3) is commonly referred

to in statistical physics and kinetic theory as BBGKY (Bogoliubov–Born–Green–Kirkwood–Yvon)

hierarchy. In particular, it is known that the full N particle probability distribution ρN

(and thus all the properties of the reduced distributions ρn) can be written as a functional

of the one particle reduced distribution ρ1 both in equilibrium and non equilibrium settings

[CF05, HK64, Mer65]. However, such functional is usually unknown. The goal of Dynamic

Density Functional Theory, see e.g. [GNS+12, GPK12], is to specify this functional by looking

for suitable approximations of higher order reduced probabilities ρn in terms of the one particle

distribution ρ1. It is then clear that a fundamental issue is to obtain an evolution equation for

ρ1. However, such an equation depends in general on the full distribution ρN . In the particular

case of pairwise interaction we are considering, it suffices to know the two body distribution

ρ2. Indeed, by integrating the Fokker-Planck equation (2.3) over all the possible values of xk

with k ̸= 1 and considering exchangeability properties of the system, we obtain, see also e.g.

[Cha08, GPK12], an equation for the one particle distribution ρ1

∂ρ1(x, t)

∂t
= −∇ ·

[
ρ1(x, t)Fα(x)− θ

N − 1

N

∫
∇U (x− y) ρ2(x,y)dy

]
+
σ2

2
∆̃ρ1(x, t), (2.8)

where ∆̃ is a linear diffusion operator so that ∆̃ρ(x, t) =
∑M

i=1

∑M
j=1 ∂xi∂xj (sij(x)ρ(x, t)), which

coincides with the standard M-dimensional Laplacian (∆̃ = ∆) if the matrix sij is the identity

matrix. As previously mentioned, all the reduced distributions ρn can be written as a func-

tional of the one particle distribution ρ1. In particular we can write the two body probability

distribution as

ρ2(x,y, t) = ρ1(x, t)ρ1(y, t)g (x,y; [ρ1]) , (2.9)

where g is a functional of ρ1. The functional g − 1 is usually referred to as pair correlation

function and, in this setting, gives a measure of the phase space correlation properties among

the particles. The simplest approach in dynamical density functional theory is to consider a

mean field approximation where correlation among particles are neglected by setting g ≡ 1,

such that ρ2(x,y, t) ≈ ρ1(x, t)ρ1(y, t). In this case, from (2.9) and (2.8), it is easy to see that
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one obtains, see also [MA01],

∂ρ1(x, t)

∂t
= −∇ · [ρ1(x, t) (Fα(x)− θ∇U ⋆ ρ1)] +

σ2

2
∆̃ρ1(x, t) (2.10)

where we have assumed that for big enough N we can approximate N−1
N

≈ 1 and the symbol ⋆

denotes a convolution operation, such that ∇U ⋆ ρ1 =
∫
∇U(x− y)ρ1(y, t)dy.

The same result can be obtained with an alternative approach that we illustrate below. As a

matter of fact, such mean field approximation is most often (see caveats in section 2.4) correct

for the thermodynamic limit N → +∞ of weakly interacting diffusions. In this regard, it is

more convenient to adopt a different statistical approach to the description of the N particle

system. Given that the particles {xk} are exchangeable, the system can be described in terms

of its empirical measure

XN(t;A) =
1

N

N∑
k=1

1A(x
k(t)), (2.11)

where 1A(·) represents the indicator function of a setA ⊂ RM . Physically, the empirical measure

XN represents the proportion of particles in a region A of the ”one-particle” phase space. A

fundamental difference with respect to the previous approach is that XN is a random object

whereas the N particle distribution ρN and the reduced distributions ρn are deterministic. As

a fundamental consequence of exchangeability features of the N particle system, the properties

of the empirical measure XN(t, ·) can be investigated through the mathematical framework

of probability-measured-valued processes theory [Daw83]. The empirical measure contains all

the statistical information of the system, in particular it can be shown that the N particle

distribution ρN can be obtained from the empirical measure [CD22]. Since the seminal papers

of McKean [McK66, MJ67], it is known that, under general conditions for the drift and diffusion

coefficients, it is possible to prove a Law of Large Numbers for the empirical measure XN .

Fixed a time interval [0, T ], the empirical measure XN converges weakly for N → +∞, see e.g.

[Oel84, Szn89, Kol10, DP19], to the one particle measure µ(dx, t) = ρ(x, t)dx satisfying the

following McKean-Vlasov equation, which is a nonlinear and nonlocal Fokker-Planck equation
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[Fra05]

∂ρ(x, t)

∂t
= −∇ · [ρ(x, t) (Fα(x)− θ∇U ⋆ ρ)] +

σ2

2
∆̃ρ(x, t),

ρ(x, 0) = ρin(x), t ∈ [0, T ].

(2.12)

Propagation of chaos in terms of empirical measure implies that, for any k ∈ N

E (XN (t, dx1) . . . XN (t, dxk))
N→+∞−−−−→
w.c.

k∏
j=1

ρ (xj, t) dxj with t ∈ [0, T ], (2.13)

where ρ(·, t) is given by the McKean Vlasov equation (2.12) and the arrow denotes convergence

as in weak convergence of probability measures. Furthermore, the expectation value is taken

with respect to the N particle probability distribution ρN . In order to make a stronger com-

parison with the kinetic theory approach we have adopted above, we also state the propagation

of chaos property in terms of the reduced probability distributions ρn. Given any n ∈ N, prop-

agation of chaos is verified when the reduced probability distribution satisfies a factorisation

property

ρn(X
(n), t)

N→+∞−−−−→
w.c.

n∏
j=1

ρ(xj, t), with t ∈ [0, T ], (2.14)

The Law of Large Numbers (2.12) and the propagation of chaos properties (2.13) and (2.14) are

all equivalent [CD22, Daw83]. Let us observe that propagation of chaos in weakly interacting

diffusions can be interpreted as a natural closure scheme for the BBGKY hierarchy. Further

details about propagation of chaos and the link between the microscopic dynamics (2.1) and

the McKean-Vlasov equation can be found in section 2.4.

2.2.1 Mean Field Dynamics

We here investigate in greater details the McKean-Vlasov dynamics (2.12). If σ = 0, we

are considering a nonlinear Liouville equation - sometimes called Vlasov equation. In what

follows, we refer to the case σ > 0. As a matter of fact, if σ = 0 it is not always possible

to assume a smooth probability distribution. In the following we will always assume that the
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limiting one-particle measure µ is absolutely continuous with respect to the Lebesgue measure

with a smooth probability distribution ρ(x, t). Conditions detailing the well-posedness of the

N → +∞ problem can be found in e.g. [Kol10, DP19, DGPS23, DGP21].

The non linear, non local feature of equation (2.12) originates from the convolution product of

the interaction potential U(x) and the probability distribution ρ(x, t). In absence of coupling,

θ = 0, the equation (2.12) corresponds to the linear Fokker Planck equation describing one of

the N identical decoupled particles, see equation (2.1).

We observe that the standard theory for Fokker Planck equations [Ris89] does not hold for

the McKean-Vlasov equation (2.12). In particular, in the N → +∞ limit, the system can

support multiple coexisting stationary solutions (invariant measures) characterised by their

corresponding basins of attraction. As opposed to the standard finite dimensional case, where

there is convergence to the unique stationary measure for virtually any initial conditions [Ris89],

the choice of the initial condition ρin(x) for the dynamics is here very relevant. The change in

stability or the (dis)appearance of such invariant measures, as the parameters of the system are

varied, can be interpreted as phase transitions, see e.g. [Daw83, Shi87, DGPS23]. More details

about the difference between the finite dynamics given by (2.1) and the infinite dimensional

dynamics described by the McKean Vlasov equation can be found in section 2.3. To further

elucidate on the properties of the McKean Vlasov equation it is important to notice that, by

itself, equation (2.12) does not specify a stochastic process [Fra01].

Firstly, we write the McKean-Vlasov equation as

∂ρ(x, t)

∂t
= Lρ(x,t)ρ(x, t), (2.15)

where Lρ(x,t) is an integro-differential operator defined by

Lρ(x,t)ψ = −∇ · [ψ(x, t) (Fα(x)− θ∇U ⋆ ρ)] +
σ2

2
∆̃ψ, (2.16)

and ψ(x, t) is a smooth function. In order to specify the full Markov process associated to (2.12),

it is necessary to introduce the evolution equation for the conditional probability distribution
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ρ(x, t|x′, t′) that reads [Fra05], for t ≥ t′,

∂ρ(x, t|x′, t′)

∂t
= Lρ(x,t)ρ(x, t|x′, t′),

ρ(x, t′|x′, t′) = δ(x− x′),

(2.17)

where δ(x) is the Dirac-delta distribution. Once the evolution of the one point distribution

function ρ(x, t) and the conditional distribution function ρ(x, t|x′, t′) are specified, the hierarchy

of equations for higher order distribution functions ρ(x, t;xn−1, tn−1; . . . ;x1, t1) follows from the

Markovian feature of the dynamics and can be written in the same form as (2.15) [Fra05]

∂

∂t
ρ(x, t;xn−1, tn−1; . . . ;x1, t1) = Lρ(x,t)ρ(x, t;xn−1, tn−1; . . . ;x1, t1). (2.18)

We remark that the above equations are nonlinear with respect to ρ(x, t) but are instead linear

with respect to ρ(x, t|x′, t′) and the higher order distribution functions.

It is possible to investigate the dynamics given by the McKean-Vlasov equation in the math-

ematically rigorous framework of nonlinear Markov processes, see e.g. [Kol10, Daw83, MJ67]

for a discussion about nonlinear Markov semigroup theory.

A stationary solution ρ0(x) of the McKean-Vlasov equation satisfies the eigenvalue problem

Lρ0(x)ρ0(x) = 0, with Lρ0(x) being an usual Fokker-Planck operator obtained by evaluating the

operator Lρ(x,t) at stationarity. Consequently, in stationary conditions, the conditional proba-

bility can be written as ρ0(x, t|x′, t′) = e(t−t
′)Lρ0(x)δ(x− x′), see equation (2.17). We define the

mean field correlation function between two observables2 as

CAB(t) = ⟨A(x(t))B(x(0))⟩0 =
∫ ∫

A(x)B(x′)ρ0(x, t;x
′, 0)dxdx′. (2.19)

As previously noticed, the joint probability ρ0(x, t;x
′, 0) of a Markov process can be written as

ρ0(x, t;x
′, 0) = ρ0(x, t|x′, 0)ρ0(x

′) = etLρ0(x)δ(x− x′)ρ0(x
′). (2.20)

2As customary, we have assumed that the expectation value of ⟨A⟩0 =
∫
A(x)ρ0(x)dx vanishes. An analogous

assumption is made on the observable B(x). Of course, one can always redefine the observables such that the
above conditions are met. Furthermore, we have used the fact that at stationarity correlation functions only
depend on the time differences, e.g., ⟨A(x(t))B(x(t′))⟩0 = ⟨A(x(t− t′))B(x(0))⟩0 given any t > t′.
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The correlation function can then be written as

CAB(t) =

∫ ∫
A(x)B(x′)etLρ0(x)δ(x− x′)ρ0(x

′)dxdx′. (2.21)

Performing the integration on x′ in the previous expression, we can obtain a formula for the

mean field stationary correlation function in terms of the operator Lρ0(x)

CAB(t) =

∫
A(x)etLρ0(x)B(x)ρ0(x)dx. (2.22)

2.3 The Origin of Phase Transitions

In this section we will study the mechanism underlying the development of phase transitions for

the N → +∞ limit of equations (2.1). We will assume that the dynamics of the agents is given

by a confining potential Vα(x) such that Fα(x) = −∇Vα(x) and that the system is subject

to thermal noise with diagonal diffusion matrix sij(x) = δij. We have made these assump-

tions because, in these settings, it is possible to find a characterisation of phase transitions in

terms of convexity properties of the confining and interaction potentials. However, most of the

qualitative features regarding phase transitions apply to a general non-equilibrium setting, see

Chapter 4. With the above assumptions, the equations of motions (2.1) describe an equilibrium

statistical mechanics system. Indeed, it is possible to define an Hamiltonian function

HN({xk}) =
N∑
k=1

Vα(x
k) +

θ

2N

N∑
k,l=1

U(xk − xl), (2.23)

such that equations (2.1) can be written as

dxki = −∂HN

∂xki
dt+ σdWi. (2.24)

The linear N -particle Fokker-Planck equation associated to the previous stochastic differential

equations is

∂ρN
∂t

= ∇ · (ρN∇HN) +
σ2

2
∆ρN , (2.25)
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where ρN = ρN({xk}, t) is the probability distribution of theN particle system. If the potentials

have nice confining properties such that mass does not escape to infinity [DGPS23], the unique

stationary solution of (2.25) is given by the Gibbs measure

MN({xk}) =
e−βHN

ZN
with ZN =

∫
RM

· · ·
∫
RM

e−βHN

N∏
k=1

dxk, (2.26)

where ZN is the partition function of the N -particle system and β = 2
σ2 is the inverse tem-

perature. We remark that, for any finite N , (2.26) is the only solution of the Fokker-Planck

equation and that for any initial condition

lim
t→+∞

ρN({xk}) =MN

(
{xk}

)
. (2.27)

Consequently no phase transition can be observed in finite systems. Transition points for

finite dimensional stochastic systems correspond to points where the topological structure of

the unique invariant measure changes [HL84], [Pav14, Sec. 5.4]. In the classical literature

of equilibrium statistical mechanics of lattice systems, phase transitions are identified by the

non-uniqueness of the infinite-volume grand canonical Gibbs measure [Geo11].

The existence of phase transitions for weakly interacting diffusions can be investigated through

the analysis of the stationary solutions of the McKean Vlasov equation (2.12), that, with the

assumptions we made at the beginning of this section, can be written as [CCY19, CGPS20,

DGPS23]

∂ρ

∂t
= ∇ ·

(
ρ∇δF

δρ

)
, (2.28)

where we have introduced the free energy functional F [ρ] defined as

F [ρ] =

∫
Vα(x)ρ(x)dx+

θ

2

∫ ∫
ρ(x)U (x− y) ρ(y)dxdy + β−1

∫
ρ(x) ln ρ(x)dx. (2.29)

The above equation provides a meaningful interpretation of the energy budget in the system.

The first term represents the internal energy associated to the local potential Vα(x). The

second term is the energy originating by the interaction among the agents and, lastly, the third

term is the (negative of the) entropy associated to the probability distribution ρ. Remarkably,
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equation (2.28) belongs to a rich class of dissipative Partial Differential Equations, including

the heat equation, the porous medium equation and the diffusion-aggregation equation, that

are gradient flows with respect to the Wasserstein metric on the space of probability measure

with finite second moment. The Wasserstein metric is a suitable distance function that can be

defined between two measures, for more details about Wasserstein gradient flows in the context

of interacting particle systems we refer the reader to [CCY19] and references therein. Convexity

properties of the free energy F [ρ] are closely related to the existence of phase transitions for the

infinite dimensional system. Indeed, we can evaluate the time derivative of F [ρ] along solutions

of (2.28) [CCY19, CGPS20]

dF [ρ]

dt
= −

∫
RM

ρ(x)

(
∇δF

δρ

)2

dx ≤ 0. (2.30)

Convexity properties of the free energy functional provide a one-to-one characterisation of the

stability properties of the stationary solutions. If there exists only an unique minimiser of

the free energy, the dynamics converge exponentially fast, in relative entropy, to the unique

stationary state and the rate of convergence to equilibrium can be established [Mal01], see also

section 2.4 . Such a situation arises when the confining and interaction potential satisfy suitable

(strong) convexity properties [Mal01, Tam84]. In this case the asymptotic limit t → +∞ and

the thermodynamic limit N → +∞ commute, meaning that the asymptotic dynamics given by

(2.25) and (2.28) agree for any initial condition.

However, the minimiser is not necessarily unique and multiple stationary solutions can coexist.

In particular, when the interaction potential is a convex polynomial, equation (2.28) has as

many stationary solutions, for low enough temperatures β → +∞, as extremal points of the

(polynomial) confining potential Vα(x) [Tug14]. For a non convex free energy F [ρ] landscape,

the asymptotic limit t→ +∞ of the McKean Vlasov equation depends on the initial condition.

The infinite dimensional dynamics (2.28) does not approximate the particle dynamics (2.25)

for arbitrary long times, see sections 2.4 and 2.5. Here, the asymptotic limit and the thermo-

dynamics limit do not commute. The non convexity of F [ρ] represents the natural obstacle for

the commutativity of such limits. Different results are to be expected depending on the order

of the limits, especially when other limiting procedures, such as the homogenisation limit of the
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Figure: Continuous vs discontinuous phase transitions. Continuous phase
transition (upper diagram): the unique critical point (shown in blue) loses its
local stability through a local (pitchfork) bifurcation which gives rise to new
locally stable critical points. Discontinuous phase transition (lower diagram):
the unique critical point retains its local stability but new critical points arise
in the free energy landscape through a saddle node bifurcation.

Figure 2.2: A rough schematic showing two possible kinds of phase transition: The upper
diagram shows a typical continuous phase transition. In this setting, the unique critical point
(shown in blue) loses its local stability through a local (pitchfork) bifurcation which gives rise
to new locally stable critical points. The lower diagram shows a typical discontinuous phase
transition. In this setting, the unique critical point retains its local stability but new critical
points arise in the free energy landscape through a saddle node bifurcation. Figure and caption
are (with permission) from [DGPS23].

confining potential [GKPY19] or the approaching of the phase transition point limit [Cha14],

are considered.

It is possible to obtain another characterisation of stationary solutions that will be useful for

our later analysis. If we write (2.28) explicitly we obtain

∂ρ

∂t
= ∇ ·

(
(∇Vα + θ∇U ⋆ ρ) ρ+ β−1∆ρ

)
. (2.31)

It is clear from the above equation that any stationary solution ρ0(x) of the McKean-Vlasov

equation satisfies the Kirkwood-Monroe equation [KM41], that is, the self consistency equation

ρ0(x) =
1

Z
e−β(Vα(x)+U⋆ρ0), Z =

∫
RM

e−β(Vα(x)+U⋆ρ0). (2.32)

The two characterisations of the stationary solutions of the McKean Vlasov equation as extremal

points of F [ρ] or solution of the self consistency equation and are in fact equivalent. We refer the

reader to [CGPS20] for a thorough investigation of these two approaches for phase transitions

on the torus TM .
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We want to conclude this section by providing a brief physical intuition of the origin of phase

transitions for interacting systems with non-convex potentials Vα(x) or U(x). For sufficiently

high temperatures, the diffusion is strong enough that the expected escape time from the

minima of the potentials is bounded uniformly in the number of particles N . In this case,

the mean field free energy F [ρ] is convex and the stationary solution of the McKean Vlasov

equation is unique. Indeed, it is possible to show that in such case the self consistency equation

(2.32) has a unique solution, see [DGPS23].

On the other hand, for low temperatures the particles can get trapped for arbitrarily long

times in the minima of the potentials and condense [BM21] . Consequently, the free energy

functional F [ρ] has more than one minimisers, corresponding to different stationary solutions

of the McKean Vlasov equation.

2.4 Propagation of chaos, fluctuations and critical slow-

ing down

We here investigate in greater detail the convergence properties of the N particle system (2.1)

as N → +∞. The propagation of chaos features presented in section 2.2 indicate that, if we fix

a time interval [0, T ], then there exists a N0 such that, when N > N0, the microscopic system

(2.1) and the McKean Vlasov equation (2.12) are close for any t ∈ [0, T ]. It turns out that the

choice of the observation time T is a fundamental issue in the investigation of the dynamics of

weakly interacting diffusions. The threshold value N0 might depend on the timescale T and one

might expect to observe a monotonic increasing dependence N0 = N0(T ). On the other hand,

given a fixed and large number of particles N , the dynamics of the finite particle system might

start deviating from the mean field limit as the time T increases: the long time behaviour of

(2.1) is not reflected by (2.12).

When no deviation from the mean field limit is observed, we say that uniform in time prop-

agation of chaos (T = +∞) is verified. Uniform in time propagation of chaos implies that

the stationary measure of the N particle system is close to products of stationary measures
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of the McKean-Vlasov equation at any time t ≥ 0. When this fails, one is usually interested

in identifying the time scale in which propagation of chaos is approximately valid and then

determine the behaviour of the N particle system beyond this time scale.

Fluctuations of the N particle system around the mean field limit can be studied by taking a

step further with respect to the Law of Large Numbers (the McKean Vlasov equation) and for-

mulate a Central Limit Theorem (CLT) or a Large Deviation Principle (LDP) [Daw83, DP19].

We here investigate the CLT whereas in section 2.5 we will introduce the LDP. Fluctuations

are usually studied by introducing an empirical fluctuation process YN , that, in the context of

measure-valued processes, can be defined as

YN =
√
N (XN(t, dx)− ρ (x, t) dx) , (2.33)

where ρ(x, t) is the solution of the McKean Vlasov equation. One is usually interested in the

asymptotic behaviour N → +∞ of the fluctuations YN . It is possible to prove under remark-

ably general assumptions that, fixed a time interval [0, T ], a Central Limit Theorem applies,

meaning that the fluctuation process converges weakly to a mean zero Gaussian process, see

e.g. [CE88, JM98, PH96, Daw83]. This means that, in the interval [0, T ], the empirical mea-

sure exhibits gaussian fluctuations around the mean field limit (2.12). As mentioned before,

the observation time T plays an important role. Typically, when the mean field limit admits

two or more invariant measures, the empirical measure XN will fluctuate close to one of these

invariant states but will then perform, after an N -dependent timescale, a transition to another

invariant solution of the McKean Vlasov equation. The scaling (2.33) of the fluctuation process

turns out to be valid only in settings far from a phase transition point. At the transition point,

the fluctuations get amplified by the collective interaction among the subsystems and become

relevant at all macroscopic scales. Due to the strong correlation among the subsystems, such

critical fluctuations become of bigger amplitude, persistent, non-Gaussian in time, and they

feature critical slowing down, namely they are associated with a longer N -dependent timescale

[Daw83, CE88].

Phase transitions or, more generally, multistability of the McKean-Vlasov equation (2.12), are

intimately related to propagation of chaos properties, fluctuations and asymptotic properties of
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weakly interacting diffusions. Recently, the authors in [DGPS23] have shown that for weakly

interacting diffusions describing equilibrium statistical mechanics systems, the existence of mul-

tiple invariant solutions of the McKean-Vlasov equation constitute the natural obstruction to

uniform in time propagation of chaos and Gaussianity of fluctuations. Below we briefly review

their work as it will allow us to introduce important concepts, such as Logarithmic Sobolev

Inequalities, for the quantitative study of the long time limit of the dynamics.

In order to do so, we will assume, as in the previous section, that the local dynamics is given

by a confining potential, Fα(x) = −∇Vα(x), and that the diffusion is given by thermal noise,

that is sij = δij. The potentials are required to satisfy a few conditions in order to guarantee

the well-posedness of the dynamics. These are quite generic assumptions3 and the interested

reader is referred to [DGPS23].

The goal of this section is to investigate the long time behaviour of the N particle system

(2.24), in particular its convergence properties towards asymptotic states of the mean field dy-

namics (2.31). In section 2.3 we have already observed that when the McKean-Vlasov equation

supports multiple stationary solutions the t → +∞ and N → +∞ do not commute. We here

provide a quantitative analysis of such behaviour.

As previously mentioned, the long time statistical behaviour of the N particle system (2.24) is

given by the Gibbs measure MN defined in (2.26). We apply standard relative entropy tech-

niques [Var91] and define the scaled relative entropy of the N particle distribution ρN with

respect to the equilibrium Gibbs measure MN

E (ρN |MN) :=
1

N

∫
ln

(
ρN(x, t)

MN(x)

)
ρN(x, t)dx, (2.34)

where the scaling 1
N

is relevant when one considers the thermodynamic limit N → +∞. We

now consider the time derivative of the scaled entropy and, by using (2.25), we obtain

dE
dt

= −β−1 1

N

∫ (
∇ ln

(
ρN(x, t)

MN(x)

))2

ρN(x, t)dx := −β−1I (ρN |MN) , (2.35)

3All the examples of equilibrium systems we provide satisfy these assumptions.
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where in the last equality we have defined the scaled relative Fisher information I (ρN |MN).

The quantity that determines the convergence towards the Gibbs measure in relative entropy

is the N -particle Sobolev constant

λN := inf
ρN /∈{MN}

β−1I (ρN |MN)

E (ρN |MN)
. (2.36)

If the log Sobolev constant is strictly positive, λN > 0, the system converges exponentially in

relative entropy towards the stationary state MN for any initial condition. A classical criterion

for assessing exponential convergence in relative entropy derives from the Bakry-Emery theory

[BGL14, Hel02]: if there exists a radius R > 1 and a constant λ > 0 such that the Hessian of

the Hamiltonian function (2.23), D2HN , satisfies the following convexity condition

D2HN(x) > λ1NM×NM for every |x| > R, (2.37)

where 1NM×NM is the NM dimensional identity matrix, then λN > 0 and there is exponential

convergence to equilibrium. One fundamental question regarding the above convexity condition

is whether it is valid uniformly with N , that is whether it still holds for the thermodynamic

limit N → +∞. In this regard, we define the mean field log Sobolev constant λ∞ in a similar

way. In section 2.3 we have shown that, in these equilibrium settings, the McKean Vlasov

equation has a gradient structure with respect to a free energy functional F [ρ], see equation

(2.28). Moreover, the Free energy functional, when evaluated on solutions of the McKean

Vlasov equation, satisfies an equation that is reminiscent of (2.35), see (2.30), and can be

written as

dF [ρ]

dt
= −D[ρ] where D[ρ] :=

∫
RM

ρ(x, t)

(
∇δF

δρ

)2

dx. (2.38)

We can then define the mean field log Sobolev constant λ∞ as

λ∞ := inf
ρ/∈K

D[ρ]

F [ρ]− inf F
. (2.39)

Since, in general, the McKean Vlasov equation might have multiple stationary solutions at

which the infimum of the free energy is attained, the infimum procedure in the definition of
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mean field log Sobolev equation is not taken with respect to such stationary solutions, that is

we have defined

K = {ρ : F [ρ] = inf F}. (2.40)

If λ∞ > 0, there is exponential convergence in terms of free energy functional of the mean

field system towards its stationary solution. It is of fundamental relevance to understand the

relationship between the N -particle log Sobolev constant λN and its mean field equivalent λ∞.

The authors in [DGPS23] provide strong indication that their conjecture

lim
N→+∞

λN
?
= λ∞ (2.41)

could indeed be true but have not given a direct proof of it. They can however show that

lim sup
N→+∞

λN ≤ λ∞. (2.42)

Furthermore, they are able to fully characterise the consequences of the (non) degeneracy of the

log Sobolev constant λN in the thermodynamic limit in terms of uniform in time propagation

of chaos and fluctuations around the mean field limit.

In particular, they show that if4 lim infN→+∞ λN > 0, then

d̄2

(
ρN
(
{xk}, t

)
,
N∏
k=1

ρ
(
xk, t

))
≤ C

Nγ
for all t > 0, (2.43)

where d̄2 =
1√
N
d2 is a suitably scaled 2-Wasserstein distance between probability measures, see

[DGP21, CCY19]. Moreover, C > 0 is a constant and γ > 0 is an exponent that depends on

the properties of the system. The above result constitutes a quantitative version of the uniform

propagation of chaos property for weakly interacting diffusions. It quantifies the degree of

”closeness” of the N -particle distribution ρN
(
{xk}, t

)
to the product of mean field solution∏N

k=1 ρ
(
xk, t

)
of equation (2.28). In particular, it states that if the N -particle log Sobolev

constant does not degenerate in the thermodynamic limit, uniform in time propagation of chaos

holds. We remark that the assumption lim infN→+∞ λN > 0 implies that λ∞ > 0. Indeed, we

4There are other ”technical” hypotheses for the proof of this result, we refer the reader to [DGPS23]
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can write that

lim inf
N→+∞

λN ≤ lim sup
N→+∞

λN ≤ λ∞, (2.44)

where the first inequality derives from the definition of the limiting procedures and the second

one derives from (2.42). This implies that the mean field dynamics admits only one unique

stationary solution, see later discussion. The above result is compatible with the exponential

converge in relative entropy obtained in [Mal01]. Another consequence of the non degeneracy

of the N -particle log Sobolev constant is that the fluctuation process YN , defined in (2.33), is

in the thermodynamic limit a centred Gaussian measure, meaning that the empirical measure

XN exhibits gaussian fluctuations around the unique solution of the mean field dynamics at all

times t > 0.

All the above results do not hold when the free energy functional is not convex. If F [ρ] admits

a critical point ρ∗(x) such that δF [ρ]
δρ

|ρ=ρ∗ = 0 and that is not a minimiser (see the red dots in

Figure 2.1), the authors in [DGPS23] have shown that the mean field log Sobolev constant is

zero λ∞ = 0 and the N -particle log Sobolev constant degenerates in the thermodynamic limit,

that is, limN→+∞ λN = 0. It is possible to find an upper bound for λN as

λN ≤ C

N
, (2.45)

where C > 0 is a constant. The mean field log Sobolev constant λ∞ captures global features of

the free energy landscape, that is, it is not related to a specific stationary solution of the mean

field dynamics. By inspecting Figure 2.1 in the low temperatures regime, β > βc, it is easy to

see that the λ∞ = 0. As a matter of fact, the red dots correspond to measures ρ∗ such that the

numerator in the definition of λ∞vanishes, D[ρ∗] = 0, while the denominator remains positive.

Such behaviour is observed at the phase transition β = βc too. The previous argument still

holds for a discontinuous phase transition since the non minimising critical points still exist,

see bottom panel of Figure 2.1. The reason why the mean field log Sobolev constant vanishes

in a continuous phase transition is more subtle, since, at β = βc, there is only one critical point

of the free energy functional. It is however possible to show that the condition λ∞ = 0 at the

phase transition corresponds to a loss of stability of this solution [DGPS23].
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The above results are in agreement with the theory of relaxation phenomena for spin systems

[Yos03]. In this context, one distinguishes between two regimes. The high temperature regime

features a disordered state where thermal fluctuations dominate and the spins point up or

down in an erratic fashion almost independently of each other. This state is characterised by

an unique phase of the system. On the other hand, in the low temperature regime the thermal

fluctuations are not as strong and the interaction among the spins tend to create macroscopic

areas of spins pointing in the same direction. As a result, one can identify in the thermodynamic

limit two equilibrium states, usually called pure states. In one of the pure states a great part

of the spins point up, whereas in the other pure state the reverse is attained. Such pure

states can be mathematically represented by infinite volume limit of Gibbs measures. The low

temperature regime is also known as phase coexistence since the systems supports more than

one pure states. It is a fundamental result of the theory of relaxation phenomena that the

thermodynamic limit of the log Sobolev constant for the spin system vanishes [Yos03]. This

behaviour is associated with slow relaxation of the dynamics, meaning that the time it takes to

flip a macroscopic area of spins pointing in the same direction diverges in the thermodynamic

limit. In the context of weakly interacting diffusions we can identify the pure states as the

solutions of the McKean Vlasov equation (2.28). A phase coexistence regime is attained when

multiple stationary solutions are supported, or, for equilibrium statistical mechanics systems,

when the free energy is non convex. In the next section a Large Deviation approach will be

employed to explain how transitions among such pure states happen on a timescale that scales

exponentially with the number of the particles N and thus diverges in the thermodynamic limit.

We also remark that at the phase transition point the log Sobolev constant vanishes because of

the development of critical scaling for the fluctuation process YN , see discussion below equation

(2.33). It is still an open research question to what extent the fluctuations given by YN exhibit

universality properties at a (continuous) phase transition.
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2.5 Large Deviations: finite size metastability

In the previous chapters a Law of Large Numbers for the empirical measure XN of the system

has been established in terms of the mean field dynamics given by the McKean Vlasov equation

(2.12) as a result of propagation of chaos properties. In the previous section, fluctuations of

the empirical measure around the mean field dynamics have been established through a Cen-

tral Limit Theorem result for the fluctuation process YN . If the mean field dynamics supports

a unique invariant measure, the long time asymptotic state of the N particle system is well

approximated by such mean field invariant solution. Loosely speaking, the empirical measure

fluctuates closely to the mean field dynamics for any time t > 0.

In this chapter we will adopt a Large Deviation perspective to investigate the behaviour of

the system when the mean field dynamics support more than one invariant measure. In this

situation, uniform in time propagation of chaos does not hold and one does not expect the

empirical measure XN to follow the invariant solutions for all times. In particular, for a finite

dimensional setting one expects in typical situations, such as equilibrium statistical mechanical

systems, that the system exhibits ergodic properties. On the other hand, the existence of two

different invariant solutions for the mean field dynamics show that in the thermodynamic limit

ergodicity is broken. The goal of Large Deviation Theory for weakly interacting diffusions is

to study the behaviour of the empirical measure for a finite, but big, number of particles N .

