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Abstract

Most human conditions develop in genetically susceptible individuals from the in-
teraction with environmental risk factors. These complex disorders result from the summa-
tion of effects from multiple genetic risk loci. Genome-wide association studies (GWASes)
measure the association of single nucleotide polymorphisms (SNPs) with traits or condi-
tions, and allow the creation of individualised polygenic risk scores. However, these ex-
plain only a small portion of a condition’s genetic heritability. Further, there is evidence
that schizophrenia GWAS signals are enriched within genomic regulatory blocks, which
are clusters of conserved non-coding elements that span key developmental loci and func-
tion as long-range enhancers activating transcription of target developmental genes. This
suggests that enhancer-based annotations might be useful to refine polygenic signals for
schizophrenia.

In this work, I aimed to increase the amount of variance explained by PRS for
schizophrenia, and a comparison condition hypertrophic cardiomyopathy, using tissue-specific
regulatory enhancer-promoter annotations. To do so, I developed neural- and cardiac-specific
enhancer lists, which I tested for enrichment, respectively, in schizophrenia and hyper-
trophic cardiomyopathy (HCM) heritability. I found that neural-specific enhancers are highly
enriched in schizophrenia heritability — especially when overlapping genomic regulatory
blocks. Then I created partitioned polygenic risk scores for enhancer-based and non-enhancer-
based SNPs, where enhancer-based SNPs are prioritised. I further compared the amount of
adjusted heritability for both conditions explained by original GWAS vs partitioned poly-
genic risk scores, and found up to a 6.5% increase in the Coefficient of Determination for
schizophrenia, and similar amounts for HCM — however, this was not statistically signific-
ant. The increasing trend was specific for brain-expressed enhancers in schizophrenia, while
it was widespread for HCM. Finally, I considered whether neural-specific enhancer-based
partitions might be better modelled in GWAS using nonadditive effects, however my results

were inconclusive due to small sample sizes.
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Chapter 1

Introduction

1.1 Genome structure and gene regulation by distal enhan-

cers

1.1.1 The coding and non-coding genome

For many years, protein-coding genes have been the main subject of investiga-
tion in the human genome, despite the coding portions of genes, called exons, constituting
merely 1.5% of the genome (Alexander et al.,2010). In the 1960s and early 1970s, when it was
discovered that — in comparison for example with bacterial genomes — most of the human
genome did not code for proteins, it was thought that these non-coding regions were non-
functional, and named junk DNA (Ohno, 1972). The significance of the non-coding genome

has gained increasing attention since more advanced sequencing efforts have uncovered the

1



2 Chapter 1. Introduction

true scale of the coding vs non-coding compartments (Alexander et al., 2010; Collins et al.,
2003). Some started to notice how organism complexity seemed to scale more consistently
with the amount of non-coding DNA over total, as compared to scaling with total DNA, as

well exemplified by Taft et al.,[2007in Figure

Subsequently, large-scale projects, such as the Encyclopedia of DNA Elements
(ENCODE), have systematically mapped regions of transcription, transcription factor as-
sociation, chromatin structure and histone modification across the human genome, mak-
ing clear that non-coding elements in the genome far outnumber protein-coding genes, and
starting to build evidence around the functional classes of non-coding elements, as we will
see below (The ENCODE Project Consortium, 2012).

We now know that most of the genome in complex organisms is transcribed, and
this transcription appears to vary over the course of development, which suggests that non-
coding DNA transcripts have multiple roles across the development of complex organisms
(Carninci et al., 2005). Non-coding regulatory DNA regions are now often found to act as
transcription units, as exemplified by the widespread transcription observed at enhancers
(Andersson et al., 2014; Djebali et al.,2012). Enhancers are genomic elements that function as
distal regulatory sequences, capable of modulating spatio-temporal and quantitative gene
transcription programs in response to environmental (external) or developmental (internal)
stimuli (see paragraph below).

In addition to genome regulatory regions such as enhancers, multiple classes of
non-coding RNAs were discovered. Among the best studied non-coding RNAs (ncRNAs)
are microRNAs (miRNAs), which can mediate post-transcriptional gene silencing by con-
trolling the translation of mRNA into proteins. miRNAs are estimated to regulate the trans-
lation of more than 60% of protein-coding genes (Gebert & MacRae, 2019). miRNAs and
other non-coding RNAs, such as small nucleolar RNAs (snoRNAs), PIWI-interacting RNAs
(piRNAs), and the heterogeneous group of long non-coding RNAs (IncRNAs) have all been
discovered to play a role in a number of medical conditions, including cancer, as well as

neurological, cardiovascular, autoimmune, imprinting and monogenic disorders (Esteller,
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4 Chapter 1. Introduction

2011).

Further, as we will see in section increasing evidence points to the accumu-
lation of loci associated with a variety of medical conditions within non-coding regions of
the genome, and to the fact that common variation in non-coding regions could be at the

heart of complex disorder aetiology (see section and Maurano et al., 2012).

1.1.2 The 3D genome

The linear genome is highly compacted into the small nuclear space of each cell.
To take humans as an example, to store over 2 metres of DNA (Piovesan et al., 2019) in the
space of a cell nucleus, usually measuring a few um in diameter, the DNA has to have a
very organised 3D structure. While initially thought of primarily as a space-saving tech-
nique, over the last twenty years 3D folding has been shown to be functional, with studies
highlighting the significance of spatial gene positioning for essential biological functions
such as transcription, replication, and DNA repair among others (Therizols et al., 2014).

As shown in Figure DNA folding is complex and multi-layered. The simplest
level is that of nucleosomes, where DNA is wrapped around specific protein complexes
called histones (Luger et al., 1997). At the kilobase-to-megabase scale (Figure ), chro-
matin loops form, which allow variable-range functional interactions between elements,
such as enhancer-promoter interactions (Harmston & Lenhard, 2013). A major and relatively
recent breakthrough was the discovery of stable regions characterised by high frequency of
interactions between loci, which have been called Topologically Associated Domains or
TAD:s (see section[I.1.2.T|below, and Figure [1.2b, (Dixon et al.,2012; Nora et al., 2012} Sexton
et al., 2012). At the megabase scale, chromatin compartments are defined, that carry sim-
ilar epigenetic marks and which usually encompass several TADs (Lieberman-Aiden et al.,
2009). The formation of spatially segregated A and B compartments results in the separation
of transcriptionally active chromatin regions (A compartments) from transcriptionally inact-
ive, gene-poor regions (B compartments), see Figure and Rao et al., 2014, At an even

larger scale, chromatin is arranged into discrete chromosome territories, one for each chro-
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Figure 1.2: Hierarchical organisation of chromatin structure.

a) Types of chromatin loops that can reside within a domain (enhancer-promoter loop, Polycomb-
mediated loop, gene loop or architectural loop). On the left is an example of an architectural loop
as seen in high-resolution Hi-C data. b) Left: 8 Mb region containing several TADs as seen in Hi-C
maps (TADs are manually annotated with solid lines). On the right, three different TADs, enriched
for either active marks (H3K4me3 and H3K36me3; grey), Polycomb (H3K27me3; green) or hetero-
chromatin (H3K9me3; orange) are schematically represented in the three-dimensional (3D) space. c)
Chromatin compartments and d) whole chromosome scale, in both cases the Hi-C map is on the left,

with a schematic representation of the 3D structure on the right.

Figure reproduced from Bonev and Cavalli, 2016; Licensed from Springer Nature through RightsLink License

Number 5507640104734.
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mosome. Hi-C experiments (see section [1.1.2.2) have shown that the interaction between
these territories is infrequent (Figure [1.2d). As we will see below, each of these levels of
folding appears today to be highly regulated, with some levels of folding appearing to be

organism- and cell-specific, and others to be more widely conserved (Bonev & Cavalli, 2016).

1.1.2.1 Topologically Associated Domains or TADs

TADs are three-dimensional structures within the genome that consist of regions
of DNA that are spatially close to each other, while being functionally separated from other
regions of DNA (Pope et al., 2014). In the human genome, these regions are hundreds of
kilobases to a few megabases in size, and are defined by a high frequency of chromatin inter-
actions between them. TADs are formed by the looping of the chromatin fibre, which brings
genes and regulatory elements into close proximity, enabling them to interact with each
other, which is a prerequisite for gene regulation. TADs play a role in organising the gen-
ome into distinct functional units and in maintaining proper gene expression patterns dur-
ing development and differentiation — as well as ‘insulating’, or separating, regions within a
TAD from regions inside another one — thus preventing ectopic interactions between genes
and regulatory elements (Beagan & Phillips-Cremins, 2020). Disruptions in TAD boundaries
have been linked to a range of diseases and disorders, including malformation syndromes
and developmental disorders (Flottmann et al., 2015; Giorgio et al., 2015; Lupiéfiez et al.,
2015).

In conclusion, TADs are an important level of chromatin organisation, as they fa-
vour gene regulation by facilitating intra-TAD interactions, for example, between regulatory
elements and genes (e.g., enhancers and promoters), even though these might be separated
by large linear distances, while making inter-TAD interactions less likely; this is reviewed in

Beagan and Phillips-Cremins, 2020.
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1.1.2.2 Detecting chromatin interactions

Experimental assays are available to study how regions of DNA interact at a 3D
level, the evolution and scale of which has allowed the enormous expansion of what we
know today about 3D genome organisation. Initial discovery on this topic was slow and
mostly limited to the chromosome scale, due to the need to directly visualise 3D conform-
ations through the microscope (Stack et al., 1977). Subsequent innovations to the field of
microscopy allowed gradual gains, including for example the advent of live-cell fluores-
cence microscopy, which has given insights into the dynamic properties of chromosome
organisation (Heun et al., 2001).

However, it is the advent of Chromosome Conformation Capture, or 3C tech-
niques, that saw a step change in the scale of discovery (Dekker et al., 2002). 3C techniques
involved cross-linking DNA and its associated proteins with formaldehyde, followed by di-
gestion with a restriction enzyme to create DNA fragments that are then ligated together
under conditions that favour the formation of intra- or inter-chromosomal ligation events.
This produces chimeric DNA fragments that are then detected and quantified using PCR or
sequencing. By analysing the frequency of ligation events between different regions of the
genome, researchers can then infer the spatial proximity of these regions in the nucleus.

3C, however, can only capture interactions between two known loci at a time (De
Wit & De Laat, 2012). More powerful variants of the 3C technique have been developed. One
such technique is called Hi-C. Hi-C can capture genome-wide interactions at scale by produ-
cing high-throughput results, which has allowed to study chromatin compartmentalization,
TADs and chromatin interactions genome-wide (Belton et al., 2012; Lieberman-Aiden et al.,
2009). However, Hi-C is not suited for studying short-range regulatory interactions, which
often occur at shorter distances (Lee et al., 2022). More recently, Hi-C has been refined to
produce higher-resolution results, and a derived technique is called Micro-C (Hsieh et al.,
2015); Micro-C uses Micrococcal nuclease (MNase) for enzymatic digestion, which produces
shorter fragments, and therefore allows up to 1Kb resolutions in 3D chromosome mapping.

See Figure [1.2|for examples of 3D genome interaction maps at different scales, ranging from
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chromatin loops (top panel a) to chromosome scale (bottom panel d).

As we have seen, TADs are important structural features of 3D chromatin folding,
which facilitate genetic interactions within, and hinder interactions outside of TAD bound-
aries. The importance of TADs for this work reside in the fact that TADs tend to overlap
with GRBs, which we will introduce in section and are structures favouring internal

enhancer-promoter interactions, as we will see next in the next section.

1.1.3 Enhancers, promoters and their interactions

We have seen in section that the majority of DNA is non-coding, and that
the assessment of the importance of non-coding regions has gradually increased, as more
and more of their structural and functional features are discovered. In this section, we are
going to explore the important role that non-coding regulatory elements, and particularly
enhancers, play in regulating gene expression, and why this is highly relevant to this work.

Two of the most important classes of gene expression regulatory elements are pro-
moters and enhancers. Promoters span the transcription start site of genes, and are essential
to initiate transcription (Haberle & Lenhard, 2016; Lenhard et al., [2012). Enhancers are cis-
non-coding regulatory elements whose activity increases the expression of a target gene, i.e.,
they are positive regulators of gene expression. Their action can help coordinate changes in
gene expression in space and time. Enhancer location relative to the gene promoter they con-
trol (target gene) varies from adjacent to the promoter, to many kilobases, and even mega-
bases, upstream or downstream (e.g., in cis), and can even be located in the target gene’s
intron, or within other genes’ introns (Schoenfelder & Fraser, 2019). Moreover, besides act-
ing in a position-independent manner, enhancers can regulate transcription irrespective of
their orientation (Banerji et al., (1983 Banerji et al., 1981; de Villiers & Schaffner, 1981; Mor-
eau et al.,1981). Finally, one enhancer can regulate several genes, and at the same time each
gene can be regulated by multiple enhancers (Osterwalder et al., 2018).

After the discovery of a number of enhancers (Banerji et al., 1981 Moreau et al.,

1981), genomes were scanned more systematically for more by looking for elements with
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the following characteristics: functional independence of the target gene promoter, hyper-
sensitivity to DNase treatment (indicative of an accessible chromatin state), the presence of
transcription factor binding sites, and enriched binding of transcription co-activators and
histone acetylation (Bulger & Groudine, 2011). However, genome-wide annotation of en-
hancers based on these characteristics alone led to extremely large estimated number of
enhancers in humans (> 400,000 to ~1 million), exceeding that of coding genes by more

than ten-fold (Rivera & Ren, 2013).

1.1.3.1 Enhancer discovery with Cap Analysis of Gene Expression sequencing

A more recent approach to defining enhancers was linking them to their tran-
scriptional activity. Two early studies showed that many of the sequences with the above-
described epigenetic marks are transcribed into largely non-polyadenylated ncRNAs, which

were named enhancer-derived ncRNAs or eRNAs (De Santa et al., 2010; Kim et al., 2010).

The later adoption of the cap analysis gene expression (CAGE) technique al-
lowed enhancer annotation to proceed at pace. CAGE relies on cap trapping to capture
5’-complete complementary DNA fragments (cDNAs), reverse transcribed from 5-capped
mRNAs (Shiraki et al., 2003). The use of CAGE, paired with high-throughput techniques for
sequencing, allowed to create an atlas of transcribed enhancers across different human and
mouse tissues, and to detect ~40,000-65,000 transcribed enhancers in humans (Andersson et
al., 2014; Djebali et al., 2012). eRNA-producing enhancers were found to show higher bind-
ing of transcriptional co-activators, greater chromatin accessibility, and higher enrichment
of active histone marks such as H3K27ac than those exclusively annotated by epigenomic

marks (Andersson et al., 2014; Kim et al., 2010).

One of the early steps in enhancer activation is the binding of transcription factors
(TFs). Despite some overlap in TF binding between enhancers and promoters, specific non-
overlapping sets of TFs bind enhancers and promoters (The ENCODE Project Consortium,

2012). It is still not completely clear how different sets of TFs regulate enhancers and pro-
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moters, and how exactly the interaction works, however a plausible model is that enhancers
and promoters each independently recruit certain TFs, but require collaboration to achieve
a full amplitude of transcriptional outputs (Hatzis & Talianidis, [2002).

As we have seen in section[1.1.2} genomes can compact and condense into complex
3D structures, which can bring together sections of DNA which would otherwise be distant.
As we will see in the next section, the formation of enhancer-promoter loops has been shown
to favour enhancer-promoter interactions (see section and Schoenfelder and Fraser,
2019).

1.1.3.2 Enhancer-promoter specificity

Enhancer-promoter specificity refers to the capacity of enhancers to activate only
their target genes and not other unrelated genes, which may be situated closer to them in the
linear genomic sequence. While the molecular mechanisms and combinatorial logic respons-
ible for this specificity are not yet well understood, several processes have been identified
that contribute to the establishment of cell-type-specific transcriptional programs. Schoen-
felder and Fraser, 2019 outlined these processes and their relationships in a three-step model,
called the ’selecting-facilitating-specifying” model: the selecting step involves the binding
of various factors that modify the chromatin state at cell-type-specific regulatory elements.
The facilitating step concerns the folding of the chromatin fibre to promote spatial proximity
between regulatory elements. Finally, the least understood step, called the specifying step,
is thought to involve the stabilisation of specific enhancer-promoter interactions by proteins
bound to those elements that preferentially interact with each other (Schoenfelder & Fraser,

2019).

In the next section we are going to see how non-coding elements can be classified
on the basis of their phylogenetic conservation, and how this impacts function at a genomic

level.
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1.2 Extreme non-coding conservation

1.2.1 Genome conservation and conserved non-coding elements

More than thirty years ago, researchers first identified highly conserved sequences
in the non-coding regions of metazoan genomes by comparing the introns and untranslated
regions (UTRs) of mammalian and avian mRNAs. These studies discovered individual ele-
ments, without any apparent function, that had retained over 70% sequence identity for
hundreds of millions of years of evolution (Hraba-Renevey & Kress, 1989; Yaffe et al., 1985).

These initial analyses were followed by genome-wide scans for similarly conserved
regions — which identified hundreds to thousands of highly conserved non-coding elements
that are traceable across more than 400 million years of evolution (Bejerano et al., 2004;
Sandelin et al., 2004; Woolfe et al., 2005). The level of sequence conservation observed in
these elements is often greater than that seen in protein-coding genes. These findings, to-
gether with the fact that these elements tend to cluster around genes encoding regulators of
multi-cellular development and differentiation (Harmston et al., 2013 Sandelin et al., 2004),
provided support to the functional significance of non-coding elements and suggested that
they played crucial roles in the regulation of gene expression and the evolution of meta-
zoan genomes (Bejerano et al., 2004; Engstrom et al., 2007; Kikuta et al., |2007b; Sandelin et
al.,2004; Woolfe et al., 2005). These conserved sequences were collectively named highly con-
served noncoding elements (HCNEs) (Kikuta et al., 2007a)) or Conserved Non-Coding Elements
(CNEs) (Polychronopoulos et al., 2017). Curated databases of CNEs exist for the benefit of
researchers worldwide (Dimitrieva & Bucher, 2013; Engstrom et al.,2008).

The results of multiple studies utilising in vivo transgenic reporter assays across
several animal species have led to the view that CNEs often act as enhancers, or cis-regulatory
elements that help to coordinate the spatial-temporal expression of genes, and particularly
during embryonic development (see for example De La Calle-Mustienes et al., 2005; Pen-

nacchio et al., 2006; Visel et al., 2008; Woolfe et al., 2005). CNEs are thought to be important
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components of the regulatory networks that govern gene expression and play a crucial role
in the formation and maintenance of complex metazoan phenotypes (Sandelin et al., 2004;
Sanges et al., 2013). In line with the view that CNEs are important in regulating animal
development, diseases have been found to result from the mutation of CNE-resident enhan-
cers: the most famous example of this is a mutations in the sonic hedgehog SHH ZRS enhancer,
which results in preaxial polydactyly in both human and mouse (Lettice et al., 2003), even
though many other examples exist (Becker & Rinkwitz, 2012; Miguel-Escalada et al., 2019;
Navratilova & Becker, 2009; Ragvin et al., 2010).

1.2.2 Genomic regulatory blocks

CNEs are not randomly scattered across genomes: they are commonly found in
clusters that span regions of low gene density, including gene deserts. These clusters, typ-
ically up to ~ 2 — 5Mb long in humans, tend to include critical developmental regulatory
target genes, and have been named Genomic Regulatory Blocks or GRBs (Bejerano et al.,
2004; Engstrom et al., 2008; Kikuta et al., 2007b; Sandelin et al.,[2004; Woolfe et al., 2005).

As represented in Figure[I.3 many CNEs within GRBs act as enhancers, promoting
the transcription of a nearby target gene (Polychronopoulos et al.,2017). This can occur over
large genomic distances, either across large gene deserts (Kikuta et al., 2007a; Nobrega et al.,
2003), or in some cases by skipping over more proximal genes in the same locus, named
bystander genes by Kikuta et al., 2007b, which remain unaffected by CNE-based regulation
(Kleinjan & Van Heyningen, 2005; Lettice et al., 2003; Navratilova et al., 2009; Ragvin et al.,
2010; Smemo et al., 2014).

As further shown in Figure GRB boundaries tend to align with those of TADs
in both vertebrates and invertebrates (Harmston et al., 2017). This suggests that GRB-
associated TADs might possess distinct genomic characteristics. According to the GRB
model, target and bystander genes have different expression patterns: most bystanders are
broadly (ubiquitously) expressed, and typically correspond to housekeeping genes, while

target genes tend to be developmentally regulated and more tissue-specific, although of-
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Figure 1.3: The GRB model.

The figure recapitulates the GRB model (bottom): multiple CNEs span a region, thus defining a GRB.
Within this, most of these CNEs will act as enhancers, but the target gene will in most cases be one,
with potentially multiple, unaffected, bystander genes.

The figure also shows that GRBs tend to overlap with TADs, shown as black blocks in the middle,
which are shown to be highly self-interacting regions insulated from contact with other regions in
the schematic Hi-C plot at the top.

The Figure was modified from Nash, 2018|by Georgieva, Reproduced here from with permission from the
copyright holder.
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ten expressed in multiple tissues, exhibiting complex spatiotemporal expression patterns
(Akalin et al., 2009; Navratilova et al., 2009; Pennacchio et al., 2006). These findings sup-
port the notion that GRBs are involved in the precise regulation of gene expression during

development.

1.3 Predicting target genes of long-range enhancers: intro-

duction to the Activation Ratio plus Contact (AR+C) method

As we have seen in section enhancers contribute to normal development
and homeostasis by facilitating the precise regulation of their target genes in space and time.
Dysregulation of this process can lead to disease, as demonstrated by the fact that:

* some conditions can directly stem from enhancer mutation or structural dysregulation
involving disruptions of enhancer-promoter 3D interactions, e.g. brachydactyly in Lupiéfiez
et al., 2015/and activation of oncogenes in Flavahan et al., 2019;

e for complex disorders (see section [.4.1.1), the majority of risk polymorphisms identi-
tied by genome-wide association studies (GWAS, see section fall within non-coding
regions of the genome, and a large proportion of these SNPs are predicted to overlap enhan-
cers (Maurano et al.,2012).

The accurate identification of non-coding elements, including enhancers, and their
associated target gene(s) is therefore crucial for studying the mechanisms underlying human
disease. Although a common method for associating a non-coding element of interest to its
target gene is to assign it to the nearest gene in the linear genomic sequence, this strategy
ignores important aspects of spatial genome organisation and developmental gene regula-
tion. Hence, such an approach may not provide an accurate understanding of the complex
mechanisms that govern gene expression (Chua et al., 2022).

For all these reasons, a genome-wide dataset of regulatory enhancer-promoter (E-
P) associations was generated by Georgieva, 2022, as part of her doctoral work in the Len-

hard Computational Regulatory Genomics lab. This resource has been named the Activation
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Figure 1.4: Overview of the AR+C.

E-P pairs with significant

activation ratio

A): an example showing the expression of 3 enhancers and 1 promoter (rows) across different tissues
(columns) within a given 3Mb region. B): three examples of how the expression of enhancers (E1-3)
are co-expressed with the same promoter. In each sub-panel, the beanplot shows the distribution
of promoter expression values (TPM) in tissues where the enhancer is off (grey), and one for the
enhancer on (red). The effect size measure, or activation ratio, was calculated as the logarithm of the
ratio of median promoter expression in enhancer-on samples over median promoter expression in
enhancer-off samples. C): significant E-P interactions from steps 1 and 2 are checked against Micro-C
interaction data, and only E-Ps with contact frequency scores above a predefined threshold are kept.

