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Abstract 
 

Mei Ran Abellona U, The discovery and validation of metabolites as candidate 

biomarkers for the diagnosis of hepatocellular carcinoma. 
(Under the direction of Professors Elaine Holmes, Simon Taylor-Robinson and 

Jeremy Nicholson) 

 

Hepatocellular carcinoma (HCC) constitutes a major disease burden worldwide. Much 

of its high mortality-to-incidence ratio can be attributed to late diagnosis, resulting in 

poor survival. Motivated by the need to develop a novel non-invasive diagnostic test to 

improve the chances of early diagnosis, this thesis makes use of metabonomic 

technologies to discover and validate metabolites as potential novel diagnostic 

markers for HCC. First, a systematic review of the literature on the topic was conducted 

to collate all published evidence of metabolites that were reported to be discriminatory 

for HCC. A bespoke risk of bias assessment tool was developed for metabonomic 

studies and a weighted score system was implemented to rank metabolites based on 

the strength of evidence. This resulted in a ranked list of metabolites with the greatest 

potential to be followed up for validation for each of the sample types (tissue, blood 

and urine). Then, validation of urinary metabolites with the greatest potential concluded 

from the systematic review was performed using data acquired from a UK cohort. None 

of the previously reported difference between HCC and cirrhosis groups could be 

reproduced, indicating the current lack of candidate markers specific for HCC 

detectable in urine. Finally, an exploratory analysis of serum 1H-NMR data from a UK 

and a Nigerian cohort was performed. Common and different alterations in metabolite 

levels between the two cohorts were compared. Glutamine-to-glutamate ratio was 

identified as a potential marker with the best discriminatory power between HCC and 

cirrhosis patients and this was validated using an independent cohort from the Gambia. 

This work adds to the ongoing effort to elucidate metabolites with the best potential to 

be further validated with the goal of developing a novel diagnostic test for HCC. 

 

  



 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To all who has faith in me 
  



 5 

Table of contents 
 
Acknowledgement 8 
Statement of originality 10 
List of figures 11 
List of tables 13 
List of Abbreviations 15 

Chapter 1 – Background 18 
1.1 Hepatocellular carcinoma: a global health perspective 18 

1.1.1. Clinical manifestations of HCC 18 
1.1.2. Global burden of HCC: distribution and trends 23 
1.1.3. Surveillance and diagnosis of HCC 26 
1.1.4. The need for novel non-invasive diagnostic tool for HCC 29 

1.2. The role of metabolism during tumorigenesis of HCC 31 
1.2.1. Metabolic reprogramming necessary to sustain cell proliferation 31 
1.2.2. Metabolic regulation as targets of tumour suppressor genes and oncogenes 32 

1.3. Metabonomics 33 
1.3.1. Metabonomics: the ‘omics’ of molecular phenotype 33 
1.3.2. Enabling technologies for metabonomics 35 

1.4. Scope of thesis 38 
1.5. References 40 

Chapter 2 – Discriminatory metabolites as candidate biomarkers for the diagnosis of 
hepatocellular carcinoma: a systematic review 45 

Abstract 45 
2.1. Rationale 46 
2.2. Methods 48 

2.2.1. Strategy of literature search 48 
2.2.2. Study selection and data extraction 49 
2.2.3. The development of risk of bias assessment 52 
2.2.4. Synthesis of results 52 

2.3. Results 54 
2.3.1. Studies reviewed 54 
2.3.2. Risk of bias assessment 57 
2.3.3. Discriminatory metabolites between HCC and control groups 60 

2.4. Discussion 63 
2.5. Conclusions 71 
2.6. References 73 

Chapter 3 – Methodology 80 
3.1. Experimental methods 80 



 6 

3.1.1. Nuclear magnetic resonance 80 
3.1.2. Liquid chromatography-mass spectrometry 89 

3.2. Computational and statistical methods 94 
3.2.1. Data processing of NMR and LC-MS spectra 94 
3.2.2. Statistical analysis 95 
3.2.3. Measures of diagnostic accuracy 102 
3.2.4. Statistical methods for metabolite identification 104 

3.3. References 106 
Chapter 4 – Multi-platform metabolic profiling of urine for the validation of reported 
discriminatory metabolites for HCC 107 

Summary 107 
4.1. Rationale 108 
4.2. Methods 108 

4.2.1. Participant recruitment and sample collection 108 
4.2.2. Sample preparation, data acquisition and processing 109 
4.2.3. Metabolite annotation 113 
4.2.4. Statistical analysis 113 

4.3. Results 116 
4.3.1. Cohort characteristics 116 
4.3.2. Quality assessment of experimental data 116 
4.3.3. Metabolite identification 121 
4.3.4. Statistical analysis 121 
4.3.5. Comparison with reports from the literature 129 

4.4. Discussion 132 
4.5. References 136 

Chapter 5 – Discovery of potential serum diagnostic marker for HCC using 1H-NMR 
spectroscopy: comparative findings from a UK and a Nigerian cohort 138 

Summary 138 
5.1. Rationale 139 
5.2. Methods 140 

5.2.1. Participant recruitment 140 
5.2.2. Data acquisition and processing 141 
5.2.3. Statistical analysis 143 

5.3. Results and discussion 146 
5.3.1. Cohort characteristics 146 
5.3.2. Overview of experimental data 148 
5.3.3. Hierarchical clustering revealed common and discrepant changes 155 
5.3.4. Common discriminatory metabolites between the two cohorts 161 
5.3.5. Comparison with reports from the literature 164 
5.3.6. Selection of a potential biomarker 166 



 7 

5.3.7. The evaluation of Gln/Glu ratio as a potential diagnostic biomarker 167 
5.3.8. Validation of the diagnostic utility of Gln/Glu ratio 169 

5.4. Conclusion 172 
5.5. References 174 

Chapter 6 – General discussion 177 
6.1. General interpretation of results 177 
6.2. Challenges faced by HCC biomarker discovery 181 
6.3. Lessons for future studies 184 
6.4. The way forward for a real-world solution 189 
6.5. References 190 

Appendix A – Supplementary Tables for Chapter 2 191 
Appendix B – Publications and presentations 216 
Appendix C – Research as art: A dream of metabonomics 218 
 
  



 8 

Acknowledgement 

I would like to express my deepest gratitude to my supervisors Professor Elaine 

Holmes, Professor Simon Taylor-Robinson and Professor Jeremy Nicholson. It has 

been my privilege to work under their guidance and supervision. It was always inspiring 

to meet with them to discuss the research. They have provided immense support for 

the PhD project and much more beyond in terms of my personal growth and career 

development. I would also like to thank them for giving the opportunities for me to 

attend various conferences to present the research. 

I would like to thank fellow PhD students Dr Eric Yi-Liang Shen and Dr Alzhraa Alkhatib 

whom I worked closely with during the years for being helpful and supportive always. I 

would also like to thank project students Dr Caroline Cartlidge and Mr Ozbil Dimenchi 

for being amazing students to work with. 

I would like to thank everyone in the Division of Computational and Systems Medicine 

who offered me help, answered my questions and gave advice on any of the aspects 

of the present work and my PhD journey in general. This includes Dr Joram Posma, 

Dr Jonathan Swann, Dr Panagiotis Vorkas and Dr Isabel Garcia Perez, Dr Torben 

Kimhofer, Dr Jutratrop Phetcharaburanin (Pete), Dr Nancy Georgakopoulou, Dr 

Andrea Rodríguez-Martínez, Dr Ana Luisa Neves, Ms Sofina Begum, Ms Jerusa 

Brignardello who were always there whenever I had questions and have given me 

invaluable advice. Special thanks to the NMR team (Dr Beatriz Jimenez, Ms Rose 

Tolson and Ms Nikita Harvey), the LC-MS team (Dr Matthew Lewis and Dr Verena 

Horneffer-van der Sluis) and the admin team of Surgery and Cancer (Ms Wendy Torto, 

Ms Katia Nery and Ms Jennifer Simeon) for assisting with the respective aspects of the 

PhD during the years. 



 9 

I would like to express my gratitude to Professor Edith Okeke, Dr Obinna Oleribe, Dr 

Pantong Mark Davwar and his team who hosted me with great hospitality during my 

visit to Jos University Teaching Hospital, Nigeria. I would like to thank Dr Nimzing 

Ladep, Dr Maud Lemoine and Dr Gibril Ndow for their assistance in obtaining and 

managing samples and data from Nigeria and the Gambia. 

I would like to thank all collaborators and their research teams who conducted the 

studies, collected the samples and arranged the transfer of the samples and data and 

all participants for taking part in the studies. I would also like to thank Imperial College 

London for funding this PhD studentship.  

I would like to thank my friends: BLACKK for being the original partners in crime in my 

scientific endeavour and for becoming life buddies ever since; Aggie Au Yeung for 

always being inspiring; the Arctic Foxes for being my companions as budding biologists; 

Rose Zhang, Ignatius de Bidegain, Qi Guan, Catherine Casale, Sonera Tayub and 

Kitty Liao for the numerous stimulating conversations we have had and for enriching 

my life in London.  

 

Finally, I thank my family – Lok Wa and Gladys for always being there when I needed 

someone to talk to; Jennifer for ensuring that my kitchen cupboard is well-stocked with 

home goodies; my parents for their unconditional love and support; and most 

importantly, Grandma for all the love and care. 

  



 10 

 

Statement of originality  

 
I declare that the work presented in this thesis and the research to which it refers are 

the product of my own work. Any work by other people are fully acknowledged and 

referenced.  

 

Contributions of others are described below: 

Dr Eric Yi-Liang Shen developed the literature search strategy, and Dr Eric Yi-Liang 

Shen, Dr Alzhraa Alkhatib and Dr Caroline Cartlidge contributed in data extraction and 

the development of the risk of bias assessment for the systematic review (Chapter 2).  

 

Study design, participant recruitment and sample collection had been completed by 

research teams at various sites where the studies were conducted under the 

leadership and coordination of Professor Simon Taylor-Robinson (Chapters 4 and 5). 

 

  



 11 

List of figures 

1.1 Underlying causes of HCC.  23 
1.2 Global distribution of HCC. 24 
1.3 The Barcelona Clinic Liver Cancer staging system with overall 

survival. 
30 

2.1 PRISMA flow diagram of study selection. 54 
2.2 Summary characteristics of the included studies.  55 
2.3 Risk of bias assessment of included studies.  56 
2.4 Top 30 metabolites ranked by |weighted score| in each sample 

type.  
59 

3.1 Schematic diagram of an NMR experiment 83 
3.2 1H-NMR spectrum of lactate 84 
3.3 Relative intensities of multiplets due to spin-spin coupling follow 

Pascal’s triangle. 
87 

3.4 Visual explanation of principal component analysis. 102 
4.1 Method of metabolite annotation in LCMS using the annotation of 

hippuric acid in the HILIC dataset as an example.  
112 

4.2 Quality assessment of the 1H NMR data. 118 
4.3 Quality assessment of the HILIC-LCMS data. 119 
4.4 Quality assessment of the RP-LCMS data. 120 
4.5 Intensities of metabolites found in NMR in each study group 125 
4.6 Relative intensities of metabolites found in HILIC-LCMS in each 

study group 
126 

4.7 Relative intensities of metabolites found in RP-LCMS in each study 
group 

127 

5.1 Principal component analysis (using mean-centered, Pareto-scaled 
data) scores plot of serum samples together with quality control 
samples 

149 

5.2 Principal component analysis scores plot (using mean-centered, 
Pareto-scaled data) of samples coloured according to study group 

149 

5.3 A spectrum of a quality control sample from the Nigerian study 
showing metabolite assignment. 

151 

5.4 Median fold change between groups and statistical test significance 
of metabolites in each cohort 

154 

5.5 Relative intensities of ketone bodies. 159 



 12 

5.6 Relative intensities of glutamine (A & D), glutamate (B & E) and 
glutamine-to-glutamate (Gln/Glu) ratio (C & F) for the Nigerian and 
the UK cohort respectively.  

160 

5.7 Receiver operating characteristic curves of glutamine-to-glutamate 
ratio and AFP 

168 

5.8 Validation of the glutamine-to-glutamate (Gln/Glu) ratio as a marker 
for delineating HCC from cirrhosis in a Gambian cohort 

171 

6.1 Trends across different study groups that a potential marker may 
display.  

180 

6.2 Strategies to identify markers specific to HCC, not markers of liver 
impairment.  
  

187 

  



 13 

List of tables 

1.1 Comparison of various methods for detecting HCC. 27 
2.1 A bespoke risk of bias assessment for metabonomic studies. 50 
3.1 A selection of statistical tests for comparing different types of 

variables. 
96 

4.1 Clinical characteristics of the cohort. 115 
4.2 Chemical shifts of metabolites annotated in the 1H NMR dataset. 118 
4.3 Evidence for annotations made in LCMS data 123 
4.4 Statistical analysis of metabolites annotated 124 
4.5 Comparison of findings of the current cohort to those of published 

results 
131 

5.1 Clinical characteristics of the UK cohort 145 
5.2 Clinical characteristics of the Nigerian cohort 146 
5.3 Chemical shifts and evidence used for the assignment. 150 
5.4 Median fold change and statistical test results of the assigned 

metabolites in the Nigerian cohort 
152 

5.5 Median fold change and statistical test results of the assigned 
metabolites in the UK cohort 

153 

5.6 Summary of changes observed in the two cohorts 161 
5.7 Comparison of current findings and previous reports. 165 
5.8 Logistic regression models of glutamine-to-glutamate ratio as a 

predictor for the presence of tumour.  
168 

5.9 Cutoff threshold, sensitivity & specificity of glutamine-to-glutamate 
ratio and AFP 

168 

5.10 Clinical characteristics of the Gambian validation cohort 170 
 
Appendix 
A Table 1 

 

Search strategy on databases. 

 
191 

Appendix 
A Table 2 

PRISMA-DTA checklists.  197 

Appendix 
A Table 3 

Details of included studies 201 

Appendix 
A Table 4 

Top 30 metabolites reported to be discriminatory in tumour 
compared to non-tumour tissue according to the final weighted 
score and the intermediate steps 

209 

Appendix 
A Table 5 

Top 30 metabolites reported to be discriminatory in blood (plasma 
or serum) according to the final weighted score and the 
intermediate steps 

211 



 14 

Appendix 
A Table 6 

Top 30 metabolites reported to be discriminatory in urine according 
to the final weighted score and the intermediate steps 

214 

 
  



 15 

List of Abbreviations 

1D 1-dimensional 
1H-NMR Proton nuclear magnetic resonance 
AAA Aromatic amino acids  
AFP Alpha-fetoprotein 
ARLD Alcohol-related liver disease 
ATP Adenosine triphosphate 
AUROC Area under receiver operator characteristic curve 
B0 External magnetic field  
BCAA Branched chain amino acids  
BCLC Barcelona Clinic Liver Cancer  
BMI Body mass index  
CE-MS Capillary-electrophoresis mass spectrometry  
CEUS Contrast-enhanced ultrasound 
CHB  Chronic hepatitis B 
CHC Chronic hepatitis C 
COSY Correlation spectroscopy 
CPMG Carr-Purcell-Meiboom-Gill  
CT Computed tomography 
EASL European Association for the Study of the Liver 
FDA Food and Drug Administration  
FDR False discovery rate  
FID Free induction decay 
FWER Family-wise error rate  
GC Gas chromatography 
Gln/Glu Glutamine: glutamate 
GLOBOCAN Global Cancer Observatory 
h Planck's constant 
ℏ Reduced Planck’s constant  
H0 Null hypothesis 
H1 Alternative hypothesis  
HBsAg Hepatitis B surface antigen 
HBV Hepatitis B virus 
HCC Hepatocellular carcinoma 
HCV Hepatitis C virus 
HILIC Hydrophilic interaction 
HIV Human immunodeficiency virus 
HMDB Human metabolomics database  
HPLC High performance liquid chromatography  
HSQC Simple quantum coherence spectroscopy  
JRES J-resolved spectroscopy  



 16 

JUTH Jos University Teaching Hospital 
k Boltzmann's constant 
l Spin quantum number  
LC Liquid chromatography 
LC-MS Liquid chromatography-mass spectrometry 
LD Liver disease 
log2FC log2 fold change  
LPC Lysophosphatidylcholines  
m Magnetic quantum number  
M Net nuclear magnetic moment 
m/z mass-to-charge  
MRI Magnetic resonance imaging 
NAFLD Non-alcoholic fatty livery diease 
NASH Non-alcoholic steatohepatitis 
NMR Nuclear magnetic resonance 
nOe Nuclear Overhauser effect  
NOESY Nuclear Overhauser effect spectroscopy 
OPLS Orthogonal partial least squares  
P Angular momentum  
PAR Population attributable risk 
PC Principal component 
PCA Principal component analysis  
pFDR FDR-adjusted p-value  
pFDR pFalse discovery rate  
Phe-trp Phenylalanyl-tryptophan 
pi Loadings vector 
ppm Parts per million  

PRISMA DTA  
Preferred reporting items for systematic review and meta-
analysis of diagnostic test accuracy studies 

PROLIFICA Prevention of LIver FIbrosis and Cancer in Africa Study 
QC Quality control 
RF Radiofrequency 
RoB Risk of bias 
ROC Receiver operating characteristic  
RP Reversed phase 
RSD Relative standard deviation 
RT Retention time 
SN Sensitivity 
SP Specificity 
STOCSY Statistical total correlation spectroscopy 
STORM Subset optimisation by reference matching  
T Temperature in Kelvin 
TCA Tricarboxylic acid 



 17 

ti Scores vector 
TMAO Trimethylamine N-oxide 
TOCSY Total correlation spectroscopy 
TOF Time-of-flight 
TSP 3-(trimethylsilyl- [2,2,3,3,-2H4]-propionic acid 
UHPLC Ultra-high-pressure liquid chromatography 
UPLC Ultra-performance liquid chromatography 
v Frequency 
vL Lamour frequency 
xi Predictor variable  
α Significance level  
β0 Intercept 
βi Regression coefficient  
γ Gyromagnetic ratio 
δ Chemical shift 
ΔE Energy difference  
µ Magnetic moment  

 
  



 18 

Chapter 1 – Background 

 
1.1 Hepatocellular carcinoma: a global health perspective 

1.1.1. Clinical manifestations of HCC 

Hepatocellular carcinoma (HCC) is malignancy arising from hepatocytes in the liver. It 

is the most common form of primary liver cancer, accounting for 90% of cases (1). 

Most HCC cases occur as a late-stage manifestation of advanced chronic liver disease 

as a result of known underlying aetiology. These can be broadly categorised as viral, 

lifestyle-modifiable factors, carcinogen-exposure, and less frequently, autoimmune or 

hereditary conditions. Many of the underlying causes of chronic liver diseases increase 

the risk of developing HCC indirectly, through chronic damage and inflammatory 

response, leading to fibrosis and subsequently cirrhosis of the liver, while others exert 

a direct carcinogenic effect. The most common risk factors for HCC, namely chronic 

hepatitis B or C infection, alcohol-related liver disease, and non-alcoholic fatty liver 

disease, each induces inflammatory response that leads to hepatitis which progresses 

to fibrosis and cirrhosis overtime. As such, the majority (70-90%) of HCC cases occurs 

on a background of cirrhosis (2) and HCC is the leading cause of death in patients with 

cirrhosis (3).  

 

Chronic hepatitis B (CHB) and C (CHC) infections are viral causes of HCC. 73.4% of 

all HCC cases can be attributable to these two causes (4). CHB alone accounts for 

more than half of HCC cases worldwide (5). Hepatitis B virus (HBV) is a blood-borne 

virus most often acquired through mother-to-child transmission or in early years of life. 

In highly endemic regions in East Asia and sub-Saharan Africa, acquisition early in life 

are usually asymptomatic. However, between 30-90% of infected individuals become 
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chronic carriers of the virus, depending on the age at the time of infection (6). HCC 

incidence in CHB carriers with or without cirrhosis is 3 and 1 per 100 person-years, 

respectively (6).  

 

CHC infection is the second leading cause of HCC and is the leading cause of HCC 

in Western countries (7). Unlike HBV, hepatitis C virus (HCV) is most commonly 

transmitted via contaminated blood products and injected drug use. 75-80% of HCV 

infected individuals become CHC carriers, with a 10-20% chance of developing 

cirrhosis in 20 years and an annual risk of 1-4% in developing HCC once cirrhosis is 

established (8). CHB and CHC promote HCC through chronic inflammation, leading 

to fibrosis and cirrhosis, but also possess viral factors (such as the HBx protein in 

HBV or the core protein in HCV) that contribute to oncogenic transformation directly 

(9). CHB induced HCC without cirrhosis is more common in African American and 

Asian populations (accounting for up to 40% of the cases as opposed to 9% in 

Caucasian populations (10) and CHB has been shown to transform hepatocytes into 

malignant cells without associated inflammation or fibrosis and although the 

mechanisms are not fully understood, they are thought to involve epigenetic changes 

and the ability of HBV to integrate into the host genome causing genomic instability 

(11). 

Prolonged excessive consumption of alcohol results in alcohol-related liver disease 

(ARLD) and is the second leading cause of HCC in Western nations (7). ARLD 

comprises the spectrum of conditions from alcoholic steatosis, chronic fibrosis and 

cirrhosis, with an annual incidence of 2.1-5.6% once cirrhosis is established (12). 
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Non-alcoholic fatty liver disease (NAFLD) is the umbrella term that encompasses 

steatosis, which is the accumulation of fat in the liver, and non-alcoholic steatohepatitis 

(NASH), which is the presence of inflammation and liver injury in addition to the 

accumulation of fat. It is considered the hepatic manifestation of metabolic syndrome 

as a result of obesity (13). Over time, NAFL progresses to NASH and the chronic 

inflammation and liver injury leads to fibrosis and subsequently cirrhosis. NASH 

patients with cirrhosis have a cumulative risk of developing HCC as high as 12.8% 

over 7 years (14). Half of the NASH-induced HCC arise in patients without cirrhosis 

(15), suggesting that NAFLD/NASH can promote carcinogenesis in the absence of 

cirrhosis. 

 

On many levels, the metabolic signature of HCC is a progression of the metabolic 

dysfunction found in cirrhosis. For example, elevated serum lactate, triglycerides and 

choline concentrations corresponding to lactate dehydrogenase and alkaline 

phosphatase are elevated in both conditions but the increase in concentration is more 

marked in HCC patients compared to cirrhotic controls (16). Similarly, the distribution 

of metabolites across liver tissue, as measured by mass spectrometric imaging, was 

similar in cirrhosis and HCC with some slight metabolic differences. For example, some 

phospholipids and fatty acids were found in higher abundance in the cirrhotic condition, 

whereas choline, glycerophospholipid, beta-alanine, arginine and proline metabolism 

and arginine biosynthesis, showed a gradation of increase in relative concentrations 

from healthy control to cirrhosis to HCC (17). This thesis examines the metabolic 

patterns associated with HCC on a background of cirrhosis but also considers the HCC 

profile without a cirrhotic background, acknowledging that there is an increasing 



 21 

number of cases arising from conditions such as NAFLD that do not always develop 

cirrhosis prior to HCC. 

 

Aflatoxin B1 is a carcinogenic mycotoxin produced by a few fungal species in the genus 

of Aspergillus that grow in food stored in humid conditions and is a common 

contaminant of foods such as grains, corn and legumes (18). It is a potent 

hepatocarcinogen by forming covalent bonds with DNA after being metabolised in the 

liver. It is thought to play a causative role in 4.6-28.2% of all HCC cases, mainly in sub-

Saharan Africa, Southeast Asia and China (19). Another environmental exposure risk 

is iron overload due to consumption of home-brewed alcohol with high iron content, 

which is common in rural areas in sub-Saharan African (20). It was found to elevate 

HCC risk by 10-fold even after controlling for viral hepatitis and aflatoxin exposure (21).  

 

Less frequent causes of HCC include hereditary and autoimmune-related liver 

diseases. Hereditary haemachromatosis is characterised by the accumulation of iron 

in the liver and is associated with a 20-fold increased risk of HCC (22). Autoimmune 

hepatitis and primary biliary cholangitis are autoimmune causes of HCC, which have 

lower (23) or similar (24) risk of developing HCC once cirrhosis is established, 

compared to other causes, respectively. Budd-Chiari syndrome, a rare liver condition 

due to the obstruction of hepatic veins, is also a risk factor for HCC (25). 

 

Aside from the above-mentioned causes of chronic liver injury that heighten the risk of 

developing HCC, advanced age, male sex and tobacco use are also independent risk 

factors. As with all cancers, which is a disease of the cumulation of genetic mutations 

and chromosomal aberrations leading to malignant transformation, the risk of 
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developing HCC increases with age. The male-to-female ratio of HCC range between 

2-4:1 in different populations. The phenomenon is explained by androgenic hormone 

being HCC-promoting (26) and that male sex may be associated with greater exposure 

to environmental carcinogen (2). Tobacco use (27) and diabetes (28) have also been 

shown to be independent risk factors of HCC. 

 

The different risk factors of HCC have synergistic effect. Co-infection of human 

immunodeficiency virus (HIV) with HBV (29) or with HCV (30) result in extra risk of 

HCC and co-infection of HBV and HCV (31) is also associated with higher risk than 

individuals with mono-infection alone. Tobacco use, alcohol intake and obesity have 

also been shown to have synergistic effects on the risk of developing HCC (27). 

 

In summary, HCC is a late-stage manifestation of many different chronic liver 

conditions that promotes HCC development either indirectly or directly. The various 

pathological processes leading to HCC are summarised in Figure 1.1.  
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Figure 1.1. Underlying causes of HCC. While most risk factors promote HCC 

development through chronic inflammation leading to fibrosis and subsequently 

cirrhosis (pink arrows), others exert a direct effect (light blue arrows). NAFLD: Non-

alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis.  

 

 

1.1.2. Global burden of HCC: distribution and trends 

The latest GLOBOCAN (an online database providing global cancer statistics as part 

of the International Agency for Research on Cancer’s Global Cancer Observatory) 

estimates that primary liver cancer is the sixth (fifth in men) most common cancer 

worldwide and the fourth (second in men) most common cause of cancer-related death 

(32), with an estimated annual incidence of 841,000 and mortality of 782,000. It is 

among the top three leading causes of disability-adjusted life-years lost in men and is 

the second leading cancer (after lung cancer) cause of years of life lost (33). With HCC 

being the major subtype of primary liver cancer, accounting for up to 90% of cases (1), 

it constitutes substantial healthcare burden globally. 
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Figure 1.2. Global distribution of HCC. (A) Incidence and (B) mortality of HCC, 

source: GLOBOCAN 2018 (28). Regions with high HCC burden reflect the prevalence 

of chronic hepatitis B and C infections (C & D, respectively), adapted from Refs (34, 

35).  
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The geographical distribution of HCC incidence is heterogenous and largely reflects 

the distribution of the prevalence of underlying liver conditions (Figure 1.2). CHB, 

responsible for over half of the HCC cases worldwide, is highly endemic in East Asia 

and sub-Saharan African and is responsible for these regions to have the highest 

incidence of HCC at over 20 per 100,000. Egypt and Mongolia are the countries with 

the highest prevalence of CHC in the world at over 12% (36, 37), which constitutes the 

high incidence of HCC in these two countries. These countries with high CHB or CHC 

prevalence altogether account for over 80% of the HCC cases worldwide (38) and 

China alone accounts for 50% of all HCC cases (39). 

 

The pattern of HCC incidence is changing due to effective interventions for preventable 

causes of HCC and the rise of other risk factors. With the development and 

implementation of an effective HBV vaccine as part of national immunisation programs 

since the 1980s in East Asia, the prevalence of HBV infection in the birth cohorts has 

since dropped dramatically and has been shown to be associated with the decline in 

HCC cases due to CHB in these countries (40). However, despite the availability of an 

effective vaccine, due to incomplete coverage of HBV immunisation in sub-Saharan 

Africa, the prevalence of HBV infection remains high (41, 42).  

 

The introduction of direct-acting antiviral therapy which offers high cure rate has been 

shown to lower the risk of de novo development of HCC (43), which is expected to 

reduce the contribution of CHC to HCC in the future (44). However, a few studies have 

found an association between direct-acting antiviral therapy and HCC suggesting that 

in some instances the therapy may itself contribute to the aetiology of HCC (45). 
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The burden of diabetes, obesity and metabolic syndrome are rising worldwide (46). 

The liver manifestation of these conditions, NASH/NAFLD was reported to be the most 

rapidly growing cause of HCC among patients with resectable HCC (47) and those 

listed for transplant (48) and was predicted to be the leading cause of HCC in the 

United States by the year 2030 (49). The rise of metabolic syndrome-related HCC is 

one of the major factors of the increase in incidence in previously low-risk countries 

(44). 

 

In summary, HCC has the highest prevalence in East Asia, sub-Saharan Africa, Egypt 

and Mongolia due to the high endemicity of CHB or CHC infections. With the 

introduction of effective newborn HBV vaccine, there has been a decline in incidence 

in East Asia. However, the effect has not yet been observed in sub-Saharan Africa 

owing to incomplete immunisation coverage. A similar decline in CHC-related HCC is 

expected in the coming decades due to the introduction of direct-acting antiviral 

therapy for CHC, which has achieved high cure rates. On the other hand, incidence in 

previously categorised low-risk countries is rising due to the rise in obesity. Overall, 

the global burden of HCC persists but with a changing geographical pattern.  

 

1.1.3. Surveillance and diagnosis of HCC 

HCC may be detected by various methods each with its own advantages and 

disadvantages (Table 1.1).  
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Table 1.1. Comparison of various methods for detecting HCC. Based on the 

European Association for the Study of the Liver (EASL) Clinical Practice Guidelines 

(1). 

 

 

Liver biopsy is the current gold standard for unequivocal diagnosis of HCC. It allows 

for the delineation of HCC from intrahepatic cholangiocarcinoma, the second most 

common form of primary liver cancer. Histopathological examination and staining also 

allow for the subtyping of tumour. However, it is invasive and is associated with pain, 

risk of bleeding, seeding of tumour cells along the needle track (50) and has a false-

negative rate as high as 30% (51).  

 

Diagnosis of HCC via non-invasive criteria, mainly imaging techniques, is generally 

only applicable to patients with pre-existing cirrhosis (1). Contrast-enhanced computed 

tomography (CT) or dynamic magnetic resonance imaging (MRI) are two imaging 

modalities. HCC lesions display high contrast uptake during the arterial phase, 

followed by characteristic ‘wash out’ in the venous phase. For nodules between 1-2 

Table 1

Advantages Disadvantages Availability in 
resource-limited 
settings

Invasiveness

Biopsy Gold standard, 
allow for subtyping 
and differential 
diagnosis

Pain, risk of 
bleeding, risk of 
tumour seeding

Unlikely Invasive

Dynamic magnetic 
resonance imaging

High specificity Costly, risk of 
allergic reaction to 
contrast agent

Unlikely Non-invasive

Contrast-enhanced 
computed tomography

High specificity Costly, radiation 
exposure

Unlikely Non-invasive

Ultrasound Low-cost, risk-free Operator-
dependent, subject 
to machine quality, 
not applicable for 
obese patients

Likely, although 
machine quality 
may be poor and 
operator training 
may be insufficient

Non-invasive

Serum alpha-fetoprotein Low-cost Low sensitivity Likely Non-invasive
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cm, CT and MRI each has specificity of close to about 90% and sensitivity of about 70% 

(52). However, the high cost of MRI, radiation risk associated with CT scans and the 

risk of allergic reaction to contrast agents prevent their routine use as a surveillance 

method (1) and they are not available in resource-limited settings. 

  

Ultrasound is a favourable method for detecting HCC as it is non-invasive, free of 

radiation exposure and risk-free. Meta-analyses estimated that ultrasound has a 

pooled sensitivity of 84-94% for detecting HCC in cirrhotic patients but the sensitivity 

is much lower (47-63%) for early HCC (53, 54). However, the accuracy of US 

performance depends on the level of operator training, the quality of the ultrasound 

machine and may not be applicable for obese patients (55).  

 

Alpha-fetoprotein (AFP) is the only established serum biomarker that has been shown 

to be of diagnostic value for HCC. It is a protein found in high levels in the fetus and 

also in most HCC patients but is otherwise absent in adults. A cutoff at 20ng/mL has 

specificity of 90% and sensitivity of about 60% (56). However, since there is no 

evidence that AFP provides additional value to the detection of HCC than using 

ultrasound alone, its use is no longer recommended in European and American 

guidelines (1, 57).  

 

In addition to AFP, few other serum biomarkers such as des-gamma-carboxy 

prothrombin and lens culinaris agglutin-reactive AFP, have been assessed as potential 

serum biomarkers. However, their accuracy has not been found to be superior to AFP 

and hence they are not in routine clinical use (58, 59).  
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The use of these different methods in the surveillance and diagnosis of HCC depends 

on the clinical settings. European and American guidelines recommend six-monthly 

surveillance using ultrasound for high-risk patients (1, 57). Diagnosis can be 

established by one positive imaging with confirmation by alternative imaging, or biopsy 

in cases where imaging results are inconclusive (1, 57). 

 

However, in resource-limited settings, early diagnosis remains a challenge (42). A 

blood test for AFP and / or an ultrasound scan alongside clinical observations 

(enlarged upper right quadrant) may be the only available options (60). Given that most 

HCC cases occur in resource-limited settings, the inadequate performance of AFP and 

the limitations of ultrasound highlight the need for new low-cost tests for detecting HCC. 

 

1.1.4. The need for novel non-invasive diagnostic tool for HCC 

The stage of HCC at diagnosis determines the clinical management and treatment 

outcome. Barcelona Clinic Liver Cancer (BCLC) staging (Figure 1.3) is one of the most 

common staging systems for HCC as it links best treatment options with prognosis 

based on clinical evidence (61, 62) . Staging is determined by the size and multiplicity 

of the tumour, as well as the preservation of liver function, determined by Child-Pugh 

score (63). Curative treatment options (such as radiofrequency ablation, transplant or 

resection) are only viable if diagnosis is made early when tumours are smaller than 3 

cm with preserved liver function (1). Overall survival decreases as diagnosis is made 

at later stages. In resource-limited settings, resection and liver transplant options may 

not be available. Nevertheless, affordable curative treatment options, such as 

percutaneous ethanol injection may be available, but only if diagnosis is made early 

(60). 
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Figure 0.3 The Barcelona Clinic Liver Cancer staging system with overall 

survival. The BCLC system operates on a five-stage model based on the number 

and size of tumours, liver function, and performance status (based on child-Pugh 

score) of patients. For each stage, there is a recommended treatment strategy. 

Reproduced and adapted from Refs 1 and 64, with permission.
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As most HCC cases occur in resource-limited settings where there is difficulty to 

diagnose HCC early, it is a major reason for the high mortality-to-incidence ratio 

worldwide. Given that HCC mostly affects adults of productive age, especially in 

regions where the burden is most serious, the availability of a novel non-invasive tool 

for diagnosis, and possibly surveillance or screening depending on the healthcare 

setting, confer immense value in alleviating the burden of HCC. The availability of a 

novel low-cost non-invasive diagnostic test for HCC would not only be of immense 

value in resource-limited settings by allowing diagnoses to be made earlier to improve 

survival, it would also be beneficial in countries where there are surveillance programs 

in place by improving early detection rate. 

 

1.2. The role of metabolism during tumorigenesis of HCC 

1.2.1. Metabolic reprogramming necessary to sustain cell proliferation 

The re-arrangement of energy metabolism necessary to sustain chronic cell 

proliferation has been recognised as an emerging hallmark of cancer (65). The three 

key purposes of the metabolic reprogramming are to meet cancer cells’ increased 

energy, biosynthesis and redox needs during malignant transformation (66). 

 

One of the best described metabolic alteration attributable to cancer is that cancer 

cells in culture prefer glycolysis for generating ATP, metabolising glucose to lactate, 

rather than using the oxygen-dependent oxidative phosphorylation even when oxygen 

is abundant. This aerobic glycolysis was the first described by Otto Warburg (67) and 

was eponymously termed the ‘Warburg effect’ (68). It has been suggested that it leads 

to greater survival during unstable oxygen supply and that the intermediates from 



 32 

glycolysis may act as substrates to sustain biosynthesis necessary for cell proliferation 

(65, 66). 

 

Apart from the reliance on glucose, dependence on glutamine is another well-

characterised feature of cancer cells. Despite the shift towards aerobic glycolysis, the 

tricarboxylic acid (TCA) cycle is often intact (66) and glutamine can serve as an 

alternative fuel source to produce ATP via the TCA cycle (69). This process, called 

glutaminolysis, also act as an important source for the biosynthesis of amino acids, 

lipids and nucleotides and for sustaining glutathione pool for the maintenance of redox 

balance (68).  

  

1.2.2. Metabolic regulation as targets of tumour suppressor genes and 

oncogenes 

Given the necessity for cancer cells to reprogram their metabolism, it is not surprising 

that many downstream targets of oncogenes and tumour suppressors have a role in 

metabolic regulation. 

 

In genomics and exome sequencing studies of HCC, the tumour suppressor gene 

TP53 and the β-catenin gene CTNNB1 were found to be the most frequently mutated 

genes in HCC tumours, each occurring in more than a third of the cases (70, 71). The 

tumour suppressor p53 is known to regulate glucose uptake and central energy 

metabolism (72). The loss of tumour suppressor p53 leads to the downregulation of 

the glycolysis inhibitor TIGAR, which consequently promotes glycolysis (73). A 

deficiency in, or dysregulation of p53 can also lead to the downregulation of TCA cycle 

via SCO2 (synthesis of cytochrome C oxidase 2). Thus, p53 has been recognised as 
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a major force behind the glycolytic phenotype of cancer cells (65). On the other hand, 

Wnt/β-catenin signaling can be linked to glycolysis, the TCA cycle and glutaminolysis 

both directly and indirectly (74). 

 

As such, metabolic reprogramming is a crucial process during tumourigenesis and is 

the direct result of genomic alterations in cancer cells. To support such metabolic 

activities, tumour cells need to interact with biomolecules available in circulation, 

through uptake or secretion. Additionally, rapid cell proliferation in tumour is 

accompanied by necrosis, resulting in cellular contents being released (65). Taken 

together, this leads the formation of the hypothesis that tumourigenesis leaves a 

detectable signature in biofluids. 

 

1.3. Metabonomics 

1.3.1. Metabonomics: the ‘omics’ of molecular phenotype 

The term ‘metabonomics’, first coined by Nicholson and colleagues (75), was defined 

as ‘the quantitative measurement of the dynamic multiparametric metabolic response 

of living systems to pathophysiological stimuli or genetic modification’. It differs from 

the term metabolomics, which is the complete characterisation of the collection of 

metabolites in biological sample (76), in that metabonomics focuses on the elucidation 

of changes as a result of biological or disease processes. The following discussion 

uses the term metabonomics. Nonetheless, metabolomics largely applies due to the 

overlapping nature of the two terms. 

 

Advancement in various technologies in recent decades have forged the formation of 

various ‘omics’ fields. This includes genomics, which studies the collection of genes; 
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transcriptomics, the collection of expressed genes; and proteomics, the collection of 

proteins. Such comprehensive study of biological systems gave rise to a new 

paradigm. Contra to previous ‘reductionist’ approaches focusing on particular 

components and its relation to others in a ‘bottom-up’ manner, the ‘systems’ approach 

allows for holistic and integrated understanding of the biological phenomenon in a ‘top-

down’ manner (77). Since components in a biological system do not work in isolation, 

the systems approach has the benefit of better understanding the formation of 

emergent properties and response to perturbation through studying the interaction and 

behaviours of all components in a system (78). 

 

According to the central dogma of molecular biology (79), genetic information encoded 

in DNA is transcribed into messenger RNA and is in turn translated into polypeptide 

chains and hence proteins to execute biological functions. The outcome of the process 

is the development and maintenance of the phenotype of the living cell and 

consequently, the whole organism. In this context, metabonomics can be considered 

the ultimate ‘omic’ of the predecessing ‘omics’ as it represents the end point of the 

central dogma characterising phenotypes at the molecular level – the molecular 

phenome. Hence, metabonomics has been proposed to be a complement and 

augmentation of the other ‘omics’ fields (80). 

 

The definition of the subject of interest of the field of metabonomics is not clear cut. 

However, it typically includes any small compounds (smaller than 2,000 Da) that may 

be found in biological systems. They may be metabolites derived from endogenous 

metabolism of the organism, or of dietary or of xenobiotic origin (81). While lipidomic, 

the study of the diverse forms of lipids is generally considered a sub-field of 
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metabonomics (82), polypeptides are considered to be under proteomics, and thus 

not within the scope of metabonomics. 

 

Metabonomic analysis can be classified into two strategic approaches, targeted or 

untargeted. Targeted analysis involves the quantification of a pre-defined set of 

metabolites while untargeted analysis involves the global unbiased profiling of 

compounds present in a sample (83). Targeted analysis allows for the absolute 

quantification due to the use of calibration curves of individual compounds. The 

untargeted approach has the advantage of allowing discovery of novel metabolites 

associated with the biological or clinical condition in question but face the issues of 

more complex data handling, the need for metabolite identification and its semi-

quantitative nature (83).  

 

1.3.2. Enabling technologies for metabonomics 

The advent of the field of metabonomics has been facilitated by the advancement of 

various technologies in analytical chemistry. Nuclear magnetic resonance (NMR) 

spectroscopy and liquid or gas chromatography (LC / GC) coupled to mass 

spectrometry (MS) are the most common methods employed in the field. Both allow 

for accurate and precise measurements of a large collection of small molecules using 

a small volume of liquid (50-600μL, which may be urine, serum or other biofluids, 

homogenised tissue or cell extract) or solid (typically <1mg of tissue) samples (84). 