In this regime, one expects the N particle system to exhibit a separation of timescale and

tunnelling phenomena. The empirical measure XN will fluctuate around one of the mean field

invariant solution for a long, N -dependent, time but then will transition on a faster timescale

close to another mean field invariant solution through a large deviation.

Large deviations due to random perturbations for finite dimensional stochastic systems can be

studied through the Freidlin and Wentzell theory [FW84, Tou18]. The quasipotential, or non

equilibrium potential, framework [GHT91, HTG94, ZAAH12, ZL16] has been a valuable too to

investigate noise induced transitions in high dimensional multistable non equilibrium systems,

with numerous applications to natural systems including the climate system [LB17, LB20].

Most often these large deviation results are obtained in the low noise σ → 0 regime where the
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concept of determinstic attractors is still applicable. In particular, escape processes from the de-

terministic attractors of the systems are found to obey Arrhenius-like formulas [FW84, Tou18]

such that the mean escape time from an attractor scales exponentially with the inverse of (the

square of) the noise intensity σ. For simple settings of the deterministic attractors such as

fixed points or limit cycles it is possible to obtain sharper formulas for the expected escape

times that includes sub exponential corrections [BEGK04, BR16]. We also remark that the

connection between the quasipotential and the transition statistics is non-trivial if more than

two deterministic attractors are present [MGLL21].

The transition statistics for weakly interacting diffusions depend both on the number of par-

ticles N and the strength of the noise σ. The low noise regime has been investigated in

[BM21, BFG07a, BFG07b, BBM10]. On one hand, sharp results for the expected escape times,

including uniform control on the number of particles N and sub exponential corrections, can be

obtained in these settings. On the other hand, a low noise regime might not be appropriate for

the investigation of metastability properties close to a phase transition, where such features,

see later discussion, become very relevant.

In the following we will present a large deviation approach in the thermodynamic regime

N → +∞ for a generic value of strength of the noise σ. A mathematically rigorous large

deviation theory has been developed by Dawson and Gartner [DG87b, DG87a]: their theory

encompasses both equilibrium and nonequilibrium systems with multiplicative, state dependent

diffusion matrix. This large deviation theory represents an infinite dimensional generalisation

of the aforementioned Freidlin-Wentzell theory. This analogy can be made stronger as one

notices that the large deviation theory for weakly interacting diffusions in the limit N → +∞

can be interpreted as a weak noise limit of a diffusive Markov process in the space of prob-

ability measures on RM , rather than on the N -particle phase space RM×N [DG87b]. Loosely

speaking, this large deviation theory provides the probability, in the thermodynamic limit, that

the empirical measure XN at any time t is close to a given measure µ(t) on RM . Below we

follow [BGN16] where the authors of the paper develop a simpler and less rigorous approach to

the development of a large deviation principle. On one side, the calculations below should be

interpreted in a formal sense, since the mathematics of some of the formulas is still uncertain
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or known to be problematic in most cases. On the other side, their approach provides a more

intuitive and physical interpretation of the theory and the loss of mathematical rigour can be

justified by the fact that their conclusions are in agreement with Dawson and Gartner’s theory.

We assume here that the diffusion matrix is constant (thermal noise) so that the equations of

motions of the N particle system are

dxk = Fα(x
k)dt− θ

N

N∑
l=1

∇U
(
xk − xl

)
dt+ σdWk, (2.46)

where k = 1, . . . , N . Following [BGN16] we define the empirical density

ρN(x, t) =
1

N

N∑
k=1

δ
(
x− xk (t)

)
, (2.47)

where δ (x) represents the Dirac-δ measure. We remark that the above definition is analogous

to the definition of the empirical measure XN , with the caveat that the above definition refers

to probability densities rather than measures. By using Ito’s formula and (2.46) it is possible

to find an equation for the empirical density

∂ρN

∂t
= −∇ ·

((
F (x)− θ∇U ⋆ ρN

)
ρN
)
+
σ2

2
∆ρN − σ

N
∇ ·

N∑
k=1

δ
(
x− xk(t)

)
Ẇk. (2.48)

To conform to the notation in [BGN16] we have written the above stochastic equation in a non

rigorous way by introducing the white noise in time Ẇk, with vanishing mean and covariance

E
(
Ẇi,k(t)Ẇj,k′(t

′)
)

= δ (t− t′) δijδkk′ We observe that the above equation is exact since no

approximations have been made starting from the equations of motions. In fact, it is not a

closed equation for the empirical density since it still contains the microscopic information of

the state xk of all the particles through the last noisy term. We also remark that, in the limit

N → +∞, one might naively think that this last term vanishes. With this assumption the

above equation becomes the McKean Vlasov equation we have introduced in section 2.2. Of

course, a stronger analysis is provided in this section in terms of propagation of chaos properties

and the Law of Large Numbers for the empirical measure XN . Dean [Dea96] proposed a way
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of closing the above equation for the empirical density. If we consider the quantity

σ

N

N∑
k=1

δ
(
x− xk

)
Ẇi,k, (2.49)

as white noise in time with values in vector fields in RM parametrised by the state of the

particles xk, we can evaluate its covariance (the mean is zero by definition) as

E

(
σ

N

N∑
k=1

δ
(
x− xk

)
Ẇi,k(t)

σ

N

N∑
k′=1

δ
(
y − xk

′
)
Ẇj,k′(t

′)

)
=

=
σ2

N2
δijδ(t− t′)

N∑
k=1

δ(x− xk)δ(y − xk) =

=
σ2

N
δijδ(t− t′)δ(x− y)ρN(x, t),

(2.50)

where in the last equality we have used the distributional identity δ(x− xk)δ(y− xk) = δ(x−

y)δ(x− xk) and we have introduced the empirical density (2.47).

Now, we consider a different noise

σ√
N

√
ρ(x)ξi(x, t), (2.51)

where ρ(x) is an arbitrary density and ξi(x, t) is space time white noise with vanishing mean

and covariance E (ξi(x, t)ξj(y, t
′)) = δijδ(t− t′)δ(x−y). The newly introduce noisy process can

be viewed as white noise in time with values in vector fields in RM parametrised by the density

ρ(x) rather than by states of all the particles. Its covariance is

E
(

σ√
N

√
ρ(x)ξi(x, t)

σ√
N

√
ρ(y)ξj(y, t

′)

)
=
σ2

N
δijδ(t− t′)δ(x− y)ρ(x), (2.52)

which coincides with (2.50) if ρ(x) = ρN . This observation led Dean to identify the two noises

(2.49) and (2.51) and thus write a closed equation for the empirical density as

∂ρ

∂t
= −∇ · ((F (x)− θ∇U ⋆ ρ) ρ) +

σ2

2
∆ρ− σ√

N
∇ · (√ρξ(x, t)) =

:= Lρρ+
√

2

N
η[ρ],

(2.53)
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where we dropped the apex from the empirical density, introduced the non linear operator Lρ
defined in (2.16) and written the white noise in time η[ρ](x, t), parametrised by the density ρ,

η[ρ](x, t) = − σ√
2
∇ · (√ρξ(x, t)) , (2.54)

with vanishing mean and covariance

E (η[ρ](x, t)η[ρ](y, t′)) = δ(t− t′)C[ρ](x,y), (2.55)

where

C[ρ](x,y) = σ2

2
∇x · ∇y (ρ (x) δ (x− y)) . (2.56)

The above stochastic partial differential equation is usually called Dean equation and is as-

sumed to model macroscopic fluctuations in systems with interacting agents [DVE14, AR04,

CSZ20, KLvR20], see also the recent review on Macroscopic Fluctuation Theory [BDSG+15].

As mentioned at the beginning of the chapter, its mathematical status is unclear and the ex-

tensive literature theory for stochastic partial differential equations with white noise in time

and space does not apply to the Dean equation. Not only it is difficult to give a mathematical

meaning of the terms in the Dean equation in a function space that includes the empirical

densities of weakly interacting diffusions, but also it is even harder to formulate a theory of

solutions for such stochastic partial differential equation [BGN16]. Nevertheless, the Dean

equation is thought to be a good representation of fluctuations of the empirical density ρN

around the solutions of the McKean-Vlasov equation in the thermodynamic limit where the

noisy term, proportional to the inverse of (the square root of) the number of particles, can

be considered small. The physical insight contained in the Dean equation is that fluctuations,

given the multiplicative nature of the noise proportional to
√
ρ, vanish in regions of the phase

space where no particles are present. We remark that such equation is not expected to be a

viable approach to describe the critical fluctuations at the phase transition, since the classical

central limit theorem scaling ∝ 1√
N

is not expected to hold. Indeed, as explained in section

2.4, critical fluctuations are characterised by a bigger amplitude and by a critical slowing down

phenomenon, that is their typical evolution timescale is an increasing function of the number
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of particles N .

We can associate to the Dean Equation a Fokker Planck equation for the probability distri-

bution functional P[ρ] expressing, loosely speaking, the probability that the empirical density

ρN(x, t) is close to an arbitrary path ρ(x, t) for any time ti ≤ t ≤ tf , where ti,f are two fixed

times. Equivalently, one might interpret P[ρ] as the probability distributional functional of the

empirical densities in the time period [ti, tf ]. The Fokker-Planck equation associated to (2.53)

is

∂P

∂t
= FP, (2.57)

where F = G† is the adjoint of the generator G of the Dean Equation, see equation below, and

the adjoint is evaluated with the rule
(
δ
δρ

)†
= − δ

δρ

Gψ[ρ] =
∫

δψ[ρ]

δρ(x)
Lρρdx+

1

N

∫ ∫
δ2ψ[ρ]

δρ(x)ρ(y)
C[ρ](x,y)dxdy, (2.58)

and ψ[ρ] is a test functional of ρ. The main goal of a large deviation theory for weakly interacting

diffusions is to find a large deviation principle for the probability distribution functional P[ρ]

such that

P[ρ] ≍ e−NA[ρ]. (2.59)

The quantity A[ρ] is called rate (or action) functional and it gives the exponential weight to

the probability P[ρ] of observing the empirical density close to a measure path ρ in the time

interval [ti, tf ]. In particular, the symbol ≍ in equation (2.59) should be interpreted as the

asymptotic relation

A[ρ] = − lim
N→+∞

1

N
ln (P [ρ]) . (2.60)

In other words, the symbol ≍ is used to stress the concept that in the limit N → +∞ the

dominant behaviour of the probability P [ρ] is given by the decaying exponential e−NA[ρ]. Al-

ternatively, one might think of the symbol ≍ as an equality relationship in logarithmic scale,

that is

aN ≍ bN ⇐⇒ lim
N→+∞

1

N
ln aN = lim

N→+∞

1

N
ln bN . (2.61)
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This theory only captures the dominant exponential behaviour. As a result, sub exponential

corrections in N cannot be obtained through a large deviation perspective. Nevertheless, a large

deviation principle as in (2.59) provides a suitable framework to study both small and large

fluctuations of the empirical densities, including tunnelling phenomena between, if present,

different invariant solutions of the mean field dynamics (2.12). Following [BGN16, JP79] it is

possible to use the Martin-Siggia-Rose [MSR73] formalism to find a large deviation principle

starting from (2.57). The result of such procedure provides a rate function

A[ρ] = min
u∈U

(∫ tf
ti

dt
∫
dx (∂tρ− Lρρ)u(x, t)

)2
2σ2

∫ tf
ti

dt
∫
dxρ (∇u)2

, (2.62)

where U = {u(x, t), t ∈ [ti, tf ] :
∫
u(x, t)dx = 0} and we have defined for simplicity ∂tρ = ∂ρ

∂t
.

The above formula for the rate function agrees with what has been obtained by Dawson and

Gartner [DG87b, DG87a] in the specific case of additive noise, where the diffusion matrix is

constant.

The minimum procedure in the above formula for the rate function can be explicitly carried out

and one obtains an expression for A[ρ] that is analogous to the Freidlin-Wentzell rate function

A[ρ] =
1

4

∫ tf

ti

dt

∫ ∫
(∂tρ− Lρρ) (x, t)C−1[ρ] (x,y) (∂tρ− Lρρ) (y, t)dxdy. (2.63)

The above expression provides a meaningful interpretation of the action functional. In fact, we

observe that the action functional vanishes on solutions of the mean field dynamics, that is of

the McKean Vlasov equation ∂tρ = Lρρ. The actional functional thus measures the difficulty

for an empirical density to deviate from its mean field behaviour due to finite size fluctuations.

2.5.1 Quasipotential: Escape from a mean field attractor

In order to study noise induced escape processes from determistic attractors a dynamical quan-

tity called quasi potential is introduced in the Freidlin Wentzell theory [FW84]. It turns out

that it is possible, at least on a formal level, to define such concepts in this infinite dimensional
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setting. If we denote P∞[ρ] the stationary solution of the functional Fokker Planck equation

(2.57), we define the global quasipotential Q[ρ] as

P∞[ρ] ≍ e−NQ[ρ]. (2.64)

The global quasipotential represents a generalisation of an energy landscape for this infinite

dimensional, stochastic and non equilibrium settings. If we consider the ansatz P [ρ] ≈ e−NQ[ρ]

in the functional Fokker Planck equation (2.57), it is possible to see thatQ satisfies the following

Hamilton-Jacobi equations

∫
δQ
δρ(x)

Lρρdx+

∫ ∫
δQ
δρ(x)

C[ρ](x,y) δQ
δρ(y)

dxdy = 0. (2.65)

It is possible to define a local notion of quasipotential. We assume that at time ti = 0 the

empirical density is equals to ρ0(x), an invariant solution of the mean field dynamics. We

define the quasipotential relative to ρ0 as

Qρ0 [ρ] = min
{ρ̂|ρ̂(x,0)=ρ0,ρ̂(x,tf )=ρ}

A[ρ̂]. (2.66)

The meaning of the above definition is easily understood if we consider the transition probability

from a state ρ0(x) at time ti = 0 to a state ρ(x) at time tf in a path integral formulation [BGN16]

P[ρ0, ti; ρ, tf ] ≍
1

Z

∫
e−NA[ρ̂]D[ρ̂], (2.67)

over all paths ρ̂(x, t) satisfying the boundary conditions given in equation (2.66). A simple

saddle node argument shows that most of the contribution to the exponential decaying term in

the above equation is given for N → +∞ by settings where A ≈ Qρ0 [ρ], that is

P[ρ0, ti; ρ, tf ] ≍ e−NQρ0 [ρ]. (2.68)

Let us now consider a simple situation where the mean field dynamics admits only one invariant

solution ρ0(x). We remark that in this setting, away from a phase transition, we expect uniform



2.5. Large Deviations: finite size metastability 39

in time propagation of chaos and gaussian fluctuations. In this setting the quasipotential

Qρ0 [ρ] coincides with the global one Q. In fact, given the assumption on the uniqueness of

the stationary state limtf→+∞ P[ρ0, ti; ρ, tf ] = P∞[ρ] regardless of the initial condition at ti = 0

and from (2.68) we have that Qρ0 [ρ] = Q. In the more interesting case where the mean field

dynamics supports more than one invariant solutions ρi, the above is no longer true because one

has to consider the more complicated layout of the basins of attractions of each ρi. In principle,

one is still able to construct the global quasipotential Q in terms of the local quasipotentials

Qρi [·] but the complexity of the procedure highly increases [MGLL21]. It is interesting to

observe that the quasipotential Qρ0 [·] can be associated to a generalisation of the instanton or

fluctuation dynamics of the Freidlin Wentzell theory. In particular, the minimisation procedure

in (2.66) is attained for a measure ρ̂ that satisfies the instanton dynamics [BGN16]

∂ρ

∂t
= Linstρ ρ, (2.69)

where

Linstρ ρ = Lρρ+ 2

∫
Q[ρ](x,y)

δQ
δρ(y)

dy. (2.70)

We remark that in nonequilibrium settings, the instanton dynamics differs in general from the

(time reversed) mean field dynamics ∂tρ = Lρρ , that, in this large deviation framework, could

be also be called relaxation dynamics.

Lifetime of a mean field attractor in finite systems

We now turn to the investigation of tunnelling phenomena between invariant solutions of the

mean field dynamics. Let us consider the simple situation where there exist only two stable

fixed-point-like invariant solutions ρ0(x) and ρ1(x) and an unstable saddle node ρ̄(x). We

assume that the system is at time tin = 0 in the basin of attraction D0 of ρ0(x), where the

basin of attraction is taken with respect to the relaxation dynamics ∂tρ = Lρρ. Given a solution

ρ of the Dean equation (2.53) we define the first exit time from D0 as

τ0[ρ] = inf{t ≥ 0 : ρ(x, t) /∈ D0}. (2.71)
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We remark that this setting is the infinite dimensional analogous to the classical set up in non

equilibrium statistical mechanics of a noise induced escape process from a fixed point attractor

of the deterministic dynamics.

However, given the above formal results, one might expect that the usual large deviation results

apply. In particular, given the equation for the transition probability (2.68) , one can use

standard arguments [FW84, BR16] to argue that a large deviation principle holds for the exit

time

lim
N→+∞

P
(
eN(Q∗−δ) < τ0[ρ] < eN(Q∗+δ)

)
= 1, (2.72)

where δ > 0 is an arbitrary constant and the probability P (·) is given by equation (2.57). The

quantity Q∗ is the analogous of the lowest quasi potential height and is defined by

Q∗ = inf
ρ∈D0

inf
tfin≥0

Qρ0 [ρ]. (2.73)

Equation (2.72) states that the most likely exit time scales in the asymptotic limit as ≍ eNQ∗
.

Clearly, a Kramer’s like formula follows for the expected exit time as

E[τ0[ρ]] ≍ eNQ∗
, (2.74)

where, again, the expectation is taken with respect to the probability P. The above formula

shows that the leading behaviour of the mean exit time depends exponentially both on the

height difference of the quasi potential and the number of particles N .

Escape from an equilibrium mean field attractor

Dawson and Gartner [DG87a, DG89] have established an important link between dynamic prop-

erties, such as the quasipotentials, and static properties for a class of equilibrium statistical

mechanics systems. As described in section 2.3, in such system it is possible to identify a free

energy functional F [ρ] whose convexity properties define the long time behaviour of the mean

field dynamics. With the assumptions we have made in this section, the free energy functional

F [ρ] would have two minima, not necessarily symmetric, and a maximum, see for reference
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Figure 2.2.

Dawson and Gartner proved [DG87a, DG89] that the minimisation procedure in (2.66) is at-

tained for the path ρ̂ that corresponds to the time reversal path of the relaxation dynamics

∂ρ = Lρρ with initial condition ρ0 and end point ρ. This corresponds to the generalisation of

the well known property that relaxation and fluctuation paths are the same, up to time reversal,

for finite dimensional equilibrium systems [Tou18]. Moreover, the quasipotential Qρ0 [ρ] can be

written in terms of the free energy functional

Qρ0 [ρ] = β (F [ρ]− F [ρ0]) , (2.75)

where β = 2
σ2 is the inverse temperature and ρ ∈ D0. The quasipotential Q∗describing the

expected time of escape from D0 is thus given by

Q∗ = β∆F := β (F [ρ̄]− F [ρ0]) . (2.76)

The expected escape time in equilibrium systems scales as E[τ0] ≍ eβN∆F , where ∆F represents

the height barrier between the stable mean field attractor ρ0 and the saddle point ρ̄.

The above equation shows that metastability and tunnelling phenomena become relevant for

settings near a transition point. In fact, as the transition is approached the free energy barrier

decreases, see Figure 2.2, making the transitions exponentially more likely to happen.

2.6 The Desai-Zwanzig model: a paradigmatic example

The Desai-Zwanzig (DZ) model, introduced in [DZ78], has been used as a paradigmatic example

of an equilibrium order-disorder (continuous) phase transition reminiscent of the Ising-like

ferromagnetic transitions in spin systems [Daw83, Shi87]. More recently, it has also been

employed for new purposes such as applications to systemic risk [GPY13] and system size

stochastic resonance [PZ03, PZdlC02]. The DZ model describes an ensemble of one-dimensional
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subsystems xk ∈ R whose dynamics is prescribed by the following equations

dxk = −V ′
α(x

k)dt− θ

N

N∑
l=1

(
xk − xl

)
dt+ σdWk

= −V ′
α(x

k)dt− θ
(
xk − x̄

)
dt+ σdWk,

(2.77)

where k = 1, . . . , N . The confining potential Vα(x) = −α
2
x2 + x4

4
is non convex, with a double

well shape, for α > 0. The diffusion matrix is constant, resulting in thermal fluctuations for the

system. The interaction potential is given by a convex, quadratic function U(x) = x2

2
, leading

to a coupling among the agents that attempts to synchronise them by nudging them towards

their centre of mass x̄ = 1
N

∑N
k=1 x

k(t). We observe that the centre of mass can be interpreted

as the expectation over the empirical measure XN of the observable x ∈ R . Indeed

∫
xXN(t, dx) =

∫
xρN(t, x)dx =

1

N

N∑
k=1

∫
xδ(x− xk(t))dx =

1

N

N∑
k=1

xk(t) = x̄. (2.78)

In the absence of coupling, θ = 0, the above equations describe the simple motion of a particle

in a double well potential, subject to additive noise hopping around, for a sufficiently low σ,

the two deterministic stable fixed points x∗ = ±√
α .

The presence of the coupling allows for a long range coordination of the system that in the

thermodynamic limit N → +∞ results in a proper phase transition. In this regime, by varying

the parameters (α, θ, σ), the system undergoes a continuous phase transition, similar to the

pitchfork bifurcation diagram for the Ising model. In order to study the transition, we observe

that the Law of Large Numbers for the empirical measure XN results in the following McKean

Vlasov equation for the one particle distribution

∂ρ

∂t
=

∂

∂x

(
(V ′

α(x) + θ (x− ⟨x⟩) ρ) + σ2

2

∂ρ

∂x

)
, (2.79)

where the non linearity in the drift term is given by the first moment ⟨x⟩ =
∫
xρ(x, t)dx of the

distribution ρ. The first moment ⟨x⟩ corresponds to a suitable order parameter for the system,

see e.g. [DZ78, Shi87, Daw83] and it is usually referred to as the “magnetisation” of the system

in analogy with spin systems.
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Since the DZ model describes an equilibrium system it is possible to define a free energy

functional F [ρ]

F [ρ] =

∫
Vα(x)ρ(x)dx+

θ

4

∫ ∫
ρ(x) (x− y)2 ρ(y)dxdy + β−1

∫
ρ ln ρdx, (2.80)

where β = 2
σ2 is the inverse temperature of the system, such that the McKean Vlasov equation

can be written as

∂ρ

∂t
=

∂

∂x

(
ρ
∂

∂x

δF

δρ

)
. (2.81)

As explained in previous sections, invariant solutions of the mean field dynamics can be charac-

terised by extremes of the free energy functional. We will adopt here a different but equivalent

approach using a self consistency equation, reminiscent of the Kirkwood-Monroe approach

(2.32)5. From (2.79) it is simple to see that stationary solutions ρ0(x) satisfy

∂ ln ρ0
∂x

= −β (V ′
α(x) + θ (x− ⟨x⟩)) , (2.82)

which, after integrating, results in a family of a distributions ρ0(x;m)

ρ0(x,m) =
1

Z
e
−β

(
Vα(x)+θ

(
x2

2
−xm

))
, (2.83)

parametrised by a parameter m satisfying the constraint

m = R(m) :=

∫
xp0(x;m)dx, (2.84)

and Z = Z(m) =
∫
e
−β

(
Vα(x)+θ

(
x2

2
−xm

))
dx is the mean field partition function. The above

equation, commonly called as self consistency equation, plays a major role in determining the

stationary properties of the system. Solutions m∗of the self consistency equation correspond

to stationary measures ρ0(x,m
∗), with magnetisation ⟨x⟩ = m∗. Moreover, the free energy

functional, being a Lyapunov function for the dynamics, see (2.30), provides stability properties

of the stationary solutions. In particular, the free energy functional, evaluated at the stationary

5We will use the self consistency equation approach for a more general problem in chapter 6
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(a) (b)

Figure 2.3: Phase diagram for the continuous phase transition for the McKean Vlasov equation
(2.79). Left panel: order parameter ⟨x⟩ as a function of σ. Right panel: rescaled variance as
a function of σ. The mean field rescaled variance, at the transition, is finite and equals to 1/2
as given by (2.87). These results have been obtained through the numerical analysis of the self
consistency equation (2.84).

solution ρ0(x;m) can be written as [GKPY19]

F [ρ] = F (m) = −β−1 lnZ +
θ

2
m2. (2.85)

The first derivative of the free energy yields the self consistency equation F ′(m) = θ (m− ⟨x⟩)

as a consequence of the fact that extreme points of the free energy correspond to invariant

solutions of the McKean Vlasov equation. Stability properties are related to convexity features

of the free energy functional: if the second variation is positive, δ2F > 0, for any perturbation

δρ around ρ0, then the stationary solution ρ0 is stable. If there exists a perturbation δρ such

that the above does not hold, the stationary solution is unstable [Shi87, Fra05]. Evaluating the

second derivative of the free energy we get

F ′′(m) = −θ
(
βθ
(
⟨x2⟩ −m2

)
− 1
)
. (2.86)

The investigation of the solutions of the self consistency equation and the stability analysis

provided by the free energy makes it possible to identify two regimes of the dynamics [Shi87].

Fixed, the parameter α and the strength of the coupling θ, there exists a high temperatures

regime β → 0, or equivalently σ → +∞, such that the self consistency equation has the unique
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(stable) solution m∗ = 0 corresponding to a disordered state with vanishing magnetisation.

As the temperature is decreased, the disordered state loses its stability and bifurcates through

a pitchfork bifurcation in two stable and symmetric states of opposite magnetisation ⟨x⟩ =

±m∗ ̸= 0, see Figure 2.3. This corresponds to a continuous phase transition, characterised by

the condition F ′′(0) = 0, that is [Shi87]

2θ

σ2
⟨x2⟩0 = 1, (2.87)

where the expectation value is taken with respect to the stationary measure ρ0(x; 0). It is

possible to obtain the critical hyperplane in the parameter space (α, θ, σ) where the phase

transition takes place [Daw83]

D−3/2

(
θ−α
σ

)
D−1/2

(
θ−α
σ

) =
σ

θ
, (2.88)

where Dν(z) =
e−

z2

4

Γ(−ν)

∫ +∞
0

e−zt−
t2

2 t−ν−1dt with ν < 0 is a parabolic cylinder function and Γ(z) is

the standard Gamma function. In particular, fixed (α, θ), the above condition yields the critical

noise strength value σc (or equivalently inverse temperature βc) at which the phase transition

is attained.

The above analysis provides a complete overview of the mean field properties given by the

McKean Vlasov equation, that is by the Law of large numbers for the empirical measure XN .

To our knowledge, the first available results for the critical fluctuations at the phase transition of

XN around its mean field limit were provided by Dawson for the DZ model [Daw83]. We assume

that σ > σc and that the system is in its (unique) stable steady state ρ0(x; 0). As mentioned

in section 2.4, we expect that the empirical measure will exhibit gaussian fluctuations around

its mean field value. We define as in the previous chapters the empirical fluctuation process

YN =
√
N (XN(t, ·)− ρ0(x; 0)dx) . (2.89)

Dawson showed, see also [DGPS23] and references therein for a more general result for equi-

librium systems, that YN will converge as N → +∞ to a stochastic process Y (t, ·) whose
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deterministic dynamics is given by an operator L̃ρ0

L̃ρ0Y = Lρ0Y − θ
∂

∂x
ρ0(x; 0)

∫
yY (t, dy), (2.90)

where

Lρ0(·) =
∂

∂x
((V ′

α(x) + θx) ·) + σ2

2

∂2

∂x2
(2.91)

is the Fokker-Planck operator one obtains by setting the stationarity condition ρ = ρ0(x; 0)

in the McKean Vlasov operator defined in (2.79). For settings above the phase transitions,

σ > σc, it is possible to show that L̃ρ0 is a stable operator, that is all its eigenvalues, but one6,

have negative real part. In this regime, the fluctuation process Y (t, ·) reaches an asymptotic

equilibrium given by a generalised Gaussian field. An important consequence of this Central

Limit Theorem concerns the fluctuations of the observables of the N -particle system. Given

any smooth function ϕ(x), we consider any observable of the form Φ = 1
N

∑N
k=1 ϕ (xk (t)), e.g.,

the empirical magnetisation or centre of mass x̄ = 1
N

∑N
k=1 xk(t). The above Central Limit

Theorem implies that [Daw83]

⟨(Φ− ⟨Φ⟩)2⟩ρN ∼ 1√
N
, (2.92)

where ⟨·⟩ρN denotes the expectation value over the N -particle distribution ρN solution of the

stationary N−particle Fokker Planck equation (2.5).

On the other hand, at the phase transition (σ = σc) the operator L̃ρ0 develops a new vanishing

eigenvalue. The linearised dynamics (2.90) can no longer support an equilibrium state and

does not represent a good approximation of the fluctuations. Ultimately, this is due to the fact

that the critical fluctuations do not follow a scaling as in (2.89). Indeed, Dawson showed that

critical fluctuations scale as

Y c
N := N1/4

(
XN

(
N1/2t, ·

)
− ρ(x; 0)dx

)
. (2.93)

There are two meaningful features in the above scaling. Firstly, the scaling of the amplitude of

the critical fluctuations is different with respect to non critical fluctuations. This means that

6The one corresponding to its stationary state, see [Daw83] for details
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any observable Φ undergoes critical fluctuations of bigger amplitude scaling as

⟨(Φ− ⟨Φ⟩)2⟩ρN ∼ 1

N1/4
. (2.94)

This is due to the fact that at a phase transition the variables {xk(t)} are no longer weakly cor-

related, but exhibit strong correlations resulting in a macroscopic nature of critical fluctuations

[CJL78]. Secondly, the rescaling of time in (2.93) is a manifestation of the critical slowing down

phenomenon, meaning that fluctuations persist over longer timescale. It is possible to show

that Y c
N satisfies a Central Limit Theorem as one passes to the thermodynamic limit. Loosely

speaking, this theorem says that the critical empirical measure can be written as [Daw83]

XN

(
N1/2t, dx

)
≈ 1

N1/4
xρ0(x; 0)z(t)dx, (2.95)

where z(t)is a stationary stochastic process solution of

dz = −cz3(t)dt+ σ∗dw, (2.96)

where c and σ∗ are two positive constants and w(t) is a standard Wiener process. The above

equations show another manifestation of the macroscopic nature of the fluctuations at the phase

transition. In fact, as opposed to the non critical fluctuations described by a gaussian random

field, critical fluctuations are here coherent, that is the entire empirical measure XN is driven

by the same process z(t).

We conclude this section by briefly mentioning the main dynamical features of the system

for the low temperatures σ < σc regime. As previously mentioned, this corresponds to a

bistable system where there exist two stable symmetric invariant solutions of the McKean

Vlasov equation, corresponding to the two minima of the free energy F (m) . Moreover, the free

energy has a maximum at m = 0, corresponding to the unstable disordered state, see Figure

2.4 . The empirical measure XN will fluctuate closely to one of the two stable solutions until

performing, through a large deviation, a transition to the other symmetric state. As described in

section 2.5, the statistics of the transition can be described through a large deviation approach,.
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F(m
)

m*−m*

m

ΔF
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+m*

−m*
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Figure 2.4: Metastability properties of the Desai Zwanzig model for a finite system. Left panel:
Free energy F (m), see equation (2.85). The two minima of F correspond to the invariant
solutions of the McKean Vlasov equation, characterised by an order parameter ⟨x⟩ = ±m∗.
Right panel: Typical transitions that are observed in a finite system obtained from a direct
numerical integration of equations (2.77) on an ensemble of N = 8000 agents.

In particular the mean escape time can be written as

E[τ ] ≍ eN∆F , (2.97)

where ∆F = F (0)−F (±m∗) is the free energy barrier between the stable and unstable states.
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Linear Response Theory

The aim of Response Theory is to predict how statistical properties of a system change as a re-

sult of arbitrary (weak) exogenous perturbations. In linear approximation, the Fluctuation Dis-

sipation Theorem (FDT) holds for systems amenable to a statistical mechanics description. The

FDT establishes a connection between spontaneous, unforced fluctuations and their relaxation

properties with the response to external forcings. In particular, it allows to write the Green func-

tion, describing the linear response of such systems, as a time dependent correlation function of

suitable observables evaluated in the unperturbed state. The FDT represents a very general and

powerful tool to investigate the forced fluctuations of a system from the analysis of the unforced

ones. Indeed, this result allows one to predict the response of (averages of) observables without

applying any perturbation. As a matter of fact, one of the earliest applications of the FDT was

the derivation of transport coefficient of liquids by simulating their equilibrium (unperturbed)

molecular dynamics. The idea of relating dissipation properties to fluctuations can be traced

back first to Einstein’s work on Brownian motion [Ein05] and then to Nyquist’s investigation

of thermal agitation in electrical resistors [Nyq28]. A few years later Onsager formulated his

regression hypothesis [Ons31] stating that the relaxation process of a nonequilibrium perturba-

tion would follow the same physical laws governing the equilibrium fluctuations. These ideas are

at the basis of the FDT developed by Callen and Welton [CW51] and Kubo [Kub57, Kub66].