Figure reproduced modified, with permission from Georgieva,|2022
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Ratio plus Contact, or AR+C. The AR+C was developed building onto the statistical frame-
work in Baresi¢ et al., 2020, and utilising CAGE data (see section for a description of
the CAGE method), generated by the FANTOMS consortium (Andersson et al., 2014). The
AR+C was built by evaluating the coordinated transcription of enhancers and promoters
within 3 Mb windows, using FANTOMS5 CAGE-defined enhancers and promoters in ap-
proximately 800 human samples. This method used a statistical measure called the activation
ratio or effect size to assess the significance of each enhancer-promoter (E-P) pair. The effect
size measure, or activation ratio, was calculated as the logarithm of the ratio of median pro-
moter expression in enhancer-on samples over median promoter expression in enhancer-off
samples.

The associations were further refined using enhancer-promoter 3D contact fre-
quencies from high-resolution Hi-C datasets (see section[1.1.2.2)for a description of Micro-C)
to generate a high-confidence set of E-P associations, referred to as activation ratio+contact, or
AR+C in short. This method has been shown to identify biologically relevant regulatory as-
sociations, including long-range E-P interactions that are not detected, or are mis-assigned,
by other methods (Georgieva, 2022). The method is summarised in Figure and further
details are offered in section 2.2.1]

1.3.1 Comparison of the AR+C with existing methods

Georgieva, 2022| benchmarked AR+C enhancer-promoter pairs against existing
methods, such as the ABC method (Fulco et al.,2019; Nasser et al., 2021) and the closest gene
association method, using promoter capture Hi-C data (Jung et al., [2019). While the AR+C
performed equally or worse than existing methods for short distance enhancer-promoter
associations, it showed improved accuracy when predicting long-range enhancer-promoter
interactions in comparison to other standard approaches, such as closest gene assignment
or the ABC method, as shown in Figure

Further, the AR+C performs better than any existing methods at differentiating

long-distance enhancer-promoter regulatory interactions in developmental genes, which
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Figure 1.5: Comparison of the performance of the AR+C with other E-P assignment methods.
This used cardiomyocyte-specific PCHi-C loops as a benchmark (200 positive and 6904 negative
loops).

The density plots show the linear distances for significant and non-significant cardiomyocyte-specific
enhancer-promoter (E-P) pairs predicted by a) ABC, and b) AR+C. Grey dotted lines represent the

median E-P distance for significant E-P pairs identified by each method.
(c) Accuracy, F1, precision and recall measures for cardiomyocyte-specific AR, AR+C and ABC pre-

dictions, as well as nearest-gene predictions.
(d) Same as in c), but PCHi-C loops were binned according to the linear distance spanned by each

loop.
Figure reproduced from Georgieva,|2022| with permission.
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are critically important for this work (see section 2.1.T). In fact, the AR+C showed high
performance measures when used to classify known GRB targets, bystanders and non-
GRB control genes, as compared to existing gold-standard classifications (Tan, 2017). Fur-
ther, Georgieva, 2022 proceeded to develop a novel Random Forest-based machine learning
model to uncover hundreds of previously uncharacterised GRB target genes (see section
R.2.1.1). Predicted target genes were shown to be enriched in specific gene ontology terms
involving the synapse. The top biological process gene ontology (GO) terms significantly en-
riched included “pattern specification processes’, ‘axon development’, ‘axonogenesis’, ‘em-
bryonic organ development’, ‘forebrain development’, while the top cellular component
GO terms significantly enriched included ‘transcription regulator complex’, ‘synaptic mem-
brane’, ‘glutamatergic synapse’, and several other components of the synapse. Importantly,
predicted target genes were significantly associated with disease ontologies related to men-
tal health disorders, neurodevelopmental disorders, such as Rett syndrome and intellectual

disability (Georgieva, 2022).

In conclusion, the non-coding genome represents over 98% of the human genome,
and it hosts a wealth of genomic regulatory elements (section[I.1.1). We have then reviewed
the basic principles of 3D genome organisation, and how this helps to regulate gene ex-
pression through several levels of 3D folding (section [I.1.2). TADs delimit regions up to a
few megabases long, within which most regulatory chromatin interactions seem to happen
(section . Promoters and their interactions with enhancers are essential to start gene
transcription, as well as to regulate it in a time- (ontogeny) and space- (cell-type) specific
manner (section [I.1.3). Most enhancer-promoter interactions appear to happen within the
same TAD, linking 3D structure and gene expression regulation. We have also seen that the
genome is interspersed with conserved non-coding elements called CNEs, which are often
sites of enhancer transcription (see section. CNEs tend to cluster, forming GRBs, which
are structures where a target gene is tightly regulated by one or more enhancers, usually
within the same TAD. GRBs are particularly important for the regulation of gene expression

during development (see Figure [1.3|and section [1.2.2). Finally, I have described a resource
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that has allowed to map enhancers to promoters genome-wide, by taking into consideration
enhancer-promoter co-expression as well as the likelihood of 3D genome interactions. This
resource is called AR+C and will be instrumental in annotating enhancers, which will form

the core of this work. The AR+C is summarised in Figure[I.4] and in sections[1.3|and

1.4 Complex disorders and Genome-wide association stud-

ies (GWAS)

1.4.1 Studying complex human disease genetics

Most of the several billion human DNA nucleotides can vary between individu-
als. If a single base varies in a population, it is called a single nucleotide polymorphism
(SNP). Each SNP is annotated based on its position, and on the variation that it encodes.
For example, SNP rs10000 is positioned on chromosome 7, and encodes base 5,973,522 of
that chromosome on the 38.p13 genomic release. This SNP encodes an A > G variant (Na-
tional Centre for Biotechnology Information, 2023). Each person has two homologous copies
of each chromosome, and therefore can have three common combinations of rs10000: ma-
jor/major alleles or 0 (AA in this example, also called phenotype AA), major/alternative
alleles or 1 (AG in this example, also called phenotype Aa), or alternative-alternative al-
leles or 2 (GG in this example, also called phenotype aa); at the same position there might
also be a rare A > T variant (Shastry, 2002). SNPs are not the only possible way DNA can
vary between individuals: DNA can undergo deletions, duplications, as well as copy num-
ber variations, however these other types of variation will not be covered in this work as
outside of our scope.

Each SNP can also be further characterised by other information, such as the minor
allele frequency or MAF, which is the population frequency of the minor, or less common,
allele (G in this case); or by the likely consequence of its mutation if it is a coding SNP, for

example if it is synonymous (likely not to change the sequence of a protein) or non-synonymous
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(likely to be affecting protein sequence, and possibly more damaging). Most SNPs, however,
fall in non-coding regions and are therefore neither synonymous or non-synonymous, just non-

coding SNPs.

1.4.1.1 Complex disorders

Some human traits and disorders are caused by a single, or by very few genetic
mutations, which usually affect coding genes. Examples of these are cystic fibrosis or phenylketon-
uria. These are usually conditions that manifest early in life, and are at the severe end of the
spectrum, as they produce abnormal proteins which directly cause the disease (Strachan &
Read, 2018). The inheritance pattern for these conditions is Mendelian — one or more muta-
tions to one specific gene can cause the disorder.

Most human physiological as well as pathological traits and conditions, however,
are defined as complex in genetic terms. This category includes most psychiatric disorders,
as well as many traits and disorders that are commonly studied, from body mass index,
to blood pressure, to the risk of cardiovascular disease. Complex disorders, as the name
implies, do not have an obvious genetic origin, and often the cause of the condition is not
exclusively genetic. Therefore, the first step when assessing a disorder, is to study its herit-
ability, or, in other terms, how much of the disease is genetically informed (see Polderman
et al.,, 2015 and section [1.5.2). Heritability has been most often assessed through twin stud-
ies, which, by looking at the different prevalence of a condition between concordant and
discordant twins, both fraternal and monozygotic, allow to apportion the amount of vari-
ance explained by genetics (Polderman et al., 2015). By subtraction, if the heritability for a
condition is, for example, 50%, the condition will also show susceptibility to non-genetic,
often called environmental, external factors, which will account for the remaining 50% of the
risk.

Over the years it has become clear that for most complex disorders there are no
‘causative’ genetic variants, but that most common polymorphic SNPs show an association

with the disease that can be expressed by an effect size measure. This association can be
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a positive risk, a negative risk (‘protective’ variant), or neutral (non-associated variant)
(Jostins & Barrett, 2011). Crucially, for most conditions there might not be any ‘necessary’
variants, with the risk (often called susceptibility) for a condition varying in a continuous

fashion across the population.

1.4.1.2 Candidate genes and Linkage analyses

After studying a condition’s inheritance pattern through twin- and pedigree-based
studies, researchers started to investigate techniques to discover the individual molecular
bases of human disorders and traits. The first approach to studying disease genetics was
taken straight from Mendelian genetics: the so-called candidate gene approach. In this
approach, one has to generate prior hypotheses about which genes might associate with a
phenotype (e.g., if one knows of a gene that controls weight, they might hypothesise that
the same gene might play a role in obesity). One then can test if SNPs in or around these
candidate genes are associated with the condition (Tabor et al., [2002). This approach, how-
ever, is slow and expensive, and requires prior knowledge about the condition’s genetics,
something that often is not available.

A further approach to studying the association between disorders and genes was
that of linkage analyses. Genetic linkage analysis consisted of studying the segregation of
a trait of interest, such as a disorder, across members of several families — for each family,
therefore, one needed multiple related family members available, both affected and unaf-
fected. By genotyping genetic markers and studying their segregation through pedigrees, it
was possible to infer their position relative to each other on the genome. This analysis al-
lowed to find the genetic basis of many Mendelian disorders (Dawn Teare & Barrett, 2005).

However, most human traits and disorders are complex, and the initial approaches
I have described are not well suited to studying complex disease genetics, due to their
small scale, and the large number of putative variants involved in complex disorders. A
large body of work has consequently gone into developing higher-throughput methods.

These, together with a more thorough understanding of linkage disequilibrium, have en-



22 Chapter 1. Introduction

abled large-scale discovery. I will be introducing the next generation of studies, called
genome-wide association studies, in the next paragraph, and the concept of linkage dis-

equilibrium in section[I.4.3]

1.4.2 Genome-wide association studies (GWAS)

A genome-wide association study (GWAS) is an observational genetic study that
aims to identify SNPs — or potentially other genetic variants not covered here — that are as-
sociated with a particular trait (which can be continuous, such as blood pressure) or disease
(such as schizophrenia). For the purpose of this work I will focus on disease, or case-control,
GWASes. Case-control GWASes typically involve comparing the genomes of individuals
with a particular phenotype to those without the phenotype, looking for genetic variants
that are more common in one group than the other. In a GWAS, researchers typically ana-
lyse hundreds of thousands or even millions of SNPs across the entire genome of individuals
in both groups.

In GWAS various statistical techniques are employed to analyse the data (Balding,
2006). However, a common challenge is the uncertainty regarding the mode of inheritance
(e.g., dominant, recessive, additive). Some methods are referred to as genetic model-free
because they do not require pre-specification of a genetic model of inheritance. In contrast,

other methods make such assumptions a priori.

1.4.2.1 GWAS penetrance functions and models of inheritance

Penetrance — in genetic terms — represents the proportion of carriers of a certain
genotype (e.g., a specific allele of a SNP) showing a characteristic phenotype. Given the
three potential configurations at a specific locus (j = 0,1, 2), according to Gong et al., 2010
the probabilities of being affected by disease D depending on genotype g;, which represent

the disease penetrance for the same genotype, can be expressed as:

fi = P(Dl|g;) (1.1)
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For Mendelian disorders, f, = 0, or the risk of disease with no risk genotypes is
zero. This of course is not the case for complex disorders, where the risk, as discussed, lies on
a continuum, and therefore f, > 0. In the case of complex disorders, the risk of genotypes 1
and 2 can be expressed as the relative risk of disease D for an individual with g, or g, over
that of an individual with g,. In Bagos, 2013 these are defined as:

= and = B2 (1.2)

~ fo Jo
With these definitions in mind, one can then consider how to best model the risk
of a genetic variant for a given condition. Table|1.1|shows an example of how to tabulate the
distribution of cases and controls for an example disease D in a traditional GWAS at a single

biallelic locus:

90 | 91 | g2 | total
cases To 1 ) r

controls | sg | s1 | s9 S
total ng | Ny | no n

Table 1.1: Distribution of cases and controls in a traditional GWAS at a single biallelc locus.

In the scenario of a case-control study, and in a genetic-model free framework, one
can examine the association between the rows and columns of the 2x3 contingency table
using the traditional Pearson’s x3 statistic which is distributed following a chi-square
distribution with 2 degrees of freedom (Balding, 2006; Langefeld & Fingerlin, 2007). One
can then compute the odds-ratios using the summary counts of the contingency table (Chen
& Chatterjee, 2007)).

Another model-free option is to calculate the two odds-ratios that correspond to
the comparison of the genotypes carrying the risk allele (i.e., g; and g,) against go. Such
tests can be performed in a logistic regression framework using case/control status as the
dependent variable; for a person carrying the g; genotype (with j = 1,2), we consider g, as
the reference category and create two indicator variables taking values x; = 1 for g; and 0

otherwise (Balding, 2006):
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logit(P(Dlg;)) = oo+ Bra1 + Paxa (1.3)

In the same way as one can calculate SNP-disease associations in a model-free
framework, it is possible to calculate the same measures following specific inheritance mod-
els (Bagos, 2013). Fitting a logistic model similar to equation but using the coding of

z; = (0,0.5,1) for the genotypes, equates to using an additive model of inheritance:

logit(P(D|g:)) = o + Biz; (1.4)

However, coding of z; = (0,1, 1), results in a test under the dominant model, whereas a
coding of z; = (0,0, 1) corresponds to testing the recessive model of inheritance (Zheng et
al., 2003). For each SNP, then, a regression model is fitted, and a 3 coefficient (coefficient of
model fit), as well as an odds ratio (OR, calculated as the exponential of the g coefficient)
and a p-value of association are generated. These coefficients represent measures of associ-
ation between each SNP and the phenotype of interest (Bagos, 2013). It is apparent that this
method involves thousands, sometimes even million of statistical tests (one per SNP tested).
This has to be taken into account when considering the resulting p-values. These can either
be multiplied by the number of tests (Bonferroni correction), or can be considered significant

below a conventional threshold (often 5 x 10~%) (Jannot et al., 2015).

Despite most variants detected in GWASes being non-coding, the research focus
has been mostly on non-synonymous genetic variants, such as SNPs that result in amino
acid changes in proteins, or regulatory variants that affect gene expression or protein func-
tion (van de Bunt et al., 2015), as these are usually the ones showing higher effect sizes of
association with the condition, and the easiest to link to a gene, and therefore to interpret
mechanistically. In this work I want to focus instead on non-coding variants, and particu-
larly on those falling inside enhancers. For this reason, I will explore non-canonical inherit-

ance models for GWAS, such as the dominant and recessive models, which might be more
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relevant to rarer variants with potentially larger effect sizes. In the next section I will intro-
duce the concept of linkage disequilibrium, which is crucial to both GWAS, and to polygenic

risk scoring (which is a common application of GWASes, as I will discuss in section[I.5).

1.4.3 Linkage disequilibrium

When talking about association studies, a key concept is that of linkage disequi-
librium, or LD. Linkage disequilibrium refers to the degree of (non-random) association
between alleles at different loci (positions on a chromosome), within a population. In other
words, LD measures the tendency for certain alleles at different loci to occur together (within
a population) more frequently than expected by chance. Stretches of DNA in high LD, which
are therefore likely to be inherited together, form haplotypes, which typically descend from
proximity on a single, ancestral chromosome (Reich et al., 2001). Several factors, usually
relating to a population’s history, can increase average LD across loci: a small original pop-
ulation’s size (founder or bottleneck effects), genetic drift (or stochastic variation), and pop-
ulation admixture (e.g., the mixing of individuals from sub populations that have different
allele frequencies); on the other hand, LD blocks can be broken down by recombination,
which breaks down ancestral haplotypes. For this reason, LD decreases in proportion to the
number of generations since the LD-generating event (Slatkin, 2008). LD is measured using

measures derived from equation:

Dap = pap — pa X pB (1.5)

which is the difference between the frequency of haplotypes carrying the pair of alleles A
and B at two loci (p4) and the product of the frequencies of those alleles (p4 and pp) (Slatkin,
2008). The D measure has some unfavourable mathematical properties, such as including
negative numbers, and not having a fixed range. Therefore, D" was introduced, which rep-

resents the ratio of D to its maximum possible absolute value, given the allele frequencies
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Figure 1.6: A block of LD on human chromosome 9p21.3.

A typical representation of LD between SNPs, as generated by the software Haploview.

The top represents a schematic section of a chromosome, with each 7s... indicating a SNP.

In the heat-map at the bottom, each square represents the LD between two SNPs. Red squares indic-
ate high LD (value close to 100, usually over 80). Blue squares indicate no linkage between SNPs.
Taken from Kalpana et al., copyright CC BY-NC-N.

(Lewontin, [1964). Another commonly used measure, derived from D, is r2:

D2
r2— 1.6
pa X (1 —pa) X pp x (1 —ps) (16)

which ranges between 1 (full LD) and 0 (no LD) between loci (Slatkin, 2008). LD can be rep-

resented as in Figure and is a key concept in disease-genetic marker association studies.

1.4.3.1 LD and genotypes: tagging SNPs and clumping

The majority of studies investigating human disease to date have been conducted
using genotyping. Genotyping is a technique where researchers only type, or read, a finite
number of SNPs from each study participant, instead of reading all SNPs (for example by
whole genome sequencing). This is because, until very recently, sequencing a whole genome
was extremely expensive, and therefore genotyping emerged as a technique to quickly and

relatively inexpensively interrogate genetic variation genome-wide in a large number of
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individuals (Syvénen, 2001).

Large-scale consortia such as the HapMap have mapped LD across human pop-
ulations, producing public databases of human variation in relation to LD (McVean et al.,
2005). This in-depth knowledge of LD has been exploited to make genotyping much more
useful. In fact, randomly selecting a few thousand SNPs out of a whole genome would give
very little information on the overall genetic picture of each study participant. However, the
use of tagging SNPs has made the approach much more powerful. In a nutshell, a tagging
SNP is a genetic variant that is used to represent a set of other genetic variants which are in
high LD with it in a particular region of the genome. Therefore, tagging SNPs can capture
the genetic variance of a whole region of interest. By genotyping a set of tagging SNPs, re-
searchers can indirectly infer the genotypes of other variants in the same region that are not

directly genotyped, a procedure called genetic imputation (Claussnitzer et al., [2020).

As we have seen, the human genome is comprised of haplotype blocks within
which most SNPs are in high mutual LD, including polymorphic SNPs that are believed to
be the basis of complex disease inheritance (see section [I.4.1.1). Another concept similar to
tagging, and used to manage SNPs in LD with each other, is that of clumping. Clumping is
performed after a GWAS, when the variants tested include SNPs that might be in LD with
each other, which is the case with modern genotyping chips, as well as when working with
imputed or sequenced data. Clumping involves grouping variants that are in LD with each
other into ‘clumps’, and then selecting a representative variant from each clump for further
analysis. A single representative variant is selected from each clump based on a pre-defined
set of criteria — usually, the variant with the lowest GWAS p-value is selected (Marees et al.,
2018). Clumping is used to calculate polygenic risk scores (see section [1.5and Privé et al.,
2019) in order to select LD-independent variants.

One of the downsides to using tagging SNPs and clumping to deal with LD, and to
consequently reducing the number of loci considered, is that the results of a GWAS cannot
be interpreted causally (Claussnitzer et al., 2020). A tagging SNP that is significantly associ-

ated with a condition of interest could in fact be the causal variant itself, however it could be
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tagging a variable number of variants in LD with it. For this reason, in the past GWAS stud-
ies were often followed by so-called fine mapping studies, where the most significant regions
of interest would either be sequenced in cases and controls, or else other in silico analyses
could be performed to infer a putative causal variant. In silico analyses would exploit fur-
ther information (annotations) on the region — which could entail for example regional DNA
expression, classification, or other functional genetic information (Claussnitzer et al., 2020).

In this work, we want to use functional and tissue-specific annotations relating to
enhancer-promoter interactions to further our knowledge of two complex disorders, schizo-

phrenia and HCM.

1.5 Polygenic risk scores and heritability of human disease

1.5.1 Introduction to polygenic risk scores, or PRS

Polygenic-risk scores (PRSs) are an approach that allows to move from population-
level analysis to infer an individual’s liability to a specific condition. This is invaluable in
terms of potential clinical applications. As described in section GWASes measure the
association of each SNP with a phenotype, producing a large list of effect size measures —
typically, either a 3 coefficient or an odds ratio (OR) — for each SNP tested in the development
sample. A polygenic risk score, or PRS, is a single value estimate of an individual’s com-
mon genetic liability to a phenotype, calculated as the sum of their genome-wide genotypes,
weighted by corresponding genotype effect size estimates derived from summary statistic
GWAS data, as shown in equation [I1.7]below (Dudbridge, 2013; Euesden et al., 2015). Usu-
ally, the largest available GWAS (the one with the biggest sample size) on the phenotype is
used to calculate a PRS (Choi et al., 2020). There are more than one methods to calculate
PRSs, however I will focus on the most widely used method, called the classic PRS method,
or the clumping and thresholding (C+T) method, as this has been by a large margin the most
widely used (Dudbridge, [2013).

PRS calculation involves a base GWAS, and a target population on which to cal-
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culate the individual scores. There are a number of steps that are performed as part of PRS
scoring, and which precede the adding up of the effect sizes. These steps are aimed at ad-
dressing intrinsic GWAS limitations owing to the fact that every GWAS is performed on a
specific population (or more than one), and can therefore produce SNP effect size estimates
that may not generalise well to other populations due to ‘winner’s curse” (where effects are
overestimated in the initial discovery sample, leading to a subsequent decrease in effect size
estimates in independent replication samples) and stochastic variation. LD among SNPs
further complicates the aggregation of SNP effects across the genome (Choi et al., 2020).

Therefore, key steps for calculating a PRS include:

¢ Adjusting (or shrinking) GWAS effect sizes for winner’s curse;
¢ Tailoring the scores to the target populations;

¢ Dealing with LD.

I will be discussing each of these issues in the sections below.