Each of these methods has its advantages and disadvantages. Also, due to the 

diversity of chemical compounds present in a biological sample that no single assay 

can encompass, the use of different methods to analyse the same sample has the 

benefit of maximising coverage.  
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NMR spectroscopy takes advantage of the magnetic spin nature of atoms. When 

subjected to a strong external magnetic field and radio frequency pulses, atoms with 

uneven spin relax to ground energy state at different frequencies depending on its 

molecular structure, hence giving rise to signals that inform its structure and quantity. 

In metabonomic phenotyping, proton (1H) NMR is used most often due to the ubiquity 

of protons in biological compounds. NMR spectroscopy has the advantage of being a 

highly reproducible non-destructive method requiring minimal preparation. However, 

compared to MS, it has lower sensitivity, which may be partially overcome by 

increasing the number of scans or by the use of a spectrometer with stronger magnetic 

fields. 

 

Liquid chromatography (LC) or gas chromatography (GC) coupled to MS are the other 

main analytical technologies used. The first chromatographic step separates the 

complex mixture of compounds according to their physical and chemical properties. 

By being coupled to a mass spectrometer, the partially separated compounds can be 

detected with high sensitivity. The separation method determines the class of 

compounds separated and detected. For example, GC allows for the separation of 

compounds that can be derivatised to become volatile (e.g. amino acids), hydrophilic 

interaction (HILIC) LC allows for the separation of polar compounds and reversed 

phase (RP) LC allows for the separation of non-polar compounds (e.g. lipids). Modern 

ultra-high-pressure LC (UHPLC) systems, which utilises smaller solid phase particles 

(smaller than 2 micron) and higher pressure (up to 15,000psi), permits high resolution 

separation of compounds in a complex mixture (85). Together coupled-MS systems 

have the advantage of being highly sensitive but suffer from the disadvantages of 
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samples being destroyed during analysis, lower reproducibility and more complicated 

data handling due to batch effects (for LC) and more time-consuming sample 

preparation (for GC). 

 

The principles of NMR and LCMS, which are the two analytical platforms used for 

sample analyses in this thesis, are described in greater detail in Section 3.1.  

 

In addition to advances in analytical chemistry that made simultaneous, sensitive and 

accurate measurement of small metabolites possible, accompanying development in 

data analysis and modelling was also crucial to advances in the field. This includes 

unsupervised and supervised multivariate statistical modelling algorithms, such as 

principal component analysis (PCA) (86) and orthogonal partial least squares (OPLS) 

(87) which identify latent variables of data by maximising the variance or the 

covariance, respectively, providing overviews of data in a reduced dimension. Whilst 

other multivariate statistical methods such as neural networks or genetic algorithms 

can be applied to ‘-omics’ data, the transparency of the influence of the input variables 

make the linear projection methods such as PCA and OPLS an appropriate choice for 

modelling spectroscopic data. Also, statistical tools were developed for aiding 

metabolite assignment, an example of which is statistical total correlation 

spectroscopy (STOCSY) (88) which identifies NMR peaks with high covariance and 

correlation. Computational methods used for analysis in this thesis are described in 

greater detail in Section 3.2. 
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1.4. Scope of thesis  

Given the global burden of HCC and the unmet need for novel non-invasive diagnostic 

test illustrated in Section 1.1, and that HCC tumourigenesis involves metabolic 

reprogramming, which may leave a detectable signature in easily accessible biofluids 

described in Section 1.2, this project makes use of the advent of metabonomics 

(Section 1.3) to search for potential diagnostic biomarkers for HCC. 

 

The term ‘biomarker’ is a portmanteau of ‘biological markers’. It may be broadly 

defined as any objectively measured characteristics that indicate a biological or 

pathological process, or response to therapeutic intervention (89). In the context of 

diagnosis for HCC, since most HCC cases develop on a background of cirrhosis, 

biomarkers should be able to delineate HCC cases from healthy control as well as 

from cirrhotic patients. Additionally, the ideal biomarker should be universal – that it is 

applicable regardless of genetic, environmental and aetiological factors. 

Therefore, the overarching hypothesis of the thesis is that HCC tumourigenesis 

involves aberrant metabolism that leaves a unique metabolic signature that is 

detectable in easily accessible biofluids such as urine or blood. The responsible 

metabolites can be identified and can serve as diagnostic biomarkers for HCC that are 

superior to currently available methods in terms of sensitivity and specificity. To test 

this hypothesis, a comprehensive metabonomic investigation was performed using 

samples collected from sub-Saharan Africa and the United Kingdom.  

The aim of the project is to identify and validate metabolites in either urine or blood 

that can be used as robust diagnostic biomarkers for detecting HCC. The ultimate goal 

is to develop a low-cost, rapid point-of-care diagnostic tool for HCC.  
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The specific objectives are: 

- To comprehensively collate from the literature previous reports of metabolites 

that have been found to be discriminatory 

- To perform metabolic phenotyping of urine and serum samples using 1H-

nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid 

chromatography (UPLC)-mass spectrometry (MS)  

- To evaluate the performance of previously reported biomarkers using the 

current data as an independent validation of the published potential markers  

- To analyse metabolic profiles to identify discriminatory metabolites  

- To assess whether the identified biomarkers are specific to HCC independent 

of genetic, environmental and aetiological factors by validating the results using 

samples from different populations  

Chapter 2 presents a systematic review of published literature on the topic to date.  

Chapter 3 describes the experimental and computational methods used in subsequent 

chapters. 

Chapter 4 presents an attempt to validate urinary markers concluded from the 

systematic review (Chapter 2) using NMR and LCMS data generated from a UK cohort. 

Chapter 5 presents an exploratory analysis comparing serum metabolic profiles from 

a UK and a Nigerian cohort in order to identify common alterations, with validation 

performed using a Gambian cohort. 

Chapter 6 provides an overall discussion and general interpretation of the results.  
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Chapter 2 – Discriminatory metabolites as candidate 
biomarkers for the diagnosis of hepatocellular carcinoma: 
a systematic review 

Abstract 

Background and aims: Metabolic reprogramming needed to sustain hepatocellular 

carcinoma (HCC) development forms the rationale for the search for novel diagnostic 

biomarkers for HCC in metabonomic studies. This review aims to systematically 

collate metabolites that have been reported to be dysregulated and identify any that 

may be probable candidate biomarkers for HCC. 

Methods: Eligible studies were metabolic profiling studies that analysed tissue, blood 

or urine samples comparing the concentration of metabolites in biological matrices of 

participants with HCC with those in corresponding control groups: healthy, pre-

cirrhotic liver disease, cirrhosis, or non-tumour tissue. Searches were conducted on 

Medline and EMBASE for reports published up to 5th February 2019. A bespoke risk 

of bias tool for metabonomic studies was developed and implemented. Discriminant 

metabolites in each sample type were ranked using a weighted score with the direction 

and extent of change, and the risk of bias of the reporting publication taken into 

account. 

Results: A total of 84 eligible studies were included in the review, which consisted of 

15, 54 and 9 studies investigating tissue, blood and urine respectively, and 6 studying 

more than one sample type. High ranking metabolites by their weighted score for each 

sample type included a diverse collection of metabolites such as energy metabolites, 

bile acids, acylcarnitines and lysophosphocholines. There was high coherence 

between studies among high-ranking discriminatory metabolites in tissue, but 

insufficient data and coherence for urine and blood. 
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Conclusions:  While no metabolite can be concluded definitively as potential markers 

for HCC, these first-in-kind systematically compiled ranked lists of discriminatory 

metabolites provide a valuable resource for informing future studies. Studies with 

standardised design are necessary to validate existing findings and to move research 

forward beyond exploratory investigations. (Funding: None; PROSPERO Registration: 

CRD42018095412) 

 
 
 

2.1. Rationale 

Hepatocellular carcinoma (HCC) is a major contributor of disease burden globally with 

the majority of cases occurring in low-and-middle-income countries (1, 2). Methods to 

diagnose HCC include: percutaneous liver biopsy, which is invasive and has 

associated risks (3); imaging technologies such as contrast-enhanced computed 

tomography or magnetic resonance imaging, which are not readily available where the 

burden is the heaviest; ultrasound, which is operator-dependent (4), and serum alpha-

fetoprotein (AFP), which has suboptimal accuracy (4). Despite poor performances, US 

and AFP are still heavily relied upon in resource-limited areas in Africa (2). Since HCC 

is largely asymptomatic at its early stages, diagnoses are often late, resulting in poorer 

survival. Therefore, a more accurate and low-cost diagnostic marker is an unmet 

medical need that has huge potential impact of alleviating the healthcare burden and 

overall survival of HCC (5).  

Metabonomic techniques utilise advanced analytical chemical technology, such as 

nuclear magnetic resonance (NMR) spectroscopy and gas or liquid chromatography-

mass spectrometry (GC/LC-MS), to detect and quantify compounds in complex 

chemical mixtures simultaneously. Its application to analyse clinical samples, such as 
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tissue extract or biofluids, holds promise to provide novel solutions to diagnostic and 

other clinical needs (6). The search for novel diagnostic biomarkers in HCCs using 

metabonomic methods has been motivated by the understanding that substantial 

metabolic reprogramming is necessary for malignant cells to drive and sustain 

tumorigenesis (7). In HCC, quantities of different metabolites are likely deranged due 

to changes in central energy metabolism (cancer cells’ preference for anaerobic 

respiration, even when oxygen is available: the Warburg hypothesis) and lipid profile 

to support rapid cell membrane turnover (8, 9). 

 

To date, numerous studies have been published reporting discriminatory metabolites 

between HCC and control groups with the aim to identify potential diagnostic 

biomarkers. However, the huge volume of publications has not yet been systematically 

reviewed to gather the evidence and identify contradictory reports, with published 

reviews either suggesting the diagnostic promise of metabonomic technology with 

examples (10), targeted metabolite panels (11) or focussing on specific analytical 

platforms or biofluids (12).  

 

This chapter presents a systematic collation of metabolites that have been found to 

be statistically discriminatory between HCC and control groups in tissue, blood or urine 

with the purpose of identifying any probable diagnostic biomarker with the best 

potential to robustly identify HCC. To accomplish that, a systematic review was 

conducted in accordance with the PRISMA-DTA statement (13). A bespoke risk of 

bias assessment was developed for metabonomic studies and implemented to assess 

the included studies. A weighted score system was developed to rank metabolites 

based on the number of reports of significant difference, the fold-change reported, the 
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concordance in the direction of change among reports, and the risk of bias of the 

reporting publication(s). This resulted in a ranked list of metabolites that have been 

most frequently and consistently reported to be discriminatory for each sample type, 

representing metabolites that should be followed up in future validation studies.  

2.2. Methods 

2.2.1. Strategy of literature search 

Eligible studies were human case-control studies that satisfied the following criteria: i) 

the study compared patients diagnosed with HCC to one or more of the following 

control groups: healthy controls, any pre-cirrhotic liver disease (e.g. chronic hepatitis, 

NAFLD, etc.), cirrhosis and non-tumour tissue (for tissue studies); ii) investigated liver 

tissue, blood (serum or plasma) and/or urine samples, and; iii) analysis of the samples 

and report of the metabolites found to be statistically significantly different between 

HCC and the control groups. Exclusion criteria were studies that investigated 

compounds of specific dietary components (such as from tea), xenobiotics (such as 

aflatoxin exposure), hormones (such as androgen levels) and reactive oxygen species. 

Studies were limited to original research articles published in English. 

 

Literature searches were conducted on the databases MEDLINE and Embase via 

Ovid. The search strategies, which included both MeSH terms and keywords, were 

developed by Dr Eric Yi-Liang Shen with a librarian and were validated manually 

(Appendix A Table 1). Studies published up to 5th February 2019 were retrieved using 

the search strategies, with additional papers identified manually through searches on 

PubMed and Google Scholar. This systematic review was performed in accordance to 

the PRISMA-DTA statement (13) (Appendix A Table 2) and had been registered on 

PROSPERO: CRD42018095412 (14). 
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2.2.2. Study selection and data extraction 
 

Initial screening using titles and abstracts, and subsequent full-text screening were 

performed by two investigators independently at each stage (myself with Dr Alzhraa 

Alkhatib and myself with Dr Eric Yi-Liang Shen, respectively). Included studies were 

then divided into four groups and were extracted by investigators (myself with Dr 

Alzhraa Alkhatib, Dr Eric Yi-Liang Shen and Dr Caroline Cartlidge) and were reviewed 

independently. Any discrepancy or disagreement was resolved through discussion. 

For each article, two sets of data were extracted: study characteristics and the 

discriminatory metabolites reported. Data extracted for study characteristics were: the 

number of participants in each study group recruited (main and validation cohort 

separately); the country where the study was conducted, the underlying aetiology of 

the liver disease of HCC patients; the condition of sample collection, whether the 

control groups were matched according to sex and age; the analytical method used, 

and the source of funding. For the reported discriminant metabolites, only those found 

to be statistically significant, defined by the study were extracted. Data items include 

compound name, control group compared, statistical test used for determining 

significance, direction of change (increased or decreased in HCC), fold change (where 

available), and p-value (or equivalent). To unify synonyms of the names of the 

compounds reported, the reported names were matched with those in the Human 

Metabolome Database (15) for non-lipids or LIPIDMAPS (16) for lipids. Those not 

listed in either of these databases or those that were not individual chemical entities 

(e.g. groups of compounds or ratios) were unified manually. 
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Table 2.1. A bespoke risk of bias assessment for metabonomic studies. 
 
No. Item Category Risk of 

bias 
Domain 1 – Design of experiment 
1.1 Number of HCC cases n ≥ 50 Low 

10 ≤ n < 50 Medium 
n < 10 High 

1.2 Are participant characteristics 
reported by study group (HCC, 
cirrhosis, etc.) for each cohort 
(discovery & validation) 

Yes Low 
No High 

1.3 Are the diagnostic criteria for HCC 
and other liver conditions (where 
applicable) stated?  

Stated – HCC 
confirmed with 2 
modalities of imaging 
(Any 2 of MRI, CT, 
CEUS) or 
histologically proven 

Low 

Stated – other 
methods Medium 

Not stated High 
1.4 Are inclusion and exclusion criteria 

stated? 
Stated Low 
Not stated Medium 

1.5 Were potential confounders (e.g. sex, 
age) discussed and taken into 
account in data analysis? (Note 1) 

Discussed and taken 
into account Low 

Discussed Medium 
Not discussed Medium 

1.6 Was there validation using an 
independent cohort? 

Yes Low 
No Medium 

Domain 2 – Chemical analysis 
2.1 Are the conditions of sample 

collection, storage and transportation 
stated? 

Stated, no concern Low 
Stated, concern 
present 

Medium 

Not stated High 
2.2 Were samples randomised prior to 

analysis? 
Yes Low 
Not stated Medium 

2.3 Is pre-analysis sample processing 
stated? 

Stated, no concern Low 
Stated, minor 
concern present 

Medium  

Stated, major 
concern present 

High 

Not stated High 
2.4 Was a pooled quality control sample 

used and its reproducibility shown? 
Yes – shown Low 
Yes – not shown Medium  
Not mentioned High 
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Not applicable NA 
2.5 Does the reporting of chemical 

analysis meet minimum reporting 
standards (Note 1) 

No concern Low 
Minor concern 
present 

Medium  

Major concern 
present 

High 

Domain 3 – Data analysis 
3.1 Is the data analysis workflow clearly 

described? 
Yes Low 
Unclear, minor Medium  
Unclear, major High 

3.2 Is there concern regarding the 
workflow? 

No concern Low 
Minor concern 
present 

Medium  

Major concern 
present 

High 

3.3 Were the levels of significance 
corrected for multiple testing? 

Yes Low 
No High 

Domain 4 – Reporting of discriminant metabolites 
4.1 Level of confidence in metabolite 

identification (Note 2) 
1 – identified Low 
2 – putatively 
annotated 

Medium  

3 – putatively 
characterised 
compound class 

High 

4 – unknown High 
4.2 Is the variability (e.g. interquartile 

range) of metabolite level reported? 
Yes Low 
No Medium  

4.3 Is the precise p-value (or equivalent) 
reported? 

Precise value stated Low 
Only range reported Medium  
Direction of change 
only 

High 

Note: 
1. Methods for taking confounders into account include controlling in adjusted 
models or by stratified analysis 
2. Basic information of experimental setup and condition required for the reporting 
of each analytical technology, see Sumner, et al., 2007 (20) 
3. As defined in Sumner, et al., 2007 (20) 
CEUS: Contrast-enhanced ultrasound; CT: computed tomography; HCC: 
hepatocellular carcinoma; MRI: magnetic resonance imaging. 
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2.2.3. The development of risk of bias assessment 
 
A bespoke tool to assess the risk of bias of the studies reviewed was developed based 

on established tools (17, 18) and minimal reporting standards for metabonomic studies 

(19, 20) (Table 2.1). Each publication was assessed according to four domains: 1) 

study design, 2) chemical analysis, 3) data analysis and 4) the reporting of discriminant 

metabolites, each containing three to six items. For each item, criteria for high, medium 

and/or low risk were defined and were assigned -1, 0 and +1 point respectively. The 

total score from the risk of bias (RoB) assessment was the sum of all four domains. 

The RoB assessment was developed, trialled and modified based on feedback 

provided by investigators who performed data extraction. Once finalised, it was 

implemented in the same manner as the data extraction process. 

 
2.2.4. Synthesis of results 
 

In order to synthesise the extracted list of discriminatory metabolites across 

publications reviewed, a weighted score system was developed to incorporate four 

factors: vote count (an upvote, given the value of +1 if a metabolite was reported to be 

significantly higher in HCC than in the control group compared, and -1 for a downvote), 

the extent of change represented by log2 fold change (log2FC), RoB of the publication 

reporting the finding and an overall discordance penalty. For each metabolite in each 

comparison (HCC vs healthy, HCC vs non-cirrhotic liver disease, HCC vs cirrhosis or 

HCC tumour vs matched non-tumour liver tissue) in each sample type,  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑠𝑐𝑜𝑟𝑒 = 	𝑝0𝐶 ∙ 𝑅
!

"#$

 

where,  
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n is the number of publications reporting significant differences between HCC and 

controls,  

p is a penalty for discordant report, calculated by |sum(upvote,downvote)| / n. For 

example, a metabolite that was reported to be significantly higher in HCC compared 

to healthy control in four studies but lower in one study, is allocated a penalty p = (4-

1) / 5 = 0.6);  

R is the total score from the RoB assessment, and  

C is extent of change, defined as log2FC, if fold change was reported; otherwise an 

estimate using the median of log2FC values reported in each particular comparison 

and direction of change was used.  

 

Thus, a positive weighted score indicated a metabolite to be predominantly reported 

to be higher in HCC compared to control and vice versa; the higher the absolute value, 

the more studies reported the change, and the greater the extent of change, with the 

reported direction of change being more consistent and/or the lower the risk of bias in 

the reporting studies. Reported metabolites in each sample type were then ranked by 

the absolute value of the weighted score. For urine and blood, metabolites were 

ranked by the sum of the weighted score across the three comparisons (HCC vs 

healthy, HCC vs non-cirrhotic liver disease, HCC vs cirrhosis). Data analysis and 

visualisation were carried out in R (version 3.6) (21). 

  



 54 

 
 
Figure 2.1. PRISMA flow diagram of study selection. Based on the PRISMA 
diagnostic test accuracy (PRISMA-DTA) tool (13). 
 
 

2.3. Results 
 

2.3.1. Studies reviewed 
 
A total of 2,144 non-duplicated citations were identified from Medline and EMBASE, 

with an additional three identified manually (Figure 2.1). After excluding 2,044 citations 

on the basis of titles and abstracts, full-text of 103 articles were retrieved and reviewed 

for eligibility. Nineteen of the studies were excluded with reasons provided (Figure 2.1). 

Finally, a total of 84 studies (22-105) were included in the systematic review, of which 

15, 54 and 9 analysed tissue, blood and urine samples respectively, and 6 studies 

presented findings of two sample types (5 blood and tissue, and one blood and urine, 

Figure 2.2A). The number of HCC cases in the studies ranged between 5 and 361. 

Studies using blood samples had the highest median HCC cohort size (n = 34), 
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compared to n = 28 for urine and n = 29 for tissue (Figure 2.2B). Over half of the 

studies (n = 47) were conducted in China, with USA having the second highest number 

of studies (n = 10, Figure 2.2C). For over half of the studies, the HCC cases either had 

chronic hepatitis B or C as the main underlying aetiology (Figure 2.2D). For studies 

using urine or blood samples, most had healthy volunteers or cirrhosis as control 

groups. Nineteen of the twenty studies that analysed tissue samples had matched 

non-tumor tissue from HCC patients as the control sample (Figure 2.2E). LC-MS was 

the most common analytical method used (Figure 2.2F). Details of individual studies 

are shown in Appendix A Table 3. 

 

 
Figure 2.2. Summary characteristics of the included studies. (A) Biosamples 
analysed. (B) Number of HCC cases (excluding validation cohort). (C) Country where 
study was conducted in. (D) Underlying aetiology of HCC cases investigated. For each 
biosample type, (E) Control groups compared. (F) Analytical platform used. Note for 
(B, E, F): studies that analysed more than one biosample type are presented twice, 
once in each biosample. Abbreviations: hepatitis B (CHB); hepatitis C (CHC); 
capillary-electrophoresis mass spectrometry (CE-MS); gas chromatography mass 
spectrometry (GC-MS); liquid chromatography mass spectrometry (LC-MS); nuclear 
magnetic resonance spectroscopy (NMR).  
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Figure 2.3. Risk of bias assessment of included studies. Individual studies were 
sorted according to biosample studied and total score (the higher the score, the lower 
the risk of bias). Reference number displayed in (brackets). 
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2.3.2. Risk of bias assessment 
 
In order to assess the RoB of the studies reviewed, while there is no readily-available 

tool for metabonomic studies, a domain-based bespoke tool incorporating items from 

existing RoB tools (17, 18) along with requirements from published reporting 

standards in the field of metabonomics (19, 20) was developed (Table 2.1). Domains 

1, 2 and 3 assessed the overall methodological and reporting concerns of the 

publication and gave a maximum total point of 14 (Figure 2.3). The reviewed studies 

scored an average of 5.1 points. The average points for studies that analysed blood 

samples and tissue samples were 5.6 and 4.8, respectively. Studies with urine 

samples had the lowest average point of 3.8; lower than the overall average (one-

sample t-test p = 0.050). There was a weak correlation (Spearman’s ρ = 0.325, p = 

0.003) between the year of publication and RoB points, suggesting RoB of published 

studies was on a trend of lowering risk of bias over time. 

 

In terms of study design, 20/60 studies that analysed blood samples had a study size 

of the HCC group of 50 or greater. Only 1/20 and 3/10 studies for studies that analyzed 

tissue and urine, respectively, had 50 or more HCC cases. Nearly a quarter of the 

studies (20/84, 24%) did not report basic demographic or clinical characteristics of 

participants separately for each study group. There were also 20/84 (24%) that did not 

state diagnostic method used for HCC cases. Twenty-five studies (30%) discussed 

how potential confounders (age, sex or underlying aetiology) may have affected 

findings: 21 had taken them into account in their statistical analysis, using adjusted 

models or by demonstrating that potential confounders had no effect on the findings. 

A total of 21 (25%) of studies had independent validation cohorts, of which, 19 were 
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validation of findings from analysis of blood samples, and one each for tissue and 

urine.  

 

Concerns in Domain 2 regarding chemical analysis included Items 2.2 and 2.4. Only 

22 / 84 (26%) papers explicitly stated that samples were randomised. A total of 44/79 

studies (56%) stated the use of a pooled quality control (QC) sample, of which 18 of 

them showed reproducibility of QCs across the analysis (five of the studies used 

targeted LC-MS analysis only, for which QCs were not required). Of particular concern 

in Domain 3 on data analysis was the small proportion (23/84, 27%) of publications 

implementing multiple testing correction (106, 107) for determining statistical 

significance.  

 

Domain 4 (Table 2.1) on the reporting of discriminatory metabolites was metabolite-

specific, as the score differed for each metabolite reported in each publication. For 

example, a Level 1 identification (20) (the highest in confidence) may have only been 

performed for a subset of reported metabolites. Less than half of the studies (40/84, 

48%) had any discriminant metabolites with identification made with Level 1 in 

confidence, suggesting the majority of studies relied on metabolite identification based 

only on matching to reference databases. 
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Figure 2.4. Top 30 metabolites ranked by |weighted score| in each sample type. 
(A) Tissue. (B) Blood. (C) Urine. A positive value suggests that the consensus among 
the reports is that the metabolite is higher in HCC than in the control group, vice versa. 
The weighted score combines log2(Fold change) values, the risk of bias of the 
reporting publication and a penalty for contradictory reports of direction of change. LD: 
non-cirrhotic liver disease. 
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2.3.3. Discriminatory metabolites between HCC and control groups 
 

A total of 2,302 entries of differential metabolites were extracted from the 84 studies 

reviewed. The aim was to produce a list of metabolites that were found to be up- or 

down-regulated in a consistent manner for each sample type by incorporating three 

factors. First, the number of times each metabolite was reported to be significantly 

changed in one direction, as opposed to the other by taking the sum of vote counts 

(+1 for up-regulation in HCC compared to the control group, -1 for down-regulation). 

Alternatively, to incorporate the extent of change, log base-2 of fold change (log2FC) 

values were used in place of vote count, where fold change values were reported. For 

entries without fold change values reported, they were approximated by an estimate 

of the median of reported fold change value for each direction of change in each 

comparison. Second, each report’s contribution for a metabolite was scaled by the risk 

of bias (RoB) score. The RoB results from Domains 1-3 for the reporting publication 

were added to the Domain 4 metabolite-specific results, giving a total 4-domain RoB 

score of a maximum of 17 points (+1 for Low, 0 for Medium and -1 for High RoB for 

each of the 17 RoB assessment items). Metabolite entries with a final RoB score of 

zero or below (n = 48) were removed from the final analysis. Third, a discordance 

penalty was applied to penalise metabolites that had contradictory reports: the number 

of reports of change in one direction versus reports of change in the other direction. 

The top 30 metabolites with the highest absolute values in weighted score as well as 

metrics from intermediate steps leading to the final weighted score are listed in 

Appendix A Tables 4-6. 

 

There were 699 entries of reported discriminant metabolites of 476 unique compounds 

in tissue, 684 of which were based on the comparison of HCC tumour (T) vs matched 
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non-tumour (NT) liver tissues and 15 others were from comparisons between tumour 

and non-matched healthy liver tissues. Because of the paucity of data from non-

matching comparisons, subsequent analysis focused only on the T vs matched NT 

comparison. Of the 684 entries, 275 entries reported up-regulated metabolites, 

whereas 409 were down regulated. A total of 288 entries reported fold change. The 

median log2FC for up-regulation was 0.807 (range: 0.202 to 3.856) and -0.811 (range: 

-0.105 to -2.251) for down-regulation. These values were used as estimates in the 

weighted score calculation for entries without reported fold change values. 

 

For blood, there were 1376 entries of 590 unique compounds. There were 410, 125 

and 841 entries for HCC vs cirrhosis, HCC vs liver disease (LD) and HCC vs healthy 

control, respectively. The median log2FC of up-regulated and down-regulated entries 

were 0.516 (based on 121 entries, range: 0.029 to 3.101) and -0.515 (based on 115 

entries, range: -0.022 to -3.322) for HCC vs cirrhosis and 0.872 (based on 127 entries, 

range: 0.070 to 6.521) and -0.737 (based on 212 entries, range: -0.059 to -0.737) for 

HCC vs healthy. For HCC vs LD, because there were only nine entries with fold-

change, the median of all log2FC values reported in blood were used as estimates in 

weighted score calculations instead (0.669 for increased metabolites in tumor, range: 

0.029 to 6.521; -0.655 for decreased metabolites, range: -0.021 to -5.644). 

 

There were 222 entries of 126 unique compounds reported in urine. This includes 73 

entries of HCC vs cirrhosis, 40 entries of HCC vs LD and 109 entries of HCC vs healthy 

control. Due to the lack of studies reporting fold change values (a total of 31 entries 

from a single publication only), median of log2FC from these 31 (0.614 for up-regulated 

metabolites, range: 0.333 to 5.492; -1.03 for down-regulated metabolites, range: -
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0.269 to -3.474) were used for weighted score calculation for all urine entries, 

regardless of comparison. 

 

For each entry of discriminant metabolites reported, the log2FC (or an estimate of 

which) was scaled by the RoB score of the reporting publication. Subsequently, all 

reports of a metabolite in a comparison were summed. Finally, to further penalise 

metabolites that reported significant change in opposite directions, the sum was 

weighted by a penalty, corresponding to the fraction of difference between the number 

of contradictory reports, to produce the final weighted score. Using this approach, a 

ranked list produced from comparison of HCC T vs matched NT show that highest-

ranking metabolites included the decrease of glycerol 3-phosphate, malic acid and 

niacinamide in tumor tissues (Figure 2.4A). Other high-ranking metabolites included 

bile acids (glycocholic acid, glycochenodeoxycholic acid and glycodeoxycholic acid), 

all of which were decreased in tumor tissues, and free fatty acids (including C16:1, 

C18:2n6,9), lysophosphatidylcholines (including LPC(18:2), LPC(16:1), etc.) and 

acylcarnitines (C3:0 carnitine, C4-OH carnitine, etc.), which had different directions of 

change depending on chain length and the number of double bonds. 

 

For metabolites in urine or blood, ranking was made by the summation of the weighted 

score of all three comparisons (HCC vs healthy, HCC vs LD, HCC vs cirrhosis). This 

was based on the assumption that an ideal metabolite should discriminate HCC from 

all three of the control groups in the same direction. Hence, metabolites that showed 

strong discrimination with all three groups in the same direction were favored using 

this method. 
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The top three highest ranking metabolites in blood were primary bile acids: glycocholic 

acid, taurocholic acid and taurochenodeoxycholic acid (Figure 2.4B). However, the 

pattern of having a high positive weighted score in HCC vs healthy, but a negative 

score in HCC vs cirrhosis suggested that levels of these bile acids in HCC were 

between those in healthy and cirrhosis patients. Other high-ranking metabolites 

(gluconic acid, hypoxanthine) had a high weighted score for one comparison, but a 

low score for another, indicating a different degree of change depending on the control 

group compared. Only a few metabolites, such as trimethylamine N-oxide (TMAO) and 

2-hydroxybutyric acid had similar scores for both the HCC vs healthy comparison and 

the HCC vs cirrhosis comparison, indicating the evidence of change in HCC compared 

to healthy and cirrhosis were similar. 

 

In urine, the weighted scores had lower values, owing to fewer number of studies 

investigating urine (Figure 2.4C). High ranking metabolites included creatinine, 

hippuric acid and TMAO, all of which were lower in HCC. Unlike metabolites in blood, 

all urine metabolites with reports of more than one comparison showed uniform 

direction of change across different comparisons, albeit the extent of which may differ.  

 
2.4. Discussion 

 
The aim of this systematic review was to comprehensively compile a database of all 

reported discriminatory metabolites for HCC compared to control groups in tissue, 

blood and urine, and to identify any metabolites that may be potential biomarkers that 

should be investigated in future studies. A total of 84 publications were identified to be 

eligible for inclusion in the review after a two-stage screening process (title and 

abstract screening, followed by full-text screening). Data were extracted from each 
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eligible publication and risk of bias (RoB) was assessed using a bespoke tool for 

metabonomic studies, which was developed based on existing RoB tools and minimal 

reporting standards specific for metabonomic studies. Finally, a weighted score 

system was implemented to rank metabolites according to their frequency of reported 

to be significantly deregulated in HCC, the extent of change, consistency in the 

direction of change reported, and RoB of reporting publications. Using this approach, 

a ranked list of metabolites, discriminatory for HCC, was produced for each sample 

type. While there was not a single metabolite, or a combination of metabolites that 

could be concluded definitively as potential diagnostic markers, this body of work 

produced a resource for future research on this topic. 

 

The systematic extraction of data and the assessment of RoB in this review highlighted 

heterogeneity in published study design and incomplete reporting of essential aspects 

relevant to metabonomic studies. As the metabolome is prone to influence from dietary 

intake and time of day (108), non-fasted, random sampling of biofluids may complicate 

data mining processes. For the majority of studies, the omission of reporting of sample 

randomisation and performance of quality control samples prevented assessment of 

analytical reproducibility. Given that analytical methods used in metabonomic studies 

allow measurement of many compounds at once, the number of variables tested was 

usually far greater than the number of observations. This “variables >> samples” (n >> 

K) problem is prone to false positives and necessitates the use of multiple testing 

corrections when testing for the significance of candidate biomarkers (109). However, 

it was only adopted in 27% of studies. Finally, reliance on online or in-house databases 

for metabolite identification, without demonstrating confirmation using chemical 

standards or orthogonal supporting evidence, risks erroneous assignments (109). 
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Taken together, these factors highlight the necessity for future studies to adhere to 

standardised study design, or at minimum, reporting that meets minimal standards to 

reduce risks of bias.  

 

As a result of heterogeneity in the way studies were conducted, it was necessary to 

exercise caution to synthesise the findings. The weighted score system developed for 

this review was based on the assumption that the more times a metabolite was found 

to be significantly changed and the more consistent the direction of change was 

reported in different cohorts, the more likely it is that the metabolite could be a potential 

marker of clinical utility. The weighted score system was an improvement over 

previous synthesis of metabonomics studies (110), in which only vote count was used, 

i.e. only number of reports with direction of change but not taking into account the RoB 

of the reports and the extent of change observed. Log2FC or an estimate of which 

using the median of reported fold change values was used in place of simple vote 

count to incorporate extent of change. In order to take into account RoB of studies and 

to minimise bias against larger studies, fewer in number but with greater statistical 

power (111), the RoB score was incorporated to scale the log2FC. Finally, a penalty 

was applied for metabolites with reports of significant changes in opposite directions.  

 

The resulting ranked lists of metabolites associated with HCC for each sample type 

(tissue, blood (serum or plasma) and urine) display metabolites that were reported to 

be changed consistently in multiple studies (Figure 2.4 & Appendix A Tables 4-6). In 

tissue, all top 30 metabolites had 100% concordance in the reported direction of 

change (discordance penalty value of 1, i.e. no penalty applied). Such high degree of 

agreement is promising in that it suggests similar patterns of change in tumour tissues 
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across different cohorts, which warrants further biological interpretation and 

investigations for mechanistic understanding of the disease. For both blood and urine, 

most metabolites do not have reports for all three comparisons (HCC vs cirrhosis, 

HCC vs liver disease and HCC vs healthy control) and some metabolites showed 

different directions (e.g. several bile acids in blood) and extent of change in different 

comparisons (e.g. hypoxanthine in blood, and creatinine in urine). Therefore, due to 

insufficient evidence and lack of coherence across studies, no definitive potential non-

invasive markers can be concluded at this stage. 

 

Despite the inconclusive finding, the ranked lists of discriminatory metabolites provide 

important insight for informing future research. Findings from the studies reviewed 

reveal that metabolites involved in various metabolic processes are altered in HCC. 

This suggests that there is no shortage of discriminatory metabolites, but the key 

question in this field of research is to choose the one or a panel of metabolites that 

can best serve as diagnostic markers for HCC. This selection process should be 

informed by having three biological considerations taken into account.  

 

Firstly, candidate markers should reflect HCC tumorigenesis, rather than a secondary 

effect related to HCC development. Therefore, there should be evidence that any 

potential marker found in biofluids originated from the tumour. To this end, the strategy 

of testing for concurrent changes in tissue and in circulation, as adopted by four of the 

studies reviewed (48, 49, 68, 69), is one approach. However, since studies with such 

design are relatively scarce, comparing metabolites reported from tissue studies to 

those reported in biofluid studies serves as a good starting point. Differences in 

metabolite level in tumour tissue compared to differences in blood may be affected by 
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various processes including uptake, secretion (or release due to necrosis), synthesis, 

degradation or other metabolic reactions at the cellular level. Different patterns of 

alteration in tissue and biofluid may reflect different underlying processes. A 

metabolite that is found to be higher in tumour tissue and higher in circulation may 

suggest heightened synthesis accompanied by release. Unfortunately, the two highest 

ranking metabolites found to be higher in tumour tissue compared to matched non-

tumour tissue, O–Phosphoethanolamine and 5’–methyltioadenosine, have not been 

reported in blood studies. On the other hand, a metabolite found to be increased in 

tumour tissue and decreased in circulation may reflect an increase in uptake. L-

glutamine is one example (Appendix A Table 5). This is supported by the well-

established understanding that cancer cells (including HCC) rely on L-glutamine as an 

energy source with increased uptake through the upregulation of glutamine transporter 

ASCT2 (112, 113). Metabolites found to be lower in both tumour tissue and blood in 

HCC patients, such as malate which is a tricarboxylic acid cycle intermediate, may 

reflect downregulation of the relevant pathway. Alternatively, for compounds known to 

be synthesised and secreted by hepatocytes, lower levels in both blood of HCC 

patients and in tumour tissue may suggest failure for tumour cells to maintain their 

synthetic functions leading to lowered overall level in circulation. Fibroblast growth 

factor 19, which is upregulated in cholestatic and cirrhotic conditions, downregulates 

bile acid synthesis and promotes tumourigenesis in the liver (114). This supports the 

observation that the primary bile acid, glycocholic acid, was found to be lower both in 

tumour tissue as well as in blood of HCC patients. Finally, for metabolites found to be 

lower in tumour tissue but increased in circulation, such as myo-inositol and L-carnitine, 

the likelihood of their change in blood being a direct effect of HCC is low unless there 

is active heightened secretion, evidence for which is lacking. The above discussed 
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metabolites may be of greater interest to be followed up in future blood studies due to 

their concurrent reports of significant change in previous blood and tissue studies. 

 

Secondly, candidate markers should be specific to HCC, rather than being a marker 

of general liver damage. Therefore, ideally, a metabolite should only display altered 

levels in HCC, but not in cirrhotic patients, i.e. the extent and direction of change being 

similar across the three comparisons (HCC vs Healthy, HCC vs LD, HCC vs Cirrhosis). 

However, many metabolites reported in the studies reviewed, e.g. phenylalanyl-

tryptophan (phe-trp), show progressive decrease in the healthy, cirrhosis and HCC 

groups (69). The three top ranking metabolites in blood, the primary conjugated bile 

acids, glycocholic acid, taurocholic acid and taurochenodeoxycholic acid, have the 

most notable patterns of alteration across the three comparisons of top-ranking 

metabolites. Their increase compared to healthy control is likely due to cholestasis 

that is frequent in patients with liver disease, while their decrease compared to cirrhotic 

patients likely reflects the reduced capacity of livers with HCC to synthesise them, as 

discussed earlier. Due to their levels being intermediate between healthy individuals 

and cirrhosis patients, the applicability of these bile acids as biomarker, at least on 

their own, is limited despite being top ranking. Given that 80% of HCC develop from 

patients with cirrhosis (115) and cirrhosis alone account for substantial metabolic 

changes in the body (116), future research efforts should focus on the HCC vs 

cirrhosis comparison and only use the other two comparisons to confirm findings. This 

strategy may help avoid identifying metabolites that are markers of liver damage, 

rather than markers specific for HCC.  
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Thirdly, the marker should be universal, i.e. valid independent of genetic, 

environmental, dietary or aetiological factors. For this, validation studies should be 

conducted in cohorts in different geographical locations and with different underlying 

aetiologies (Figure 2.2 C & D). The study conducted by Luo et al. (69) is the largest 

serum study to date and concluded that phenylalanyl-tryptophan (phe-trp) and 

glycocholic acid as markers for delineating HCC from cirrhosis. Despite having a 

validation study to confirm the findings, phe-trp has only been reported in one other 

study (43). Future profiling efforts should also specifically target these previously 

shortlisted metabolites to confirm their validity in different cohorts. 

 

In addition to biological considerations, technical and practical considerations should 

be taken into account for HCC marker selection and validation. In terms of technical 

considerations, if a panel, rather than a single metabolite, is necessary to perform as 

a diagnostic test with sufficient accuracy, efforts should aim to minimise the number 

on the panel and take into account ease of detecting all marker compounds 

simultaneously and accurately in a single assay. As for practicality, given that HCC 

has the highest incidence in areas with limited resources (2, 3), cost, resource 

availability and logistics should be considered. A urinary test may be more easily 

implemented than a blood test. 

 

As illustrated above, future research efforts on this topic should be guided by existing 

evidence and informed by biological understanding. In addition to standardisation of 

study design and adherence to minimal reporting standards, future metabonomic 

studies should be designed in a hypothesis-driven manner with the above discussed 

considerations taken into account. The systematically compiled ranked lists of 
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metabolites presented here for each sample type (Figure 2.4 & Appendix A Tables 4-

6) provide an informative resource for electing metabolites to be further investigated. 

 

A limitation of this review is the novelty of the metrics used. A bespoke tool for 

assessing RoB was developed to overcome the lack of an existing one for 

metabonomic studies. Opinions may differ regarding the relative importance of the 

different items in their contribution to a publication’s risk of bias. However, it was 

developed by modifying existing tools (17, 18) with items for minimal reporting 

standards of metabonomic studies (2, 3) incorporated in an iterative process with the 

final version being a consensus reached by all investigators. Similarly, the weighted 

score system for ranking discriminatory metabolites was first-of-its-kind. It was 

developed to circumvent the heterogeneity in study design, chemical analysis and 

data analysis across studies which present a major challenge for synthesising the 

findings. Ranking of the resulting final score, as well as ranking using primary data 

and the intermediate steps are provided for reference (Appendix A Tables 4-6). 