In particular, the formulation of the latter resembles the more modern one, connecting the

49
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Green function and correlation functions at equilibrium. For a historical perspective, see the

very interesting review [MPRV08, Section 1-2]. Although such FDTs were originally applied

to Hamiltonian systems near equilibrium, the validity of a generalised FDT extends to a vast

class of systems featuring non equilibrium dissipative chaotic or stochastic dynamics . It turns

out that in the latter systems the applicability of FDT and the derivation of response formulas

are easier to justify than in deterministic settings, see later discussion. We refer the reader to

[MPRV08, LV07, SV19] for a modern formulation of the generalised FDT. Furthermore, a gen-

eralisation of the FDT to non linear settings of the response can be found in [LC12]. Linear Re-

sponse Theory and the FDT have been a fruitful conceptual framework and successful approach

for a plethora of phenomena. Classic applications include the investigation of the physics of

plasma [Nam76, Nam77], stochastic resonance [GHJM98], optical materials [LSPV05], galactic

dynamics [BT08], turbulence [Kan20, BDLV01], Markov chains [SGLCG21, Luc16], optome-

chanical systems [MDN21], simple toy models of chaotic dynamics, [CS07, Luc09, Rei02], but

also more recently developed fields such as neural networks [Ces19, CAC21, Lim21], financial

markets [PTSSG+21] and the climate system [Lei75, GL20]. In this regards, linear response

theory has been successfully applied to a variety of systems, ranging from atmospheric toy mod-

els [LS11, AM07, CH11, AM08, MAG10, CEH13], barotropic models [Bel80], quasigeostrophic

models [GL17, DG01], atmospheric models [NBH93, CVS04, GB07, GBM08, RP08, GBD02]

to coupled climate models [LA05, KD09, FSH15, RLL16, LLR20, LRL17]. In modern terms,

the goal is to define practical ways to reconstruct the measure supported time-dependent pull-

back attractor [CSG11] of the climate by studying the response of a suitably defined reference

climate state [GL20]. More applications of response theory can be found in [Ött05] and the

recent special issue edited by Gottwald [Got20].

The incredible success of the FDT and linear response theory in predicting the change of sta-

tistical properties of complex systems, as exemplified by the aforementioned applications, has

led to the wrong assumption that linear response theory holds for general deterministic chaotic

systems. As it happens, it is possible to show that simple chaotic dynamical systems violate

linear response [BS08, BS10, BBS15, Bal00, Bal14]. In order to understand how linear response

can fail, it is instructive to provide a general formulation of the problem. We consider a system,
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either stochastic or deterministic, that supports a unique ergodic invariant measure µ. We also

assume that this measure is physical, i.e. its basin of attraction has positive Lebesgue measure.

In other words, if the systems admits an ergodic physical measure there exists a set of initial

conditions of non zero Lebesgue measure such that long time averages of observables Φ are

equivalent to phase space averages over this measure µ

lim
T→+∞

1

T

∫ T

0

Φ(x(t))dt =

∫
Φ(x)µ(dx), (3.1)

where x(t) represents the trajectory stemming from one of these initial conditions. Moreover,

we assume that the system depends on a parameter ε and that, for each fixed ε, the relative

ergodic physical measure µε is unique. The parameter ε corresponds to a, possibly time and

phase space dependent, perturbation of the unperturbed system one obtains for e.g. ε = 0,

whose unperturbed statistics are given by the measure µ0. Linear response theory aims to

predict how the expected value

⟨Φ⟩ε =
∫

Φ(x)µε(dx) (3.2)

changes as the parameter ε is varied. In particular, we say that the (unperturbed) system

exhibits linear response if the derivative

⟨Φ⟩′ = ∂⟨Φ⟩ε
∂ε

|ε=0 (3.3)

exists. Thus, in linear response theory approximation, the average of the observable in the

perturbed state is expressed as

⟨Φ⟩ε ≈ ⟨Φ⟩0 + ε⟨Φ⟩′. (3.4)

Response formulas allow one to write the derivative ⟨Φ⟩′ in terms of properties of the unper-

turbed measure µ0. A FDT can be established if ⟨Φ⟩′ depends only on correlation functions

evaluated in the unperturbed state described by µ0.

A sufficient condition for the derivative (3.3) to exist is that the invariant measure µε is dif-

ferentiable with respect to perturbation parameter ε. In fact, smoothness and differentiability

properties of the invariant measures are at the core of the validity of linear response theory. By
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and large, in stochastic systems the noise has a regularising effect that provides a smooth in-

variant measure. Consequently, linear response theory can be very often justified for stochastic

systems [HM10, DD10, Hä78]. In these settings, the response and the unforced fluctuations of

a system satisfy satisfies a FDT [MPRV08] . We remark that these results hold for a system

that does not feature critical transition (tipping points) nor phase transitions. We refer the

reader to the next sections of this chapter for the investigation of response properties close to

critical transitions. We remark that one of the contributions of this thesis, see next chapters, is

to extend Response Theory for the thermodynamic limit of interacting systems, corresponding

to an infinite dimensional system described by a nonlinear, nonlocal Fokker Planck equation.

On the other hand, dissipative chaotic deterministic systems do not exhibit smooth invariant

probability measures. In fact, such systems live in a nonequilibrium steady state (NESS) char-

acterised by an average contraction of phase space volumes and production of entropy. The

natural mathematical framework to describe statistical properties of nonequilibrium chaotic

systems is represented by Sinai Ruelle Bowen (SRB) measures [ER85, Rue89, You02] that en-

joy smoothness properties along unstable manifolds in the phase space but are rather singular

otherwise.

Ruelle [Rue97, Rue98b, Rue09] has shown that a response theory applies for uniformly hyper-

bolic Axiom A systems. Interestingly, the relationship between forced and unforced variability,

i.e., between response and unperturbed fluctuations, is more complex in these settings due to

the inherently different properties of the tangent space in its stable and unstable directions. As

a matter of fact, the response of a uniformly hyperbolic system described by a SRB measure can

be split in two different contributions [CS07, Rue98b]. The first one, deriving from the unstable

manifold, can be expressed in terms of a correlation function evaluated in the unperturbed state

in accordance to the FDT. The other contribution depends on the dynamics along the stable

manifold and does not correspond to unperturbed correlation functions. Consequently, the

numerical implementation of Ruelle’s response formulas is nontrivial for deterministic chaotic

systems [AM07]. Very recently, contributions based on adjoint and shadowing methods provide

a promising way forward in this regards [Wan13, CW20, Ni21, SW22]. This new contribution

solely derives from the dissipative nonequilibrium nature of the dynamics. Small perturbations
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around equilibrium steady states satisfy the classic FDT since the invariant measure of the sys-

tem is absolutely continuous with respect to the Lebesgue measure [Rue09]. The extent of the

effect of the new non-canonical term in Ruelle’s response formulas on the applicability of the

FDT is still a matter of research. The authors in [CRV12] show that for low dimensional deter-

ministic systems the FDT can be applied most of the times, except for very peculiar situations

where the unperturbed dynamics exhibits carefully oriented manifolds and for carefully chosen

perturbations. Nevertheless, this non-canonical term is not always negligible [CS07, AM07].

On the other hand, in the context of high dimensional chaotic deterministic systems, the va-

lidity of the FDT is usually expected for smooth observables representing projection operators

from high-dimensional spaces to lower dimensional ones. In fact, one might expect the pro-

jection operation to smooth out the singularities of the invariant measure of the whole system

[CRV12, MPRV08]. We also remark that, although unjustified in deterministic settings, the

presence of a small degree of noise provides a simple reason for the validity of the FDT in

general systems.

As previously mentioned, a generic, non uniformly hyperbolic system might support an in-

variant measure with a rough dependence on the perturbation parameter ε. In such case, a

linear response theory does not exist and neither does a FDT. It is however common belief

in the scientific community that typical deterministic high dimensional system composed of

multiple interacting degrees of freedom exhibit a smooth linear response. In most cases, such a

behaviour is justified by invoking a strong chaoticity assumption on the dynamics, the“chaotic

hypothesis” of Gallavotti and Cohen [GC95b, GC95a, Gal14, Gal20], according to which a high

dimensional system can be considered for all practical purposes as a uniformly hyperbolic Ax-

iom A system. Invoking the chaotic hypothesis to justify the existence of linear response theory

is however unjustified: even if the hypothesis is true, it does not address how the equivalent

Axiom A systems of the unperturbed and the perturbed system relate to each other, that is,

it does not provide any information on the family of measures {µε}ε which is crucial for any

statement on response theory [WG18].

In this regards, a stronger argument for the validity has been obtained byWormell and Gottwald

[WG19]. The authors study high dimensional deterministic system composed of mean-field cou-
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pled microscopic agents, that, individually, do not obey linear response theory. They observe

that macroscopic observables of such systems satisfy linear response if the macroscopic dynam-

ics features an effective noisy behaviour through self generated noise and the distribution of

the microscopic parameters is smooth. Interestingly, the connection between microscopic and

macroscopic dynamics is not as straightforward. They also show that, when the macroscopic

observable exhibits a non trivial dynamics, linear response can fail at the macroscopic level

even if the individual components possess a smooth response. Non validity of the “chaotic hy-

pothesis” for high dimensional systems has also been observed in [Wor22b] where the existence

of non-hyperbolic large-scale dynamical structures is established in a mean-field coupled deter-

ministic system. Moreover, a recent work points in the direction that the emergence of linear

response theory in high dimensional systems highly depends on the properties of SRB measures

conditioned on generic manifolds, that is not necessarily stable or unstable, and, specifically,

on the validity of conditioned decay of correlations properties [Wor22a].

We are here interested in the application of linear response to the context of weakly interacting

diffusions where it is natural to assume a stochastic component of the dynamics. In this setting,

we will not be concerned with these issues since the smoothness of the invariant measure of

the stochastic system ensures the derivation of response formulas and the validity of the FDT

away from critical settings.

Before delving into the investigation of response properties of stochastic systems, we want to

remark that nonlinear response theories and nonlinear FDTs have also been established near

both equilibrium and nonequilibrium dynamics [Rue98a, LSPV05, LC12, LCSZ08b, LCSZ08a,

BB05]. Moreover, linear response formulas have been extended to encompass the situation of

perturbations of finite amplitude, where the state vector is perturbed at one instance of time

by a (not necessarily small) perturbation and thereafter left evolved through the unperturbed

dynamics [Abr19].

Having established the close link given by the FDT between response and unperturbed corre-

lations, it is relevant to present, in the next section, a theory of mixing properties for finite

dimensional stochastic systems. In the context of non equilibrium systems, the authors in

[SV19] remark that the unperturbed correlations appearing in FDTs involve complicated quan-
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tities that do not appear at equilibrium. The determination of such quantities is technically

difficult since it requires the knowledge of the invariant measure of the system, which is, as

opposed to equilibrium systems, not known a priori and heavily system-dependent [Der07].

Moreover, there is still no consensus on the interpretation of the physical meaning of such

terms, see [SV19] and references therein.

For deterministic systems, the theory of the Ruelle-Pollicott (RP) resonances and the transfer

operator formalism represent a rigorous approach to the investigation of mixing properties of

the system, establishing decomposition formulas of correlation functions and power spectra

[Bal00, BER89, Fro97, MG08, GLP13, LM94, BMM12]. This approach provides a more gen-

eral framework to study time dependent correlation functions between arbitrary observables

of the system by decomposing the dynamics in terms of universal (as opposed to observable-

dependent) features. More recently it has been shown that a similar formalism, based on the

theory of Markov semigroups and their spectral theory, can be applied to stochastic systems as

well [CTDN20, TLD18]. The theory of RP resonances characterises other relevant properties

of the evolution of deterministic and stochastic dynamical systems such as coherent structures

[FPET07, Fro13, FPG14], metastability [MS81, SS13] [Pav14, Chapter7]. Stochastic RP reso-

nances have also been successfully applied to the design of stochastic parameterizations to solve

challenging closure problems issued from geophysical turbulence [SGLCG21, KCB18, CLM21].

In the following we will be interested in the role of RP resonances in the context of critical tran-

sitions [TvdBD15, TLLD18, TLD18] and sensitivity to perturbations [CNK+14, Luc16, SGL20].

In the next section we will illustrate the fundamental results of the theory of stochastic RP

resonances and mixing properties of the system.

Furthermore, in section 3.2 we will establish a link, along the same lines as [CNK+14, GL22],

between linear response theory and RP resonances. One of the fundamental results of this

approach is the decomposition in terms of the modes and corresponding eigenvalues of the

Koopman operator [Mez05, BMM12], governing the time evolution of observables of the sys-

tem, of the Green functions of the systems. In particular, this will allow us to identify critical

scenarios, usually called critical transitions or tipping points, of high dimensional complex sys-

tems where the linear response of the system breaks down and a rough dependence on the
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parameters of the system is expected. As a last remark, it is worth pointing out that the

evaluation of the RP resonances is non trivial for highly non linear, complex, high dimen-

sional systems. Most of the methods that have been developed to compute RP resonances

from finite-dimensional data-driven approximations of infinite-dimensional transfer operators

are somehow related to the Ulam’s approach. There, one seeks a suitable partition of the

phase space and approximates the underlying transfer operator by finite dimensional Markov

matrices describing the transition probabilities between the finite number of states given by the

partition. It is easy to realise that these methods suffer from the curse of dimensionality, the

complexity of such procedures dramatically increases with the dimension of the phase space

[FLQ10, KNK+18, TvdBD15, CTDN20, TCND19]. Alternative data-informed methods, in-

cluding some deep learning approaches, exist but they suffer from practical limitations in their

implementation [SC22]. Promising results in this regards have been obtained in [SC22], where

the authors present a flexible simulation-free approach based on Neural Networks architectures

able to find solutions of eigenvalue problems in moderately large dimensions.

3.1 The theory of stochastic Ruelle Pollicott resonances

We consider a finite dimensional system described by the following stochastic differential equa-

tions

dx = F(x)dt+ s(x)dW, x ∈ Rd. (3.5)

The drift part of the dynamics is given in terms of a generally non linear smooth vector field

F : Rd → Rd, whereas the diffusion dynamics is determined by the state dependent matrix

s : Rd → Rd×q and by the Rq−valued Wiener process W = (W1, . . . ,Wq). In particular, the

i− th component of the diffusion part is

[s(x)dW]i =

q∑
j=1

sij(x)dWj, i = 1, . . . , d. (3.6)

We note that q ≤ d is not necessarily equal to d and it is not guaranteed that the diffusion

matrix Σ = ssT is full rank, meaning that one could potentially find a change of variables where
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noise act only on a subset of such dynamical variables. It is well known that the evolution of

the probability density functions associated with (3.5) is described by a Fokker-Planck equation

∂ρ

∂t
= Lρ := −∇ · (F (x) ρ(x, t)) +

1

2
D2 : (Σ (x) ρ(x, t))

ρ(x, 0) = ρin(x),

(3.7)

where L is the Fokker Planck operator. Furthermore D2 is the matrix of second derivatives

D2
ij =

∂2

∂xi∂xj
and : denotes the following operation between matrices A : B =

∑d
i,j=1AijBij .

The probability distribution ρ(x, t) represents the probability that the stochastic process x(t)

originating from (3.5), originally distributed according to ρin(x), is equal to x at time t. Such

probability can be written as

ρ(x, t) =

∫
Rd

ρ(x, t|y, 0)ρin(y)dy, (3.8)

where ρ(x, t|y, 0) represents the transition probability from state y at time t = 0 to state x

at time t. In the introduction we have highlighted the relevance of the smoothness properties

of the invariant probability distributions for the derivation of fluctuation dissipation theorems.

Such smoothing effects derive from a sufficiently strong spreading of the noise in the evolution of

all dynamical variables. In some applications, a uniform ellipticity assumption on the diffusion

matrix is valid. This amounts to requiring that q = d and that the diffusion matrix is uniformly

positive definite, i.e. , there exists a constant λ > 0 such that

⟨y,Σ(x)y⟩ ≥ λ|y|2, ∀y ∈ Rd, (3.9)

uniformly for any x ∈ Rd, where ⟨·, ·⟩ and | · |2 represents the usual scalar product and the

(squared) norm of vectors in Rd. The uniform ellipticity assumption guarantees the existence

of smooth probability densities [Pav14, Chapter 4] but requires that the noise acts according to

(3.9) on all dynamical variables. Most applications deal with the case of degenerate noise, where

the external source of randomness only acts on a subset of dynamical variables, see [Pav14,

Chapter 6] for examples regarding Langevin dynamics of particles including both position and

momentum variables or the appendix of [CTDN20] for examples from fluid dynamics. In this
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situation, smooth densities exist provided that the interactions among the different dynami-

cal variables allow for a sufficiently strong transmission of the noise. Mathematically, this is

represented by the hypoellipticity property of the generator of the diffusion stochastic process

[Pav14, Chapter 6]. Hörmander condition [H6̈7] provides a useful criterion to check whether

the structure of the noise given by Σ(x) generates a hypoelliptic process. Loosely speaking,

Hörmander’s condition states that at any point of the phase space x ∈ Rd the directions gen-

erated by the second differential operator in L stemming from a suitable combination of the

noise and the drift fully span TxRd, i.e. the tangent linear space of Rd at point x. General

smoothness and boundedness assumptions on the drift F(x) and diffusion Σ(x) coefficients

together with Hörmander’s condition suffice to guarantee the existence of smooth solutions of

(3.7).

3.1.1 Markov Semigroup theory

The properties of the Fokker Planck equation (3.7) can be conveniently investigated through

the Markov semigroup formalism that we introduce below. Such formalism encompasses more

general Markov processes than the continuous path ones that the Fokker Planck equation

describes. We state the theory in its generality first and apply it to systems described by

Stochastic Differential Equations at a later stage. Given any function Φ(x) ∈ Cb
(
Rd
)
, where

Cb
(
Rd
)
denotes the space of bounded and continuous function of the phase space, we define a

one parameter family of linear operators Pt, t ≥ 0, defined by

(PtΦ) (y) := E [Φ (x (t)) |x (0) = y] =

∫
Rd

Φ (x) ρ (x, t|y, 0) dx. (3.10)

Pt is a linear operator and is called the Markov semigroup associated to the stochastic process.

It is associated to statistical properties since it is defined through an expectation value over all

realisations of the noise, namely over all possible values of final states at time t compatible with

the stochastic dynamics. It is possible to show that Pt is equipped with a semigroup structure

P0 = Id, Pt+s = Pt ◦ Ps, t, s ≥ 0, (3.11)
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where Id is the identity operator. The first equation is easily proved since

(P0Φ) (y) =

∫
Rd

Φ (x) ρ (x, 0|y, 0) dx =

∫
Rd

Φ (x) δ (x− y) dx = Φ(y). (3.12)

The second semigroup property derives from the Markovianity of the process described, in par-

ticular from the Chapman Kolmogorov equation [Pav14, Chapter 2]. In particular, a breakdown

of such property indicates that the stochastic process exhibits some non-Markovian features.

We define by D (K) the set of all bounded and continuous observables Φ ∈ Cb(Rd) for which

the following strong limit

KΦ := lim
t→0

PtΦ− Φ

t
(3.13)

exists. The operator K : D(K) → Cb(Rd) is called the (infinitesimal) generator of the semigroup

operator Pt and is usually referred to as the generator of the Markov process. If the dynamics

is deterministic the transition probability in (3.10) is actually a Dirac delta function selecting

only the final state x = S(t)y, where S(t) is the deterministic flow describing the evolution of

trajectories in the phase space. In a deterministic setting, the Markov semigroup operator is

usually called Koopman operator and is given by

(PtΦ) (y) = Φ (S(t)y) . (3.14)

The definition of the generator K and the semigroup properties imply that at least at a formal

level we can write

Pt = etK. (3.15)

The physical relevance of the Markov semigroup operator Pt (or its generator K) is represented

by the fact that they govern the dynamical evolution of expectation values of observables. To

further illustrate this fundamental property of Pt, we define the function u(y, t) := (PtΦ) (y)

and evaluate its time derivative

∂u

∂t
=

d

dt
(PtΦ) =

d

dt

(
etKΦ

)
= K

(
etKΦ

)
= Ku. (3.16)
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Given that at the initial time u(y, 0) = P0Φ = Φ(y), we can state that the expectation values

of observables Φ ∈ Cb(Rd) satisfy the following initial value problem

∂u

∂t
= Ku,

u(y, 0) = Φ(y).

(3.17)

The above equation is usually called, in stochastic settings, the backward Kolmogorov equation.

An alternative approach to the investigation of statistical properties of stochastic systems is to

study the evolution of probability measures of the systems, rather than studying the evolution of

its observables. The Fokker Planck equation (3.7) represents in fact such an approach. It turns

out that the Fokker Planck equation constitutes a dual approach to the Markov semigroup

operator defined above. We define the adjoint semigroup P †
t that acts on (not necessarily

smooth) probability measures µ in the following way

P †
t µ (Γ) =

∫
Rd

ρ(Γ, t|x, 0)µ(dx), (3.18)

where Γ is a measurable set in Rdand ρ(Γ, t|x, 0) is the transition probability from state x at

time 0 to the set Γ at time t associated to equation (3.7). In particular, given the hypoelliptic-

ity assumption on the stochastic process the transition probability ρ(Γ, t|x, 0) is smooth with

respect to the Lebesgue measure and can be written as

ρ(Γ, t|x, 0) =
∫
Γ

ρ(y, t|x, 0)dy. (3.19)

The operator P † is formally the adjoint of the Markov semigroup Pt, namely

∫
Rd

PtΦ(x)dµ(x) =

∫
Rd

Φ(x)d(P †µ)(x). (3.20)

In a deterministic context, the operator P † is commonly known with different names as transfer

operator, Ruelle operator or Perron-Frobenius operator. We can define the generator of P † in

a similar way as before and write

P † = etL, (3.21)
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where the operator L is the flat L2-adjoint of the generator of the process K

∫
Rd

(Kf)hdx =

∫
Rd

f (Lh) dx. (3.22)

Now, given a stochastic process x(t) with generator K, initially distributed according to a

measure µ , that is x(0) ∼ µ, we define the law of the Markov process as

µ(t) := P †
t µ. (3.23)

The evolution of probability measures according to the underlying Markov process is determined

by the operator L. In fact, deriving with respect to time the above equation and using similar

steps that led to (3.17) we obtain

∂µ(t)

∂t
= Lµ(t),

µ(0) = µ.

(3.24)

The above equation is called forward Kolmogorov equation and determines the time evolution

of probability measures. When µ(t) is absolutely continuous with respect to the Lebesgue

measure µ(t)(dx) = ρ(x, t)dx, the same equation holds for the probability distribution ρ(x, t).

When we consider Markovian stochastic evolutions featuring drift and diffusion but with no

jumps processes, the generator K and L featuring in the backward and forward Kolmogorov

equations respectively can be explicitly evaluated [Pav14, Chapter 2]. In particular, the forward

Kolmogorov equation (3.24) is simply the Fokker-Planck equation (3.7). The generator L of the

adjoint semigroup is given by the Fokker-Planck operator

L(·) = −∇· (F (x) · )+ 1

2
D2 : (Σ (x) · ) = −

d∑
i=1

∂

∂xi
(Fi(x) · )+

1

2

d∑
ij=1

∂2

∂xi∂xj
(Σij(x) · ) . (3.25)
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We remark that in deterministic setting,Σ = 0, the above operator is usually called the Liouville

operator. The generator of the continuous stochastic process (3.5) is then easily evaluated as

K = F(x) · ∇+
1

2
Σ(x) : D2 =

d∑
i=1

Fi(x)
∂

∂xi
+

1

2

d∑
ij

Σij(x)
∂2

∂xi∂xj
. (3.26)

3.1.2 Spectral properties of the Markov semigroup

In general, one is interested in the stationary measures that describe the asymptotic statistical

behaviour of the solutions of the Stochastic Differential equation (3.5). In this respect, ergodic

measures are central for the characterisation of long time statistical properties of the system.

We here introduce the notion of ergodic measures in the context of the theory of Markov

semigroups and show how spectral properties of these operators in suitable function spaces

play a fundamental role. We say that the process described by (3.5) is ergodic if λ = 0 is a

simple eigenvalue of the generator K. This is equivalent to the condition that the equation

Kg = 0 (3.27)

has only constant solutions g = const. Ergodic properties can be investigated by looking at

the null space of the generator of the stochastic process. It is possible to characterise ergodic

properties in terms of the Markov semigroup operator Pt rather than its generator. Given the

definition of the generator and (3.27), we can say that the stochastic process is ergodic if the

equation

Ptg = g (3.28)

has only constant solutions for all t ≥ 0. Equivalent, more familiar, versions of ergodicity are

related to the adjoint semigroup perspective. Given the law of the process (3.23), an invariant

measure µ is defined as a fixed point of the adjoint semigroup

P †
t µ = µ. (3.29)



3.1. The theory of stochastic Ruelle Pollicott resonances 63

This is in fact the L2-adjoint of (3.28). If there is a unique µ satisfying the above equation, the

Markov process is ergodic with respect to µ. In terms of the adjoint generator, and assuming

for simplicity that µ(dx) = ρ(x)dx, the ergodic invariant density ρ(x) satisfies

Lρ = 0, (3.30)

which is simply the stationary Fokker-Planck equation. If the Markov process is ergodic with

respect to µ, then the long term dynamics is described by µ, since

lim
t→+∞

P †
t µ0 = µ, (3.31)

where µ0 is the initial distribution of the dynamical variables x(0). Finally, it is possible to

show that the “physical” definition of ergodicity holds

lim
T→+∞

1

T

∫ T

0

Φ (x (t)) dt =

∫
Rd

Φ(x)µ(dx), (3.32)

where Φ ∈ Cb(Rd) is an observable of the system. The above equation states that time averages

on an infinitely long stochastic trajectory are equivalent, provided that the system is ergodic

with respect to µ, to phase space averages weighted by the measure µ. Proving that a stochastic

process is ergodic is known to be a very difficult task for general systems. In practice, one usually

tries to establish the existence of a unique invariant measure, i.e. a unique solution of (3.29).

A classical and powerful approach is to show that the Markov semigroup is Strong Feller and

irreducible. The irreducibility property expresses the idea that any neighborhood of any point

of Rd can be reached with a positive probability. The Strong Feller property is related instead

to smoothing properties of the Markov semigroup, namely that it maps bounded measurable

functions into bounded continuous functions. We observe that the hypoellipticity assumption

mentioned in 3.1 guarantees that the Markov semigroup is Strong Feller. In the following,

we will not be concerned with proving that a unique ergodic measure exists and will always

assume that this is indeed the case. Further details on such issues and Markov semigroups

can be found in [DPZ96, EN00, LB07]. The spectral properties of the generator of the process
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carry information not only on the ergodic properties of the stochastic process, as we have just

illustrated above, but also on the mixing properties of the system.

3.1.3 Spectral Decomposition of Correlation Functions

We here consider a stochastic process of type (3.5) and assume that an invariant measure µ

exists. The existence of an invariant measure allows one to show [CTDN20] that the Markov

semigroup Pt associated to the stochastic process is a strongly continuous semigroup [EN00] in

Lpµ(Rd) for any p ≥ 1. In this section, we will consider a class of observables Φ(x), often arising

in applications, that belong to Lpµ(Rd) , namely the functions that are p-integrable with respect

to the invariant measure µ

Φ ∈ Lpµ(Rd) ⇐⇒
∫
Rd

|Φ(x)|pµ (dx) <∞. (3.33)

In particular we will mostly be interested in Φ ∈ L2
µ(Rd). The Markov semigroup theory

described in the previous section has been developed in the functional space Cb(Rd) of bounded

continuous functions. However, it can be extended to the space Lpµ(Rd), see for example [GZ03].

Below, we will briefly recall the spectral theory of strongly continuous semigroups that will lead

to the fundamental result of this section, the spectral decomposition of the Markov semigroup.

The spectrum of the generator of a strongly continuous semigroup can be essentially divided

in two qualitatively different sets, a discrete part σ(K) composed of isolated eigenvalues and

a continuous part, usually called essential spectrum. We assume here a typical setting for the

stochastic process under investigation, that is, we assume that the invariant measure µ is unique

and ergodic. The measure is thus stable meaning that the spectrum of the generator K is all

included in the left side of the complex plane, with eigenvalues with non positive real part. An

important class of semigroup operators, the compact semigroups, do not exhibit any essential

spectrum. The characterisation of the essential spectrum of a generic semigroup P = (Pt)t≥0

is usually carried out by comparing it to compact operators. In particular, one defines the

essential growth bound as

ωess(P) = inf
t>0

1

t
ln ||Pt||ess, (3.34)
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where || · ||ess measures the distance of Pt to the set of linear and compact operators of Lpµ(Rd).

Clearly, compact semigroups have ωess(P) ≡ −∞. We can also define an eventually compact

semigroup P if there exists t0 > 0 such that Pt0 is compact. A general class of stochastic

processes that we will often consider in the following is represented by quasi-compact semi-

groups, that is semigroups that approach compact operators in the asymptotic long time limit,

namely ||Pt||ess → 0 as t → +∞. Quasi compact semigroups are characterised by an essential

growth bound −∞ < ωess(P) < 0. Spectral components with modulus larger than e−|ωess|t are

represented by eigenvalues of finite multiplicity. We also remark that the Spectral Mapping

Theorem [EN00] provides a way to relate eigenvalues of K and its associated semigroup P . In

particular if λj is an eigenvalue of the generator K, with Reλj > ωess, relative to an eigenfunc-

tion ψj, so is the eigenvalue eλjt of Pt = etK relative to the same eigenfunction. We define the

stochastic Ruelle Pollicott resonances {λj}nj=1 of a strongly continuous Markov semigroup as

the isolated discrete eigenvalues of the generator such that their real part is greater than the

essential growth bound.

{λj}nj=1 are stochastic RP resonances ⇐⇒ λj ∈ σ(K) and λj > ωess(P) ∀j = 0, . . . , n.