1.5.1.1 Adjustment (shrinkage) of effect sizes

PRSs can generate poorly estimated results with high standard errors due to uncer-
tainty in SNP effects and the fact that not all SNPs affect the trait being studied. To address
this, two shrinkage strategies have been adopted: (A) shrinkage of effect estimates of all
SNPs via statistical techniques such as LASSO, or Bayesian approaches such as in LDPred
(Privé et al., [2020), and (B) the use of p-value selection thresholds as inclusion criteria for
SNPs in the score, such as in the classic C+T method adopted in PRSice and used in this
work (Euesden et al., [2015). The optimal shrinkage method is dependent on the mixture of
null and true effect size distributions. The p-value selection threshold approach excludes
SNPs with a GWAS association p-value above a certain threshold and includes only those
below, effectively shrinking excluded SNPs to an effect size estimate of zero. Both methods
involve tuning parameter optimization, and the optimal p-value threshold selected is within

the context of forward selection ordered by GWAS p-value (Choi et al., 2020).
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1.5.1.2 Controlling for linkage disequilibrium and dealing with target populations

GWAS association tests are typically performed per-SNP, which makes identify-
ing the independent genetic effects very challenging due to strong correlations across the
genome. To account for LD between SNPs, in the classical C+T method adopted in PRSice,
the subset of SNPs with p-values lower than a specified GWAS threshold need to undergo
clumping, a procedure which keeps only the top SNP per LD block (Choi & O’Reilly, 2019;
Euesden et al.,2015). Clumping prioritises associated SNPs and retains multiple SNPs in the
same genomic region if there are multiple independent effects there (for a more extensive
discussion of clumping, see section[I.4.3). LD modelling requires estimation of LD between
SNPs, and if the LD values derived from the base data are unavailable, then those from a
closely matched reference sample, such as data from the 1000 Genome Project (Siva, 2008)
are used to approximate these. However, if the base and target samples are drawn from
different populations, then the PRS results may differ from those that would have been ob-

tained had LD been computed in the base data itself.

1.5.1.3 PRS calculation

In summary, calculation of a PRS involves:

* Base and target QC, including excluding low quality imputed SNPs, rare variants (with
MAF < 1%), removing individuals with high heterogeneity or missingness rates, and
mismatching SNPs (those with different alternative alleles between the base and target
datasets).

¢ Performing clumping, e.g. dealing with LD by selecting only the most significant vari-
ant from each LD block.

¢ Calculating the PRS. Using a target population of n individuals, to calculate the poly-
genic risk score (PRS) one has to add up the 3 for each SNP i out of a list of m SNPs,
where G, ; = (0,1,2) is the genotype at SNP i for individual j. At threshold Py, the
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PRS for individual j can be calculated as:

PRSp,; =Y _ BiGi, (1.7)
=1

* Performing thresholding, e.g. calculating the PRS at several p-value thresholds (e.g.,
all SNPs > 0.01, > 0.05, > 0.5, etc.
* Selecting the ‘best-fit’ threshold for the target population (if not using a pre-defined

threshold — for example if comparing results with other PRSs at the same threshold).

For a detailed discussion of these methods, please see Methods section3.3]

The PRS approach has been used to stratify people in the general population at
increased risk of specific conditions, such as coronary artery disease, atrial fibrillation, type
2 diabetes, inflammatory bowel disease, and breast cancer (Khera et al.,[2018). However, to
date, no PRS has resulted in clinical usefulness in the field of psychiatry, despite the large
GWAS sample sizes for conditions such as schizophrenia. This is due in large part to the very
high polygenicity of this condition, as well as a degree of phenotype heterogeneity, which
have resulted in a proportion of variance explained by the genetic factor for schizophrenia
below 10% on the liability scale, out of an estimated heritability of around 80% (see Sullivan
et al., 2003} Trubetskoy et al.,|2022 and a further discussion of the issue in section . For
this reason, in this work I have sought to increase the proportion of variance explained by
the genetic factor for schizophrenia by taking into account non-coding genome annotations,

and particularly long-range enhancer-promoter annotations, introduced in section[I.1.3]

1.5.2 Heritability and the missing heritability problem

There has been substantial debate around the proportion of genetic and environ-
mental contribution to most human traits, from the simplest, such as eye colour, to the most
complex phenotypes, among which most psychiatric conditions reside. A classic twin design
study has been widely employed to unravel the extent to which genes and environment

shape various human traits. By comparing the trait resemblance of monozygotic and dizy-
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gotic twin pairs, we can gain insights into the relative contributions of these factors. While
genetically speaking monozygotic twins are identical, dizygotic twins are full siblings (Pol-
derman et al., 2015).

Many complex disorders (i.e., non-mono/oligogenic, and where multiple genetic
variants interact with predisposing/precipitating environmental factors, see section
show high degrees of heritability (h?), as calculated from twin studies (Polderman et al.,
2015). However, the amount of genetic liability that can be attributed to the same conditions
using common single nucleotide polymorphisms or SNPs from GWAS (1%, ) is consistently
much smaller; this has been called the ‘missing heritability” problem (Maher, 2008). Figure
shows the degree of heritability (h?), as compared to h%y p, for a number of mental health
conditions. One can easily notice that there is a big mismatch between the two measures.

Schizophrenia h* has been variably estimated to amount to 64% (Lichtenstein et
al., 2009), 79% (Hilker et al., 2018), and up to 81% (Sullivan et al., 2003). However, schizo-
phrenia’s h%y» — that is, the proportion of variance in liability attributable to all measured
SNPs, as calculated using SBayesS (Zeng et al., 2021) — is of just 24%, and it goes down to
just 7.3% if using the polygenic risk score of SNPs with GWAS p<0.05 across ancestries, in
the most recent, very large GWAS from the Psychiatric Genomic Consortium (PGC) (Trubet-
skoy et al., 2022). Similarly, HCM shows very high heritability; this condition used to be
considered exclusively Mendelian, even if it is now recognised as a complex disorder, with
rare pathogenic variants in cardiac sarcomere genes identified in ~35% of cases (see Tadros
et al., 2023/ and section [1.6.2). However, common SNP-based heritability (h%, ) for HCM
has been estimated as 18.1-28.8% in meta-analysis (Tadros et al., |2021), and considerably
less when considering only SNPs below a certain p-value threshold (as per our estimates in
this work, see chapter 3.4).

This work aims therefore to narrow the gap between h%,, and h? for schizo-
phrenia, by taking into account functional gene regulation, as discussed further in chapter
HCM, with a potentially very different genetic structure (as we will see in section

1.6.2), will act as a sensitivity analysis, as we hypothesise that there is a difference in the
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Figure 1.7: Heritability vs explained liability in select psychiatric conditions.

Genetic heritability for select mental disorders (dark blue), vs liability explained by common GWAS-
derived variants (light blue).

Figure reproduced modified, with permission from Abdel Abdellaoui (who is also the copyright holder), from
Abdellaoui and Verweij,
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relevance of non-coding functional genome regulation between schizophrenia and HCM.
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1.6 Introduction to model conditions: schizophrenia and hy-

pertrophic cardiomyopathy

1.6.1 Introduction to schizophrenia

Schizophrenia is a severe mental illness affecting about 0.7-1% of the world popu-
lation across their lifetimes (Saha et al., 2005). Schizophrenia has multiple clinical features,
including behavioural, social, and biological manifestations, which fluctuate in one patient’s
lifetime, as summarised by McCutcheon et al.,2020/in Figure[1.8] The manifestations include
positive symptoms, such as hallucinations — seeing, hearing or sensing things that are not
really there — and delusions, or disordered thought — sometimes manifested for example as
feeling that one is being persecuted without any objective evidence of that. Schizophrenia
also has negative symptoms, which are less evident but can be even more damaging to a
patient’s life, which can include social isolation, emotional blunting, and reduced activity
levels.

Schizophrenia is a significant burden to society, and incurs annual costs exceeding
$150 billion in the United States (Cloutier et al.,[2016)), or £6.7 billion in England alone (Man-
galore & Knapp, 2007). This is mainly due to the disorder typically manifesting in early
adulthood, resulting in long-term impairments in social and occupational functioning. A
diagnosis of schizophrenia also reduces life expectancy by up to 15 years — patients addi-
tionally have a lifetime risk of suicide-related death ranging from 5 to 10% (Hjorthgj et al.,
2017).

Alongside the clinical picture, Figure|1.8|also describes some of the molecular fea-
tures of schizophrenia. The condition is thought to be the result of the interaction of three
factors: genetic liability, neurobiological factors, and external stressors. These have in turn
been thought to be mediated by multiple inflammatory and cardio-metabolic changes —
something that I have been investigating alongside others — in Osimo et al., 2018; Osimo

et al., 2020a; Osimo et al., 2021a; Osimo et al., 2020b; Osimo et al.,2021b; Osimo et al., 2021¢;
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Figure 1.8: The Clinical Course of Schizophrenia.

People with schizophrenia usually show a fluctuating clinical picture, including relapses.

Figure reproduced with permission from: McCutcheon et al., Licensed from American Medical Associ-
ation through RightsLink License Number 5507650799502.
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Perry et al.,2021b; Perry et al., 2022; Pillinger et al., 2019bj Pillinger et al., 2019c.

In a genetically susceptible individual, the addition of one or more external risk
factors, such as life adversity, infection, drug abuse as well as many others (reviewed in
Radua et al., 2018) increases the risk of developmental abnormalities in the brain. Because
of the spread of the timing of the risk factors for schizophrenia, which starts before birth and
only ends when the condition manifests (Radua et al., 2018), as well as because of multiple
tindings from the field of neuropathology (Weinberger, 2017) as well as genetics (Trubetskoy
et al., 2022), schizophrenia is often defined as a neurodevelopmental disorder — or a condi-
tion that manifests as the culmination of years of sub-clinical changes in the development
of the brain (Osimo et al., 2019), immune system (Osimo et al., 2021b), and/or potentially
other systems and organs (Pillinger et al., 2019a).

How to link genetic susceptibility and environmental factors to the complex mani-
festations of schizophrenia? At the level of neural transmission, most of the research has
focussed on dopaminergic transmission, generating the dopamine hypothesis of schizo-
phrenia. In brief, this states that multiple ‘hits” interact to result in dopamine dysregula-
tion, the final common pathway to schizophrenia. As shown in Figure the endogenous
and exogenous insults are thought to cause an increase in pre-synaptic dopamine function,
which then cause the clinical phenotype of psychosis (Howes & Kapur, 2009). More re-
cently, a ‘synaptic model” of schizophrenia has been developed (Howes & Onwordi, 2023),
suggesting that genetic and/or environmental risk factors render synapses vulnerable to ex-
cessive glia-mediated elimination triggered by stress during later neurodevelopment. The
loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative
and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to
dopamine overactivity and psychosis. This model takes into account previous evidence on
synaptic loss in schizophrenia (Onwordi et al., 2020; Osimo et al., 2019).

Consistent with the dopamine hypothesis of schizophrenia, most, if not all, current
treatments for schizophrenia — called antipsychotic medications — rely on a single common

biological pathway: dopamine receptor blockade in the brain (McCutcheon et al., 2019).
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Figure 1.9: The Dopamine Hypothesis of Schizophrenia.

The final common pathway of schizophrenia. Predisposing and precipitating factors for schizo-
phrenia converge on the presynaptic dopamine neuron, causing excessive dopamine release, which
can cause psychosis, one of the core symptoms of schizophrenia.

Figure reproduced with permission from: Howes and Kapur, Licensed from Oxford University Press
through RightsLink License Number 5510681501543.

These treatments are on average quite effective at treating positive and negative symp-
toms of schizophrenia (Lieberman et al., 2005), however they carry a high side-effect profile,
which in turn contributes to high discontinuation rates. Newer, more tolerable treatments

are urgently needed.

1.6.1.1 Schizophrenia genetics

In genetic terms, schizophrenia is highly heritable. Heritability estimates are of
around 80% (see Sullivan et al., as well as section [1.5.2). However, as we have seen,
only a small proportion of this heritability is explained by existing genetic studies of the
condition. One of the reasons might be that schizophrenia’s genetic burden is split between a
large number of common variants with small individual relative risk, copy number variants,
and rare coding variants (Coelewij & Curtis, .

Schizophrenia genetics have been described as very highly polygenic, meaning
that its inheritance relies primarily on a large number of common variants with small indi-

vidual relative risk. As we have seen, genetic risk from common variants (usually defined
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as SNPs with MAF > 1%) can be studied through GWAS. This has required very large
samples of cases and controls to power genetic association studies, which have been ob-
tained through the formation of international consortia such as the Psychiatric Genetic Con-
sortium. The latest in terms of PGC GWASes for schizophrenia was published in 2022, and
it was a two-stage GWAS of up to 76,755 individuals with schizophrenia and 243,649 control
individuals, reporting common variant associations at 287 distinct genomic loci of individu-
ally small effect (median odds ratio (OR) < 1.05) (Trubetskoy et al., 2022). Schizophrenia
GWASes have not usually pointed to individual risk genes (with the exception of C4, which
I will describe below), however the predicted genes affected by common variants have been
studied through Gene Ontology. These pointed towards genes that are expressed in excit-
atory and inhibitory neurons of the central nervous system, but not in other tissues or cell
types, as well as processes related to neuronal function, including synaptic organisation,
differentiation and transmission, as is the case of the latest PGC GWAS (Trubetskoy et al.,
2022).

Several rare (MAF < 0.1%), recurrent copy number variants (CNVs) have also
been robustly associated with schizophrenia, as exemplified by substantially higher rates
of schizophrenia in carriers of 22q11.2 deletions (Karayiorgou et al., 1995; Marshall et al.,
2017). A recent study has performed exome sequencing of a large number of patients and
healthy controls (24,248 schizophrenia cases and 97,322 controls), suggesting that ultra-rare
coding variants in a few dozens of genes might be conferring substantial risk for schizo-
phrenia, with odds ratios between 3-50. Although these variants have large effects on risk
in the individual, they make only a small contribution to overall heritability in the popula-
tion owing to their rarity. The mutated genes had the greatest expression in central nervous
system neurons and had diverse molecular functions, especially with regard to synaptic
function (Singh et al., 2022).

Further, a small number of individual genes have been found to be implicated
in schizophrenia: the first one to be discovered was DISC1. However, it has since proved

difficult to elucidate the mechanism of this effect or to conclusively link other variants in
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this gene to increased risk (Millar et al., 2000; Wang et al., 2018b). Several other individual
genes were subsequently found to be associated with the condition, however for none there
seemed to be any strong evidence for their necessity, or for their use to elucidate neural
pathways to schizophrenia (Coelewij & Curtis, 2018).

A separate case is that of the C4 locus. A significant schizophrenia GWAS hit was
repeatedly found in the major histocompatibility locus (MHC), but often excluded from ana-
lysis because of the complex structure of MHC (Harrison, 2015). However, Sekar et al., 2016
set out to identify the specific gene or genes responsible for this association. This had proved
difficult due to the complex and long-range linkage disequilibrium relationships observed
in this region. Using droplet digital PCR, the group characterised complex variation in the
C4 gene, which codes for complement component 4. They found that three types of variation
commonly exist: the total number of copies can vary between 0 and 5; each copy can be long
or short depending on whether it contains a HERV insertion; and each copy may be either of
two paralogous genes denoted C4A and C4B. Four structural forms of C4A/C4B are com-
monly observed and each was shown to be associated with differing levels of expression.
Using SNPs from the GWAS, it was possible to reliably impute these structural forms and
show that predicted C4A expression from imputed C4 variants was associated with schizo-
phrenia risk. The authors also demonstrated that C4A is present on neurons and synapses
and postulated that increased expression could lead to increased synaptic pruning, which
would produce the smaller number of synapses observed in patients with schizophrenia
(Osimo et al., 2019). The study even demonstrated that mice lacking the C4 gene exhibited
changes consistent with reduced synaptic pruning. While the effect on schizophrenia risk of
C4 variants (in humans) is moderate, with an odds ratio of 1.3 between the highest and low-
est risk structural forms, this paper is significant in that it links genetic variants to functional
changes with a biologically meaningful impact (Sekar et al.,[2016).

In conclusion, despite the large samples and huge efforts, involving GWAS of com-
mon variation, exome sequencing, candidate gene analyses, and studying at-risk popula-

tions such as subjects with 22q deletions, only a small portion of the disease variance is
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explained by current genetic analyses (see section[1.5.2). In this work I aim to increase the
proportion of schizophrenia heritability explained by the genetic factor by using enhancer

annotations. I will set out specific hypotheses in section[I.7]

1.6.2 Introduction to HCM and its genetics

Hypertrophic cardiomyopathy is a complex cardiovascular disorder affecting about
one in 500 of the general population (Tadros et al., 2021). Its relatively high mortality makes
it the leading cause of sudden death in young people (Maron & Maron, 2013). As shown
in Figure HCM causes cardiac hypertrophy, an unhealthy increase in cardiac mass,
which can cause a number of serious clinical consequences, including electrical abnormalit-
ies and consequent arrhythmias, which can lead to sudden death. The treatment of choice
for severe cases is the implantation of a cardiac defibrillator, even if less severe cases can be
treated pharmacologically, e.g. with -blockers (Hamada et al.,2014).

In genetic terms, until a few years ago HCM was believed to be a Mendelian or oli-
gogenic condition affecting the sarcomere — the contractile unit of the heart muscle cell (Ma-
ron & Maron, |2013) — but it has now been recognised as a complex disorder, with rare patho-
genic variants in cardiac sarcomere genes identified in ~35% of cases, and the remainder
resulting from the interaction of several thousand SNPs genome-wide (Mazzarotto et al.,
2020; Tadros et al., 2021} Tadros et al., 2023} Walsh et al., 2017).

HCM appeared a good candidate as a second model condition for this work because of the

following reasons:

¢ The pathophysiology of HCM is likely to be highly tissue-specific, with most indi-
vidual high-risk mutations found to date affecting the sarcomere, the contractile unit

within the heart cell (Mazzarotto et al., 2020).
¢ The condition affects the heart, a tissue that is different and separate from the brain.

* As we will see in paragraph developmental disorders appear to be affected by

long-range gene regulation typical of genomic regulatory blocks, while conditions af-
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Figure 1.10: The normal vs hypertrophic heart.

A schematic representing a normal heart (A), vs the schematic of the heart of a patient with HCM (B).
Note the absolute increase in left-ventricular wall thickness, particularly noticeable at the septum.
Modified from WikiMedia Commons, copyright CC BY-SA 4.0.
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1.7

fecting terminally differentiated tissues might be less likely to (Polychronopoulos et al.,
2017). It is not known if the genetic susceptibility to HCM affects tissues across devel-
opment, or if the polymorphisms are active mostly at the adult tissue level. Therefore,
studying the effect of long-range regulation on HCM might act as a test of HCM’s

developmental credentials.

Due to the availability of a yet unpublished genome-wide association study, the largest
to date (Tadros et al., 2023) — and to the collaboration of members of the James Ware

lab at the local LMS Institute.

Hypotheses and objectives

In this work I have set out to address the ‘missing heritability” problem in schizo-

phrenia, by exploring several avenues that could lead to increasing the variance explained

by the genetic factor. I decided to use schizophrenia as my main model condition for several

reasons, which I have discussed more extensively in section[I.6.1}

Schizophrenia affects 1% of the world population, causing immense suffering, as well

as a substantial burden and cost to society.
There have been limited therapeutic breakthroughs, and the unmet need is great.

Schizophrenia has a high genetic burden, which has been only partially explored to
date. Genetic findings might both illuminate the pathophysiology of the condition, as

well as lead to new therapeutic avenues.

Schizophrenia is a neurodevelopmental condition. As we will see in paragraph
developmental disorders are expected to be affected by long-range gene regulation,

and are therefore natural candidates for this work.

As we have seen, the genetic susceptibility and environmental risk factors for schizo-

phrenia are likely to converge on the neuron, potentially causing changes in struc-
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ture (e.g., axon development), connectivity (e.g., pruning), or both, as the final com-
mon pathways. This allows to speculate that neural-tissue-specific genetic regulatory

factors might play a role.

* Schizophrenia genetic risk from GWAS is particularly enriched in non-coding areas,
some of which have no known functional significance. From the non-coding genome
perspective, schizophrenia has been found to be enriched in promoter and enhancer
variants associated with expression quantitative trait loci (eQTL) in the human brain

(Roussos et al., 2014).

* GRBs have been shown to delimit the long-range regulatory landscapes of a number
of developmental (or neuro-developmental) genes (Akalin et al., 2009). Schizophrenia
genetic risk variants have been previously shown to preferentially fall within regions
containing extremely conserved genetic elements and GRBs (see section[I.2.2]for a de-
scription of GRBs, and section[2.1.1]for an analysis of what they might mean for schizo-
phrenia).

I have also selected a second model condition to compare to schizophrenia: hypertrophic
cardiomyopathy, or HCM. HCM was selected as a comparison because of the very different
genetic architecture (HCM has several high-risk variants, as well as many common ones,
and it is thus less polygenic); because of its likely more pronounced tissue-specific aetiology
(most high-risk variants affect the sarcomere, the contractile unit within the heart cell); and
because of the lower likelihood of a developmental aetiology: in fact, while schizophrenia
risk is known to originate from genetic and environmental factors spanning the pre-natal, to
embryonal, to post-natal, to adult lifetimes, no developmental insults are known to increase
HCM risk.

Using these exemplar conditions, in this work I aim to:

¢ Chapter 2: Improve the understanding of the importance of enhancers and of GRBs, as

well as study the relevance of tissue-specific enhancers for complex disorders.
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In this chapter I first develop neural and cardiac tissue-specific lists of enhancers sig-
nificantly associated with at least one target gene, based on AR+C and FANTOMS an-
notations. Then, I use partitioned LD score regression to test whether the common poly-
genic risks for schizophrenia and HCM are randomly distributed across tissue-specific
enhancer- and GRB-based genomic partitions.

Here I also select the genomic partitions which are significantly enriched or depleted in

GWAS signals, which I will take forward to the next analysis.

Hypotheses

— Neural-tissue-expressed enhancer genomic partitions and GRBs will be enriched
in schizophrenia genetic heritability.
— Cardiac-tissue-expressed enhancer genomic partitions and GRBs will not be en-

riched in HCM genetic heritability.

* Chapter 3: Develop partitioned PRSs as tools to increase explained disease heritability.
Here I develop “partitioned” polygenic risk scores, or PRSs where two genomic partitions
(e.g., the tissue-specific enhancers and the residual partitions) are considered separately for
polygenic risk scoring; enhancer-based SNPs are prioritised over genomic SNPs — and
then disease heritability is calculated separately for the original GWAS for the condition
(hyp), as well as for the partitioned PRSs (h2ppg)-

Here I also test if accounting for tissue-specific enhancer expression or target gene as-
sociation measures — by multiplying SNP-disease association measure /3 coefficient for
enhancer-based SNPs by either the effect size of the tissue-specific enhancer, or by its

. . (. . . . 2
tissue-specific expression — can increase disease i, pps-

Hypotheses

— h2pprg Will increase by fitting a model where a prioritised tissue-specific enhancer-
based partition and a residual partition are separate predictors, as compared to the

original GWASes for schizophrenia and HCM.
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— Tissue-specific enhancer partition PRSs for schizophrenia and HCM will show
higher coefficients of determination when accounting for tissue-specific enhancer

expression or target gene association measures.

¢ Chapter 4: Examine the importance of a dominant/recessive vs an additive genetic in-
heritance model in schizophrenia.
Most existing GWASes for complex disorders have utilised an additive model of inheritance
— this assumes that the risk for each additional SNP is small, and that each additional al-
lele acts independently by increasing risk. While most Mendelian diseases are classified
as dominant or recessive, nonadditive effects have been seldom studied in the context of
complex human disease heritability. On the other hand, dominance effects are central to
the study of model disease fitness by population geneticists, and across organisms and
conditions the average dominance of mutation of small effects should be approximately
one-quarter (Manna et al., 2011). As a consequence, I have hypothesised that higher-
priority variants (e.g., those falling inside tissue-specific enhancers for a relevant tissue)
might follow a nonadditive (e.g., dominant/recessive) model of inheritance.
In this chapter I will first perform an EP-WAS (association study of SNPs within enhan-
cers) of schizophrenia using the dominant and recessive inheritance models in the UK

Biobank, and then validate the findings in an external population (PGC cohort).