 

Another limitation is that the studies reviewed were subject to publication and observer 

biases. All studies reported one or more statistically significant discriminatory 

metabolites between HCC and control group(s). Even those that were excluded in the 

full-text screening step were not due to the absence of discriminatory metabolites. 

Rather, they were, for example, publications focused on targeted assay development 

where statistical tests were not reported and therefore confidence in the results could 

not be ascertained. A limitation of metabonomics, unlike some other ‘omics’, is that 

the choice of analytical method or assay used affects the collection of compounds 

detected or measured due to the chemical diversity of the metabolome. As such, the 
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dominance of bile acids or acylcarnitines may be due to investigators’ choice of using 

targeted methods for these compounds. By using a scoring system that favours the 

number of coherent reports, it may be biased towards these metabolites that were 

selectively investigated in more studies. However, since investigators likely chose to 

assay certain classes of metabolites with well-supported reasons, the resulting ranked 

list based on the weighted score should still be valid. 

 

The application of metabonomics to address clinical questions has been heralded as 

a promising strategy for identifying novel biomarkers for diagnostic and prognostic 

purposes. However, to date, contributions from the field have not yet been translated 

to new biomarkers endorsed by clinical guidelines for use in the clinic. The main 

question of the review, seeking to identify novel diagnostic biomarkers for HCC is 

amongst the most popular clinical questions researched in metabonomics. Along with 

the need for validating existing evidence with biological, technical and practical 

considerations taken into account, the standardisation of study design and adherence 

to minimal reporting standards are crucial for the field to move beyond exploratory 

studies to phase two clinical trials.  

 
 

2.5. Conclusions 
 

This systematic review aimed to survey reported discriminatory metabolites to identify 

potential diagnostic biomarkers for HCC. While there is not any metabolite that can be 

definitively concluded to be potential biomarkers, this review has led to a systematic 

compilation of reported discriminatory metabolites which offers a valuable resource for 

guiding future research on this topic. Validation studies, standardised study designs 
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and publications meeting minimal reporting standards are crucial for advancing the 

field beyond exploratory studies. 
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Chapter 3 – Methodology 

This chapter provides the theoretical basis of the experimental and computational 

methods used in subsequent chapters.  

 
3.1. Experimental methods 

3.1.1. Nuclear magnetic resonance 

3.1.1.1. The phenomenon of magnetic resonance 
 
NMR makes use of the quantum mechanical properties of certain atoms. Nuclei of 

atoms of certain isotopes with an odd total number of protons and neutrons have a 

non-zero spin quantum number (I). I is related to the magnetic quantum number (m) 

in the following manner: a nucleus with the spin quantum number I has magnetic 

quantum numbers m = I, I – 1, I – 2, … -I. Thus, a nucleus with a spin quantum number 

I has 2I + 1 possible energy states. Each proton has I = ½ and therefore has 2 spin 

states (one aligned with the magnetic field and one opposing), with a magnetic 

quantum number m = ± ½.   

 

The angular momentum (P) of the spinning nature of nuclei with non-zero spin gives 

rise to a non-zero magnetic moment (μ). The two are related through the gyromagnetic 

ratio (γ), a constant which is specific for each nucleus (for example, for proton, γ = 

26.75 x 107 T-1 s-1), where μ = γP. The angular moment at a particular axis (e.g. z-

axis), can be calculated as Pz = ℏm, where ℏ is Planck’s constant divided by 2π and 

m being the magnetic quantum number. Therefore, the magnetic moment of a nucleus 

at an arbitrary z-axis is related to the magnetic quantum number in the following 

manner: 

μz = γPz = γℏm 
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When placed within an external magnetic field (B0) along the z-axis, nuclei with 

magnetic moment behave as magnetic dipoles and align themselves either parallel or 

anti-parallel to the direction of the field. Those in low energy spin state (m = +½) are 

in the same direction as the direction of the magnetic field and those in high energy 

spin state (m = -½) are in the opposite direction. As the external magnetic field B0 led 

the nuclei to have potential energy of ± μzB0, depending on the spin states, the energy 

difference (ΔE) between the two spin states is as follows: 

ΔE = 2μzB0 

 

The lower energy state is energetically favourable. The distribution of nuclei with the 

two spin states (m = ± ½) is described by the Boltzmann distribution: 

!!"#!
!$%&

= 𝑒%
'(
)*,  

where nhigh and nlow is the number of nucleus in the high and low energy states, 

respectively, k is the Boltzmann’s constant and T is the temperature in Kelvin. 

 

Given the population difference, the magnetic moments of the whole population of 

nuclei could be summarised by the net nuclear magnetic moment (M) (Figure 3.1).  

 

The angular momentum of the nuclei in the magnetic field B0 results in a precessional 

motion of the nuclei at a frequency known as the Lamour frequency (vL): 

 vL = γB0 / 2π 

 

According to the Bohr frequency condition, the energy difference is related to 

frequency (v) through Planck’s constant (h): ΔE = hv. Therefore, by stimulating the 
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equilibrium at a frequency sufficiently close to Lamour frequency, it is possible to 

perturb the populations of nuclei between the high and low energy spin states and 

alter the net nuclear magnetic moment. 

 

In NMR spectroscopy, a sample is first placed within a constant magnetic field (B0) at 

a strength depending on the magnet. Stimulation is achieved through a radiofrequency 

(RF) pulse at various lengths in time, which alters the net nuclear magnetic moment 

to certain angles from the equilibrium (typically, 90º or 180º). Once the RF pulse 

ceases, the nuclei relax back to the thermal equilibrium state and emits the absorbed 

radiation at various resonance frequencies which is detected by a detector coil. This 

time-domain free induction decay is converted to a frequency-domain spectrum 

through Fourier transform (Figure 3.1). 
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Figure 3.1. Schematic diagram of an NMR experiment. 1. When subjected to an 

external magnetic field B0, nuclei with non-zero spin precess parallel (those in low 

energy state) or anti-parallel (those in high energy state) to the direction of the 

magnetic field according to the Boltzmann distribution. 2. Due to the difference in 

population, this can be summarised by a vector of net nuclear magnetic moment (M). 

3. A radiofrequency pulse that matches the precession frequency can alter the net 

magnetic moment. 4. Once the pulse ceases, the nuclei relax and return to the thermal 

equilibrium state. 5. The radiation emitted during relaxation is detected by the detector 

coil of the spectrometer as a free induction decay (FID). 6. Fourier transformation 

converts the time-domain FID to a frequency-domain spectrum. 
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3.1.1.2. Properties of signals in a 1H-NMR spectrum 

The resonance frequency, i.e. frequency at which a nucleus relaxes back to thermal 

equilibrium, vary slightly depending on its local molecular environment. Such 

differences in resonance frequencies as well as the overall signal intensities are the 

key to structural and quantitative information provided by NMR, which is illustrated 

using lactate as an example here (Figure 3.2).  

 

Figure 3.2. 1H-NMR spectrum of lactate. The doublet at 1.3 ppm is the resonance 

peaks from the -CH3 group (shaded in blue) and the quartet at 4.1 ppm is the 

resonance peaks from the -CH group (shaded in orange). The spectrum is adapted 

from the Human Metabolome Database (1).  

 

Number of peak groups 

In a molecule, protons with the same magnetic environment, as determined by the 

mirror and/or rotational symmetry of the molecule, contribute to the same signal. In 

lactate, the protons in the -CH3 group are magnetically equivalent while the proton of 



 85 

the -CH group is independent. Therefore, these two groups of protons are responsible 

for producing 2 groups of peaks in a 1H-NMR spectrum.  

 

Shielding and chemical shift 

Since electrons surrounding a nucleus exert magnetic force that slightly alter the actual 

magnetic field experienced by the nucleus, the exact resonance frequency depends 

on the density of electrons surrounding the nucleus, a phenomenon called shielding. 

In 1H-NMR, the electron density around protons in a benzene ring is much lower than 

those in a methyl (-CH3) moiety as electrons are drawn to the p orbital of the ring. 

Therefore, a proton in a benzene ring is less ‘shielded’, experiences a stronger 

effective magnetic field and resonates at a higher frequency.  

 

Because the Lamour frequency and hence the resonance frequencies are dependent 

upon the strength of the magnetic field B0, signals detected in NMR are expressed as 

chemical shifts (δ) in parts per million (ppm) relative to signal from a reference 

compound to allow for comparison of spectra acquired from spectrometers with 

different magnet strengths. In 1H-NMR applications in metabonomics, 3-(trimethylsilyl- 

[2,2,3,3,-2H4]-propionic acid) (TSP) is commonly used as the reference compound and 

chemical shifts of other compounds are expressed relative to the resonance frequency 

signal from TSP: 

𝛿	 = 	
𝑣	–	𝑣&'(
𝑣&'(

 

 

In the lactate example, protons in the -CH3 group has a higher electron density than 

the proton in the -CH group, and thus have a lower chemical shift. 
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Spin-spin coupling 

In addition to electrons, nuclei within close proximity with each other, but which are 

magnetically non-equivalent, also affect the effective magnetic field of each other. This 

causes slight differences in the chemical shift of each nucleus which manifests as 

peaks appearing as multiplets (groups of more than one peak). This is due to spin-

spin coupling and the simplest type, first order spin-spin coupling, is described here. 

Protons within three bond distance from each other affect each other’s effective 

magnetic field depending on the combination of possible spin state(s). For n number 

of protons, there can be n + 1 possible combination of spin states. For example, with 

two protons, the two protons may take any of the following combination of spin states: 

low/low, low/high and high/high. Since these spin states occur at a frequency of 1:2:1, 

the resulting peak of protons with 2 neighbouring protons is split into three at a 1:2:1 

ratio. The multiplicity and the relative intensities of the split peak can be generalised 

by the n+1 rule and Pascal’s triangle (Figure 3.3). The -CH signal in lactate is split into 

a quartet at 1:2:2:1 ratio by the three protons in the -CH3 group and in return, the -CH3 

group signal is split into a doublet at a 1:1 ratio by the -CH proton.  

  



 87 

 

 

Figure 3.3. Relative intensities of multiplets due to spin-spin coupling follow 

Pascal’s triangle. 

 

Signal intensity 

The intensity of a signal is proportional to the number of protons giving rise to the 

signal. Therefore, in the lactate spectrum, the peak integral of the -CH group quartet 

is a third of that of the -CH3 doublet. More importantly in the context of metabolic 

profiling, peak intensity reflects the molar concentration of the compound in the sample, 

which allows for comparison of metabolite concentration between samples. An in-

depth explanation of NMR theory can be found in textbooks such as Ref (2).  

 

3.1.1.3. Metabolic profiling using 1H-NMR 
 

One of the main advantages of NMR as an analytical platform for the analysis of 

biofluids is that it requires relatively simple sample preparation. To analyse a biofluid 

sample in NMR, samples are prepared by centrifugation to remove any undissolved 

impurities, the addition of buffer and preparation into glass NMR tubes (3). Typically, 
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a phosphate buffer is used, which allows for pH buffering and contains the reference 

compound TSP, deuterated water, which is used for locking the magnetic field of the 

spectrometer, and sodium azide, which prevents microorganism growth in the sample.  

 

A pooled quality control sample of equal volumes from each sample is prepared as a 

‘representative’ sample to assess the repeatability of data acquisition during a run. 

Since NMR is a relatively reproducible analytical technique, the use of QC sample can 

be analysed much more sparingly, compared to an LC-MS experiment. At least one 

QC sample is used in every rack of 96 samples (3). 

 

Urine samples are typically analysed using a standard one-dimensional pulse 

sequence that uses the first increment of the nuclear Overhauser effect (nOe) pulse 

sequence to achieve suppression of the water signal. Blood (which may be serum or 

plasma) samples are analysed using a Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence, which selectively enhances signals from small molecules to overcome the 

broad peaks due to the presence of macromolecules (lipids, protein and lipoproteins) 

(3). In addition to 1-dimensional NMR, 2-dimensional NMR pulse sequences may be 

used to aid structural assignment. These include J-resolved spectroscopy (JRES), 

where the projection of the peaks on to the chemical shift axis yields singlet peaks for 

each multiplet (i.e., homodecoupling all of the spin coupled multiplets), thereby 

reducing the spectral region occupied by each metabolite, COrrelation SpectroscopY 

(COSY) or TOtal Correlation SpectroscopY (TOCSY), which show cross-peaks 

between neighbouring magnetically equivalent groups of protons; and heteronuclear 

simple quantum coherence spectroscopy (HSQC), which shows cross-peaks between 

signals from different nuclei (e.g. 13C and proton).  
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3.1.2. Liquid chromatography-mass spectrometry 

3.1.2.1. Liquid chromatography 

Liquid chromatography (LC) refers to the chromatographic technique that separates 

complex mixture based on analytes’ interaction with a solid phase packed within a 

chromatographic column and a liquid mobile phase of solvents that flow through the 

column. Analytes that interact with the stationary phase more strongly than the mobile 

phase are retained for longer than those that interact less strongly. As such, analytes 

are separated based on their physical and chemical properties. The choice of the 

composition of the stationary phase and the mobile phase determines the type of 

analytes with certain physiochemical properties that is best separated. 

 

A gradient elution refers to the change in the composition of mobile phase during a 

separation. Depending on the analyte’s properties, this changed mobile phase 

composition may become more favourable to interact with than its interaction with the 

stationary phase and hence will elute. In this way, molecules elute at different times 

depending on the composition of the mobile phase. Typically, an LC method begins 

with high proportion of one mobile phase with gradual increase in the proportion of the 

other during a method of 5 to 20 minutes. Gradient elution is advantageous over 

isocratic elution, which is elution without varying mobile phase composition, as it 

allows separation of molecules with a greater range of physiochemical properties and 

is therefore the preferred method in metabonomic analyses. 

 

Column-based LC relies on pumps to push pressurised mobile phase solvents 

together with the sample through a column that contains the stationary phase material. 
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High performance liquid chromatography (HPLC) refers to systems that can tolerate 

pressure up to 6000psi and particles within the column with a diameter of 5μm or 

greater. Ultra high-pressure LC (UHPLC), also known as ultra-performance LC 

(HPLC), is a more recent development, introduced in the 2000s, that refers to systems 

that can tolerate pressure up to 15,000psi with particle sizes below 2μm (typically 1.7-

1.8μm) (4). This led to an improvement in separation resolution and sensitivity. 

 

To optimise the separation of analytes with different physiochemical properties, 

combinations of columns with different stationary phase and different mobile phases 

may be used. The two major types of column commonly used for metabonomic studies 

are reversed-phase (RP) and hydrophilic interaction (HILIC). 

 

RP-LC is so called because it has the opposite set up to ‘normal’-phase that 

chromatographic technologies were initially developed using. Whereas the stationary 

phase is more polar than the mobile phase in normal-phase systems, it is the reverse 

in RP systems, with the stationary phase being less polar than the mobile phase. 

Columns for RP-LC are packed with silica with saturated aliphatic chains of certain 

length, typically with 8 or 18 carbons. Mobile phase gradient begins with high 

proportion of water-based solvent with gradual increase of an organic solvent (e.g. 

acetonitrile), leading to the separation of non-polar compounds. 

 

HILIC-LC is a variant of normal-phase LC in that the stationary phase is more polar 

than the mobile phase. However, unlike normal-phase which relies on solvents that 

many polar compounds found in biological samples are not soluble in, HILIC is 

preferred as it relies of solvents (typically acetonitrile) that are already used for RP 



 91 

methods. HILIC uses silica as the stationary phase with mobile phase gradient 

beginning with high proportion of organic solvent with gradual increase of a water-

based solvent, leading to the separation of polar compounds.  

 

3.1.2.2. Mass spectrometry 

In a coupled system, a mass spectrometer functions as the detector of the output from 

UPLC. Mass spectrometry (MS) is a physical analytical technology that detects 

analytes based on its mass-to-charge (m/z) ratio. This is achieved by first ionising the 

molecules and then subjecting them to a mass analyser in order to be detected. 

 

Ionisation 

In order to be detected in MS, molecules first need to be ionised into gas-phase 

charged particles. Different ionisation methods may be used depending on the type of 

sample, e.g. matrix-assisted laser desorption / ionisation is suited for ionisation of solid 

samples. Electrospray ionisation is a common method used for liquid samples. It is a 

‘soft’ ionisation method which causes little fragmentation and is therefore preferred in 

metabonomic studies. After elution from LC, the eluent which contains the analytes 

and mobile phase solvent is passed through a fine metal capillary. The tip of the 

capillary is connected to a counter electrode in close proximity with high voltage to 

create an electric field. This causes the eluent to disperse as fine aerosol of droplets 

with high charge accumulation after exiting the capillary. High flow rate of heated inert 

gas (typically nitrogen) flowing along the jet of aerosol facilitates the formation of the 

fine aerosol and solvent evaporation. As solvent evaporates, the repulsive force 

between charged particles causes the droplets to disintegrate into smaller droplets. 

This process is repeated until a point is reached when the repulsive force between the 
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charged particles exceed the cohesive force of the solvent and the residual charge in 

the droplet is transferred to the analyte molecule resulting in a charged ion. These 

charged ions then enter the MS analyser guided by the suction force of the vacuum of 

the mass analyser and the electric potential caused by the voltages applied within. 

 

Mass analyser 

The purpose of a mass analyser is to separate ions based on their m/z in order to be 

detected. There are two types of mass analysers commonly used: quadruple and time-

of-flight. 

 

A quadruple analyser uses two parallel pairs of cylindrical rods with opposite charge 

with static potentials (DC voltages) and alternating potentials (RF voltages) applied to 

create an oscillating electric field. When travelling through the electric field, ions with 

different m/z follow a different trajectory and oscillation frequency. By specifying the 

ratio of RF and DC voltages applied to the rods, only ions of certain m/z can pass 

through the quadrupole to be detected while others collide with the rods and are 

neutralised. In this way, ions may be specified to be detected or targeted for collision 

to allow for fragmentation, 

 

In a time-of-flight (TOF) analyser, all ions are accelerated by the same amount of 

kinetic energy through the application of an electric pulse in a field-free region. As 

kinetic energy = ½ mv2 where m is mass and v is velocity, this results in ions acquiring 

different velocities based on their m/z and therefore taking different amounts of time 

to reach the detector. Small ions of the same charge reach the detector faster than 

larger ions. A TOF analyser has the advantage of high sensitivity and mass accuracy 
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and the ability of measuring ions of a wide range of masses within very short period of 

time (nanoseconds). 

 

A hybrid of quadrupole-TOF system is the first instrumentation of choice in 

metabonomic profiling as it features high mass accuracy and provides the option of 

selecting specific ions for fragmentation.  

 

3.1.2.3. Metabolic profiling using LC-MS 

Similar to NMR, sample preparation for LC-MS experiments involves centrifugation to 

remove any undissolved impurities. Solvents (usually the mobile phase at the start of 

LC method) are added to dilute the samples and prepare them for LC. Another 

centrifugation is performed after the addition of solvents to ensure that only liquid is 

transferred. This is especially important for samples containing macromolecules (e.g. 

plasma/serum) as they are precipitated due to the organic solvents added. This 

prevents the column from being blocked, leading to the buildup of pressure, poor 

chromatographic resolution and the whole system failing in the worst case. 

 

As LC-MS data acquisition is more prone to shifts and drifts during a run, quality 

control samples are injected more frequently typically 1 every 7 to 10 samples (5). In 

order to assess linearity to dilution, dilution series are also run before and after sample 

analysis. In this way, the reproducibility of features may be assessed by the relative 

standard deviation (RSD = (standard deviation / mean) x 100%) of the intensity 

measured across QC samples and its correlation with the dilution factor in the dilution 

series. 
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3.2. Computational and statistical methods 

3.2.1. Data processing of NMR and LC-MS spectra 

Current automation programs of NMR spectrometers acquire and automatically 

process data, which includes baseline-correction, phasing, calibration to reference 

peak (3). This leaves relatively little additional processing necessary. Peaks of interest 

could be specified and integrated to estimate the concentration of the molecule in the 

sample. On the other hand, the nature of LC-MS gives rise to data that are three-

dimensional and require peak-picking software to identify and quantify peaks. The R 

package xcms is an automated peak-picking algorithm that is commonly used (6). 

 

Prior to further statistical analyses, metabonomic data require normalisation, which is 

a procedure to account for the difference in the overall signal intensities of variables 

from each sample in order to allow for comparisons between samples. The source of 

variation in intensity may biological (e.g. different dilutions of urine) or analytical (e.g. 

detector sensitivity during a run or pipetting error). Methods for normalisation include 

total area normalisation, which assumes that the total signal intensities should be 

identical across samples, or probabilistic quotient method, which assumes the median 

of signals should be identical instead (7). Normalisation is considered necessary for 

urine data as the concentration of urine depends on the hydration status of an 

individual. It is also considered beneficial for data from blood to account for analytical 

causes of variation (8). 
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3.2.2. Statistical analysis 

3.2.2.1. Hypothesis testing 

The goal of data analysis of a set of sampled observations is to make inference to 

generalise the conclusion to the general population from which the sampled 

observations were drawn.  

 

A frequentist approach to statistical inference is a common approach where statistical 

relationships between variables are investigated through hypothesis testing. Null 

hypothesis (H0) is the case if there is no association between the variables tested. 

Alternative hypothesis (H1) is the case if there is a statistical association between the 

variables. P value is the probability of obtaining an outcome at least as extreme as the 

one observed if the null hypothesis was true. Null hypothesis is rejected, and the 

alternative hypothesis is accepted if the p-value is below a certain significance level 

(α), and the association is declared to be statistically significant. A value of 0.05 is 

often used as the acceptable α, which implies that there is a 1 in 20 chance of 

observing the outcome even if the null hypothesis was true. 

 

As variables of interest may be binary (e.g. disease states), categorical (e.g. disease 

subtypes) or continuous (e.g. height), a number of different tests are developed to test 

for associations between different types of variables (Table 3.1). These can be 

classified as parametric or non-parametric. Parametric tests typically assume normal 

distribution and equal variance in the data while non-parametric tests do not make 

those assumptions and are hence more robust to outliers and skewed data. However, 

Welch’s two sample t- test can be used to compare differences between two samples 

with unequal variances. Non-parametric methods bypass those assumptions by using 
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ranks of data instead of actual values. In metabonomic data, since each variable has 

different distribution and outliers are often present, the non-parametric Wilcoxon’s rank 

sum test was the test of choice for hypothesis testing for statistical significance 

between groups in this thesis. 

 

Table 3.1. A selection of statistical tests for comparing different types of 

variables. 

 

 

3.2.2.2. Multiple testing correction 

There can be two types of errors in hypothesis testing. Type I error is the rejection of 

null hypothesis when it is true, i.e. a false positive, and type II error is the acceptance 

of the alternative hypothesis when it is false, i.e. a false negative. 

 

By accepting an α of 0.05 for each test, if a large number of tests was conducted, the 

proportion of rejection of null hypothesis, i.e. a false positive, due to chance alone 

increases.  

This is given by family-wise error rate (FWER), which is the probability of at least one 

test result being a false positive: 

 

𝐹𝑊𝐸𝑅	 = 	1	–	(1	– 𝛼)! 

 

Table 1

Dependent variable Independent variable Parametric Non-parametric

Continuous Binary t-test Wicoxon’s rank sum test

Continuous Categorical Analysis of variance Kruskal-Wallis test

Continuous Continuous Pearson’s correlation Spearman’s correlation 
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With 20 tests, the FWER is 64% and it becomes 99% with 100 tests. This illustrates 

the problem of multiple testing. Different procedures to control for FWER have been 

proposed. The most stringent of which is the Bonferroni method, which modifies α by 

dividing it by the number of tests conducted. It is considered too conservative and 

assumes each test to be independent, which is not satisfied in most cases in modern 

biological datasets given that variables are likely to be correlated.  

 

Rather than focusing on controlling for FWER, an alternative approach of controlling 

for false discovery rate (FDR) instead was proposed. FDR is the expected proportion 

of false positive among those declared significant (9). There are different formulations 

to correct p-value to control for FDR. The Benjamini and Hochberg method (9) 

computes the FDR-adjusted p-value (pFDR) by first sorting all n p-values in 

descending order, which gives k, the rank of the p-value, and pk, the kth p-value, then: 

 

𝑝𝐹𝐷𝑅) = 𝑚𝑖𝑛 @
𝑛 ∙ 𝑝)

𝑛	– 𝑘	 + 	1 , 𝑝𝐹𝐷𝑅)%$D 

 

Another method was proposed by Storey and Tibshirani which introduced the concept 

of q-value, which is the probability of the variable being a false positive. Since the 

distribution of p-values would be uniform if all tests were truly null, the distribution of 

p-values could be used to estimate the proportion of true null hypothesis (π0) which 

can then be used to scale pFDR to give q-value (10): 

𝑞) = 𝜋* ∙ 𝑝𝐹𝐷𝑅) 

 

Although there is subtle difference between the definitions of different measures for 

multiple testing correction (pFDR or q-value), in practice, the method of choice is often 
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the investigator’s decision. Since a larger number of tests is required to estimate π0, 

in this thesis, peak integrals from NMR (relatively fewer in number) was corrected 

using the pFDR method while data from LC-MS experiments were corrected to q-value, 

due to the availability of more variables to estimate π0 in LC-MS. 

 

3.2.2.3. Regression 

Regression modelling is an alternative to statistical hypothesis testing to determine 

whether there is an association between variables of interest.  The simplest form is a 

simple linear regression in which a response variable (y) is modelled by a predictor 

variable (x) by assuming a linear relationship: 

𝑦	 = 	𝛽* 	+ 	𝛽$𝑥	 + 𝑒 

 

β0 is the intercept, β1 is regression coefficient, i.e. the slope, and e is the residuals not 

modeled by the linear equation. The coefficient β1 is estimated by ordinary least 

squares which minimises the sum of squares of the residuals: 

 

𝛽$ =
∑(𝑥	–	�̅�)(𝑦	–	𝑦L)

∑(𝑥	–	�̅�)+  

 

The simple linear regression could be extended to multiple linear regression, which 

allows for the inclusion of more than one predictor variables: 

𝑦	 = 	𝛽* 	+ 	𝛽$𝑥$ + 𝛽+𝑥+ +⋯	+ 	𝑒 

 

Wald test is a test to determine whether the regression coefficient of a given predictor 

variable is significantly different from 0, which allows for the evaluation of the 

contribution of each variable to the model. Since the regression coefficient (βi) for each 
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predictor variable (xi) is the change in y for each unit change in the corresponding xi 

while holding all other predictor variables constant, it also offers as a method to assess 

and adjust for confounding.  

 

Often times, the response variable of interest is not continuous and does not follow 

normal distribution, in which case, generalised linear regression can be used. 

Generalised linear regression allows for the response variable to be related the linear 

model via a link function. Logistic regression is one type of generalised linear model 

for a response variable that is binary (i.e. takes the value of 0 and 1), which is the 

method employed in thesis to predict the presence of HCC (1 for HCC cases, 0 for 

non-HCC cases). 

 

In logistic regression, the link function is the natural log of the odds ratio (the probability 

of presence (Y = 1) over the probability of absence (Y = 0)), which is the response 

being modelled: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝) 	= 	𝑙𝑛 O
𝑝
1– 𝑝P 	= 	𝛽* 	+ 	𝛽$𝑥$ + 𝛽+𝑥+ +⋯	+ 	𝑒 

 

For logistic regression, parameter estimation is achieved by maximum likelihood 

estimation. The regression coefficients can be exponentiated to give the odds ratio, 

which can be interpreted as the change in the probability of Y = 1 for each unit increase 

in predictor variable.  
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3.2.2.4. Data transformation prior to multivariate statistical analysis 

Since it is the relative values, rather than absolute values, that are of interest in order 

to identify patterns using multivariate statistical methods, data are transformed prior to 

analyses such as principal component analysis (PCA), which involves mean-centering 

and scaling. Data are commonly transformed in order to fulfil the necessary statistical 

assumptions such as normality of distribution. Mean-centering is the subtraction of 

each variable by their means to gather all variables around the origin to remove the 

effect of their absolute values. Scaling modifies the variance to reduce the influence 

of the range of variances between variables. Univariate scaling (dividing variables by 

their standard deviation) is a more extreme approach, which unifies the contribution of 

each variable to the model, regardless of their variance. This implies that a variable 

from a noise region contributes equally to the model as a variable from other ‘real’ 

signal. Pareto scaling (dividing variables by the square-root of their standard deviation) 

is another commonly used scaling method which reduce the influence of the difference 

in variance while still allowing for variables with greater variance to have a greater 

contribution.  

 
3.2.2.5. Principal component analysis 

PCA is a dimension-reduction multivariate statistical method commonly used to 

provide an unbiased overview of a metabonomic dataset (11). This allows for the 

assessment of the repeatability of data acquisition during a run using quality control 

samples, visualisation of the general patterns in the data and detection of outliers. 

 

PCA summarises high-dimensional data (data with high number of variables, which 

may be correlated) into a set of orthogonal latent variables (variables that are 

uncorrelated to each other), known as principal components (PC). The first PC 
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represents the axis in the direction of the largest variance of the data and the second 

PC represents the axis in direction of the next largest variance that is orthogonal (i.e. 

uncorrelated) to the first, and so on for subsequent PCs (Figure 3.4 A & B).  

 

Visually, PCA could be understood using a simplified case of dimension reduction of 

three variables into two. To represent a dataset of three variables in a two-dimensional 

plot, the most intuitive method is to find the 2-D plane at an orientation that the data is 

most spread out, i.e. with the largest variances. In this way, the original 3-D plot is best 

represented in the 2-D plot, with the distance of the points in the 3-D space from the 

plane as residuals not represented in the now reduced 2-D representation of the data. 

 

PCA can be performed by singular value decomposition or eigenvector decomposition, 

through which the original data matrix X is decomposed to three matrices T, P and E: 

 

X = T P’ + E 

 

The T matrix is known as the scores matrix which corresponds to each observation. 

The P matrix is known as the loadings and corresponds to each variable. Each vector 

in T (t1, for PC1, t2 for PC2, etc.) has the length of the number of observations, while 

each vector in P (p1, for PC1, p2 for PC2, etc.) has the length of the number of variables. 

Thus, linear combination of scores and loadings vectors of each PC (e.g. t1p1’ for PC1) 

provides an approximation of X with the residuals (matrix E) as the variance not 

explained by the model (Figure 3.4C). In this way, plotting the scores from different 

PCs provides a visualisation of the patterns of the observations (samples) in the 
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reduced space while loadings provide information about the contribution of each 

variable to each PC (Figure 3.4 A & B).  

 

 

Figure 3.4.  Visual explanation of principal component analysis. (A) Data in a 

higher dimensional space are projected on to a lower dimensional space through the 

identification of latent variables, known as principal components (PC). Shown here, 

the highlighted data point (green circle with red outline) in the 3-dimensional space is 

projected on to the 2-dimensional space (blue circle with red outline). The scores (t) 

are the coordinates of each sample in the new PC axes and (B) the loadings (p) are 

the contribution of the original variables to each PC. (C) The original matrix X is 

approximated by the matrix product of the scores (ti) and loadings (pi) vectors, with the 

E matrix containing the residuals from the approximation. 

 

 

3.2.3. Measures of diagnostic accuracy 

A diagnostic test is a binary classifier which classifies a case as positive (disease 

present) or negative (disease not present) based on a given input. There are a number 
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of measures for the performance of a binary classifier. One method that has been 

widely used in clinical diagnostic testing, is the receiver operating characteristic (ROC) 

curve is a plot used to visualise the relationship between sensitivity (SN) and specificity 

(SP). Ideally, it is desirable for a biomarker or diagnostic test to predict who has a 

disease or condition in 100% of cases. If a diagnostic is not sensitive, it will fail to 

detect individuals who have a disease and if it is not specific then it may indicate 

people have the disease when they really have another condition, thus it is important 

to maximize sensitivity and specificity in a diagnostic test. For ROC curves SN is the 

proportion of participants with the disease that test positive (true positives), i.e. 

patients who do have the disease; SP is the proportion of test negative cases among 

true negatives, i.e. patients who do not have the disease. The performance of the test 

can be obtained, by plotting SN versus (1 – SP). Thus the area under receiver operator 

curve (AUROC) has a value ranging between 0 and 1. A value of 1 represents a perfect 

test with no erroneous classification whereas 0.5 represents an uninformative test as 

this is the value expected from a classifier that gives random guesses.  

 

The simplest way to determine the best cutoff (or level) for a diagnostic parameter is 

to use the ROC curve to identify the cutoff value with the highest sum of sensitivity 

and specificity. Different methods can be used for parametric and non-parametric 

cases and for comparing two or more binary classifiers with continuous variables. 

Options include the method by DeLong et al, which estimates the variance-covariance 

matrix of the differences in the AUROC between the classifiers (12) and Hanley and 

McNeil’s method which compares two or more binary classifiers but for paired 

variables taking the correlation between the variables into account  
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(13). Since a single value or ratio was mostly used as the classifier in this thesis, the 

simplest method of using the sum of the highest sensitivity and specificity was applied. 

 

3.2.4. Statistical methods for metabolite identification 

Structural assignment of NMR data may be aided by statistical spectroscopy 

algorithms that take advantage of the collinearity of spectral signals. Statistical total 

correlation spectroscopy (STOCSY) was the first developed and is a widely used tool 

(14). By assuming that signals from the same molecule covary, it calculates the 

covariance and correlation of the driver variable specified with all spectral variables 

across a set of samples. This is visualised by a pseudo-spectrum plot which displays 

covariance as the intensity, coloured by the correlation coefficient. Signals from the 

same molecule as the signal of the driver variable are expected to show strong 

correlation. This allows for the rapid identification of all peak groups from the same 

molecule which facilitates structural elucidation. Multiple variations of STOCSY have 

been developed. One of which, subset optimisation by reference matching (STORM), 

allows a region of the spectrum, rather than a specific point, to be specified and selects 

a subset of samples enriched with the signal before performing an algorithm similar to 

STOCSY (15). 

 

The typical workflow for metabolite assignment in NMR was as follows: a peak of 

interest was first used as the driver peak for STOCSY or STORM to identify any other 

peaks that showed high statistical correlation. This process was repeated using the 

identified associated peak to confirm the association and elucidate any other 

correlated peaks. This provided information to match against online (1) and in-house 

databases. Multiplicity and relation between peaks were clarified through the 



 105 

inspection of data from 2D experiments. For the J-Resolved spectra, the projection of 

the peaks on to the chemical shift axis provides information on the number of protons 

contributing to each multiplet with information on the location / structure of 

neighbouring protons, whereas the 2D correlation sequences (COSY and TOCSY) 

show which protons are connected to each other along the backbone of a molecule. 

All non-general methods are provided within the chapter they apply to. 
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Chapter 4 – Multi-platform metabolic profiling of urine for 
the validation of reported discriminatory metabolites for 
HCC 

 

Summary 

Validation of previously reported discriminatory metabolites for a disease could be 

argued to be of equal importance as discovering novel ones. Using results extracted 

from the systematic review (Chapter 2), top ranking discriminatory metabolites for 

HCC based on urine profiles was targeted to be annotated in datasets acquired by 1H 

nuclear magnetic resonance, reversed phase and hydrophilic interaction liquid 

chromatography-mass spectrometry in a UK cohort. Significant alteration of 10 

metabolites reported to be altered in HCC compared to healthy controls were 

reproducibly validated. However, apart from these ten metabolites which were in 

agreement, seven others were found to be altered in the opposite direction as reports 

from the literature and none of the previously reported alterations in the HCC and 

cirrhotic comparison could be reproduced. The results highlight the absence of a 

potential diagnostic candidate marker in urine. Whilst there was some evidence of a 

metabolic signature of HCC and cirrhosis, HCC could not be differentiated from the 

underlying cirrhosis. Future studies should focus on the HCC and cirrhosis comparison 

with the aim of identifying metabolites specific to HCC and similar validation effort 

should be conducted in analysis of blood samples. 
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4.1. Rationale 

Candidate diagnostic biomarkers have the greatest potential clinical utility if they are 

applicable universally. Therefore, it could be argued that it is of equal, if not greater, 

importance for any new cohorts to validate existing findings than to discover novel, 

previously unreported, discriminatory metabolites. Any discriminatory metabolites or 

panels of metabolites that are hypothesised to be potential biomarkers need to be 

validated in multiple independent cohorts with different genetic, environmental and 

aetiological backgrounds. 

 

Using a cohort from the UK, this chapter presents an attempt to validate discriminatory 

urine metabolites based on information extracted from the systematic review in 

Chapter 2, drawn from published literature describing candidate biomarkers of HCC, 

in a pseudo-targeted manner. Metabolites with ranking among top 30 in any of the 

metrics used (based on number of reports in literature, fold change, risk of bias of 

publication) were targeted to be annotated in data generated from untargeted 1H-

nuclear magnetic resonance and RP and HILIC LC-MS spectral datasets profiled from 

urine samples. Results from statistical analyses of differences in relative concentration 

of these metabolites between HCC and either healthy or cirrhotic groups were 

compared to the findings from the systematic review. 

 

4.2. Methods 

4.2.1. Participant recruitment and sample collection 

Participants were recruited from five hospitals in England (London, Manchester, 

Newcastle, Nottingham, Southampton). HCC diagnoses were made by two 

independent modalities of imaging or by pathological studies, confirmed by a multi-
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disciplinary team. A total of 198 participants, consisting of 102 HCC patients, 42 

patients with cirrhosis and 54 healthy volunteers with no known liver conditions were 

recruited. A spot urine sample was collected for each participant, along with the record 

of demographic and clinical data, current medication and dietary history for the past 

72 hours through a standardised questionnaire. The Child-Pugh score and class for 

all patients and Barcelona Clinic Liver Cancer (BCLC) stage for HCC patients were 

determined based clinical data. Urine samples were kept on ice, stored at -80ºC within 

an hour of collection and transported on dry ice pending analysis. An informed written 

consent was obtained from each participant. The study was approved by Research 

Ethics Committee at Imperial College London (REC no.: 09/H0712/82). 

 

4.2.2. Sample preparation, data acquisition and processing 

A quality control sample (QC) was prepared by pooling an equal volume (50μL) from 

each sample. The samples were sorted into a randomised order using a computer 

based algorithm and centrifuged at 13,000 g at 4ºC for 5 minutes. NMR and LCMS 

analysis were performed in accordance with published protocols (1-3).  

 

For NMR, a volume of 540μL of the supernatant from centrifugation and 60μL of 

deuterated phosphate buffer (1.5M KH2PO4, 2mM NaN3, 1% 3-trimethylsilyl-2,2,3,3-

2H4-propionic acid (TSP) in 99.9% D2O, pH 7.4) were mixed and transferred to 5mm 

SampleJet tubes (Bruker Biospin, Germany). NMR spectra were acquired using 

Bruker Avance III DRX 600MHz spectrometer with a BBI probe operating at 

600.13MHz at 300K and an automatic sample handling SampleJet unit (Bruker 

Biospin, Germany). A QC sample was run every 47 samples to allow assessment of 

analytical reproducibility. For each sample, a standard 1-dimensional (1D) spectrum, 
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using the first increment of the nOe pulse sequence to achieve suppression of the 

water resonance, and a 2-dimensional J-resolved (JRES) spectrum, for establishing 

multiplicity of peaks, were acquired (3). Water suppression was achieved by 

continuous wave irradiation at 25Hz during relaxation delay and mixing time. For 1D 

experiments, a total of 32 transients were acquired in the spectral window of 20 ppm. 

An exponential line-broadening factors of 0.3Hz was applied prior to Fourier 

transformation. Spectra were recorded and processed by automatic baseline-

correction, phasing, referencing to TSP at 0 ppm using TopSpin v3.2.3 (Bruker Biospin, 

Germany). NMR data were imported into R at a resolution of 0.001ppm using in-house 

script. Regions corresponding to TSP and noise at both ends (< 0.5 ppm and ppm > 

9.5 ppm), water (4.7-4.877 ppm) and urea (5.486-6.050 ppm) were removed prior to 

subsequent analysis.  

 

For LCMS experiments, analyses were performed on UPLC-MS systems with 

ACQUITY UPLC (Waters Corp., Milford, MA, USA) as the LC component and Xevo 

G2 Q-ToF MS (Waters Corp., Manchester, UK) as the MS component. The LC and 

MS components were coupled via an electrospray ionisation source and the MS 

detector was operating at positive ion detection mode. A QC sample was run every 11 

samples and a series of diluted QC samples was also run at the beginning of each 

run.  

 

For RP-LCMS, a 2.1 x 100 mm Acquity HSS T3 column (Waters Corporation, Milford, 

MA, USA) operating at 40ºC was used. Mobile phase solvents A and B were water 

and acetonitrile, respectively, with 0.1% formic acid. The flow rate was 0.5 mL/min and 

solvent gradient and MS setup was as described in Want, et al. (2). Samples were 
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prepared by diluting 100μL of sample with 100μL of water and the injection volume 

was 5μL. 

 

For HILIC-LCMS, a 2.1 x 140 mm Acquity BEH HILIC column (Waters Corporation, 

Milford, MA, USA) operating at 40ºC was used. Solvent A was acetonitrile with 0.1% 

formic acid and solvent B was water with 20mM ammonium formate with 0.1% formic 

acid. The flow rate was 0.6 mL/min and solvent gradient and MS setup was as 

described in Lewis, et al. (1). Samples were prepared by diluting 100uL of samples 

with 300uL of acetonitrile and an injection volume of 5μL was used.  