(3.35)

In other terms, the RP resonances are the point spectrum of the generator K. We remark that

the number n is not necessarily finite. For simplicity of notation, we also assume that the RP

resonances are ordered such that λ0 = 0 > Reλ1 ≥ Reλ1 ≥ . . . . The simple RP resonance

λ0 = 0 corresponds to the eigenvalue relative to the existence of the stationary measure µ,

see previous section. We remark that the resonance in 0 is simple because we assume that

the measure µ is unique and ergodic. We can finally state the spectral decomposition of the

Markov semigroup in L2
µ(Rd) [LM94, EN00, EN06]

Pt = etK =
n∑
j=0

Tj(t) +Rn(t), (3.36)

where

Tj(t) =

[
mj−1∑
k=0

tk

k!
(K − λjId)

k

]
eλjtΠj. (3.37)
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The operators Tj(t) represent the contribution originating from the RP resonance λj. In par-

ticular, we have denoted as mj the (finite) algebraic multiplicity of λj and with Πj the spectral

projection operator onto the eigenspace relative to λj. On the other hand, Rn is the operator

representing the role of the essential spectrum. It is possible to bound such operator at any

point in time, in fact given any ω > ω∗
n there always exists M > 0 such that

||Rn(t)|| ≤Meωt, t ≥ 0, (3.38)

where ω∗
n = sup ({ωess(P)} ∪ {Reλ : λ ∈ σ(P)\{λ1, · · · , λn}}). For quasi-compact operators,

the essential growth bound is negative, ωess < 0, thus the contribution of the essential spectrum

decreases at least exponentially with time. In fact, we can write

P is quasi-compact =⇒ ||Rn(t)|| ≤Me−|ω|t, t ≥ 0, (3.39)

for any |ω| < |ω∗
n|. The physical relevance of the RP resonances becomes evident when the

spectral decomposition is applied to the determination of correlation functions of observables

of the system. In this regards, we define the correlation function between Φ and Ψ ∈ L2
µ(Rd)

in the stationary state of the stochastic process described by the invariant measure µ as1

CΦ,Ψ(t) = ⟨Φ(x(t))Ψ(x(0))⟩µ =

∫
Rd

(
etKΦ(x)

)
Ψ(x)µ(dx). (3.40)

We observe that the above definition in terms of the Markov semigroup is analogous, given

a smooth invariant measure µ(dx) = ρ(x)dx, to the one given in (2.22). In fact, given the

1Without loss of generality, we will assume that the variables have vanishing expectation value in the sta-
tionary state, that is

∫
Rd Φµ(dx) =

∫
Rd Ψµ(dx) = 0
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definition of the Markov semigroup (3.10) we can write

CΦ,Ψ(t) =

∫
Rd

(∫
Rd

Φ(y)ρ (y, t|x, 0) dy
)
Ψ(x)ρ(x)dx =

∫
Rd

∫
Rd

dxdyΦ(y)Ψ(x)ρ(y, t|x, 0)ρ(y) =

=

∫
Rd

∫
Rd

dxdyΦ(y)Ψ(x)etLδ(y − x)ρ(y) =

∫
Rd

dyΦ(y)etL
∫

dxΨ(x)δ(y − x)ρ(x)

=

∫
Rd

Φ(y)etLΨ(y)ρ(y)dy,

(3.41)

where we have used similar arguments for the time evolution of the transition probability as for

(2.22). Considering the decomposition of the Markov operator (3.36), the correlation function

CΦ,Ψ(t) admits the following spectral decomposition of correlation functions

CΦ,Ψ(t) =
n∑
j=1

mj−1∑
k=0

tk

k!
eλjt

(∫
Rd

Ψ(x) (K − λjId)
k ΠjΦ(x)µ (dx)

)
+Qn(t), (3.42)

where Qn(t) represents the contribution to the correlation function stemming from Rn(t). The

inequality (3.38) on the essential spectrum operator yields a bound on the quantity Qn(t)

Qn(t) ≤M ||Ψ||L2
µ
||Φ||L2

µ
eωt, (3.43)

where || · ||L2
µ
is the L2

µ norm and ω > ω∗
n. Analogously to the previous discussion, if the

Markov semigroup is quasi-compact, the above bound provides the exponentially decaying rate

of Qn(t). Indeed, considering (3.39) and (3.43) we have the following result

P is quasi-compact =⇒ |Qn(t)| ≤M ||Ψ||L2
µ
||Φ||L2

µ
e−|ω|t, t ≥ 0. (3.44)
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The spectral decomposition of correlation functions (3.42) simplifies when one assumes that

the RP resonances are simple eigenvalues , i.e. mj = 1 ∀j = 0, 1, . . . . In fact, we can write

CΦ,Ψ(t) =
n∑
j=1

eλjt
(∫

Rd

Ψ(x)ΠjΦ(x)µ(dx)

)
+Qn(t) =

=
n∑
j=1

eλjt
∫
Rd

Ψ(x)⟨ψ∗,Φ⟩µψj(x)µ(dx) +Qn(t) =

=
n∑
j=1

eλjt⟨ψ∗
j ,Φ⟩µ

∫
Rd

Ψ(x)ψj(x)µ(dx) +Qn(t) =

=
n∑
j=1

eλjt⟨ψ∗
j ,Φ⟩µ⟨Ψ, ψj⟩µ +Qn(t),

(3.45)

where we have introduced the L2
µ-eigenfunction ψj associated with the eigenvalue λj of K and

ψ∗
j the corresponding eigenfunction of L = K†. Furthermore, ⟨·, ·⟩µ represents the usual L2

µ

inner product. If we assume that the stochastic dynamics is generated by a quasi-compact

semigroup and we consider (3.44), we can neglect with an exponentially decreasing in time

error the contribution from the essential spectrum and write

CΦ,Ψ(t) =
n∑
j=1

eλjt⟨ψ∗
j ,Φ⟩µ⟨Ψ, ψj⟩µ. (3.46)

The above equation provides a meaningful interpretation of the RP resonances. First, we

observe that the sum in all the previous expression starts from j = 1 rather than j = 0.

Indeed, the spectral projector Π0 relative to the simple RP resonance λ0 = 0 projects onto

the invariant measure. From (3.27) we can infer that the eigenfunction ψ0 = const, so that

⟨Ψ, ψ0⟩µ = 0 and the first non vanishing contribution to the correlation functions stems from

j = 1. Each RP resonance is associated with an exponentially decaying contribution to the

correlation function, with the Reλj determining its (inverse) exponential rate. In particular,

the closer a RP resonance is to the imaginary axis, the slower the decay. The dominant mode

in the spectral decomposition is given by γ := |Reλ1| which is commonly known as spectral

gap of the generator. When the spectral gap vanishes, one or more RP resonances touch the

imaginary axis, preventing the decay of correlation functions and thus leading to a divergence

of mixing properties of the system, analogously to deterministic systems [Rue09]. The imagi-
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nary part, Imλj, of the RP resonances determine the angular frequency of the oscillations of

the j-th mode. As a result, when the spectral gap shrinks to zero, the correlation functions

exhibit a non decaying oscillatory behaviour. It is fundamental to point out that the spectral

decomposition of correlation functions provides some degree of universality. It shows that the

exponential (and oscillatory) behaviour of correlation functions is not related to the specific

details of the chosen observables since it solely depends on the spectrum of the operators de-

scribing the stochastic process. We should also remark that the coefficients in the weights of the

spectral decomposition (3.46) depend on the projection of the observables onto the eigenspaces

of the RP resonances. Symmetries of the system and carefully chosen observables might lead

to vanishing projections onto ψj, resulting in a null contribution from the RP resonance λj.

Representing somewhat the statistical dynamical skeleton of the evolution of the system, RP

resonances can also be associated to power spectra computed along stochastic paths of the

stochastic evolution (3.5) [CTDN20]. Given an observable Φ ∈ L2
µ its correlation spectrum

is defined through the Wiener-Khintchine theorem [Wie30, Khi34] as the (one-sided) Fourier

Transform of its autocorrelation function, that is

SΦ(ω) =

∫ +∞

0

CΦ,Φ(t)eiωtdt. (3.47)

It is possible to relate the correlation spectrum to spectral properties of the generator of the

stochastic process by introducing the resolvent R(z,K) = (zId−K)−1 of the Markov semigroup

Pt = etK. Given our assumptions on the existence of a unique invariant ergodic measure, the

resolvent R(z,K) is a well defined linear operator. In particular, the RP resonances can be

identified as the poles of the resolvent. Recalling the characterisation of the resolvent of a

strongly continuous semigroup in terms of its Laplace Transform [EN00]

R(z,K)Φ =

∫ +∞

0

e−ztPtΦdt, (3.48)
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where Φ ∈ L2
µ, we can write the correlation spectrum as

SΦ(ω) =

∫
Rd

Φ(x) [R(−iω;K)Φ] (x)µ(dx). (3.49)

We remark that the minus sign in the argument of the resolvent derives from our convention

of the Fourier Transform in (3.47). The RP resonances, being poles of the resolvent, lead

to a singular behaviour of the correlation spectrum at the complex frequencies ωj = iλj =

−Imλj + iReλj = −Imλj − i|Reλj| contained in the lower half of the complex plane. The

Power Spectral Density (PSD) is defined as |SΦ(ω)|, where ω ∈ R is taken to be real. The

RP resonances closer to the imaginary axis manifest themselves as peaks of the PSD at real

frequency values equals to −Imλj, with the width of the peaks being related to |Reλj|. When

a RP resonance approaches the imaginary axis, its corresponding peak in the PSD develops

into a diverging singularity. This is analogous to the critical behaviour of correlation functions

when the spectral gap of the generator shrinks to zero.

If we assume that the dynamics is described by a quasi-compact Markov semigroup and that

the RP are non degenerate (mj = 1∀j = 1, . . . ), we can find a simple decomposition of the

correlation spectrum in terms of the RP [CTDN20] by applying a Fourier Transform to (3.46)

SΦ(ω) = − 1

π

n∑
j=1

Reλj

(ω + Imλj)
2 + (Reλj)

2 . (3.50)

The above formula provides a decomposition of the correlation spectrum in terms of Lorentzian

functions, a functional form typical of applications in spectroscopy phenomena due to reso-

nances [NZ15, LSPV05, GKWG09].

3.2 Linear Response Formulas

The goal of this section is to investigate the role of the stochastic RP resonances for the linear

response properties of stochastic systems. In deterministic settings, the relationship between RP

resonances and the response to perturbations of uniformly hyperbolic systems is well known,
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see for example [Rue09]. Along the lines of [GL22], we will below present a (mostly linear)

response theory for general stochastic system with respect to both deterministic and stochastic

forcings. We will consider first a deterministic perturbation of equation (3.5) as

dx = (F (x) + εX (x)T (t)) dt+ s(x)dW, x ∈ Rd, (3.51)

where ε ∈ R is a real number. We assume, as before, that the generator K0 of the unperturbed

system ε = 0 generates an ergodic stochastic process with respect to the unique invariant mea-

sure µ0. We assume here that the Hörmander’s condition is satisfied for K0, thus leading to a

hypoelliptic diffusion process and a smooth invariant probability measure µ0(dx) = ρ0(x)dx.

When ε ̸= 0 a time modulated, through the bounded function T (t), state dependent perturba-

tion X(x) is applied to the system, making it non autonomous. The evolution of the probability

distribution ρ(x, t) associated to (3.51) satisfies the following Fokker-Planck equation

∂ρ

∂t
= L(t)ρ(x, t), (3.52)

where the Fokker-Planck operator can be split in an unperturbed operator L0 and a perturbation

operator L1 as

L(t) = L0 + εT (t)L1. (3.53)

The unperturbed operator L0 is the adjoint of the generator K0 of the unperturbed process and

reads, see equation (3.25),

L0(·) = −∇ · (F (x) · ) + 1

2
D2 : (Σ (x) · ) . (3.54)

The perturbation operator is instead

L1(·) = −∇ · (X (x) · ) . (3.55)

Given the non autonomous feature of the dynamics, the operator L(t) is time dependent and

the theory of Markov semigroup does not hold exactly as described above. In particular, the
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(adjoint) semigroup that L(t) generates is given in terms of a time-ordered exponential operator

[Gil17], rather than a simple exponential form as in (3.21). It is also worth to point out that,

being a non autonomous system, the probability distributions depends in general both on the

“final” phase space variable x at time t and the “initial” phase space variable y at time s.

However, the main goal of response theory is to investigate the perturbation, given by L1, on

the stationary process described by L0. One can then usually fix the initial time s = 0 and

assume that the system is initially prepared in the stationary state described by the invariant

probability distribution ρ0(x). The probability distribution ρ(x, t) can then be interpreted as

in (3.8)

ρ(x, t) =

∫
Rd

ρ(x, t|y, 0)ρ0(y)dy. (3.56)

Response theory adopts a perturbative approach to the investigation of the statistical properties

of the perturbed system. In particular, one seeks a perturbative expansion of the probability

distribution ρ(x, t) as below

ρ(x, t) =
+∞∑
k=0

εkρk = ρ0(x) + ερ1(x, t) +O(ε2). (3.57)

The invariant measure ρ0(x) satisfies L0ρ0 = 0 and is considered to be known. In a linear

regime one wishes to obtain an expression of ρ1 in terms of ρ0. Inserting the expansion (3.57)

in (3.52) and gathering the linear term in ε one obtains

∂ρ1
∂t

= L0ρ1 + T (t)L1ρ0. (3.58)

Being a linear equation in ρ1, it is possible to find an explicit expression, for example using the

variation of parameters formula, for the first correction to the perturbed measure as

ρ1(x, t) =

∫ t

0

T (s)e(t−s)L0L1ρ0(x)ds. (3.59)

In a similar fashion one can obtain an above linear correction, e.g. the k-th correction, in

(3.57) by gathering the corresponding εk terms in the Fokker Planck equation [Rue98b, Luc08].

Given the correction to the invariant measure due the applied perturbation, it is now possible



3.2. Linear Response Formulas 73

to evaluate the change in the statistical properties of observables of the system. We consider

an observable Ψ ∈ L2
µ0

and write its perturbed expectation value as

∫
Rd

Ψ(x)ρ(x, t) =
+∞∑
k=0

δk [Ψ] (t) =

∫
Rd

Ψ(x)ρ0(x)dx+ ε

∫
Rd

Ψ(x)ρ1(x, t)dx+O(ε2) (3.60)

Considering equation (3.59), the first correction to the unperturbed expectation value can be

written as

δ1 [Ψ] (t) = ε

∫ t

0

dsT (s)

∫
Ψ(x)e(t−s)L0L1ρ0dx =

= ε

∫ t

0

dsT (s)

∫
L1ρ0e

(t−s)K0Ψ(x)dx =

= ε

∫ t

0

dsT (s)g(t− s),

(3.61)

where we have introduced the function

g(t) =

∫
L1ρ0e

tK0Ψ(x)dx. (3.62)

It is important to mention that the function g(t) has a non-negative support because of causality

[Rue09, Luc18], meaning that the response of the system is zero before the perturbation gets

applied at time t = 0. In particular, one enforces causality by writing

G(t) = Θ(t)g(t) = Θ(t)

∫
L1ρ0e

tK0Ψ(x)dx, (3.63)

where Θ(t) is the Heavyside function. Furthermore, given that the unperturbed generator K0

describes a stable stochastic process, its eigenvalues are contained in the left side of the complex

plane. One might then assume that the function G(t) decays sufficiently quick so that the time

integration in (3.61) can be extended to infinite positive times. Considering both causality and

this last remark one can then write

δ1 [Ψ] (t) = ε

∫ +∞

−∞
dsT (s)G(t− s) = ε (T ⋆ G) (t) , (3.64)
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where ⋆ is the convolution product. From the previous expression it is clear that the function

G(t), describing the response of the system, would take the role of a Green function [Luc08].

We remark that the knowledge of the Green Function would provide complete information

about the response of the system, regardless the time modulation T (t). It is worth to point

out that (3.63) represents a version of the Fluctuation Dissipation Theorem for a generic non

equilibrium stochastic system. Indeed, considering (3.40), we can write

G(t) = Θ(t)

∫
L1ρ0e

tK0Ψ(x)dx = Θ(t)

∫ L1ρ0
ρ0(x)

etK0Ψ(x)µ0 (dx) = Θ(t)CΨ,ψ(t). (3.65)

The Green function can be written as a correlation function between the considered observable

Ψ(x) and a suitable function ψ(x) = L1ρ0
ρ0

. We remark that in order to obtain this result it

was fundamental to assume that the unperturbed invariant measure is smooth, i.e. µ0(dx) =

ρ0(x)dx. Below we want to show how the same formalism is able to encompass situations where

the perturbation field acts on the diffusive part of equation (3.5) rather than on its deterministic

part. We consider the following stochastic differential equation

dx = F (x) dt+ (s(x) + εΓ (x)T (t)) dW, x ∈ Rd, (3.66)

where Γ : Rd → Rd×q is a perturbation to the matrix s(x) giving the structure to the noise

feature of the dynamics. Evaluating the associated Fokker Planck equation as before one obtains

∂ρ

∂t
= L(t)ρ, (3.67)

where L(t) = L0 + εT (t)L1. The unperturbed operator L0 is again given by (3.54), whereas

the perturbation operator is

L1 (·) =
1

2
D2 :

((
sΓT + ΓsT

)
·
)
. (3.68)

We remark that the above equation derives from the first order expansion of the perturbed

diffusion matrix (s(x) + εΓ (x)) (s(x) + εΓ (x))T = ssT + εT (t)
(
sΓT + ΓsT

)
+ O(ε2). All the

previous results, including the definition of the Green function G(t) (3.63), the convolution
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expression (3.64) and the fluctuation dissipation theorem (3.65), are still valid. One has to

carefully choose the correct perturbation operator L1 depending on what part of the dynamics

is being perturbed. We also observe that the observable ψ in the fluctuation dissipation theorem

(3.65) is different depending whether one is perturbing the deterministic or stochastic part of

the dynamics. Moreover, we note that in the case of a stochastic perturbation Γ such that

sΓT +ΓsT = 0, in particular in the case of an unperturbed deterministic dynamics (s = 0), the

first correction to the response of the system is at second order ε2 [Luc12, Abr17]. As a last

remark, we mention that, given the linearity of the problem, a sort of superposition principle

holds where one can separately study the effect of a deterministic and stochastic forcing and

then add them up to to evaluate the impact of a combined perturbation [GL22].

3.3 Spectral Decomposition of Susceptibilities

Historically, the scientific context in which Linear Response Theory was developed was related

to optics phenomena. For evident reasons, the response of the system was not investigated in

the time domain by looking at the Green function G(t) but rather in the dual frequency domain.

In this framework, emphasis is given to very general causality properties of the system leading

to integral dispersion relations, the Kramers-Kronig relations that link the real and imaginary

part of the response in the frequency domain to external radiation. We will not here report

these classical results and we refer the interested read to [PVA99, LSPV05]. Furthermore, in

chapter 4 we will investigate a modified version of the Kramers-Kronig relations for interacting

systems exhibiting phase transitions. Nevertheless, the analysis of the response of the system

in the frequency domain represents still a very powerful and general tool to study the effect of

time modulated perturbations to both equilibrium and nonequilibrium systems. Along these

lines we define the (dynamic) susceptibility χ(ω) of the system as the Fourier transform of the

Green Function

χ(ω) =

∫ +∞

−∞
G(t)eiωtdt. (3.69)
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The first order correction in the frequency domain to the expectation value of the observable

Ψ is then, by taking the Fourier Transform of (3.64),

δ1[Ψ] (ω) = εχ(ω)T (ω), (3.70)

where we have used, for simplicity, an “abuse” of notation such that f(ω) =
∫ +∞
−∞ f(t)eiωtdt

represents the Fourier Transform of the function f . The above formula represents a fundamental

result of Linear Response Theory and establishes that the change of the expectation value of

the observable Ψ at frequency ω is simply given by the input signal at frequency ω, T (ω),

modulated by the susceptibility χ(ω) of the system. In particular, it is well known that in a

linear response regime there is no creation of new harmonics in the output signal δ1[Ψ]. We

remark that the susceptibility fully determines the linear response properties of the system in

the frequency domain. The goal of this section is to show that a spectral decomposition of the

susceptibility χ(ω) in terms of RP resonances holds. First, we will derive an analogous result

for the Green Function. We recall the spectral decomposition of the Markov semigroup (3.36)

and (3.37) and apply it to the unperturbed semigroup etK0 in (3.63), yielding

G(t) = Θ(t)
n∑
j=1

mj−1∑
k=0

α
(k)
j

tk

k!
eλjt, (3.71)

where the coefficients

α
(k)
j =

∫
Rd

L1ρ0 (K0 − λjId)
k ΠjΨ(x)dx (3.72)

stem from the projection of the observable Ψ on the RP eigenspaces of the unperturbed gen-

erator. Furthermore, the coefficients α
(k)
j depends on the details of the forcing through the

perturbation operator L1. In writing (3.71) we have assumed that continuous part of the spec-

trum does not contribute to the decomposition. We remark that this assumption is attained

(with an exponentially small in time mistake, see (3.39)) for quasi compact semigroups etK0or

if we assume that the observable has null projection on this part of the spectrum. Again, it is

worth to point out that the number n is not necessarily finite and that the summation starts

from j = 1 because of the same reasons described right below (3.46) . If we take the Fourier
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Transform of (3.71) we obtain a spectral decomposition of the susceptibility of the system χ(ω)2

χ(ω) =
n∑
j=1

mj−1∑
k=0

α
(k)
j

(iω + λj)
k+1

(3.73)

As in a deterministic setting [Rue86], the function χ(ω) can be meromorphically extended

(that is extended to a holomorphic function apart from isolated poles) in the lower half in

the complex plane in a strip given by ωess < Imω ≤ 0. The RP resonances of the generator

of the unperturbed generator K0 introduce singularities ωj = iλj in the susceptibility of the

system. Such resonances manifest themselves in an enhanced response of the system to those

(real) frequencies located around ω ≈ Imλj for those RP resonances that are close enough to

the imaginary axis, that is for the RP resonances such that Reλj is small enough. Instead,

the RP resonances far away from the imaginary axis, that is with very negative real part, will

provide a continuum background for the susceptibility, thus leading to a very mild and smooth

response. The contribution coming from the essential spectrum would yield a similar effect and

would be difficult to untangle its contribution from the one stemming from RP resonances far

away from the imaginary axis [CTDN20]. We remark that the spectral decomposition of the

susceptibility(3.73) indicates that the resonances in the linear response properties of the system

uniquely depend on universal properties of the dynamics, such as the spectral properties of the

Markov Semigroup (Transfer Operator). In particular, the details of the applied forcing (or of

the arbitrarily chosen observable) do not affect the resonant behaviour of the response, as they

only contribute to the weights α
(k)
j of the spectral decomposition. It is worth to point out that,

in the presence of symmetries in the dynamics and for carefully chosen observables and applied

forcings, some weights could identically vanish, α
(k)
j ≡ 0, thus masking the effect of the relative

resonance λj.

2We remark that this formula slightly differs from [GL22] because of our definition of the Fourier Transform
adopts the opposite sign.
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3.3.1 Critical Transitions

The Ruelle Pollicott resonances constitute the relevant dynamical features of both deterministic

and stochastic systems as they determine statistical properties such as correlation functions

(3.46), power spectra (3.49) and dynamic susceptibilities (3.73). Assuming that the weight

αk1 does not vanish, the dominant exponential mode in the spectral decomposition of such

statistical properties derives from λ1. In other words, the spectral gap γ = |Reλ1| determines

both the rate of mixing properties and the sensitivity to perturbations of the system. Indeed,

if we assume that a δ-like in time perturbation T (t) = δ(t), i.e. a perturbation that excites all

frequencies, is applied to the system, the response of the observable Ψ is given to first order,

see (3.64) and (3.46),

δ1 [Ψ] (t) = εG(t) ≈ εΘ(t)α1e
λ1t + c.c. = εΘ(t)α1e

γteiImλ1t + c.c. (3.74)

where we assumed m1 = 1 and that the contribution of the other RP resonances can be ne-

glected since they are further away from the imaginary axis. If the spectral gap γ is very

small, the linear response δ1 [Ψ] (t) will take a very long time, of the order of τ ≈ 1
γ
, to decay

to zero for any observable Ψ of the system. In physical terms, a small spectral gap corre-

spond to a system where the negative feedbacks are very weak, leading to a low resilience to

external stimuli. High dimensional complex systems might incur in critical transitions, com-

monly characterised by vast, sudden and potentially dire changes of the state of the system.

The mathematical theory of the RP resonances we have developed above provides a suitable

framework to investigate such critical phenomena for finite dimensional systems, both deter-

ministic and stochastic. Critical transitions can be associated to settings where the spectral

gap of the generator K0 of the unperturbed system becomes vanishingly small as a result of the

RP resonances touching the imaginary axis. Consequently, correlation properties and power

spectra acquire a singular behaviour due to the loss of mixing properties as the transition is

approached [TCND19, TLLD18, GNPT95]. Since there is a one-to-one correspondence between

the radius of expansion of linear response theory and the spectral gap of the transfer operator

[LG06, Luc16], near critical transitions the linear response breaks down and one finds rough
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dependence of the system properties on its parameters [CNK+14, TLD18]. Indeed, settings

where the RP resonances touch the imaginary axis correspond to settings where the poles of

the susceptibility χ(ω) approach, from below, the real axis of the complex frequency plane. At

a critical transition one observes a divergence of the response of the system due to the nega-

tive feedbacks becoming more and more inefficient as shown by (3.74) when the spectral gap

γ → 0+. This situation correspond to an infinite relaxation time of the response of the system

to perturbations.



Chapter 4

Linear Response Theory for McKean

Vlasov Equation

4.1 Introduction

In chapter 2 we have introduced the notion of weakly interacting diffusions, namely ensembles of

identical and exchangeable agents interacting with each other. Such class of multiagent systems

includes a very rich variety of applications, ranging from cooperation [Daw83], synchroniza-

tion [ABPV+05] to systemic risk [GPY13] and consensus opinion formation [WLEC17, GPY17].

See also section 2.1 for a more complete review of applications of weakly interacting diffusions

in the natural and social sciences. It is well known that one can pass to the limit as the number

of agents goes to infinity, i.e. the thermodynamic or mean field limit. In particular, in this

limit the evolution of the empirical measure is described by a nonlinear, nonlocal Fokker-Planck

equation, the McKean-Vlasov Equation. An important feature of weakly interacting diffusions

is that in the thermodynamic limit they can exhibit phase transitions [CP10, Tam84]. In this

framework, phase transitions are characterized in terms of exchange of stability of non-unique

stationary states for the McKean-Vlasov equation at critical settings of the parameters of the

system. In the case of equilibrium systems, such stationary states are associated with critical

points of a suitably defined energy landscape, see equation (2.28). As a paradigmatic exam-

80
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ple, for the Kuramoto model of nonlinear oscillators, the uniform distribution on the torus,

corresponding to a non synchronised state, becomes unstable at the critical noise strength and

stable localized stationary states emerge (phase-locking), leading to a synchronization phase

transition [PKRK03].

In Chapter 3 we have formulated a general Response Theory for finite dimensional systems by

using mathematical tools deriving from a functional analysis approach to the study of partial

differential equations, such as the Fokker-Planck equation. In particular, we have illustrated

how the concept of Ruelle Pollicott resonances, firstly introduced for deterministic systems

[Rue98a, Rue09] can be extended to stochastic settings. This framework allows to investigate

the statistical properties of physical systems by studying spectral properties of suitable transfer

operators that govern the time evolution of expectation values of observables of the system, or,

equivalently, the time evolution of probability measures.

In particular, critical transitions appear when the spectral gap of the transfer operator of the

unperturbed system becomes vanishingly small, as a result of the Ruelle-Pollicott resonances

touching the imaginary axis. Since there is a one-to-one correspondence between the radius of

expansion of linear response theory and the spectral gap of the transfer operator, near critical

transitions the linear response breaks down. Indeed, the susceptibility of the system acquires a

singular behaviour due to poles approaching the real axis of frequencies, see (3.73) and (3.74).

At a critical transition, singularly diverging resonances appear in the response of the system

for real frequencies, leading to a blow up of response properties.

The main goal of this chapter is to investigate phase transitions for weakly interacting diffusions

by looking at the response of the infinite dimensional mean field dynamics to weak external per-

turbations. In particular, we associate the nearing of a phase transition with the setting where

a very small cause leads to very large effects. In other words, as in the case of critical transitions

for finite dimensional systems, we associate phase transitions of the thermodynamic limit of

the interacting agents to the breakdown of linear response properties and the development of

non analytical behaviour of response functions (susceptibilities).

We remark that linear response theory has long been studied in detail for diffusion processes
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and very strong rigorous results have been obtained in this direction [HM10, DD10]. These

results can be applied to the McKean-Vlasov equation in the absence of phase transitions to

justify rigorously linear response theory and to establish fluctuation-dissipation results.

As mentioned in Chapter 1, phase transitions are usually defined by

a. identifying an order parameter, i.e. a suitable observable of the system able to capture

some degree of collective behaviour of the possibly high dimensional system

b. verifying that in the thermodynamic limit, for some value of the parameter of the system,

the properties of such an order parameter undergo a sudden change

It should be emphasized, however, that, it is not always possible to identify an order parameter,

in particular for high dimensional nonequilibrium systems with no particular symmetries. The

way we define phase transitions comes from a somewhat complementary viewpoint, which aims

at clarifying analogies and differences with respect to the case of critical transitions. We remark

that, by adopting a response theory perspective, we can identify critical settings in terms of

universal properties of the dynamics of the system, stemming from the spectral properties of

transfer operators, rather than from the specific details of the dynamics, applied forcings or of

the observables under investigation.

Moreover, the approach we adopt here is, in spirit, along the same lines of the work of Sornette

and collaborators that have highlighted the importance of separating the effects of endogeneous

vs. exogenerous processes in determining the dynamics of a complex system and, especially,

in defining the conditions conducive to crises [Sor06], and have proposed multiple applications

in the natural- see, e.g. [HSG03] - as well as the social - see, e.g., [Sor03] - sciences. The

existence of a relationship between the response of the system to exogeneous perturbations and

the decorrelation due to endogenous dynamics is interpreted as resulting from a fluctuation-

dissipation relation-like properties which is at the core of a linear response theory approach, see

chapter 3. Finally, Sornette and collaborators have also emphasized the importance of memory

effects especially in the context of endogenous dynamics [SH03, WSS18], which we also find by

investigating the response of the infinite dimensional system of interacting agents, see (4.11).
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While our viewpoint and methods are different from theirs, what we pursued here shares similar

goals and delves into closely related concepts.

The main results of this chapter can be summarized as follows:

• We derive linear response formulas for the thermodynamic limit of coupled identical

systems and Kramers-Kronig relations and sum rules for the related susceptibilities;

• We state conditions leading to phase transitions as opposed to the classical scenario of

critical transitions for finite dimensional systems in terms of spectral properties of suitable

operators;

• We derive the corrections to the standard Kramers-Kronig relations and sum rules occur-

ring at a phase transition transition setting;

• We clarify, through the use of functional analytical arguments, why no divergence of the

integrated autocorrelation time is expected for microscopic degrees of freedom in the case

of phase transitions, whereas the opposite holds in the case of critical transitions. We will

re-examine this fundamental issue in chapter 5 by providing a link between a microscopic

and macroscopic observables.

4.2 Linear Response Formulas

We consider a system of weakly interacting diffusions, i.e. an ensemble of N exchangeable

interacting M -dimensional systems whose dynamics is described by the following stochastic

differential equations:

dxki = Fi,α(x
k)dt− θ

N

N∑
l=1

∂xki U
(
xk − xl

)
dt+ σŝij({xl}Nl=1)dWj, k = 1, . . . , N i = 1, . . . ,M

xk(t = 0) ∼ ρin(x
k),

(4.1)
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where Fα(x) is a smooth vector field, possibly depending on a parameter (or a set of parameters)

α. Additionally, dWi, i = 1, . . . , p are independent Brownian motions (the Ito convention is

used); ŝij is the N -particle volatility matrix defined in equation (2.2) and the parameter σ > 0

controls the intensity of the stochastic forcing. We consider here a chaotic initial condition

for the weakly interacting diffusions, namely each of the agents is distributed, at time t = 0,

according to the same initial distribution ρin. Additionally, the N particles undergo a global,

all-to-all coupling given by the pairwise interaction potential U(x). In the following chapters

we will consider quadratic (Curie-Weiss) interactions, i.e. a quadratic potential U(x) = |x|2/2.

The coefficient θ modulates the intensity of such a coupling, which attempts at synchronising

all systems by nudging them to the center of mass x̄ = 1
N

∑N
k=1 x

k. In particular, if θ = 0,

the N systems are decoupled. We remark that, while the specific details of our linear response

calculations, such as (4.24) and (4.25), depend on the assumption of a quadratic potential,

the Markov semigroup approach to stability properties and linear response features of weakly

interacting diffusions is far more general. Indeed, an interesting link between the existence of

phase transitions and the spectral properties of suitable mean field operators has indeed been

established for weakly interacting diffusions in statistical equilibrium settings [DGPS23]. We are

interested in investigating the thermodynamic limit of the ensemble of interacting agents(4.1).

Therefore we consider the empirical measure

XN (t;A) =
1

N

N∑
k=1

1A
(
xk (t)

)
, (4.2)

where 1A(·) is the indicator function associated to a measurable set A ⊂ RM , where RM is the

single-particle phase space. It is possible to use martingale techniques [Daw83, Szn89, Oel84,

DG87b], see section 2.4 for further details on propagation of chaos properties, to show that

the empirical measure converges weakly to a measure µ(dx) = ρ(x, t)dx where the smooth

probability density distribution ρ(x, t) satisfies the following McKean Vlasov equation, which
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is a nonlinear and nonlocal Fokker-Planck equation

∂ρ(x, t)

∂t
= −∇ · [ρ(x, t) (Fα(x)− θ∇U ⋆ ρ)] +

σ2

2
∆̃ρ(x, t) =

= −∇ · [ρ(x, t) (Fα(x)− θ (x− ⟨x⟩ (t)))] + σ2

2
∆̃ρ(x, t) =

:= Lα,θ,σ⟨x⟩ ρ(x, t),

(4.3)

with ⟨x⟩ = ⟨x⟩(t) =
∫
xρ(x, t)dx and ⋆ denoting the convolution operator. Additionally,

we have that ∆̃ is a linear diffusion operator such that ∆̃ρ(x, t) = D2 : (Σ(x)ρ(x, t)) =∑M
i=1

∑M
j=1 ∂xi∂xj (Σij(x)ρ(x, t)), which coincides with the standard M-dimensional Laplacian

(∆̃ = ∆) if the single particle diffusion matrix Σ(x) = s(x)s(x)T is the identity matrix, where

s(x) represents the single particle volatility matrix, that is the diagonal blocks of the matrix

ŝ defined in (2.2). If σ = 0, we are considering a nonlinear Liouville equation. In general,

we assume that σ > 0 and that the system of stochastic differential equations (4.1) describes

a hypoelliptic diffusion process so that the probability distributions (including the stationary

distributions) given by (4.1) are smooth. We observe that the operator Lα,θ,σ⟨x⟩ in the last line of

(4.3) is the nonlinear integro-differential McKean-Vlasov operator Lρ(x,t) defined in (2.16). For

this choice of interaction potential the operator Lρ(x,t) depends on the probability distribution

ρ(x, t) only through its first moment ⟨x⟩, hence the notation for the subscript. We also observe

that Lα,θ,σ⟨x⟩ depends on the parameters of the system. However, in order to avoid cumbersome

notation, we will write Lα,θ,σ⟨x⟩ = L⟨x⟩ and reverse to the full notation once such parameter de-

pendence will be relevant.