Considering nonadditive (dominant or recessive) inheritance models for enhancer-

based SNPs in schizophrenia will increase its A2 p .




Chapter 2

Schizophrenia and HCM heritability

enrichment in tissue-specific enhancers

2.1 Introduction

2.1.1 Existing applications of the GRB model to psychiatric disorder ge-

netics

In the general introduction chapters I have discussed the importance of the non-
coding genome, particularly with regard to enhancer-promoter interactions for tissue- and
time-specific gene expression regulation (section [1.1.3.2). We have also seen that GRBs can
act as regulatory domains that delimit the span of long-range gene regulatory interactions

(section|[1.2.2). GRBs are characterised by a target-bystander gene structure, where one gene

47
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is usually the target of multiple, conserved, non-coding medium- or long-range regulatory
elements; other genes, termed bystanders, are usually unaffected (see Figure . GRBs are
a useful conceptual model, as their presence at GWAS peaks can point to the gene that is
most likely to be regulated, and thus, most likely to be affected, despite not being the closest
gene to the lead GWAS SNP (Baresic¢ et al., 2020).

As we have seen in section[I.6.1} schizophrenia is a neurodevelopmental condition
characterised at the molecular level, among others, by alterations in synaptic pruning as
well as by altered synaptogenesis (Howes & Onwordi, 2023; Onwordi et al., 2020; Osimo
et al., 2019). Neurodevelopment, axon guidance, and synaptogenesis in particular, are some
of the pathways that have been found to be under strong genetic regulation by enhancers
following the GRB model (Georgieva, 2022), thus making studying schizophrenia in this
context particularly relevant.

In fact, in previous research, Baresic¢ et al., [2020 have found that GWAS-derived
schizophrenia, autism spectrum disorder and bipolar disorder risk loci preferentially fall
within GRBs. In addition to showing that neurodevelopmental conditions appeared to be
enriched in loci under strong developmental regulation, this allowed to refine target gene
predictions for non-coding disease-associated SNPs. In fact, these SNPs are often assigned
to the closest gene, however Baresi¢ et al., 2020 and Georgieva, 2022 have shown that there
are much more likely targets within medium- and long-range enhancer regulation. The GRB
model appears therefore useful as an additional tool when fine-mapping GWAS.

In this chapter I will be using LD score regression (LDSC) and cognate technique
partitioned LDSC (see next section) to test if GRBs, as well as enhancer-based partitions,

appear enriched in schizophrenia and HCM risk alleles.

2.1.2 Partitioned LD score regression (LDSC)

LD score regression is a technique that can be applied to GWASes, and which was
developed to differentiate between polygenicity (or true effects) and confounding biases

(Bulik-Sullivan et al., 2015). The polygenic model of complex disease inheritance postulates
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that the cumulative burden of risk variants in a person determines their risk, which varies
on a continuum (Visscher et al., 2021). Confounding biases, such as cryptic relatedness (i.e.,
kinship among the cases or controls that is not known to the investigator) and population
stratification (genotype variations across populations unrelated to disease status), can yield
an inflated distribution of test statistics in genome-wide association studies (GWAS) (Bulik-
Sullivan et al., 2015).

Stratified, or partitioned, LD score regression is a technique cognate to LDSC,
which allows to partition heritability across functional categories or genomic partitions (e.g.,
coding genes, promoters, enhancers, etc.), by only requiring GWAS summary statistics for
a condition, and LD information from an external reference panel with ancestry matching
the population studied in the GWAS (Finucane et al., 2015). This was initially developed
to illuminate potential biological pathways underlying complex disorders. Finucane et al.,
2015 found a large enrichment in conserved regions across many traits, and a very large

immunological disease-specific enrichment of heritability in FANTOMS enhancers.

2.1.3 Human enhancer annotations from the AR+C

As introduced in section a method for the genome-wide identification of long-
range regulatory associations was developed by Georgieva, 2022, This method will be fur-
ther described at a technical level in section however this involves measuring the co-
ordinated transcription of FANTOMS5 CAGE-defined enhancers and promoters, producing
a measure of association strength (referred to as activation ratio or effect size), as well as a
p-value for each enhancer-promoter pair. This is used to assess the coordinated transcrip-
tion of CAGE-defined FANTOMS5 enhancers and promoters within 3 Mb (independently of
GRB boundaries) across human samples. Statistically significant associations between en-
hancers and promoters are further refined using 3D contact frequencies from five human
high-resolution Hi-C datasets. The method is particularly useful for detecting long-range
enhancer-promoter interactions, which have been shown to be important in genomic devel-

opmental regulation (Polychronopoulos et al., 2017).
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The AR+C method utilises several human tissues from FANTOMS5 for develop-
ment, however — crucially — it does not address the question of which enhancers show
a more tissue-specific expression pattern, and could therefore be more relevant for more
tissue-specific conditions. For this reason, in this work I have initially created tissue-specific
lists of enhancers from the initial global list of over 30K enhancers with at least one signi-
ticant promoter interaction (significant co-expression and 3D contact). I also created separ-
ate ‘control” lists, which either contained enhancers not expressed in the tissue of interest,
or were not associated with any promoter. Subsequently, I used partitioned LDSC to test
whether any of the tissue-specific enhancer-based lists were enriched in schizophrenia or
HCM genetic heritability, using the largest GWASes to date for the conditions (Tadros et al.,
2023} Trubetskoy et al., 2022).

2.2 Materials

2.2.1 Activation Ratio plus Contact (AR+C)

The AR+C used FANTOMS5 CAGE data (see section [1.3|for a general introduction
to the AR+C, and section[I.1.3.1]for a description of the CAGE technique and its relevance to
enhancer discovery) to assess enhancers and promoters for coordinated transcription (inde-
pendently of GRB boundaries) across approximately 800 human samples (Georgieva, 2022).

Enhancer-promoter associations were called by normalising the enhancer expres-
sion matrix for each sample from the FANTOMS5 data hub. A promoter expression matrix
was constructed by adding up the TPM values of all CAGE peaks overlapping a given pro-
moter per sample. Samples were then selected based on quality criteria, excluding treated
samples, and excluding those with unusually high or low expression levels. Enhancers and
promoters with no expression across all samples were removed, resulting in a set of 241 cell
line, 447 primary cell, and 120 tissue samples.

To identify significant enhancer-promoter pairs, a modified version of the method

used in Baresic et al., 2020|was used. For each enhancer, all promoters within 3 Mb upstream
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or downstream were considered as candidate targets, and the activation status of the enhan-
cer was annotated as active or inactive in each sample based on its expression level. An
activation ratio was defined as the log-fold change in median promoter expression in active
versus inactive samples, and the statistical significance of the observed activation ratio was
estimated based on a permutation test. Empirical p-values were then corrected for multiple
testing using a 10% FDR correction, and only significant enhancer-promoter pairs with a
positive activation ratio were considered. Finally, the highest expressed transcript for each
protein-coding gene was used to simplify the analysis, resulting in 17,526 human promoters.
To refine the enhancer-promoter associations using chromosome conformation data,
Hi-C and Micro-C datasets were downloaded from the 4D Nucleome Data Portal (Dekker et
al., 2017) and were used to identify physical interactions between enhancers and promoters.

The specific datasets used were:

* Micro-C data from HFF and hESC cells (Krietenstein et al., 2020), which is the highest-
resolution human 3D contact dataset available to date.

e [n-situ Hi-C data from GM12878 cells (Rao et al., 2014).

* In-situ Hi-C data from cardiac progenitor cells and ventricular cardiomyocytes (Zhang
et al., 2019).

¢ In-situ Hi-C data from neurons and neural progenitor cells from PsychENCODE (Ak-
barian et al., 2015).

The data was downloaded in the .hic format and the st raw tool was used to extract the
contact matrix between chromosome regions of interest. The significant enhancer-promoter
pairs identified earlier were then overlapped with the contact matrix, and those with sig-
nificant contact were retained. The analysis resulted in a set of 3,447 human enhancer-
promoter pairs with significant contact, which were further validated using a Hi-C valida-
tion method. The authors also performed a gene ontology analysis to identify enriched bio-
logical pathways associated with the validated enhancer-promoter pairs. See section [1.3.1]
for a discussion of AR+C benchmarking against existing methods.

In summary, each E-P pair (where the enhancer and the promoter were within 3
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megabases of each other) was associated with an effect size measure, called activation ra-
tio, quantifying the median shift in promoter expression in tissues where the enhancer is
active vs tissues where the enhancer is inactive, and its associated empirical p-value. Sig-
nificantly associated E-P pairs were identified on a genome-wide basis by applying a 10%

FDR threshold (see Figure[I.4 and Georgieva, 2022).

2.2.1.1 Human-mouse GRBs

A list of human-mouse GRBs based on CNEs with > 98% of homology was pro-
duced in Georgieva, 2022 using the same methodology as Harmston et al., 2017. Briefly,
states of the human genome enriched for human-mouse CNEs (> 98% of homology over 50
bp, see section for a description of CNEs) were identified using an unsupervised two-
state hidden Markov model. These states were then merged together if they overlapped
the same gene. CNEs that did not fall into an enriched state were discarded from the ana-
lysis. Adjacent CNEs were clustered into blocks. The resulting set of putative GRBs were
those regions that contained at least 10 CNEs and a protein-coding gene, and were within
a certain distance threshold from adjacent regions. The parameters used for the analysis
varied depending on the evolutionary distance between the species being compared, and
were empirically determined based on their ability to recapitulate known GRB boundaries

(Georgieva, [2022).

2.2.2 PsychENCODE enhancers

As an external source of brain-specific enhancers —i.e., not derived from the AR+C
— I also used a brain- (prefrontal cortex-) specific, high-confidence enhancer list from Wang

et al., 2018a, obtained from http:/ /resource.psychencode.org/; a resource called:
DER-03b_hgl9 high_confidence_PEC_enhancers

Briefly, this is a list derived from the Pyramidal resource (Wang et al., 2018a), a collection of

functional genomics data on the brain from multiple datasets, including PsychENCODE,
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GTEx, ENCODE, and Roadmap Epigenomics. The data was uniformly processed and har-
monized to create a dataset with a sample size of 1866 individuals. In addition to brain-
cortex-specific enhancers, derived data products include brain-expressed genes, co-expression

modules, single-cell expression profiles, and expression quantitative-trait loci.

2.2.3 GTEx Tissue specific expression quantitative trait loci (eQTLs)

Expression quantitative trait loci (eQTLs) are genomic loci that explain variation
in expression levels of mRNAs. eQTL information was extracted from The Genotype-Tissue
Expression (GTEx) project, which characterises genetic effects on gene expression levels

across 44 human tissues (Battle et al., 2017).

2.3 Methods

2.3.1 Generation of tissue-specific enhancer lists

Enhancer lists were generated starting from FANTOMS5 data (Andersson et al.,
2014), as well as from the curated AR+C resource (Georgieva, 2022). Each enhancer’s co-
ordinates were increased by 100 bps (or less if close to another enhancer to avoid overlap) at
each end to capture SNPs falling very close to, as well as within enhancers.

A first list includes all enhancers in E-P pairs with a positive effect size, evidence
of significant E-P association, and 3D contact between Enhancer and Promoter — the list is
called ALL SIGNIFICANT FANTOMS ENHANCERS, with N ~ 30K. Further enhancer lists

were generated, thus generating;:

1. NEURAL/CARDIAC SIGNIFICANT ENHANCERS: a subset of ALL SIGNIFICANT FAN-
TOMS ENHANCERS, containing enhancers with positive tissue-specific expression (FAN-

TOMS5 neural or cardiac tissues average transcripts per million or tpm > 0).

2. NEURAL/CARDIAC SIGNIFICANT ENHANCERS WITHIN GRBS: a subset of NEURAL/CARDIAC

SIGNIFICANT ENHANCERS, containing enhancers overlapping human-mouse GRBs over
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98% of homology from either Georgieva, 2022/ or Harmston et al., 2017.

BRAIN/HEART ENH-PROMOTER-EQTLS: a subset of ALL SIGNIFICANT FANTOMY5
ENHANCERS, overlapping significant GTEx eQTLs for either brain or heart (see section
2.2.3). An eQTL was defined as significant in brain if the association between SNP and
corresponding gene showed p-value < 0.05 in all of Brain Cortex, Brain Anterior cingu-
late cortex (BA24), Brain Frontal Cortex (BA9), and Brain Hippocampus; for heart, an
eQTL was defined as associated with its corresponding gene if p-value < 10~ in both
Heart Atrial Appendage and Heart Left Ventricle. ‘Overlap’ for this work is defined
as an eQTL (a SNP-gene pair) where the SNP is contained within a significant AR+C

enhancer, and the target gene is the same as the E-P pair.

. NON NEURAL/CARDIAC ENHANCERS: Control list 1. A list of enhancers lacking tissue-

specific expression (neural or cardiac) from FANTOMS5 data — not necessarily signific-

antly associated to a promoter.

. NON ASSOCIATED ENHANCERS: Control list 2. Genome-wide enhancers with no signi-

ticant target gene (either no co-expression, or 3D association with a promoter, or both).

The tissue-specific enhancer lists are individually described in section[2.4.1]

2.3.1.1 Tissue specificity of enhancer lists

Neural tissue specific enhancers were selected if they showed expression in any of

the following FANTOMS tissues/ cells:

Adult brain tissue from donor (1x);
Adult brain tissue pool (1x);
Neuronal primary cells from donor (3x);

Occipital cortex tissue from donor (2x).

Induced pluripotent stem cell-derived neurons were excluded as showing noise in expres-

sion signals.



2.3. Methods 55

Myocardial tissue specific enhancers were selected if they showed expression in

any of the following FANTOMS tissues/ cells:

¢ Cardiac myocyte primary cells from donor (3x)
* Adult heart tissue pool (1x)

¢ Fetal heart tissue pool (1x)

Fibroblasts, embryonic stem cells, mesenchymal cells, and valve tissues were ex-

cluded as incompatible with the likely aetiology of HCM.

2.3.2 Measurement of the relative importance of enhancer-based parti-

tions for specific GWAS using partitioned LDSC

Stratified or partitioned LD score regression (LDSC) was introduced in section
itis a method introduced by Finucane et al., 2015 for measuring heritability enrichment
for a specific condition (from GWAS summary statistics) for specific genomic partitions. In
this work I used the LDSC software (Bulik-Sullivan et al., 2015) to test whether tissue-specific
enhancer genomic partitions were enriched or depleted in significant disease-specific SNPs.

This took several steps:

1. Reformatting GWAS summary statistics — for schizophrenia from Trubetskoy et al.,
2022 and for HCM from Tadros et al., 2023} including re-stranding each SNP to match
1000 Genome Project (Clarke et al., 2012) reference alleles. This was done using the

munge_sumstats.py script from Bulik-Sullivan et al., 2015|

2. Using the enhancer lists generated in section above; annotating and re-stranding
each SNP to match 1000 Genome Project (Clarke et al., 2012) reference alleles. This step

made use of the make_annot.py script from Bulik-Sullivan et al., 2015.

3. Computing LD scores for each partition for each chromosome. This step was conduc-
ted using the ldsc.py script from Bulik-Sullivan et al., 2015, with flags

=12 ——thin—annot ——-ld—-wind-cm 1.
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4. Calculating partitioned heritability using the ldsc.py script from Bulik-Sullivan et al.,
2015, with flag ——h2.

2.3.3 Software and code availability

Statistical analyses were performed in R 4.2.2 (R Core Team, 2023), using Tidyverse
libraries (Wickham et al., 2019). Stratified LD score regression (LDSC) was performed using
the LDSC package (Bulik-Sullivan et al., 2015} Finucane et al.,2015). The FANTOMS dataset
is publicly available through the CAGEr package (Haberle et al., 2015). AR+C annotations
(including genome-wide enhancer-promoter associations) will be available once published
by Georgieva et al, and may be made available upon reasonable request.

The code for this chapter is available on the GitHub repository at: https://github.

com/emosyne/partitioned_LDSC.

2.4 Results

2.4.1 Tissue-specific enhancer partitions

Tissue-specific enhancer lists were generated as described in Materials and Meth-
ods, sections and In brief, I used enhancer annotations from the AR+C (Georgieva,
2022) and from FANTOMS (Andersson et al., 2014), measuring enhancer-promoter asso-
ciations in human and mouse genomes using Cap Analysis of Gene Expression sequen-
cing (CAGE, see section[1.1.3.T) and chromosome conformation data from Micro-C (see sec-
tion experiments. The method involved identifying significant human enhancer-
promoter pairs, and incorporating chromosome conformation data to refine the results (see
section 2.2.T). Significant enhancer-promoter pairs had a measure of effect size available,
quantifying the strength of the enhancer-promoter association, as well as an association p-
value.

As described in methods section the initial significant enhancers list (ALL


https://github.com/emosyne/partitioned_LDSC
https://github.com/emosyne/partitioned_LDSC
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SIGNIFICANT FANTOMS5 ENHANCERS) was filtered based on tissue-specific expression. A
first group included enhancers with tissue-specific expression in neural or cardiac tissues
from FANTOMS5 data. Enhancers meeting this criterion were defined NEURAL/CARDIAC
SIGNIFICANT ENHANCERS. A subset of these enhancers that overlapped a human-mouse
GRB were called NEURAL/CARDIAC SIGNIFICANT ENHANCERS WITHIN GRBs. Signific-
ant enhancers were also overlapped with brain/heart GTEx eQTLs (see section [2.2.3), res-
ulting in enh-promoter-eQTLs specific to the brain and heart tissues, which were called
BRAIN/HEART ENH-PROMOTER-EQTLS or E-P_eQTLs. Control lists were generated, in-
cluding enhancers that lacked tissue-specific expression (neural or cardiac) from FANTOMS
data and were not necessarily significantly associated with a promoter, called NON NEURAL/NON
CARDIAC ENHANCERS. Additionally, a list included genome-wide enhancers with no signi-
ticant target gene, called NON ASSOCIATED ENHANCERS. For the brain/schizophrenia com-
ponent of the study only, these lists were also compared to a list of prefrontal-cortex specific
enhancers with no information about promoter specificity from PsychENCODE (see section

2.2.2)).

2.4.1.1 Neural tissue and schizophrenia

Table [2.1| describes the size, enhancer-promoter distance, and tissue specificity of
the lists generated for, and used in this work, with regards to the neural-specific part. The
first line is the list of all 30,049 enhancers with significant co-expression with at least one
promoter, and with evidence of 3D contact between the enhancer and the promoter, from
the AR+C (ALL SIGNIFICANT FANTOMYS5 ENHANCERS, from Georgieva, 2022). The enhan-
cer and promoterd in this set were on average 182,806 bps apart (SD = 209,193). Of these,
21,145 enhancers showed significant neural expression, with a similar average enhancer-
promoter distance of 189,985 bps. Of the neural-specific enhancers, 7,582 (35.9%) overlapped
a GRB, and showed a slightly larger average enhancer-promoter distance of 223,044 bps (SD
= 253,560). The 687 enhancers overlapping significant GTEx eQTLs for brain were set at a

shorter average enhancer-promoter distance of 137,897 bps (SD = 175,495), as expected for
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eQTLs.
Finally, the two negative association lists showed much larger distances between
promoters and enhancers (both > 800,000 bps), however this has little meaning as the pro-

moters were not always significantly associated with the enhancer.

2.4.1.2 Cardiac tissue and HCM

Table describes the size, enhancer-promoter distance, and tissue specificity of
the lists generated for, and used in this work, with regards to the cardiac-specific sensit-
ivity analysis. Once more, the first line is the list of all 30,049 enhancers with significant
co-expression with at least one promoter, and with evidence of 3D contact between the
enhancer and the promoter from the AR+C (ALL SIGNIFICANT FANTOMYS5 ENHANCERS,
Georgieva, 2022). Of these, 3,126 overlapped a GRB, and showed a slightly larger average
enhancer-promoter distance of 202,973 bps (SD = 230,571). The 905 enhancers overlapping
significant GTEx eQTLs for heart were set at a shorter average enhancer-promoter distance
of 125,747 bps (SD = 155,268). Finally, the two negative association lists showed much larger
distances between promoters and enhancers (both > 900,000 bps), however this has little

meaning as the promoters were not always significantly associated with the enhancer.

2.4.2 Tissue specific enhancers and heritability for schizophreniaand HCM

The aim of this section is to measure the amount of heritability for schizophrenia
and for HCM coming from tissue-specific enhancer lists, and to test whether this exceeds the
heritability that would be expected by chance. To do so, I utilised LDSC; see Methods section
for details. In brief, each of the tissue-specific enhancer lists was treated as a genomic
partition, and compared with existing genomic partitions as previously done in Finucane
et al., 2015, GWAS summary statistics — namely the schizophrenia GWAS by Trubetskoy et
al., 2022/ and the HCM GWAS by Tadros et al., 2023 — as well as information about genomic
partitions, were studied through the LDSC software. This provides an estimate of the her-

itability enrichment for each genomic partition, as compared to all GWAS SNPs. In LDSC
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Table 2.2: Cardiac-specific enhancer lists: size, enhancer-promoter distance, and tissue specificity

Mean (SD) promoter

10, 50th, 90th centile

th th th .
Enhancer list Number of Mean E-P distance 107, 507, c@ centile tissue specificity of promoter tissue
enhancers of E-P distance . e ey s
index specificity index
ALL SIGNIFICANT 10,271, 113,450,
EANTOMS PN ANCERS 30,049 182,806 140261 0.51 (0.25) 0.21, 0.45, 0.9
CARDIAC SIGNIFICANT 8,959 180,963 8921, 114,072, 439,971 0.45 (0.23) 0.21,0.4,0.83
ENHANCERS
CARDIAC SIGNIFICANT 3,126 202,973 8,920, 128,585, 475,988 0.46 (0.22) 0.21,0.4, 0.82
— WITHIN GRBS
CARDIAC SIGNIFICANT 5,833 168,439 9,006, 104,632, 417,681 0.45 (0.23) 0.2,0.4, 0.83
— NOTIN A GRB
HEART
905 125,747 6,644, 64,652, 342,553 0.48 (0.22) 0.21,0.45, 0.81
ENH-PROMOTER-EQTLS
NON CARDIAC 33,989, 626,900,
e 40,870 997,494 > 590,09 0.51 (0.24) 0.23, 0.47, 0.89
NON ASSOCIATED 27,611, 472,960, 0.22, 0.45, 0.86
L ANCERS 34,560 904,139 > 140,948 0.5 (0.23)
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the enrichment and associated p-value test the hypothesis that a genomic partition —e.g., a
specific list of enhancers — shows a significant enrichment in heritability for a condition —

e.g., schizophrenia — as compared to the genome’s average.

24.2.1 Neural-tissue-specific enhancers and schizophrenia heritability

In this section, I tested several genomic partitions for enrichment in schizophrenia-
associated SNPs; some of these regions were standard genomic annotations, such as coding
genes (i.e., exons), introns or untranslated gene-flanking regions (3" or 5 UTRs). I then tested

our regions of interest, i.e., enhancer-based partitions.