 

Raw LCMS data were converted to netCDF format for feature identification and 

integration using the R package xcms (4). Default parameters were used except for 

the following: in the chromatographic peak detection step using the centWave method, 

noise = 500, prefilter = c(7,5000), peakwidth = c(2,15) and integrate = 2; in the ‘group 

chromatographic peak’ step using the peakDensity method, minFrac = 0.1 and 

bandwidth = 1. Extracted features were filtered by relative standard deviation (RSD) 

of QC < 30% (in alignment with Food and Drug Administration (FDA) guidelines) and 

response to dilution with Spearman σ > 0.8 (1).  
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Figure 4.1. Method of metabolite annotation in LCMS using the annotation of 
hippuric acid in the HILIC dataset as an example. The monoisotopic mass as well 
as m/z of any fragment at collision energy of 0V was retrieved from online database 
(7). Then m/z of expected adducts were calculated. Features extracted using XCMS 
that are within 30ppm of expected m/z were shortlisted. These features with accurate 
mass-matching with or without co-eluting features (features with the same retention 
time) were identified as putative targets. Annotations were confirmed by inspection of 
the extracted ion chromatogram, mass spectrum and correlation between co-eluting 
features. 
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4.2.3. Metabolite annotation 

Metabolite annotation in the NMR dataset was achieved by first retrieving ppm and 

multiplicity values from the Human Metabolomics Database (HMDB) (5) and in-house 

databases and confirmation by STOCSY (6) and inspection of JRES spectra to 

establish peak multiplicity. 

 

Multiple lines of evidence were used for metabolite annotation in LCMS data (Figure 

4.1). First, the expected mass-to-charge ratio (m/z) of the most commonly occurring 

adducts, [M+H]+, [M+Na]+, [M+K]+ and [M+NH4]+ were calculated based on their 

monoisotopic mass retrieved from Metlin database (7). The m/z of fragments that 

occur at collision energy of 0V of were also retrieved (7). Features within 30ppm of the 

expected adduct and fragment m/z were shortlisted for inspection in the extracted ion 

chromatogram and the mass spectrum of the co-eluting peaks. Annotations were 

made by accurate mass matching of the parent ion, with additional confidence gained 

by the observation of other adduct or fragment peaks in raw data, the correlation of 

the parent ion with these adduct and/or fragment identified as features (Figure 4.1). 

 

4.2.4. Statistical analysis 

Each dataset was first normalised using the probabilistic quotient normalization 

method (8). Principal component analysis with mean-centering and univariate scaling 

was used to provide an overview of the data and to identify any outliers. Two-way 

comparisons between HCC compared to cirrhosis and HCC compared to the healthy 

control group were made using Wilcoxon’s rank sum test. Multiple testing was 

accounted for using the Benjamini-Hochberg method for NMR peak integrals (9), and 
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by converting p-values to q-values for LC-MS features using the qvalue package in R 

(9). Although the precise definition of adjusted false discovery rate (FDR)-value (from 

Benjamini-Hochberg) and q-values differ, in practice, they are often used 

interchangeably (10). The method of choice was due to the availability of a greater 

number of features for testing in LCMS datasets, which allows for a better estimate of 

parameter required to compute q-values. A cutoff of < 0.05 was considered significant, 

which can be interpreted as accepting that there is a 5% probability of false positive in 

those metabolites declared to be significant.  

 

Additionally, to delineate the effect of liver cirrhosis and the effect of malignant process 

as well as to remove potential confounding due to sex and age, two logistic regression 

models were built for each identified metabolite to model for the presence of HCC. In 

both models, age and sex were included as independent variables, with or without 

accounting for the severity of chronic liver disease: 

Model 1: Presence of HCC ~ Intensity + age + sex 

Model 2: Presence of HCC ~ Intensity + age + sex + Child-Pugh score 

 

All data analysis procedures were performed in R (version 3.6) (11). 
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Table 4.1. Clinical characteristics of the cohort. 

 
Data shown as median (interquartile range) with the exception of *, for which mean 
(±1 stand deviation) is shown. anumber of data points available. bp-values of Mann-
Whitney U test, unless stated otherwise. cχ2 test. d1-way analysis of variance.  

HCC Cirrhotic Healthy control

na na na p-valueb

n Total 102 42 54

Demographic information

Male sex, n (%) 82 (81%) 101 31 (74%) 42 23 (45%) 51 <0.0001c

Ethnicity, white, n (%) 92 (90%) 102 33 (79%) 42 40 (74%) 54 0.023c

Age, year* 69.3 (61.8,76.1) 101 55.2 (48.8,62.6) 41 36.7 (31.55,51.25) 51 <0.0001d

BMI, kg m-2* 28.6 (25.3,32.4) 99 29.6 (25.8,35.4) 42 25.42 (22.3,28) 54 0.0003d

Co-morbidities

Diabetes, n (%) 54 (53%) 102 12 (29%) 42 1 (2%) 54

Hypertension, n (%) 42 (41%) 102 10 (24%) 42 4 (7%) 54

Blood test results

Alanine aminotransferase, IU L-1 39 (26.5,59.5) 99 33 (26,56.75) 42 0.054
Alkaline phosphatase, IU L-1 136 (90.75,174.25) 100 109 (80,125.75) 42 0.006
Albumin, g L-1 35 (29.25,40) 102 34.5 (31,41.5) 42 0.915
Alpha-fetoprotein, ng L-1 19 (4,124.5) 91 2.2 (2,4) 35 <0.0001

Bilirubin, µmol L-1 17 (10,30.25) 102 18.5 (10,27.75) 42 0.921
Creatinine, µmol L-1 71 (63,88.75) 98 71 (59,90) 41 0.784
International normalised ratio 1.1 (1.1,1.3) 71 1.2 (1.1,1.4) 29 0.099
Prothrombin time, s 14 (12,15.7) 86 15.2 (13.5,16.7) 37 0.024
Urea, mmol L-1 5.25 (4.1,6.625) 100 4.5 (3.6,5.8) 41 0.063
Liver condition

Cirrhotic, n (%) 85 (83%) 102 42 (100%) 42

Child-Pugh Stage, n 102 42

          A 65 25

          B 33 15

          C 4 2

HCC tumour condition

BCLC stage, n 93

          0 7

          A 20

          B 14

          C 48

          D 4

Aetiology, n 93

          CHB 5

          CHC 5

          ARLD 27

          NAFLD/NASH 33

          Autoimmue-related 7

          Mixed 8

          Other 9

Multiplicity, n 101

          Single 57

          Multiple 42

          Diffuse process 2

Diameter of largest tumour, n 89

          ≤ 5 62

          >5 27

Metastasis, n 3 102
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4.3. Results 

4.3.1. Cohort characteristics 

A total of 198 participants, comprising of 102 HCC patients, 42 cirrhotic patients and 54 healthy 

control individuals were studied. Demographic information and blood test results are 

summarised in Table 4.2. The proportion of male participants was not even across the study 

groups (p < 0.0001, χ2 test) with the cirrhotic and HCC group comprising of an increasingly 

higher proportion of male participants compared to healthy control. The HCC and cirrhotic 

groups were also of more advanced age and had higher body mass indices (BMI, p < 0.0001 

and p = 0.0003, respectively, 1-way analysis of variance) than healthy control.  

The most common underlying cause of HCC in this cohort was non-alcoholic fatty liver disease 

(NAFLD) or non-alcoholic steatohepatitis (NASH), accounting for 33 (35%) of the cases, 

followed by alcohol-related liver disease (n = 27, 29%). Clinical biochemistry measurements 

between HCC and cirrhotic patients were largely matched with the exception of alkaline 

phosphate. Alpha-fetoprotein (AFP) differed significantly as expected. Using the commonly 

recommended cutoff of 20ng mL-1 (12), the AFP measured at the time of sampling has a 

sensitivity of 96% and specificity of 44%. With a higher cutoff of 200ng mL-1, the specificity 

decreased to 22%, demonstrating its inadequacy as a biomarker.  

 

4.3.2. Quality assessment of experimental data 

The reproducibility of the experimental data was assessed by use of QC samples run 

at regular intervals between samples. Overlay of raw data and the overview of the 

processed data in PCA shows that QC samples co-mapped tightly for most datasets, 

with the exception of the HILIC dataset where some indication of a drop-off of signal 
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intensity was observed (Figures 4.2 to 4.4), indicating the data acquired were 

repeatable throughout each of the sample analysis runs. 

 

In the NMR dataset, two samples, both from HCC patients with diabetes, were 

identified as outliers as their baseline was more variable than other samples (Figure 

4.2 C), probably owing to extreme high glucose content of the urine as a result of 

diabetes. These spectra were removed from subsequent analyses due to their 

potential to bias the dataset, given the relatively large spectral window occupied by 

the multiple glucose protons.  

 

For LCMS data, features were additionally scrutinised for their reproducibility through 

the use of the feature’s relative standard deviation (RSD) among QC samples and 

correlation with the dilution factor of the diluted QC samples. In the HILIC dataset, 

856/1201 features had RSD < 30% and 914/1201 had correlation with dilution factor > 

0.8, resulting in 695 features that passed quality assessment filtering. In the RP 

dataset, 3129/3417 features had RSD of less than 30% and 3142/3417 had correlation 

with dilution factor of greater than 0.8, resulting in 2949 features that passed quality 

assessment filtering. 
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Table 4.2. Chemical shifts of metabolites annotated in the 1H NMR dataset. 

 
*The chemical shift selected for peak integration highlighted in bold. d: doublet, s: 
singlet, t: triplet. 

 
 
 
 
 
 
 
 
 

 
Figure 4.2. Quality assessment of the 1H NMR data. (A) Overlay of quality control 
(QC) spectra. (B) Principal component analysis of samples (turquoise) and QC 
samples (red cross). Variance explained: PC1 17.1%, PC2 5.2%. (C) Spectra (red) of 
the two outliers (red arrows in (B)) with distorted baseline. A spectrum from QC (black) 
is shown as reference. 
 
  

Table 1

Compound Chemical shifts and 
multiplicities*

Creatinine 3.05s, 4.05s

D-Glucose Various, 5.23d

Hippuric acid 3.97s, 7.56t, 7.64t, 7.83d

Trimethylamine-N-oxide 3.28s



 119 

 
Figure 4.3. Quality assessment of the HILIC-LCMS data. Overlay of total ion 
chromatogram of (A) quality control (QC) samples run every 11 samples of study 
samples and (B) dilution of QC sample run at the beginning of the run. (C) Scores plot 
of principal component analysis co-mapping samples, QC and dilution series (DS). 
Variance explained: PC1 17%, PC2 5.1%, PC3 3.5%. 
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Figure 4.4. Quality assessment of the RP-LCMS data. Overlay of total ion 
chromatogram of (A) quality control (QC) samples run every 11 samples of study 
samples and (B) dilution of QC sample run at the beginning of the run. (C) Scores plot 
of principal component analysis co-mapping samples, QC and dilution series (DS). 
Variance explained: PC1 17.8%, PC2 5.6%, PC3 4.4%. 
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4.3.3. Metabolite identification 

The 62 compounds with any of the metrics (number of times reported, vote and fold-

change with or without weighting by risk of bias assessment and the final score, which 

was additionally weighted for concordance of reports) among the top 30 for HCC 

identified in Chapter 2 (Appendix A Table 6) were targeted for analysis in the current 

datasets. A total of 4, 13 and 17 metabolites were identified in NMR, HILIC-LCMS and 

RP-LCMS datasets, respectively (Table 4.2 and 3).  

 

4.3.4. Statistical analysis 

The candidate metabolites were tested for differences between groups (HCC vs 

cirrhosis and HCC compared to healthy control) using Wilcoxon’s rank-sum test (Table 

4.4, Figure 4.5-7) since the comparisons of interest were between single group pairs 

i.e. healthy vs HCC and between cirrhosis vs HCC.  

 

Many of the metabolites showed statistical significance in the HCC vs healthy 

comparison. Metabolites annotated in more than one dataset that were significantly 

higher in HCC than in healthy control participants included D-Glucose, L-

phenylalanine and pyroglutamic acid. Those found in more than one dataset and were 

significantly lower in HCC patients included hippuric acid, creatinine and L-xylonate. 

Other metabolites that were significantly higher in the HCC group included 5-

hydroxyindoleacetic acid, adenosine, glycocholic acid, indoleacetic acid, L-cysteine in 

the RP dataset. Metabolites that were significantly lower in HCC compared to control 

were L-methionine in the HILIC dataset, 1,3-dimethyluric acid, L-carnitine and uric acid 

in the RP dataset. Acetyl-L-carnitine and alpha-hydroxyhippuric acid were found to be 
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significantly lower and pyridoxal significantly higher in the RP dataset but not in the 

HILIC dataset.  



 123 

Table 4.3. Evidence for annotations made in LCMS data.  

 
#Evidence of co-eluting adduct or fragment peaks, which may be observed in the mass spectrum in the extracted ion chromatograms 
or was also extracted as a feature, in which case, Pearson correlation coefficient with the parent feature across samples is shown. 
*Only the isotopic peak, but not the parent ion was peak-picked by XCMS.  
cor(DS): Spearman correlation coefficient of intensities detected dilution series of quality control (QC) sample and the dilution factor; 
RSD: relative standard deviation of intensities detected across quality control samples. RT: retention time. 
  

Compound name Adduct Theoretical 
m/z Δppm Actual  

m/z RT (min) cor(DS) RSD Co-eluting 
adduct Evidence# Fragment m/z Evidence#

HILIC-LCMS
Alpha-Hydroxyhippuric acid [M+H]+ 196.060 3.47 196.061 0.921 0.877 7.251 [M+Na]+ 0.814 105.0337 (300%)
Acetyl-L-carnitine [M+H]+ isotope* 205.123 22.14 205.128 4.449 0.970 6.801 [M+Na]+ 0.648
Creatine [M+H]+ 132.077 9.56 132.078 4.751 0.970 7.683 [M+Na]+ Observed 90.0553 (7%)
Creatinine [M+H]+ 114.066 12.11 114.068 2.509 0.928 6.408 [M+Na]+ 0.537 86.0741 (8%)
D-Glucose [M+NH4]+ 198.097 7.54 198.099 1.316 0.935 27.890 [M+Na]+ 0.696 145.0491 (300%)
Hippuric acid [M+H]+ 180.066 7.00 180.067 0.890 0.969 6.780 [M+Na]+ 0.920 105.0339 (20%) 0.989
L-Methionine [M+H]+ 150.058 8.81 150.060 2.022 0.989 8.463 [M+Na]+ 0.978 133.031 (13%)
L-Phenylalanine [M+H]+ 166.086 7.22 166.087 3.537 0.991 6.905 [M+Na]+ 0.831 120.0806 (17%) Observed
L-Xylonate [M+H]+ 167.055 15.77 167.058 1.009 0.945 14.988 [M+Na]+ Observed
Pyridoxal [M+H]+ 168.066 6.66 168.064 0.974 0.964 4.992 [M+Na]+ Observed 129.0125 (54%)
Pyroglutamic acid [M+H]+ 130.050 10.18 130.051 1.490 0.989 6.934 [M+Na]+ Observed
Taurine [M+H]+ 126.022 10.46 126.023 2.347 0.978 10.185 [M+Na]+ 0.958 108.0119 (3%) Observed
Trimethylamine N-oxide [M+H]+ 76.076 11.30 76.077 3.812 0.968 5.922 [M+Na]+ Observed

RP-LCMS data
1,3-Dimethyluric acid [M+H]+ 197.067 1.428 197.067 2.718 1.000 12.348 169.0708 (11%) 0.900
5-Hydroxyindoleacetic acid [M+H]+ 192.066 1.500 192.066 2.370 1.000 11.519 [M+NH4]+ 0.943 146.06 (12%) Observed
Adenosine [M+H]+ 268.104 1.174 268.104 1.998 1.000 19.291 136.0621 (8%) 0.808
Alpha-Hydroxyhippuric acid [M+H]+ 196.060 0.133 196.060 3.144 1.000 10.070 105.0337 (300%)
Acetyl-L-carnitine [M+H]+ 204.123 1.950 204.123 0.805 1.000 6.945
Creatinine [M+H]+ 114.066 7.852 114.067 0.504 1.000 13.133 [M+K]+ 0.260 86.0741 (8%)

[M+H]+ [M+Na]+ 0.125
D-Glucose [M+Na]+ 203.053 0.699 203.053 0.474 1.000 8.072 145.0491 (300%)
Glycocholic acid [M+Na]+ 488.298 2.267 488.297 6.217 1.000 7.560 [M+H]+ 0.944 430.294 (18%) Observed
Hippuric acid [M+Na]+ 202.047 0.814 202.048 3.749 1.000 6.884 [M+H]+ 0.860 105.0339 (20%) Observed
Indoleacetic acid [M+H]+ 176.071 1.755 176.071 4.332 1.000 8.648 [M+Na]+ 0.978
L-Carnitine [M+H]+ 162.112 2.044 162.113 0.488 0.886 7.204 103.0358 (5%)
L-Cysteine [M+H]+ 122.027 5.918 122.028 1.213 1.000 20.158 151.9838 (5%)
L-Phenylalanine [M+H]+ 166.086 1.862 166.087 3.385 1.000 11.665 120.0806 (17%) 0.961
L-Xylonate [M+H]+ 167.055 9.934 167.057 2.261 1.000 10.241
Pyridoxal [M+H]+ 168.066 11.954 168.064 1.850 0.943 5.193 129.0125 (54%)
Pyroglutamic acid [M+H]+ 130.050 7.116 130.051 4.151 1.000 6.585 [M+NH4]+ 0.834
Uric acid [M+H]+ 169.036 3.225 169.036 0.923 1.000 11.359
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Table 4.4. Statistical analysis of metabolites annotated.  

 
Model 1: Logistic regression of Presence of HCC ~ Metabolite Intensity + Sex + Age 
Model 2: Logistic regression of Presence of HCC ~ Metabolite Intensity + Sex + Age + Child-Pugh score 
P-values and adjusted p-values below 0.05 are highlighted in bold.  
CI: confidence interval; log2(FC): Log base-2 of median fold change of HCC over the study group compared; OR: odds ratio. padjusted: 
Adjusted p-value.   

HCC vs Cirrhotic HCC vs Healthy control Model 1 Model 2
Compound name log2(FC) p padjusted log2(FC) p padjusted OR (95% CI) p OR (95% CI) p
Alpha-fetoprotein 3.98 (1.91-10.54) 0.001381 3.97 (1.89-10.67) 0.00168
NMR
Creatinine -0.068 0.180 0.541 -0.199 4.97E-02 9.95E-02 1.04 (0.2-5.36) 0.963 0.51 (0.08-2.96) 0.452
D-Glucose -0.062 0.964 0.964 0.268 5.63E-08 1.31E-07 1.8 (0.9-4.17) 0.124 1.17 (0.59-2.62) 0.664
Hippuric acid 0.065 0.657 0.657 -0.411 2.97E-09 1.78E-08 0.28 (0.04-1.27) 0.133 0.59 (0.1-2.66) 0.517
Trimethylamine-N-oxide 0.250 0.435 0.633 0.117 0.740 0.864 1.16 (0.33-4.18) 0.812 1.49 (0.38-6.29) 0.576
HILIC-LCMS
Alpha-Hydroxyhippuric acid 0.085 0.412 0.434 0.022 0.768 0.209 5.09 (1-27.91) 0.054 4.35 (0.74-27.43) 0.107
Acetyl-L-carnitine -0.010 0.695 0.556 -0.238 0.213 7.94E-02 0.96 (0.37-2.5) 0.931 1.08 (0.38-3.05) 0.883
Creatine 0.342 0.101 0.254 0.031 0.743 0.204 0.97 (0.39-2.3) 0.940 1.18 (0.48-3.04) 0.716
Creatinine -0.092 0.096 0.253 -0.224 4.16E-04 7.08E-04 1.25 (0.62-2.63) 0.527 1.43 (0.7-2.93) 0.318
D-Glucose 0.524 0.230 0.346 1.106 4.48E-04 7.25E-04 1.32 (0.95-1.77) 0.076 1.16 (0.79-1.6) 0.410
Hippuric acid -0.174 0.691 0.555 -0.724 1.31E-06 8.93E-06 0.47 (0.11-1.83) 0.285 1.08 (0.25-4.55) 0.917
L-Methionine -0.032 0.960 0.626 -0.350 6.64E-04 9.78E-04 0.94 (0.15-5.93) 0.945 1.05 (0.16-7.16) 0.955
L-Phenylalanine -0.189 0.781 0.583 0.301 5.26E-03 4.59E-03 1.92 (0.72-5.46) 0.204 1.31 (0.46-3.84) 0.611
L-Xylonate 0.065 0.353 0.409 -1.343 1.66E-05 5.97E-05 0.33 (0.15-0.68) 3.79E-03 0.55 (0.24-1.16) 0.148
Pyridoxal 0.059 0.451 0.450 -0.021 0.599 0.173 1.46 (0.26-8.65) 0.664 1.31 (0.2-8.79) 0.772
Pyroglutamic acid 0.115 0.486 0.463 0.296 4.83E-02 2.38E-02 1.39 (0.44-5.26) 0.591 1.53 (0.49-5.66) 0.482
Taurine 0.068 0.603 0.520 0.109 0.508 0.154 1.72 (0.98-3.11) 0.063 1.37 (0.73-2.6) 0.329
Trimethylamine N-oxide 0.151 0.358 0.411 -0.082 0.213 7.94E-02 0.78 (0.33-1.23) 0.382 0.95 (0.43-1.5) 0.846

RP-LCMS
1,3-Dimethyluric acid 0.110 0.2298 0.3777 -0.723 8.03E-04 9.84E-04 0.49 (0.24-0.77) 1.13E-02 0.62 (0.35-0.95) 4.68E-02
5-Hydroxyindoleacetic acid 0.525 0.2996 0.4285 1.780 4.42E-03 4.06E-03 0.89 (0.49-1.58) 0.682 0.91 (0.48-1.71) 0.764
Adenosine 0.236 0.2160 0.3653 0.551 0.0395 0.0251 1.24 (0.71-2.15) 0.439 1.49 (0.8-2.73) 0.197
Alpha-Hydroxyhippuric acid 1.529 0.0882 0.2411 2.307 6.11E-03 5.30E-03 1.03 (0.82-1.28) 0.792 1.06 (0.84-1.32) 0.605
Acetyl-L-carnitine 0.179 0.7455 0.6437 -0.625 2.70E-03 2.68E-03 0.71 (0.35-1.4) 0.335 0.83 (0.4-1.67) 0.613
Creatinine -0.164 0.1395 0.2988 -0.619 2.86E-05 5.64E-05 0.9 (0.5-1.58) 0.709 0.89 (0.48-1.6) 0.695
D-Glucose -0.624 0.6613 0.6183 1.038 1.06E-03 1.23E-03 1.02 (0.79-1.29) 0.877 0.91 (0.64-1.22) 0.585
Glycocholic acid 0.197 0.5875 0.5870 4.077 2.06E-14 4.94E-13 2.72 (1.64-4.75) 1.97E-04 1.6 (0.85-3.16) 0.157
Hippuric acid -0.110 0.1395 0.2988 -1.084 7.65E-09 4.85E-08 0.19 (0.05-0.59) 6.73E-03 0.39 (0.1-1.25) 0.136
Indoleacetic acid 0.079 0.7284 0.6391 0.496 1.90E-03 2.00E-03 0.86 (0.53-1.38) 0.540 0.86 (0.5-1.44) 0.576
L-Carnitine -0.688 0.0485 0.1853 -0.710 1.73E-03 1.84E-03 0.61 (0.33-1.09) 0.103 0.67 (0.35-1.24) 0.213
L-Cysteine 0.236 0.1827 0.3391 0.310 0.0115 9.05E-03 2.38 (0.4-15.01) 0.345 3.2 (0.48-22.48) 0.229
L-Phenylalanine 0.111 0.0624 0.2051 0.061 0.0870 0.0485 14.73 (1.17-216.14) 4.22E-02 10.94 (0.69-208.13) 9.85E-02
L-Xylonate -0.292 0.1347 0.2976 -1.091 2.84E-07 1.06E-06 0.24 (0.1-0.5) 3.81E-04 0.35 (0.14-0.77) 1.29E-02
Pyridoxal 0.237 0.0441 0.1784 0.602 1.11E-04 1.81E-04 1.18 (0.3-4.8) 0.815 0.95 (0.23-4.02) 0.947
Pyroglutamic acid 0.716 3.26E-04 0.0137 0.969 4.45E-05 8.27E-05 4.3 (1.58-12.75) 6.01E-03 4.65 (1.59-14.89) 6.82E-03
Uric acid -0.155 0.1520 0.3117 -0.514 8.64E-04 1.04E-03 0.69 (0.2-2.21) 0.536 0.81 (0.23-2.76) 0.737
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Figure 4.5. Intensities of metabolites found in NMR in each study group. (A-B) 
Metabolites with lower intensity in HCC. (C) Metabolite with higher intensity in HCC. (D) 
Metabolite with no significant difference found. The Wilcoxon rank sum test was used to 
establish significance for group comparisons. 
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Figure 4.6. Relative intensities of metabolites found in HILIC-LCMS in each study 
group. (A-D) Metabolites with lower intensities in HCC. (E-G) Metabolites with higher 
intensities in HCC. (H-M) Metabolites with no significant difference found between HCC 
and control groups. ***: q < 0.001, **: 0.001 ≤ q < 0.01, *: q < 0.05. The Wilcoxon rank 
sum test was used to establish significance for group comparisons. 
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Figure 4.7. Relative intensities of metabolites found in RP-LCMS in each study 
group. (A-G) Metabolites with lower intensities in HCC. (H-Q) Metabolites with higher 
intensities in HCC. ***: q < 0.001, **: 0.001 ≤ q < 0.01, *: q < 0.05 for the comparison 
between HCC and the healthy control group; #: q < 0.05 for the comparison between HCC 
and the cirrhotic group. The Wilcoxon rank sum test was used to establish significance 
for group comparisons.



 128 

For the comparison between HCC and cirrhosis, only pyroglutamic acid in the RP 

dataset remained significant after accounting for multiple testing (q = 0.0137). It was 

found to be higher in HCC compared to cirrhotic (log2FC = 0.716), and matching for 

directionality, it was also higher in HCC compared to healthy control (log2FC = 0.969). 

Metabolites that showed marginal differences between HCC and cirrhotic participants 

with p values of less than 0.05 was pyridoxal, which was higher in HCC, and L-

carnitine, which was lower in HCC, compared to individuals with cirrhosis. 

 

From the inspection of the boxplots (Figures 4.4-6), relative intensities of many of the 

annotated metabolites that were altered in the HCC vs healthy comparison were 

already altered in the cirrhotic group. For example, creatinine and hippuric acid in the 

NMR data set had similar relative intensities between the HCC and cirrhotic group 

(Figure 4.4), suggesting that the levels of these metabolites may be altered as a result 

of liver impairment due to cirrhosis, rather than being specific to HCC. 

 

As an alternative approach to determine the ability of the annotated metabolites to 

predict HCC, intensity values were first log-transformed to improve normality and 

logistic regression was used to model for the presence of HCC. In Model 1, age and 

sex were included as independent variables to account for the mismatch of sex and 

age between the study groups and also because these are independent risk factors of 

HCC. Model 2 additionally adjusted for the effect of the severity of liver impairment by 

including Child-Pugh score as an independent variable. Child-Pugh score is a 

composite score based on serum total bilirubin, albumin, a measure of blood clotting 

(either using prothrombin time or the international normalised ratio) and the degree of 

ascites, and hepatic encephalopathy used to assess liver impairment in patients with 
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advanced liver disease (13). Given that many of the alterations observed in the 

spectral profiles of HCC patients may be due to liver impairment, it is thought that by 

incorporating it as an independent variable could remove its effect and help elucidate 

the association between metabolite intensities and the presence of HCC. 

 

Serum alpha-fetoprotein (AFP) is the only established biomarker for HCC. To use AFP 

as a benchmark for assessing the performance of the annotated metabolites, models 

were also built using the same way as the metabolites investigated and AFP was found 

to be a significant predictor in both Models 1 and 2 (p < 0.002, Table 4.4). Metabolites 

with p-values < 0.05 in Model 1 are L-xylonate (in both datasets), 1,3-dimethyluric acid, 

hippuric acid, with an odds ratio (OR) less than 1, and glycocholic acid, L-

phenylalanine and pyroglutamic acid with an OR of greater than 1. In Model 2, only 

1,3-dimethyluric acid (p = 0.0468), xylonate (p = 0.0129) and pyroglutamic acid (p = 

0.00682) in the RP dataset remained significant, suggesting that these metabolites 

were associated with the presence of HCC independent of sex, age and liver damage. 

 

4.3.5. Comparison with reports from the literature 

The aim of this Chapter was to validate metabolites reported in the literature. A 

comparison of the current findings against those reported in the literature gathered 

from the systematic review in Chapter 2 is provided in Table 4.4. In the comparison 

between HCC and healthy control groups, the direction of change observed in the 

current cohort was in agreement with the published literature for ten of the metabolites. 

This includes the top-ranking metabolites such as creatinine, hippuric acid, glycocholic 

acid, L-threonine and L-xylonate. However, trimethylamine-N-oxide, which was 

reported to be decreased in three separate publications, and ranked third in the list, 
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was not found to be significantly different in the current cohort. On the other hand, 

seven metabolites were found to be significantly different from the corresponding 

control cohort, but in the opposite direction to that reported in the literature. However, 

for each of these metabolites I found to contrast with the reported association with 

HCC, there was only one publication each that cited a statistically significant 

association. Such insufficient amount of evidence may explain the contradicting 

results. Finally, no significant difference was found between the HCC group and the 

cirrhosis group, indicating the previously reported difference could not be observed in 

the current cohort. Nevertheless, for some of the metabolites, such as L-xylonate 

(Figures 4.6D and 4.7F), and adenosine (Figure 4.7I), a trend could be observed from 

healthy control, to cirrhosis, to HCC. The lack of statistical difference observed may 

be related to additional alteration in the HCC group, but at a degree that did not reach 

significance. However, the alteration of these metabolites in the cirrhotic group 

suggests that their alteration may be related to liver impairment, and hence limit their 

specificity as an HCC marker. 
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Table 4.5. Comparison of findings of the current cohort to those of published results. 

 
#Data from the systematic review (see Chapter 2 for detail): Rank: final rank based on the total score from all three comparisons; 
Score: the final score from Chapter 2; nReport: Number of times the metabolite was reported to be discriminatory between study 
groups; Vote: The total vote from the reports (+1 given to a report of increase and -1 given to a report of decrease). 
^Findings from the current cohort: Agreement: A circle ‘o’ indicates significant difference in the same direction as reports from the 
literature; A cross ‘x’ indicates significant difference in the opposite direction of that reported in the literature; A hyphen ‘-‘ indicates 
no statistical difference found, An asterisk ‘*’ indicates significant difference found with no previous reports. 
 

HCC vs Cirrhotic HCC vs Healthy

Compound name Rank# Identified 
in^ Score# nReport# Vote# Agree-

ment^ Score# nReport# Vote# Agree-
ment^

Creatinine 1 NMR -19.61 3 -3 - -13.41 2 -2 o
HILIC - o
RP - o

Hippuric acid 2 NMR -8.25 2 -2 - -18.16 5 -4 o
HILIC - o
RP - o

Trimethylamine N-oxide 3 NMR -4.13 1 -1 - -16.40 3 -3 -
HILIC - -

Glycocholic acid 5 RP 21.97 2 1 o
L-Carnitine 6 RP 7.98 2 2 - 2.45 1 1 x
L-Threonine 8 HILIC 2.45 1 1 - 12.73 3 3 o
L-Xylonate 9 HILIC -4.13 1 -1 - -10.32 2 -2 o

RP - o
L-Cysteine 14 RP -12.12 1 -1 x
Adenosine 22 RP 3.07 1 1 - 5.42 1 1 o
5-Hydroxyindoleacetic acid 23 RP -4.13 1 -1 x
Alpha-Hydroxyhippuric 
acid 23 HILIC -4.13 1 -1 -

RP x
1,3-Dimethyluric acid 27 RP 5.52 2 2 - *
Pyridoxal 28 HILIC 7.94 1 1 -

RP o
Pyroglutamic acid 29 HILIC -7.55 1 -1 x

RP * x
Acetyl-L-carnitine 30 HILIC 2.45 1 1 - 2.45 1 1 -

RP - x
Indoleacetic acid 30 RP 2.45 1 1 - 2.45 1 1 o
Creatine 38 HILIC 5.52 2 2 - 2.45 3 1 -
Uric acid 44 RP 5.50 1 1 x
D-Glucose 54 NMR 2.45 1 1 o

HILIC o
RP o

L-Methionine 54 HILIC 2.45 1 1 - *
Taurine 63 HILIC 4.13 1 1 -
L-Phenylalanine 93 HILIC 2.67 1 1 o

RP o
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4.4. Discussion 

In an attempt to validate previously reported urine discriminatory metabolites for HCC, 

metabolites with the ranking in any of the metrics among top 30 from the systematic 

review were targeted for annotation in three datasets (1H NMR, RP and HILIC LCMS) 

from the analysis of urine samples in a UK cohort. Most of the statistically significant 

alterations were found in the HCC vs healthy control comparison and with no 

difference observed in the HCC and cirrhosis comparison, suggesting that the altered 

levels of these metabolites are related to liver impairment, rather than being specific 

to HCC. Only pyroglutamic acid was found to be statistically different in both 

comparisons and was the metabolite with the strongest association with the presence 

of HCC after adjusting for the effects of age, sex and liver impairment. Comparing the 

current findings from reports from the literature, the alteration of ten of the metabolites 

in the HCC and healthy comparison were in agreement. However, there exists 

substantial disagreement as seven other metabolites were found to be altered in the 

opposite direction as those reported in the literature and none of the alterations in the 

HCC and cirrhosis comparison was observed. 

 

Apart from the ten metabolites whose alteration in the HCC and healthy control 

volunteer comparison could be reproduced, the lack of agreement in other metabolites 

and most importantly in the HCC and cirrhotic comparison were alarming. This 

suggests that urinary metabolites that are the most probable candidates to be markers 

(based on metrics including the frequency of reports of alterations in the literature, the 

risk of bias of the reporting publication, absolute fold change values and agreement 

between reports) could not be reproduced. The disagreement may be related to the 

lack of sufficient, high-quality evidence in the literature. Firstly, urine was the sample 
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type with the fewest studies on this topic published to date (10 in total, Figure 2.2A). 

Secondly, from the risk of bias assessment, studies that analysed urine had the lowest 

average score compared to reports of other sample types (Section 2.3.2), suggesting 

that the few studies reporting on urine were more prone to risk of bias. Finally, due to 

the low numbers of studies, only few of the metabolites had been reported to be 

discriminatory more than once and all metabolites found to be altered in the opposite 

direction had been reported once only, indicating the lack of pre-existing confirmatory 

evidence. Altogether, the failure to reproduce previously reported findings highlight the 

need for large-scale, high-quality studies on urine samples, with a focus on the 

comparison between HCC and cirrhotic patients. 

 

Normalisation is a means to account for different dilutions between samples, which is 

particularly important for urine as its concentration varies depending on water intake. 

Creatinine, the highest-ranking urine metabolite from the systematic review, is the 

breakdown product of muscle metabolism, which is proportional to a person’s muscle 

mass and is often used as reference for normalising urine dilution (14). However, 

patients with liver disease are known to have a lowered baseline creatinine value in 

blood and the creatinine level may also be affected by renal dysfunction, which is often 

present in patients with liver disease (15). Therefore, not only is creatinine unlikely to 

be a specific marker for HCC, the utility of creatinine as a reference for normalising 

other compounds present in urine in patients with liver disease may be limited. 

Datasets from metabolic profiling benefit from the simultaneous measurement of many 

metabolites, which allows for normalisation using other means such as the 

probabilistic quotient method employed in the current datasets. However, these 

methods are not appropriate for targeted assays that only quantify a small number of 
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metabolites. The implication is that for future work on the development of a urine test 

for HCC, unless the marker is highly specific that its presence is indicative of HCC, 

creatinine is inappropriate as the reference for normalisation and that alternatives, 

such as urine osmolality should be considered. 

 

Hippuric acid, the second highest ranking metabolite, is the glycine-conjugated 

product of benzoic acid or gut microbiota metabolism of polyphenolic compounds from 

diet (16). The majority of the glycine conjugation takes place in the liver and its level 

reflect hepatic function (17). In addition to patients with liver disease, it is also found 

to be lower in individuals who are obese (18) and is negatively associated with blood 

pressure (19). Given its non-specific nature to HCC and that its level is similar in the 

HCC and cirrhosis groups, it is unlikely to be a specific candidate marker for HCC. 

 

Pyroglutamic acid was the only metabolite found to have significant change in both 

the HCC and healthy comparison and the HCC and cirrhotic comparison. Moreover, it 

was the only metabolite, among those studied, to be associated with the presence of 

HCC after adjusting for sex, age and liver impairment (Table 4.4). Pyroglutamic acid 

is a byproduct in the biosynthesis of glutathione (20) and its urinary levels are found 

to be increased in response to depletion of glutathione due to heightened oxidative 

stress (21). However, reports from tissue (22, 23) and blood (24-27) studies regarding 

its level in HCC compared to control were contradictory. Further verification is needed 

to evaluate its utility as a marker for HCC. 

 

A limitation of the investigation is that all metabolite annotation was made through 

matching with database references and therefore only reached Level 2 in confidence 
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of annotation (28). However, given the stringent workflow used for metabolite 

annotation in the LCMS datasets, with accurate mass matching and identification of 

co-eluting adducts and fragments, mis-assignments were unlikely. Nevertheless, 

confirmation using spike-in experiments are necessary to ascertain the annotations.  

 

In conclusion, the vast majority of alterations of urinary metabolites in HCC patients 

reported in the literature could not be reproduced in a UK cohort. Creatinine and 

hippuric acid, the two highest ranking metabolites, are unlikely to be markers specific 

for HCC given their altered levels present in patients with liver disease. Future work 

on the search for diagnostic urinary marker for HCC should return to the use of the 

discovery strategy to accrue evidence of alterations of other metabolites and should 

focus on the comparison between HCC and cirrhosis to increase the chances of 

identifying markers specific to HCC. Nevertheless, despite the apparent failed effort to 

validate the systematic collation of evidence from the literature on urine metabolites, 

similar endeavor should be made for datasets from blood samples. Given that there is 

a much larger volume of published evidence regarding discriminatory metabolites in 

blood on the topic, it is anticipated that the consensus from multiple studies should 

better represent the true alterations and as such, it is more likely to find concordant 

results in validation. 
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Chapter 5 – Discovery of potential serum diagnostic 
marker for HCC using 1H-NMR spectroscopy: comparative 
findings from a UK and a Nigerian cohort 

Summary 

With the aim to identify potential diagnostic markers for HCC that are valid across 

different populations, serum samples from two cohorts, one from the UK and another 

from Nigeria, were analysed using untargeted 1H NMR spectroscopy. Most metabolic 

changes observed were related to impairment due liver disease rather than specific to 

tumorigenesis. Furthermore, there was marked difference in metabolic alterations 

between the UK and the Nigerian cohort, probably owing to difference due to a 

combination of genetics and lifestyle factors. A decreased glutamine-to-glutamate 

ratio was identified as a potential marker for delineating HCC from cirrhotic patients, 

with superior performance compared to AFP in the Nigerian cohort and similar 

performance as AFP in the UK cohort. However, its opposite direction of alteration in 

the comparison between HCC patients and healthy control individuals in the two 

cohorts (lower glutamine-to-glutamate ratio in HCC compared to controls in the UK 

cohort, but higher in the Nigerian cohort) necessitates further investigation to assess 

its utility as a marker for HCC. 
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5.1. Rationale 

Hepatocellular carcinoma (HCC) is a late-stage manifestation of various liver diseases 

that have different prevalence in different populations and geographical regions. As a 

result, patients who develop HCC in different populations have different disease co-

morbidities and general physiological characteristics depending on their underlying 

liver disease aetiology. In Western Europe, the most common causes of HCC are 

Hepatitis C infection and alcohol-related liver disease (1), with NAFLD/NASH 

manifesting as an increasingly common cause (2). In West Africa, due to high 

endemicity of HBV infection acquired at early age, HCC tends to develop earlier (3). 

Exposure to aflatoxin and iron overload syndrome are other main causes of HCC in 

this region (4, 5). 

 

Additionally, available healthcare resources determine the presentation and treatment 

options available (6). In the UK, patients with high risk of developing HCC are followed 

on surveillance on a six-monthly basis (7), which allows for the earlier identification of 

HCC leading to better clinical outcomes. In contrast, due to a combination of limited 

healthcare resource, public confidence in Western medicine and preference for 

alternative medicine, patients are more likely to be diagnosed at a later stage in West 

Africa with larger tumours and poorer survival (5).  

 

Diagnostic biomarkers for HCC have the greatest utility if they are applicable 

regardless of underlying aetiology and population. Having systematically reviewed the 

literature in Chapter 2 and attempted to validate findings from the systematic review 

in Chapter 4, this chapter aims to tackle the problem using a different approach – by 

comparing differences observed in two cohorts of different populations. The 
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advantage of this strategy is that common alterations observed in different cohorts can 

act as confirmation for each other and are more likely to be markers that have 

universal applicability. 

 

This chapter presents results from NMR spectroscopic analysis of serum samples 

from a UK and a Nigerian cohort. Differences in relative metabolite concentrations 

were compared to identify coherent changes. Most metabolic alterations observed in 

HCC were not specific to carcinogenesis as they were also altered in cirrhotic groups. 