We denote with ρ0(x) = ρ0(x;α, θ, σ) a reference invariant measure of the system. Since

we are considering a system with an infinite number of particles, such an invariant measure

needs not be unique. Specifically, in statistical equilibrium settings, it is possible to obtain

a characterisation of invariant measures of the system in terms of convexity properties of the

dynamics. Indeed, if the one particle volatility matrix s(x) is proportional to the identity and

Fα(x) = −∇Vα(x) and Vα(x) is not convex, thus allowing for more than one local minimum,

for a given value of θ the system undergoes a phase transition for sufficiently weak noise. We

remark that the invariant measure depends on the values of α, θ, σ and is characterised by a

constant first moment ⟨x⟩(t) = ⟨x⟩α,θ,σ0 = ⟨x⟩0. As a result, in the stationary state described
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by ρ0(x) we can define the “parametrised” operator

L⟨x⟩0ψ = −∇ · [ψ(x) (Fα(x)− θ (x− ⟨x⟩0))] +
σ2

2
∆̃ψ = 0, (4.4)

where ψ = ψ(x) is a smooth function. L⟨x⟩0 is a linear differential (Fokker-Planck) operator,

with the invariant measure ρ0(x) being its eigenvector with vanishing eigenvalue, i.e. L⟨x⟩0ρ0 =

0. Such operator can be interpreted as the adjoint of the generator - in the stationary state

ρ0(x)- of time translation of smooth observables in the mean field limit, see the discussion at

the end of section 2.2 and [Fra04]. In other words, the operator L†
⟨x⟩0 = K⟨x⟩0 determines the

single particle correlation properties in the mean field stationary state ρ0(x).

Taking inspiration from [OY12, PR14], we now study the impact of perturbations on the in-

variant measure ρ0(x) of the McKean Vlasov equation. In particular, we follow and generalise

the results presented in [Fra04]. We consider a perturbation of the deterministic part of the

dynamics in (4.3) by setting Fα(x) → Fα(x) + εX(x)T (t), where, as in Chapter 3, we consider

a time modulated state dependent perturbation and ε ∈ R is a real number. We investigate the

change in the statistical properties of the non-autonomous perturbed system by considering an

expansion of the probability distribution as

ρ(x, t) =
+∞∑
k=0

εkρk = ρ0(x) + ερ1(x, t) +O(ε2). (4.5)

Inserting the above perturbative expansion in (4.3) we obtain, at linear order in ε, an equation

for the first correction to the unperturbed invariant measure

∂ρ1(x, t)

∂t
= L⟨x⟩0ρ1 + T (t)L1ρ0 − θ∇ ·

(
ρ0(x)

∫
yρ1(y, t)dy

)
=

= L⟨x⟩0ρ1 + T (t)L1ρ0 − θ∇ · (⟨x⟩1(s)ρ0(x)) =

:= L̃⟨x⟩0ρ1 + T (t)L1ρ0,

(4.6)
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where we have introduced the perturbation operator

L1 = −∇ · (X(x) · ) (4.7)

that depends on the state dependent forcingX(x). We remark that the linear integro-differential

operator L̃⟨x⟩0 acting on ρ1(x, t) defined in the last line of the previous equation is not the oper-

ator whose zero eigenvector is the unperturbed invariant measure. In particular, this operator

does not determine the mean field single particle correlation properties of the system, at vari-

ance with the response theory developed in section 3.2 . We observe that the correction to the

unperturbed operator L⟨x⟩0 is proportional to θ and emerges as a result of the nonlinearity of

the McKean-Vlasov equation due to the interactions among the agents. In particular, for a

decoupled system θ = 0, one would recover the response properties of the single agents. We

will further discuss the operator L̃⟨x⟩0 in section 4.2.1 below. From (4.3) one obtains a formal

solution for the perturbation to the invariant measure as

ρ1(x, t) =

∫ t

0

T (s)e(t−s)L⟨x⟩0L1ρ1(x)ds− θ

∫ t

0

e(t−s)L⟨x⟩0∇ · (ρ0(x)⟨x⟩1(s)) ds =

=

∫ t

0

T (s)e(t−s)L⟨x⟩0L1ρ1(x)ds− θ
M∑
k=1

∫ t

0

⟨xk⟩1(s)e(t−s)L⟨x⟩0∂xkρ0(x)ds.

(4.8)

The statistical properties of any observable Ψ(x) of the system are determined by

∫
Ψ(x)ρ(x, t)dx =

+∞∑
k=0

δk [Ψ] =

∫
Ψ(x)ρ0(x)dx+ ε

∫
Ψ(x)ρ1(x, t)dx+O(ε2) =

:= ⟨Ψ⟩0 + ε⟨Ψ⟩1 +O(ε2),

(4.9)

where we have defined ⟨·⟩0 and ⟨·⟩1 = ⟨·⟩1(t) as the expectation value with respect to ρ0(x) and

ρ1(x, t) respectively. In the following, we will consider the observable Ψ = xi for i = 1, . . . ,M .

We will show that critical phenomena for weakly interacting diffusions can be related to spectral

properties of either L⟨x⟩0 or L̃⟨x⟩0 and, as such, do not depend on the choice of the selected

observable, leading to some degree of universality. In a linear response regime the shift of the
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expected value of observable xi due to the perturbation is

⟨xi⟩1 =
∫ t

0

dsT (s)

∫
xie

(t−s)L⟨x⟩0L1ρ0(x)dx− θ
M∑
k=1

∫ t

0

ds⟨xk⟩(s)
∫
xie

(t−s)L⟨x⟩0∂xkρ0(x)dx =

=

∫ t

0

dsT (s)

∫
L1ρ0(x)e

(t−s)K⟨x⟩0xidx− θ
M∑
k=1

∫ t

0

ds⟨xk⟩(s)
∫
∂xkρ0(x)e

(t−s)K⟨x⟩0xidx,

(4.10)

where we remark again that K⟨x⟩0 is the adjoint of L⟨x⟩0 . By considering causality and assuming

some decay properties of the integrals, see discussion after equation (3.61), we can rewrite the

previous expression as:

⟨xi⟩1(t) =
∫ ∞

−∞
dsT (s)Gi(t− s) + θ

M∑
k=1

∫ ∞

−∞
ds⟨xk⟩1(s)Yik(t− s), (4.11)

where we have introduced the microscopic Green functions

Gi(t) = Θ(t)

∫
L1ρ0(x)e

(t−s)K⟨x⟩0xidx,

Yik(t) = −Θ(t)

∫
∂xkρ0(x)e

(t−s)K⟨x⟩0xidx.

(4.12)

Notwithstanding the Markovianity of the dynamics, the second term on the right hand side of

(4.11) describes a memory effect in the response of the observable x. Such a term emerges in

the thermodynamic limit and effectively imposes a condition of self-consistency between forcing

and response; see different yet related results obtained by Sornette and collaborators [SH03,

Sor06, WSS18]. We remark that such effect is a manifestation of the aforementioned difference

between the operators L⟨x⟩0 and L̃⟨x⟩0 and is not present for finite dimensional systems. Note

also that if X(x) = v̂k, where v̂k is the unit vector in the kth direction, then Gi(t) = Yik(t). The

microscopic Green functions can be written in a Fluctuation Dissipation form as a correlation

functions in the unperturbed state of mean field correlation functions between the observable
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xi and other suitable observables. In particular, we can write

Gi(t) = Θ(t)

∫
L1ρ0(x)e

(t−s)K⟨x⟩0xidx = Θ(t)

∫
Ψ(x)e(t−s)K⟨x⟩0xiµ0(dx) = Θ(t)Cxi,Ψ(t),

Yik(t) = −Θ(t)

∫
∂xkρ0(x)e

(t−s)K⟨x⟩0xidx = Θ(t)

∫
Φk(x)e

(t−s)K⟨x⟩0xiµ0(dx) = Θ(t)Cxi,Φ(t).

(4.13)

where µ0(dx) = ρ0(x, t)dx is the unperturbed measure and we have introduced the observables

Ψ(x) = L1ρ0(x)
ρ0(x)

and Φk(x) = −∂xk ln ρ0(x). In the next sections of this Chapter we will show

that the microscopic susceptibilities do not define, separately, the total response of the ther-

modynamic limit of the system, but one could interpret them as a measure of the resilience of

the single agents.

4.2.1 Spectral Decomposition of the Response

We here seek a decomposition of the response properties of the system in terms of the spectral

features of the unperturbed Markov semigroup generated by K⟨x⟩0 . We recall that we can always

decompose a Markov semigroup that supports an invariant measure in terms of its point and

essential spectrum as

etK⟨x⟩0 =
n∑
j=0

Tj(t) +Rn(t), (4.14)

where

Tj(t) =

[
mj−1∑
l=0

tl

l!
(K − λjId)

l

]
eλjtΠj. (4.15)

The summation in (4.14) runs over all the n, with n possibly infinite, stochastic Ruelle Pollicott

resonances λj ∈ C with Reλj ≤ 0 and λ0 = 0 ≥ Reλ1 ≥ Reλ2 ≥ . . . representing the point

spectrum. The simple eigenvalue λ0 = 0 corresponds to the unperturbed invariant distribution

ρ0(x) and the other eigenvalues have in general a multiplicity mj ≥ 1. Πj is the spectral

projector onto the eigenspace relative to the Ruelle Pollicott resonance λj, and, in particular,

Π0 projects onto the eigenspace relative to the invariant distribution. Furthermore, the operator

Rn(t) is the residual operator associated with the essential spectrum. The norm of this operator

is related to the distance of the essential spectrum from the imaginary axis in the complex plane.
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Inserting the above spectral decomposition in (4.12) yields the following decomposition of the

microscopic Green Functions

Gi(t) = Θ(t)
n∑
j=1

mj−1∑
l=0

α
(l)
i,j

tl

l!
eλjt +QG(t),

Yik(t) = Θ(t)
n∑
j=1

mj−1∑
l=0

β
(l)
i,j,k

tl

l!
eλjt +QY (t),

(4.16)

where the coefficients are given by

α
(l)
i,j =

∫
L∞ρ0(x) (K0 − λjId)

lΠjxidx,

β
(l)
i,j,k =

∫
∂xk ln ρ0(x) (K0 − λjId)

k Πjxidx.

(4.17)

We remark that in the case the Ruelle Pollicott resonances are simple eigenvalues only the term

l = 0 survives in the summation over all the multiplicities, and the coefficients α
(l)
i,j = α

(0)
i,j = αi,j

can be written as

αi,j = ⟨ψ∗
j (x), xi⟩0⟨

L1ρ0(x)

ρ0(x)
, ψj(x)⟩0, (4.18)

where ⟨·, ·⟩0 is the usual L2(RM , ρ0) inner product weighted with the invariant distribution

ρ0(x) and ψj (ψ∗
j ) are the L2(RM , ρ0) eigenfunctions of the (adjoint of the) generator K⟨x⟩0 .

Similarly, we can write

βi,j,k = ⟨ψ∗
j (x), xi⟩0⟨∂xk ln ρ0, ψj(x)⟩0. (4.19)

Note that the decomposition (4.16) does not include the term relative to the simple eigenvalue

λ0 = 0 since the coefficient

αi,0 = ⟨ψ∗
0(x), xi⟩0⟨

L1ρ0(x)

ρ0(x)
, ψ0(x)⟩0 =

= ⟨ψ∗
0(x), xi⟩0⟨

L1ρ0(x)

ρ0(x)
,1RM ⟩0 = ⟨ψ∗

0(x), xi⟩0⟨
L1ρ0(x)

ρ0(x)
⟩0 = 0

(4.20)

vanishes for any perturbation X(x). We observe that in the above formula we have used the

fact that the eigenfunction ψ0 (the dual of the invariant measure) is a constant function, see

[CTDN20] and (3.27). We now investigate the response properties in frequency space and apply
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the Fourier transform to (4.11), obtaining

M∑
k=1

Pik(ω)⟨xk⟩1(ω) = χi(ω)T (ω), Pik(ω) = δik − θΥij(ω), (4.21)

where we have used the (standard) abuse of notation f(ω) =
∫ +∞
−∞ f(t)eiωtdt in defining the

Fourier transform of T (t) and ⟨xj⟩1(t) and have defined the microscopic susceptibilities

χi(ω) =

∫ +∞

−∞
Gi(t)e

iωtdt =
n∑
j=1

mj−1∑
l=0

α
(l)
i,j

(iω + λj)
l+1
, (4.22)

and

Υik(ω) =

∫ +∞

−∞
Yik(t)e

iωtdt =
n∑
j=1

mj−1∑
l=0

β
(l)
i,j,k

(iω + λj)
l+1
. (4.23)

The functions χi(ω) and Υik(ω) can be meromorphically extended (that is extended to a holo-

morphic function apart from isolated poles) in the lower half in the complex plane in a strip

given by1 ωess < Imω ≤ 0 . The stochastic Ruelle Pollicott resonances of the generator K⟨x⟩0 of

the unperturbed generator K0 introduce poles ωj = iλj in the susceptibility of the system. Ad-

ditionally, if ωj is a pole, so is −ω∗
j (since, correspondingly, λj comes together with λ∗j), where

∗

denotes the complex conjugate. We remark that the susceptibilities given in (4.22) and (4.23)

are instead holomorphic in the upper half complex ω−plane if Reλj < 0, j = 1, . . . , n. As

previously mentioned, the spectral decomposition indicates that all susceptibilities, regardless

of the observable and the forcing considered, share the same poles located at ωj = iλj, since

the Ruelle Pollicott resonances solely depends on the unperturbed generator K⟨x⟩0 . We also

observe that in writing (4.22) and (4.23) we have supposed that the essential spectrum does

not contribute to the spectral decomposition. Such a condition is exactly attained when the

generator K⟨x⟩0 generates a compact or eventually compact semigroup or when the observable

xi has no projection on the essential spectrum. Otherwise, it is asymptotically attained (with

an error decreasing exponentially with time) for quasi-compact semigroups. From (4.21) we

1ωess represents the essential growth bound of the unperturbed Markov semigroup, a relevant spectral
property related to the essential spectrum, see section 3.1.3
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obtain our final result for the response of the system

⟨xi⟩1(ω) =
M∑
j=1

P−1
ij (ω)χj(ω)T (ω) = χ̃i(ω)T (ω), (4.24)

where P−1
ij (ω) = (P−1)ij is a shorthand notation for the ij-th element of the inverse matrix

P−1 and we have defined a macroscopic susceptibility that determines the full response of the

system in frequency space

χ̃i(ω) =
M∑
j=1

P−1
ij (ω)χj(ω). (4.25)

The macroscopic susceptibility

We observe that (4.24) describing the full response of the system generalises previous findings

presented in [TKP01]. If the coupling is absent, so that θ = 0, we obtain the same result as in

the case of a single particle system where⟨xi⟩1(ω) = χi,θ=0(ω)T (ω), since χ̃i,θ=0(ω) = χi,θ=0(ω).

The effect of switching on the coupling, θ > 0, is two-fold in terms of response:

• First, the microscopic function χi(ω) is modified, because the unperturbed operator

L0
θ,⟨x⟩0depends both explicitly and through the unperturbed invariant measure ρ0(x) on

θ. Indeed, changes in the value of θ impact expectation values and mean field correla-

tion properties. This susceptibility can be interpreted as the frequency response of the

single agents, when the interaction among them is taken into account in a parametrised,

static way by setting in a linear response framework ⟨x⟩(t) = ⟨x⟩0 in the definition of the

operator L⟨x⟩0 .

• More importantly, the presence of a non-vanishing value of θ introduces a memory effect,

see equation (4.10), that results in a non-trivial correction with respect to the identity to

the matrix Pij(ω). We can interpret the function χ̃i(ω) as the macroscopic susceptibil-

ity, which takes fully into account, in a self-consistent way, the interaction between the

systems.

We observe that (4.24) generalises the frequency-dependent version of the well-known Clausius-
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Mossotti relation [Jac75, LSPV05, TT13], which connects the macroscopic polarizability of

a material and the microscopic polarizability of its elementary components and provides a

meaningful analogy of the susceptibility χi(ω) and χ̃i(ω).

Below we show that the macroscopic susceptibility is related to spectral properties of the

operator L̃⟨x⟩0 . In fact, from the last line of (4.6) we see that we can write the perturbation to

the invariant distribution as

ρ1(x, t) =

∫ t

0

T (s)e(t−s)L̃⟨x⟩0L1ρ0(x)ds. (4.26)

We can evaluate the change in the expectation value of observable xi as

⟨xi⟩1(t) =
∫ +∞

−∞
T (s)G̃i(t− s)ds =

(
T ⋆ G̃i

)
(t), (4.27)

where the macroscopic Green Function is

G̃i(t) = Θ(t)

∫
L1ρ0(x)e

tK̃⟨x⟩0xidx. (4.28)

Note that K̃⟨x⟩0 cannot be interpreted as the generator of time translation for mean field smooth

observables and, as such, G̃i(t) cannot be written in a Fluctuation Dissipation form. From (4.27)

we can infer that the Fourier Transform of G̃i(t) is the macroscopic susceptibility (4.25)

χ̃i(ω) =

∫
G̃i(t)e

iωtdt (4.29)

The benefit of deriving the expression of χ̃i(ω) as done in the previous section lies in the

possibility of separating the effect of the poles of χ(ω) and the zeros of Pij(ω). On the other

hand, (4.28) represents the basis for the spectral decomposition of themacroscopic susceptibility

of the system. Indeed, similarly to (4.14), we can write:

etK̃⟨x⟩0 =
n∑
j=0

T̃j(t) + R̃n(t), (4.30)
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with

T̃j(t) =

[
mj−1∑
l=0

tl

l!

(
K̃ − λ̃jId

)l]
eλ̃jtΠ̃j, (4.31)

where the symbols have the same interpretation as in the discussion after (4.14) but now refer

to the operator L̃⟨x⟩0 . Using similar arguments as in the previous section, the macroscopic

Green function can be written as

G̃i(t) = Θ(t)
n∑
j=1

mj−1∑
l=0

α̃
(l)
j

tl

l!
eλ̃jt +QG̃, (4.32)

where the coefficients α̃
(l)
j can be obtained from (4.28) and (4.31). We now apply the Fourier

transform to (4.32)and obtain:

χ̃i(ω) =
n∑
j=1

mj−1∑
l=0

α̃
(l)
j(

iω + λ̃j

)l+1
, (4.33)

where we have neglected the contribution of the essential spectrum. Comparing (4.33) and

(4.25), it is clear that the poles ω̃j = iλ̃j of χ̃i(ω) are those of χi(ω) plus those of the matrix

P−1
ij (ω).

4.3 Critical phenomena for interacting systems

In this Thesis we identify critical phenomena for the ensemble of interacting agents as settings

where response properties of the system break down. Equivalently, critical phenomena are

characterised by the development of a singularity of the macroscopic susceptibility χ̃i(ω) for a

real value of the frequency ω ∈ R. Equation (4.25), that we report below,

χ̃i(ω) =
M∑
j=1

P−1
ij (ω)χj(ω). (4.34)

suggests that the singular behaviour of the macroscopic susceptibility χ̃(ω) can arise either

from a singularity in the microscopic susceptibility χi(ω) or from zeros of Pij(ω), leading to
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poles of P−1
ij (ω). Remarkably, these correspond to two different physical critical phenomena.

We will call the former scenario critical transition whereas we will refer to the latter as phase

transitions. The characteristics of both critical phenomena can be linked to the following two

spectral conditions

1. The Ruelle Pollicott resonances for the unperturbed Markov semigroup have strictly neg-

ative real part, i.e. Reλj < 0 for j = 1, . . . , n

2. The matrix Pij(ω) is invertible and, additionally, has no zeros in the upper complex

ω-plane.

We remark that if both conditions 1 and 2 are satisfied then the following condition is satisfied

(and viceversa)

3. The spectral gap of L̃⟨x⟩0 is finite, meaning that all the Ruelle Pollicott resonances asso-

ciated with this operator have strictly negative real part

Condition 3 corresponds to non critical settings for the ensemble of interacting agents.

Critical transitions are instead characterised by a breakdown of condition 1 for a set of param-

eters (α, θ, σ) = (ᾱ, θ̄, σ̄). This breakdown is due to the presence of a vanishing spectral gap

for the operator Lᾱ,θ̄,σ̄⟨x⟩0 , and, a fortiori, for the operator L̃ᾱ,θ̄,σ̄⟨x⟩0 . In such a scenario, the functions

χi,ᾱ,θ̄(ω) and χ̃i,(ᾱ,θ̄,σ̄)(ω) feature one or more poles ωj ∈ R in the real ω−axis. In other terms,

the linear response blows up for forcings having non-vanishing spectral power |T (ωj)|2 at the

corresponding frequencies. In this case the blow-up of the linear susceptibilities corresponds to

an ultraslow decay of mean field correlations leading to a singularity in the integrated decor-

relation time. In other terms, this type of criticality conforms to the classic framework of the

theory of critical transitions [Kue11, CNK+14, TLD18, GL20, Sch09b]. We remark once again

that the presence of a divergence of correlation properties does not depend on the specific func-

tional form of the perturbation field X(x) nor on the choice of observable under investigation,

whilst the properties of the response do depend in general from it.
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On the other hand, phase transitions are characterised by settings where the breakdown of con-

dition 2 for a set of parameters (α, θ, σ) = (α̃, θ̃, σ̃) is associated with the fact that the spectral

gap of the operator L̃(α̃,θ̃,σ̃)
⟨x⟩0 vanishes, whilst the spectral gap of the operator L(α̃,θ̃,σ̃)

⟨x⟩0 remains

finite. In this latter case, only the macroscopic susceptibilities χ̃α̃,θ̃,σ̃i (ω) have one or more poles

for real values of ω, whereas the functions χα̃,θ̃,σ̃i (ω) are holomorphic in the upper complex

ω− plane. We remark that the non-invertibility of the P matrix depends on the presence of

sufficiently strong coupling between the systems, which leads to them being coordinated. In

this case, we do not observe a divergence of correlation properties of the single microscopic

agents, since the divergence stems as an emergent behaviour due to the interactions among

the agents. In fact, the non trivial structure of the matrix Pij derives from the nonlinearity

of (4.3) as a result of the thermodynamic limit N → +∞ and the presence of non vanishing

interactions (θ ̸= 0) among the agents. Therefore, we interpret the singularities in the linear

response resulting from the breakdown of condition 2 as being associated to a phase transition

of the system. We will provide examples of phase transitions in Chapter 5.

4.3.1 Dispersion Relations far from Criticalities

We here assume that condition 3 is satisfied, that is, the system is in non critical settings. This

implies that that all the Ruelle Pollicott resonances λj of the generator K0 of the unperturbed

semigroup have strictly negative real part, Reλj < 0. In this situation, since Gi(t) is causal,

the function χi(ω) is a holomorphic function in the upper complex ω-plane, with all the poles

ωj = iλj = −i|Reλj|− Imλj being all contained in the lower complex ω-plane far from the real

axis of frequencies. We first consider the short-time behaviour t → 0+ of the Green Function

Gi(t). Using (4.12) and the definition of the adjoint operator for Markov Semigroups (3.26),

we derive:

Gi(t) = Θ(t)

(
⟨Xi(x)⟩0 +

(
M∑
k=1

⟨Xk(x)∂xkFi(x)⟩0 − θ⟨Xi(x)⟩0
)
t+ o(t2)

)
(4.35)



4.3. Critical phenomena for interacting systems 97

As a result, the high-frequency behaviour of the susceptibility χi(ω) can be written as:

χi(ω) = i
⟨Xi(x)⟩0

ω
−
∑M

k=1⟨Xk(x)∂xkFi(x)⟩0 − θ⟨Xi(x)⟩0
ω2

+ o(
1

ω2
). (4.36)

The causality of Gi(t) implies that one can write the following “tautology” Gi(t) = Θ(t)Gi(t).

By performing the Fourier transform of both sides of this identity, we obtain the following

equation χi(ω) =
1
2π

(
χi ⋆ Θ̂

)
(ω), where Θ̂(ω) =

∫
Θ(t)eiωtdt = iP(1/ω)+πδ(ω) is the Fourier

transform of Θ(t), and P
(
1
ω

)
indicating the principal value distribution. By separating the real

(Re) and imaginary (Im) parts of χi(ω), the previous relations can be written in the standard

Kramers-Kronig form:

P

∫ ∞

−∞

Re{χi(ν)}
ν − ω

dν = −πIm{χi(ω)}, (4.37)

P

∫ ∞

−∞

Im{χi(ν)}
ν − ω

dν = πRe{χi(ω)}. (4.38)

Since Gi(t) is a real function of real argument t, its Fourier transform obeys the following

conditions: χi(ω) = (χi(−ω∗))∗, where ∗ denotes the complex conjugate. Hence, for real values

of ω we have Re{χi(ω)} = Re{χi(−ω)} and Im{χi(ω)} = −Im{χi(−ω)}. From this it follows

an alternative form of the Kramers-Kronig relations [LSPV05]:

P

∫ ∞

0

Re{χi(ν)}
ν2 − ω2

dν = − π

2ω
Im{χi(ω)}, (4.39)

P

∫ ∞

0

νIm{χi(ν)}
ν2 − ω2

dν =
π

2
Re{χi(ω)}. (4.40)

It is then possible to derive the following sum rules:

∫ ∞

0

Re{χi(ν)}dν = lim
ω→∞

(π
2
ωIm{χi(ω)}

)
=
π

2
⟨Xi(x)⟩0, (4.41)∫ ∞

0

Im{χi(ν)}
ν

dν = lim
ω→0

(π
2
Re{χi(ω)}

)
=
π

2
τGj

Gi(0
+), (4.42)

where

τGi
=

∫∞
0
Gi(t)dt

Gi(0+)
, (4.43)
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if Gi(0
+) ̸= 0, is a measure of the decorrelation of the system. Additionally, if ⟨Xi(x)⟩0 = 0,

so that the imaginary part of the susceptibility decreases asymptotically at least as fast as ω−3

the following additional sum rules holds:

∫ ∞

0

νIm{χi(ν)}dν = lim
ω→∞

(
−π
2
ω2Re{χi(ω)}

)
=
π

2

M∑
k=1

⟨Xk(x)∂xkFi(x)⟩0. (4.44)

We turn now our attention to the asymptotic properties for large values of ω of the matrix

Pij(ω). We proceed as above and consider the short time behaviour of Yij(t),:

Yij(t) = Θ(t) (δij + o(t)) . (4.45)

As a result, for large values of ω, we have that the microscopic susceptibility can be written as

Υij(ω) =
i

ω
δij + o(ω−1), (4.46)

so that Pij(ω) = δij
(
1− i θ

ω

)
+ o(ω−2) and P−1

ij (ω) = δij
(
1 + i θ

ω

)
+ o(ω−2). The asymptotic

behaviour for large values of frequencies of the macroscopic susceptibility can then be written

as

χ̃i(ω) = i
⟨Xi(x)⟩0

ω
−
∑M

k=1⟨Xk(x)∂xkFi(x)⟩0
ω2

+ o(
1

ω2
). (4.47)

Comparing the above expression with (4.36), we observe that there is a correction in the

asymptotic behaviour of the macroscopic susceptibility with respect to the microscopic one.

Nonetheless, since also condition 2 is satisfied away from criticality, the matrix Pij(ω) can be

inverted for all values of ω in the upper complex ω-plane and the Kramers-Kronig relations

(4.39)-(4.40) and the sum rules (4.41)-(4.44) apply also for χ̃i(ω).

4.3.2 Dispersion relations for Phase Transitions

In what follows, we focus on the criticalities associated with condition 2, that is phase tran-

sitions. We are interested here in assessing how dispersion relations change due to onset of a

macroscopic collective behaviour of the system. In the following, for simplicity and with no loss
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of generality, we consider the parameter σ as fixed. We assume that for some reference values

for α = α0 and θ = θ0 the system is stable, meaning that the macroscopic Green function

G̃α0,θ0
i (t) that takes into account all the interactions among the identical systems has only pos-

itive support and is a smoothly decaying function with relevant timescales given by the Ruelle

Pollicott resonances λ̃j, see (4.32). Correspondingly, the macroscopic susceptibilities χ̃α0,θ0
i (ω),

just like the microscopic ones, are holomorphic in the upper complex ω− plane. This implies

that the entries of the matrix Πα0,θ0
ij (ω) do not have poles in the upper complex ω− plane.

Let’s now consider the following modulation of the system. We consider the protocol (αs, θs) =

(α0+δα(s), θ0+δθ(s)) and assume for 0 ≤ s < s̃ the system retains stability. For (αs̃, θs̃) = (α̃, θ̃),

the system loses stability as R poles ωl with l = 1, . . . , R cross into the upper complex ω-plane

(with Im{ωl} = 0, l = 1, . . . , R) for themacroscopic susceptibilities χ̃α̃,θ̃i (ω), whilst the mean

field susceptibilies χα̃,θ̃i (ω) are holomorphic in the upper complex ω-plane. The setting (α̃, θ̃)

corresponds to a phase transition point.

We have that P α̃,θ̃
ij does not have full rank for ω = ωl, l = 1, . . . , R. For such real frequencies

ωl the macroscopic susceptibility diverge. Indeed, we remark that the invertibility conditions

of the matrix Pij(ω) is intrinsic and does not depend on the applied external forcing X, which

enters, instead, only in the definition of the microscopic susceptibility χi(ω). We interpret this

as the fact that the divergence of the response is due to eminently endogenous, rather than

exogeneous, processes. We also remark that Pij(ω) = δij − Υij(ω), where Υij(ω) can be seen

as microscopic susceptibility for the expectation value of xi associated with an infinitesimal

change of the value of the jth component of ⟨x⟩0, see (4.6) and (4.12). This supports the idea

that ⟨x⟩ is an appropriate order parameter for the system. We assume, for simplicity, that

only simple poles are present, i.e. ml = 1 for l = 1, . . . , R. . In order to study the effect of

phase transitions on the Kramers-Kronig relations, we then decompose the matrix Πα̃,θ̃(ω) in

the upper complex ω− plane as follows:

Πα̃,θ̃
ij (ω) = Πα̃,θ̃

h;ij(ω) +
R∑
l=1

Res(Πα̃,θ̃
ij (ω))ω=ωl

ω − ωl
, (4.48)

where we have separated the holomorphic component Πα̃,θ̃
h;ij(ω) from the singular contributions
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coming from the poles ωl, l = 1, . . . , R; note that Res(f(ω))ω=ν indicates the residue of the

function f for ω = ν. Note that if ωl is a pole on the real axis, −ωl is also a pole. Additionally,

Res(f(ω))ω=ωl
= −Res(f(ω))∗ω=−ωl

, so that if ωl = 0 the residue has vanishing real part.

Building on equation (4.48), the macroscopic susceptibility can then be written as:

χ̃α̃,θ̃i (ω) = Πα̃,θ̃
ij (ω)χα̃,θ̃i (ω) = Πα̃,θ̃

h;ij(ω)χ
α̃,θ̃
i (ω) +

R∑
l=1

Res(Πα̃,θ̃
ij (ω))ω=ωl

ω − ωl
χi,α̃,θ̃(ωl), (4.49)

where the Kramers-Kronig relations given in (4.37) are then modified as follow, taking into

account the extra poles along the real ω-axis:

P

∫ ∞

−∞
dν
χ̃α̃,θ̃i (ν)

ν − ω
= iπχ̃i,α̃,θ̃(ω) + iπ

R∑
l=1

Res(Πα̃,θ̃
ij (ω))ω=ωl

ωl − ω
χα̃,θ̃i (ωl). (4.50)

By taking the limit ω → ∞ we can generalise the sum rule given in (4.41):

∫ ∞

0

dνRe{χ̃α̃,θ̃i (ν)} =
π

2
⟨Xi(x)⟩0 −

π

2
Im

{
R∑
l=1

Res(Πα̃,θ̃
ij (ω))ω=ωl

χi,α̃,θ̃(ωl)

}
. (4.51)

Instead, by taking the limit ω → 0 we can generalise the sum rule given in (4.42) as follows:

∫ ∞

0

dν
Im{χ̃α̃,θ̃i (ν)}

ν
= lim

ω→0

(π
2
Re{χ̃α̃,θ̃i (ω)}

)
+
π

2
Re

{∑
ωl ̸=0

Res(Πα̃,θ̃
ij (ω))ω=ωl

ωl
χα̃,θ̃i (ωl)

}
. (4.52)

where we note that the zero-frequency poles do not contribute to the second term on the right

hand side.