Standard genomic partitions

I first tested whether the main standard genomic partitions, as annotated from ge-
nomic data in Andersson et al., 2014; Hnisz et al., 2013; Hoffman et al., 2013| were signific-
antly enriched in schizophrenia heritability, comparing them to a ‘base” partition containing
all GWAS SNPs. Figure shows that genes, both in terms of coding exons, and in terms
of non-coding regions (introns), were enriched in schizophrenia heritability, both showing
Benjamini-Hochberg-adjusted p-values < 0.01. Introns, in particular, hosted 36.9% of the
SNPs (the largest partition of all), and 50.2% of the heritability. In terms of peri-genic re-
gions, promoters and promoter-flanking regions showed positive enrichment values, which
however did not pass the false discovery rate threshold of 0.05. 3’ untranslated regions were
significantly enriched in schizophrenia heritability, with 1% of SNPs and 5% of heritability
(adjusted p-value = 0.03); schizophrenia heritability enrichment of 5" untranslated regions
was not significantly different from the null.

Given the focus of this work on enhancers, I included four different classifications
for enhancers (Andersson et al., 2014; Hoffman et al., 2013), weak enhancers (Hoffman et
al., 2013), and super-enhancers (Hnisz et al., 2013). Super enhancers were the largest parti-
tion, including 16% of SNPs, and were significantly enriched in schizophrenia heritability,

with 24.7% (BH-adjusted p-value < 0.001), while all other categories of enhancers were not
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significantly enriched or depleted in schizophrenia heritability (Figure [2.1)).

Tissue-specific and control enhancer genomic partitions

In this section I tested whether enhancer-based partitions, as well as a human-
mouse GRB partition, were enriched in schizophrenia heritability. As described in section
the human-mouse GRBs list with homology > 98% was produced in Georgieva, 2022
using the same methodology as Harmston et al., 2017, In this work we confirm that GRBs
are significantly enriched in schizophrenia heritability, with a proportion of 31% of the tested
SNPs falling by chance in a human-mouse GRB, compared to a partition heritability of 41.7%
(adjusted p-value<0.001). See Figure

To test whether enhancers are generally important for schizophrenia genetics, next,
I tested enhancer-based partitions for schizophrenia heritability enrichment. Figure 2.2| de-
scribes the results; the first test refers to all FANTOMS5 enhancers, significant or not (ENHANCER
ANDERSSON; BH-adjusted p=1), which, as shown in the previous paragraph, were not en-
riched for schizophrenia heritability; neither were all enhancers with significant AR+C pro-
moter interactions — unselected for tissue expression (ALL SIGNIFICANT FANTOMS EN-
HANCERS; BH-adjusted p=1). As expected, FANTOMS non-associated enhancers (e.g., those
not associated to any nearby promoter) were not enriched for schizophrenia heritability
either.

Testing tissue-specific lists, I found that, importantly, FANTOMS promoters with
no neural expression (NON NEURAL ENHANCERS in Figure either significantly associ-
ated to a gene or not) were depleted in schizophrenia GWAS heritability, with an enrichment
value of -8.4 (BH-adjusted p=0.045), and the only partition to be so. Of the neural-expressed
partitions, the largest, including all ~21k enhancers with significant AR+C promoter in-
teractions (NEURAL SIGNIFICANT ENHANCERS) was enriched in schizophrenia heritability,
with a value of 8.2, BH-adjusted p=0.01. A subset of this list, including ~8k significant neural
enhancers overlapping a GRB, was even more enriched, with an enrichment value of 29.9,

and BH-adjusted p<0.0001. This contrasted with the ~14k neural-expressed enhancers with
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Proportion of heritability for SCZ for the enhancer-based genomic partitions

A) LDSC-based genomic partitions' enrichment towards SCZ GWAS

Enhancer Andersson |
98pc mouse-human GRBs
All significant FANTOMS5 enhancers )
Non-associated enhancers
Non-neural enhancers =P = 0:05°

Neural significant enhancers

Neural significant enhancers within GRB L-p =0

Genomic partition

Neural significant enhancers not in GRB

PsychENCODE prefrontal-cortex enhancers

Brain enh—promoter-eQTLs -p=0.93

0 10 20 30
Enrichment in GWAS signal

BH-adjusted p <m_cmo ]

Figure 2.2: Partitioned LDSC for schizophrenia; enhancer-based genomic partitions.

Wv Proportion of SNPs in Partition (blue), and
proportion of heritability for SCZ

rrl___l—_

I

0.1 0.2 0.3 0.4

[ Prop heritability [l Prop SNPs

Partitioned LD score regression (LDSC) of several enhancer-based genomic partitions for the latest schizophrenia GWAS (Trubetskoy et al.,

2022).

Panel A shows the enrichment value — a positive value indicates more SNPs for schizophrenia in this partition than expected by chance, and
a negative value indicates depletion. P-values are corrected for multiple testing using the Benjamini-Hochberg (BH) method.
Panel B shows the proportion of SNPs (Prop SNPs in blue) and of schizophrenia heritability for the SNPs in the partition (Prop heritability,

in red) for each genomic partition.

Abbreviations: SCZ: schizophrenia; base: all GWAS SNPs; 98pc mouse-human GRBs: GRBs with nearly complete (> 98%) sequence homology between

human and mouse; Andersson: (Andersson et al.,2014).
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significant AR+C promoter interactions not overlapping GRBs, which were not significantly
associated to a schizophrenia signal (BH-adjusted p=1). Finally, the positive control list of
~18k PsychENCODE pre-frontal cortex specific enhancers was also highly enriched, with a
value of 12.1, and BH-adjusted p< 0.0001. Enhancers with significant AR+C promoter inter-
actions overlapping significant GTEx brain eQTLs (BRAIN ENH-PROMOTER-EQTL) showed
an enrichment value of 27.7, but this was not statistically significant, likely due to the small

sample size (BH-adjusted p=0.93).

The enhancer lists that were significantly enriched or depleted in schizophrenia
genetic heritability in this analysis — namely the FANTOMSb neural-expressed, as well as
the GRB overlap subset, and the negative control lists including the significantly depleted
non neural list — will form the basis for the analyses in the next chapters, allowing to gen-
erate partitioned polygenic risk scores. However, the PsychENCODE enhancer list was not
brought forward for analysis, as no information about tissue-specific expression for this par-

tition was available in FANTOMS5.

2.4.2.2 Cardiac-tissue-specific enhancers and HCM heritability

In this section, I have evaluated various genomic partitions to measure enrichment
in HCM heritability. I first tested common genomic annotations for enrichment, such as
exons, introns, or untranslated regions (3" or 5 UTRs) of genes. Then I tested regions of

interest, specifically enhancer-based partitions.

Standard genomic partitions

Once more, I first compared the main standard genomic partitions with a ‘base’
partition containing all GWAS SNPs with regards to enrichment in HCM heritability. Fig-
ure shows that neither coding (exons), nor non-coding (introns) gene regions showed
significant enrichment in HCM heritability. The same can be said of peri-genic regions, in-
cluding promoters, promoter flanking, 5" and 3’ untranslated regions, which were all not

significantly different from the null in terms of HCM heritability. Of the general enhancer
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partition that I tested, super enhancers were the largest partition, including 16% of SNPs,
and were significantly enriched in HCM heritability, with 37.6% (adjusted p < 0.001), while

all other categories of enhancers were not significantly enriched or depleted in HCM herit-

ability (Figure[2.3).

Tissue-specific and control enhancer genomic partitions

In this section I tested whether enhancer-based partitions, as well as a human-
mouse GRB partition, were enriched in HCM heritability. GRBs hosted a large proportion,
31%, of HCM SNPs, however the partition’s heritability was also of 31% (enrichment BH-
adjusted p=1). Unlike schizophrenia, here GRBs were therefore not enriched in HCM herit-
ability. To test whether enhancers were generally important for HCM genetics, I then tested
enhancer-based partitions. As shown in the previous paragraph, the partition containing
all FANTOMS enhancers (Enhancer Andersson in Figure BH-adjusted p=1) was not en-
riched for HCM heritability; neither were all enhancers with significant AR+C promoter
interactions — unselected for tissue expression (ALL SIGNIFICANT FANTOMS5 ENHANCERS;
BH-adjusted p=1). As expected, FANTOMS non-associated enhancers (e.g., those not asso-
ciated to any nearby promoter) were not enriched for HCM heritability either.

When testing tissue-specific enhancer lists, it was evident that FANTOMS5 pro-
moters with no heart expression (NON CARDIAC ENHANCERS in Figure either signific-
antly associated to a gene or not) did not appear significantly depleted in HCM heritability,
with an enrichment value of -16.5, however BH-adjusted p = 0.29. Of the heart-expressed
partitions, the largest, counting all ~9k enhancers with significant AR+C promoter interac-
tions (CARDIAC SIGNIFICANT ENHANCERS) did not appear significantly enriched in HCM
heritability, with an enrichment value of 39.4, but BH-adjusted p=0.30. Both the GRB and the
non-GRB subsets of this list appeared non-significantly enriched or depleted in HCM her-
itability. Enhancers with significant AR+C promoter interactions overlapping significant
GTEx heart eQTLs (HEART ENH-PROMOTER-EQTLS) showed an enrichment value of 59.1,

but this was not statistically significant, likely due to the small sample size (BH-adjusted p
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Proportion of heritability for HCM for the enhancer-based genomic partitions

A) LDSC-based genomic partitions' enrichment towards HCM GWAS

Enhancer Andersson p=1
98pc mouse-human GRBs p=1
All significant FANTOM5 enhancers -p=1
Non-associated enhancers ~ *P=1
Non-cardiac enhancers P =029

Cardiac significant enhancers -p=03

Genomic partition

Cardiac significant enhancers within GRB <p=0.64

Cardiac significant enhancers not within GRB <p=0.89

Heart enh—promoter—eQTLs -p=1

0 25 50
Enrichment in GWAS signal

BH-adjusted p <m_cmo ]

Figure 2.4: Partitioned LDSC for HCM; enhancer-based genomic partitions.

B Proportion of SNPs in Partition (blue), and
v proportion of heritability for HCM

rlLLIr

o r.ﬁ

0 0.1 0.2 0.3

[ Prop heritability [l Prop SNPs

Partitioned LD score regression (LDSC) of several enhancer-based genomic partitions for the latest HCM GWAS (Tadros et al., 2023).

Panel A shows the enrichment value — a positive value indicates more SNPs for HCM in this partition than expected by chance, and a
negative value indicates depletion. P-values are corrected for multiple testing using the Benjamini-Hochberg (BH) method.

Panel B shows the proportion of SNPs (Prop SNPs in blue) and of HCM heritability for the SNPs in the partition (Prop heritability, in red)

for each genomic partition.

Abbreviations: Base: all SNPs; 98pc mouse-human GRBs: GRBs with nearly complete (>98%) sequence homology between human and mouse; Andersson:

(Andersson et al.,2014).
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= 1).

2.5 Summary of findings

In this chapter I first created lists of neural tissue-expressed enhancers with signi-
ticant enhancer-promoter association (co-expression and 3D chromatin contact in the AR+C).
I annotated ~ 21K neural-specific enhancers, of which ~ 8K overlapped human-mouse
GRBs. I also annotated ~ 9K cardiac-expressed enhancers, of which ~ 3K overlapped
human-mouse GRBs. I then compared the enrichment in schizophrenia heritability for a
number of genomic partitions, including some standard, generic partitions (e.g., introns or
exons), with neural-tissue-specific enhancer partitions, as well as with several other enhancer-
based partitions. I then performed the same analysis using cardiac-tissue-specific enhancer
partitions, but this time comparing their heritability for HCM. I found that coding genes, in-
trons, super-enhancers (in general), as well human-mouse GRBs and neural-specific enhan-
cers show significant enrichment in schizophrenia heritability. Interestingly, the enrichment
in schizophrenia heritability of the neural-specific enhancers partition was explained by
GRB overlap: neural-specific enhancers not residing in GRBs did not show enrichment for
schizophrenia heritability, while GRB-based neural-specific enhancers showed the strongest
enrichment signal. There were much fewer significantly enriched tissue-specific genomic
partitions for HCM heritability. These included just super-enhancers, while GRBs and cardiac-
expressed enhancers were not significantly enriched for HCM heritability. The findings are

discussed in Chapter 5.



Chapter 3

Schizophrenia and HCM heritability from

partitioned polygenic risk scores

3.1 Introduction

3.1.1 Risk prediction and the contribution of polygenic risk scores

Medicine is a field where it is important to make decisions about a patient’s treat-
ment, informed by the likely outcomes of doing nothing, or intervening with one of a mul-
titude of treatments. Increasingly, these decisions are aided by the use of clinical risk pre-
diction models. These are statistical models that aim to predict the probability of future
(usually adverse) events, such as a myocardial infarction, by taking into account multiple
predictors, e.g., age, sex, ethnicity, and intervening treatments (Grant et al.,|2018). Powerful

prediction models for important health outcomes exist, and are already embedded in clin-
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ical practice: for example, the QRISK score (Hippisley-Cox et al., 2007), now at version 2,
allows to calculate the 10-year risk of a person having a cardiovascular event, and its use
is already recommended by regulators in the UK for stratifying people for the risk of cardi-
ovascular disease, thus allowing the targeted prescribing of preventative treatments such as
statins (National Institute for Health and Care Excellence, 2023).

Calculating polygenic risk scores, as we have seen in the general introduction, in
section[1.5] is a powerful technique to express an individual’s genetic liability to a condition,
based on their genotype. Polygenic risk scores are increasingly being studied as the basis
for creating wider risk prediction models for complex disorders, such as cancer (Chatterjee
et al., 2016) or cardiovascular disease (Elliott et al., 2020). There are increasing expectations
that combining canonical risk predictors, such as age, sex, ethnicity and smoking status,
with personalised PRSs, might lead to much more accurate predictions. Figure [3.1| illus-
trates existing evidence, that shows that subjects at higher polygenic risk may benefit more
(that is, have a greater reduction in absolute risk) from risk-reducing interventions, such as
statin therapy for preventing cardiovascular disorder, or smoking cessation for preventing
bladder cancer. In the example in panel a), in the ASCOT trial, the risk of developing car-
diovascular disease was reduced following statin therapy from 3.0% to 1.9% (1.1% absolute
risk reduction) among individuals in the lower quintile of genetic risk, whereas it was re-
duced from 6.6% to 3.6% (3.0% absolute risk reduction) among individuals in the highest
quintile of genetic risk — three times the benefit (Chatterjee et al., 2016). This is an example
of how, for example, PRSs will be able to help clinicians target interventions to high-risk
groups, thus saving money and reducing medication side-effects.

Risk prediction models for several outcomes are being developed in the field of
psychiatry, however few are clinically useful, as they either require research-grade informa-
tion (such as complex scans and tests), or they require information not available at baseline,
when the prediction is useful, or else they have not been developed following best practice,
e.g., they are not externally validated (Perry et al., 2021a). Some of the few existing models

that show clinical promise in the field have the limitation of not being accurate enough, espe-
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Figure 3.1: PRS-related risk reduction for coronary heart disease and bladder cancer.

10-year risk of coronary heart disease associated with statin therapy (a) and 30-year risk of bladder
cancer associated with smoking status (b), across genetic risk categories defined by PRS. Brackets
indicate the absolute risk reduction (ARR) between treatment or exposure groups for subjects in dif-
ferent PRS categories. The tables show the ARR and relative risk reduction (RRR) between treatment
or exposure groups (panel a, statin versus control group; panel b, former versus current smokers),
across PRS categories.

Figure taken from Chatterjee et al., 2016 Licensed from Springer Nature through RightsLink License Number
5513580975759.
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cially for starting higher-risk interventions — or at higher propensity to intervene thresholds, to
use decision curve analysis jargon. For example, alongside others I have recently developed
the MOZART algorithm, a risk prediction model for treatment resistance in schizophrenia
(Osimo et al., 2023). This algorithm performs well — including in external samples — when
predicting lower risks, however it is not useful at higher risk thresholds, due to insufficient
sensitivity. It is specifically for overcoming these kinds of limitations — thus hopefully mak-
ing this and other similar models more useful — that adding PRSs to clinical risk prediction
algorithms might make a difference. Adding a further, independent predictor to such mod-
els — such as schizophrenia PRS — might add significant amounts to the variance explained

by the model, and therefore make them more discriminative.

3.1.2 Tissue-specific enhancers and associations with schizophrenia

We have just seen that PRSs offer promise in terms of personalised risk prediction.
However, as we have seen in section current PRSs only explain a fraction of the ge-
netic liability to most serious mental illnesses. In the case of schizophrenia, the latest and
largest GWAS to date explains up to %Td of the genetic liability for the condition (Trubetskoy
et al., 2022). This is why, in this chapter, I am aiming to increase the proportion of variance
explained by the genetic factor for schizophrenia, by taking into account functional annota-
tions regarding enhancers, which I (in chapter 2) and others (e.g., Baresi¢ et al., 2020) have
shown to be hosting much more than the expected heritability for schizophrenia.

Furthermore, I am aiming to use information about enhancer tissue-specific ex-
pression. As we have seen in the general introduction and in paragraph the non-
coding genome plays a crucial role in gene expression regulation through enhancer-promoter
interactions, which appear to be both tissue- and time-specific. In particular, GRBs, which
are characterised by a target-bystander gene structure, have been shown to host enhancers
that play a particularly important role in regulating the expression of developmentally rel-
evant target genes (Akalin et al., 2009). Further, Georgieva, 2022 has found that predicted

GRB target genes were enriched in gene ontologies including axon development, embryonic
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organ development, forebrain development, axon guidance, and neuron projection, among others.

It is also known that schizophrenia is a neurodevelopmental condition, with genetic and en-

vironmental signals converging on the synapse, as discussed in paragraphs|1.6.1jand 5.1.1|

and in Howes and Onwordi, [2023.

For all these reasons, I have hypothesised that the /2pp¢ for schizophrenia and
HCM will increase considering tissue-specific enhancers and residual partitions separately, as
compared to the original GWASes for the conditions. To test this hypothesis, in this chapter
I will use the latest GWAS summary statistics for schizophrenia (from Trubetskoy et al.,
2022) and for HCM (from Tadros et al., 2023) as base GWASes (see section [1.5.1), and I
will calculate PRSs and partitioned PRSs (pPRSs, see section [3.3.1.2)below) on PGC Consor-
tium cohorts (see paragraph as target populations for schizophrenia, and on the UK
Biobank (see paragraph and on the Royal Brompton HCM cohort for HCM. In brief,
‘partitioned” polygenic risk scores are PRSs where two genomic partitions (e.g., prioritised
tissue-specific enhancers and residual partitions) are considered separately for polygenic risk
scoring, and then disease heritability is calculated separately for the original GWAS for the
condition (h%y p), as well as for the partitioned PRSs (h2p ). I will also test if tissue-specific
enhancer-based PRSs for schizophrenia and HCM will increase the overall disease h2ppg
when accounting for tissue-specific enhancer expression or target gene association measures
— by multiplying SNP-disease association measure /3 coefficient for enhancer-based SNPs by
either the effect size of the tissue-specific enhancer, or by its tissue-specific expression. All of

this is explained in more detail in the next few paragraphs.
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3.2 Materials

3.2.1 Wave 3 Psychiatric Genomic Consortium Schizophrenia population

and GWAS

The core Psychiatric Genomic Consortium (PGC) wave 3 schizophrenia dataset
comprises 90 international cohorts, including individual-level genotype data (Trubetskoy
et al., 2022). This core dataset contains genotypes on 161,405 unrelated individuals; 67,390
cases of schizophrenia or schizoaffective disorder, and 94,015 control individuals. Around
80% of the participants (53,386 cases and 77,258 controls) are of European ancestry, and only
these were included in the present analysis.

For this work I used three of the five largest PGC cohorts and the relative leave-
one-out genome-wide association studies for schizophrenia as base GWASes to avoid any
overlaps between development and validation samples. In particular, I included the clz2a
cohort, the largest in Trubetskoy et al., 2022, with over 5000 participants with treatment-
resistant schizophrenia; the celso cohort, the third largest with over 2000 people with schizo-
phrenia recruited across eight Spanish inpatient psychiatric units; and the xs234 cohort, the
tifth largest cohort with over 2000 people with schizophrenia from the Swedish population.
The xclm2 and xclo3, the second and fourth largest cohorts, were not included, as they repres-
ented the same geographical and clinical category as clz2a, i.e., UK patients with treatment
resistant schizophrenia. Results for the xs234 cohort are the main schizophrenia results, as
the patients in this cohort — from a population-based Swedish sample — appeared to be the
most representative of a general, White ethnic population, while results for the clz2a and

celso cohorts are presented as a sensitivity analysis in the Appendices.
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3.2.2 Hypertrophic cardiomyopathy case-control GWAS and Royal Bromp-

ton Hospital target population

The HCM GWAS I used for this work is the largest to date, provided to me ahead
of publication by Tadros et al., 2023, This includes HCM cases and controls from 7 strata:
the Hypertrophic Cardiomyopathy Registry (HCMR), a Canadian HCM cohort, a Nether-
lands HCM cohort, the Genomics England 100K Genome Project (GEL), the Royal Bromp-
ton HCM cohort, an Italian HCM cohort and the BioResource for Rare Disease (BRRD) pro-
ject. The sample included 5,900 HCM cases, 68,3593 controls, and 36,083 UK Biobank (UKB)
participants with cardiac magnetic resonance imaging available to rule out HCM. To be de-
scribed as cases, participants had to show unexplained left ventricular hypertrophy. This
was defined as a left ventricular wall thickness >15mm, or >13mm and either presence of
family history of HCM, or a pathogenic or likely pathogenic genetic variant for HCM. Fur-
ther details can be found in Tadros et al., 2023\

For this work I also used the unpublished leave-one-out GWAS excluding the
Royal Brompton HCM cohort (one of seven included cohorts) from Tadros et al., 2023. The
same Royal Brompton HCM cohort genotypes were the matched target population. This
cohort included 448 patients with HCM and 1219 matched healthy controls. Cases were
unrelated British HCM patients from the Royal Brompton & Harefield Hospitals NHS Trust

Cardiovascular Research Biobank. For further details, please see (Tadros et al., 2023).

3.2.3 UK Biobank

The UK Biobank project is a large-scale study that collected deep genetic and phen-
otypic data on ~500,000 individuals aged between 40 and 69 from across the United King-
dom. This resource provides a variety of phenotypic and health-related information on
each participant, including biological measurements, lifestyle indicators, biomarkers, and
imaging, as well as mapping to each participant’s NHS records (which provide, for ex-

ample, diagnostic information). All participants provided DNA for genotyping (Sudlow
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et al., 2015).

As detailed in Bycroft et al., 2018, genotype calling was performed by Affymetrix
on two purpose-designed arrays. ~50,000 participants were run on the UK BiLEVE Ax-
iom array, and the remaining ~450,000 were run on the UK Biobank Axiom array. There are
805,426 markers in the released genotype data. The genotype data were quality controlled
(QQC). In addition, the dataset was phased and ~96 million genotypes were imputed us-
ing computationally efficient methods combined with the Haplotype Reference Consortium
(http:/ /www.haplotype-reference-consortium.org/) and UK10K haplotype (https:/ /www.
sanger.ac.uk/collaboration/uk10k/) resources.