Nevertheless, glutamine-to-glutamate ratio was identified as a potential marker for 

delineating HCC from cirrhotic patients due to the common alteration observed in both 

cohorts, with additional confirmation obtained from a validation cohort from the 

Gambia. 

 

5.2. Methods 

5.2.1. Participant recruitment 

For the Nigerian cohort, participants were recruited at Jos University Teaching 

Hospital (JUTH) in Plateau State, Nigeria as part of the PRevention Of LIver FIbrosis 

and Cancer in Africa (PROLIFICA) study, a European Framework 7-funded study (8). 

Diagnoses of HCC and cirrhosis were made using ultrasound scans, serum AFP, liver 

function tests and clinical findings as per local clinical practice. Additionally, chronic 

hepatitis B (CHB) carriers, with positive hepatitis B surface antigen (HBsAg) and 

healthy control volunteers with no known liver conditions (confirmed on ultrasound 

scan) and with negative HBsAg were recruited. A total of 303 participants, consisting 

of 81 HCC, 79 cirrhosis, 75 CHB patients and 68 healthy volunteers, were recruited. 

For each participant, a written consent was obtained and a serum sample was 
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collected. The study had been approved by the Ethics Committee at JUTH and 

Imperial College London. Samples were stored at -80ºC and were transported on dry 

ice until analysis. The cohort from the UK, consisting of a total of 199 participants (97 

HCC, 38 cirrhotic and 64 healthy control) was recruited as described in Chapter 4. 

 

An independent validation cohort from the Gambia, also part of the PROLIFICA study, 

was used to validate the performance of the potential discriminatory marker, 

glutamine-to-glutamate ratio, identified. Cohort recruitment is detailed in Lemoine, et 

al. (9). This was a cohort of 591 participants comprising of 67 HCC, 33 cirrhotic, 436 

CHB patients and 55 healthy control volunteers. A heparin plasma sample was 

collected from each participant and a written consent was obtained. Storage, transport 

and analysis of samples were identical to those for the Nigerian cohort. Ethics approval 

was granted by the Government of the Gambia and MRC Gambia Joint Ethics 

Committee.  

 

5.2.2. Data acquisition and processing 

Samples were prepared and analysed according to published protocols (10). Samples 

were thawed at room temperature and centrifuged at 13,000 g at 4ºC for 10 minutes. 

The resulting supernatant was mixed with buffer (0.142M Na2HPO4, 2mM sodium 

azide, 0.08% TSP at pH 7.4) at a 1:1 ratio. A total volume of 600μL was prepared and 

transferred to 6mm SampleJet tube (Bruker BioSpin, Rheinstetten, Germany) for the 

UK cohort and 3mm SampleJet tubes of a mixture of 300μL was used instead for the 

Nigerian cohort due to limited sample volume. A pooled quality control (QC) sample 

was prepared by pooling equal volumes of 10μL from each sample. A QC was run 

every 47 study samples.  
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NMR experiments were conducted on Bruker 600MHz NMR spectrometer operating 

at the 1H frequency of 600.13MHz at 310K. Three pulse sequences were used to 

acquire spectra for each sample as described (10). Firstly, a standard one-

dimensional pulse sequence using the first increment of the nOe pulse sequence was 

used to achieve water suppression. In order to acquire further information on low-

molecular-weight molecules, whose signals may have been obscured by those from 

macromolecules in the standard one-dimensional pulse sequence, a Carr-Purcell-

Meiboom-Gill (CPMG) spin-echo sequence NMR experiment was employed using the 

parameters described by Dona, et al. (10). The third experiment used a 2-dimensional 

J-resolved pulse sequence to elucidate the number of peaks and the coupling 

constants in each multiplet in order to aid with metabolite identification. 

The three pulse sequences are as follows: 

Standard 1D:  D[-90°- t1-90°-tm-90°-acquire FID] 

CPMG:    D [-90” - (τ - 180” - τ)n - acquire FID],  

JRes:      [D - 90” – t1 - 180” - t1 - collect FID for time t2]  

Where D = a delay to allow T1 relaxation; t1 = the interpulse delay; tm = the mixing time; 

τ = a fixed delay to allow spectral editing via T2 relaxation; n = a fixed loop (usually of 

128 cycles) to give a total relaxation time of 2 n τ  for the CPMG sequence. 

 

Once acquired, CPMG spectral data were imported into R at resolution of 0.001ppm 

using in-house script. The spectra were aligned to the α-glucose doublet at 5.233 ppm. 

Regions corresponding to TSP and noise at both ends (< 0.6 ppm and ppm > 8.5 ppm) 

and water (4.52-4.86 ppm) were removed and the spectra were normalised using the 

probabilistic quotient method (11). Annotations were made using published and in-
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house databases and was facilitated by the statistical algorithms STOCSY (12) and 

STORM (13) that calculated statistical correlations between structurally related peaks.  

 

5.2.3. Statistical analysis 

PCA with mean centering and pareto scaling was used to obtain an overview of the 

data and to identify experimentally or biologically aberrant samples. Hierarchical 

clustering of the Spearman correlation matrix of metabolite relative intensities was 

used to identify clusters of metabolites that showed strong correlations across 

individuals. Wilcoxon’s rank-sum test was used for 2-way comparisons of relative 

intensities between groups. Multiple testing was accounted for using the Benjamini-

Hochberg method (14). The threshold of pFalse discovery rate (pFDR) < 0.05 was considered 

statistically significant, accepting that there is a 5% chance of false discovery.  

 

Logistic regression models were built to evaluate the ability of the potential marker to 

predict the presence of HCC. In these models, the presence of HCC was the binary 

response variable and metabolite intensity with or without other variables to be 

adjusted for (sex, age, the presence of cirrhosis, and/or Child-Pugh score) were used 

as predictor variables. Predictor significance was evaluated using the Wald test (15). 

A total of four models were built (Model 4 was only built for the UK cohort), shown 

below: 

Model 1: Presence of HCC ~ marker intensity 

Model 2: Presence of HCC ~ marker intensity + sex + age 

Model 3: Presence of HCC ~ market intensity + sex + age + presence of 

cirrhosis 

Model 4: Presence of HCC ~ market intensity + sex + age + Child-Pugh score 
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Additionally, receiver operating characteristic (ROC) curves were used to assess 

diagnostic accuracy. Statistically significant differences between ROC curves were 

determined by bootstrapping with 2,000 iterations. All data processing and analysis 

steps were performed in R (version 3.6) (16). 
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Table 5.1. Clinical characteristics of the UK cohort. 

 
Data shown as median (interquartile range) with the exception of *, for which mean 
(±1 stand deviation) is shown. anumber of data points available. bp-values of Mann-
Whitney U test, unless stated otherwise. cχ2 test. d1-way analysis of variance. 
  

HCC Cirrhotic Healthy control

na na na p-valueb

n Total 97 38 64

Demographic information

Male sex, n (%) 80 (83%) 96 29 (76%) 38 29 (49%) 59 <0.001c

Ethnicity, white, n (%) 86 (89%) 97 29 (76%) 38 44 (69%) 64 0.007c

Age, year* 70 (62,78) 96 56 (49,63) 38 36 (30,48) 62 <0.001d

BMI, kg m-2* 28.4 (25.8,32.3) 94 29.3 (25.8,35) 38 24.7 (22.2,26.8) 64 <0.001d

Co-morbidities

Diabetes, n (%) 55 (57%) 97 10 (26%) 38 1 (2%) 64

Hypertension, n (%) 40 (41%) 97 9 (24%) 38 4 (6%) 64

Blood test results

Alanine aminotransferase, IU L-1 36 (26.5,58) 91 33 (26,55.25) 38 0.062

Alkaline phosphatase, IU L-1 140 (91,175) 91 109 (77,124.75) 38 0.003

Albumin, g L-1 34 (29,38) 94 35.5 (31.25,41.5) 38 0.667

Alpha-fetoprotein, ng L-1 16 (3,192) 82 2.5 (2,4.25) 32 <0.001

Bilirubin, µmol L-1 15.5 (9,30.25) 94 18.5 (10.25,27.75) 38 0.610

Creatinine, µmol L-1 74 (64,97.5) 91 72 (61.5,88.25) 38 0.553

International normalised ratio 1.1 (1.1,1.225) 60 1.2 (1.1,1.4) 26 0.083

Prothrombin time, s 14.3 (12.6,15.9) 77 15 (13.5,16.55) 36 0.099

Urea, mmol L-1 5.4 (4.3,7) 93 4.45 (3.6,5.8) 38 0.019

Liver condition

Cirrhotic, n (%) 76 (78%) 97 38 (100%) 38

Child-Pugh Stage, n 97 38

          A 56 22

          B 37 14

          C 4 2

HCC tumour condition

BCLC stage, n 97

          0 5

          A 20

          B 15

          C 39

          D 8

Aetiology, n 97

          CHB 5

          CHC 9

          ARLD 23

          NAFLD/NASH 33

          Autoimmue-related 4

          Mixed 6

          Other 12

Multiplicity, n 95

          Single 49

          Multiple 43

          Diffuse process 3

Diameter of largest tumour, n 83

          ≤ 5 56

          >5 27

Metastasis, n 6 97
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Table 5.2. Clinical characteristics of the Nigerian cohort. 

 
Data shown as median (interquartile range) with the exception of *, for which mean 
(±1 stand deviation) is shown. anumber of data points available. bp-values of Mann-
Whitney U test, unless stated otherwise. cχ2 test. d1-way analysis of variance. 
 
 

5.3. Results and discussion 

5.3.1. Cohort characteristics 

Serum samples from a total of 199 participants (97 HCC, 38 cirrhotic and 64 healthy 

control) from the UK were analysed. The minor difference in the number of samples 

analysed in this Chapter and those presented in Chapter 4 were due to the differential 

availability of samples of the two biofluids. However, the cohort characteristics were 

largely similar in that HCC patients were of older age and with a greater proportion of 

male participants (Table 5.1). 

 

For the Nigerian cohort, samples from a total of 303 participants were analysed, 

comprising of 81 HCC, 79 cirrhosis, 75 CHB patients and 68 healthy volunteers (Table 

5.2). Similar to the UK cohort, because participants were recruited without matching 

HCC Cirrhotic CHB Healthy control

na na na na p-valueb

n 81 79 75 68

Demographic information

Male sex, n (%) 70 (86%) 81 57 (72%) 79 49 (66%) 74 24 (36%) 67 <0.001c

Age*, year 49.4 (57.3,41.6) 81 41.1 (47.9,34.3) 79 34.7 (41.3,28.2) 73 41.8 (48.3,35.3) 65 <0.001d

Clinical status

Mass > 5cm, n (%) 31 (62%) 50

Cirrhotic, n (%) 63 (78%) 81 79 (100%) 79

HBsAg positive, n (%) 23 (34%) 67 46 (72%) 67

HepC positive, n (%) 9 (14%) 65 3 (0.04%) 67

Blood test results

Alpha-fetoprotein, g L-1 99.9 (32.9,392.275) 48 96.9 (10.975,402.25) 32 16 (9.1,58) 17 131.3 (89.45,173.15) 2 0.032

Alanine aminotransferase, IU L-1 46 (23.5,75) 63 41 (18,92) 61 35 (20,53) 21 30 (21,40.5) 11 0.335

Albumin, g L-1 30 (24,35.75) 62 28 (21,35.5) 59 36.5 (32.5,42) 20 28 (25,37.5) 11 0.011

Bilirubin, μmol L-1 10.2 (10.2,29.5) 63 10.2 (10.2,53.125) 62 10.2 (10.175,10.2) 20 10.2 (10.2,10.2) 11 0.002

Creatinine, μmol L-1 88 (69,127) 61 86.5 (68,107) 58 96 (80.5,113.5) 19 103 (76,108) 9 0.970

Haemoglobin, g dL-1 10.5 (9.625,12.95) 58 11.1 (9,12.7) 57 13.7 (12.475,14.7) 20 11 (9.65,11.4) 11 0.001

Platelets, x109 L-1 202 (156,293.25) 52 138 (100,184) 49 214 (160,261) 23 210 (138.75,225.5) 10 0.001

Prothrombin time, s 18.5 (15.25,23) 38 18 (15,28.6) 43 13.5 (12,15.75) 18 20 (14.5,27.75) 6 0.006

White blood cell, x103 μL-1 7.52 (4.5,10.1) 57 6 (5.16,8.625) 52 5.1 (4.15,6.5) 23 7.5 (5.1,10.25) 11 0.189
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for sex and age, patients with liver disease were of older age and with a greater 

proportion of male progressively in groups of advancing liver disease (from CHB, 

cirrhosis to HCC).  

 

The proportion of HCC patients with positive HBsAg (34%) was not as high as 

expected, suggesting that other risk factors of HCC, namely, exposure to aflatoxin, 

alcohol consumption and iron overload syndrome, may be other major underlying 

causes of HCC in this population (4, 5). In previous epidemiological studies conducted 

in sub-Saharan Africa, exposure to aflatoxin had an estimated population attributable 

risk (PAR) in HBsAg-negative individuals of 12%-20% (17) and alcohol consumption 

had a PAR of 12.8% for liver cancers overall (18). However, alcohol-related liver 

disease (ARLD) only accounts for a small proportion of liver disease patients in Nigeria 

(19). This suggests that iron overload related to alcohol consumption may play a more 

dominant role in the carcinogenesis of these patients. Iron overload is known to be 

common in rural sub-Saharan African populations through consumption of home-

brewed alcohol with high contents of iron due to the use of ungalvanized iron barrels 

(4, 5, 19). This heightened exposure may also be compounded by genetic 

predisposition to iron overload due to polymorphism in the ferroportin gene (20). Given 

that consumption of locally brewed alcohol in Plateau State, Nigeria is especially 

popular (pers. comm., Dr Pantong Mark), this is also likely to be a prominent 

underlying cause of HCC among HBsAg-negative patients in this cohort.  

 

As such, the major aetiologies of HCC in the Nigerian cohort are CHB, aflatoxin 

exposure and iron overload related to consumption of home-brewed alcohol. In 

contrast, in the UK cohort, NAFLD/NASH (n = 33), followed by ARLD (n = 23) were 
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the most common underlying causes of HCC, accounting for 58% of HCC cases, while 

CHB only accounted for 5% (n = 5) of the cases.  

 

5.3.2. Overview of experimental data 

The pooled QC samples co-mapped in the principal component analysis (PCA) scores 

plots indicated that the experiments were reproducible over the course of sample 

analysis for each of the cohorts (Figure 5.1).  

 

The PCA scores plot of samples coloured according to study group (HCC, cirrhotic, 

pre-cirrhotic liver disease and healthy volunteers) displayed substantial overlap 

between the HCC group and the cirrhotic group (Figure 5.2). The healthy control group 

(and the CHB group for the Nigerian cohort) was visibly more closely clustered to one 

side of the second and first component for the Nigerian and UK cohort, respectively. 

This suggests that the overall 1H NMR spectral pattern of HCC samples is more similar 

to those of the cirrhosis group, while spectra of healthy control volunteers (and CHB 

carriers in the Nigerian cohort) were more homogenous and dissimilar to those of HCC 

and cirrhotic patients. This implies that metabolic changes observed in HCC compared 

to healthy control were likely to be confounded by background metabolic changes that 

were already present in patients with cirrhosis, and that there were fewer metabolic 

changes unique to HCC. 
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Figure 5.1. Principal component analysis (using mean-centered, Pareto-scaled 
data) scores plot of serum samples together with quality control samples. (A) 
Nigerian cohort. Variance explained: PC1 19.3%, PC2 17.9%. (B) UK cohort. Red 
cross: quality control, turquoise: study sample. Variance explained: PC1 29.9%, PC2 
19.7%. 

 
Figure 5.2. Principal component analysis scores plot (using mean-centered, 
Pareto-scaled data) of samples coloured according to study group. (A) Nigerian 
cohort. Variance explained: PC1 19.3%, PC2 18%. (B) UK cohort. 95% eclipses of 
multivariate t-distribution for each study group is displayed. Variance explained: PC1 
30.3%, PC2 19.8%.  
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Table 5.3. Chemical shifts and evidence used for the assignment. 

 
*The chemical shift selected for peak integration is highlighted in bold. Peaks not 
observed due to overlap with other signals are shown in (brackets). d: doublet, m: 
multiplet, q: quartet, s: singlet, t: triplet. 

Table 1

Compound Chemical shifts and multiplicities* Evidence

1-Methylhistidine 7.04s, 7.77s 1d-NMR, STOCSY

2-Hydroxybutyrate 0.90t, (1.65m), (1.71m), (3.97dd) 1d-NMR

2-Hydroxyisobutyrate 1.35s 1d-NMR

3-Hydroxybutyrate (1.20d), (2.30m), 2.39m, 4.17m 1d-NMR, STOCSY

3-Hydroxyisobutyrate 1.07d, (2.46m), (3.53m), (3.7m) 1d-NMR

Acetate 1.92s 1d-NMR

Acetoacetate 2.27s, (3.44s) 1d-NMR

Acetone 2.22s 1d-NMR

Alanine 1.48d, 3.78q 1d-NMR, STOCSY

Choline 3.19s, 3.52m, 4.06m 1d-NMR, STOCSY

Citrate 2.54d, 2.66d 1d-NMR, STOCSY

Creatine 3.05s, 3.92s 1d-NMR, STOCSY

Creatinine 3.05s, 4.05s 1d-NMR, STOCSY

Dimethylamine 2.72s 1d-NMR

Formate 8.45s 1d-NMR

Glutamate (2.10m), 2.35m, 3.77t 1d-NMR, STOCSY

Glutamine 2.14m, 2.43m, 3.77t 1d-NMR, STOCSY

N-acetylglycoproteins 2.03s 1d-NMR

Isoleucine 0.93t, 1.00d, (1.26m), (1.48m), (3.68d) 1d-NMR, STORM

Lactate 1.32d, 4.11q 1d-NMR, STOCSY

Leucine 0.95t, 1.71m, (3.73t) 1d-NMR, STORM

Lysine (1.48m), 1.70m, 1.91m, 3.03t, (3.76t) 1d-NMR, STOCSY

Methionine 2.14s, (2.16m), 2.64t, (3.86t) 1d-NMR, STOCSY

Methylamine 2.50s 1d-NMR

Phenylalanine 3.97, 7.32d, 7.37m, 7.42m 1d-NMR, STORM

Pyruvate 2.37s 1d-NMR

Thiamine 2.52s, 2.55s, (3.18t), (3.89t), (5.46s), 
8.06s, (9.43s)

1d-NMR, STOCSY

Tyrosine (3.06dd), (3.2dd), (3.94dd), 6.89d, 7.19d 1d-NMR, STOCSY

Valine 0.98d, 1.03d 1d-NMR, STORM
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Figure 5.3. A spectrum of a quality control sample from the Nigerian study showing metabolite assignment. 
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Table 5.4. Median fold change and statistical test results of the assigned metabolites in the Nigerian cohort. 

 
aLog base-2 of median fold change of the first group over the second group in each comparison. 
bAdjusted p-value using the Benjamini-Hochberg method. CHB: Chronic hepatitis B. 
p and pFDR < 0.05 are highlighted in bold. 
  

HCC vs Cirrhotic HCC vs CHB HCC vs Healthy Cirrhotic vs Healthy
Compound name log2(FC)a p pFDRb log2(FC)a p pFDRb log2(FC)a p pFDRb log2(FC)a p pFDRb

1-Methylhistidine -0.195 0.06 0.32 -0.585 6.57E-11 0.32 -0.875 4.96E-11 1.49E-10 -0.680 2.56E-08 5.91E-08

2-Hydroxybutyrate -0.001 0.99 0.99 -0.110 1.03E-04 0.99 -0.164 2.60E-07 6.49E-07 -0.164 1.30E-05 2.43E-05

2-Hydroxyisobutyrate -0.012 0.93 0.99 0.127 0.16 0.99 0.157 0.06 0.07 0.169 0.08 0.11

3-Hydroxybutyrate -0.126 0.11 0.44 -0.480 1.04E-06 0.44 -0.586 2.72E-12 1.02E-11 -0.460 3.92E-09 1.17E-08

3-Hydroxyisobutyrate -0.020 0.22 0.46 0.044 0.14 0.46 0.142 8.84E-04 1.33E-03 0.162 2.77E-06 5.93E-06

Acetate -0.043 0.99 0.99 -0.327 9.35E-04 0.99 -0.733 4.83E-11 1.49E-10 -0.690 2.68E-09 8.94E-09

Acetoacetate 0.082 0.047 0.241 0.108 0.016 0.241 0.009 0.832 0.860 -0.073 0.052 0.074

Acetone -0.001 0.60 0.82 0.224 5.80E-04 0.82 0.305 1.02E-04 1.70E-04 0.306 4.75E-04 7.12E-04

Alanine -0.181 6.73E-03 4.76E-02 -0.489 3.20E-13 4.76E-02 -0.589 1.28E-14 8.39E-14 -0.409 5.43E-09 1.48E-08

Choline -0.081 0.66 0.86 -1.481 4.88E-05 0.86 -1.577 1.40E-14 8.39E-14 -1.497 1.36E-12 1.36E-11

Citrate -0.050 0.24 0.48 0.083 2.04E-02 0.48 0.046 0.41 0.43 0.096 0.06 0.08

Creatine 0.120 0.18 0.45 0.383 2.32E-08 0.45 0.391 3.73E-07 8.62E-07 0.271 9.07E-05 1.60E-04

Creatinine -0.124 0.28 0.48 -0.068 0.66 0.48 -0.139 0.13 0.14 -0.015 0.89 0.93

Dimethylamine -0.083 0.72 0.90 -0.137 7.41E-03 0.90 -0.112 3.27E-02 4.08E-02 -0.030 0.11 0.14

Formate 0.076 0.47 0.67 0.596 6.11E-06 0.67 0.647 1.03E-07 2.80E-07 0.572 3.24E-04 5.11E-04

Glutamate 0.305 7.93E-03 4.76E-02 -0.175 0.21 4.76E-02 -0.381 1.85E-05 3.48E-05 -0.686 1.92E-09 7.21E-09

Glutamine -0.564 1.15E-04 1.18E-03 0.010 0.46 1.18E-03 0.238 1.59E-03 2.27E-03 0.802 2.70E-10 1.16E-09

N-acetylglycoproteins 0.291 9.21E-07 2.76E-05 0.332 1.41E-09 2.76E-05 0.286 5.24E-07 1.12E-06 -0.005 0.90 0.93

Isoleucine 0.090 0.21 0.46 -0.056 2.81E-02 0.46 -0.155 7.62E-07 1.52E-06 -0.245 8.24E-09 2.06E-08

Lactate 0.010 0.82 0.97 -0.065 0.95 0.97 -0.093 0.98 0.98 -0.102 0.95 0.95

Leucine 0.121 0.31 0.49 -0.295 7.40E-11 0.49 -0.545 2.70E-17 4.06E-16 -0.666 1.56E-14 2.34E-13

Lysine 0.066 0.16 0.45 -0.119 1.61E-04 0.45 -0.363 4.39E-13 2.20E-12 -0.428 2.26E-11 1.13E-10

Methionine -0.006 0.86 0.97 0.118 1.15E-05 0.97 0.078 6.11E-03 8.33E-03 0.084 0.11 0.14

Methylamine -0.159 0.29 0.48 -0.411 0.72 0.48 -0.499 0.10 0.11 -0.340 0.39 0.45

Phenylalanine 0.047 0.40 0.60 0.275 3.87E-06 0.60 0.037 0.14 0.15 -0.009 0.74 0.83

Pyruvate 0.142 0.14 0.45 0.807 3.82E-16 0.45 0.623 2.07E-12 8.88E-12 0.481 4.27E-06 8.54E-06

Thiamine -0.839 0.17 0.45 0.087 0.21 0.45 1.686 1.16E-02 1.51E-02 2.525 1.27E-04 2.11E-04

Tyrosine 0.051 0.27 0.48 0.133 7.89E-03 0.48 0.219 4.14E-04 6.54E-04 0.168 9.79E-04 1.40E-03

Valine -0.034 0.12 0.44 -0.458 2.65E-15 0.44 -0.573 4.98E-16 4.98E-15 -0.539 1.93E-11 1.13E-10

Gln/Glu -0.927 1.18E-04 1.18E-03 0.296 0.82 1.18E-03 0.594 9.75E-05 1.70E-04 1.521 1.64E-11 1.13E-10

BCAA/AAA -0.091 0.87 0.97 -0.623 6.07E-17 0.97 -0.684 3.03E-18 9.10E-17 -0.593 1.56E-14 2.34E-13
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Table 5.5. Median fold change and statistical test results of the assigned metabolites in the UK cohort. 

 
aLog base-2 of median fold change of the first group over the second group in each comparison. 
bAdjusted p-value using the Benjamini-Hochberg method. 
p and pFDR < 0.05 are highlighted in bold. 

HCC vs Cirrhotic HCC vs Healthy Cirrhotic vs Healthy
Compound name log2(FC)a p pFDRb log2(FC)a p pFDRb log2(FC)a p pFDRb

1-Methylhistidine -0.175 5.12E-02 1.69E-01 -0.220 7.94E-03 1.40E-02 -0.04 0.827 0.833

2-Hydroxybutyrate 0.066 6.13E-02 1.69E-01 -0.096 4.97E-05 1.24E-04 -0.16 1.59E-06 5.29E-06

2-Hydroxyisobutyrate -0.006 7.23E-01 8.67E-01 -0.208 1.51E-02 2.38E-02 -0.20 0.095 0.135

3-Hydroxybutyrate 0.191 6.32E-04 9.48E-03 0.157 7.34E-04 1.57E-03 -0.03 0.621 0.665

3-Hydroxyisobutyrate -0.013 1.58E-01 3.39E-01 0.007 7.44E-01 7.97E-01 0.02 0.321 0.385

Acetate -0.066 6.91E-02 1.73E-01 0.041 8.13E-01 8.41E-01 0.11 4.36E-02 0.073

Acetoacetate 0.24 1.09E-03 1.13E-02 0.01 0.78 0.83 -0.23 3.15E-04 8.14E-04

Acetone 0.082 8.39E-01 8.99E-01 -0.262 2.49E-02 3.55E-02 -0.34 0.068 0.108

Alanine 0.018 9.75E-01 9.82E-01 -0.040 4.42E-01 4.91E-01 -0.06 0.559 0.621

Choline 0.018 8.28E-01 8.99E-01 -0.055 2.11E-01 2.63E-01 -0.07 0.408 0.471

Citrate -0.078 8.16E-01 8.99E-01 0.279 4.35E-04 1.00E-03 0.36 9.50E-04 2.19E-03

Creatine 0.178 3.52E-03 2.11E-02 0.095 1.26E-01 1.64E-01 -0.08 0.099 0.135

Creatinine 0.040 6.16E-01 8.40E-01 -0.081 3.85E-01 4.62E-01 -0.12 0.192 0.250

Dimethylamine -0.010 6.51E-01 8.49E-01 -0.272 1.83E-10 7.85E-10 -0.26 1.00E-07 6.02E-07

Formate -0.054 7.01E-01 8.67E-01 0.680 3.61E-12 2.16E-11 0.73 3.63E-09 2.72E-08

Glutamate 0.185 4.37E-03 2.19E-02 0.470 5.65E-22 1.70E-20 0.29 1.27E-12 3.80E-11

Glutamine -0.219 2.14E-03 2.08E-02 -0.184 5.57E-03 1.04E-02 0.03 0.311 0.385

N-acetylglycoproteins 0.137 2.77E-03 2.08E-02 0.004 8.48E-01 8.48E-01 -0.13 6.53E-04 1.63E-03

Isoleucine 0.060 1.01E-02 4.34E-02 -0.060 1.63E-02 2.44E-02 -0.12 1.59E-05 4.78E-05

Lactate -0.017 5.69E-01 8.36E-01 0.363 4.96E-07 1.86E-06 0.38 1.04E-06 3.92E-06

Leucine 0.106 2.33E-02 8.75E-02 -0.140 3.09E-06 9.26E-06 -0.25 9.08E-07 3.89E-06

Lysine 0.010 5.17E-01 8.31E-01 -0.040 1.43E-02 2.38E-02 -0.05 6.60E-03 1.24E-02

Methionine -0.096 4.01E-01 7.08E-01 0.185 2.20E-03 4.39E-03 0.28 1.51E-03 3.01E-03

Methylamine -0.014 9.82E-01 9.82E-01 0.102 2.65E-02 3.61E-02 0.12 0.082 0.123

Phenylalanine 0.110 2.81E-01 5.26E-01 0.329 5.11E-16 5.11E-15 0.22 2.86E-07 1.43E-06

Pyruvate 0.174 2.61E-01 5.23E-01 0.492 6.97E-07 2.32E-06 0.32 1.44E-03 3.01E-03

Thiamine 0.068 5.85E-01 8.36E-01 0.216 4.20E-01 4.85E-01 0.15 0.833 0.833

Tyrosine -0.145 6.20E-02 1.69E-01 0.402 1.64E-10 7.85E-10 0.55 8.65E-11 8.65E-10

Valine -0.002 5.26E-01 8.31E-01 -0.238 1.34E-05 3.64E-05 -0.24 2.91E-04 7.93E-04

Gln/Glu -0.399 1.91E-04 5.73E-03 -0.655 2.13E-14 1.60E-13 -0.26 1.12E-02 1.97E-02

BCAA/AAA 0.162 1.41E-01 3.27E-01 -0.488 2.69E-18 4.04E-17 -0.65 2.95E-12 4.42E-11
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Figure 5.4. Median fold change between groups and statistical test significance 
of metabolites in each cohort. (A) Nigerian cohort. (B) UK cohort. Hierarchical 
clustering was used to cluster metabolites based on their correlation with each other 
and were arbitrarily assigned clusters 1, 2 and 3. Metabolites assigned to be in the 
same clusters in the two cohorts are indicated with a red asterisk. Within the heatmap, 
***: pFDR < 0.001, **: pFDR <0.01, *: pFDR < 0.01 in the respective comparisons. 
 
 
 
A total of 29 compounds were confidently annotated in the serum 1H NMR spectrum 

(Table 5.3 & Figure 5.3). The annotated metabolites were quantified by taking the 

integrals of the peaks. For any metabolite with more than one chemical shift, the peak 

group with the highest intensity (for the best signal-to-noise ratio) and/or the least 

overlap with signals from other compounds was chosen (Table 5.3). In addition to 

these metabolites, two ratios: the glutamine (Gln) to glutamate (Glu) ratio, and the 

branched chain amino acids (BCAA) to aromatic amino acids (AAA) ratio, defined as 

(Isoleucine + Leucine + Valine) / (Phenylalanine + Tyrosine), were computed and 

analysed along with the other metabolites, based on their relevance further discussed 

below.  
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The difference in relative intensities between groups were summarised by taking the 

base-2 log of the median fold change and were tested for statistical significance using 

Wilcoxon’s rank-sum test (Figure 5.4 and Tables 5.3 and 5.4 for the Nigerian and UK 

cohort, respectively). Overall, the Nigerian cohort had stronger differences between 

group (greater absolute fold change values and lower pFDR values), supporting the 

case that patients in the Nigerian cohort had more substantial metabolic changes 

owing to worse disease management compared to the UK cohort. 

 

5.3.3. Hierarchical clustering revealed common and discrepant changes 

In both cohorts, hierarchical clustering of the serum NMR peak integrals using 

Spearman correlation matrix classified metabolites into clusters under three major 

branches. These clusters were arbitrarily named Cluster 1, 2 and 3, based on similarity 

of metabolite membership in each cluster between the two cohorts (Figure 5.4). 

Cluster 1 consisted of metabolites that were downregulated in HCC and cirrhotic 

patients compared to healthy control participants. Common metabolites in Cluster 1 

include BCAAs, 2-hydroxybutyrate and choline. Cluster 2 largely consisted of 

metabolites that were upregulated in HCC and cirrhotic patients compared to control 

individuals. Common metabolites in Cluster 2 included phenylalanine, tyrosine, 

methionine, formate, pyruvate, lactate, thiamine and methylamine. Cluster 3 consisted 

of metabolites that either had no significant difference between groups (e.g. lactate in 

the Nigerian cohort, or alanine in the UK cohort), or metabolites that were significant 

between HCC and cirrhosis. (e.g. glutamine and Gln/Glu ratio in both cohorts). 

Interestingly, Cluster 3 is the cluster with the highest proportion of metabolites that 

showed significant difference between HCC and cirrhosis with 3/5 in the Nigerian 

cohort and 4/7 in the UK cohort. 
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Despite the shared membership of many of the metabolites in corresponding clusters, 

many metabolites displayed dissimilarities in patterns of alteration between the two 

cohorts (Figure 5.4). Metabolites belonging the the same cluster may have significant 

difference in one cohort but not the other. For example, lactate was significant in two 

of the comparisons in the UK cohort but was not significant in any of the comparisons 

in the Nigerian cohort. The reverse was true for thiamine. In addition, some 

metabolites were classified into different clusters altogether. The most drastic example 

was glutamate. It was classified into Cluster 1, which contained metabolites with lower 

quantities in HCC and cirrhosis, in the UK cohort but into Cluster 2, which contained 

metabolites with higher quantities in HCC and cirrhosis, in the Nigerian cohort. 

Altogether, the results show that similar and dissimilar patterns of between-group 

differences exist in the two cohorts.  

 

In previous studies that compared two cohorts of different ethnicities, different patterns 

of dysregulation had also been observed. Xiao, et al. (21) conducted targeted 

quantification of 15 metabolites in an American and Egyptian cohort comparing 

cirrhosis and HCC patients. Among others that had different patterns of alteration, two 

metabolites (both bile acids) which were similarly deregulated in both cohorts, were 

identified as putative biomarkers that together outperformed AFP. Di Poto, et al. (22) 

compared plasma GC-MS profiles of European Americans and African Americans with 

HCC and cirrhosis. Similar to the current study, some metabolites were significant in 

one ethnic group but not the other, with some displaying significant opposite directions 

of alteration.  
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This is the first study with two cohorts that also compared HCC and cirrhosis patients 

to healthy controls. Assuming that patients in Nigeria were of more advanced stage 

with poorer management, disease-related alterations of metabolites should show 

more extreme differences in the same direction (as seen in BCAAs). Therefore, 

background differences in the two population may be a more probable explanation for 

metabolites that showed different patterns of dysregulation. 

 

Differences in co-morbidities may explain some of the differences observed in the two 

cohorts. Lactate is produced from glycolysis under anaerobic conditions. Obesity and 

diabetes are associated with higher fasting plasma lactate concentration (23) due to 

changes in glucose metabolism and transport (24). Although body weight data is 

lacking in the Nigerian cohort, the cohort is unlikely to have as high rates of diabetes 

and obesity as the UK cohort, while a large portion of cirrhosis and HCC patients in 

the UK cohort were diabetic and/or overweight with body mass index (BMI) > 25 (Table 

5.1). This may explain the raised lactate observed in HCC and cirrhosis patients in the 

UK cohort but in not the Nigerian cohort, which is supported by the positive correlation 

of lactate levels to BMI (Spearman σ = 0.257, p = 2.8 x 10-4) and its association with 

diabetes status (p = 7.6 x 10-7, Wilcoxon’s rank sum test), but not with cirrhosis (p > 

0.05). 

 

However, other dissimilarities between the two cohorts may not be as easily explained. 

Ketone body refers to three molecules, acetoacetate, acetone and 3-hydroxybutyrate, 

which are formed from fatty acid catabolism in the liver and can be used by other 

organs as an energy source. Acetoacetate and 3-hydroxybutyrate are the main ketone 

bodies, while acetone is a minor, spontaneous degradation product of acetoacetate. 
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Raised serum concentration of ketone bodies, known as ketosis, happens during 

elevated catabolic state and may also occur in diabetes and alcohol intoxication (25). 

The serum levels of these three metabolites displayed very dissimilar patterns of 

alteration in the two cohorts which has not been described previously (Figure 5.5).  

 

Similarly, glutamine, glutamate and Gln/Glu ratio showed opposite directions of 

alteration in the two cohorts in the HCC and healthy control comparison (Figure 5.6). 

There are two possible scenarios to this observation. One is that the patient groups in 

the two cohorts display complete opposite directions of alteration, and the other being 

baseline difference among free living healthy individuals in the two countries. 

Assuming that patient groups were similar due to their common disease process, the 

latter explanation may be more probable. Circulating glutamine and glutamate levels 

can be affected by exercise levels (26) or intake from dietary sources (27). Verification 

using absolute quantification methods and further studies are necessary to aid the 

interpretation these different patterns of alterations in the two cohorts. 
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Figure 5.5. Relative intensities of ketone bodies. (A & D) Acetoacetate (B & E) 3-
hydroxybutyrate, and (C & F) acetone for the Nigerian and the UK cohort respectively. 
CHB: Chronic hepatitis B. ***: pFDR < 0.001, **: pFDR <0.01, *: pFDR < 0.01 
compared to HCC; ###: pFDR < 0.001, ##: pFDR <0.01, #: pFDR < 0.01 compared to 
cirrhotic patients. 
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Figure 5.6. Relative intensities of glutamine (A & D), glutamate (B & E) and 
glutamine-to-glutamate (Gln/Glu) ratio (C & F) for the Nigerian and the UK cohort 
respectively. CHB: Chronic hepatitis B. ***: pFDR < 0.001, **: pFDR <0.01, *: pFDR 
< 0.01 compared to HCC; ###: pFDR < 0.001, ##: pFDR <0.01, #: pFDR < 0.01 
compared to cirrhotic patients. 
  



 161 

Table 5.6. Summary of changes observed in the two cohorts. 

 
 

 

5.3.4. Common discriminatory metabolites between the two cohorts 

Table 5.6 provides a summary of the changes observed in the two cohorts. 

 

Metabolites that were significantly different in the HCC and Healthy comparison as 

well as the Cirrhotic and Healthy comparison but not the HCC and Cirrhotic 

comparison suggest that their difference was not specific to HCC and was more likely 

to be related to liver damage. Metabolites that fitted into this category included BCAAs 

(isoleucine, leucine and valine), 2-hydroxybutyrate and lysine, which were 

HCC vs Cirrhotic HCC vs Healthy Cirrhotic vs Healthy

Increased in both cohorts Glutamate

N-acetylglycoproteins

Formate

Methionine

Pyruvate

Tyrosine

Tyrosine

Formate

Pyruvate


Increased in one cohort 3-hydroxybutyrate

Acetoacetate

Creatine

Isoleucine

3-hydroxyisobutyrate

Creatine

Citrate

Lactate

Methylamine

N-acetylglycoproteins

Phenylalanine

Thiamine

3-Hydroxyisobutyrate 
Acetone 

Creatine

Citrate 

Glutamine

Lactate

Methionine

Phenylalanine

Thiamine

Opposite change 3-hydroxybutyrate

Acetone

Glutamine

Glutamate

Gln/Glu ratio

Glutamate

Gln/Glu ratio

Decreased in one cohort Alanine 2-hydroxyisobutyrate

Acetate

Alanine

Choline

Dimethylamine

1-methyhistidine

3-Hydroxybutyrate

Acetate

Acetoacetate

Alanine

Choline

Dimethylamine

Lysine

N-acetylglycoproteins

Decreased in both cohorts Glutamine

Gln/Glu ratio

1-methylhistidine

2-hydroxybutyrate

Isoleucine

Leucine

Lysine

Valine

BCAA/AAA ratio

Isoleucine

2-Hydroxybutyrate

Valine

Leucine

Lysine

BCAA/AAA ratio
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downregulated in patients; and the AAA tyrosine, formate and pyruvate which were 

upregulated.  

 

The BCAA/AAA ratio was significantly lower in both the HCC group and the cirrhosis 

group in the two cohorts. Moreover, in the UK cohort, the BCAA/AAA ratio was strongly 

negatively correlated to Child-Pugh score among patients (Spearman σ = -0.63, p = 

2.8 x 10-16). It has been well-established that the BCAA/AAA ratio, known as the 

Fischer ratio, is decreased in patients with advanced liver cirrhosis and that its level is 

negatively associated with disease progression (28). The metabolism of BCAAs is 

unique in that their initial catabolism does not occur in the liver but in skeletal muscle 

instead. The decrease in BCAAs in patients is thought to be due to increased 

catabolism in muscle while the increase of AAAs reflects the reduced capacity for the 

cirrhotic liver to catabolise them, leading to their accumulation in blood (29, 30). The 

accumulation of AAAs in blood leads to increased uptake in the brain, which disrupts 

neurotransmitter synthesis (29). The imbalance of these amino acids has been 

suggested to be a contributing factor to the development of hepatic encephalopathy 

in cirrhotic patients (30). On the other hand, BCAA plays important regulatory role in 

the metabolism of proteins, sugars and lipids and has been shown to be able to 

promote liver regeneration and suppress HCC cell proliferation in vitro (31). Therefore, 

the BCAA/AAA ratio represents a good indicator for assessing liver impairment and its 

simplified version of BCAA/tyrosine ratio has been suggested to have prognostic value 

for HCC in patients with cirrhosis (32). However, given its non-specific nature to HCC 

and that it was not found to be markedly changed in HCC patients compared to 

cirrhotic patients in the two cohorts currently studied, it does not serve as a useful 
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marker for HCC, but may add value as a marker of severity of liver impairment when 

used as part of a panel of biomarkers. 

 

In the HCC vs Cirrhotic comparison, N-acetylglycoproteins, glutamine, glutamate and 

consequently, the Gln/Glu ratio showed consistent differences in the two cohorts.  

 

The 1H-NMR peak at 2.03 ppm is a non-specific signal from N-acetylated glycoproteins. 