4.3.3 Two Scenarios of Phase Transitions

In the discussion above, we are assuming that for (α, θ) = (α̃, θ̃) we have that det (Pij(ω))

vanishes for R real values of ω, namely det (Pij(ωl)) = 0 for l = 1, · · ·R. Since Pij(ω) =

(Pij(−ω∗))∗, we have that det (Pij(ω)) = (det (Pij(−ω∗)))∗. Therefore, the solutions to the

equation det (Pij(ω)) = 0 come in conjugate pairs if they are complex. Generically, we can

assume that as we tune the parameter s to the critical value s̃ such that (αs̃, θs̃) = (α̃, θ̃) either
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one real solution or the real part of one pair of solutions crosses to positive values. We then

consider the following two scenarios for the poles ωl, l = 1, . . . , R:

• ω1 = 0, R = 1; or

• ω1 = −ω2 > 0, R = 2.

Indeed, we wish to consider the two qualitatively different cases of either i) a single pole with

zero frequency; or ii) a pair of poles with nonvanishing and opposite frequencies emerging at

(α, θ) = (α̃, θ̃). Of course, more than two poles could simultaneously emerge (α, θ) = (α̃, θ̃),

but we consider this as a non-generic case.

• If ωl = 0 is a pole, then we have a static phase transition, associated with a breakdown in

the linear response describing the parametric modulation of the measure of the system.

While such a statement applies for rather general systems and perturbations, this situation

can be better understood by considering the specific perturbation X(x) = ⟨x⟩0 − x with

T (t) = 1, which amounts to studying, within linear approximation, how the measure of the

system changes as the value of θ is changed to θ+ε. This phase transition corresponds to

a insulator-metal phase transition in condensed matter, because the electric susceptibility

χelectij (ω) of a conductor diverges as iσij/ω for small frequencies, where σ is a real tensor

and describes the static electric conductivity, which is vanishing for an insulator [LSPV05].

• If, instead, we have a pair of poles located at ±ωl ̸= 0, we have a dynamic phase transition

activated by a forcing with non-vanishing spectral power at the frequency ±ωl. In this

case, a limit cycle emerges corresponding to self-sustained oscillation, which is made

possible by the feedback encoded in the nonlinearity of the McKean-Vlasov equation.

4.4 Equilibrium Phase Transitions: Gradient Systems

In this section we will investigate equilibrium phase transitions for weakly interacting diffu-

sions using the linear response formalism developed above and the spectral theory for compact
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Markov semigroups. Firstly, we will recall some of the results on equilibrium phase transitions

for weakly interacting diffusions that we have introduced in section 2.3. When the local force

can be written as a gradient of a potential Fα(y) = −∇Vα(y) and the diffusion matrix is the

identity matrix sij = δij, equations (4.1) describe an equilibrium system. In particular, the N

particles system has a unique ergodic invariant measure when the potential satisfies suitable

confining properties [Tam84, Pav14], namely the Gibbs measure

MN

(
{xk}

)
=
e−βHN

ZN
, (4.53)

where ZN is the partition function of the N -particle system and HN is the Hamiltonian function

of the system defined in terms of the local and interaction potentials as

HN

(
{xk}

)
=

N∑
k=1

Vα(x
k) +

θ

2N

N∑
k,l=1

U(xk − xl). (4.54)

Equivalently, the generator KN , the adjoint operator of the N-particle Fokker Planck operator

LN , see equation (2.4), of the finite particle stochastic process has purely discrete spectrum,

a nonzero spectral gap and the system converges exponentially fast to the unique equilibrium

state, both in the L2 space weighted by the invariant measure and in relative entropy [Pav14,

Chapter 4.6]. On the other hand, in the thermodynamic limit, the system is described by the

McKean Vlasov equation (4.3) whose stationary measures are solutions of the Kirkwood-Monroe

equation (2.32):

ρ0(x) =
1

Z
e−

2
σ2 (V (x)+U⋆ρ0(x)), Z =

∫
e−

2
σ2 (V (x)+U⋆ρ0(x))dx. (4.55)

When the confining and interaction potentials are strongly convex and convex, respectively,

then it is well known that (4.55) has only one solution, corresponding to the unique steady

state of the McKean-Vlasov dynamics. In addition, the dynamics converges exponentially fast,

in relative entropy, to the stationary state and the rate of convergence to equilibrium can be

quantified [Mal01]. However, when the confining potential is not convex, e.g. is bistable, then

more than one stationary states can exist, at sufficiently low noise strength (equivalently, for
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sufficiently strong interactions). The loss of uniqueness of the invariant measure can thus be

interpreted as a continuous (or discontinuous) phase transition due to the interactions between

the agents and arising strictly in the thermodynamic limit. For the quadratic interaction

potential U(x) = |x|2
2

we are considering in this chapter, the equilibrium stationary measures

(4.55) can be written as

ρ0(x) =
1

Z
e−

2
σ2 V̂ (x), Z =

∫
e−

2
σ2 V̂ (x)dx, (4.56)

where we have introduced the modified potential V̂ (x) = V (x)+θ( |x|
2

2
−⟨x⟩0 ·x), with the term

proportional to θ arising from the interactions between the subsystems and ⟨x⟩0 =
∫
xρ0(x)dx

is the first moment of the invariant distribution. The linear Fokker-Planck operator associated

to the stationary Mc-Kean Vlasov equation 4.3 describing the mean field equilibrium properties

relative to (4.56) reads

L⟨x⟩0 (·) = ∇·
(
∇V̂ (x) ·

)
+
σ2

2
∆ · . (4.57)

It is known that Markov semigroups describing gradient dynamics in RM are compact [LB07] ,

provided some growth conditions on the potential are satisfied. Indeed, the adjoint K⟨x⟩0 of the

operator L⟨x⟩0 generates a semigroup etK⟨x⟩0 that is associated with a gradient dynamics with

deterministic part given by the potential V̂ (x). If V̂ satisfies the confining property [Pav14,

Sect. 4.5]

lim
|x|→+∞

(
|∇V̂ |2

2
−∆V̂

)
= +∞, (4.58)

then the following results hold:

• the semigroup etK⟨x⟩0 is compact and its generator K⟨x⟩0 is self adjoint in L2(RM , ρ0), the

space of square integrable functions in RM weighted with by the invariant density. [Pav14,

Chapters 4.6-4.7]

• the generator K⟨x⟩0(or equivalently the Fokker Planck operator L⟨x⟩0) has a spectral gap

in L2
ρ0
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The above properties have important consequences on the spectral decomposition of the mi-

croscopic Green Functions Gi(t), Yik(t) and their corresponding susceptibilities. In particular,

a compact semigroup does not feature an essential spectrum so that QG and QY in (4.12)

identically vanish. Moreover, the number of Ruelle Pollicott resonances for such semigroups is

infinite, n → +∞, and, since K⟨x⟩0 is self adjoint, they are real, with λ0 = 0 > λ1 ≥ λ2 ≥ . . .

and λj → −∞ as j → +∞. The existence of a spectral gap γ = |λ1| > 0 of the generator guar-

antees that the microscopic constituents of the dynamics are robust and resilient to external

and prevents the system from undergoing a critical transition, i.e a breakdown of condition 1

described in section 4.3 . However, we remark that the existence of a spectral gap of the gener-

ator K⟨x⟩0 does not preclude the possibility that the system will experience a phase transition,

that is a breakdwon of condition 2.

For gradient dynamics, it is possible to obtain a formula for the microscopic susceptibility Gi(t)

in terms of the time derivative of known correlation functions. Let us consider, for simplicity, a

uniform forcing X = v̂k, with v̂k being the unit vector in the k− th direction. The microscopic

susceptibility can be written as

Gi(t) = Θ(t)

∫
xie

tL⟨x⟩0L1ρ0dx = Yik(t) = −Θ(t)

∫
xie

tL⟨x⟩0∂xkρ0dx. (4.59)

Since the system is at equilibrium, the stationary probability density can be written as in (4.55),

∂xkρ0 = − 2
σ2ρ0(x)∂xk V̂ , physically representing the fact that the probability current associated

to the invariant measure vanishes at equilibrium. Furthermore, using (4.57) it is easy to verify

the following identity L⟨x⟩0 (xkρ0(x)) = −ρ0(x)∂xk V̂ . The mean field susceptibility can then be

written as

Gi(t) = − 2

σ2
Θ(t)

∫
xie

tL⟨x⟩0L⟨x⟩0xkρ0dx = − 2

σ2
Θ(t)

d

dt

∫
xie

tL⟨x⟩0xkρ0dx = (4.60)

= − 2

σ2
Θ(t)

d

dt
⟨xi(t)xk(0)⟩0 = − 2

σ2
Θ(t)

d

dt
⟨zi(t)zk(0)⟩0 = (4.61)

= − 2

σ2
Θ(t)

d

dt
Czi,zk(t), (4.62)
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where in the last equation we have introduced the fluctuation variables zi = xi − ⟨xi⟩0 and

Czi,zk(t) represents the mean field correlation function between variables zi and zk. Equation

(4.62) shows that the microscopic susceptibility is closely related to equilibrium correlation

functions. It is then possible to associate to each correlation function the mean field integrated

correlation time

τij =

∫ +∞
0

⟨zi(t)zj(0)⟩0dt
⟨zizj⟩0

=

∫ +∞
0

Czi,zj(t)dt

Czi,zj(0)
. (4.63)

Note that this time scale differs from the one introduced in (4.42), which in this case can be

written as

τGi
=

∫∞
0
Gi(t)dt

Gi(0+)
= − ⟨zizj⟩0

limt→0+
d
dt
⟨zi(t)zj(0)⟩0

. (4.64)

By comparing the expressions of τGi
and τij and by considering (4.16), one understands that

τGi
and τij correspond to two differently weighted averages of the timescales associated with

each subdominant mode of the operator L⟨x⟩0 . Usually, the singular behaviour of correlation

properties has been used as an indicator of critical transitions [Sch09a]. However, let us remark

again that, being related to the spectrum of the operator L⟨x⟩0 , in our case neither τGi
nor τij

show any critical behaviour at a phase transition, while they both diverge in the case of critical

transitions corresponding to the breakdown of 1 above.



Chapter 5

Detecting Phase Transitions through

Linear Response in finite dimensional

systems

5.1 Introduction

In the previous chapter we have derived linear response formulas for the thermodynamic limit

of a system of weakly interacting diffusions described a McKean Vlasov equation and have ex-

plicitly identified two qualitatively different scenarios for the breakdown of the linear response,

namely critical transitions and phase transitions. Critical transitions occur for any finite (pos-

sibly infinite too) dimensional system and are characterised by the spectral gap of the transfer

operator governing the time evolution of observables shrinking to zero. Consequently, a crit-

ical transition is accompanied by a divergence of the mixing properties of the (microscopic)

dynamical variables of the system, and, as a result of Fluctuation Dissipation formulas, one ex-

pects a singular behaviour of the response properties and a rough dependence of the system on

changes in its parameters. On the other hand, phase transitions are a genuine thermodynamic

phenomenon, where the divergence of the response stems from the coordination taking place,

in suitable conditions, because of the coupling between the infinite number of agents composing

106
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the total system. Moreover, the coupling among the subsystems results in a memory effect,

see (4.10), that leads to obtaining the total response function of the system as a macroscopic

version of its microscopic counterpart, see (4.24), with formal similarities with the well-known

Clausius-Mossotti relation for the polarizability of an electric medium [LSPV05, Jac75, TT13].

In this chapter we focus on the latter case, investigating with much greater detail on the

relationship between the occurrence of phase transitions and the non-analyticity of the suscep-

tibility of the system describing the frequency-dependent response of an observable to a given

perturbation in the upper complex frequency plane. Such singular behaviour manifests itself as

a pole that crosses the real axis of the frequency variable, leading to a diverging resonance of

the system. We consider two paradigmatic models of equilibrium and nonequilibrium (respec-

tively) interacting diffusions, namely the Desai Zwanzig model, that we have already introduced

in section 2.6 and the Bonilla-Casado-Morillo. In particular, our aim is twofold.

Firstly, we prove that the susceptibility of the thermodynamic limit of interacting diffusions,

described by a McKean Vlasov equation, develops a singular behaviour at the phase transition.

We are able to fully characterise the location of the pole reaching the real axis of frequencies

and, for the Desai Zwanzig model, we provide an explicit expression of its residue in terms of

mean field correlation functions. We also remark that in chapter 6 we prove a similar result for

a nonequilibrium version of the Desai Zwanzig model.

Secondly, we adopt a numerical perspective that mirrors spectroscopic techniques that are used

for investigating the frequency dependence of the optical properties of materials [LSPV05]. In

particular, by studying how the real and imaginary part of the susceptibility of the systems

depend on the number of agents, we are able to predict the position of the pole and the asso-

ciated residue, fully characterising the emergence of the singularity of the susceptibility in the

thermodynamic limit. We verify that the position of the pole depends on the considered model,

but, instead, that for a given model the loss of analyticity depends neither on the choice of the

observable, nor on the applied perturbation, and is, in this sense, an universal feature of the

system, since it is related to spectral properties of suitable operators.

In this chapter we also clarify the link between the breakdown of response properties of the

McKean Vlasov equation and the phenomenon of critical slowing down, see section 2.4. This
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phenomenon stems from the fact that, near critical settings, the negative feedbacks of the sys-

tem become increasingly ineffective, resulting in arbitrarily large, usually non-Gaussian, fluctu-

ations and a divergence of correlation properties of the system. The McKean Vlasov equation,

by definition, does not capture such singular behaviour since it originates from propagation of

chaos properties that, at the phase transition, do not hold uniformly in time. Response theory,

as first observed in [Shi87], allows one to investigate such singular behaviour and provides a

bridge between microscopic and macroscopic features of the interacting agents.

5.2 Examples: a mathematical analysis

5.2.1 Equilibrium Phase Transition: the Desai Zwanzig Model

The Desai Zwanzig model [DZ78] has a paradigmatic value as it features an equilibrium ther-

modynamic phase transition, characterised by a pitchfork bifurcation of the infinite dimensional

invariant measure of the system, arising from the interaction between the agents. This model

can be seen as a stochastic model of key importance for elucidating order-disorder phase tran-

sitions [Fra13]. More details about the model and its applications can be found in section 2.6.

We here provide a few key features that will be relevant for our analysis of response properties.

Each of the interacting systems can be interpreted as a particle, moving in one dimension,

M = 1, in a double well potential Vα(x) = −α
2
x2 + x4

4
, interacting with the other particles via

a quadratic interaction U(x) = x2

2
. The N -particle system is described by the equations

dxk = Fα(x
k)dt− θ

N

N∑
l=1

(xk − xl)dt+ σdW k, (5.1)

where k = 1, . . . , N . The local force is Fα = −V ′
α and the one particle volatility matrix is the

identity matrix sij = δij resulting in thermal noise. Furthermore, Vα is double well shaped when

α > 0, otherwise it has a unique global minimum. In the thermodynamic limit N → ∞, the

one particle density satisfies the McKean-Vlasov equation (4.3) and it is possible to show that

the infinite particle system undergoes a continuous phase transition, with ⟨x⟩ being a suitable
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order parameter. The phase transition is characterised by the condition (2.87) that we report

here for simplicity

2θ

σ2
⟨x2⟩0 = 1, (5.2)

where ⟨·⟩0 is the expectation over ρ0, the invariant measure solution of the McKean Vlasov

equation. We remark that at the phase transition ⟨x⟩0 = 0, so that ⟨x2⟩0 represents the

variance of the observable x. Moreover, critical values of the parameters at which the phase

transition is attained satisfy the following property

D−3/2

(
θ−α
σ

)
D−1/2

(
θ−α
σ

) =
σ

θ
, (5.3)

where Dν(z) is a parabolic cylinder functions. To assess the existence of the phase transitions

for a sufficiently big finite system, we below report the results of the numerical integration of

(5.1) by adopting a simple Euler-Maruyama scheme [KP11]. In particular, we have tested the

convergence of our results in the thermodynamic limit N → ∞ by looking at increasing values

of the number N of particles. We present in Figs. 5.1a-5.1b-5.1c the results obtained with

N = 5000 for 0.2 ≤ θ ≤ 1.0 and 0.4 ≤ σ ≤ 1.0. The stationary, unperturbed expectation values

⟨f⟩0 of a generic function f(x) : R → R are evaluated as a time average, at stationarity, of the

empirical mean over all the particles of f , namely

⟨f⟩0 =
∫
f(x)ρ0(x)dx ≈ 1

T

∫ t∗+T

t∗
f̄(t)dt, (5.4)

where T is a long time interval and t∗ is a suitably long initial time such that stationarity is

attained for all t ≥ t∗ and the bar denotes averaging over all the agents,

f̄(t) =
1

N

N∑
k=1

f(xk(t)). (5.5)

Moreover, mean field correlations functions, see definition (2.22), between observable f and g

are estimated as an average over all particles of the single-particle correlation functions

Cfg(t) =

∫
f(x)eL⟨x⟩0 tg(x)ρ0(x)dx ≈ 1

N

N∑
k=1

Cf(xk)g(xk)(t) (5.6)



110Chapter 5. Detecting Phase Transitions through Linear Response in finite dimensional systems

where the one particle correlation function Cf(xk)g(xk)(t) with k = 1, . . . , N can be evaluated

from the two time series f(xk(t)) and g(xk(t)). The relevant expectation values and correlations

have been evaluated considering averages performed over T = 2.5 × 103 time units. Figures

5.2a-5.2b portray two sections performed approximately in the middle of the domain of the heat

maps provided in figures 5.1a-5.1b-5.1c, with the goal of clarifying the obtained results. The

order parameter ⟨x⟩0 clearly indicates a continuous phase transition. The (re-scaled) variance

of the fluctuations, being related to the operator L⟨x⟩0 , see equation (4.4), is finite and equal

to 1
2
at the transition point, in agreement with (5.2). The re-scaled correlation time τ̂ = θ× τ ,

where τ is defined in (4.63) as the integrated correlation time associated to the mean field

autocorrelation function Cfg(t) with f = g = x , is also non-singular, as opposed to a critical

transition scenario.

Singularity of the susceptibility

Given the simplicity of this model, it is possible to explicitly evaluate all the relevant quantities

that characterise the phase transition for the Desai Zwanzig model. As explained in greater

detail in section 4.2 we perturb the deterministic part of the McKean Vlasov equation by

considering Fα(x) → Fα(x) + εT (t)X(x). We consider here a purely temporal perturbation,

that is X(x) = 1. In this case the microscopic Green Functions (4.12) coincide1, Y (t) = G(t),

and (4.21), describing the response of the observable x in the frequency domain, can be written

as

P (ω)⟨x⟩1(ω) = χ(ω)T (ω), (5.7)

where the 1× 1 matrix is P (ω) = 1 − θχ(ω). The macroscopic susceptibility is then obtained

as

χ̃(ω) = P−1(ω)χ(ω) =
χ(ω)

1− θχ(ω)
. (5.8)

Furthermore, this is a gradient system satisfying all the assumptions that have been made in

1Being a one dimensional problem we drop here the indices from the Green Functions and Susceptibilities
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(a)

(b) (c)

Figure 5.1: Results of numerical simulations of equations (5.1) with α = 1. Heat maps of the
order parameter ⟨x⟩0 (panel a); of the re-scaled variance θ

σ2VAR(x) =
θ
σ2 (⟨x2⟩0 − ⟨x⟩20) (panel

b); and of the rescaled correlation time τ̂ = θ × τ (panel c). The dotted red line shows the
transition line (5.3). See text for details.

section, so that the microscopic susceptibility can be written as

G(t) = −Θ(t)
2

σ2

d

dt
Cz,z(t), (5.9)

where z(t) = x− ⟨x⟩0. Taking the Fourier transform results in

χ(ω) =
2

σ2
[Cz,z(0) + iωγ(ω)] , (5.10)
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(a) From top to bottom: order parameter,
rescaled variance, and rescaled integrated au-
tocorrelated time as a function of the strength
of the noise. Here θ ≈ 0.4.
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(b) From top to bottom: order parameter,
rescaled variance, and rescaled integrated au-
tocorrelated time as a function of the strength
of the coupling. Here σ ≈ 0.78.

Figure 5.2: A horizontal (left) and a vertical (right) section of the heat maps shown in figures
5.1a-5.1c.

where γ(ω) =
∫∞
0
Cz,z(t)e

iωtdt is the (one-sided) Fourier transform of the correlation function.

As previously mentioned, χ(ω) can be written in terms of the spectrum of the operator L⟨x⟩0

which in this specific example reads, see (4.57),

L⟨x⟩0 = −V̂ ′(x)∂x +
σ2

2
∂xx, (5.11)

where the modified potential is V̂ = Vα + θ(x
2

2
− ⟨x⟩0x). It can be proven [Daw83] that the

above operator is self-adjoint and has a pure point spectrum {λj} with 0 = λ0 > λ1 > λ2 > . . .

, with the vanishing eigenvalue corresponding to the stationary distribution ρ0. In fact, it

is easy to show that condition (4.58) holds, with etK⟨x⟩0 being thus a stable compact with a

non vanishing spectral gap, see section 4.4. The operator L̃⟨x⟩0 describing the response of the

invariant measure ρ0 of the McKean Vlasov equation, see (4.3), is instead

L̃⟨x⟩0ρ1 = L⟨x⟩0ρ1 − θ⟨x⟩1(t)∂xρ0. (5.12)

Dawson [Daw83] proved that, away from the transition point - in particular, above it, where

⟨x⟩0 = 0 - the operator L̃⟨x⟩0 has similar spectral properties to L⟨x⟩0 . Consequently the system

has a smooth response to perturbations, characterised by a macroscopic susceptibility χ̃(ω)
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with Ruelle Pollicott poles contained in the lower half of the complex frequency ω-plane. At

the transition, though, L̃⟨x⟩0 shows a vanishing spectral gap, with the operator developing a

null eigenvalue. This situation corresponds to a phase transition scenario, as expressed by a

breakdown of condition 2 described in section 4.3, in which the microscopic susceptibility χ(ω)

is holomorphic in the upper complex ω-plane, while the macroscopic χ̃(ω) develops a pole,

arising from the non invertibility of P (ω) = 1− θχ(ω). Let us observe again that this implies

that at the transition there is no divergence of the integrated autocorrelation time τ , because

the spectral gap of the operator L⟨x⟩0 does not shrink to zero. This is clearly shown in the

two-dimensional map shown in figure 5.1c and in the two sections shown in figures 5.2a-5.2b.

We can fully characterise the singular behaviour of the macroscopic susceptibility χ̃(ω) at the

transition. Indeed, the transition point is characterised by the condition (5.2) that we can write

1− 2θ

σ2
Cz,z(0) = 0, (5.13)

so that the macroscopic susceptibility (5.8) becomes, considering (5.10) and the equation above,

χ̃(ω) = −1

θ
+
i

ω

Cz,z(0)

θγ(ω)
. (5.14)

We remark that γ(ω) is related to properties of the mean field correlation functions, and, as

such, it is a holomorphic function in the upper complex plane, with no poles on the real axis.

Consequently, the above expression shows that at the transition point χ̃(ω) develops a simple

pole in ω0 = 0, with residue

Res (χ̃(ω))ω=0 = i
Cz,z(0)

θγ(0)
=

i

θτz
, (5.15)

where τ is the mean field integrated correlation time associated to the fluctuation variable

z(t) = x(t)− ⟨x⟩0. We observe that the residue is completely imaginary as it is expected from

a static phase transition characterised by a pole ω0 = 0, see discussion in section 4.3.
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5.2.2 Nonequilibrium Phase Transition: the Bonilla-Casado-Morillo

model

In this section we will study the response features of the Bonilla-Casado-Morrillo model [BCM87]

and elucidate the properties of a non equilibrium self-synchronization phase transition for an

ensemble of nonlinear oscillators, by looking at the divergence of the macroscopic susceptibility

χ̃(ω). We anticipate that the susceptibility develops a pair of symmetric poles ω1 = −ω2 > 0 at

the transition point, thus following the scenario of a dynamic phase transition discussed in sec-

tion 4.3. The model consists of N two-dimensional (M = 2) non linear oscillators xk = (xk1, x
k
2),

interacting via a quadratic interaction potential U(x) = |x|2
2

and subjected to thermal noise

dxki = Fi,α(x
k)dt− θ

N

N∑
l=1

∂xki U(x
k − xl)dt+ σdW k

i , k = 1, . . . , N. (5.16)

The local force is not conservative, giving rise to a non equilibrium process, and reads Fα(x) =

(α− |x|2)x+x+where x+ = (−x2, x1). This term corresponds to a rotation, which is divergence-

free with respect to the (Gibbsian) invariant measure and, therefore, does not change the sta-

tionary state, but it makes it a non-equilibrium one [LNP13, DPZ17, DLP16]. The parameter

α > 0 controls the amplitude of the oscillations of the individual non linear oscillators. In

fact, when θ = σ = 0, each subsystem oscillates as xj(t) =
√
α (cos(t+ βj), sin(t+ βj)) where

βj = tan(xj2(0)/x
j
1(0)). The coupling tries to synchronise the subsystems by attracting them

towards the center of mass 1
N

∑N
j=1 x

j. In the thermodynamic limit, the system is described by

a McKean-Vlasov equation

∂tρ(x, t) = L⟨x⟩ρ = −∇ ·
[(

F̂(x) + θ⟨x⟩(t)
)
ρ(x, t)

]
+
σ2

2
∆ρ(x, t), (5.17)

where F̂(x) = Fα(x)−θx, the last term representing the mean field contribution of the coupling

to the local force. The authors in [BCM87] prove that the infinite particle system undergoes

a phase transition, with a stationary measure ρ0(x) losing stability to a time dependent prob-

ability measure ρ̄ = ρ̄(x, t). Physically, this phenomenon can be interpreted as a process of

synchronization. In fact, ρ0(x) represents a disordered state, with the oscillators moving out
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of phase, while ρ̄ describes a state of collective organisation with the oscillators moving in an

organised rhythmic manner. The transition can be investigated via the order parameter ⟨x⟩

which vanishes in the asynchronous state, ⟨x⟩0 = 0 , and is different from zero and oscillating

in time in the synchronous state. In particular, the stationary measure ρ0(x) can be written as

ρ0(x) =
1

Z
e−ϕ(x), ϕ(x) =

(
θ − α +

1

2
|x|2
) |x|2

σ2
, (5.18)

and satisfies the stationary McKean-Vlasov equation L⟨x⟩0ρ0(x) = L⟨x⟩0ρ0(x) = 0 where

L0 = −∇ ·
(
F̂ (x) ·

)
+
σ2

2
∆. (5.19)

We can perform a linear response theory around this stationary state ρ0 by replacing Fα →

Fα + εX(x)T (t) and studying the perturbation ρ1 of the measure defined via ρ(x, t) = ρ0(x) +

ερ1(x, t). As previously outlined, ρ1(x, t) satisfies (4.6) from which the whole linear response

theory follows. However, to conform to the notation in [BCM87] we will here define ρ1(x, t) =

ρ
1/2
0 q(x, t) and write the corresponding equation for q(x, t). After some algebra, it is possible

to write that

∂tq(x, t) = M0(q)− T (t)ρ
−1/2
0 ∇ · (X(x)ρ0) + θρ

1/2
0 ⟨ρ1/20 y, q(y, t)⟩ · ∇ϕ(x) =

= M̃0(q)− T (t)ρ
−1/2
0 ∇ · (X(x)ρ0) ,

(5.20)

where we have introduced the usual L2 inner product ⟨f, g⟩ =
∫
f(x)g(x)dx and defined the

linear differential operator

M0q =
σ2

4

[
∆ϕ− 1

2
|∇ϕ|2

]
q +

[
−x+· ∇+∆

]
q, (5.21)

and the linear integro-differential operator

M̃0q = M0q + θρ
1/2
0 ⟨ρ1/20 y, q(y, t)⟩ · ∇ϕ(x). (5.22)
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We mention that this operator has the structure of a Schrödinger operator in a magnetic

field [Pav14, Sec. 4.9]. Furthermore, let us observe that ⟨ρ1/20 y, q(y, t)⟩ =
∫
ρ
1/2
0 yq(y, t)dy =∫

yρ1(y, t)dy = ⟨y⟩1. It is then clear that M0 (M̃0) is the analogous, in a “Schrödinger

picture”, of the operator L0 (L̃0). In the following we show the equivalent response formulas

using these new operators. A formal solution of the above equation is

q(x, t) =

∫ t

−∞
e(t−s)M0

(
−T (s)ρ−1/2

0 ∇ · (X(x)ρ0) + θρ
1/2
0 ⟨ρ1/20 y, q(y, s)⟩ · ∇ϕ(x)

)
ds, (5.23)

which is analogous to (4.8). Using the above expression we can evaluate the response of the

observable xi as

⟨xi⟩1 = ⟨ρ1/20 xi, q(x, t)⟩ =

=

∫
dx

∫ t

−∞
ds xie

(t−s)M0

[
−T (s)ρ−1/2

0 ∇ · (X(x)ρ0) + θρ
1/2
0 ⟨ρ1/20 y, q(y, s)⟩ · ∇ϕ(x)

]
.

(5.24)

The above equations show that an analogous response theory holds for the operators M0

and M̃0. In particular, their spectrum is related to the Fourier transform of the microscopic

susceptibility χ(ω) andmacroscopic susceptibility χ̃(ω) (respectively) through equations similar

to (4.22) and (4.33). The authors in [BCM87] have studied the spectrum of both these operators

in order to perform a stability analysis of the stationary distribution ρ0(x). In particular, they

observe that the operator M0 can be written as M0 = MH +MA where

MH(q) =
σ2

4

[
∆ϕ− 1

2
|∇ϕ|2

]
q +

σ2

2
∆q, (5.25)

and

MA(q) = −x+· ∇q, (5.26)

with vanishing commutator [MH ,MA] = 0. The operator MH is related to the conserva-

tive part of the local force. As a matter of fact, it is a self-adjoint (Hermitian) operator with

real eigenvalues. MA is instead anti-Hermitian, with purely imaginary eigenvalues (describing

oscillations) given by the non conservative part of F. Furthermore, MH has only one zero
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eigenvalue corresponding to the ground state
√
ρ0 while all the remaining eigenvalues are neg-

ative, meaning that a critical transition, according to which the spectral gap of the mean field

operator L⟨x⟩0 vanishes, see discussion in section 4.3, cannot take place in this setting. In par-

ticular, microscopic correlation properties do not diverge. Phase transitions can, instead, take

place according to the scenario where χ̃(ω) develops a singular behaviour for real frequencies

whereas χ(ω) is a holomorphic function in the upper complex plane. Infact, the spectral gap

of the operator M̃0 vanishes [BCM87] at surface in the (α, σ, θ) parametric space defined by

the following equation:

A =
δ2

2

1− 1

δ
exp

(
−A

2

δ2

)[∫ ∞

−A
δ

e−r
2

dr

]−1
 , (5.27)

where A = α
θ
− 1 and δ =

√
2σ2

θ
. In particular, they are able to prove that the eigenvalues

associated to eigenfunctions of M̃0 which are orthogonal to the subspace of L2(R2) spanned

by
√
ρ0 and n · x√ρ0, n ∈ R2 being any unit vector, are always negative. Nevertheless, M̃0

can become unstable from eigenfunctions which are not orthogonal to n ·x√ρ0. As a matter of

fact, it is possible to identify the eigenfunctions that at the transition point yield eigenvalues

with vanishing real part. In particular, at the transition line (5.27), the eigenfunction Ω(x) =

(0, 1) ·x√ρ0+ i(1, 0) ·x√ρ0 gives an eigenvalue λ̃ = i, with Ω(x)∗ corresponding to the complex

conjugate eigenvalue λ̃∗ = −i. The macroscopic susceptibility (4.33) consequently develops a

pair of symmetric poles in ω = ±1, corresponding to the Ruelle Pollicott poles ω = iλ and

ω = iλ∗. The development of real poles corresponds to a dynamic phase transition, giving rise

to a Hopf-like bifurcation yielding the time dependent state ρ̄(x, t) that defines the synchronized

state. As a result, near the transition, the order parameter ⟨x⟩ρ̄, where the expectation value is

computed using the measure ρ̄(x, t), oscillates at frequency ω = 1 with amplitude A1(α, σ, θ).