Given that target data should mirror the ethnic mix of base data, I excluded parti-
cipants of non White ethnicity and with a kinship coefficient > 12.5%. UKBB includes 1,605

cases of schizophrenia, and 597 cases of HCM.

3.3 Methods

As discussed in section[I.5.1) PRSs are generated by applying the effect sizes from
a GWAS (in PRS terms, the base dataset —a GWAS summary) onto a genotyped cohort (in
PRS terms, the target dataset); the sample from which the GWAS was generated and the
target cohort should ideally not overlap.

For this work, the target populations for schizophrenia are three of the five largest
PGC wave 3 cohorts (Trubetskoy et al., 2022), as described in section above. For each
cohort, the relative leave-one-out (LOO) GWAS was used as the base dataset. I present the
results on the xs234 cohort as the main schizophrenia results, while results for the c/z2a and
celso cohorts are presented as sensitivity analyses in the Appendix. The base dataset for the
HCM GWAS is the meta-analysis described in paragraph[3.2.2} as generated in (Tadros et al.,
2023). The target dataset is the UK Biobank (Sudlow et al., 2015). A sensitivity analysis was
conducted on the leave-one-out GWAS excluding the Royal Brompton HCM cohort (one of

seven included cohorts) from Tadros et al., 2023, and the same Royal Brompton HCM cohort


http://www.haplotype-reference-consortium.org/
https://www.sanger.ac.uk/collaboration/uk10k/
https://www.sanger.ac.uk/collaboration/uk10k/
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genotypes as the matched target population.

As part of work for this thesis I have generated tissue-specific enhancer lists (Chapter
2). These enhancers are likely to be significant in regulating genes in brain (for the neural-
specific lists) and in heart (for the cardiac-specific lists), as they were selected on the basis of
significant co-expression with promoters, and 3D-genome interactions, as part of the AR+C
(Georgieva, 2022), as well as on the basis of their expression in the tissue in question.

Figure 3.2l summarises the steps involved in generating partitioned PRSs (pPRSs),
and in comparing them with the original GWAS PRS. In brief, for each base-target paired

dataset, and for each tissue-specific enhancer list:

1. Three ‘base datasets” are used. The original GWAS (or leave-one-out GWAS), the

enhancer-based and the residual subsets of the original GWAS.

2. The original GWAS and each of the subsets are QCed and clumped. Of note, the
enhancer-based and residual partitions are clumped together, so that there is no LD over-
lap between the SNPs; in this process, SNPs within the enhancer partition are prior-
itised over those in the residual partition — e.g., if there are two SNPs in the same LD
block, one falling within an enhancer, and one falling outside of it, the enhancer-based
SNP is retained even if it has a higher disease association p-value, due to the a-priori

hypotheses about the importance of long-range and tissue-specific gene regulation by

enhancers in schizophrenia (see sections[2.1.1jand 3.1.2).

3. A disease PRS is calculated for each of the three partitions on the target population

(see next section for the technical detail about how the calculation is performed).

4. Modelling is performed to calculate the amount of heritability explained by each base
dataset, on its own and combined (e.g., combining the enhancer-based and residual par-

titions) — see section [3.3.2

5. Finally, two more modified PRSs are calculated and modelled onto the target popula-

tion, by multiplying SNP-disease association measure 3 coefficient by either the effect
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size of each tissue-specific enhancer (its association measure with a target gene), or by

its tissue-specific expression.

I will go into specific details for each step over the next sections.

3.3.1 PRS calculation

3.3.1.1 GWAS (base) and target quality control (QC)

The base datasets — the GWASes used to build the PRS — are first quality controlled
(QCed) by removing rare variants (MAF < 0.01) and those with INFO score < 0.8. The target
dataset — the cohort on which the PRS will be calculated — is then quality controlled. This

entails:

¢ Standard target QC, including filtering out variants with a MAF < 0.01, INFO score
< 0.8, SNPs in controls with p < 107'* in a Hardy-Weinberg Equilibrium Fisher’s
exact test (which are more likely affected by genotyping error or the effects of natural
selection); SNPs that are missing in a high fraction of subjects (> 10%), since this may
indicate problems in the DNA sample or processing.

¢ Target pruning to remove highly correlated SNPs; then, on pruned SNPs, removing
individuals with high heterogeneity — measured as an F coefficient > 3 standard devi-
ations (SD) from the mean — as this might indicate DNA contamination or high levels

of inbreeding.

Then, considering the specific base and target datasets, the two datasets are har-

monised by:

e Strand flipping — e.g., recoding SNPs encoded as A>T in the base and T>A in the
target dataset.
* Removing mismatching SNPs —e.g., SNPs for the same position where the alternative

allele did not match, such as A>T in the base and A>G in the target dataset.
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3.3.1.2 GWAS (base) partitioning and clumping

The base GWAS is then divided into paired enhancer-based and residual partitions
for each enhancer list, by separating SNPs falling inside enhancers (£100bps). The two lists
then need clumping together, so that a global PRS can be calculated without the risk of
including multiple SNPs per LD block. Clumping, as discussed in paragraph works
by selecting the top variant (i.e., the SNP with the lowest p-value) for each clump. Therefore,
to prioritise enhancer-residing SNPs, enhancer-based SNP p-values are divided by 100,000
before clumping, so that they are retained with priority over nearby residual SNPs. The
prioritised enhancer SNP list and the residual list are then clumped together to only retain
one SNP per LD block per paired enhancer-based and residual partitions for each enhancer
list.

The settings for clumping both the LOO GWAS, as well as the paired enhancer-based
and residual partitions, are the PLINK flags:

——clump-pl 1 ——clump—p2 1 ——clump—kb 500 ——clump-r2 0.1.
This means that only one SNP is retained for each 500Kb window, or for any block with an

LD 2 > 0.1.

3.3.1.3 Annotation and up-weighting of enhancer-based GWAS (base) partition SNP

odds ratios

After clumping together, the enhancer-based and residual GWAS (base) partitions
are again separated. The enhancer-based SNP p-values are multiplied by 100,000 to restore
the original p-value for the remainder of the analysis.

The enhancer-based GWAS (base) partition is annotated using data from the AR+C,
including the maximum effect size (ES) for each enhancer, and the mean log-transformed
tissue-expression value for neural or cardiac enhancers.

Three separate measures of SNP-disease association are collected to produce enhancer-

based annotated partitions:



82 Chapter 3. Schizophrenia and HCM heritability from partitioned PRSs

¢ The original GWAS’ SNP association odds ratio (OR), which is the canonical measure
to use in PRS scoring.

¢ A product of the SNP association OR and the AR+C effect size (ES) for the specific
enhancer — but transformed to obtain a value comparable in scale to the original OR.

Keeping in mind that 5 = In(OR), this is calculated as:
ORpg = e#*E9) (3.1)

¢ A product of the SNP association OR and the enhancer tissue-specific expression (1°S..,)

in transcripts per million (tpm) for the specific enhancer, calculated as:
ORys,,, = PP Ser) (3.2)

Partitioned PRSs are then calculated for each of these three measures for each enhancer-based

partition, for each enhancer list.

3.3.1.4 PRS calculation

PRSs are calculated using PRSice 2.3.5 (Choi & O’Reilly, 2019; Euesden et al.,[2015)
using the clumping and thresholding method (see section[I.5), and selecting a fixed and pre-
defined p-value threshold of 0.5 (and 0.05 as a sensitivity analysis in the Appendix), so that
PRSs are comparable across cohorts and lists.

As variants have already been clumped in one of the steps above, PRSice is run
with the flags:

——no—clump ——keep—ambig ——quantile 3 —=binary—target T' ——prevalence X
with prevalences of 0.01 for schizophrenia (Saha et al., 2005), and of 0.00225 for HCM (Marian
& Braunwald, 2017). The covariates included age, sex, and the first 10 PCA components of

the genotypes for the target population.
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3.3.2 Calculation of the proportion of variance explained by the genetic

factor — or coefficient of determination

As described above, I produced a PRS for each genomic partition (original clumped
GWAS, tissue-specific enhancer-based and residual partitions), for each enhancer list (e.g.,
NEURAL SIGNIFICANT ENHANCERS), for each target population/base GWAS pair.

To calculate the proportion of variance explained by the genetic factor for each
target population I used a logistic model in the form of: dz ~ PRS, with a logit link func-
tion to obtain measures of model fit — summarising the amount of the diagnostic variance
that is explained by the PRS. This also allowed to calculate standard measures of model fit,
including a Nagelkerke pseudo-R?. The Nagelkerke pseudo-R? is however liable to over
or under-estimations of the variance explained, as suggested in Lee et al., 2012, depending
on the degree of genetic disease liability, and on the target population’s prevalence of dis-
ease. This is often high in case-control samples (usually around 50%), which can lead to
over-estimations of the variance explained.

To convert the raw Nagelkerke pseudo-R? onto the liability scale for the condi-
tion, and adjust for ascertainment bias, I converted the raw performance measures of such a
model into the proportion of the total variance explained by the genetic factor on the liability
scale, and corrected this for ascertainment, as per Lee et al., 2012.

Rp...., is the proportion of the total variance explained by the genetic factor on the

observed probability scale for an ascertained case-control study:

2

, Px(1-P) ol ,
R = |zX X —— X0 (3.3)
Occ K x (1-K) o2 g

Where:

¢ K is the population disease prevalence;
* P is disease prevalence in the case-control sample;

* zis the height of a normal density curve at the point that truncates the proportion K
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in the upper tail;

* goc is the genetic liability for the case-control (CC) condition.

From this formula one can derive R;_ _, or the proportion of the total variance ex-

plained by the genetic factor on the liability scale, corrected for ascertainment:

R, xC

Occ

2 9
Rlcc—a

= (3.4)
914+ R xOxC

Where:

m is the mean liability for cases
Kx(1-K) Kx(1-K)

T 2 “Px(1-P)
P-K P-K

-k |"M 1K

0 =m x —t

t is the threshold on the normal distribution truncating the proportion of disease pre-

valence K, and 6
For this work, a modified version of this formula was used, derived by Sam Choi
for Choi and O’Reilly, 2019, as documented at https://groups.google.com/g/PRSice/c/
kqLKYUhHfthM/m/EMck3Pa9BQA]J:

R2

Nage
1+ Ry X C xex 0

X C xe

R%’hoi = (35)

Where:

* R}, is the Nagelkerke pseudo-R? from the logistic model

e o — P2xXP (1 _ P)2><(1—P)

This allowed to a) adjust the output for total disease liability, and b) adjust the
output — obtained from a case-control dataset where about 50% of the participants had the
disease in PGC cohorts, or where a very small minority of the population had the condition

at hand when using UKBB — to comparable values.


https://groups.google.com/g/PRSice/c/kqLKYUhHfhM/m/EMck3Pa9BQAJ
https://groups.google.com/g/PRSice/c/kqLKYUhHfhM/m/EMck3Pa9BQAJ

3.4. Results 85

3.3.3 Software

Statistical analyses were performed in R 4.2.2 (R Core Team, 2023), using Tidyverse
libraries (Wickham et al., 2019). Some genomic manipulations required the use of BioCon-
ductor 3.16 (Gentleman et al., 2004) packages including biomaRt (Durinck et al., 2009), Gen-
omicRanges (Lawrence et al., 2013), and rtracklayer (Lawrence et al., 2009). Some plots use
colour from the MetBrewer package (Mills, 2022).

Most genomic manipulations and genotype-phenotype associations were performed
using PLINK 1.9 and 2 (Chang et al.,[2015; Purcell & Chang, [2022). C+T polygenic risk scor-
ing was performed using PRSice 2.3.5 (Choi & O'Reilly, 2019).

A pipeline was built automating most of these steps utilising Nextflow 22.10 (Di
Tommaso et al., 2017), using Docker containers hosted on Docker Hub https:/ /hub.docker.
com: container emosyne/prsice_gwama_exec:1.0 for PRSice, container emosyne/plink2:1.

23 for PLINK and PLINK2, container emosyne/r_docker:1.97 for R and all related packages.

3.3.3.1 Code availability

All code for this work is available on the GitHub repositories:

* Schizophrenia/PGC pipeline: https:/ /github.com /emosyne/lisa_percohort_devel_pub
¢ HCM pipeline: https:/ /github.com/emosyne/HCM_cardiac_enhs

3.4 Results

In this chapter I will develop “partitioned” polygenic risk scores, or PRSs where two
genomic compartments (e.g., the tissue-specific enhancers and the residual compartments) are
considered separately for polygenic risk scoring, and then disease heritability is calculated
separately for the original GWAS for the condition (h% ), as well as for the partitioned PRSs
(h2prs)- Twill also test if multiplying SNP-disease association 3 for enhancer-based SNPs by
either an effect size of the tissue-specific enhancer, or by its neural expression, can increase

: 2
disease h:ppg-
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emosyne/plink2:1.23
emosyne/r_docker:1.97
https://github.com/emosyne/lisa_percohort_devel_pub
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To do so, as we have seen in more detail in the Methods (see Figure [3.2), this
chapter consists of analyses which start from a base GWAS, a target population, and a list of
genomic coordinates, forming an enhancer-based genomic partition (these were generated
in Chapter 2). Then, for each base (GWAS), target (population) and enhancer list combin-
ation, the base and target datasets are QCed, and three genomic partitions are created: a
whole-GWAS partition (called original GWAS), and its two subsets, the tissue-specific enhan-
cer partition (+100bps at each side), and the residual partition. The three partitions are then
clumped (the original GWAS on its own, and the tissue-specific enhancer and residual par-
titions together). Partitioned PRSs for the condition — schizophrenia or HCM — are then
computed for each of the three genomic partitions — using a fixed C+T threshold of 0.5.
For the tissue-specific enhancer partition, in addition to calculating the standard PRS (which
makes use of OR and p-value from the base GWAS), I also calculated modified versions
of the score, utilising OR multipliers derived from AR+C-derived enhancer tissue-specific

expression data. The resulting PRSs are:

¢ The original clumped GWAS PRS, including all SNPs (after clumping) and using the
GWAS-derived original ORs (for comparison).

¢ Three tissue-specific enhancer (I'S_E N H) partitions, resulting from all SNPs within 100bps
of the specific enhancer list being considered. This partition is calculated as three dis-
tinct “versions”: using the original OR for each SNP; using a modified OR enhanced
using the AR+C effect size measure (ES); using a modified OR enhanced using tissue-
specific enhancer expression values.

* A residual partition, equivalent to the original base, after subtraction of tissue-specific

enhancer SNPs, and clumping the two lists together — but prioritising enhancer SNPs.

The output of the analysis is presented as a number of plots, allowing the reader to
compare the total variance explained by the genetic factor on the liability scale, corrected for
ascertainment — called the coefficient of determination — for each partition, and for models
including more than one partition. Please see Figure for a graphical summary of the

methods for this chapter.
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3.4.1 Neural tissue-specific enhancers and variance explained in schizo-

phrenia

Analyses of schizophrenia and neural tissue-specific enhancers were performed
on PGC Consortium cohorts. Here I present the results regarding the xs234 PGC cohort
as target, and the relative leave-one-out genome-wide association study for schizophrenia
(LOO GWAS) as base GWAS, to avoid overlap between the base and target samples. Results
for a further two PGC cohorts (c/z2a and celso) can be found for comparison in the Appendix,
section Additionally, results obtained running the pipeline at the additional threshold
of p = 0.05 (instead of the main p = 0.5) for the xs234 PGC cohort can be found in Appendix
section[A.2]

The enhancer lists I tested — those significantly enriched in GWAS signals for schizo-

phrenia in Chapter 2 — were:

1. NEURAL SIGNIFICANT ENHANCERS: ~ 21K neural-expressed enhancers, with signific-
ant co-expression with at least one promoter, and with evidence of significant E-P 3D
contact.

2. NEURAL SIGNIFICANT ENHANCERS WITHIN A GRB: ~ 8K neural-expressed enhan-
cers, subset from 1), additionally overlapping a human-mouse GRB.

3. NON-NEURAL ENHANCERS: ~ 20K enhancers with no neural expression — not neces-
sarily in a significant enhancer-promoter pair (negative control 1).

4. NON-ASSOCIATED ENHANCERS: ~ 34K FANTOMS enhancers not associated to a gene

—not necessarily with any neural expression (negative/neutral control 2).

3.4.1.1 Patient and SNP selection for the xs234 PGC schizophrenia target cohort

The xs234 PGC European ancestry cohort included 2,077 people with schizophrenia,
and 2,341 controls. This is one of six batches of the Swedish Schizophrenia Study, collected
in a multi-year project; cases were identified from the Swedish population via the Swedish

Hospital Discharge Register, which captures all hospitalizations. Controls were selected at
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random from Swedish population registers. For more details on PGC samples, consult the
latest PGC schizophrenia GWAS paper (Trubetskoy et al., 2022).

The original target xs234 European population files contained genetic information
about 4,418 people, and on 8,957,878 imputed SNPs for each person. Following QC, 4,335
participants remained, and information about 6,758,413 imputed SNPs. The original xs234
leave-one-out PGC schizophrenia base GWAS based on European populations contained
information about 7,660,660 SNPs, based on 51,419 cases and 74,993 controls. After base
GWAS QC, information remained about 7,113,397 SNPs, which further reduced to 256,598
following clumping.

In terms of tissue-specific lists, when splitting the base GWAS into an enhancer-
based and residual partitions, the total sum of SNPs in these partitions did not equal to the
QCed, clumped original GWAS partition, as the splitting process — as detailed in the meth-
ods — was doped by prioritising SNPs in enhancer partitions by temporarily reducing their
p-value before joint clumping. As an example of how the number of included SNPs changed
over the process, I am presenting here data for one such lists, the NEURAL SIGNIFICANT EN-

HANCERS, in this cohort:

¢ Number of schizophrenia GWAS SNPs in the NEURAL SIGNIFICANT ENHANCERS par-
tition before clumping: 25,642.

¢ SNP number in the corresponding residual partition before clumping: 7,087,756. The
sum of the two before clumping still equated to 7,113,397 SNPs, which is the number
of SNPs in the original GWAS partition before clumping.

¢ After clumping, there were 13,044 SNPs left in the NEURAL SIGNIFICANT ENHANCERS
partition, preserving ~ 51% of pre-clumping SNPs.

¢ After clumping, there were 242,322 SNPs left in the corresponding residual partition,

preserving ~ 3% of pre-clumping SNPs.

Similar results were obtained for all lists and all base GWASes. The exact numbers of SNPs

in each partition are presented in each section below.
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3.4.1.2 Coefficients of determination for the main genomic partitions in schizophrenia

First, I examined how much of the variance for the schizophrenia phenotype could
be explained by the three main genomic partitions: the original, clumped GWAS, for com-
parison; the enhancer-based partitions; and the residual partitions for each enhancer list. As
explained in more detail in the methods section, I focus on comparing the coefficients of
determination (CoD) — or the proportion of the total variance explained by the genetic factor
on the liability scale, corrected for ascertainment, as in Lee et al., 2012, utilising the formulas
by Choi and O’Reilly, 2019! In the figures, I present both the raw Nagelkerke pseudo-R? for
each logistic model, and the CoD, for comparison. The raw Nagelkerke pseudo-R? are not
commented on in text. The main analysis focussed on the xs234 European population.

I found that the original leave-one-out GWAS CoD for schizophrenia in this sample,
based on ~ 161K SNPs, equated to 9.85% (95% confidence interval (CI): 8.72; 11.01). The
CoD per SNP equated to 6.13 x 1077 (Figure 3.3). These values of course did not differ
between enhancer lists.

With regards to the enhancer-based partitions, these had CoDs of 3.72% (95% CI
3.00; 4.45) and of 2.22% (95% CI 1.66; 2.79) for the NEURAL SIGNIFICANT (~ 8 K SNPs), and
NEURAL SIGNIFICANT WITHIN GRBs (~ 3K SNPs) partitions, respectively. The CoD per
SNP equated to 47.8 and 77.9 x1077, respectively, which equates to between ~8 and ~13
times the value per SNP of the original GWAS (Figures and[3.3B).

The control lists (NON NEURAL and NON ASSOCIATED ENHANCERS) showed lower
explained variance per SNP as compared to the NEURAL SIGNIFICANT ENHANCERS par-
titions, with CoDs per SNP of ~26 and ~30 x1077, respectively. These values were still
between 4 and 5 times the value per SNP of the original GWAS (Figures and[3.3D).

Sensitivity analysis in xs234 at the p-value threshold of 0.05

In a sensitivity analysis, I then tested whether comparing PRSs between partitions
while using a different threshold of 0.05 instead of 0.5 made a difference in the results. The
tigures for each enhancer list for this analysis are Appendix Figures to
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Coefficients of determination for the main three partitions: original, enhancer and residual
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Figure 3.3: Coefficients of determination for schizophrenia for the three main partitions, original GWAS,
residual and tissue-specific enhancers, in the xs234 cohort.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor for each
PRS for the three main genomic partitions — original GWAS, residual and tissue-specific enhancers, in the xs234
cohort. In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, utilising
the formula by Choi and O’Reilly, — or coefficients of determination (CoD). In baby blue the original
Nagelkerke’s R? for comparison. Each plot on the left shows the overall CoD % and 95% confidence interval,
and on the right the corresponding point value adjusted per SNP (x10~7). Panels A) to D) show the CoDs for
each genomic partition for the NEURAL SIGNIFICANT, NEURAL SIGNIFICANT WITHIN GRBS, NON-NEURAL,

and for the NON-ASSOCIATED lists, respectively.
Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target data:

x5234 European PGC schizophrenia cohort.
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Despite the smaller number of SNPs included at this lower threshold, ~45k, the
leave-one-out GWAS coefficient of determination (CoD) for schizophrenia in this sample
equated to 10.28% (95% CI 9.13; 11.47), higher than that at the original threshold of 0.5. The
CoD per SNP equated to 22.91 x10~7 (Appendix figure[A.9A).

At this threshold, the NEURAL SIGNIFICANT (~2k SNPs) and NEURAL SIGNIFIC-
ANT WITHIN GRBS (~800 SNPs) partitions had CoDs of 3.13% (95% CI 2.47; 3.81) and of
1.84% (95% CI 1.32; 2.36), respectively (Appendix figures and[A.10]A). These partitions
showed CoDs per SNP that were ~7 and ~10 times the value per SNP of the original GWAS,
values comparable to the results for the original 0.5 threshold (Appendix figures and
[A.10B). The NON NEURAL and NON ASSOCIATED partitions showed CoDs per SNP that
were both ~4.5 the value per SNP of the original GWAS.

Sensitivity analysis in other base-target sample pairs

Comparing the main results with those obtained in other large PGC cohorts at
the original p=0.5 threshold, one finds that the original leave-one-out GWAS coefficient of
determination (CoD) for schizophrenia in each sample varied between 7.67% (95% CI 6.55;
8.82) in the celso, and 11.08% (95% CI 10.36; 11.81) in the clz2a cohorts (Appendix figures
[A.5A, and[A.TA), as compared to 9.85% in xs234. The CoD per SNP varied between 6.91 and
6.33 x10~7 (Appendix figures [A.5B, and [A.1B), both close to the headline figure of 6.13 in
xs234.