Since the main contributors to the signal are various acute-phase proteins, such as 

alpha1-acid glycoprotein, haptoglobin, etc., it has been proposed as a marker of 

systemic inflammation (33). Acute-phase proteins are a class of proteins mainly 

synthesised by hepatocytes and released into bloodstream in response to 

proinflammatory cytokines such as interleukin-6. Raised acute-phase proteins has 

been associated with poor prognosis in HCC (34) and has been investigated as a 

diagnostic marker for HCC with contradicting conclusions (35, 36).  

 

Cancer cells are known to derive energy from glutamine in a process called 

glutaminolysis (37). Glutamine is first converted to glutamate, a reaction catabolised 

by glutaminase, which is then converted into 2-oxoglutarate to enter the tricarboxylic 

acid (TCA) cycle. In addition to being an energy source, glutamine also serves other 

critical functions for cancer cells as a precursor for the synthesis of amino acids, fatty 

acids, nucleotides and regulator of various cellular processes (38). During malignant 

transformation, HCC cells are found to switch from expressing the liver-specific 

glutaminase 2 (GLS2) to expressing the kidney-specific glutaminase 1 (GLS1) and 

high expression of GLS1 is associated with poor prognosis (39). Targeting GLS1 

attenuates the stemness properties of HCC (40) and overexpression of GLS2 reduces 
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tumour growth (41). The increased demands of glutamine in HCC is facilitated by the 

upregulation of glutamine transporters ASCT2 (42). Together, HCC cells’ reliance on 

glutamine through increased uptake and utilisation supports the lower glutamine and 

higher glutamate in serum found in HCC patients compared to cirrhotic patients. 

Further characterisation of healthy individuals in the two populations is needed in order 

to explain the opposing trend in comparisons to healthy control as discussed in Section 

5.3.3.  

 

5.3.5. Comparison with reports from the literature 

Current findings were compared to reports from previous publications gathered for the 

systematic review in Chapter 2 (Table 5.7). Overall, many of these metabolites had 

contradictory reports in the literature. However, there was a greater portion of 

agreement between current findings and the literature, compared to data from urine in 

Chapter 4. 

 

Metabolites were classified into categories based on their agreement with the 

consensus from the literature (Table 5.7). Of the 29 metabolites and two ratios 

investigated, in the HCC vs Healthy comparison, 11 were in agreement with the 

consensus of previous published records, six had opposite change from the published 

consensus, five were novel reports, two had contradictory reports in the literature and 

two were previously not reported differences. Of note, the two metabolites that have 

been reported the highest number of times were the AAAs tyrosine and phenylalanine. 

However, there have been contradicting reports in the HCC vs cirrhosis comparison. 
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Table 5.7. Comparison of current findings and previous reports. 

 
Columns shaded in yellow show data from Chapter 2. Number of reports is the number 
of times a metabolite has been reported to be discriminatory. Vote count is the sum of 
reports of increase (+1) and decrease (-1). ^Reference numbers in Chapter 2.  
Columns shaded in blue show vote counts from the current cohorts. 
Columns shaded in green are an update of the number of report and vote count by 
including findings from the current cohorts. Category summarises the comparison of 
the current findings and previous reports: A1: Significant difference found in one cohort 
in the same direction as the consensus of published reports; A2: Significant difference 
found in two cohorts in the same direction as the consensus of published literature; C: 
contradictory findings in the two cohorts; Cl: contradictory findings in the literature; D: 
Significant difference found in the opposite direction as the consensus of published 
reports; Nf: Previously reported difference not found in the current cohorts; Nv: Novel 
difference not reported previously.  
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1-Methylhistidine 1 1 [36] 2.62 -1 -1 3 -1 D
2-Hydroxybutyrate 3 3 [43], [101], 

[48]
14.5 3 3 Nf 2 2 [101], [48] 13.6 -1 -1 4 0 D

2-Hydroxyisobutyrate -1 1 -1 Nv
3-Hydroxybutyrate 3 3 [63], [45], 

[101]
7.67 1 4 4 A1 4 4 [24,][36], 

[63], [101]
30.2 -1 1 5 3 C

3-Hydroxyisobutyrate 1 1 1 Nv
Acetate 1 1 [72] 5.16 1 1 Nf 1 1 [42] 11.3 -1 2 0 D
Acetoacetate 1 1 1 Nv 2 0 [24] [24] 0 2 0 Nf
Acetone 1 1 [36] 2.62 1 -1 3 1 C
Alanine 2 2 [46], [45] 4.64 -1 3 1 D -1 1 -1 Nv 3 1 [36], [46] [87] -0 -1 4 0 D
Choline 2 0 [43] [69] 0 2 0 Cl 2 0 [93] [31] 0 2 0 Nf 3 -1 [101] [42], [69] -5.2 -1 4 -2 A1
Citrate 3 1 [46], [101] [73] -0 3 1 Nf 3 3 [46], [42], 

[45]
20.9 1 4 4 A1

Creatine 3 1 [27], [101] [45] 2.5 1 4 2 A1 1 -1 [85] -5.9 1 2 0 D
Creatinine 1 -1 [93] -6.4 1 -1 Nf 4 -2 [85] [35], [24], 

[69]
-2.6 4 -2 Nf

Dimethylamine -1 -1 2 -2 Nv
Formate 1 -1 [63] -3.6 1 -1 Nf 1 -1 [63] -4.4 1 1 3 1 D
Glutamate 7 5 [43], [72], 

[45], [45], 
[73], [101]

[39] 22 1 1 9 7 A2 1 -1 [85] -5.2 -1 2 -2 A1 6 2 [42], [45], 
[101], [87]

[60], [25] 9.47 -1 1 8 2 C

Glutamine 3 -1 [45] [72], [101] -2.7 -1 -1 5 -3 A2 1 1 [85] 5.35 1 2 2 A1 3 -3 [42], [101], 
[87]

-21 1 -1 5 -3 C

N -acetylglycoproteins 2 2 [72], [83] 9.8 1 1 4 4 A2 1 1 1 Nv 2 0 [83] [42] 0 1 3 1 Cl
Isoleucine 2 2 [39], [73] 24.6 1 3 3 A1 5 -2 [36] [33], [42], 

[87]
-7.2 -1 -1 7 -4 A2

Lactate 3 -1 [101] [45], [73] 0.68 3 -1 Nf 4 4 [36], [35], 
[83], [101]

27.1 1 5 5 A1

Leucine 3 1 [46], [73] [45] 3.19 3 1 Nf 8 0 [36], [50], 
[46], [60]

[35], [33], 
[42], [87]

0 -1 -1 10 -2 Cl

Lysine 1 1 [46] 3.61 1 1 Nf 4 -2 [46] [35], [85], 
[87]

-5.7 -1 -1 6 -4 A2

Methionine 3 -3 [27], [101], 
[49]

-30 3 -3 Nf 3 1 [31], [85] [49] -1.1 3 1 D 6 4 [33], [46], 
[60], [85], 
[87]

[101] 19 1 1 8 6 A2

Methylamine 1 1 1 Nv
Phenylalanine 6 0 [43], [46], 

[91]
[27], [63], 
[101]

0 6 0 Cl 1 1 [85] 5.35 1 1 Nf 13 9 [36], [33], 
[24], [50], 
[63], [46], 
[60], [42], 
[45], [104], 
[87]

[35], [91] 38.9 1 14 10 A1

Pyruvate 3 1 [36], [35] [67] 0.49 1 1 5 3 A2
Thiamine 1 1 1 Nv
Tyrosine 4 0 [46], [101] [27], [63] 0 4 0 Cl 11 7 [36], [33], 

[24], [50], 
[46], [42], 
[45], [85], 
[87]

[63], [60] 19.8 1 1 13 9 A2

Valine 5 2 [46], [39], 
[73]

[63] 9.1 5 2 Nf 1 1 [93] 7.65 1 1 Nf 5 -2 [46] [33], [42], 
[87]

-6.2 -1 -1 7 -4 A2

Gln/Glu -1 -1 2 2 Nv 1 1 1 Nv 1 1 [87] 10.5 1 -1 3 1 C
BCAA/AAA 1 1 [60] 3.35 1 1 Nf 3 -3 [33], [45], 

[87]
-14 -1 -1 5 -5 A2
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In the comparison between HCC and cirrhosis, all significant alterations found in one 

or both of the cohorts, with the exception of alanine, were in agreement with the 

consensus of the literature. However, there were also nine metabolites (e.g. 

methionine, which had the highest absolute final score) that have had reports of 

alteration but were not found in the current cohorts. Glutamate has been found to be 

higher in HCC compared to cirrhosis five times and was supported by the current data. 

 
5.3.6. Selection of a potential biomarker  

Ideally, a diagnostic biomarker for HCC should be able to discriminate patients with 

HCC to any other persons without HCC such that the intensity of the potential 

biomarker should be significantly changed in the same direction in the comparisons 

between HCC and each of the control groups. Additionally, a marker should be 

reproducible across cohorts of different genetic, geographical and aetiological 

backgrounds. However, there was no single metabolite that satisfied these criteria 

among the 28 annotated metabolites. Similarly, the two ratios investigated also failed 

to meet these criteria. For example, alanine was downregulated in HCC across all 

three comparisons in the Nigerian cohort, but no significant change was observed in 

the UK cohort. Since it is of greatest clinical value to identify patients with HCC among 

patients with advanced liver disease, subsequent analyses focused on the comparison 

between HCC and cirrhosis.  

 

Common deregulated metabolites in the HCC vs Cirrhotic comparison in both cohorts 

are glutamine, glutamate and N-acetylglycoproteins. Since N-acetylglycoproteins 

represent acute-phase proteins that are indicative of an inflammatory response which 

is non-specific to HCC, it is therefore ruled out as a potential biomarker based on 
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biological considerations. Given the interesting observation of the antagonism of 

glutamine and glutamate observed in the two cohorts in the HCC vs cirrhotic 

comparison, the Gln/Glu ratio was selected to be further evaluated for its potential as 

a potential biomarker for HCC. 

 

5.3.7. The evaluation of Gln/Glu ratio as a potential diagnostic biomarker  

To evaluate the ability for Gln/Glu ratio to predict the presence of HCC, three logistic 

regression models were built (Table 5.8). Model 1 was a crude model with only Gln/Glu 

as the predictor variable and the presence or absence of HCC as the response 

variable. Model 2 included sex and age as covariates to adjust for these given that 

they were not well-matched between study groups and these are established 

independent risk factors of HCC. Model 3 also adjusted for the presence of cirrhosis 

in addition to sex and age, as cirrhosis is a major confounder to metabolic changes 

observed in HCC patients. An additional Model 4 was built for the UK cohort using 

Child-Pugh score in place of the presence of cirrhosis as an alternative to adjust for 

liver disease severity. 

 

Gln/Glu ratio was a significant predictor in Model 1, the crude model for both cohorts 

(Ward test, p < 0.001). In Models 2 to 4, the Gln/Glu ratio remained a significant 

predictor (p < 0.001 for Nigerian models, and p < 0.01 for the UK models), 

demonstrating that it is able to predict the presence of HCC, even after adjusting for 

sex, age (Model 2) and the presence of cirrhosis (Models 3 and 4). 
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Table 5.8. Logistic regression models of glutamine-to-glutamate ratio as a 
predictor for the presence of tumour.  

 

 
Model 1: HCC (True/False) ~ Gln/Glu ratio 
Model 2: HCC (True/False) ~ Gln/Glu ratio + Sex + Age 
Model 3: HCC (True/False) ~ Gln/Glu ratio + Sex + Age + Cirrhosis (True/False) 
Model 4: HCC (True/False) ~ Gln/Glu ratio + Sex + Age + Child-Pugh score 
CI: confidence interval; OR: Odds ratio. 
 
 
 
 

 
Figure 5.7. Receiver operating characteristic curves of glutamine-to-glutamate 
ratio and AFP. (A) Nigerian cohort. (B) UK cohort. 

 
 

 
Table 5.9. Cutoff threshold, sensitivity & specificity of glutamine-to-glutamate 
ratio and AFP. 

 
*The best cutoff was determined using ROC curve for the cutoff value with the highest sum of 
sensitivity and specificity. 
  

Table 1

Model 1 Model 2 Model 3 Model 4

Cohort OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

Nigerian 0.5 (0.34-0.71) 0.000187 0.52 (0.35-0.76) 0.000878 0.41 (0.25-0.63) 0.000134 – –

UK 0.35 (0.19-0.6) 0.000299 0.39 (0.2-0.71) 0.00354 0.4 (0.2-0.75) 0.00662 0.36 (0.18-0.68) 0.00245
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Gln/Glu ratio
AFP

AUROC:
0.707 (95% CI: 0.606-0.808)
0.792 (95% CI: 0.709-0.875)
p = 0.116

AUROC:
0.676 (95% CI: 0.593-0.760)
0.517 (95% CI: 0.383-0.651)
p = 0.048

Table 1

Cutoff Sensitivity Specificity

Nigerian

Gln/Glu 1.66* 0.77 0.57

AFP 20 g L-1 0.81 0.34
AFP 200 g L-1 0.40 0.53

UK

Gln/Glu 2.08* 0.66 0.71

AFP 20 g L-1 0.40 0.89
AFP 200 g L-1 0.24 0.97
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ROC curves were used to assess the ability for Gln/Glu ratio to delineate HCC from 

cirrhotic patients and to benchmark its diagnostic utility against that of AFP’s (Figure 

5.6). In the Nigerian cohort, the area under ROC (AUROC) for Gln/Glu was 0.676 (95% 

CI: 0.593-0.760) which was significantly higher than that for AFP (AUROC = 0.517, 

95% CI: 0.383-0.651; p = 0.048). In the UK cohort, AUROC for Gln/Glu was 0.707 (95% 

CI: 0.606-0.808), which was lower than that for AFP 0.792 (95% CI: 0.709-0.875) but 

was not significantly lower (p = 0.116). This suggests that Gln/Glu ratio had better 

diagnostic utility than AFP in the Nigerian cohort and was non-inferior to AFP in the 

UK cohort. 

 

The estimated best cutoff value for Gln/Glu ratio for the Nigerian cohort was 1.66, 

which gave sensitivity of 0.765 and specificity of 0.570 (Table 5.9). The estimated best 

cutoff value was higher in the UK cohort at 2.08, which gave sensitivity of 0.660 and 

specificity of 0.711.  

 
5.3.8. Validation of the diagnostic utility of Gln/Glu ratio 

Finally, to assess the diagnostic utility of Gln/Glu ratio, an independent cohort from the 

Gambia was used. Cohort details are shown in Table 5.10 and experimental 

reproducibility is shown in Figure 5.8 (A). AUROC for Gln/Glu was 0.757 (95% CI: 

0.661-0.853) which was similar (p = 0.944) to that of AFP (AUROC = 0.763, 95% CI: 

0.636-0.890) (Figure 5.8 (B)). However, the absolute value of the ratio was much lower 

than those from the Nigerian and UK cohorts, with the best estimated cutoff at 0.404 

achieving sensitivity of 0.657 and specificity of 0.848 (Table 5.9). In addition, of note, 

the levels of glutamine, glutamate and the Gln/Glu ratio across all study groups in this 

Gambian cohort were similar to that of the UK (Figure 5.8 (C-E)). Future validation 
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using absolute quantification methods and characterisation of its level in healthy 

individuals along with the disease groups are necessary to establish the utility of 

Gln/Glu ratio as a marker for HCC among patients with cirrhosis. 

 

 

Table 5.10. Clinical characteristics of the Gambian validation cohort. 

 
Data shown as median (interquartile range) with the exception of *, for which mean 
(±1 stand deviation) is shown. anumber of data points available. bp-values of Mann-
Whitney U test, unless stated otherwise. cχ2 test. d1-way analysis of variance. 
  

HCC Cirrhotic CHB Healthy control

na na na na p-valueb

n 67 33 436 55

Demographic information

Male sex, n (%) 50 (79%) 63 19 (59%) 32 257 (60%) 429 25 (40%) 55 <0.001c

Age*, year 43 (35.25,50) 62 37 (31.5,40) 31 35 (31,44) 428 41 (33.5,59.5) 55 <0.001d

Clinical status

Multiple mass, n (%) 29 (54%) 54

Cirrhotic, n (%) 30 (61%) 64 33 (100%) 33

HBsAg positive, n (%) 39 (89%) 44 18 (95%) 19

Blood test results

Alpha-fetoprotein, g L-1 350 (118,6485) 41 28.72 (8.65,240.5) 20 6.12 (3.6,10) 97 3.95 (2.585,6.69) 4 7.9E-16

Alanine aminotransferase, IU L-1 58 (36.25,111.75) 62 49.5 (27.5,115.5) 32 23 (18,31) 431 22 (18,28) 54 2.06E-25

Alkaline phosphatase, IU L-1 320 (199,530) 63 228 (136,333.5) 31 86 (71,107) 425 91.5 (77.25,100) 54 1.58E-33

Albumin, g L-1 32 (29,37) 61 30 (23.75,37) 32 42 (40,44) 425 41 (39,44) 53 3.09E-29

Aspartate aminotransferase, IU L-1 196 (79,428.5) 58 144 (57.5,242) 31 30 (25,36) 427 25 (21,31) 54 1.93E-37

Bilirubin, μmol L-1 29 (12.5,75) 63 37 (14,72.25) 32 9 (7,13) 427 10 (8,12.75) 54 7.89E-25

Creatinine, μmol L-1 75.5 (58.75,95.5) 46 69 (54,82) 29 78 (63,91) 361 67 (59.75,83.25) 48 0.0652

Gamma-glutamyl transferase, IU L-1 352 (152.5,616.5) 58 144.5 (83.75,199.25) 32 26 (20,36) 401 26 (20.75,32) 52 1.96E-33

Haemoglobin, g dL-1 12.3 (9.95,13.975) 62 12.5 (11.5,13.7) 33 14.3 (12.9,15.65) 423 12.8 (11.8,13.8) 54 2.43E-14

Platelets, x109 L-1 229 (164,338) 62 122 (72.6,172) 33 190 (150,238.5) 423 219.5 (180.25,258.5) 54 1.15E-08
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Figure 5.8. Validation of the glutamine-to-glutamate (Gln/Glu) ratio as a marker 
for delineating HCC from cirrhosis in a Gambian cohort. (A) Principal component 
analysis (using mean-centered, Pareto-scaled data) of samples together with quality 
control samples. Red cross: quality control, turquoise: study sample. Variance 
explained: PC1 43.5%, PC2 13.1%. (B) Receiver operating characteristic curves of 
glutamine-to-glutamate ratio and AFP. (C-E) Relative intensities of glutamine, 
glutamate and glutamine-to-glutamate (Gln/Glu) ratio respectively. CHB: Chronic 
hepatitis B. ***: pFDR < 0.001, **: pFDR <0.01, *: pFDR < 0.01 compared to HCC; 
###: pFDR < 0.001, ##: pFDR <0.01, #: pFDR < 0.01 compared to cirrhotic patients. 
 

 

The agreement in the change in Gln/Glu ratio observed across the three cohort 

investigated as well as the agreement in the levels of change in glutamine and 

glutamate with the consensus from the literature in the HCC and cirrhosis comparison 

supports the universal applicability of the Gln/Glu ratio (Table 5.7) as a potential 

marker for HCC. As discussed in Section 5.3.4, there is evidence supporting the 

biological plausibility that the decrease of glutamine and increase of glutamate are the 
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direct result of tumour activity. This includes the increased uptake of glutamine in 

tumour through upregulation of its transporter ASCT2 (42) and the established 

phenomenon of tumour cell’s reliance on glutamine as an energy source and precursor 

for biosynthesis which has been demonstrated in HCC as well (38). Moreover, the use 

of Gln/Glu ratio as a biomarker has several benefits. Firstly, the incorporation of them 

in any potential diagnostic test should not require substantial technical development 

as they are amino acids for which there are readily available assays for quantification. 

Secondly, the use of a ratio does not require normalisation or any data manipulation 

which simplifies standardisation across testing labs. Finally, Gln/Glu ratio is likely to 

be specific as it has not been reported in other disease conditions. Therefore, given 

the biological plausibility, the current finding supports that glutamine-to-glutamate ratio 

should be followed up as one of the candidate markers in future validation studies. 

 

5.4. Conclusion 

In order to identify discriminatory metabolites in serum that are consistently altered in 

HCC patients in different populations, metabolic profiling was conducted in two 

independent cohorts from the UK and Nigeria using 1H-NMR spectroscopy. Most 

metabolic alterations observed in HCC were also present in the cirrhotic groups, 

suggesting that they were more related to liver impairment rather than to 

carcinogenesis. Similar alterations observed in the two cohorts reflect common 

pathological processes (e.g. BCAA/AAA ratio in relation to liver impairment). Dissimilar 

alterations may be due to different co-morbidities (e.g. lactate related to diabetes in 

the UK cohort) while further investigation is needed to verify and elucidate other 

dissimilar patterns such as those observed in ketone bodies, and glutamine and 

glutamate in comparisons to healthy control. Focusing on the comparison of HCC to 
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cirrhotic patients, Gln/Glu ratio was identified as a novel marker for delineating HCC 

from cirrhotic patients based on the common alteration in the two cohorts and was 

validated using an independent cohort from the Gambia. However, its utility as a 

biomarker requires further validation in independent cohorts, especially to clarify its 

alteration in HCC compared to healthy individuals, using absolute quantification 

methods. 
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Chapter 6 – General discussion 

6.1. General interpretation of results 

Identifying a reliable, non-invasive diagnostic biomarker for HCC is an unmet need in 

healthcare globally. This thesis presents an exploration to identify potential non-

invasive biomarkers using multiple strategies. 

 

In Chapter 2, a comprehensive systematic review of all published articles on this topic 

was conducted. A novel risk of bias metric was developed to assess the articles and 

a scoring system was implemented to rank reported discriminatory metabolites based 

on their frequency of being reported to be discriminatory, the fold change reported, the 

risk of bias of the reporting publication and the concordance of direction of change 

across the reports. This resulted in a ranked list for each of the sample types (tissue, 

blood and urine) identifying the most promising targets to take forward for validation. 

Key findings included the extreme heterogeneity of reported biomarkers in biofluids 

and tissues, with some metabolites being both negatively and positively associated 

with HCC in different studies. Also, the majority of studies were either based on small 

group sizes or failed to take into account the pre-existing metabolic consequences of 

cirrhosis. Nevertheless, the highest ranked potential discriminatory biomarkers of HCC 

included creatinine, hippuric acid and trimethylamine N-oxide in urine; several bile 

acids and lysophosphatidylcholines in blood; and glycerol 3-phosphate, malic acid and 

nicotinamide in tissue. 

 

In Chapter 4, an attempt to validate the top-ranking urinary metabolites concluded 

from the systematic review was presented. Using three datasets (1H NMR, reversed 

phase and HILIC UPLC-MS) of urine samples from a UK cohort, metabolites ranked 
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among top 30 in any of the metrics used in the systematic review were targeted to be 

annotated from the global profiles. Of the 62 metabolites targeted, 22 individual 

metabolites were confidently annotated. With this, it was possible to validate 

alterations of 10 metabolites in the HCC and healthy control comparison. However, no 

difference in the comparison between HCC and cirrhosis could be reproduced, 

highlighting the difficulty of identifying metabolites that could discriminate the two 

conditions. The lack of agreement between literature reports and the current findings 

may be due to the relatively small number of publications on urine markers. 

Nevertheless, similar efforts should be repeated using data from serum.  

 

In Chapter 5, 1H NMR data of serum samples from two cohorts (UK and Nigeria) with 

different genetic and aetiological background were compared to identify common 

alterations. Most of the alterations found between HCC and healthy control groups in 

both cohorts were already present in the comparison between cirrhosis and healthy 

control, suggesting that these alterations were related to liver impairment, rather than 

being specific to HCC. There was also a marked difference in the patterns of the 

metabolic expression of HCC between the two cohorts, possibly related to background 

differences between the two populations. Finally, the glutamine-to-glutamate (Gln/Glu) 

ratio, which was one of two common alterations found in the HCC and cirrhosis 

comparison in both cohorts (the other being a signal of acute-phase protein, which 

was deemed inappropriate as a marker as it was an indicator of inflammatory 

response), was identified as a potential marker for delineating the two. It was also 

validated in an independent cohort from the Gambia. However, absolute quantification 

of these two amino acids would be needed to establish the true cutoff value and also 

to clarify their concentration ranges in healthy volunteers. 
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The ideal biomarker should be specific to HCC such that its level is only altered in 

HCC patients but not in any of the control groups (Figure 6.1 (A)) and that this 

observation is reproducible across different cohorts. However, of the metabolites 

reported in the literature and those investigated in data generated for this thesis, none 

of the metabolites satisfied these criteria. Top-ranking urinary and blood metabolites 

in the systematic review either showed progressive alteration from healthy control, to 

cirrhosis to HCC (Figure 6.1 (B)) or displayed reversal in trend in the HCC group (the 

top three conjugated bile acids in blood) (Figure 6.1 (C)). Finally, pyroglutamic acid in 

urine, identified in Chapter 4 was uniquely raised in HCC but had contradictory reports 

in the literature and Gln/Glu ratio, the most promising marker identified in Chapter 5 

has its levels in the healthy control group different in the Nigerian cohort compared to 

the UK and the Gambian validation cohort (Figure 6.1 (D)). A number of reasons may 

explain the challenge for identifying universal biomarkers for HCC, discussed below. 

 

  



 180 

 

 

Figure 6.1. Trends across different study groups that a potential marker may 

display. (A) An ideal marker should be uniquely altered in the HCC group only. (B) 

Many metabolites showed progressive alteration across the study groups with 

progressively more severe liver disease. (C) Some even displayed reversal in trend 

between HCC and healthy and HCC and cirrhosis. (D) Some metabolites manifesting 

a different direction of change in different populations. A hypothetical case with the 

marker being higher in HCC than other study groups is displayed, it is also true for the 

reverse: markers that are lower in HCC than other study groups. LD: pre-cirrhotic liver 

disease. 
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6.2. Challenges faced by HCC biomarker discovery 

The search for potential biomarkers in blood and urine was founded on the hypothesis 

that substantial metabolic reprogramming occurs during tumourigenesis and that such 

change leaves a detectable signature in blood or urine. However, the endeavour to 

search for potential discriminatory markers in this thesis has led to the identification of 

three issues that complicate the picture and are the main challenges faced by the 

search for biomarkers for HCC. 

 

Background changes 

The vast majority of HCC cases occur on a background of cirrhosis. Cirrhosis is 

characterised by the failure for the liver to perform its normal function and on its own 

is associated with drastic changes in the metabolism in the liver and the whole body 

(1). Metabonomic studies of patients with fibrosis and cirrhosis described alterations 

associated to the severity of liver cirrhosis (2).   

 

In data generated in this project and from reports in the literature, many of the 

differences observed in HCC compared to healthy control volunteers were already 

present in the cirrhotic group, suggesting that these differences were more likely to be 

related to liver impairment due to cirrhosis and the underlying liver disease, rather than 

being specific to HCC. While some metabolites had similar levels in the HCC and 

cirrhotic groups, others displayed additional alterations in the HCC group. However, 

in such cases, it is difficult to determine whether the additional increase/decrease were 

due to HCC patients having more advanced liver disease or whether the development 

of HCC was indeed the cause of the additional alteration. 



 182 

 

In addition to background liver disease, co-morbidities such as obesity and diabetes 

prevalent in patients with liver disease especially in the West, are associated with 

significant alterations in the metabolome (3, 4). These conditions are likely to 

complicate the effort to identify metabolic alterations specific to HCC, as seen in the 

association of lactate with diabetes in Chapter 5. 

 

Heterogeneity 

HCC is heterogeneous at multiple levels, which questions the plausibility of the 

existence of universal biomarkers. Firstly, HCC can be caused by a myriad of 

underlying liver diseases. Despite fibrosis and cirrhosis being the common pathway 

among some of these liver diseases to promote HCC development, each is associated 

with different mechanisms of pathogenesis (5).  

 

Furthermore, heterogeneity is also present at the cellular and molecular level. 

Tumours exhibit diverse morphological appearances under histopathological 

examination (6). In recent genomics studies, the most common mutations only occur 

in 30% of cases (7). Depending on the combination of mutations present in the tumour, 

the alteration in the metabolic landscape differs (8, 9). Different sub-populations of 

cells within a tumour also display different metabolic phenotype (10).  

 

Given the heterogeneity, the simplistic hypothesis of the existence of a single 

metabolite as the universal biomarker may not be realistic. Many studies proposed 

having a panel, rather than a single metabolite as the potential diagnostic test. 

However, this does not necessarily circumvent the issue of heterogeneity given each 
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marker metabolite may display heterogeneous patterns and thus it is necessary to 

demonstrate the value of each to be included in the panel, which involves mechanistic 

understanding. The more variables that are included in a diagnostic panel also imply 

more parameter estimations, and thus necessitate the need for larger cohorts to 

increase the statistical power. 

 

Complex system 

The metabolome consists of metabolites from endogenous metabolism, gut-host co-

metabolism and those that are derived from diet, xenobiotics, genetic background and 

environmental exposure. Previous epidemiological metabonomic studies have 

identified differences in the metabolome of healthy individuals from different 

populations (11). This likely explains the difference in the patterns of alterations in 

cohorts from different populations as seen in the results drawn from different studies 

in Chapter 2 and the comparison of findings in Chapter 5. 

 

Metabolites found in circulation and in urine are the combined result of metabolism in 

all organs in the body and many metabolites are involved in a multitude of pathways 

and biological functions. In the context of biomarker discovery for HCC, the implication 

is that it is difficult to delineate whether an alteration observed in biofluid is due to 

tumorigenesis itself, a secondary effect due to tumour development after its metabolic 

output having interacted with the metabolism of the rest of the body. 
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6.3. Lessons for future studies 

Given the challenges faced by the research topic, future efforts should make use of a 

combination of different strategic approaches to maximise the chances of elucidating 

the right metabolite(s) as markers for HCC. 

 

Study design 

As most of the differences found between HCC and healthy volunteers are already 

present in patients with cirrhosis and are likely to be related to liver impairment, studies 

should always have cirrhosis as a control group and should focus on the comparison 

between HCC and cirrhosis, rather than the comparison between HCC and healthy 

control volunteers.  

 

To allow for the establishment of whether alterations are different or consistent in HCC 

caused by different underlying aetiologies (and hence mechanism of pathogenesis), 

studies should consider setting specific targets for patients with different underlying 

liver diseases. For example, in the UK, equal numbers of HCC and cirrhosis patients 

due to alcohol-related liver disease, non-alcoholic fatty liver disease and chronic 

hepatitis C should be recruited. 

 

Participants should also be recruited matching for sex and age with the following 

variables recorded: For all participants, height, weight, hepatitis B and C statuses, liver 

function tests, including alpha-fetoprotein; and for all patients, Child-Pugh score and 

staging for HCC for HCC patients. To avoid the influence due to food intake and to 

minimise variation due to circadian rhythm, morning fasted samples should be 

collected. 
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Analytical strategy 

Metabonomic studies usually adopt either a targeted or untargeted approach. 

Targeted approach measures a limited number of metabolites, typically belonging to 

the same chemical or metabolic class. The low number of metabolites profiled limits 

targeted approach’s utility in biomarker discovery as it does not allow high-throughput 

assessment of a large number of metabolites in a single assay. On the other hand, 

metabolite identification is a major bottleneck for yielding information from data 

generated by untargeted assays. For LCMS experiments, batch-to-batch variation in 

retention time and the dependence on chromatographic methods used add to the 

challenge of metabolite identification and comparison of results from different datasets. 

 

Given that it is necessary to validate previously reported findings, future studies should 

consider a pseudo-targeted approach. In an experiment with a pseudo-targeted 

approach, experimental methods the same as an untargeted approach is used. 

However, investigators select metabolites that are of interest and are likely to be 

detected in the method prior to the experiment. A mixture of the chemical standards 

of the selected metabolites should be prepared and run along with the samples. With 

information from the standards mixture, data analysis is expedited as the metabolite 

identification step is bypassed.  

 

Moreover, a pseudo-targeted approach confers additional benefit as the workflow of 

data analysis would be different from an untargeted approach. In typical analysis for 

data generated from untargeted assays, the initial step is to identify features that are 

discriminatory between conditions of interest and metabolite identification efforts are 
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only focused on these features. Consequently, only features found to be discriminatory 

are reported. However, to validate potential biomarkers, findings of no significant 

difference is as important as findings of significant difference as it informs the 

consistency of the discriminatory power of the potential marker.  

 

Therefore, a pseudo-targeted approach would increase the amount of information 

yielded from untargeted profiling and allow rapid validation of any potential markers in 

a hypothesis-driven manner. Metabolites to be targeted may be those high-ranking 

ones concluded from the systematic review and may also be selected in an informed 

manner through review of the literature. 

 

Data analysis strategy 

To overcome the challenge of substantial background metabolic changes as a result 

of liver impairment, three strategies may be used. 

 

Firstly, filtering for features that are discriminatory between HCC and healthy control, 

and between HCC and cirrhosis, but not between cirrhosis and healthy control would 

allow for the identification of alterations unique to HCC (Figure 6.2A).  

 

Secondly, assuming that the potential marker is linear related to the progression of 

HCC, investigations could also correlate features to HCC stages or tumour size. By 

comparing the correlation of features to HCC stages and liver disease severity (e.g. 

Child-Pugh score), features that display strong correlation with the former but not the 

latter are more likely to be a specific marker of HCC (Figure 6.2B). However, given 

that liver disease severity is often associated with tumour burden, i.e. the two are not 
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completely independent variables, identifying features that are correlated to one but 

not the other is less likely, but this strategy should nevertheless be attempted in future 

datasets. 

 

Finally, cirrhosis may be treated as a confounder in data modelling (Figure 6.2C). A 

confounder is defined as a factor that is both associated with the predictor (in this case, 

metabolite) and outcome (in this case, the presence of HCC). Cirrhosis fits well to the 

definition. In regression models, variables could be adjusted for by including them as 

addition predictor variables. As demonstrated in the modelling in Chapters 4 and 5, 

this may prove a useful way to identify association between potential marker and the 

presence of HCC with the effects of liver impairment removed. 

 

 

Figure 6.2. Strategies to identify markers specific to HCC, not markers of liver 

impairment. (A) Features may be filtered for their significance in all three comparisons 

(red filled area). (B) Features that show strong correlation with HCC burden that is not 

strongly associated with liver impairment (yellow shaded area) are more likely to be 

specific to HCC. (C) Liver impairment may also be treated as a confounder in 

regression models as one of the factors adjusted for. 
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Additional lines of evidence 

In order to establish a metabolite as a potential marker of HCC, biological plausibility 

of it being a direct effect of HCC tumorigenesis has to be demonstrated. To this end, 

the sole use of exploratory analysis on biofluids is insufficient. Animal or in vitro studies 

establishing the secretion or uptake of the potential marker by the tumour would offer 

definitive evidence that alteration of the marker found in biofluids is indeed due to the 

metabolic activities of the tumour. Alternatively, parallel investigations of paired 

biofluid and tissue samples from patients would also be a promising method to 

demonstrate such causal relationship. 

 

Minimal reporting standards and application of risk of bias assessment 

The heterogeneity in study design and reporting standards seen among the published 

studies reviewed in Chapter 2 complicated the comparison of results between studies. 

Given the difference in disease patterns (such as underlying aetiology), the availability 

of analytical platforms and the need to explore alternative data analysis strategies 

illustrated above, it may not be feasible to strictly enforce a standardised design. 

Nevertheless, future efforts should aim to adhere to minimal reporting standards and 

fulfill basic requirements to minimise risk of bias. Despite numerous metabonomics 

studies having been published, there has yet been a checklist or tool to evaluate the 

risk of bias of studies of this kind. To this end, the novel tool developed to assess risks 

of bias in Chapter 2 addressed this gap and should be implemented by any future 

researchers as a checklist when preparing for reports and in the peer review process. 

Furthermore, this tool has wide applicability as it can also be implemented to 

metabonomic clinical studies on other diseases or conditions. 
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6.4. The way forward for a real-world solution 

In summary, in order to move forwards in the search for novel non-invasive diagnostic 

test for HCC through metabonomic platforms, it is necessary to conduct studies with 

strict adherence to minimal reporting standards and risk of bias criteria with the above 

discussed considerations taken into account. Validation of previously reported 

potential marker is of equal importance as exploratory analysis to identify potentially 

new markers. For any metabolites deemed to have high potential, analytical methods 

that provide absolute quantification shall be used to establish cutoff values and for 

comparing results from different cohorts. Communication and coordinated efforts 

between research teams of different populations are encouraged to allow for 

comparison of findings. Only in this way that a real-world solution may be provided by 

the cumulation of research efforts. 
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Appendix A – Supplementary Tables for Chapter 2 

Appendix A Table 1. Search strategy on databases. 

A. Medline 
Step Search # Results 
1 Carcinoma, Hepatocellular/ 77529 

2 

adult liver cancer*.mp. [mp=title, abstract, original title, name 
of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

7 

3 

hepatoma*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

27961 

4 

hepatocarcinoma*.mp. [mp=title, abstract, original title, name 
of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

3870 

5 

primary liver carcinoma*.mp. [mp=title, abstract, original title, 
name of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

363 

6 

hepato-cellular carcinoma*.mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, floating 
sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

151 

7 

(liver? adj1 cell? adj1 carcinoma?).mp. [mp=title, abstract, 
original title, name of substance word, subject heading word, 
floating sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

347 

8 

(hepatic? adj1 cell? adj1 carcinoma?).mp. [mp=title, abstract, 
original title, name of substance word, subject heading word, 
floating sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

85 



 192 

9 

(hepatocellular adj1 carcinoma*).mp. [mp=title, abstract, 
original title, name of substance word, subject heading word, 
floating sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

105853 

10 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 122657 
11 Metabolomics/ 12099 

12 

metabo?omic?.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

24187 

13 Metabolome/ 7653 

14 

metabolome*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

11433 

15 

metabotype*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

181 

16 

metabolite*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

250490 

17 

(metabolic adj1 profil*).mp. [mp=title, abstract, original title, 
name of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

12406 

18 

(metabolic adj1 signature*).mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, floating 
sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

828 

19 

(metabolic adj1 phenotyp*).mp. [mp=title, abstract, original 
title, name of substance word, subject heading word, floating 
sub-heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 

3264 
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concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

20 

 (metabolic adj1 panel*).mp. [mp=title, abstract, original title, 
name of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

288 

21 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 272167 
22 exp Plasma/ 24550 

23 

plasma*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

912169 

24 exp Serum/ 67452 

25 

serum*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

1024403 

26 Urine/ 36510 

27 

collecting duct fluid*.mp. [mp=title, abstract, original title, 
name of substance word, subject heading word, floating sub-
heading word, keyword heading word, organism 
supplementary concept word, protocol supplementary 
concept word, rare disease supplementary concept word, 
unique identifier, synonyms] 

18 

28 exp Blood/ 1059219 

29 

blood*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

3600326 

30 

urine*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

348532 

31 exp Tissues/ 1785249 

32 

tissue*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

2022955 
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33 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 7510196 

34 

lipidomic*.mp. [mp=title, abstract, original title, name of 
substance word, subject heading word, floating sub-heading 
word, keyword heading word, organism supplementary 
concept word, protocol supplementary concept word, rare 
disease supplementary concept word, unique identifier, 
synonyms] 

3592 

35 Lipids/ 107114 
36 34 or 35 109729 
37 21 or 36 378523 
38 10 and 33 and 37 976 
39 38 not (exp animals/ not humans.sh.) 700 

 
B. EMBASE 
Step Search # Results 

1 

adult liver cancer*.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

7 

2 

hepatoma*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

38232 

3 

hepatocarcinoma*.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

5405 

4 

primary liver carcinoma*.mp. [mp=title, abstract, heading 
word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

594 

5 

hepato-cellular carcinoma*.mp. [mp=title, abstract, heading 
word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

364 

6  exp liver cell carcinoma/ 143917 

7 

 (liver? adj1 cell? adj1 carcinoma?).mp. [mp=title, abstract, 
heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, 
keyword, floating subheading word, candidate term word] 

144029 

8 

(hepatic? adj1 cell? adj1 carcinoma?).mp. [mp=title, abstract, 
heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, 
keyword, floating subheading word, candidate term word] 

163 

9 

(hepatocellular adj1 carcinoma*).mp. [mp=title, abstract, 
heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, 
keyword, floating subheading word, candidate term word] 

118183 

10 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 184964 
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11 

metabo?omic?.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

34045 

12 

metabolome*.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

10064 

13 

metabotype*.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

232 

14 exp metabolomics/ 25044 
15 exp metabolome/ 7167 
16 exp metabolite/ 76056 

17 

metabolite*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

474463 

18 

(metabolic adj1 profil*).mp. [mp=title, abstract, heading word, 
drug trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

18133 

19 

(metabolic adj1 signature*).mp. [mp=title, abstract, heading 
word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

1256 

20 

(metabolic adj1 phenotyp*).mp. [mp=title, abstract, heading 
word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

4713 

21 

(metabolic adj1 panel*).mp. [mp=title, abstract, heading word, 
drug trade name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

1232 

22 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 505724 
23 exp Plasma/ 210962 

24 

plasma*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

1297510 

25 exp Serum/ 287057 

26 

serum*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

1457474 

27 Urine/ 190727 

28 collecting duct fluid*.mp. [mp=title, abstract, heading word, 
drug trade name, original title, device manufacturer, drug 25 
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manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

29 exp Blood/ 2531834 

30 

blood*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

4959483 

31 

urine*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

544268 

32 exp Tissues/ 4686556 

33 

tissue*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word]  

4281805 

34 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 11285487 
35 exp lipidome/ 960 
36 exp lipidomics/ 3522 
37 lipid/ec [Endogenous Compound] 50250 

38 

lipidomic*.mp. [mp=title, abstract, heading word, drug trade 
name, original title, device manufacturer, drug manufacturer, 
device trade name, keyword, floating subheading word, 
candidate term word] 

5799 

39 35 or 36 or 37 or 38 55774 
40 22 or 39 555774 
41 10 and 34 and 40 2537 
42 41 not ((exp animal/ or nonhuman/) not exp human/) 1879 
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Appendix A Table 2. PRISMA-DTA checklists. (Reference no. 13) 
A. PRISMA-DTA checklist. (see Note) 

Section/topic  # PRISMA-DTA Checklist Item  Reported 
in section 

TITLE / ABSTRACT  
Title  1 Identify the report as a systematic review (+/- 

meta-analysis) of diagnostic test accuracy 
(DTA) studies. 