Instead, since it is a quadratic quantity, the rescaled variance θ/σ2⟨z2⟩, where z = x − ⟨x⟩,

oscillates at frequency ω = 2 with amplitude A2(α, σ, θ) around the value B2(α, σ, θ).

We have investigated this non equilibrium transition through numerical integration of (5.16)

via an Euler-Maruyama scheme. Again, the convergence of our results to the thermodynamic

limit has been tested by looking at increasing values of the number of agents. The expectation
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(a) (b)

(c)

Figure 5.3: Results of numerical simulations of equation (5.16) with α = 2. Heat maps of the
amplitude A1 of the oscillations of the variable x (panel a), of the amplitude A2 of the oscillations
of the re-scaled variance θ

σ2 ⟨z2⟩ (panel b), and of the time mean value B2 of θ
σ2 ⟨z2⟩ (panel c).

The red dotted line represents the transition line given by equation (5.27);see [BCM87]. See
text for details.

values are evaluated as in the previous section, see (5.4). We display here the results by taking

N = 5000 and choosing α = 2. Figure 5.3 shows the value of A1 (panel a), A2 (panel b), and

B2 (panel c) for α = 2 in the parametric region 0.2 ≤ σ ≤ 3, 0.5 ≤ θ ≤ 6 of the two dimensional

parameter space (σ, θ). For the sake of clarity, we also provide in figure 5.4 a snapshot of a

horizontal and vertical section of the heat plots.

These numerical experiments confirm that the system indeed undergoes a continuous phase

transition, with a collective synchronisation stemming from a disordered state as the system

passes through the transition line given by (5.27) for α = 2. Let us remark again that the
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fluctuations of the microscopic quantities, being related to the spectrum of L⟨x⟩0 , are always

finite, see figure 5.4.
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(a) From top to bottom: A1, A2, and B2. Here
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Figure 5.4: Horizontal (left) and vertical (right) sections of the heat plots 5.3a-5.3c.

5.3 Spectroscopy of phase transitions

The goal of this section is to characterise the phase transitions of the previous two examples by

investigating the response properties of the finite systems described by (5.1) and (5.16) as the

number of the agents tend to infinity, reaching thus the thermodynamic limit. In particular, we

repeat the response experiments, see discussion below, for various choices ofN , in order to detect

the emergence of singularities for the combination of the parameters corresponding to phase

transitions. Here, we keep fixed the values of the internal parameter α and the coupling strength

θ. Both models undergo a phase transition at the transition line σ̃ = σ(θ, α) in the parameter

space (σ, θ, α) given by (5.3) for the Desai Zwanzig model and (5.27). Following [MPRV08],

we perform n simulations where the initial conditions are chosen according to the unperturbed

invariant measure ρ0(x) and where at time2 t = 0 apply a perturbation proportional to a time-

Dirac T (t) = δ(t) function. It is important to remark that we apply such perturbation to all the

agents composing the system, thus modifying the dynamics of the whole system in a coherent

way. We recall here that in the thermodynamic limit where the McKean Vlasov equation is

2We set here the origin of time when the perturbation is applied
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Figure 5.5: macroscopic response functions as a function of time t. Panel a: response G̃(t;N)
for the one dimensional order parameter of the DZ model. Panel b: response G̃x(t;N) of the
first component of the bi-dimensional order parameter for the BCM model. Black and blue
lines correspond to non critical values of the strength of the noise σ. Red lines correspond to
response functions at the transition point. For each value of σ, there are five lines corresponding
to different values of N , namely N = 2k × 103 with k = 1, . . . , 5. The arrows and the colour
gradient indicate the direction of increasing N .
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Figure 5.6: Macroscopic susceptibilities as a function of the frequency ω. Panel a: susceptibility
χ̃(ω) for the one dimensional order parameter of the DS model. Panel b: susceptibility χ̃x(ω)
for the first component of the two dimensional order parameter for the BCM model. The
parameter in the lower extreme of the integral is for both cases c = 0.05. Blue and black lines
in panel 5.6b have been multiplied by a factor 5 for visualisation purposes. Colour code and
plotting conventions as in Figure 5.5.
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valid, the response of the variable xi i = 1, . . . ,M after a perturbation of the deterministic part

of the dynamics can be written in a linear response regime as, see (4.27),

⟨xi⟩1 =
∫ +∞

−∞
T (s)G̃i(t− s)ds =

(
T ⋆ G̃i

)
(t). (5.28)

Now, given the previous equation, it is clear that the response of the mean field observable xi to

a delta-like perturbation yields the macroscopic Green Function ⟨xi⟩1(t) = G̃i(t). Performing

the aforementioned response experiments at a fixed value of number of particles N and looking

at the response of the empirical order parameter x̄ = 1
N

∑N
k=1 over the n simulations gives

an estimate G̃i(t;N) of the macroscopic response function. Figure 5.5 shows the response

functions G̃i(τ ;N) for an additive perturbation X(x) = 1 for the DZ model (left panel) and

X(x) = (1, 0) for the BCM model (right panel). The two response functions are qualitatively

different because, by and large, the one for the DZ model describes a monotonic decay, whereby

the system relaxes towards the unperturbed state, while the one for the BCM combines the

decay with an oscillatory behaviour taking place at the natural frequency ω̃ = 1. In the DZ

model, the response functions initially undergo a fast and substantial decay, both far from

and at the phase transition, associated with a time scale of order 1. However, at the phase

transition, a new, much longer, timescale appears. This timescale increases monotonically with

N . The same is observed in the case of the BCM model if one considers the envelope of the

response function rather than the response function itself: at the transition the decay of the

oscillations towards the stable invariant measure becomes slower and slower as N increases.

The origin of the new timescales resides in the appearance of simple pole at ω = ω0 in the

macroscopic susceptibility χ̃(ω), the Fourier transform of the response function. By applying

the Fourier Transform to G̃i(τ ;N) we define the finite size macroscopic susceptibility

χ̃i(ω;N) =

∫
G̃i(t;N)eiωtdt. (5.29)

Below we show that the response experiments clearly show the existence of a pole at the phase

transition located at ω0 = 0 for the DZ model and at ω0 = ω̃ = 1 for the BCM model. When

considering finite values of N , the susceptibilities describing the response of (virtually) any
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observable to (virtually) any external perturbation have a contribution of the form

χ̃i(ω;N) =
α̃

ω − ω0 + iγ(N)
+ r(ω), (5.30)

where α̃ represents the residue of the pole and γ(N) → 0+ as N → +∞ and r(ω) is the

regular part (for real frequencies) of the susceptibility, that, near a phase transition, becomes

progressively negligible with respect to the resonant behaviour stemming from the pole ω0. We

observe that the singularity arises in the thermodynamic limit as

lim
N→∞

α̃

ω − ω0 + iγ(N)
= −iπα̃δ(ω − ω0) + α̃P

(
1

ω − ω0

)
. (5.31)

Comparing (5.30) and the decomposition of the macroscopic susceptibility (4.33), we note that

equation (5.30) takes into account the approaching of a Ruelle Pollicott resonance towards the

point on the imaginary axis λ = iω0 as the number of agents tend to infinity. We remark that

the asymptotic property does not depend on how fast the function γ(N) vanishes for increasing

values of N . The residue α̃ ∈ C depends on the choice of observable and of the perturbation

as given by (4.33) and Eq. (4.25), whereas the location of the pole solely depends on the spec-

tral properties of the operator L̃⟨x⟩0 , or, more specifically by the invertibility properties of the

matrix Pij(ω), see (4.21). Figure 5.6 shows the properties of the finite size macroscopic sus-

ceptibilities. When σ ̸= σ̃, the susceptibilities do not show any singularity nor any remarkable

dependence on N , thus indicating that the thermodynamic limit has been reached to a good

approximation and the response of the system is smooth. As N increases, for both the DZ

model (left panel) and the BCM model (right panel) the resonance at ω = ω0 of the real part

of the susceptibility approaches the limiting Dirac function πkδ(ω− ω0) with coefficient k > 0.

This singular behaviour is clear from the plot of the primitive function of the real part of the

susceptibility (bottom inset) that tends to step function, that is a constant times the Heaviside

distribution Θ(ω − ω0). We remark that the position of the poles that is observed in the finite

size macroscopic susceptibility agrees with the analytical calculations shown in section 5.2

For both models, the residue α̃ = i|α̃| is an imaginary number. Indeed, the imaginary part of

the susceptibility behaves exactly as the Cauchy principal value distribution and can be used
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Figure 5.7: Mean field correlation Cz,z(t) of the fluctuation variable z = x− ⟨x⟩0 as a function
of time. The orange line in the inset corresponds to an exponentially decaying function y =
0.45e−t/τz where τz ≈ 2.1. The parameters of the model refer to the phase transition setting for
the Desai Zwanzig model, see main text. The simulations have been performed on an ensemble
of N = 104 agents.

to get easily a quantitative estimate of k. The top insets of Figure 5.6 shows the function

(ω − ω0)Im{χ̃i(ω)}. As N → ∞, this function converges to k everywhere except for ω = ω0.

We can compare the value of the residue α̃ in the case of the DZ model with the exact analytical

result, see (5.15), |α̃| = 1
θτz

, where τz is the mean field autocorrelation time of the fluctuations

z(t) = x(t)− ⟨x⟩0. The timescale τz has been estimated from a time integral of the mean field

correlation Cz,z(t), see figure 5.7. A cutoff has been imposed on the time integral when the

noisy signal takes over the exponential decay of the correlation function. As a result of the

numerical simulations, we obtain |α̃| ≈ 0.86, which agrees within ≈ 2% with the one resulting

from the limiting behaviour of the susceptibility, thus validating our results. In the case of

the BCM model, our procedure allows one to derive a direct estimate |α̃| ≈ 0.44; in this case

no expression for the residue is available in the literature and, following [BCM87, LPZ20],

its evaluation seems cumbersome. We here observe that, by evaluating the susceptibility for

finite values of N , we are able to predict the residue of the pole at ω = ω0, which appears,

instead, only in the thermodynamic limit. As discussed earlier, the singular behaviour of the

susceptibility has some degree of universality. By this we mean that while for a given model the

value of the residue is forcing- and observable-dependent, its position is a fundamental property

of the model itself. In order to show that the critical behaviour of the response does not depend

on the type of perturbation, modulo a potential degenerate class of perturbations that have



124Chapter 5. Detecting Phase Transitions through Linear Response in finite dimensional systems

zero projection on the invariant measure ρ0(x), we report below the investigation the response

of the DZ model for a state dependent perturbation X(x) = x2, see figure 5.8. The macroscopic

response function G̃i(τ ;N), both away and at the phase transition, has a rapid initial decay

with a timescale that is different from the response function relative to a uniform perturbation.

As a matter of fact, the timescale associated to the dominant mode of the response function

for t→ 0+ does in general depend on the applied perturbation, see section 4.3.1. As expected,

the response function at the phase transition develops a much longer timescale that increases

as the number of particle increases. A more accurate comparison with the result shown in

the main text can only be performed in the frequency domain. Figure 5.8 (right panel) shows

that, away from the transition, the susceptibilities have a smooth behaviour and no evident

dependence on N . At the phase transition, the susceptibility develops the expected singular

behaviour α̃
ω−ω0+iγ(N)

, where γ(N) → 0+ as N → +∞ due to the appearance of a simple

pole ω0 = 0. The residue α̃ is purely imaginary and its magnitude can be inferred by visual

inspection of the top inset representing the function(ω−ω0)Im{Γ̃(ω)} to be just less than 0.29.

As a last remark, we provide some details about the numerical response experiments. The finite

size macroscopic Green functions away from the transitions are estimated on an ensemble of

n = 105 simulations, while the critical Green functions with n = 106 for Desai Zwanzig and

n = 7 × 106 for Bonilla-Casado-Morillo. Furthermore we investigate the response up to time

t = 5 × 103. The parameters θ = α = 2 have been fixed and the colour code for the figures is

given by:

• black lines Desai Zwanzig σ ≈ 1 , Bonilla-Casado-Morillo σ ≈ 2.

• blue lines Desai Zwanzig σ ≈ 0.87 , Bonilla-Casado-Morillo σ ≈ 1.8

• red lines Desai Zwanzig σ̃ ≈ 0.75 , Bonilla-Casado-Morillo σ̃ ≈ 1.59.

Linear Response as a way to investigate Critical Slowing Down in mean field models

The response theory we have developed in Chapter 4 and the numerical experiments reported

above show that at a phase transition the mean field correlation functions (5.6) do not diverge,
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Figure 5.8: Panel a: Response function G̃(t;N) and Panel b: susceptibility χ̃(ω;N) for a
spatially dependent perturbation X(x) = x2 for the one dimensional order parameter for the
DZ model. Colour code and plotting conventions as in Figure 5.5. The lower extreme of the
integral of the bottom panel is c = 0.05.

since the Ruelle Pollicott resonances λj, j = 1, . . . , n, of the operator L⟨x⟩0 are far away from

the imaginary axis. On the other hand, in section 2.4 we have shown that a phase transition

is characterised by critical slowing down, that is by large scale (in time and space) correla-

tions among the particles, leading to a macroscopic emergent behaviour in the macroscopic

observables of the system. Critical slowing down is observed as diverging correlation features

of macroscopic observables when the thermodynamic limit N → +∞ is approached. From a

mathematical standpoint, critical slowing down arises when one considers a Central Limit The-

orem in the number of particles N around the McKean Vlasov equation, that can be considered

in this respect a Law of Large Numbers. As observed in section 2.6, in order to study the critical

fluctuations of the empirical measure for the Desai Zwanzig model one has to consider a scaling

of the typical timescale of the fluctuations process of order τN = t/
√
N , meaning that fluctua-

tions persist, fixed N , over a longer timescale than the underlying microscopic dynamics. On

the other hand, the McKean Vlasov equation can be essentially associated to a mathematically

justified mean field ansatz, see equation (2.14), for the thermodynamic limit of the N -particle

Fokker Planck equation where one considers all the particles to be statistically independent

thus neglecting correlations among them. We remark that the mean field correlation functions

(5.6) do not consider correlations among the agents and, for this reason, stay finite at the phase

transition. On the contrary, if one were to consider macroscopic correlation functions of the
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macroscopic observable x̄(t) = 1
N

∑N
k=1 xk(t) over the full N -particle distribution ρN , namely

⟨x̄(t)x̄(0)⟩ρN =
1

N2

∑
i,j

⟨xi(t)xj(0)⟩ρN , (5.32)

then the timescale τN would manifest itself. For fixed N , the Response Theory developed in

Chapter 3 establishes that, through the Fluctuation Dissipation Theorem, correlation prop-

erties are closely linked to sensitivity to external perturbations and, as such, a breakdown of

response theory is expected at the phase transition as a result of the generator of the N -particle

system developing a vanishing spectral gap γN → 0 as N → +∞. We observe that the spectral

gap γN is closely related to the log-Sobolev constant, see section 2.4, and that a vanishing

spectral gap γN → 0 implies that at a phase transition the log-Sobolev constant degenerates.

The results we have presented in this chapter confirm and generalise what was originally pro-

posed by Shiino [Shi85] for the Desai Zwanzig model, that is the fact that a Linear Response

approach for the mean field model is a powerful way to investigate critical slowing down prop-

erties. The success of the response theory for the McKean Vlasov equation in predicting not

only the location of the poles of the susceptibility but also the value of the residue in terms

of mean field correlation functions, see also figure 6.3 for another example, is a striking phe-

nomenon if one considers that the McKean Vlasov equation does not capture the correlations

among the agents. This essentially boils down to two physical reasons. Firstly, equations

(4.11) and (4.12) show that a Fluctuation Dissipation does not exist between the response of

the system and the mean field correlation functions. A phase transition is rather characterised

by a non trivial resonance, driven by the coupling among the agents, of the mean field corre-

lation functions with the response of the system at time t and all previous times s ≤ t, see

(4.11), manifesting itself as a non invertibility of the matrix Pij(ω). Secondly, the success of

the theory is also due to our perturbation procedure of the N -particle system described in

section 5.3. We recall that we perturb the deterministic part of the dynamics of every particle

as Fα(xk) → Fα(xk) + εT (t)X(xk) with k = 1, . . . , N , thus creating a macroscopic coherent

perturbation of the system and projecting the Green Function of the N -particle system onto

the eigenspaces of the operator L̃⟨x⟩0 conducive to the phase transition, that is the ones cor-

responding to the Ruelle Pollicott resonances λ̃j with Re{λ̃j} → 0 as the phase transition is
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approached. Different perturbation protocols of the N particle system could lead to different

results. We conjecture that as long as a considerable fraction ∝ N of the agents is perturbed,

similar results are to be expected as N → +∞, whereas this would not be the case if one were

to perturb a fixed number N̄ of agents. This interesting question is left for future work.



Chapter 6

Dimension Reduction for noisy

interacting systems

6.1 Introduction

In this Chapter we investigate a different yet closely related feature regarding interacting agent

systems, namely their dimension reduction properties in the thermodynamic limit. In this

regime, such models often exhibit phase transitions as a result of the complex interplay be-

tween the interacting dynamics and the noise, see Chapter 2. Singularities associated to phase

transitions, such as the divergence of correlation properties, the so called critical slowing down,

and the breakdown of linear response properties, see Chapters 4 and 5 can only be observed in

the thermodynamic limit. Consequently their investigation involves the study of the nonlinear

and nonlocal McKean Vlasov equation or a brute force approach, i.e. extensive numerical sim-

ulations of very large ensemble of agents as elucidated in Chapter 5. Reduction of complexity

can be achieved by defining collective variables (reaction coordinates) able to accurately de-

scribe the full dynamics in a low dimensional space. Nonetheless, while order parameters like

magnetization can in many cases be easily deduced for equilibrium systems using, e.g. sym-

metry arguments, the definition of reaction coordinates for nonequilibrium system is far more

challenging [MD05, BLP06, Rog21].

128
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The goal of this Chapter is to present a model reduction approach for the study of such infinite

systems based on a systematic approximation of the full infinite dimensional dynamics in terms

of a low number of ODEs. We provide a systematic dimension reduction methodology for con-

structing low dimensional, reduced-order dynamics based on the cumulants of the probability

distribution of the infinite system. We show that the low dimensional dynamics returns the

correct diagnostic properties since it produces a quantitatively accurate representation of the

stationary phase diagram of the system that we compare with exact analytical results and nu-

merical simulations. Moreover, we prove that the reduced order dynamics yields the prognostic,

i.e., time dependent properties too as it provides the correct response of the system to external

perturbations. On one hand, this validates the use of our complexity reduction methodology

since it retains information not only of the invariant measure of the system but also of the tran-

sition probabilities and time dependent correlation properties of the stochastic dynamics. On

the other hand, the breakdown of linear response properties is a key signature of a phase transi-

tion phenomenon. We show that the reduced response operators capture the correct diverging

resonant behaviour by quantitatively assessing the singular nature of the susceptibility of the

system and the appearance of a pole for real value of frequencies. Consequently, this method-

ology can be interpreted as a low dimensional, reduced order approach to the investigation

and detection of critical phenomena in high dimensional interacting systems in settings where

order parameters are not known. In particular, we recall that here we will provide examples

referring to quadratic interactions as in Chapter 4 but our methodology includes more general

classes of interactions with numerous applications including synchronisation of nonlinear, pos-

sibly chaotic, oscillators [BCM87, PKRK03] and emergent phenomena in neural networks and

life sciences [CDPF15, DP19].

Dimension reduction techniques for high dimensional systems usually refer to the Mori-Zwanzig

formalism [Mor65, Zwa61] leading to a Generalised Langevin Equation that describes, on a for-

mal level, the effect of the neglected degrees of freedom on the resolved dynamical variables

one wishes to include in their dimension reduction problem. Practical approximations of the

Generalised Langevin equation have been investigated by using two complementary approaches,

namely data-driven and top-down methods. Successful data driven methods, such as Dynamic
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Mode Decomposition [SCH10] rely on the use of the eigenvalues and eigenvectors of the whole

system transfer operator as suitably selected basis functions, that are able to capture the modes

of variability of the underlying dynamics. Other types of mode decomposition selection exist

and have been successfully applied to the prediction of complex phenomena [GAD+02, CK17].

We also mention that machine learning approaches, such as variational autoencoders [KW14],

have also been used to construct a surrogate, low dimensional representation of the system.

Other data driven techniques, such as empirical model reduction [KCG15], can be used to ob-

tain closure methods from partial observations of the system. The resulting closure structure

is given in terms of multilayer stochastic systems whose relevance and robustness has also been

highlighted from an alternative, theory-informed parametrization perspective [SGLCG21]. We

also mention that for chaotic and turbulent system an approach based on Unstable Periodic

Orbits (UPOs) theory has been successful in determining approximations of transfer operators

governing the dynamics of the system [CAM+05]. By preferring a UPOs partition of the phase

space, rather than a blind Ulam’s partition, one is able to exploit the intrinsic topology of the

flow to approximate in a systematic way transfer operators. Methods based on UPOs theory

have been a powerful tool for the investigation of mixing properties of quasi-invariant sets of

the phase space [MLG22] and for obtaining coarse grained, low dimensional descriptions of the

dynamics [YHB21].

On the other hand, top-down approaches usually rely on approximations of the dynamical equa-

tions governing the evolution of the system to construct a stochastic, possibly non-Markovian,

parametrization [WL12, WL13, CLW15]. Our dimension reduction methodology fits in this

latter class of techniques and is based on a suitable closure method of the infinite hierarchy

of equations for the moments or, equivalently, cumulants of the probability distribution of the

infinite dimensional system. Such closure method results in a deterministic parametrization

of the full dynamics in terms of a low number of cumulants. The focus in this chapter is not

about establishing the link between the Generalised Langevin Equation and our methodology

but rather providing a suitable low dimensional approximation of the transfer and response

operator that govern the dynamics of the system in the thermodynamic limit. On one side,

we show that the stationary properties of the reduced dynamics yield a quantitatively accu-
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rate representation of the stationary phase diagram of the system by comparing it with exact

analytical results and numerical simulations. On the other side, we test the accuracy of the

reduced dynamics in representing the response of the system to perturbations and show that

phase transitions are associated with the breakdown of the reduced linear response operators

and the emergence of poles in the susceptibility for real values of the frequency. This validates

our methodology as a suitable low dimensional approach to detecting phase transitions in high

dimensional systems by looking at resonances and singularities of reduced order response oper-

ators. As validation case studies, we apply our dimension reduction methodology to investigate

the nonequilibrium continuous phase transition in a model featuring noise-induced stabilisa-

tion phenomena [VdBPAHM94] and a model featuring an equilibrium discontinuous transition

[GKPY19].

6.2 The class of models

We consider a system of exchangeable weakly interacting one-dimensional diffusions whose

dynamics is governed by the following Stratonovich SDE1

dxi =

[
Fα(xi)−

θ

N

N∑
j

U ′ (xi − xj)

]
dt+ σ(xi) ◦ dWi, (6.1)

with initial condition xi ∼ ρin(x) and i = 1, . . . , N . Each agent undergoes an internal dynamics

given by the vector field Fα(x), depending on a set of parameters α, and is coupled with all

the other agents through a symmetric interaction potential U(x) = U(−x), with θ denoting

the interaction strength. Furthermore, dWi, i = 1, . . . , N , are independent Brownian motions

and σ(x) > 0 ∀x ∈ R is a multiplicative, state dependent, diffusion coefficient. The main

assumption here is that F (x), U(x) and the one particle diffusion matrix Σ(x) = σ2(x) all have

a polynomial functional form. For simplicity, we consider quadratic interactions, U(x) = x2

2
,

as in the previous chapters. This corresponds to cooperative interactions among the agents

1At variance with the previous chapters, we here consider a Stratonovic prescription for the noise. As it is
well known, it is possible to change prescriptions by suitably modifying the drift term of a stochastic differential
equation, see also section 6.2.1 .
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that attempt to synchronise them towards their common centre of mass x̄(t) = 1
N

∑N
i xi(t).

We remark that this methodology applies to generic polynomial interaction potentials and can

also be easily generalised to higher dimensions. We are interested in the thermodynamic limit

N → +∞ of equations (6.1). It is known, see Chapter 2, that the one particle distribution

of the N -particle system converges to the distribution ρ(x, t) satisfying the McKean Vlasov

partial differential equation (2.12), that, according to our setting, can be written as

∂ρ

∂t
=

∂

∂x

(
σ2(x)

2
ρ
∂

∂x

(
f⟨x⟩(x) + ln ρ

))
= L⟨x⟩ρ(x, t), (6.2)

where ρ(x, 0) = ρin(x) and

f⟨x⟩(x) = 2

∫ x −F̂α(y) + θ (y − ⟨x⟩)
σ2(y)

dy + lnσ2(x), (6.3)

where ⟨x⟩ represents the first moment of the distribution ρ(x, t) and F̂α(x) = Fα(x)+
1
2
σ(x)σ′(x).

We recall that (6.2) exhibits in general non-uniqueness of stationary solutions, where exchanges

of stability and appearance/disappearance of stationary solutions can be interpreted as phase

transitions .

We can characterise the stationary solutions of (6.2) as a one parameter family of distributions

ρ0(x;m) =
e−fm(x)∫

R e
−fm(x)dx

≡ e−fm(x)

Z(m)
, (6.4)

where the parameter m satisfies the selfconsistency equation

m = R(m) ≡
∫
R
xρ0(x;m)dx (6.5)

and Z(m) > 0 denotes the partition function. Equation (6.5) plays a major role in determining

the stationary properties of the system. Solutionsm⋆ of (6.5) correspond to stationary measures

ρ0(x;m
⋆) with first moment ⟨x⟩ = m⋆, a suitable order parameter of the system for this type of

quadratic interactions, see also the examples in chapter 5. Partial information on the stability

of the invariant measures can be obtained by the investigation of the slope of the selfconsistency

equation R′(m⋆) = dR(m)
dm

|m⋆ . In particular, if R′(m⋆) > 1, the stationary solution ρ(x;m⋆) is
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unstable.

6.2.1 Two paradigmatic examples

Below we provide some details on the two models we will investigate in this chapter. The first

model (model A) was introduced in [VdBPAHM94] to study the effect of multiplicative noise

on spatially extended systems. We consider the Desai Zwanzig model, see section 2.6, settings

where the local dynamics F (x) = −V ′
α(x) is given by a double well potential Vα(x) =

x4

4
− αx

2

2

and the noise is additive σ(x) = σ. The equations for motions are given by, considering the

quadratic coupling,

dxi =
[
αxi − x3i − θ (xi − x̄)

]
dt+ σdWi, (6.6)

where, given the additivity of the noise, the prescription for the noise is no longer a relevant

issue. We assume now that the parameter α is not known exactly but rather erratically fluc-

tuates in time, i.e. α → α + σmdξ where dξ is another, uncorrelated, Brownian motion. This

results in a set of equations for the N interacting agents that reads

dxi = [−V ′(xi)− θ (xi − x̄)] dt+ σmxi ◦ν dξ + σdWi, (6.7)

where the symbol ◦ν stands for a generic (not necessarily Ito) prescription for the equations.

It is convenient to write the above set of equations in the equivalent, in law, form

dxi = [−V ′(xi)− θ (xi − x̄)] dt+ σ(xi) ◦ν dWi, (6.8)

where σ(x) =
√
σ2 + σ2

mx
2 is a state dependent stochastic term. It is well known that the

presence of multiplicative noise introduce a modelling issue, since it is not clear, a priori,

what prescription should be given to the stochastic integral defining the stochastic equation

[Pav14, Kli90, vK81]; see also discussion in [GL22]. We interpret equations (6.8) as a generic one

parameter family of stochastic integrals parametrised by a parameter ν ∈ [0, 1]. Different values

of ν correspond to different prescription of the SDEs. In particular, α = 0, 1/2, 1 correspond to

the Ito, Stratonovich and Klimontovich prescription respectively. Different conventions of the
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stochastic integral lead to different stability properties of the SDE. Remarkably, the convention

for a given system might also vary depending on the operational conditions [PMH+13]. In the

following we choose a Stratonovich convention ν = 1
2
. It is known that a generic SDE can be

transformed into an Ito-SDE by suitably modifying the drift coefficient as Fα(x) → Fα,ν(x) =

Fα(x) + νσ(x)σ′(x) [Pav14]. Since it is more convenient to work with the Ito prescription, we

apply this transformation to equations (6.8) and obtain

dxi = [−Vν(xi)− θ (xi − x̄)] dt+ σ(xi)dWi, (6.9)

where Vν(x) = Vα(x) + νσ2
m
x2

2
= x4

4
− (α + νσ2

m)
x2

2
.

The introduction of a fluctuating parameter in the drift term corresponds to applying an

external, state-dependent noise that breaks the detailed balance condition, thus driving the

N−particle system to an out of equilibrium state. Equation (6.3) is for this model

f⟨x⟩(x) = −
α− θ + (ν − 1)σ2

m + σ2

σ2
m

σ2
m

ln

(
1 +

(σm
σ
x
)2)

+

+
x2

σ2
m

− 2
θ⟨x⟩
σσm

arctan
(σm
σ
x
)
.

(6.10)

The analysis of the self consistency equation (6.5) provides insightful information on the

stationary phase diagram of the model. In particular, symmetries of the problem force the

system to always have the trivial solution m⋆ = 0, corresponding to disordered state ρ0(x; 0)

of vanishing order parameter. This can be easily shown by observing that R(−m) = −R(m)

since stationary distributions satisfy ρ0(x;m) = ρ0(−x;−m), see equations (6.3) and (6.4).

Moreover, if m⋆ is a solution of the self consistency equation, so is −m⋆. We thus expect

that two symmetric branches of stable solutions will arise as soon as the disordered state loses

stability. The disordered state becomes unstable as soon as R′(0) = 1, that can be written as

θ

σσm
⟨x arctan

(σm
σ
x
)
⟩0 =

1

2
, (6.11)

where the expectation value ⟨·⟩0 is taken with respect to the stationary distribution ρ0(x; 0).

Since the order parameter at the transition point is known to be m∗ = 0, the above equation
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Figure 6.1: Order parameter ⟨x⟩ as a function of (σ, θ) obtained via the self consistency equation
analysis. The red dashed line and the continuous red line represent the exact transition curve
for σm = 0 and σm ̸= 0, see equation (6.11). The other parameters of the model are fixed and
equal to α = 1, σm = 1.5, ν = 1/2.

yields, fixed all the other parameters, the critical value σc = σc(α, θ, σm) of the strength of

the additive noise. We recall that (6.11) represents a generalisation to this nonequilibrium set-

ting of equation (5.2) for the Desai Zwanzig model. Figure 6.1 shows the multiplicative noise

induced stabilisation phenomenon we mentioned before. Indeed, the multiplicative noise has

a rectifying effect, pushing, for strong enough coupling θ, the transition point to higher and

higher values of σ. Moreover, the amplitude of the order parameter gets magnified, since it

exceeds the maximum value
√
α, the minimum point of the potential Vα(x), that is attained in

the low noise regime (σ → 0) when σm = 0.

The second model (model B) we have investigated features a discontinuous phase transition

and is obtained by breaking the symmetry x→ −x of the Desai Zwanzig model through a tilted

potential as Vα,µ = Vα + µx, with µ > 0. Moreover, the system is subject to thermal noise

σ(x) = σ. The pitchfork bifurcation of invariant solutions one obtains for µ = 0 disappears in

this case. In particular, there exists a smooth, stable branch of negative order parameter ⟨x⟩

for all values of the strength of the noise σ. However, decreasing σ, a pair of solutions appear
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through a saddle node bifurcation, yielding another branch of stable ⟨x⟩ > 0, with the other

one being unstable, see panel (b) of figure 6.2. The saddle node bifurcation is characterised by

the condition R′(mc) = 1 that reads

θ

σ2
⟨(x−mc)

2⟩0 =
1

2
, (6.12)

wheremc is the value of the positive order parameter at the transition point and the expectation

value is taken with respect to the stationary distribution ρ0(x;mc). Since mc is not known a

priori and has to be evaluated numerically by solving the self consistency equation, the above

equation does not directly provide the value of the critical noise σc at which the saddle node

bifurcation takes place. Nevertheless, it provides a criterion to assess how close the critical

point evaluated numerically is to the exact one by evaluating the slope R′(mc) and comparing

it to the exact value 1.