The NEURAL SIGNIFICANT partitions had CoDs of 2.63% (95% CI 1.95; 3.32) in the
celso, and of 3.18% (95% CI12.77; 3.58) in the clz2a cohorts, respectively (it was 3.72% in xs234).
The CoD per SNP equated to 38.36 and 39.08 x 1077, respectively, which are between 7 and
10 times the value per SNP of the original GWAS (Appendix figures[A.5B, and [A.1B), close
to xs234 ratios. NON NEURAL and NON ASSOCIATED partitions both had CoDs per SNP

~30 in celso, and between 27 and 30 for clz2a, respectively, which are between 4 and 5 times

the value per SNP of the respective original GWAS (Appendix figures|A.7B, |A.8B, |A.3B, and
A.4B).
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3.4.1.3 Coefficients of determination for the original GWAS PRS vs multivariable mod-

els in schizophrenia

In this section, I compare the CoDs for various multivariable models incorporat-
ing the enhancer-based and residual partition PRSs as separate predictors. The comparator,
once more, is the original leave-one-out GWAS. As it was not clear if the enhancer-based and
residual partition PRSs — used as independent predictors of schizophrenia — might show in-
teractions, or if their relationship with the outcome would be linear, they were modelled in

three ways:

* Asasimple logit additive model, in the form of: SCZ ~ T'S_ENH_PRS + residual_PRS,
where SCZ is schizophrenia (binary), and T'S_ENH_PRS and residual_PRS are the

continuous PRSs for each partition.

* As a logit additive model plus interactions, in the form of: SCZ ~ T'S_ENH_PRS x
residual_PRS.

* Asalogit additive model plus interactions, plus quadratic terms: SCZ ~ T'S_ENH_PRS x
residual_PRS +TS_ENH_PRS? + residual_PRS>.

The main analysis, once more, focussed on the xs234 European population.

As per the previous section, the original leave-one-out GWAS coefficient of de-
termination for schizophrenia in this sample, based on ~161k SNPs, equated to 9.85% (95%
CI 8.72;11.01). The simple logit additive model explained respectively 10.26% (95% CI 9.11;
11.45) and 10.37% (95% CI 9.22; 11.56) of the adjusted variance utilising the NEURAL SIG-
NIFICANT, or the NEURAL SIGNIFICANT WITHIN GRBS partitions, respectively (Figure 3.4).
This is a small increment, despite a reduction in SNPs accounted for by the two models, with
~157K and ~159K, respectively. The point values for the CoD for the two non-significant,
control partitions were lower, at 9.81 and 9.90% for the NON NEURAL and the NON ASSOCI-
ATED partitions, respectively (Figure B.5).

For the logit additive model plus interactions, the CoD values were comparable to

the simple additive model’s, with point values gaining 0.01 to 0.05 percentage points in the
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CoDs % and 95% Cls for the Original GWAS PRS vs
Additive Models Including the Residual and Enhancer Partitions

A) neural significant

Original GWAS PRS (SNP | 555 [2053)

N=160656)
Residual + xs234 Neural !
significant enh partition PRS-
(SNP N=156973) 0.26

Residual x xs234 Neural

significant enh partition PRS 7_
(SNP N=156973) 027

SCZ diagnosis ~

Residual x xs234 Neural
significant enh partition |

PRS + quadratic terms (SNP
N=156973)

201]

20

]
= (S
<)

0
B) Neural significant within a GRB

[2094)

Original GWAS,\ITRS (SNP

=160656) o5
3 .
Residual + xs234 Neural (21.92)

% significant enh GRB partition —A
8 PRS (SNP N=159350) 087
=)
8
E Ffzesidual ﬁéstBM Neural

significant en partition —-,0—
8 PRS (SNP N=159350) 042

Residual x xs234 Neural
significant enh GRB partition
PRS + quadratic terms (SNP

N=159350)

g

i
— = = &
2 B

0 20

R2 ® Choi
® Nagelkerke

Figure 3.4: Coefficients of determination for schizophrenia for the original GWAS PRS vs multivariable
models in the xs234 cohort - significant partitions.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor. In
brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., utilising the
formula by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence inter-
vals. In baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs,
from top to bottom for: @ The original LOO GWAS PRS, for comparison; @ Logistic model 1 — simple ad-
ditive: SCZ ~ TS_ENH_PRS + residual_PRS; @ Logistic model 2 — additive model plus interactions:
SCZ ~ TS_ENH_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: SCZ ~TS_ENH_PRS x residual_PRS +TS_ENH_PRS? + residual_PRS>.

Panels A) and B) represent the CoDs for each genomic partition for the NEURAL SIGNIFICANT and NEURAL
SIGNIFICANT WITHIN GRBSs lists, respectively.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target data:
x5234 European PGC schizophrenia cohort.
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CoDs % and 95% Cls for the Original GWAS PRS vs
Additive Models Including the Residual and Enhancer Partitions
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Figure 3.5: Coefficients of determination for schizophrenia for the original GWAS PRS vs multivariable
models in the xs234 cohort — non-significant partitions.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor. In
brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., utilising the
formula by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence inter-
vals. In baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs,
from top to bottom for: @ The original LOO GWAS PRS, for comparison; @ Logistic model 1 — simple ad-
ditive: SCZ ~ TS_ENH_PRS + residual_PRS; @ Logistic model 2 — additive model plus interactions:
SCZ ~ TS_ENH_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: SCZ ~TS_ENH_PRS x residual_PRS +TS_ENH_PRS? + residual_PRS>.

Panel C) and D) represent the CoDs for each genomic partition for the NON NEURAL and NON ASSOCIATED
lists, respectively.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target data:
x5234 European PGC schizophrenia cohort.
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NEURAL SIGNIFICANT, or the NEURAL SIGNIFICANT WITHIN GRBS partitions, respectively
(Figure . Point values for the CoD for schizophrenia for the two non-significant, control
partitions remained unchanged in the interaction models as compared to the simple additive
model (Figure 3.5).

Finally, for the logit additive model plus interactions plus quadratic terms, the CoD
values showed a very small further increase, reaching 10.42 and 10.49% in the NEURAL SIG-
NIFICANT, or the NEURAL SIGNIFICANT WITHIN GRBS partitions, respectively (Figure 3.4).
Point values for the CoD for schizophrenia for the two non-significant, control partitions also
modestly climbed in the interaction + quadratic terms models as compared to the simple ad-
ditive model (Figure 3.5).

In conclusion, according to the point estimate, the ‘best’ tissue-specific-enhancer
pPRS-based model for this analysis appears to be that based on NEURAL SIGNIFICANT
WITHIN GRBS; this partition, based on an additive model plus interactions plus quad-
ratic terms, shows a CoD gain of 6.5% as compared to the original leave-one-out GWAS

coefficient of determination for schizophrenia.

Sensitivity analysis in xs234 at the p-value threshold of 0.05

I then tested whether comparing PRSs between partitions at a different p-value
threshold of 0.05 showed major differences from the main analysis. The figures for each
enhancer list for this analysis are in Appendix Figures to]|A.12

In comparison to the higher CoD for schizophrenia from the original LOO GWAS
at this threshold of 10.28% (95% CI1 9.13; 11.47), that of all three multivariable models showed
a modest reduction, to point values ranging between 10.09 and 10.15% for the NEURAL
SIGNIFICANT list, while the same coefficients for the NEURAL SIGNIFICANT WITHIN GRBS
list showed a modest increase, to point values ranging from 10.44 to 10.45% (Figures |A.9D
and[A.I0D).

Non-significant lists both showed reductions in the CoD for schizophrenia, with

point values ranging from 9.86 to 10.01% for both the NON NEURAL and the NON ASSOCI-
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ATED list within GRB lists (Figures|A.11]D and |A.12D).

Sensitivity analysis in other base-target sample pairs

Appendix Figures to in Panel D show the results of the same analysis, at
the original threshold of 0.5, for the celso and clz2a additional PGC samples. For both addi-
tional cohorts, the two significant enhancer lists showed the same small gradual increases as
the xs234. Taking the NEURAL SIGNIFICANT list, within celso, the CoD for the original LOO
GWAS was 7.67%, that for the additive model climbed to 7.96%, and for the model with in-
teractions and quadratic terms it climbed further to 8.00% (Figure [A.5D). For NEURAL SIG-
NIFICANT ENHANCERS WITHIN GRBS within celso, the CoD for the additive model climbed
to 8.17%, and for the model with interactions and quadratic terms it climbed further to 8.18%
(Figure[A.6]D), an increase of 6.6%. Within clz2a, the CoD for the original LOO GWAS was
11.08%, that for the additive model climbed to 11.21%, and for the model with interactions
and quadratic terms it climbed further to 11.23% (Figure [A.TD). For NEURAL SIGNIFICANT
ENHANCERS WITHIN GRBS within clz2a, the CoD for the additive model climbed to 11.17%,
and for the model with interactions and quadratic terms it climbed further to 11.19% (Figure
[A.2D), an increase of 1%.

Both non-significant lists showed inconsistent results between the celso and the

clz2a samples, with decreased (clz2a) and increased (celso) CoDs for the multivariable models

as compared to the original LOO GWAS (Figures|A.3D,|A.4D,[A.7D, |A.8D).

3.4.1.4 Coefficients of determination for enhancer-based partitions in schizophrenia

In this section, I tested whether — by multiplying SNP-disease association measure
f3 coefficient for enhancer-based SNPs by either the effect size of the tissue-specific enhancer,
or by its tissue-specific expression — the PRS calculated using these statistics explained more
of the adjusted variance for schizophrenia. Therefore, I calculated three pPRSs for each

enhancer-based partition, for each base/target pair:

* The PRS based on the original GWAS OR, for comparison;
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* ORpgs: A PRS where the OR was multiplied by each enhancer’s effect size (or ES, the
measure of association of the enhancer with its top target gene). The adjustment was
done using equation (3.1 in order to maintain a value on the same scale as the original
OR.

* ORrs.,,: A PRS where the OR had been adjusted for each hosting enhancer’s neural-
specific expression value in tpm. The adjustment was done using equation[3.2} in order

to maintain a value on the same scale as the original OR.

Of note, enhancer-specific measures were only available for enhancers annotated within the
AR+C, and A) with tissue-specific expression in neural tissue > 0 for neural-specific expres-
sion; B) with evidence of significant contact with at least one nearby promoter for effect size.
For those enhancers without one of these measures available (e.g., NON NEURAL ENHAN-
CERS all had no neural expression available), the original OR value was used. Therefore,
the results for the negative lists for this analysis were not deemed relevant, and won’t be
reported. Once more, the main analysis focussed on the xs234 European population.

Both significant lists showed no improvement in CoDs for schizophrenia calcu-
lated using the ORgg or the ORrg,,,, as compared to the original OR. The ES-enhanced list
even saw a small drop in its CoD (Figure 3.6).

Sensitivity analysis in xs234 at the p-value threshold of 0.05

I tested whether comparing PRSs between enhancer-based partitions at a different
p-value threshold of 0.05 produced different results. Confirming the main results, both sig-
nificant lists showed no change in CoDs for schizophrenia calculated using the ORgg or the

ORprs,,,, as compared to the original OR, or a very small drop (Figures and )-

Sensitivity analysis in other base-target sample pairs

Panel C of Appendix Figures and [A.6 shows the results of the same
analysis, at the original threshold of 0.5, for the celso and clz2a additional PGC samples. The

model developed using the NEURAL SIGNIFICANT list in the celso cohort saw a small drop
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CoDs % and 95% Cls for the three enhancer partitions:
Original OR, enhanced by ES, enhanced by expression
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Figure 3.6: Coefficients of determination for schizophrenia for enhancer-based partitions in the
xs234 cohort — significant partitions.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor
for three enhancer-based PRSs — one based on the original OR, the second based on the OR enhanced
by the effect size (ES) of association between each enhancer and promoter, and the final one based
on the OR enhanced by the tissue-specific expression value of each enhancer. In brick red, values
are on the liability scale, corrected for ascertainment as per Lee et al., 2012, utilising the formula by
Choi and O'Reilly, 2019 - or coefficients of determination (CoDs) — and 95% confidence intervals. In
baby blue the original Nagelkerke’s R? for comparison. Panels A) and B) show the CoDs for each
genomic partition for the NEURAL SIGNIFICANT and for the NEURAL SIGNIFICANT WITHIN GRBS
lists, respectively.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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in the CoD for schizophrenia for both alternative OR measures, while the model developed
with the NEURAL SIGNIFICANT WITHIN GRBS list saw a very small increase and a small
decrease for the CoDs calculated using the O Rgg or the ORrg,,,, as compared to the original
OR, respectively (Panel C of Appendix Figures and [A.6). The models developed using
the clz2a cohort for both significant enhancer lists saw a small decrease and no change for the

CoDs calculated using the O Rgs or the ORyg
(Panel C of Appendix Figures[A.T|and [A.2).

as compared to the original OR, respectively

exp’

3.4.1.5 Can tissue-specific, enhancer-based partitioned PRSs help stratify people at risk

for schizophrenia?

The final application of pPRSs for schizophrenia was to test them as adjuncts to
canonical PRSs to stratify people for schizophrenia risk. To do so, I created ‘double” quantile
plots. Regular quantile plots are plots where the risk for a condition, in this case schizo-
phrenia, is expressed as an OR on the y axis, while the discrete x axis represents popula-
tion quantiles based on their PRS for the disease. Usually, and again in this case, the ORs
for schizophrenia for higher quantiles are relative to the OR for schizophrenia of the first
quantile, which is the reference. These plots are useful to compare ORs for the condition
between those at lowest genetic risk (lowest PRS quantile), and those at the highest.

‘Double” quantile plots work exactly as regular quantile plots, representing the
OR for schizophrenia on the y axis, and population quantiles on the x axis. However, for
each original PRS quantile, the population is further subdivided into three sub-quantiles,
based on each participant’s NEURAL SIGNIFICANT ENHANCERS partition pPRS. As shown
in Figure the plot represents both population quantiles — in brick colour — and sub-
quantiles — in darkening shades of blue for sub-quantiles 1 to 3. It is easy to see in the figure
that — while stratifying the xs234 cohort by main PRS quantiles clearly separates people by
their schizophrenia ORs, with people in the third quantile having a schizophrenia OR of > 7
as compared to those in the first — further stratifying each quantile by NEURAL SIGNIFICANT

ENHANCER pPRS does not provide any additional benefit, as the three sub-quantiles do not
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Participant distribution by OR for SCZ, first by original GWAS quantile (in red)
and further by xs234 Neural significant enh quantile (shades of blue)
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Figure 3.7: “Double’ quantile plot, expressing odds ratios (ORs) for schizophrenia in the xs234
cohort.

The quantile plot shows, in brick red, the odds ratios and 95% confidence intervals for schizophrenia
for three quantiles of original GWAS PRS, from 1 (reference, and lowest PRS) to 3. For each original
GWAS PRS quantile, the population was then subdivided into three further quantiles, based on each
participant’s NEURAL SIGNIFICANT partition pPRS. The enhancer-based quantiles (from Enh ql to
Enh g3) are plotted as ORs and 95% confidence intervals in darkening shades of blue. .

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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appear to show increasing risk from lower to higher pPRS values.



102 Chapter 3. Schizophrenia and HCM heritability from partitioned PRSs

3.4.2 Cardiac tissue-specific enhancers and variance explained in HCM

Analyses of HCM and cardiac tissue-specific enhancers were performed on the
largest GWAS to date for the condition as the base (see section[3.2.2)and Tadros et al.,[2023),
and using UK Biobank genotypes as the target dataset (see section and Bycroft et al.,
2018). A sensitivity analysis including results obtained running the pipeline at the additional
threshold of p=0.05 (instead of the main p=0.5) for same base/target populations can be
found in the Appendix, in section A turther sensitivity analysis was performed using
the unpublished Royal Brompton leave-one-out GWAS from Tadros et al., 2023|as the base,
and the Royal Brompton HCM cohort as the target dataset.

The analyses started from the following enhancer lists:

1. CARDIAC SIGNIFICANT ENHANCERS: ~ 9K cardiac-expressed enhancers, with sig-
nificant co-expression with at least one promoter, and with evidence of 3D contact
between the enhancer and the promoter from the AR+-C.

2. NON CARDIAC ENHANCERS, ~ 41K enhancers with no cardiac expression — not neces-
sarily in a significant enhancer-promoter pair (negative control 1).

3. NON-ASSOCIATED ENHANCERS: ~ 34K FANTOMS enhancers not associated to a gene

— not necessarily with any cardiac expression (negative/neutral control 2).

3.4.2.1 Patient and SNP selection for the UK Biobank target cohort

The HCM base GWAS based on European populations contained information about
5,606,779 SNPs, based on 900 HCM cases and 68,3593 controls (Tadros et al., 2023). The target
and base files were quality controlled, which entailed removing rare variants (MAF < 1%),
and those with INFO scores < 0.8 (low imputation quality), as well as filtering out SNPs in
controls outside Hardy-Weinberg Equilibrium or with high missingness. Then, considering
the specific base and target datasets, the two datasets were harmonised by strand flipping
and removing mismatching SNPs. See the methods (section [3.3.1) for details.

After base GWAS QC, information remained about 5,600,542 SNPs, which further
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reduced to 236,509 following clumping. The original UKBB cohort included ~ 500K volun-
teers, of which 597 cases of HCM, before any filtering. Each participant had ~96 million
imputed SNPs available for testing. Following European ancestry selection, as well as QC,
413,415 participants remained, of which 455 cases of HCM. Only SNPs in the clumped base
GWAS or within the selected enhancer lists were retained, resulting in 289,499 SNPs per
participant.

In terms of tissue-specific lists, when splitting the base GWAS into an enhancer-
based and residual partitions, the total sum of SNPs in these partitions did not equal to the
QCed, clumped original GWAS partition, as the splitting process was doped by prioritising
SNPs in enhancer partitions by temporarily reducing their p-value before joint clumping. As
an example, here I present data for one such lists, the CARDIAC SIGNIFICANT ENHANCERS,

as resulting from the specific base/target QC:

¢ Number of HCM GWAS SNPs in the enhancer-based partition before clumping: 8,901.

¢ Number in the corresponding residual partition before clumping: 5,591,641. The sum of
the two before clumping still equalled 5,600,542 SNPs in the original GWAS partition
before clumping.

* After clumping, there were 5,544 SNPs left in the CARDIAC SIGNIFICANT ENHANCERS
partition, preserving 62% of pre-clumping SNPs.

o After clumping, there were 245,233 SNPs left in the corresponding residual partition,

preserving 4.4% of pre-clumping SNPs.

Similar results were obtained for all enhancer lists. The exact numbers of SNPs in each

partition are presented in each section below.

3.4.2.2 Coefficients of determination for the main genomic partitions in HCM

First, I examined how much of the variance for the HCM phenotype could be ex-
plained by the three main genomic partitions: the original, clumped GWAS, for comparison;
the enhancer-based partitions; and the residual partition for each enhancer list. The results in

Figure show that the original GWAS CoD for HCM in this sample, based on ~ 166K
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Coefficients of determination for the main three partitions: original, enhancer and residual
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Figure 3.8: Coefficients of determination for HCM for the three main partitions, original GWAS,
residual and tissue-specific enhancers, in the UKBB cohort.

The figure describes the proportion of the variance of HCM explained by the genetic factor for each
PRS for the three main genomic partitions — original GWAS, residual and tissue-specific enhancers, in
the UKBB cohort.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al.,
utilising the formula by Choi and O’Reilly, — or coefficients of determination (CoD). In baby
blue the original Nagelkerke’s R? for comparison. Each plot on the left shows the overall CoD % and
95% confidence interval, and on the right the corresponding point value adjusted per SNP (x1077).
Panels A) to C) show the CoDs for each genomic partition for the CARDIAC SIGNIFICANT, NON
CARDIAC, and for the NON ASSOCIATED lists, respectively.

Base data: HCM GWAS by Tadros et al., Target data: UKBB European sample.
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SNPs, equated to 5.63% (95% confidence interval (CI): 5.46; 5.81). The CoD per SNP equated
to 3.38 x 1077. These values did not differ between enhancer lists. The CARDIAC SIGNI-
FICANT ENHANCERS partition had a CoD of 1.98% (95% CI 1.87; 2.08). The CoD per SNP
equated to 62.92 x 1077, which is ~ 19 times the value per SNP of the original GWAS (Figure
B.8A). The control lists (NON NEURAL and NON ASSOCIATED ENHANCERS) showed lower
explained variance per SNP as compared to the CARDIAC SIGNIFICANT ENHANCERS parti-
tions, with CoDs per SNP of 13.57 and 21.58 x10~7, respectively. These values are between
4 and 6 times the value per SNP of the original GWAS (Figures[3.8B) and [3.8C).

Sensitivity analysis on the HCM Royal Brompton cohort

The results in Figure 3.9show that the original leave-one-out GWAS CoD for HCM
in this sample, based on ~ 63K SNPs, equated to 5.37% (95% confidence interval (CI): 4.09;
6.69). The CoD per SNP equated to 8.48 x 10~7. The CARDIAC SIGNIFICANT ENHANCERS
partition had a CoD of 1.09% (95% CI 0.50; 1.69). The CoD per SNP equated to 40.36 x 1077,
which is ~ 5 times the value per SNP of the original GWAS (Figure 3.9)A). The control lists
(NON NEURAL and NON ASSOCIATED ENHANCERS) showed lower explained variance per
SNP as compared to the CARDIAC SIGNIFICANT ENHANCERS partitions, with CoDs per SNP
of 26.02 and 33.34 x 1077, respectively. These values are between 3 and 4 times the value per
SNP of the original GWAS (Figures[3.9B) and [3.9C).

These values are similar to the main UK Biobank analysis, the two main differ-
ences being that in this cohort the CoD per SNP is lower for the CARDIAC SIGNIFICANT
ENHANCERS partition, and all confidence intervals are wider, due to the smaller sample
size (fewer controls). One other noticeable difference is the distribution of the raw Na-
gelkerke’s pseudo- R? values, which this time sat on the right, rather than on the left of the
adjusted CoDs. The reason for this discrepancy sits in the fact that, as discussed in section
the HCM Royal Brompton cohort included 448 patients with HCM and 1219 matched
healthy controls, with a case:control ratio of 1:2.7, versus the ratio of 1:907 in UK Biobank;

as a reminder, the assumed population prevalence of HCM in the population is 1:500. This
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Coefficients of determination for the main three partitions: original, enhancer and residual
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Figure 3.9: Coefficients of determination for HCM for the three main partitions, original GWAS,
residual and tissue-specific enhancers, in the Royal Brompton Hospital HCM cohort.

The figure describes the proportion of the variance of HCM explained by the genetic factor for each
PRS for the three main genomic partitions — original GWAS, residual and tissue-specific enhancers, in
the Royal Brompton Hospital cohort.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al.,
utilising the formula by Choi and O’Reilly, — or coefficients of determination (CoD). In baby
blue the original Nagelkerke’s R? for comparison. Each plot on the left shows the overall CoD % and
95% confidence interval, and on the right the corresponding point value adjusted per SNP (x1077).
Panels A) to C) show the CoDs for each genomic partition for the CARDIAC SIGNIFICANT, NON
CARDIAC, and for the NON ASSOCIATED lists, respectively.

Base data: RBH LOO HCM GWAS by Tadros et al., Target data: Royal Brompton Hospital cohort.
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means that, while the UK Biobank was under-sampling the true prevalence, this RBH clin-
ical sample was obviously enriched in patients, and therefore the raw model fit measures
shifted to opposing directions. It was reassuring to find that the adjusted estimates were

similar.