Title 

Abstract 2 Abstract: See PRISMA-DTA for abstracts.  – 
INTRODUCTION   
Rationale  3 Describe the rationale for the review in the 

context of what is already known.  
2.1. 

Clinical role 
of index test 

D1 State the scientific and clinical background, 
including the intended use and clinical role of 
the index test, and if applicable, the rationale 
for minimally acceptable test accuracy (or 
minimum difference in accuracy for 
comparative design). 

2.1. 

Objectives  4 Provide an explicit statement of question(s) 
being addressed in terms of participants, 
index test(s), and target condition(s). 

2.1. 

METHODS   
Protocol and 
registration  

5 Indicate if a review protocol exists, if and 
where it can be accessed (e.g., Web 
address), and, if available, provide registration 
information including registration number.  

2.2.1. 

Eligibility 
criteria  

6 Specify study characteristics (participants, 
setting, index test(s), reference standard(s), 
target condition(s), and study design) and 
report characteristics (e.g., years considered, 
language, publication status) used as criteria 
for eligibility, giving rationale. 

2.2.1. 

Information 
sources  

7 Describe all information sources (e.g., 
databases with dates of coverage, contact 
with study authors to identify additional 
studies) in the search and date last searched.  

2.2.1. 

Search  8 Present full search strategies for all electronic 
databases and other sources searched, 
including any limits used, such that they could 
be repeated. 

Appendix A 
Table 1 

Study 
selection  

9 State the process for selecting studies (i.e., 
screening, eligibility, included in systematic 
review, and, if applicable, included in the 
meta-analysis).  

2.2.2. 

Data 
collection 

10 Describe method of data extraction from 
reports (e.g., piloted forms, independently, in 

2.2.2. 
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process  duplicate) and any processes for obtaining 
and confirming data from investigators.  

Definitions for 
data 
extraction 

11 Provide definitions used in data extraction and 
classifications of target condition(s), index 
test(s), reference standard(s) and other 
characteristics (e.g. study design, clinical 
setting). 

2.2.2. 

Risk of bias 
and 
applicability 

12 Describe methods used for assessing risk of 
bias in individual studies and concerns 
regarding the applicability to the review 
question. 

2.2.3. 

Diagnostic 
accuracy 
measures 

13 State the principal diagnostic accuracy 
measure(s) reported (e.g. sensitivity, 
specificity) and state the unit of assessment 
(e.g. per-patient, per-lesion). 

N / A 

Synthesis of 
results  

14 Describe methods of handling data, 
combining results of studies and describing 
variability between studies. This could include, 
but is not limited to: a) handling of multiple 
definitions of target condition. b) handling of 
multiple thresholds of test positivity, c) 
handling multiple index test readers, d) 
handling of indeterminate test results, e) 
grouping and comparing tests, f) handling of 
different reference standards 

2.2.4. 
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Section/topic  # PRISMA-DTA Checklist Item 
Reported 
on page 
#  

Meta-analysis D2 Report the statistical methods used for meta-
analyses, if performed. 

N / A 

Additional 
analyses  

16 Describe methods of additional analyses (e.g., 
sensitivity or subgroup analyses, meta-
regression), if done, indicating which were pre-
specified.  

N / A 

RESULTS   
Study 
selection  

17 Provide numbers of studies screened, 
assessed for eligibility, included in the review 
(and included in meta-analysis, if applicable) 
with reasons for exclusions at each stage, 
ideally with a flow diagram.  

2.3.1. 

Study 
characteristics  

18 For each included study provide citations and 
present key characteristics including: a) 
participant characteristics (presentation, prior 
testing), b) clinical setting, c) study design, d)
 target condition definition, e) index test, 
f) reference standard, g) sample size, h) 
funding sources 

Appendix 
A Table 3 

Risk of bias 
and 
applicability 

19 Present evaluation of risk of bias and concerns 
regarding applicability for each study. 

2.3.2. 

Results of 
individual 
studies  

20 For each analysis in each study (e.g. unique 
combination of index test, reference standard, 
and positivity threshold) report 2x2 data (TP, 
FP, FN, TN) with estimates of diagnostic 
accuracy and confidence intervals, ideally with 
a forest or receiver operator characteristic 
(ROC) plot. 

N / A 

Synthesis of 
results  

21 Describe test accuracy, including variability; if 
meta-analysis was done, include results and 
confidence intervals. 

2.3.3. 

Additional 
analysis  

23 Give results of additional analyses, if done 
(e.g., sensitivity or subgroup analyses, meta-
regression; analysis of index test: failure rates, 
proportion of inconclusive results, adverse 
events). 

N / A 

DISCUSSION   
Summary of 
evidence  

24 Summarize the main findings including the 
strength of evidence. 

2.4. 

Limitations  25 Discuss limitations from included studies (e.g. 
risk of bias and concerns regarding 
applicability) and from the review process (e.g. 

2.4. 
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incomplete retrieval of identified research). 

Conclusions  26 Provide a general interpretation of the results 
in the context of other evidence. Discuss 
implications for future research and clinical 
practice (e.g. the intended use and clinical role 
of the index test). 

2.5. 

FUNDING   
Funding  27 For the systematic review, describe the 

sources of funding and other support and the 
role of the funders. 

Funding 

 
Note: The PRISMA-DTA checklist was used as a guide for the systematic review. 
Since the topic of research is not mature enough for the assessment of diagnostic test 
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Appendix A Table 3. Details of included studies. 
Publication Ref Main cohort# Validation cohort# Country HCC 

aetiology
Condition of 

sample collection
Matched 
control 
groups 

(sex / age)

Analytical 
technology

Funding sources

I. TISSUE
Abel, et al. (2009) [22] 13 / 13 – South 

Africa
Mixed necropsy or 

resection, snap 
frozen

yes / yes GC-MS & 
biochemical 
methods

The Cancer Association of South Africa (CANSA) and the South 
African Department of Trade and Industry

Beyoglu, et al. (2013) [28] 31 / 31 – France N.S. N.S. N.S. GC-MS Supported in part by National Institutes of Health/National Institute 
of Allergy and Infectious Diseases grant U19 AI067773-07/08 (to 
J.R.I.); Bernerische und Schweizerische Krebsliga, Sasella 
Foundation, and the Hassan Badawi Foundation Against Liver 
Cancer (to J.R.I., J.F.D.); this work was also the PAIR-CHC project 
NoFLIC (funded by INCa and Association pour la recherche contre le 
Cancer, ARC), the Reseau national CRB Foie and BioIntelligence 
(OSEO).

Budhu, et al. (2013) [30] 30 / 30 – China >50% CHB N.S. yes / yes LC-MS & 
GC-MS

The Intramural Research Program of the Center for Cancer 
Research, the US National Cancer Institute

Darpolor, et al. (2014) [38] 11 / – / 11 / 5 – USA N.S. resection, snap 
frozen

N.S. NMR The National Center for Research Resources and the National 
Center for Advancing Translational Sciences

Eggens, et al. (1988) [41] 5 / 5 / 5h – Sweden N.S. biopsy yes / yes GC, LC & 
TLC 

The Centrala Forsoksdjursnamnden, the Swedish Cancer Society 
and the Swedish Medical Research Council.

Krautbauer, et al. (2016) [52] 21 / 21 – Germany Mixed N.S. yes / yes DI-MS The‚ÄúStiftung f√ºr Pathobiochemie undMolekulare Diagnostik‚Äù the 
German Research Foundation

Li, et al. (2017) [57] 20 / 20 – China >50% CHB resection, snap 
frozen

yes / yes LC-MS & 
MALDI-MS

National Natural Science Foundation of China and Beijing Key 
Laboratory Special Fund

Liu, et al. (2013) [62] 10 / 10 – China 100% CHB washed with saline 
and dried on filter 
paper

yes / yes LC-MS N.S.

Lu, et al. (2019) [65] 80 / 80 – China >50% CHB resection yes / yes LC-MS Science and Technology R&D fund of Shenzhen and Petrel Project 
of The Affiliated Tumor Hospital, Harbin Medical University

Morita, et al. (2013) [70] 37 / 37 – Japan >50% CHC resection, snap 
frozen

yes / yes MALDI-MS LipidMachinery and Ministry of Health, Labour and Welfare, Japan 

Solinas, et al. (2014) [86] 25 / 25 – Italy >50% CHC biopsy, snap 
frozen

N.S. MAS-NMR N.S.

Tang, et al. (2018) [89] 28 / 18 / 23a 33 / 33 China >50% CHB resection, frozen 
at -80ºC

N.S. CE-MS The National Key R&D Program of China and the Key Foundation of 
the National Natural Science Foundation of China (21435006; to G. 
Xu). This study is also supported by Hundred Talents Program of 
CAS (to Y. Liu) and Innovative Research Grant to Scientific 
Research Center for Translational Medicine at Dalian Institute of 
Chemical Physics.

Teilhet, et al. (2017) [90] 28 / 28 – France Mixed resection, snap 
frozen

yes / yes NMR Supported by the Program Canc√©rop√¥le Lyon Auvergne Rh√¥ne 
Alpes‚ÄîOncostarter ‚ÄúMECASTEN‚Äù.

Wang, et al. (2008) [92] 29 / 29 / 3h – China N.S. resection, frozen 
at -80ºC

yes / yes LC-MS Supported by (1) the foundation (No.20425516) for Distinguished 
Young Scholars from National Nat-ural Science Foundation of China, 
and the Knowledge InnovationProgram of the Chinese Academy of 
Sciences (KSCX2-SW-329,KGCX2-SW-213); (2) National Key Basic 
Research Program (973)of China Grant (2004CB518704, to D.F. 
Wan); and (3) Shanghai Sci-ence & Technology Committee Shanghai 
Pujiang Project 06PJ14069(to X.H. He).

Yang, et al. (2007) [98] 17 / 14 – China N.S. biopsy, snap 
frozen

yes / yes MAS-NMR The National Natural Science Foundation of China, National Basic 
Research Program of China and the Chinese Academy of Sciences.
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II. TISSUE & BLOOD SERUM / PLASMA
Han, et al. (2019) [48] T: 30 / 30;

S: 30 / 30 / – / 30
– China >50% CHB T: resection, snap 

frozen;
S: fasted

yes / no LC-MS Supported in part by the National Natural Science Foundation of 
China (No. 81472284 and 81672699).

Huang, et al. (2013) [49] T: 50 / 50;
S: 139 / 78 / 81b / –

S: 22 / 25 / – / – China >50% CHB T: resection, snap 
frozen;
S: fasted

no / no S: LC-MS & 
CE-MS;
T: LC-MS

State Key Science &Technology Project for Infectious Diseases 
(grant nos. 2012ZX10002-009 and2008ZX10002-019), the key 
foundation (grant no. 21175132), and the creativeresearch group 
project (grant nos. 81221061 and 21021004) from the 
NationalNatural Science Foundation of China.

Lu, et al. (2016) [66] T: 50 / 50;
S: 24 / – / – / 24

S: 18 / 20 / – / 20 China >50% CHB T: resection;
S: fasted

yes / yes LC-MS & 
GC-MS

Partially supported by the grant of Natural ScienceFund of The 
Science and Technology Commission of Shanghai, China(no. 
12ZR1404300), Singapore Medical Research Council (grant 
no.NMRC/1242/2009), the NUS secondment Funds (C.N. Ong), and 
the NUSEnvironmental Research Institute (NERI).

Lu, et al. (2018) [68] T: 50 / 50;
S: 50 / – / – / 24

S: 18 / 20 / – / 20 China >50% CHB T: resection;
S: fasted

yes / yes LC-MS Natural Science Fund of The Science and Technology Commission 
of Shanghai, China, Science and Technology Commission of 
Shanghai Municipality, NUS secondment Funds and NUS 
Environmental Research Institute.

Skill, et al. (2011) [84] T: 6 / 6;
S: 6 / – / – / 4

– USA N.S. T: resection;
S: N.S.

no / no TLC & 
ELISA

N.S.

III. BLOOD SERUM / PLASMA
Ahaneku, et al. (1992) [23] 15 / 12 / – / 20 – Nigeria N.S. overnight fasted N.S. Biochemical 

methods
N.S.

Assi, et al. (2015) [24] 114* / – / – / 222 – 10 Western 
Europe 

countries

N.S. fasted yes / yes NMR The French National Cancer Institute and the Université de Lyon.

Assi, et al. (2018) [25] 147* / – / – / 147 – 10 Western 
Europe 

countries

Mixed N.S. yes / yes LC-MS NA was financially supported by the Universit√© Claude Bernard 
Lyon I through a doctoral fellowship awarded by the EDISS (Ecole 
Doctorale InterDisci-plinaire Sciences Sant√©) doctoral school to 
complete her PhD work. NA also holds a grant from the Fondation de 
France (FdF) supporting her postdoc-toral research (grant number: 
00069254). The data on the EPIC-Hepatobiliary data set was 
generated through support from the French National Cancer In-
stitute (L‚ÄôInstitut National du Cancer; INCA) (grant number 
2009‚Äì139; PI:MJ). The work undertaken by DCT reported in this 
publication was supported by the National Institutes of Health under 
award number P01 CA196559. RT is a co-principal investigator of 
the EPIC-Oxford cohort whose work is supported by Cancer 
Research UK under grant number C8221/A19170.
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Banales, et al. (2018) [26] 20 / – / – / 20 14 / – / – / 15 Spain & 
Poland

>50% CHC N.S. no / no LC-MS Supported by CIBERehd (EHD15PI05), AECC Scientific Foundation 
(2017/2020), ‚ÄúFondo de Investigaciones Sanitarias‚Äù (Carlos III 
Health Institute: PI15/01132 and PI18/01075 to J.M.B., PI16/00598 
to J.J.G.M., PI16/01845 to B.S., PI16/01126 to M.A.A., PI16/00090 
to J.M.), Spanish Ministry of Economy, Industry and 
Competitiveness (SAF2016-75197-R to R.I.R.M., SAF2017-87301-R 
to M.L.M.-C.), Miguel Servet Programme (CON14/00129 to J.M.B.), 
‚ÄúDiputaci√≥n Foral de Gipuzkoa‚Äù (DFG15/010, DFG16/004 to 
J.M.B.), ‚ÄúBasque Foundation for Innovation and Health Research: 
EiTB Maratoia‚Äù (BIO15/CA/016/BD to J.M.B., BIO15/CA/016/BD to 
M.L.M.-C.), Basque Country Department of Health (2013111173 to 
L.B., 2017111010 to J.M.B., 2013111114 to M.L.M.-C.), the 
Andalusian Government (‚ÄúConsejer√≠a de Econom√≠a, 
Innovaci√≥n, Ciencia y Empleo‚Äù: CTS-6264 and ‚ÄúConsejer√≠a 
de Salud ‚Äù: PI-0198-2016 to J.M.), Junta de Castilla y Le√≥n, 
Spain (SA063P17 to J.J.G.M.), European Comission Horizon 2020 
project (SEP-210503876; ESCALON to J.M.B.), and Proyecto 
Hepacare, Fundaci√≥n La Caixa (to M.A.A.).

Baniasadi, et al. (2013) [27] 30 / 22 / – / – – USA 100% CHC overnight fasted N.S. LC-MS Supported by the NIH (1R21CA133770), the Oncological Sciences 
Center in Discovery Park andthe Purdue University Center for 
Cancer Research.

Bowers, et al. (2014) [29] 37 / 21 / – / – – USA 100% CHC fasted N.S. LC-MS Support for this work by the NIH (1R21CA133770) as well as 
additional support from the Purdue University Center for Cancer 
Research and the Oncological Sciences Center in Discovery Park.

Butler, et al. (2013) [31] 297* / – / 39b / 592 – China >50% CHB non-fasted yes / yes LC-MS Supported by the United States National Cancer Instituteat the NIH 
(grant numbers R01 CA43092 and R01 CA144034).

Chen, et al. (2011) [32] 41 / – / – / 38 – China N.S. N.S. / no LC-MS Supported by The National Basic Research Program 
(2007CB512905), National Natural Science Fund (30571664), and 
The State S&T Projects of 11th Five Year(2008ZX10002-007).

Chen, et al. (2013) [33] 29 / – / – / 30 – China N.S. N.S. N.S. / yes LC-MS Supported by the national basic researchprogram of China (Grant 
2012CB518303), the State KeyScience & Technology Project for 
Infectious Diseases (Grants2012ZX10002011 and 
2012ZX10002009), the foundation(Grant 21175132) and the creative 
research group project(Grant 21021004) from the National Natural 
ScienceFoundation of China.

Chen, et al. (2013) [34] 30 / 30 / 30b / 30 – China 100% CHB overnight fasted N.S. LC-MS Supported by the State Key Science &Technology Project for 
Infectious Diseases (2012ZX10002-011)and the foundation (No. 
21175132) and the creative researchgroup project (No. 21021004) 
from National Natural ScienceFoundation of China.

Chen, et al. (2016) [36] 24 / – / – / 60 – China 100% CHB overnight fasted N.S. NMR Supported by the National Natural Science Foundation of China 
(81272581), Science Research Foundation of Ministry of Health & 
United Fujian Provincial Health and Education Project for Tackling 
the Key Research (WKJ-FJ-05), the Fundamental Research Funds 
for Xiamen University (201412G012), the Project of Natural Science 
Foundation of Fujian Province (2015J01541), and the Project funding 
for the training of young talents in the health system of Fujian 
Province (2014-ZQN-JC-42).

Di Poto, et al. (2017) [39] 63 / 65 / – / – – USA Mixed yes / yes GC-MS Supported by U01CA185188 (awarded to H.W. Ressom).

Di Poto, et al. (2018) [40] 30 / 39 / – / – – USA >50% CHC N.S. N.S. GC-MS The National Cancer Institute of the National Institutes of Health
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Fages, et al. (2015) [42] 114* / – / – / 222 – 10 Western 
Europe 

countries

Mixed yes / yes NMR This work was supported by the French National Cancer Institute 
(L‚ÄôInstitutNational du Cancer; INCA; grant number 2009-139; PI: 
M. Jenab). AF receivedfinancial support (BDI fellowship) from the 
CentreNational de la Recherche Scientifique (CNRS) and Bruker 
Biospin. Thecoordination of EPIC is financially supported by the 
European Commission(DG-SANCO) and the International Agency for 
Research on Cancer. Thenational cohorts are supported by Danish 
Cancer Society (Denmark); LigueContre le Cancer, Institut Gustave 
Roussy, Mutuelle G√©n√©rale de l‚ÄôEducationNationale, and 
Institut National de la Sant√© et de la Recherche 
M√©dicale(INSERM) (France); Deutsche Krebshilfe, Deutsches 
Krebsforschungszentrum(DKFZ), and Federal Ministry of Education 
and Research (Germany); HellenicHealth Foundation (Greece); 
Italian Association for Research on Cancer(AIRC), National 
Research Council, Associazione Italiana per la Ricerca sulCancro-
AIRC-Italy, and AIRE-ONLUS Ragusa, AVIS Ragusa, Sicilian 
Government(Italy); Dutch Ministry of Public Health, Welfare and 
Sports (VWS), NetherlandsCancer Registry (NKR), LK Research 
Funds, Dutch Prevention Funds, DutchZON (Zorg Onderzoek 
Nederland), World Cancer Research Fund (WCRF), andStatistics 
Netherlands (the Netherlands); European Research Council 
(ERC;grant number ERC-2009-AdG 232997) and Nordforsk, and 
Nordic Center ofExcellence Programme on Food, Nutrition and 
Health (Norway); HealthResearch Fund (FIS), Regional Governments 
of Andaluc√≠a, Asturias, BasqueCountry, Murcia (No. 6236) and 
Navarra, and ISCIII RETIC (RD06/0020) (Spain);Swedish Cancer 
Society, Swedish Scientific Council, and Regional Governmentof 
Sk√•ne and V√§sterbotten (Sweden); Cancer Research UK, Medical 
ResearchCouncil, Stroke Association, British Heart Foundation, 
Department of Health,Food Standards Agency, and Wellcome Trust 
(UK).

Fitian, et al. (2014) [43] 30 / 27 / – / 30 – USA 100% CHC overnight fasted yes / yes LC-MS & 
GC-MS

supported by the NIH KL2 University of Florida Clinical Translational 
Science Scholar Award (R.C.), NIH/NCRR award UL1RR029890 
(D.R.N., R.C.) and NIH/NCI award K24CA139570 (D.R.N).

Gao, et al. (2009) [44] 39 / 36 / – / 63 – China N.S. N.S. NMR Supported by ChinaPostdoctoral Science Foundation 
(20070410188), Knowledge Innova-tion Program of the Chinese 
Academy of Sciences (SIMM0709QN-07),and National Natural 
Science Foundation of China (20705037 and30470351).

Gao, et al. (2015) [45] 26 / 34 / 32b / 40 10 / 18 / 16b / 21 China 100% CHB overnight fasted yes / yes GC-MS The Ministry of Science and Technology of China and the National 
Natural Science Foundation of China.

Gong, et al. (2017) [46] 51 / 49 / – / 39 – China 100% CHB overnight fasted N.S. LC-MS & 
GC-MS

The Shanghai Institutes for Biological Sciences, Chinese Academy 
of Sciences and the Key Lab of Training, Monitoring and 
Intervention of Aquatic Sports of General Administration of Sport of 
China, Jiangxi Normal University.

Grammatikos, et al. (2016) [47] 122 / 127 / – / – – Germany Mixed N.S. yes / yes LC-MS Supported by the German Research Foundation DFG (FOG784, 
PF361/7

Jee, et al. (2018) [50] 75* / – / – / 134 – Korea Mixed >12 hour fasted yes / yes LC-MS Funded through grants from the Korean Health Technology R&D 
Project, Ministry of Health & Welfare, Republic of Korea 
(HI14C2686010115 and HI14C2686), and the Bio-Synergy Research 
Project (NRF-2012M3A9C4048762) of the Ministry of Science, ICT 
and Future Planning through the National Research Foundation of 
Korea, Republic of Korea.

Kawasaki, et al. (1988) [51] 5 / 11 / 6h / 12 – Japan N.S. overnight fasted N.S. LC Supported in part by a grant for scientific research (60570321) from 
the Ministry of Education, Science and Culture, Japan.



 205 

 

Krautbauer, et al. (2017) [53] 21 / 41 / – / 22 – Germany N.S. N.S. no / no DI-MS This study was supported by the Stiftung f√ºr Pathobiochemie und 
Molekulare Diagnostik and partly by the German Research 
Foundation (BU 1141/13-1).

Li, et al. (2013) [55] 20 / – / – / 20 – China N.S. N.S. N.S. LC-MS Supported by grants of the State Key Science & Technology Project 
for Infectious Diseases (2012ZX10002011, 2012ZX10002009), the 
foundation and creative research group project (No. 21175132 and 
No. 21021004) from the NSFC.

Li, et al. (2017) [56] 80 / – / – / 20 – China N.S. fasted N.S. LC-MS N.S.
Lin, et al. (2011) [59] 28 / 28 / 26b / 30 – China N.S. N.S. N.S. GC-MS Supported by the State Key Science &Technology Project for 

Infectious Diseases (2008ZX10002-019,2008ZX10002-017) from 
State Ministry of Science & Technol-ogy of China, and the 
foundation (No. 20835006) fromNational Natural Science Foundation 
of China.

Lin, et al. (2014) [60] 30 / 30 / 30b / 30 – China N.S. N.S. LC-MS Supported by the State Key Science & Technology Project for 
Infectious Diseases (2012ZX10002011), the Sino-German Center for 
Research Promotion (GZ753), National Natural Science Foundation 
of China (21375011).

Liu, et al. (2014) [61] 43 / 42 / – / 18 28 / 26 / – / 8 China >50% CHB N.S. LC-MS & 
NMR

Grant sponsor: National Natural Science Foundation of China; Grant 
number:81273472; Grant sponsor: Science and Technology 
Commission of Shanghai, China; Grant number:12401900802

Liu, et al. (2017) [63] 66 / – / – / 82 – China Mixed N.S. no / no GC-MS Supported by the National Nature Science  Foundation  of  China  
(No.  81000968;  No.  81101540; No. 81101637; No. 81172273; No. 
81272388; No. 81301820; No. 81472673), Doctoral Fund of Ministry 
of Education of China (20120071110058), and The National Clinical 
Key Special Subject of China.

Lu, et al. (2015) [64] 47 / – / 48b / 48 220 / – / – / 224 China >50% CHB >12 hour fasted no / no LC-MS Supported by grant from Open Project of State Key Laboratory 
ofUrban Water Resource and Environment of Harbin Institute 
ofTechnology (No. ES201115).

Lu, et al. (2015) [67] 36 / – / – / 19 10 / – / – / 5 China 100% CHB overnight fasted yes / yes LC-MS & 
GC-MS

Supported in part by the grant of Natural Science Fund of The 
Science and Technology Commission of Shanghai, China (No. 
12ZR1404300), Singapore Medical Research Council (No. 
NMRC/1242/2009), the NUS secondment Funds to CNO and the NUS 
Environmental Research Institute (NERI).

Luo, et al. (2017) [69] 361 / 167 / – / 191 155 / 143 / 150b / 99 China N.S. overnight fasted yes / yes LC-MS Supported by the National Key Research and Development Program 
of China (2017YFC0906900), the projects (No. 21375127) and key 
project (No. 21435006) from the National Natural Science Foundation 
of China and the National Grand Project (2012ZX10002‚Äê011) of 
Science and Technology of China.

Muir, et al. (2013) [71] 15 / 15 / – / – – Korea N.S. N.S. GC-MS The National Institutes of Health.
Nahon, et al. (2012) [72] 22 / 62 / – / – 11 / 31 / – / – France Alcohol-

related
overnight fasted no / no NMR Paris 13 University.

Nezami Ranjbar, et al. (2015) [73] 40 / 49 / –  / – – Egypt 100% CHC N.S. yes / yes GC-MS The National Institutes of Health.
Passos-Castilho, et al. (2015) [75] 25 / 15 / 25c / – – Brazil 100% CHC N.S. N.S. MALDI-MS Funda√ß√£o de Amparo √† Pesquisa do Estado de S√£o Paulo ‚Äì 

FAPESP (2013/03701-0)
Passos-Castilho, et al. (2015) [76] 32 / 30 / 25b / 34 – Brazil 100% CHB N.S. yes / yes LC-MS The Fleury SA Group supported this work and AMPC received a 

doctorate scholarship from Funda√ß√£o de Amparo √† Pesquisa do 
Estado de S√£o Paulo‚ÄìFAPESP (no. 2013/03701-0)

Patterson, et al. (2011) [77] 20 / 7 / – / 6 – Switzerland Mixed N.S. no / no LC-MS & 
GC-MS

The NIH National Cancer Institute Intramural Research Program, and 
Bernerische undSchweizerische Krebsliga, Sasella Foundation, and 
the Hassan Badawi Founda-tion Against Liver Cancer.

Ressom, et al. (2012) [78] 78 / 184 / – / – 10 / 10 / – / – USA Mixed N.S. N.S. LC-MS The National Institutes of Health.
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Shariff, et al. (2017) [83] 53 / 26 / – / 19 – Nigeria & 
Egypt

Mixed fasted blood yes / yes NMR Supported by project grants from the Associations of Physicians of 
Great Britain and Ireland. MIFS and NGL were supported by 
personal grants from the Royal College of Physicians of London, the 
University of London and the Trustees of the London Clinic, London, 
UK. MMEC is supported by a Fellowship from the Sir Halley Stewart 
Trust (Cambridge, UnitedKingdom). MMEC and SDT-R hold grants 
from the United Kingdom Medical Research Council. AIG was 
supported by a doctorate grant from the Egyptian Ministry of Higher 
Education.

Soga, et al. (2011) [85] 19 / 10 / 24c / 53 13 / 8 / 11c / 4 Japan 100% CHC N.S. N.S. LC-MS & CE-
MS

Supported by Health and Labour Sciences Research Grants 
‚ÄúResearch on Biological Markers for New Drug Development‚Äù 
(T.S.) and ‚ÄúResearch on Risk of Chemical Substances‚Äù (T.S.). 
Additional support was obtained through grants from the Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) for a 
Global COE Program entitled ‚ÄúHuman Metabolomic Systems 
Biology‚Äù in Life Sciences (T.S., M.T. and M.S.) and the ERATO 
Gas Biology Project (M.S.), as well as research funds from the 
Yamagata Prefectural Government and City of Tsuruoka.

Stepien, et al. (2016) [87] 102* / – / – / 183 – 10 Western 
Europe 

countries

Mixed N.S. yes / yes LC-MS Grant sponsor:French National Cancer Institute (L‚ÄôInstitut 
National du Cancer; INCA);Grant number:2009‚Äì139;Grant 
sponsor:European Research Council (ERC);Grant number:ERC-2009-
AdG 232997;Grant sponsor:Regional Governments of Andaluc ƒ±a, 
Asturias,Basque Country, Murcia;Grant number:6236;Grant 
sponsor:ISCIII RETIC;Grant number:RD06/0020;Grant 
sponsors:EuropeanCommission (DG-SANCO); International Agency 
for Research on Cancer; Danish Cancer Society (Denmark); Ligue 
Contre le Cancer;Institut Gustave Roussy; Mutuelle G en erale de 
l‚ÄôEducation Nationale; and Institut National de la Sant e et de la 
Recherche M edicale(INSERM) (France); Deutsche Krebshilfe, 
Deutsches Krebsforschungszentrum (DKFZ); and Federal Ministry of 
Education and Research(Germany); Stavros Niarchos Foundation; 
Hellenic Health Foundation; and Ministry of Health and Social 
Solidarity (Greece); ItalianAssociation for Research on Cancer 
(AIRC); National Research Council; and AIRE-ONLUS Ragusa, AVIS 
Ragusa, Sicilian Government(Italy); Dutch Ministry of Public Health, 
Welfare and Sports (VWS); Netherlands Cancer Registry (NKR); LK 
Research Funds; DutchPrevention Funds; Dutch ZON (Zorg 
Onderzoek Nederland); World Cancer Research Fund (WCRF); and 
Statistics Netherlands (theNetherlands); Nordforsk; and Nordic 
Center of Excellence Programme on Food, Nutrition and Health 
(Norway); Health Research Fund(FIS); Navarra; Catalan Institute of 
Oncology. (Spain); Swedish Cancer Society; Swedish Scientific 
Council; and Regional Government ofSk√•ne and V‚Ç¨asterbotten 
(Sweden); Cancer Research UK; Medical Research Council; Stroke 
Association; British Heart Foundation;Department of Health; Food 
Standards Agency; and Wellcome Trust (UK)

Tan, et al. (2012) [88] 262 / 76 / 74b / – – China 100% CHB N.S. yes / yes LC-MS Supported by the State Key Science andTechnology Project for 
Infectious Diseases (2008ZX10002-017,2008ZX10002-019) and 
China International Science and TechnologyCooperation Program 
(2009DFA41250) from State Ministry of Scienceand Technology of 
China, and the key foundation (No. 20835006) andthe creative 
research group project (No.30921006, 21021004) fromNational 
Natural Science Foundation of China.
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Wang, et al. (2012) [91] 23 / 28 / – / 70 59 / 20 / – / 20 China 100% CHB overnight fasted N.S. LC-MS Supported by the Natural Science Foundation ofChina (30901190, 

81121002), the Major National S&T Projectfor Infectious Disease 

(2012ZX10002-007), the NationalProgram on Key Basic Research 

Project (2009CB522406 and2007CB513003), and the Health Bureau 

of Zhejiang ProvinceFoundation (2008QN010).

Wei, et al. (2012) [93] 40 / – / 22c / – – USA 100% CHC N.S. N.S. NMR Funding from the National Cancer Institute, (1R21CA133770) and the 

Purdue Research Foundation

Xiao, et al. (2012) [95] 40 / 49 / – / – – Egypt 100% CHC N.S. yes / yes LC-MS Supported by the National Institutes of Health(NIH) Grant 

R21CA153176 awarded to H.W.R. The UPLC-QTOF MS data 

presented in the manuscript were generatedthrough the Proteomics 

and Metabolomics Shared Resource atthe Lombardi Comprehensive 

Cancer Center, supported byNIH/NCI grant P30-CA051008.

Xiao, et al. (2014) [96] 96 / 103 / – / – – Egypt 100% CHC N.S. yes / yes LC-MS upported by NCI grant R21CA153176 (to H.W.Ressom). The 

quantitation data were generated at Georgetown 

LombardiProteomics and Metabolomics Shared Resource supported 

by NIH/NCIgrant P30-CA051008.

Xue, et al. (2008) [97] 20 / – / – / 20 – China N.S. pre-therapeutic 

treatment

yes / N.S. GC-MS Financially supported by The National HighTechnology Research and 

Development Program of China863 Project (No. 2006AA02Z4C5) and 

the National NaturalScience Foundation of China (Nos. 30600739 & 

30772505).

Yin, et al. (2009) [99] 24 / 25 / – / 25 – China N.S. N.S. yes / yes LC-MS Supported by the National Key Projectof  Scientific  and  Technical  

Supporting  Programs(2006038079037) and the National Grand 

Scientific andTechnological Project of China (2008ZX10002-019 

and2008ZX10002-017) and the foundation (No. 20675082) 

fromNational Natural Science Foundation of China.

Zeng, et al. (2014) [100] 22 / 25 / – / 30 50 / 25 / – / 31 China >50% CHB N.S. yes / yes CE-MS Supported by the State Key Science &Technology Project for 

Infectious Diseases (2012ZX10002-011,2012ZX10002-009); the 

foundation (no. 21175132); and thecreative research group project 

(no. 21321064) from NationalNatural Science Foundation of China, 

Program of ShanghaiMunicipal Commision of Health (XBR2013090).

Zeng, et al. (2015) [101] 22 / 25 / – / – 50 / 25 / – / – China >50% CHB fasted N.S. CE-MS Supported by the State Key Science & Technology Project for 

Infectious Diseases (2012ZX10002-011) and the foundations 

(No.21205114, No. 21375011, No. 81172727 & No. 81301472) from 

National Natural Science Foundation of China.

Zhang, et al. (2015) [102] 11 / – / 22b / – – China 100% CHB N.S. N.S. LC-MS Supported by the State Key Science & Technology Project for 

Infectious Diseases (2012ZX10002011), National Natural Science 

Foundation of China (21375011), and the Sino-German Center for 

Research Promotion (GZ 753).

Zhang, et al. (2018) [103] 75 / 20 / – / 20 – China 100% CHB overnight fasted N.S. LC-MS Supported by the General Project of Application Infrastructure and 

Cutting-Edge Technology Research Programs, Tianjin (grant no. 

13JCYBJC22100), and the Program Project of Health and Family 

Planning Commission Technology Fund, Tianjin (grant no. 

2014KY01).

Zhou, et al. (2012) [104] 69 / 28 / – / 31 – China >50% CHB fasted N.S. / no LC-MS Supported by the State Key Science &Technology Project for 

Infectious Diseases (2012ZX10002011)and the Key Foundation 

(No.s 20835006, 21175132) and theCreative Research Group 

Project (No. 21021004) fromNational Natural Science Foundation of 

China.

Zhou, et al. (2012) [105] 30 / 30 / 30b / 30 – China N.S. fasted yes / yes LC-MS Supported by the State Key Science and Technology Project for 

Infectious Diseases (2008ZX10002- 017 and 2008ZX10002-019) 

from State Ministry of Science and Technology of China, and the 

key foundation (no. 20835006) and the creative research group 

project (no. 21021004) from National Natural Science Foundation of 

China.

IV. BLOOD SERUM / PLASMA & URINE
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Chen, et al. (2011) [35] 82 / – / 24a / 71 – China >50% CHB overnight fasted N.S. S: LC-MS & 
GC-MS;
U: LC-MS

National Basic Research Program of China, the National Science 
and Technology Major Project, the Natural ScienceFoundation of 
Shanghai and the National ScienceFoundation of China.

V.  URINE
Cox, et al. (2016) [37] 42 / 47 / 46b / 7 – Bangladesh >50% CHB morning, mid-

stream
N.S. NMR United Kingdom NIHR Biomedical Facility at Imperial College London 

for infrastructure support.
Ladep, et al. (2014) [54] 63 / 32 / 107n / 88 141 / 56 / 178n / 88 Nigeria >50% CHB non-fasted N.S. NMR The European Union Framework 7, the Trustees of the London Clinic 

(London, UK), the British Medical Research Council and the Halley 
Stewart Foundation (Cambridge, United Kingdom).

Liang, et al. (2016) [58] 25 / – / – / 12 15 / – / – / 10 China N.S. N.S. yes / yes LC-MS The Key Program of Natural Science Foundation of State.

Osman, et al. (2017) [74] 55 / 40 / – / 45 – Egypt N.S. morning yes / yes GC-MS Clinical Biochemistry Department, National Liver Institute, Menoufia 
University.

Shao, et al. (2015) [79] 33 / 27 / – / 26 33 / 21 / – / – China N.S. fasted yes / yes LC-MS The State Key Science &Technology Project for Infectious Diseases 
and the National Natural Science Foundation of China.

Shariff, et al. (2010) [80] 18 / 10 / – / 14 – Nigeria >50% CHB random yes / yes NMR NIHR Biomedical ResearchFacility provided infrastructure support.

Shariff, et al. (2011) [81] 16 / 14 / – / 17 – Egypt 100% CHC random no / no NMR The AlanMorement Memorial Fund from the Imperial College London 
Healthcare Trustees (London, U.K.), and the Broad Medical 
Research Program, CA. M.I.F.S. was supported by a 
scholarshipfrom the London Clinic, London, U.K., A.I.G. was 
supported by ascholarship from the Egyptian Government, the 
Higher Education Funding Council for England and the British Liver 
Trust and a charitable donation from Mr. and Mrs. Barry Winter.

Shariff, et al. (2016) [82] 13 / 25 / – / – – UK Mixed random, non-
fasted

yes / yes NMR The Association of Physicians of Great Britain and Ireland, the 
Royal College of Physicians of London, the University of London, 
the Trustees of the London Clinic (London, UK) and the Sir Halley 
Stewart Trust (Cambridge, UK).

Wu, et al. (2009) [94] 20 / – / – / 20 – China N.S. morning, whole yes / N.S. GC-MS The National Basic Research Program of China, Ministry of Health, 
China National Key Projects for Infectious Diseases and National 
Nature Science Foundation of China.