6.3 Reduced order dynamics

In order to construct the reduced order dynamics, we multiply (6.2) by xn, n ∈ N, and integrate

over R. Given our assumptions on the drift and diffusion terms, this procedure results in an

infinite hierarchy of equations for the moments Mn = ⟨xn⟩ of the probability distribution

ρ(x, t). In order to further elucidate on this, we will first consider model A defined in the

previous section. We recall that model A features a continuous phase transition, see figure 6.1

or panel (a) of figure 6.2. The aforementioned procedure yields the following equations for the

moments Mn

dMn

dt
= n

(
α− θ +

n

2
σ2
m

)
Mn − nMn+2+

+
n(n− 1)

2
σ2Mn−2 + nθM1Mn−1,

(6.13)

with M0 = 1, M−1 ≡ 0 being the (lower) boundary conditions. Firstly, we observe that

the global coupling among the agents gives rise to an interaction term between the order

parameter ⟨x⟩ = M1 and all the other moments Mn. Secondly, the nonlinear features of the
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 (a) (b)

Figure 6.2: Phase diagram, ⟨x⟩ = ⟨x⟩(σ). The continuous blue line refers to the selfconsistency
equation, the red dots to the reduced order dynamics (n̄ = 4) and the magenta dots (with
errorbars) to the numerical integration. Panel (a): continuous transition given by model A.
The inset at the bottom shows the absolute error ∆ between the reduced order dynamics and the
selfconsistency approach. The error ∆ for n̄ = 4 is out of scale and peaks at a value ∆ ≈ 0.1.
The vertical dashed line refers to the critical condition R′(0) = 1. Fixed parameters are
(α, θ, σm) = (1, 4, 0.8). Panel (b): discontinuous phase transition of model B. The insets show
the relative error ∆rel between the reduced order dynamics and the selfconsistency approach.
The inset at the top (bottom) refers to the upper (lower) branch of the phase diagram. The
vertical dashed line is obtained numerically through the selfconsistency approach and its value
has been consistently checked to yield a slope R′(m) such that R′(m) − 1 ≈ 10−4. Fixed
parameters are (α, θ, µ) = (1, 4, 0.02).

dynamics given by Vα(x) couple lower moments with higher degree ones. The infinite hierarchy

of moment equations (6.13) is equivalent to (6.2) and no reduction in the level of complexity of

the mathematical description has been accomplished yet. On a practical level, the necessity of

finding appropriate closure schemes for the hierarchy arises. Were we to truncate the system

of equations (6.13) at a specific level n̄, a closure scheme for Mn̄+1, Mn̄+2 in terms of Mn with

n < n̄ is needed.

Inspired by [DZ78], we implement a cumulant truncation scheme [WB70, SS90, Bov78]. We in-

troduce the cumulants kn as the coefficients of the Taylor expansion of the cumulant generating

function
+∞∑
n=1

kn(t)
λn

n!
= ln

∫
R
ρ(x, t)eλxdx. (6.14)

The truncation scheme consists of imposing the condition kn̄+1 = kn̄+2 = 0. This procedure

provides a closure relations for M̄n̄+1 = M̄n̄+1(M1, . . . ,Mn̄) and M̄n̄+2 = M̄n̄+2(M1, . . . ,Mn̄).

Alternatively, one can obtain from (6.14) and (6.2) an infinite hierarchy of equations for the
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cumulants

dkn
dt

= Gn(k1, . . . , kn, kn+1, kn+2), (6.15)

where the nonlinear function Gn(·) is written in appendix B. Equation (6.15) indicates that the

cumulant truncation scheme corresponds to a parametrization of the dynamics given by (6.1),

in the limit N → +∞, in terms of a finite number n̄ of cumulants. It is well known that such

a scheme is inconsistent, since a function with a finite cumulant expansion cannot be positive

if the order of the highest cumulant is larger than two [Gre71]. However, a parametrization in

terms of cumulants is expected to perform better than parametrizations in terms of (central)

moments based on the observation that a Gaussian distribution has vanishing cumulants kn = 0

for n > 2, while all (central) moments are nonzero. For non-Gaussian distributions, one

expects that neglected higher-order cumulants will be smaller than the corresponding (central)

moments. For model A, equation (6.5) predicts that the stable solution ⟨x⟩ = 0 bifurcates when

R′(0) = 1, see (6.11), through a continuous phase transition in two symmetric, competing states

with opposite order parameter. Panel (a) of figure 6.2 shows the continuous phase diagram for

the state with positive order parameter, obtained with the exact selfconsistency equation and

the reduced order dynamics (6.15). As soon as n̄ = 4 cumulants (main panel) are introduced,

the reduced dynamics provides a very good approximation of the phase diagram. We observe

that the reduced dynamics converges from below - the true transition point is underestimated

by the reduced dynamics - to the exact phase diagram as higher truncation are considered. The

accuracy of the reduced dynamics has been quantitatively assessed in terms of the absolute error

∆ (shown in the inset) with respect to the selfconsistency approach. The reduced dynamics has

also been compared to numerical simulations of an ensemble of N = 12000 agents described

by equations (6.1). We have used the Milstein scheme [KP11], that has strong order of

convergence 1, with time step ∆t = 0.01 and estimated the order parameter as the time

average, at stationarity, of the center of mass x̄(t). Moreover, the reduced order dynamics

has been initialised with a Gaussian initial condition, such that (k1, k2) = (0.1, 0.01) and all

others cumulants set to zero. Very good agreement is observed between the reduced order

and the full mean field dynamics. As for the behaviour of the finite size system (N < ∞)

near the phase transition, one observes some discrepancies in the numerical simulations (not
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shown in the figure) with respect to the infinite size system. This is due to the fact that for

values of the noise strength σ just below the transition point, the thermodynamic limit of the

ensemble of agents is multistable as equation (6.5) supports two symmetric solutions. For finite

systems, as observed in section 2.5, metastability phenomena are observed with the average

exit time from one of the two symmetric solutions exponentially increasing with the number

of particles. Fixed the number of particles N , the average exit time decreases exponentially

as the transition point is approached. Consequently, noise-induced transitions among the two

symmetric solutions become a relevant feature of the dynamics nearby the transition point

and one should consider the rectified order parameter (shown in the figure), obtained as the

time average of x̄(t) conditioned on the fact that the system is in the basin of attraction of

the positive solution. Given the symmetry of the problem, one can also consider the quantity

|x̄(t)| when the system fluctuates closely to the mean field invariant solutions, that is neglecting

the transitions. We have also probed the validity of the cumulant based parametrization by

investigating discontinuous phase transitions. Below we consider model B, which, we recall, is

defined by a tilted potential Vα,µ = Vα(x)+µx and additive noise. Stationary properties of the

reduced dynamics (6.15), with Gaussian initial condition (k1, k2) = (1, 0.01), are in very good

agreement with the other two approaches, see Panel (b). The insets show the relative error

∆rel between the reduced dynamics and the selfconsistency equation. The top one, referring

to the top branch of the phase diagram, shows that in the very close proximity, represented as

a shaded area, of the transition point, ∆rel jumps to higher values, due to the fact that the

reduced dynamics’ prediction for the transition point, depending on the level of truncation n̄,

underestimates the true one and approaches it from below as n̄ increases. The bottom inset

shows that ∆rel for the bottom branch of the phase diagram is instead a smooth function that

is not affected by the transition. This confirms that the reduced dynamics is able to track,

as σ is parametrically changed, the disappearing attractor until jumping to the other stable,

smoothly changing, attractor. Once again, noise-induced transitions are observed close to the

phase transition in the finite system. Due to the asymmetry between the two competing states,

the metastable lifetime of the state with ⟨x⟩ > 0 decreases as the transition is approached and

the system, after a short time, is driven to the other state of much longer lifetime. This can be



140 Chapter 6. Dimension Reduction for noisy interacting systems

more easily understood by considering the free energy functional, see section 2.3, associated to

the mean field dynamics for model B

F [ρ] =

∫
Vα,µ(x)ρ(x)dx+

θ

4

∫ ∫
ρ(x) (x− y)2 ρ(y)dxdy +

σ2

2

∫
ρ(x) ln ρ(x)dx. (6.16)

The expected escape time from the mean field attractor with positive order parameter ρ+(x)

can be written in terms of the above functional as

E[τ+] ≍ e
2
σ2N∆F , (6.17)

where ≍ denotes an asymptotic relation valid in the thermodynamic limit N → +∞ and

∆F = F [ρ0] − F [ρ+] where ρ0 is the unstable (saddle node) solution with vanishing order

parameter, see section 2.5 for further details. An analogous formula holds for the expected

escape time from the mean field invariant measure ρ− with negative order parameter. We can

then estimate the ratio between the escape times as

E[τ+]
E[τ−]

≍ e−
2
σ2NδF , (6.18)

where δF = F [ρ+]−F [ρ−] > 0. The escape time from ρ+ is exponentially smaller than the one

from ρ− and, considering that δF does not vanish approaching a discontinuous phase transition,

the finite size system will stay for a very short time in ρ+and then transition to ρ−, from which,

given its exponentially longer life time, will not transition back if not on an exponentially longer

time scale.

6.3.1 Reduced order response operators

So far we have illustrated the static properties of the system when perturbed with an adiabatic

change of its parameters. Below, we investigate the nonautonomous, dynamical response to

a time-dependent external perturbation. We report linear response properties of the reduced

dynamics. We perturb a stable stationary state by modifying the drift term as F (x) → F (x)+
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εX(x)T (t), where ε is small. We here apply a uniform perturbation X(x) = 1, resulting in a

one-cumulant perturbation k
(0)
1 → k

(0)
1 + ε for equations (6.15), where k

(0)
1 is the unperturbed

order parameter. We then observe the macroscopic Green function G̃(t), associated to the

order parameter, defined in a linear response regime as

k1(t) = k
(0)
1 + ε

∫ ∞

−∞
G̃(t− s)T (s)ds. (6.19)

As in the previous chapters, we choose as temporal modulation for the forcing a Dirac’s δ, T (t) =

δ(t), which corresponds to a broad band forcing in frequency space. We recall that in these

settings, by observing the perturbed k1(t) we obtain the Green Function as G̃(t) =
k1(t)−k(0)1

ε
.

Convergence to the linear regime has been assessed evaluating the response for different values

of ε. Panel (a) of Fig. 6.3 shows that, at the transition point (red lines), the Green function has

an exponential decay (bottom inset) with an associated timescale that is order of magnitudes

greater than what is observed in non-critical settings (blue and black lines). Moreover, such

timescale is an increasing function of the level of truncation n̄ of the reduced dynamics, whereas

no dependence on n̄ is observed for the non-critical Green functions (main inset). The critical

behaviour is linked to the breakdown of linear response theory at the phase transition point, in

the thermodynamic limit of equation (6.1) due to the agent-to-agent interactions, thus being

associated with endogenous dynamical processes. This critical behaviour can be associate

to spectral properties of the operator L̃⟨x⟩0 or invertibility properties of the matrix Pij(ω), see

chapter 4. As the number of agents N is increased, one observes an emerging singular behaviour

in the macroscopic susceptibility χ̃(ω), defined as the Fourier Transform of G̃(t), signalled by a

development of a pole ω0 on the real axis of the frequencies as explained in chapter 5. We here

observe an analogous scenario, in terms of n̄ rather than N , see also equation (5.30), where the

susceptibility can be written as

χ̃(ω) =
α̃

ω − ω0 + iγ(n̄)
+ r(ω), (6.20)

where ω0 = 0 and r(ω) is an analytic function in the upper complex ω plane. As n̄ →

+∞, γ(n̄) → 0 and the susceptibility develops a singular behaviour given by limn̄→∞ χ(ω) =
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Figure 6.3: macroscopic Green function G̃(t) (panel (a)) and macroscopic susceptibility χ̃(ω)
(panel (b)) for model A. The blue (black) lines refer to a non-critical setting 5% below (above)
the transition point. Red lines refer to critical settings. Fixed parameters are as in Panel
(a) of Fig. 6.2. The red color code and the arrows correspond to increasing values of n̄ =
4, 6, 8, 10, 14, 18, 22. In panel (b) black and blue lines have been multiplied by a scaling factor
for graphical purposes.

−iπα̃δ(ω − ω0) + α̃P
(

1
ω−ω0

)
+ r(ω) . Panel (b) confirms the appearance of an emerging pole

with an imaginary residue α̃ = i|α̃|. The real part χRE (main panel) of the susceptibility

clearly shows the resonant δ−like behaviour for ω = ω0. Alternatively, the top inset shows

that the primitive function of χRE close to the pole (c = −0.01) converges accordingly to a

Heaviside function. We observe that n̄ = 4 does not show a resonant behaviour, even though it

is associated with a longer timescale. The imaginary part χIM(ω) of the susceptibility (bottom

inset), behaving like a Cauchy principal value distribution, yields a quantitative estimate |α̃| ≈ 1

for the residue of the pole.

An exact formula for the residue

It is possible to obtain a formula for the amplitude of the residue of the macroscopic suscep-

tibility. Invariant measures ρ0(x) of the McKean Vlasov equation (6.2) satisfy the eigenvalue

problem L⟨x⟩0ρ0(x) = 0, where the linear differential operator L⟨x⟩0 is defined by

L⟨x⟩0ψ(x) =
∂

∂x

(
σ2(x)

2
ψ
∂

∂x

(
f⟨x⟩0(x) + lnψ

))
, (6.21)
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where ψ(x) is a smooth function and f⟨x⟩0(x) is defined in equation (6.3). The response of the

observable x after a perturbation of the system can be written, see (4.24),

⟨x⟩1(ω) = χ̃(ω)T (ω), (6.22)

where the macroscopic susceptibility χ̃(ω) is

χ̃(ω) = P−1(ω)χ(ω) =
χ(ω)

1− θχ(ω)
. (6.23)

The microscopic susceptibility χ(ω) is related to microscopic correlation properties of the system

in the unperturbed state described by ρ0. In particular, χ(ω) is the Fourier Transform of the

microscopic response function G(t) that can be written as a suitable correlation function, see

(4.12). For gradient systems with thermal noise, it is possible to write G(t) as a time derivative

of suitable correlation properties. We remark that for general non equilibrium systems this is

not always possible. However, given the structure of the problem, we are able find an analogous

formula for G(t). In fact, using (4.12) and the known form of the invariant measure (6.4) we

have

G(t) = Θ(t)

∫
xetL⟨x⟩0ρ0(x)

∂

∂x
f⟨x⟩0(x)dx. (6.24)

We now define the function g(x) = − 1
σσm

arctan
(
σm
σ
x
)
such that its derivative is ∂g(x)

∂x
= − 1

σ2(x)
.

We then evaluate the following expression

L⟨x⟩0 (gρ0) =
∂

∂x

(
σ(x)2

2
gρ0

∂

∂x

(
f⟨x⟩0(x) + ln ρ0 + ln g

))
=

=
∂

∂x

(
σ(x)2

2
gρ0

∂

∂x
ln g

)
=

∂

∂x

(
σ(x)2

2
ρ0

∂

∂x
g

)
=

= −1

2

∂

∂x
ρ0 = +

1

2
ρ
∂

∂x
f⟨x⟩0(x),

(6.25)
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where we have used the fact that f⟨x⟩0(x) + ln ρ0 = Z = constant. The microscopic response

function can thus be written as

G(t) = − 2

σσm
Θ(t)

∫
dxx exp

(
L⟨x⟩0t

)
L⟨x⟩0 arctan

(σm
σ
x
)
ρ0(x) =

= − 2

σσm
Θ(t)

d

dt

∫
dxx exp

(
L⟨x⟩0t

)
arctan

(σm
σ
x
)
ρ0(x) =

= − 2

σσm
Θ(t)

d

dt
Cx,A(t),

(6.26)

where in the last line we have introduced the mean field correlation function between observable

x and observable A = arctan
(
σm
σ
x
)
, defined according to equation (2.22). The microscopic

susceptibility can thus be written as

χ(ω) =

∫ +∞

−∞
G(t)eiωtdt =

2

σσm

(
Cx,A(0) + iωĈx,A(ω)

)
, (6.27)

where Ĉx,A(ω) =
∫ +∞
0

eiωtCx,A(t) is the (one-sided) Fourier transform of the correlation func-

tion Cx,A(t). We can then show that the macroscopic susceptibility χ̃(ω) develops a singular

behaviour for a real frequency ω0 = 0 at the phase transition. Let us observe that equation

(6.11), that characterises the phase transition line, can be written as

θ

σσm
Cx,A(0) =

1

2
(6.28)

since ⟨x⟩0 = 0 at the transition point. In conclusion, using all the above results, the macroscopic

susceptibility at the phase transition χ̃(ω) can be written as

χ̃(ω) = −1

θ
+ i

1

ω

σσm

θ2Ĉx,A(ω)
= −1

θ
+ i

1

ω

Cx,A(0)

θĈx,A(ω)
. (6.29)

Being related to the spectral properties of the operator L⟨x⟩0 , see chapter 4, the quantity Ĉx,A(ω)

is an analytical function in the upper complex plane (including the real axis). Consequently,

the above equation shows that linear response theory breaks down at the phase transition, with
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Figure 6.4: Correlation function Cx,A(t) as a function of time. The orange line in the inset
corresponds to an exponentially decaying function y = 0.1e−t/τ where τ = 0.25. The parameters
of the model are the same as in Figure 6.3 of the main text.

the macroscopic susceptibility χ(ω) developing a simple pole in ω = ω0 = 0 with residue

α̃ = Res
ω=ω0

χ(ω) =
i

θ

Cx,A(0)

Ĉx,A(0)
=

i

θτx,A
, (6.30)

where τx,A is the integrated auto-correlation time defined by

τx,A =
Ĉx,A(0)

Cx,A(0)
=

∫ +∞
0

Cx,A(t)dt

Cx,A(0)
. (6.31)

We observe that, as σm → 0, the above equation is compatible with (5.15) obtained for the Desai

Zwanzig model. We can now compare the value of the residue obtained from the reduced order

dynamics and (6.31) where the mean field correlation functions are estimated from numerical

simulations as described by equation (5.6). We have performed simulations over an ensemble

of N = 16000 agents. The integrated correlation time τx,A has been estimated by imposing a

cut off T = 1.5 on the time integral corresponding to the moment after which the noisy signal

takes over the exponential decay of the correlation function (see inset of Figure 6.4). The

resulting value is τ = 0.25091 with corresponding amplitude, we recall θ = 4, of the residue

|α̃| = 0.99636, which agrees to a very good approximation with what has been obtained through

the reduced order dynamics, see Figure 6.3 in the main text. We remark that the existence

of the pole ω0 at the phase transition, as opposed to its residue α̃, depends neither on the
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Figure 6.5: macroscopic Green Function G̃(t) as a function of time for model B. δ represents
the relative distance from the approximate phase transition point, see the discussion in the
main text.

forcing T (t) nor on the choice of the observable and can be related to spectral properties of

suitably defined evolution operators, see chapter 4. This crucial property validates the use of

our cumulant based reduced dynamics to settings where the order parameter is not known or

cannot easily be written in terms of the cumulants.

Response for the reduced order dynamics for model B

The most interesting feature of model B is undoubtedly the response to a static modulation

of its parameters corresponding to the jump characterising the discontinuous phase transition,

see panel (b) of figure 6.2. Nevertheless one could study the dynamical response of the system

as the transition point is approached (from below) on the top branch. Since it is associated

with the loss of stability of the invariant measure, we expect similar results to hold for this

model as well. We evaluate G̃(t) associated to the order parameter ⟨x⟩ using a perturbation

protocol analogous to the previous section. Figure 6.5 shows that for settings near the phase

transition, one of the Ruelle Pollicott resonances of the reduced response operator associated

to the reduced cumulants dynamics is approaching the imaginary axis. As a result, one ex-

ponential mode of the spectral decomposition of the macroscopic Green function is associated

to a timescale that is orders of magnitude bigger than any exponential mode in non critical

settings. Alternativey, such critical behaviour can be related to the development of a static



6.3. Reduced order dynamics 147

ω0 = 0 pole of the macroscopic susceptibility of the system. We remark that the figure refers

to a level of truncation of n̄ = 22. One could also perform an analysis, similar to figure 6.3, by

looking at different values of n̄. We expect to obtain similar results. However, such analysis is

more complicated here due to the discontinuous feature of the transition. Firstly, the reduced

dynamics transition point depends on n̄ and the analysis becomes increasingly hard very close

to the transition point, see shaded area in panel (b) of Figure 6.2. Secondly, Figure 6.5, clearly

shows that the timescale associated to the Green function is highly sensitive to small deviations,

as small as δ = 0.1%, from the transition point.

To conclude, in this chapter we have obtained a reduced low-dimensional system for the mo-

ments of the probability distribution function of the mean field dynamics. We showed that

such approximate dynamics provides an accurate representation of the stationary phase dia-

gram, even for a very low number (e.g. 4) of cumulants. This indicates that the cumulants

act as effective reaction coordinates, which are able to capture the essential properties of the

system with moderate loss of information due to the cumulant truncation. Additionally, the

linear response properties of the projected dynamics agrees with that of the full system, and

the breakdown of the corresponding linear response operators can be used to characterise the

phase transition occurring in the system. Hence, our methodology seems useful for performing

linear stability analysis for a large class of interacting multiagent systems, and for predicting

their response to forcings of general nature. We remark that, for polynomial drift and diffusion

coefficients, the (untruncated) moments system is exact.
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Conclusions

In this thesis we have investigated critical phenomena for the thermodynamic limit of weakly

interacting diffusions, i.e. ensembles of identical, exchangeable interacting agents. By looking

at the response of the system to (weak) external perturbations we have developed a linear

response theory describing the induced change of statistical properties of observables of the in-

finite system of agents. In particular, we associated the development of a critical phenomenon

to the settings of a non smooth, singular response of the system and the appearance of resonant

poles for the complex valued susceptibility describing the linear response of the system.

More specifically, we have shown that the response in frequency space of the macroscopic sys-

tem to any time modulated forcing is given in terms of a macroscopic susceptibility χ̃(ω) that

captures not only the response of the single agents composing the system, given by the micro-

scopic susceptibility χ(ω), but also the effect of the interactions among them.

By using functional analysis methods and the spectral theory of Markov semigroups, we have

shown that the properties of the response can be characterised in terms of suitable operators

governing the time evolution of the unperturbed system. In particular, the microscoscopic sus-

ceptibility χ(ω) is intimately linked to spectral properties of L⟨x⟩0 , the generator of the time

evolution of microscopic observables in the unperturbed state. On the contrary, the response

of the full system at time t is not only associated to correlation properties of microscopic ob-

servables but also to memory effect between the previous-time response, i.e. the response at

148
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any time s ≤ t, originating from the coupling among the system. As such, the susceptibility

χ̃(ω) is related to a more complicated operator L̃⟨x⟩0 that describes the response of the system

and that cannot be interpreted as generating mixing properties of the microscopic observables.

On one hand, we have fully analysed the smooth properties of the response and developed

dispersion (Kramers-Kronig) relations and sum rules, deriving essentially from causality prop-

erties, for the macroscopic system far away from critical settings.

On the other hand, we have proved that, at criticality, the response of the system breaks down,

signalled by a non analytical behaviour of the macroscopic susceptibility given by the devel-

opment of a pole on the real axis of frequencies. We have been able to identify two different

mechanisms leading to such a pole corresponding to two different scenarios of criticality, critical

transitions and phase transitions. For simplicity we report here equation (4.25)

χ̃i(ω) =
M∑
j=1

P−1
ij (ω)χj(ω). (7.1)

that links the properties of the response of the full system, given by χ̃(ω), with the response of

the single microscopic agents, expressed by χ(ω), through the matrix Pij(ω).

1. If the non analytical behaviour derives from a pole in the microscopic susceptibility χi(ω),

the system undergoes a critical phenomenon that conforms to the classic scenario of criti-

cal transitions for finite dimensional systems where one expects a divergence of correlation

properties of the microscopic degrees of freedom due to the spectral gap of the transfer

operator of the unperturbed system becoming vanishingly small.

2. When the pole derives from non invertibility properties of the renormalisation matrix

Pij(ω), the system undergoes a qualitatively different critical scenario that can be inter-

preted as a phase transition. This critical behaviour is not accompanied by a divergence

of correlation properties of the single agents but arises, only in the thermodynamic limit,

as a result of the interactions among them.

Through the spectral decomposition of Markov semigroups in terms of stochastic Ruelle Pol-
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licott resonances we have established a link between the singular properties of the response at

criticality and the spectral properties of dynamical operators. Focusing on phase transitions,

we have shown through spectroscopic numerical experiments that there is a clear signature of

the development of a pole on the real axis of frequencies when the thermodynamic limit is

approached for both equilibrium and nonequilibrium systems. For finite size systems, the pole

manifests itself as a resonance of the response with a finite width, which decreases as the ther-

modynamic limit is approached. We are also able to fully characterise the singular behaviour

of the susceptibility by evaluating the value of the residue of the pole in terms of microscopic

correlation functions in the unperturbed state.

The response theory we have developed, being linked to spectral properties of suitable re-

sponse operators, shows that the singular behaviour of the susceptibility of the full system does

not depend on the applied forcings nor on the observable under investigation, providing some

degree of universality. Classical approaches to the investigation of phase transitions require the

identification of order parameters, i.e. suitable observables of the system able to capture some

degree of macroscopic behaviour of the system, which is most often a non trivial task to achieve,

especially in nonequilibrium settings. The response theory perspective we have adopted in this

thesis provides an alternative approach that is able to bypass the problem of the detection of

order parameters.

In this regard, in the last chapter of the thesis we provide a dimension reduction methodology,

based on a cumulant expansion of the probability distribution of the system in the thermo-

dynamic limit, that allows to create a reduced order dynamics in terms of a (low) number of

cumulants, that act as effective reaction coordinates for the system. By performing response

experiments on the reduced dynamics, we have shown that the exact phase transition can be

detected through the resonant, singular behaviour of the reduced order susceptibility of the

system.

In conclusion, the work we have developed in this thesis indicates that response theory for

identical interacting systems is a very powerful conceptual tool to the detection and investi-
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gation of critical phenomena, framed in the mathematical framework of spectral properties of

dynamical operators. There are multiple directions of future research in this area, such as

• the analysis of more complicated interaction patterns among the agents. In particular,

the spectral theory of selfadjoint operators (in suitable Hilbert spaces) would allow one to

study general multidimensional equilibrium reversible interacting systems featuring phase

transitions for generic interaction potentials.

• the designing of early warning indicators for critical phenomena alternative to the exten-

sive literature that exists for critical transitions.

• the systematic investigation of the optimal class of observables for which the divergence

of response properties would yield the best detection of the critical phenomena. Clearly,

this fundamental problem is closely related to the identification of order parameters for

such systems.

• the interpretation, in a response theory perspective, of phenomena of collective behaviour

(synchronisation, cooperation, consensus, etc...) in both natural and social sciences.

• the designing of reduced order models based on the dimension reduction methodology per-

formed in the last chapter for more complicated systems of weakly interacting diffusions,

with applications to neural networks and life sciences [DP19, CDPF15].
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Cumulant Truncation Scheme

In this appendix we provide the algebra to perform a cumulant truncation scheme at any generic

order n. We remark that the equations of moments approach, and the cumulant truncation

scheme, can be easily generalised to higher dimensions. Firstly, we observe that the relationship

between cumulants and moments of a probability distribution is

kn =
n∑
l=1

(−1)l−1(l − 1)!Bnl(M1, . . . ,Mn−l+1) (A.1)

where Bnl(M1, . . . ,Mn−l+1) are partial (incomplete) Bell polynomials. In particular, these

polynomials are given by

Bnl(M1, . . . ,Mn−l+1) =
∑ n!

j1!j2! . . . jn−l+1!

(
M1

1!

)j1 (M2

2!

)j2
. . .

(
Mn−l+1

(n− l + 1)!

)j1

where the sum is taken over all the sequences j1j2 . . . jn−l+1 of non negative integers such that

the following two conditions hold

j1 + j2 + . . . jn−l+1 = l

j1 + 2j2 + · · ·+ (n− l + 1)jn−l+1 = n
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Moreover, we will make extensive use of the following two properties of the Bell polynomials

Bn1(M1, . . . ,Mn) =Mn (A.2)

Bn2(M1, . . . ,Mn−1) =
1

2

n−1∑
k=1

(
n

k

)
MkMn−k (A.3)

The closure approximation M̄n̄+1 can be easily found by separating the term l = 1 from equation

A.1 and using A.2,

kn =Mn +
n∑
l=2

(−1)l−1(l − 1)!Bnl(M1, . . . ,Mn−l+1) (A.4)

In fact, evaluating the above equation for n = n̄ + 1 and imposing the condition kn̄+1 = 0

results in

M̄n̄+1 = −
n̄+1∑
l=2

(−1)l−1(l − 1)!Bn̄+1,l(M1, . . . ,Mn̄+2−l) (A.5)

The evaluation of M̄n̄+2 requires more care since it involves M̄n̄+1 as well. Let us first observe

that the cumulant kn̄+2 can be written as, see equation A.1,

kn̄+2 =Mn̄+2 −Bn̄+2,2(M1, . . . ,Mn̄+1)+

+
n∑
l=1

(−1)l−1(l − 1)!Bn̄+2,l(M1, . . . ,Mn̄+3−l)
(A.6)

Using equation A.3 we can write

Bn̄+2,2(M1, . . . ,Mn̄+1) = (n̄+ 2)Mn̄+1M1 +
n̄∑
k=2

(
n̄+ 2

k

)
MkMn̄+2−k (A.7)

where we have separated the term k = 1 and k = n̄+ 1 from the total sum.

Finally, by imposing the condition kn̄+2 = 0 and consistently estimating Mn̄+1 as M̄n̄+1 we
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obtain the approximated value for Mn̄+2 as

M̄n̄+2 = (n̄+ 2)M̄n̄+1M1 +
1

2

n̄∑
k=2

(
n̄+ 2

k

)
MkMn̄+2−k−

−
n̄+2∑
l=3

(−1)(l−1)(l − 1)!Bn̄+2,l(M1, . . . ,Mn̄+3−l)

(A.8)

In conclusion, the cumulant truncation scheme consists in the finite set of equations 6.13 with

n = 1, . . . , n̄ along with the boundary conditions M0 = 1 and Mn̄+1 = M̄n̄+1 , Mn̄+2 = M̄n̄+2 as

given by equations A.5 and A.8 respectively.
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Equations for the Cumulants

In this section we will provide a few more details on how to obtain the dynamical evolution of

the cumulants of the distribution of the infinite system ρ(x, t). Our analysis follows closely the

one in [DZ78]. The calculations below refer to model A, since similar results hold for model B.

As explained in the main text, ρ(x, t) satisfies a non linear and non local fokker planck equation

that we write here in an alternative way as

∂ρ

∂t
=

∂

∂x

((
V ′
α,ν(x) + θ (x− ⟨x⟩)

)
ρ
)
+

1

2

∂2

∂x2
(
σ2(x)ρ

)
(B.1)

The cumulants kn are defined by the cumulant generating function G(λ, t) = ln g(λ, t)

∞∑
n=1

kn(t)
λn

n!
= ln

∫
ρ(x, t)eλxdx ≡ ln g(λ, t) (B.2)

Equation B.1 yields an evolution equation for the cumulant generating function

dG

dt
= −λ

g

∫
dx
(
x3 −

(
α− θ + νσ2x2

)
− θ⟨x⟩

)
ρeλx +

λ2

2g

∫
dx
(
σ2 + σ2

mx
2
)
ρeλx
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By separating the different powers of the variable x we can write the above equation in terms

of G, its derivative G′(λ, t) = ∂G
∂λ

and higher order derivatives as

dG

dt
= λθ⟨x⟩+ λ2σ2

2
+ λ(α− θ + νσ2)G′ +

λ2σ2
m

2

(
G′2 +G′′)−

− λ
(
G′G′2 + 3G′G′′ +G′′′) (B.3)

Using the definition of the cumulants given in equation B.2 and comparing same powers of λ

one finally obtains the equations for the cumulants

1

n

dkn
dt

= θk1δ1n +
σ2

2
δn2 +

(
α− θ + σ2

m

(
ν +

n− 1

2

))
kn − kn+2+

+ σ2
m(1− δn1)

(n− 1)!

2

n−1∑
i=1

kikn−i
(i− 1)!(n− i− 1)!

−

− 3(n− 1)!
n∑
i=1

kikn−i+2

(i− 1)!(n− i)!
−

− (n− 1)!
n∑
i=1

n−i+1∑
j=1

kikjkn+2−i−j

(i− 1)!(j − 1)!(n− i− j + 1)!

(B.4)
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Metastable Transition Times in a Coupled Bistable System. Electronic Journal

of Probability, 15(none):323 – 345, 2010.

[BBS15] Viviane Baladi, Michael Benedicks, and Daniel Schnellmann. Whitney-Hölder
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[SGL19] Jose Simmonds, Juan A. Gómez, and Agapito Ledezma. The role of agent-

based modeling and multi-agent systems in flood-based hydrological problems:

a brief review. Journal of Water and Climate Change, 10 2019. jwc2019108.

[SGL20] Manuel Santos Gutiérrez and Valerio Lucarini. Response and sensitivity using

markov chains. Journal of Statistical Physics, 2020.

[SGLCG21] Manuel Santos Gutiérrez, Valerio Lucarini, Mickaël D. Chekroun, and Michael
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