#Number of participants in each study group (HCC / cirrhosis / non-cirrhotic liver disease / healthy control) with the type of non-cirrhotic liver disease indicated by 
a: benign tumour, b: chronic hepatitic B, c: chronic hepatitis C, h: chronic active hepatitis, and n: non-cirrhotic liver disease.
*Prospective (samples were collected before the diagnosis of HCC)
CE: capillary electrophoresis; DI: direct injection; GC: gas chromatography; LC: liquid chromatography; MALDI: matrix-assisted laser desorption/ionisation; 
MAS: magic angle spin; MS: mass spectrometry; NMR: nuclear magnetic resonance; N. S.: not stated.
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Appendix A Table 4. Top 30 metabolites reported to be discriminatory in tumour compared to non-tumour tissue according to the final weighted score and the intermediate steps.
Overall ranking Tumour tissue vs matched non-tumour tissue
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Glycerol 3-phosphate HMDB0000126 6 4 1 1 1 [28],[30],[49],[89],[48] 5 1.00 -5 -7.41 -56.67 -56.67
Malic acid HMDB0000744 1 1 2 2 2 [28],[30],[49],[68],[89],[48] 6 1.00 -6 -5.95 -48.92 -48.92
Niacinamide HMDB0001406 1 1 4 3 3 [30],[49],[49],[68],[89],[48] 6 1.00 -6 -5.28 -42.92 -42.92
Glycerophosphocholine HMDB0000086 LMGP01010000 1 1 3 4 4 [30],[49],[62],[68],[89],[48] 6 1.00 -6 -5.51 -42.57 -42.57
O-Phosphoethanolamine HMDB0000224 6 4 7 5 5 [30],[49],[68],[89],[90] 5 1.00 5 4.93 39.72 39.72
Xanthosine HMDB0000299 23 17 5 6 6 [30],[49],[48] 3 1.00 -3 -5.25 -37.11 -37.11
3-Methylglutarylcarnitine HMDB0000552 6 4 8 7 7 [30],[49],[68],[48],[65] 5 1.00 -5 -4.77 -35.89 -35.89
Uric acid HMDB0000289 11 8 10 8 8 [30],[49],[68],[89] 4 1.00 -4 -4.36 -35.37 -35.37
LPC(18:2) HMDB0061700 6 4 6 9 9 [30],[49],[49],[62],[52] 5 1.00 -5 -5.24 -33.95 -33.95
Fumaric acid HMDB0000134 11 8 12 10 10 [30],[49],[68],[89] 4 1.00 -4 -4.06 -33.13 -33.13
5'-Methylthioadenosine HMDB0001173 23 17 9 11 11 [30],[49],[48] 3 1.00 3 4.75 32.48 32.48
Glycocholic acid HMDB0000138 LMST05030001 11 8 11 12 12 [30],[49],[68],[48] 4 1.00 -4 -4.29 -29.26 -29.26
Glycochenodeoxycholic acid LMST05030008 11 8 14 13 13 [69],[30],[49],[62] 4 1.00 -4 -3.83 -29.10 -29.10
myo-Inositol HMDB0000211 11 8 15 14 14 [28],[30],[68],[48] 4 1.00 -4 -3.54 -29.02 -29.02
LPC(16:1) 23 17 20 15 15 [68],[48],[52] 3 1.00 3 3.18 28.58 28.58
Glycodeoxycholic acid HMDB0000631 LMST05030006 23 17 31 16 16 [69],[49],[68] 3 1.00 -3 -2.43 -25.14 -25.14
C3:0 carnitine; Propionylcarnitine HMDB0000824 LMFA07070105 11 8 21 17 17 [30],[49],[68],[65] 4 1.00 -4 -3.15 -24.75 -24.75
L-Glutamine HMDB0000641 11 8 19 18 18 [49],[90],[98],[98] 4 1.00 4 3.19 24.65 24.65
D-Glucose HMDB0000122 23 17 17 20 19 [28],[30],[68] 3 1.00 -3 -3.46 -22.75 -22.75
C16:1 HMDB0003229 11 8 23 21 20 [30],[49],[48],[65] 4 1.00 4 2.86 21.35 21.35
C18:2n6,9; Linoleic acid HMDB0000673 LMFA01030120 11 8 25 22 21 [28],[30],[68],[90] 4 1.00 -4 -2.71 -21.29 -21.29
C4-OH carnitine; Hydroxybutyrylcarnitine HMDB0013127 LMFA07070071 23 17 31 23 22 [49],[68],[65] 3 1.00 -3 -2.43 -21.09 -21.09
C18:0 carnitine; Stearoylcarnitine HMDB0000848 LMFA07070008 23 17 18 24 23 [30],[68],[65] 3 1.00 3 3.23 20.99 20.99
Uridine diphosphate-N-acetylglucosamine HMDB0000290 121 95 44 25 24 [89] 1 1.00 1 2.14 19.27 19.27
Adenosine 3',5'-diphosphate HMDB0000061 121 95 45 26 25 [89] 1 1.00 -1 -2.12 -19.08 -19.08
LPC(20:4) 23 17 31 27 26 [49],[62],[52] 3 1.00 -3 -2.43 -18.65 -18.65
LPC(22:6) 23 17 31 27 26 [49],[62],[52] 3 1.00 -3 -2.43 -18.65 -18.65
beta-Glycerophosphoric acid HMDB0002520 23 17 24 30 28 [28],[30],[49] 3 1.00 -3 -2.77 -18.39 -18.39
Betaine HMDB0000043 23 17 37 31 29 [30],[49],[89] 3 1.00 -3 -2.26 -18.34 -18.34
L-Carnitine HMDB0000062 23 17 47 32 30 [49],[89],[65] 3 1.00 -3 -2.10 -18.05 -18.05
C16:0 carnitine; Palmitoylcarnitine HMDB0000222 LMFA07070004 23 17 22 33 31 [30],[68],[48] 3 1.00 3 2.96 18.05 18.05
Xanthine HMDB0000292 23 17 36 37 34 [30],[49],[48] 3 1.00 -3 -2.26 -17.72 -17.72
C5-DC carnitine; Glutarylcarnitine HMDB0013130 LMFA07070066 23 17 26 39 36 [30],[49],[65] 3 1.00 -3 -2.65 -17.09 -17.09
Phosphorylcholine HMDB0001565 23 17 28 40 37 [30],[49],[90] 3 1.00 3 2.57 16.84 16.84
PG(18:2(9Z,12Z)/18:2(9Z,12Z)) LMGP04010956 52 39 30 45 41 [57],[66] 2 1.00 -2 -2.50 -15.68 -15.68
S-Adenosylhomocysteine HMDB0000939 23 17 35 46 42 [30],[49],[48] 3 1.00 -3 -2.28 -15.42 -15.42
PE(18:0/20:3) 121 95 13 47 43 [57] 1 1.00 1 3.86 15.42 15.42
L-Lactic acid HMDB0000190 23 17 75 59 54 [30],[68],[90] 3 1.00 3 1.65 14.30 14.30
C4:0 carnitine; Butyrylcarnitine HMDB0002013 LMFA07070054 121 95 16 61 56 [30] 1 1.00 1 3.50 14.00 14.00
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Adenosine monophosphate HMDB0000045 23 17 47 62 57 [30],[49],[48] 3 1.00 -3 -2.10 -14.00 -14.00
N-Acetylneuraminic acid HMDB0000230 23 17 57 65 60 [30],[49],[89] 3 1.00 -3 -1.90 -13.64 -13.64
Uridine HMDB0000296 23 17 94 73 68 [30],[89],[48] 3 1.00 -3 -1.60 -12.97 -12.97
LPE(18:1) LMGP02050004 23 17 62 88 81 [30],[30],[48] 3 1.00 3 1.85 10.53 10.53
Ophthalmic acid HMDB0005765 121 95 29 91 84 [30] 1 1.00 1 2.56 10.22 10.22
L-Tryptophan HMDB0000929 11 39 101 29 90 [69],[49],[48] [30] 4 0.50 2 1.53 18.43 9.22
L-Phenylalanine HMDB0000159 1 39 61 19 141 [69],[49],[68],[90] [30],[62] 6 0.33 2 1.86 23.73 7.91
C6:0 carnitine; Hexanoylcarnitine HMDB0000705 LMFA07070070 11 39 444 75 203 [30] [49],[68],[65] 4 0.50 -2 -0.37 -12.83 -6.42
gamma-Aminobutyric acid HMDB0000112 23 95 27 41 278 [49] [30],[89] 3 0.33 -1 -2.59 -16.46 -5.49
L-Threonine HMDB0000167 23 95 117 57 294 [49],[68] [30] 3 0.33 1 1.40 14.47 4.82
L-Leucine HMDB0000687 23 95 148 83 311 [49],[90] [30] 3 0.33 1 1.05 11.77 3.92
L-Valine HMDB0000883 6 95 140 34 322 [49],[68],[90] [30],[86] 5 0.20 1 1.10 17.93 3.59
LPC(18:0) 23 95 176 292 385 [68] [49],[62] 3 0.33 -1 -0.81 -4.90 -1.63
PE HMDB0060501 LMGP02010000 23 95 176 341 453 [98] [22],[52] 3 0.33 -1 -0.81 -3.27 -1.09
Tiglylcarnitine HMDB0002366 LMFA07070108 23 95 152 374 456 [68] [30],[65] 3 0.33 -1 -1.00 -2.41 -0.80
Glycine HMDB0000123 23 95 401 389 458 [68] [30],[90] 3 0.33 -1 -0.70 -2.12 -0.71
Choline HMDB0000097 1 459 470 396 459 [84],[86],[90] [30],[89],[92] 6 0.00 0 0.00 -1.98 0.00
C2:0 carnitine; Acetyl-L-carnitine HMDB0000201 LMFA07070050 11 459 476 318 459 [30],[49] [68],[65] 4 0.00 0 0.00 -4.07 0.00
*Reference number in main text of publication reporting significant change
aA penalty for contradicting direction of change (See Methods for detail of calculation)
bTotal vote (+1 given to report of upregulation in HCC, -1 for downregulation)
cReported or estimated log2(fold change)
dLog2(fold change) weighted by score from risk of bias assessment
eWeighted log2(fold change) with discordance penalty applied
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Appendix A Table 5. Top 30 metabolites reported to be discriminatory in blood (plasma or serum) according to the final weighted score and the intermediate steps.
Overall ranking HCC vs Cirrhosis HCC vs non-cirrhotic liver disease HCC vs Healthy
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Glycocholic acid HMDB0000138 LMST05030001 2 21 1 1 1

[29], [69], 
[78], [96], 
[96], [96], 
[48] 7 1.00 -7 -4.24 -42.40 -42.40 1 0 0 0 0 0

[35], [50], 
[64], [46], 
[69], [55], 
[105], 
[104], [26], 
[48], [99] 11 1.00 11 24.29 184.46 184.46

Taurocholic acid HMDB0000036 LMST05040001 33 34 2 2 2 [69], [78] 2 1.00 -2 -1.84 -22.04 -22.04

[35], [64], 
[69], [99], 
[99] 5 1.00 5 15.27 127.54 127.54

Taurochenodeoxycholic acid HMDB0000951 LMST05040005 26 78 3 3 3
[78], [95], 
[96] 3 1.00 -3 -1.51 -16.37 -16.37 [103] 1 1 1 0.67 6.69 6.69

[64], [69], 
[69], [99] 4 1.00 4 10.75 112.31 112.31

Gluconic acid HMDB0000625 89 34 9 4 4 [45], [101] 2 1.00 2 1.16 8.61 8.61 [101] 1 1.00 1 6.40 70.40 70.40

LPC(18:0) LMGP01050026 4 7 4 9 5
[78], [91], 
[95], [48] [63] 5 0.60 3 2.27 26.72 16.03

[33], [33], 
[34], [63], 
[69], [77], 
[91], [104], 
[48], [99] 10 1.00 -10 -12.02 -89.66 -89.66

LPC(18:1) 12 2 5 6 6 [48] [63], [77] 3 0.33 -1 -0.85 -6.65 -2.22

[33], [33], 
[50], [63], 
[69], [77], 
[104], [48] 8 1.00 -8 -8.68 -68.03 -68.03

Phenylalanyl-Tryptophan HMDB0029006 89 34 21 10 7 [43], [69] 2 1.00 -2 -1.57 -19.13 -19.13 [69] 1 1.00 -1 -3.32 -39.86 -39.86

Hypoxanthine HMDB0000157 26 78 43 12 8
[43], [69], 
[101] 3 1.00 3 4.25 49.39 49.39 [36], [101]

[85], [99], 
[99] 5 0.20 -1 -1.43 5.66 1.13

LPC(16:0) LMGP01050018 2 3 10 16 9
[78], [91], 
[95], [48] [63], [63] 7 0.29 2 1.79 23.36 6.68 [46]

[33], [33], 
[34], [50], 
[63], [63], 
[69], [77], 
[91], [104], 
[48] 12 0.83 -10 -8.63 -65.58 -54.65

L-Phenylalanine HMDB0000159 1 1 6 8 10
[43], [46], 
[91]

[27], [63], 
[101] 7 0.00 0 0.28 2.20 0.00 [85] 1 1 1 0.67 5.35 5.35

[36], [33], 
[24], [50], 
[63], [46], 
[60], [42], 
[45], [104], 
[87] [35], [91] 13 0.69 9 8.29 56.14 38.87

LPC(22:6) 19 11 16 15 11 [78] [77] 2 0.00 0 0.00 2.59 0.00 [34] 2 0.5 -1 -0.66 -1.97 -0.98

[34], [50], 
[69], [104], 
[66] 5 1.00 -5 -4.68 -43.18 -43.18

C8:0 carnintine; O-octanoylcarnitine HMDB0013324 LMFA07070095 53 16 19 17 12

[33], [64], 
[64], [69], 
[105] 5 1.00 -5 -5.15 -41.08 -41.08

C10:0 carnitine; Decanoylcarnitine HMDB0000651 LMFA07070059 26 3 12 18 13 [63], [96] 2 1.00 -2 -0.54 -3.78 -3.78

[33], [67], 
[63], [64], 
[69], [105] 6 1.00 -6 -5.33 -37.30 -37.30

LPC(20:5) 19 3 27 19 14 [69], [48] 2 1.00 -2 -0.70 -7.63 -7.63 1 0 0 0 0 0

[50], [69], 
[77], [105], 
[66], [48] 6 1.00 -6 -3.78 -32.88 -32.88

Dihydrocholesterol LMST01010077 261 177 35 20 15 [69] 1 1.00 -1 -3.32 -39.86 -39.86

C18:2n6,9; Linoleic acid HMDB0000673 LMFA01030120 33 11 17 14 16
[63], [43], 
[39] 3 1.00 3 2.61 27.78 27.78

[67], [63], 
[46] 4 0.75 3 2.62 15.69 11.77

LPC(18:3) 44 11 22 21 17

[50], [69], 
[77], [66], 
[99], [99] 6 1.00 -6 -4.87 -38.44 -38.44

LPC(14:0) LMGP01050012 17 3 14 22 18 [77] 1 1.00 -1 -0.51 -3.60 -3.60 2 0 0 0 0 0

[33], [105], 
[105], [67], 
[50], [69], 
[77] 7 1.00 -7 -4.85 -33.51 -33.51

Biliverdin HMDB0001008 136 78 29 24 19 [77] 1 1.00 1 0.52 3.10 3.10 [104] 1 1.00 1 3.55 31.95 31.95
Chenodeoxycholic acid HMDB0000518 LMST04010032 44 78 7 7 20 [48], [48] 2 1.00 -2 -2.47 -23.42 -23.42 [103] 1 1 1 0.67 6.69 6.69 [48] [64], [48] 3 0.33 -1 -7.23 -53.56 -17.85

3-Hydroxybutyric acid HMDB0000357 44 11 25 26 21
[63], [45], 
[101] 3 1.00 3 1.31 7.67 7.67

[36], [63], 
[101] 3 1.00 3 3.38 26.72 26.72
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Bilirubin HMDB0000054 53 34 18 27 22 [77] [63] 2 0.00 0 0.00 -0.51 0.00
[63], [104], 
[99] 3 1.00 3 5.19 33.65 33.65

Trimethylamine N-oxide HMDB0000925 136 78 38 28 23 [101] 1 1.00 -1 -1.64 -18.08 -18.08 [101] 1 1.00 -1 -1.29 -14.15 -14.15
Hippuric acid HMDB0000714 136 78 47 29 24 [69], [101] 2 1.00 -2 -2.79 -31.64 -31.64
Glycoursodeoxycholic acid HMDB0000708 LMST05030016 136 78 48 31 25 [50], [69] 2 1.00 2 2.76 30.50 30.50
C18:2(9E,12E) carnitine; Linoelaidyl carnitine LMFA07070078 136 78 54 32 26 [95], [96] 2 1.00 -2 -2.58 -30.19 -30.19
15S-HETE HMDB0003876 LMFA03060001 89 34 41 36 27 [43], [46] 2 1.00 2 2.00 22.92 22.92 [46] 1 1.00 1 0.87 6.10 6.10
myo-Inositol HMDB0000211 53 177 81 101 28 [69] 1 1.00 1 2.38 28.54 28.54 [24], [24] [67], [69] 4 0.00 0 -0.32 -13.31 0.00

2-Hydroxybutyric acid HMDB0000008 53 16 51 37 29
[43], [101], 
[48] 3 1.00 3 1.28 14.51 14.51 [101], [48] 2 1.00 2 1.33 13.61 13.61

3-(Pyrazol-1-yl)-L-alanine 136 78 70 38 30 [69] 1 1.00 -1 -2.32 -27.86 -27.86
Fatty amide C20:1 261 177 70 38 30 [69] 1 1.00 -1 -1.32 -15.86 -15.86 [69] 1 1.00 -1 -1.00 -12.00 -12.00

L-Lactic acid HMDB0000190 33 34 52 35 32 [101] [45], [73] 3 0.33 -1 -0.64 2.03 0.68
[36], [35], 
[83], [101] 4 1.00 4 3.23 27.07 27.07

LPE(18:2) 75 34 46 30 33 [69] 2 0.50 -1 -0.51 -6.17 -3.09 [69], [104] 2 1.00 -2 -2.29 -24.61 -24.61

LPC(20:3) 44 16 32 42 36 [77] 1 1.00 -1 -0.51 -3.09 -3.09 1 0 0 0 0 0
[50], [69], 
[77], [105] 4 1.00 -4 -2.95 -24.32 -24.32

C16:1(9Z) carnitine; O-palmitoleoylcarnitine HMDB0013207 LMFA07070097 75 21 31 44 38 [105] 1 1 1 0.67 4.68 4.68
[67], [64], 
[105] 3 1.00 3 3.19 22.31 22.31

L-Glutamic acid HMDB0000148 6 11 20 13 39

[43], [72], 
[45], [45], 
[73], [101] [39] 7 0.71 5 3.83 30.84 22.03 [85] 1 1 -1 -0.66 -5.24 -5.24

[42], [45], 
[101], [87] [60], [25] 6 0.33 2 1.76 28.42 9.47

C10:1 carnitine; Decenoylcarnitine 53 21 33 46 40 1 0.00 0 0.00 0.00 0.00
[33], [64], 
[69], [105] 4 1.00 -4 -3.43 -26.21 -26.21

C16:1 HMDB0003229 53 34 28 48 42 2 0 0 0 0 0
[46], [60], 
[105] 3 1.00 3 4.25 24.67 24.67

LPC(18:2) LMGP0105 8 7 13 33 43 [102] [63] 3 0.00 0 0.00 1.04 0.00 [69]

[33], [34], 
[33], [50], 
[63], [77], 
[104], [99] 9 0.78 -7 -5.67 -31.12 -24.21

LPC(20:4) LMGP01050121 19 7 30 64 46 [29] [77], [96] 3 0.33 -1 0.45 4.15 1.38

[33], [34], 
[33], [50], 
[77], [104] 6 1.00 -6 -4.33 -24.22 -24.22

Glycodeoxycholic acid HMDB0000631 LMST05030006 17 21 34 53 47

[78], [95], 
[96], [96], 
[96], [96], 
[96] 7 1.00 -7 -3.05 -31.29 -31.29

[46], [77], 
[104] 3 1.00 3 6.40 53.24 53.24

Phenylalanyl-Serine HMDB0029004 89 34 73 56 50 [43], [48] 2 1.00 -2 -1.57 -15.45 -15.45 [48] 1 1.00 -1 -0.69 -6.21 -6.21
Betaine HMDB0000043 44 177 15 11 51 [101], [49] 3 0.67 -2 -4.16 -42.79 -28.53 [85] [49] 2 0 0 -2.06 -21.92 0 [85] 1 1.00 1 0.87 6.97 6.97

L-Tryptophan HMDB0000929 19 16 24 25 52 [101] 2 0.50 -1 -0.94 -10.38 -5.19 1 0 0 0 0 0 [69]

[35], [33], 
[101], 
[105], [104] 6 0.67 -4 -3.78 -24.41 -16.27

C18:1; Oleic acid HMDB0000207 LMFA01030002 53 21 23 57 53 [46] 1 1.00 1 0.52 3.10 3.10 1 0 0 0 0 0
[67], [46], 
[99] 3 1.00 3 4.35 18.29 18.29

Citric acid HMDB0000094 44 21 64 59 55 [46], [101] [73] 3 0.33 1 -0.22 -0.05 -0.02
[46], [42], 
[45] 3 1.00 3 2.62 20.92 20.92

L-Tyrosine HMDB0000158 4 7 40 34 61 [46], [101] [27], [63] 4 0.00 0 -0.13 -1.13 0.00

[36], [33], 
[24], [50], 
[46], [42], 
[45], [85], 
[87] [63], [60] 11 0.64 7 3.05 31.08 19.78

L-Glutamine HMDB0000641 33 34 135 49 64 [45] [72], [101] 3 0.33 -1 -0.36 -8.06 -2.69 [85] 1 1 1 0.67 5.35 5.35
[42], [101], 
[87] 3 1.00 -3 -1.73 -21.19 -21.19

Glycochenodeoxycholic acid LMST05030008 7 546 11 45 67 [91]

[69], [96], 
[96], [96], 
[96] 6 0.67 -4 -1.33 -14.97 -9.98 1 0 0 0 0 0

[35], [64], 
[55], [105], 
[99] [91] 6 0.67 4 7.30 41.95 27.96

Isobutyric acid HMDB0001873 75 21 49 79 72 [63], [101] 2 1.00 2 1.01 9.06 9.06 [36], [63] 2 1.00 2 1.74 7.85 7.85
L-Arginine HMDB0000517 53 34 101 65 89 [69], [101] 2 1.00 -2 -1.15 -13.41 -13.41 [46] [67], [101] 3 0.33 -1 -0.60 -6.56 -2.19

LPC(16:1) 75 21 57 98 90
[50], [69], 
[99], [99] 4 1.00 -4 -2.50 -15.30 -15.30

C20:4; Arachidonic acid HMDB0001043 LMFA01030001 8 34 8 5 93 [43], [46] 3 0.67 2 0.81 7.49 5.00 2 0 0 0 0 0
[50], [46], 
[105], [104]

[35], [60], 
[45] 7 0.14 1 7.50 70.35 10.05

C18:2 carnitine 53 21 58 106 98 1 0.00 0 0.00 0.00 0.00 [105] 1 1 1 0.67 4.68 4.68
[33], [105], 
[104] 3 1.00 3 1.81 9.35 9.35

6-Methylnicotinic acid 261 177 26 108 100 [99] 1 1.00 -1 -4.64 -13.93 -13.93

1-Methyladenosine HMDB0003331 75 21 185 113 103
[27], [43], 
[48] 3 1.00 3 1.02 10.59 10.59 [48] 1 1.00 1 0.33 3.00 3.00

Phytosphingosine HMDB0004610 LMSP01030001 75 21 36 115 105 [63] 1 1.00 -1 -0.51 -4.12 -4.12
[63], [99], 
[99] 3 1.00 -3 -2.71 -9.11 -9.11

Succinic acid HMDB0000254 53 21 37 95 107 [46] 1 1.00 1 0.52 3.61 3.61
[36], [46], 
[45] 4 0.75 3 2.62 12.21 9.15

L-Carnitine HMDB0000062 12 16 68 94 108
[63], [46], 
[105], [48] 4 1.00 4 1.77 13.39 13.39 [49] 1 1 -1 -0.25 -2.22 -2.22

[35], [46], 
[48], [99] [63], [105] 6 0.33 2 0.81 4.67 1.56
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L-Methionine HMDB0000696 8 78 227 348 116
[27], [101], 
[49] 3 1.00 -3 -3.07 -30.36 -30.36 [31], [85] [49] 3 0.33 1 -0.37 -3.33 -1.11

[33], [46], 
[60], [85], 
[87] [101] 6 0.67 4 4.43 28.49 19.00

Malic acid HMDB0000744 44 21 39 68 118 [46], [45] 2 1.00 2 1.03 4.64 4.64
[46], [45], 
[101] [67] 4 0.50 2 1.89 14.93 7.47

L-Valine HMDB0000883 12 177 50 103 133
[46], [39], 
[73] [63] 5 0.40 2 2.56 22.74 9.10 [93] 1 1 1 1.53 7.65 7.65 [46]

[33], [42], 
[87] 5 0.40 -2 -1.34 -15.40 -6.16

L-Kynurenine HMDB0000684 53 34 124 77 157 [69], [101] 2 1.00 2 0.37 4.38 4.38 [85] 1 1 1 0.67 5.35 5.35 [87] [35] 2 0.00 0 0.49 7.45 0.00

L-Aspartic acid HMDB0000191 19 546 544 265 162 [43], [101] 2 1.00 2 0.91 10.98 10.98 1 0 0 0 0 0 [46], [60]
[35], [24], 
[24], [85] 6 0.33 -2 -0.70 -3.87 -1.29

Cholesterol HMDB0000067 LMST01010001 26 34 72 117 163
[23], [45], 
[73] 4 0.75 3 2.13 12.86 9.65 [23], [24] [67], [61] 4 0.00 0 0.18 0.17 0.00

C18:1(9Z) carnitine; O-oleoylcarnitine HMDB0005065 LMFA07070096 26 34 121 470 168 [95], [96] 3 0.67 -2 -3.09 -36.60 -24.40 [105] 1 1 1 0.67 4.68 4.68
[33], [64], 
[105], [104] 4 1.00 4 4.00 29.02 29.02

D-Glucose HMDB0000122 12 34 113 543 406 [46], [45] 2 1.00 -2 -1.03 -4.12 -4.12
[24], [24], 
[42], [61]

[24], [24], 
[24], [67], 
[46] 9 0.11 -1 -0.67 2.64 0.29

C2:0 carnitine; Acetyl-L-carnitine HMDB0000201 LMFA07070050 12 34 95 262 430
[63], [43], 
[48] [68] 4 0.50 2 0.72 6.34 3.17

[63], [55], 
[48], [99]

[67], [105], 
[68] 7 0.14 1 1.22 1.02 0.15

L-Leucine HMDB0000687 8 177 78 251 438 [46], [73] [45] 4 0.25 1 1.60 12.75 3.19
[36], [50], 
[46], [60]

[35], [33], 
[42], [87] 8 0.00 0 0.57 -4.93 0.00

Taurine HMDB0000251 26 78 85 139 496 [69] 1 1.00 1 0.38 4.54 4.54 [35], [64]

[69], [85], 
[87], [26], 
[99] 7 0.43 -3 -2.42 -15.39 -6.60

L-Proline HMDB0000162 19 177 299 490 527 [46] [101], [49] 3 0.33 -1 -0.10 -2.19 -0.73 [49] 1 1 -1 -1.01 -9.08 -9.08
[24], [67], 
[46], [85] [60] 5 0.60 3 1.89 13.80 8.28

Inosine HMDB0000195 89 177 42 23 533 [101] 1 1.00 -1 -0.12 -1.32 -1.32 [35] [99] 2 0.00 0 2.95 37.96 0.00

D-Galactose HMDB0000143 19 177 523 380 539 [46] 1 1.00 -1 -0.51 -3.60 -3.60 [64] 3 0.33 1 0.67 6.02 2.01 [64], [61]
[67], [46], 
[60] 5 0.20 -1 0.13 1.91 0.38

Glycerol HMDB0000131 26 177 566 585 571 [63], [45] [27] 3 0.33 1 0.71 1.94 0.65 [63]
[36], [35], 
[45] 5 0.40 -2 -0.84 -2.31 -0.92

*Reference number in main text of publication reporting significant change
aA penalty for contradicting direction of change (See Methods for detail of calculation)
bTotal vote (+1 given to report of upregulation in HCC, -1 for downregulation)
cReported or estimated log2(fold change)
dLog2(fold change) weighted by score from risk of bias assessment
eWeighted log2(fold change) with discordance penalty applied
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Appendix A Table 6. Top 30 metabolites reported to be discriminatory in urine according to the final weighted score and the intermediate steps.
Overall ranking HCC vs Cirrhosis HCC vs non-cirrhotic liver disease HCC vs Healthy
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Creatinine HMDB0000562 2 2 2 1 1
[37], [54], 
[81] 3 1 -3 -3.10 -19.61 -19.61 [37], [54] 2 1 -2 -2.06 -13.41 -13.41 [37], [54] 2 1.00 -2 -2.06 -13.41 -13.41

Hippuric acid HMDB0000714 1 1 1 2 2 [54], [74] 2 1 -2 -2.06 -8.25 -8.25 [37], [54] 2 1 -2 -2.06 -13.41 -13.41
[37], [54], 
[80], [74] 5 0.80 -4 -4.13 -22.70 -18.16

Trimethylamine N-oxide HMDB0000925 3 3 3 4 3 [54] 1 1 -1 -1.03 -4.13 -4.13 [37], [54] 2 1 -2 -2.06 -13.41 -13.41
[54], [80], 
[35] 3 1.00 -3 -2.95 -16.40 -16.40

Aminocaproic acid HMDB0001901 45 37 5 5 4 [35] 1 1.00 -1 -3.47 -27.79 -27.79
Glycocholic acid HMDB0000138 LMST05030001 28 37 4 3 5 [35] 2 0.50 1 5.49 43.93 21.97
L-Carnitine HMDB0000062 6 4 11 6 6 [37], [54] 2 1 2 1.23 7.98 7.98 [37], [54] 2 1 2 1.23 7.98 7.98 [54] 1 1.00 1 0.61 2.45 2.45
Nicotinic acid HMDB0001488 45 37 19 7 7 [35] 1 1.00 -1 -2.06 -16.47 -16.47

L-Threonine HMDB0000167 7 5 12 8 8 [74] 1 1 1 0.61 2.45 2.45
[94], [74], 
[35] 3 1.00 3 2.05 12.73 12.73

L-Xylote HMDB0060256 11 7 6 9 9 [74] 1 1 -1 -1.03 -4.13 -4.13 [94], [74] 2 1.00 -2 -2.06 -10.32 -10.32
Phosphate HMDB0001429 11 7 6 9 9 [74] 1 1 -1 -1.03 -4.13 -4.13 [94], [74] 2 1.00 -2 -2.06 -10.32 -10.32
Urea HMDB0000294 11 7 6 9 9 [74] 1 1 -1 -1.03 -4.13 -4.13 [94], [74] 2 1.00 -2 -2.06 -10.32 -10.32
D-Xylitol HMDB0002917 11 7 6 12 12 [74] 1 1 -1 -1.03 -4.13 -4.13 [94], [74] 2 1.00 -2 -2.06 -9.29 -9.29
Serotonin HMDB0000259 11 7 6 13 13 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1.00 -1 -1.03 -4.13 -4.13
L-Cysteine HMDB0000574 45 37 33 14 14 [35] 1 1.00 -1 -1.51 -12.12 -12.12
Cysteic acid HMDB0002757 45 37 36 15 15 [35] 1 1.00 -1 -1.32 -10.58 -10.58
N-Acetylneuraminic acid HMDB0000230 45 37 38 16 16 [35] 1 1.00 1 1.28 10.25 10.25
Succinic acid HMDB0000254 28 22 31 17 17 [94], [35] 2 1.00 -2 -1.70 -9.83 -9.83
Adenine HMDB0000034 45 37 47 18 18 [35] 1 1.00 -1 -1.18 -9.48 -9.48
Normetanephrine HMDB0000819 45 37 47 18 18 [35] 1 1.00 -1 -1.18 -9.48 -9.48
Glycerol HMDB0000131 28 22 13 20 20 [74] 1 1 -1 -1.03 -4.13 -4.13 [74] 1 1.00 -1 -1.03 -5.16 -5.16
L-Arabinose HMDB0000646 28 22 13 20 20 [74] 1 1 -1 -1.03 -4.13 -4.13 [74] 1 1.00 -1 -1.03 -5.16 -5.16
Adenosine HMDB0000050 28 22 37 22 22 [79] 1 1 1 0.61 3.07 3.07 [35] 1 1.00 1 0.68 5.42 5.42
5-Hydroxyindoleacetic acid HMDB0000763 28 22 13 23 23 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1.00 -1 -1.03 -4.13 -4.13
Alpha-Hydroxyhippuric acid HMDB0002404 28 22 13 23 23 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1.00 -1 -1.03 -4.13 -4.13
Phenyl acetate HMDB0040733 28 22 13 23 23 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1.00 -1 -1.03 -4.13 -4.13
Pyrimidine HMDB0003361 28 22 13 23 23 [74] 1 1 -1 -1.03 -4.13 -4.13 [74] 1 1.00 -1 -1.03 -4.13 -4.13
1, 3-Dimethyluric acid HMDB0001857 11 7 21 27 27 [54], [79] 2 1 2 1.23 5.52 5.52 [54] 1 1 1 0.61 2.45 2.45
Pyridoxal HMDB0001545 45 37 62 28 28 [35] 1 1.00 1 0.99 7.94 7.94
Pyroglutamic acid HMDB0000267 45 37 63 29 29 [35] 1 1.00 -1 -0.94 -7.55 -7.55
C2:0 carnitine; Acetyl-L-carnitine HMDB0000201 LMFA07070050 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Choline HMDB0000097 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
D-Galactose HMDB0000143 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Dimethylglycine HMDB0000092 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Guanosine triphosphate HMDB0001273 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Indoleacetic acid HMDB0000197 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
N-acetylated amino acid 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
N6, N6, N6-Trimethyl-L-lysine HMDB0001325 11 7 21 30 30 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Creatine HMDB0000064 3 5 20 70 38 [54], [80] 2 1 2 1.23 5.52 5.52 [54] 1 1 1 0.61 2.45 2.45 [54], [80] [35] 3 0.33 1 0.11 -4.05 -1.35
Oxoglutaric acid HMDB0000208 7 7 21 30 40 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45 [54] 2 0.50 1 0.61 2.45 1.23
Pyruvic acid HMDB0000243 11 37 34 41 41 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 1 1.00 -1 -1.03 -4.13 -4.13
Dopamine HMDB0000073 45 37 65 43 42 [35] 1 1.00 1 0.71 5.71 5.71
L-Serine HMDB0000187 28 22 40 44 43 [74] 1 1 1 0.61 2.45 2.45 [74] 1 1.00 1 0.61 3.07 3.07
Uric acid HMDB0000289 45 37 66 45 44 [35] 1 1.00 1 0.69 5.50 5.50
Hypoxanthine HMDB0000157 11 37 32 39 45 [79] 1 1 -1 -1.03 -5.16 -5.16 [35] [94] 2 0.00 0 -0.53 -1.11 0.00
1-Methylnicotimide HMDB0000699 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
3-Hydroxyphenylacetic acid HMDB0000440 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Acetic acid HMDB0000042 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45
D-Glucose HMDB0000122 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
Dimethylamine HMDB0000087 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1.00 1 0.61 2.45 2.45
L-Methionine HMDB0000696 28 22 40 54 54 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 1 0.61 2.45 2.45
Agmatine HMDB0001432 45 37 105 61 60 [35] 1 1.00 1 0.58 4.68 4.68
Taurine HMDB0000251 45 37 107 64 63 [35] 1 1.00 1 0.52 4.13 4.13
Dihydrouracil HMDB0000076 45 37 108 68 67 [35] 1 1.00 1 0.50 3.97 3.97
L-Alanine HMDB0000161 45 37 109 69 68 [35] 1 1.00 -1 -0.49 -3.95 -3.95
Glycine HMDB0000123 3 114 39 60 69 [74] [54] 2 0 0 -0.42 -1.67 0.00 [54] 1 1 -1 -1.03 -4.13 -4.13 [94], [74] [80] 3 0.33 1 0.20 0.98 0.33
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Phenylacetylglutamine HMDB0006344 7 37 34 41 71 [54] 1 1 1 0.61 2.45 2.45 [54] 1 1 -1 -1.03 -4.13 -4.13 [54] 2 0.50 -1 -1.03 -4.13 -2.06
N-Acetyl-L-aspartic acid HMDB0000812 45 37 110 73 72 [35] 1 1.00 1 0.45 3.63 3.63
DL-O-Phosphoserine HMDB0001721 45 37 111 74 73 [35] 1 1.00 1 0.44 3.55 3.55
L-Cystine HMDB0000192 45 37 112 75 74 [35] 1 1.00 1 0.40 3.20 3.20
L-Proline HMDB0000162 11 37 116 115 76 [74] [79] 2 0 0 -0.42 -2.71 0.00 [74] 1 1.00 1 0.61 3.07 3.07
L-Phenylalanine HMDB0000159 45 37 114 93 93 [35] 1 1.00 1 0.33 2.67 2.67
Citric acid HMDB0000094 7 114 64 71 115 [74] 1 1 1 0.61 2.45 2.45 [54] 1 1 -1 -1.03 -4.13 -4.13 [74] [80] 2 0.00 0 -0.42 -2.09 0.00
Xanthine HMDB0000292 28 114 113 116 116 [79] 1 1 -1 -1.03 -5.16 -5.16 [35] 1 1.00 1 0.69 5.50 5.50
*Reference number in main text of publication reporting significant change
aA penalty for contradicting direction of change (See Methods for detail of calculation)
bTotal vote (+1 given to report of upregulation in HCC, -1 for downregulation)
cReported or estimated log2(fold change)
dLog2(fold change) weighted by score from risk of bias assessment
eWeighted log2(fold change) with discordance penalty applied
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Appendix B – Publications and presentations 

Publications  
1. U MRA and Taylor-Robinson SD. Comments on Gabbani, et al. Metabolomic 

analysis with H-1 NMR for non-invasive diagnosis of hepatic fibrosis degree in 
patients with chronic hepatitis C. Digestive and Liver Disease. 2018;50(2): 
209-210.  

2. U MRA, Shen Y-LE, Alkhatib A, Cartlidge C, Holmes E and Taylor-Robinson 
SD. Candidate biomarkers for the diagnosis of hepatocellular carcinoma from 
metabonomic studies: a systematic review. Available from: 
http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD4201809
5412. [Accessed 06/08/2019]. 

3. Vorkas PA, U MRA and Li JV. Tissue multiplatform-based 
metabolomics/metabonomics for enhanced metabolome coverage. In: 
Theodoridis G., Gika H., Wilson I. (eds) Metabolic Profiling. Methods in 
Molecular Biology, vol 1738. Humana Press, New York, NY; 2018. p. 239-
260.  

4. Oleribe OO, Salako BL, Akpalu A, Anteyi E, Ka MM, Deen G, et al. (including 
U MRA) Public private partnership in in-service training of physicians: the 
millennium development goal 6-partnership for African clinical training (M-
PACT) approach. Pan African Medical Journal. 2018;29:77. 

5. Cartlidge CR, U MRA, Alkhatib A and Taylor-Robinson, SD. The utility of 
biomarkers in hepatocellular carcinoma: review of urine-based 1H-NMR 
studies–what the clinician needs to know. International Journal of General 
Medicine. 2017;10:431-442.  

 
Conference presentations 

1. The Liver Meeting, AASLD, San Francisco, CA, USA, 11/2018  
[Oral presentation] Elucidating serum and urinary hepatocellular carcinoma 
diagnostic biomarker panels: insight from the United Kingdom and West Africa  

2. Annual Meeting of West African College of Physicians, Freetown, Sierra Leone, 
11/2018  
[Oral presentation] Large-scale discovery and validation of blood and urinary 
discriminant metabolites as potential biomarkers for the diagnosis of hepatocellular 
carcinoma in West Africa  

3. Global Health Forum: Cancer Technologies, Institute of Global Health 
Innovation, London, UK, 10/2018  
[Invited speech] Novel diagnostic biomarkers for hepatocellular carcinoma using 
metabolic profiling: challenges and breakthroughs  

4. Annual Meeting of British Association for the Study of the Liver York, UK, 
09/2018  
[Poster presentation] Elucidating serum and urinary hepatocellular carcinoma 
diagnostic biomarker panels: insight from the United Kingdom and West Africa  

5. Conference on Liver Disease in Africa Nairobi, Kenya, 09/2018  
[Oral & poster presentation] Large-scale discovery and validation of blood and 
urinary discriminant metabolites as potential biomarkers for the diagnosis of 
hepatocellular carcinoma in West Africa  
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6. Personalized Medicine, Gordon Research Conference Hong Kong SAR, China, 
07/2018  
[Poster presentation] Elucidating serum and urinary hepatocellular carcinoma 
diagnostic biomarker panels: insight from the United Kingdom and West Africa  

7. The International Liver Congress, EASL Paris, France, 04/2018  
[Poster presentation] Towards elucidating a universal panel of diagnostic biomarkers 
for early hepatocellular carcinoma  
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Appendix C – Research as art: A dream of metabonomics 

Artwork made as part of Graduate School’s Summer Showcase 2018 
 
Our body operates an extremely intricate network of metabolites – a diverse array of 
molecules that perform functions ranging from the storage and release of energy, the 
construction of components of our cells, to the communication between cells. To 
maintain a healthy functioning body, components of the network need to be in fine 
balance. Subtle disruption may signify the beginning of disease processes. 
 
This is what we study in the field of metabonomics – how this network of metabolites 
changes in health and disease. Through this artwork, I want to take the viewer on a 
journey of our research, with a hint of my specific project. 
 
Starting from the human figure, it may represent our study participants who are willing 
to offer us a biological sample of theirs for a glimpse into their metabolism. The 
samples we collect, typically blood or urine, contain a complex mixture of metabolites, 
a snapshot of the metabolism. 
 
Going clockwise from the figure, we see delicate metabolic profiles – fingerprints of 
the metabolite mixtures obtained from analysing the samples by sensitive chemical 
techniques.  
 
With these fingerprints, we can deduce the levels of different metabolites present in 
the samples for us to construct a picture of the metabolic network, represented in the 
two-sided painting. On one side we have the full network – each blob is a metabolite 
and each line is the conversion from one to another. The question we ask is: is there 
abnormality in levels of certain metabolites in the disease group compared to the 
healthy group? 
 
Using statistics, the answer is revealed on the other side, certain metabolites are 
raised, some are reduced. This is extremely useful as it gives us insight into the 
disturbance of metabolism relating to the disease state. More importantly, these 
metabolites could be used as indicators for us to detect a disease or to monitor its 
progression. For example, for my project, I am trying to find any such disruptions in 
patients with hepatocellular carcinoma (HCC), the main primary liver cancer.  
 
This leads us to the model, the final stage of the cycle. Using information from data 
analysis, we can build a model that uses the levels of the indicator metabolites to 
predict the disease state of new samples. By repeating the cycle again and again, we 
can validate our model, which ultimately allows us to develop useful tools. For my case, 
it would be a new test that is better than existing ones for us to detect HCC tumours 
earlier, increasing the chance of a cure.  
 
This takes us back to the human figure. This is what all this effort is about. At the end 
of the day, we want to bring the results of the work back to the study participants – a 
new diagnostic tool, an insightful biological understanding that can inform treatment 
strategies, etc. 
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Or perhaps the human figure is the researcher, like me, who is the driving force of this 
cycle? Anyhow, it is a cycle of metabonomics, more than that, a dream of humanity. 
 

 
 

 
 

 