Sensitivity analysis at the p-value threshold of 0.05

Next, I compared PRSs between partitions while using a different threshold of 0.05
instead of 0.5. The figures for each enhancer list for this analysis are Appendix Figures
to The smaller number of SNPs included at this lower threshold, ~ 36K, meant that
the original GWAS coefficient of determination (CoD) for HCM in this sample equated to
4.72% (95% CI 4.56; 4.88), slightly lower than that at the original threshold of 0.5. The CoD
per SNP equated to 13.08 x 107 (Appendix figure [A.13A). At this threshold, the CARDIAC
SIGNIFICANT ENHANCERS (502 SNPs) partition had a CoDs of 1.78% (95% CI 1.68; 1.88 —
see Appendix figure [A.13)A). This partition showed a CoD per SNP that was ~ 27 times
the value per SNP of the original GWAS, even higher than at the 0.5 threshold (Appendix
figure [A.13B). The NON NEURAL and NON ASSOCIATED partitions showed CoDs per SNP

that were between 6 and 9 times the value per SNP of the original GWAS.

3.4.2.3 Coefficients of determination for the original GWAS PRS vs multivariable mod-

els in HCM

In this section, I compare CoDs for various multivariable models incorporating the
enhancer-based and residual partition PRSs as separate predictors. As per the previous section,
the coefficient of determination for HCM for the original GWAS in this sample, based on
~ 166K SNPs, equated to 5.63% (95% confidence interval (CI): 5.46; 5.81). A simple logit
additive model (HCM ~ TS_ENH_PRS + residual_PRS) explained 6.32% (95% CI 6.13;
6.50) of the adjusted variance utilising the CARDIAC SIGNIFICANT ENHANCERS PRS (Figure
B.10). This is an increment as compared to the original GWAS PRS CoD.

Interestingly, the additive model based on the NON CARDIAC ENHANCER PRS
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showed a significant decrease in CoD as compared to that based on the original GWAS
PRS (5.26%; 95% CI 5.09; 5.43). The CoD for the additive model based on the the NON AS-
SOCIATED ENHANCERS partition was 6.08%, not dissimilar from that based on the original
PRS (Figure[3.10).

Finally, I calculated additive models plus interactions, and additive models plus
interactions, plus quadratic terms. These were calculated for all three enhancer-based com-
partments, CARDIAC SIGNIFICANT, NON CARDIAC and NON ASSOCIATED ENHANCERS. As
shown in Figure the CoDs for these interactive models showed an increasing trend, as
compared to the original GWAS PRS CoD, reaching a value of 9.31% (95% CI 9.09; 9.52) for
the model based on CARDIAC SIGNIFICANT ENHANCERS. Unexpectedly, the NON CARDIAC

and NON ASSOCIATED ENHANCERS-based models showed similar increasing trends.

Sensitivity analysis on the HCM Royal Brompton cohort

As described earlier, and as shown in Figure the coefficient of determination
for HCM for the original GWAS in this sample equated to 5.37%. A simple logit additive
model (HCM ~TS_ENH_PRS+residual_PRS) explained 5.30% (95% CI 4.03; 6.62) of the
adjusted variance utilising the CARDIAC SIGNIFICANT ENHANCERS PRS, while it explained
5.43% and 5.65% of the adjusted variance for the NON CARDIAC ENHANCERS and for the
NON ASSOCIATED ENHANCERS partitions, respectively.

Finally, additive models plus interactions, and additive models plus interactions,
plus quadratic terms were calculated for all three enhancer-based compartments, CARDIAC
SIGNIFICANT, NON CARDIAC and NON ASSOCIATED ENHANCERS. As shown in Figurem
the CoDs for these interactive models showed very marginally increasing trends, as com-

pared to the original GWAS PRS CoD, and even more so for the non-significant partitions.

Sensitivity analysis at the p-value threshold of 0.05

Appendix Figures to show the results for the same analyses as those

shown in the previous paragraph, this time at a PRS threshold of 0.05 as a sensitivity ana-
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Figure 3.10: Coefficients of determination for HCM for for the original GWAS PRS vs multivariable mod-
els.

The figure describes the proportion of the variance of HCM explained by the genetic factor. In brick
red, values are on the liability scale, corrected for ascertainment as per Lee et al,, utilising the for-
mula by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence inter-
vals. In baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs,
from top to bottom for: @ The original GWAS PRS, for comparison; @ Logistic model 1 — simple addit-
ivee HCM ~ TS_ENH_PRS + residual_PRS; ® Logistic model 2 — additive model plus interactions:
HCM ~ TS_ENH_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: HCM ~ TS_ENH_PRS x residual_PRS + residual_PRS* + TS_ENH_PRS*.

Panels A), B), and C) represent the coefficients of determination for each genomic partition for the CARDIAC
SIGNIFICANT, NON CARDIAC, and NON ASSOCIATED lists, respectively.

Base data: HCM GWAS by Tadros et al.,[2023, Target data: UKBB European sample.
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CoDs % and 95% Cls for the Original GWAS PRS vs
Additive Models Including the Residual and Enhancer Partitions
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Figure 3.11: Coefficients of determination for HCM for for the original GWAS PRS vs multivariable mod-
els, in the Royal Brompton Hospital HCM cohort.

The figure describes the proportion of the variance of HCM explained by the genetic factor. In brick red,
values are on the liability scale, corrected for ascertainment as per Lee et al., utilising the formula
by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence intervals. In
baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs, from top
to bottom for: @ The original leave-one-out GWAS PRS, for comparison; @ Logistic model 1 — simple ad-
ditive: HCM ~ TS_ENH_PRS + residual_PRS; @ Logistic model 2 — additive model plus interactions:
HCM ~ TS_ENH_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: HCM ~ TS_ENH_PRS x residual_PRS + residual_PRS* + TS_ENH_PRS*.

Panels A), B), and C) represent the coefficients of determination for each genomic partition for the CARDIAC
SIGNIFICANT, NON CARDIAC, and NON ASSOCIATED lists, respectively.

Base data: RBH LOO HCM GWAS by Tadros et al.,2023| Target data: Royal Brompton Hospital cohort.
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lysis. The headline results from the previous paragraph are confirmed at this more stringent
threshold: the additive, additive models plus interactions, and additive models plus inter-
actions, plus quadratic terms, showed an increasing CoD pattern for all enhancer lists, with
the exception of the NON CARDIAC ENHANCER PRS. This, as in the main analysis, showed
a significant decrease in CoD as compared to that based on the original GWAS PRS for the
simple additive model, which was then reversed in the additive model plus interactions,

and additive model plus interactions, plus quadratic terms.

3.4.2.4 Coefficients of determination for enhancer-based partitions in HCM

In this section, I tested whether — by multiplying SNP-disease association measure
3 coefficient for enhancer-based SNPs by either the effect size of the tissue-specific enhan-
cer, or by its tissue-specific expression — the PRS calculated using these statistics explained
more of the adjusted variance for HCM. Calculating pPRSs for CARDIAC SIGNIFICANT EN-
HANCERS based on three different OR measures (the original GWAS OR, the ORgg or the

ORyrs,,, — see the methods section [3.3.1.2), the CoDs for HCM did not show any significant

exp

improvements (Figure D .

Sensitivity analysis on the HCM Royal Brompton cohort

As shown in Figure there was no significant difference when calculating
pPRSs for CARDIAC SIGNIFICANT ENHANCERS based on the three different OR measures

(the original GWAS OR, the ORgg or the ORys,,, ).

Sensitivity analysis at the p-value threshold of 0.05

Confirming the main results — comparing PRSs between enhancer-based partitions
at a different p-value threshold of 0.05 — the CARDIAC SIGNIFICANT ENHANCER partition
showed no change in CoD for HCM calculated using the ORgs or the ORyg
to the original OR, or a very small drop (Figure[A.13(C).

as compared

exp’
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CoDs % and 95% Cls for the three enhancer partitions:
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Figure 3.12: Coefficients of determination for HCM for enhancer-based partitions in the UKBB
cohort.

The figure describes the proportion of the variance of HCM explained by the genetic factor for each
PRS for the three enhancer-based partitions — one based on the original OR, the second based on the
OR enhanced by the effect size (ES) of association between each enhancer and promoter, and the final
one based on the OR enhanced by the tissue-specific expression value of each enhancer.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012,
utilising the formula by Choi and O’Reilly, 2019 - or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison. Plots represent the CoD % and 95% confidence interval
for the measure. Panel A) shows the CoD for each genomic partition for the CARDIAC SIGNIFICANT
list. Panel B) shows the CoD for each genomic partition for the NON CARDIAC list. Panel C) shows
the CoD for each genomic partition for the NON ASSOCIATED list.

Base data: HCM GWAS by Tadros et al., 2023\ Target data: UKBB European sample.
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CoDs % and 95% Cls for the three enhancer partitions:
Original OR, enhanced by ES, enhanced by expression
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Figure 3.13: Coefficients of determination for HCM for enhancer-based partitions, in the Royal
Brompton Hospital HCM cohort.

The figure describes the proportion of the variance of HCM explained by the genetic factor for each
PRS for the three enhancer-based partitions — one based on the original OR, the second based on the
OR enhanced by the effect size (ES) of association between each enhancer and promoter, and the final
one based on the OR enhanced by the tissue-specific expression value of each enhancer.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al,,
utilising the formula by Choi and O'Reilly,[2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison. Plots represent the CoD % and 95% confidence interval
for the measure. Panel A) shows the CoD for each genomic partition for the CARDIAC SIGNIFICANT
list. Panel B) shows the CoD for each genomic partition for the NON CARDIAC list. Panel C) shows
the CoD for each genomic partition for the NON ASSOCIATED list.

Base data: RBH LOO HCM GWAS by Tadros et al., Target data: Royal Brompton Hospital cohort.
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3.4.2.5 Can tissue-specific, enhancer-based partitioned PRSs help stratify people at risk
for HCM?

The final application of pPRSs for HCM was to test them as adjuncts to canonical
PRSs to stratify people for HCM risk. To do so, I plotted ‘double quantile” plots for HCM.
As a reminder, ‘double quantile’ plots work exactly as regular quantile plots, representing
the OR for HCM on the y axis, and population HCM PRS quantiles on the x axis. However,
for each original PRS quantile, the population is further subdivided into three sub-quantiles,
based on each participant’s CARDIAC SIGNIFICANT ENHANCERS partition pPRS. As shown
in Figure the plot represents both population quantiles — in brick colour — and sub-
quantiles — in darkening shades of blue for sub-quantiles 1 to 3. It is easy to see in the figure
that — while stratifying the UKBB cohort by main PRS quantiles clearly separates people by
their HCM ORs, with people in the third quantile having a HCM OR of > 2.5 as compared
to those in the first — further stratifying each quantile by CARDIAC SIGNIFICANT ENHANCER
pPRS does not provide any additional benefit, as the three sub-quantiles do not appear to

show increasing risk from lower to higher pPRS values.

3.5 Summary of findings

In this chapter I have developed “partitioned” polygenic risk scores, or PRSs where
two (or more) genomic compartments (e.g., the tissue-specific enhancers and the residual com-
partments) are considered separately for polygenic risk scoring — with special consideration
for enhancer-based SNPs, which are prioritised — and where each model only includes LD-
independent SNPs. Using logistic modelling and incorporating formulas to adjust the res-
ults for disease liability and for ascertainment, I have then calculated the amount of adjusted
heritability explained by the original GWAS for schizophrenia and for HCM (h},5), as well
as comparing this figure to the partitioned PRSs (h2ps), Where the enhancer-based and the
residual partition PRSs are used as separate predictors in a logistic model. I have then tested

if multiplying SNP-disease association measure /3 coefficient for enhancer-based SNPs by
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Participant distribution by OR for HCM, first by original GWAS quantile (in red)
and further by Cardiac significant enh quantile (shades of blue)
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Figure 3.14: “‘Double’ quantile plot, expressing odds ratios (ORs) for HCM in the UKBB cohort.
The quantile plot shows, in brick red, the odds ratios and 95% confidence intervals for HCM for
three quantiles of original GWAS PRS, from 1 (reference, and lowest PRS) to 3. For each original
GWAS PRS quantile, the population was then subdivided into three further quantiles, based on each
participant’s CARDIAC SIGNIFICANT partition pPRS. The enhancer-based quantiles (from Enh q1 to
Enh g3) are plotted as ORs and 95% confidence intervals in darkening shades of blue.

Base data: HCM GWAS by Tadros et al., Target data: UKBB European sample.



116 Chapter 3. Schizophrenia and HCM heritability from partitioned PRSs

either an effect size of the tissue-specific enhancer, or by its neural expression, improved the
overall disease /s as explained by partitioned PRS (pPRS).

The results for schizophrenia — based on the xs234 cohort — show that:

1. The original leave-one-out-GWAS-based PRS — based on ~ 161K SNPs — had a coef-
ficient of determination (CoD) of 9.85% (equivalent to the schizophrenia h? ¢ in this
sample), while the NEURAL SIGNIFICANT ENHANCERS partition —based on ~ 8 X SNPs
only —had a CoD of 3.72%; the NEURAL SIGNIFICANT WITHIN GRBS partition showed
a CoD of 2.22% based on just ~ 3K SNPs. The CoDs per SNP for enhancer-based par-
titions equated to between ~8 and ~13 times the value per SNP of the original GWAS
(Figures and 3.3B).

2. The use of multivariable logistic models to calculate the schizophrenia h? ¢ produced
modest increases compared to the h% 4 figure. The best multivariable model, for the
logit additive model plus interactions plus quadratic terms including NEURAL SIG-
NIFICANT WITHIN GRBS, reached a CoD of 10.49%, which, compared to the original
leave-one-out GWAS coefficient of 9.85%, represents a 6.5% improvement. However,
the quite wide confidence intervals do not allow to refute the null hypothesis (Figures
and 3.4B).

3. Using tissue-specific-variable-derived ORs for computing PRSs did not show any ad-
vantage over using the original OR measures for schizophrenia (Figures and
3.6B).

4. Tissue-specific, enhancer-based partition PRSs do not appear useful, in addition to ori-

ginal PRS quantiles, to stratify populations for schizophrenia risk (Figure3.7).

The results for HCM - based on both the UK Biobank and the Royal Brompton Hos-

pital cohorts — show that:

1. In UKBB, the original GWAS-based PRS —based on ~ 166 K SNPs — had a coefficient of
determination (CoD) of 5.63% (equivalent to the HCM h%, . in this sample), while the

CARDIAC SIGNIFICANT ENHANCERS partition — based on just ~ 3K SNPs —had a CoD



3.5. Summary of findings 117

of 1.26%. This equated to a CoD per SNP ~ 19 times the value per SNP of the original
GWAS (Figure[3.8]A). The RBH cohort showed similar results for the CoD of the LOO
GWAS, however the CoD per SNP for CARDIAC SIGNIFICANT ENHANCERS equated to
just ~ 5 times the value per SNP of the original leave-one-out GWAS (Figure [3.9A).

2. In UKBB, the use of additive logistic models to calculate the HCM h2pp¢ showed a

pattern different from schizophrenia, as demonstrated in Figure For CARDIAC
SIGNIFICANT ENHANCERS, as well as for NON ASSOCIATED partitions, CoDs for the
simple additive, fully interactive, and fully interactive with quadratic terms kept im-
proving in the amount of variance explained at each step.
For NON CARDIAC ENHANCERS, a simple additive model showed a significant drop in
h2 prs, as compared to the HCM h ¢ in this sample, from 5.63 to 5.26%. The CoD then
kept climbing in line with the other two for the fully interactive, and fully interactive
with quadratic terms models.

3. In the RBH cohort, as demonstrated in Figure CoDs for the simple additive,
fully interactive, and fully interactive with quadratic terms also kept increasing in the
amount of variance explained at each step, however the increases were much smaller.
For CARDIAC SIGNIFICANT ENHANCERS, the percentage increase between the original
and the fully interactive model including quadratic terms (45.6%) was similar to the
gain seen for schizophrenia (+6.5%). However, a significant difference with schizo-
phrenia is that similar increases — and even larger ones — were seen for the non signi-
ficant enhancer lists too.

4. Using tissue-specific-variable-derived ORs for computing PRSs did not show any ad-
vantage over using the original OR measures for HCM in either cohort (Figure
and 3.13A).

5. Tissue-specific, enhancer-based partition PRSs do not appear useful, in addition to ori-

ginal PRS quantiles, to stratify populations for HCM risk (Figure 3.14).

The findings are discussed in Chapter 5.



Chapter 4

Leveraging nonadditive disease

inheritance models

4.1 Introduction

As discussed in the main introduction, GWASes are the current gold-standard
technique for finding common SNP associations with complex disorders. Further, as we have
seen in section the replicability of GWAS findings relies on large population samples.
For example, GWASes for a highly polygenic disorder such as schizophrenia did not have
enough power to find strong, replicable results, up to the point when large consortia were
founded, to allow for very large case-control samples to be formed (Psychiatric GWAS Con-
sortium Coordinating Committee, 2009). Even today, with sample sizes including over 67K

people with schizophrenia and over 90K controls (Trubetskoy et al., 2022), only a small

118
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portion of schizophrenia’s h? can be explained (see section [1.5.2). Further, when running
GWAS, one can make assumptions on the most likely penetrance function, which implies a
specific inheritance model, as we have seen in section Choosing the correct inherit-
ance model can be complicated: while with a Mendelian disorder one can look at a pedigree
and study how the disorder spreads across families, and infer the best inheritance model,
with complex disorders — as discussed in section [I.4.1.1]- there are several thousands to mil-
lions of SNPs tested against the same disease, all likely contributing to a very small extent
to disease heritability. Therefore, the selection of an inheritance model — which can be done
at the individual SNP level — can be a delicate endeavour.

One avenue that has not been often explored, is that of using different models of
inheritance for separate genomic partitions within the same GWAS. As discussed in sec-
tion most existing GWASes use a genetic-model-free — see equation [1.3|— or an additive
genetic model — see equation [1.4] - for all SNPs, thus assuming that genetic risk increases
with each additional copy of an alternative allele for each and every SNP. This has been
shown to be a reasonable assumption in most cases, and especially for highly polygenic
conditions, as each SNP is supposed to only add a small amount of risk; further, this is what
has worked in practice in most published GWASes (Bagos, 2013; Balding, |2006; Psychiatric
GWAS Consortium Coordinating Committee, 2009). On the other hand, dominance effects are
central to the study of model disease fitness by population geneticists, and across organisms
and conditions the average dominance of mutation of small effects should be approximately
one-quarter (Manna et al., 2011). Further, I have shown in Chapters 2 and 3 of this work that
a method is available, that is effective at selecting genomic regions at higher-than-average
(sometimes several times over) associated per-SNP schizophrenia heritability, i.e., neural-
specific enhancers.

As a consequence, I have hypothesised that higher-priority variants (e.g., those
falling inside neural-specific enhancers in the case of schizophrenia) might follow other
models of inheritance, due to their higher-than-average disease heritability, and therefore

a higher likelihood of being more disruptive. In this chapter, I will explore both dominant
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and recessive inheritance models, as applied to tissue-specific enhancer-based genomic parti-
tions, and their effects on schizophrenia GWAS results as compared to the canonical additive
model. To avoid overlap between the GWAS development and PRS validation cohorts, I will
calculate enhancer-based SNP association measures for schizophrenia (which I have called
EP-WAS) on UK Biobank. I will then internally validate these measures of association on

UK Biobank, and then externally validate them in the xs234 PGC cohort.

4,2 Methods

4.2.1 Dominant and Recessive Schizophrenia EP-WAS in UK Biobank

To study the effects of both dominant and recessive inheritance models in schizo-

phrenia GWAS, I developed an EP-WAS as follows:

1. UK Biobank genotypes (see section and Bycroft et al., 2018) were first subjected
to standard QC, including filtering out variants with a MAF < 0.01, INFO score < 0.8,
SNPs in controls with p < 107" in a Hardy-Weinberg Equilibrium Fisher’s exact test
(which are more likely affected by genotyping error or the effects of natural selection);
SNPs that are missing in a high fraction of subjects (> 10%), since this may indicate

problems in the DNA sample or processing.

2. Then, NEURAL SIGNIFICANT ENHANCER-based SNPs (see section [2.4.1) were extracted

from the QCed UKBB cohort.

3. Associations for enhancer-based SNPs were calculated with the schizophrenia pheno-
type using PLINK2 (Purcell & Chang, |[2022) with flags ——glm —-ci 0.95 for the additive
(standard) model, ——glm recessive ——ci 0.95 and ——glm dominant ——ci 0.95 for the al-
ternative recessive and dominant models. The covariates included age, sex, and the first

10 PCA components of the genotypes for the UKBB population.

A plot summarising the top associated SNPs for each model was produced.
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4.2.2 Internal and external validation

To validate the EP-WAS, I proceeded to calculate partitioned PRSs for each parti-
tion — the enhancer-based partition based on the UK Biobank-based EP-WAS, using dominant
and recessive inheritance models, and the residual based on the standard PGC GWAS. I then
computed the coefficients of determination for each partition separately, and for the com-
posite models, as in Chapter 3. Each step is detailed below — and repeated two times, for a

dominant and recessive inheritance model:

1. Base partitioning and clumping: this step entails creating GWAS partitions based on
whether each SNP falls within a NEURAL SIGNIFICANT ENHANCER or not. The differ-
ence with the analogous step described in paragraph is that the enhancer-based
partition this time is based on the EP-WAS (NEURAL SIGNIFICANT ENHANCERS-based
SNPs, with association measures calculated within the UK Biobank cohort using a spe-
cific inheritance model); while the residual partition (all non-enhancer-based SNPs) is
still based on association measures from the PGC GWAS using an additive model. The
two lists are then clumped together, so that a global PRS can be calculated without
the risk of including multiple SNPs per LD block. However, to prioritise enhancer-
residing SNPs, enhancer-based SNP p-values are divided by 100,000 before clumping,
so that they are retained with priority over nearby residual SNPs. The specific PLINK
settings are the same as those described in section and the code can be found
in this chapter’s git repositories (see links in section [4.2.3).

2. PRS calculation: Partitioned PRSs are then calculated for each of the enhancer-based
and residual partitions, using PRSice. The same settings as in section 3.3.1.4{were used

in this pipeline.

3. Calculation of the proportion of variance explained by the genetic factor — or coeffi-
cients of determination: for each partition, CoDs were calculated using equation

and the rationale of these calculations is again described in detail in section Once
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more, the Nagelkerke pseudo-R? is also shown for comparison, but liable to sampling

and other biases.

Plots summarising the total variance explained by the genetic factor on the liability scale,
corrected for ascertainment (called coefficients of determination) for each partition were

produced, and will be presented as Results.

4.2.3 Software and code availability

The same software was used as in section[3.3.3l
All code for this work is available on GitHub repositories:
* https://github.com/emosyne/UKBB_OR_develop for EP-WAS development, and its
internal validation, both on the UK Biobank dataset.
* https://github.com/emosyne/lisa_validation for EP-WAS external validation on a PGC

sample.

4.3 Results

In this chapter I performed an EP-WAS (enhancer-based GWAS): in other words
I measured associations with schizophrenia of SNPs falling within NEURAL SIGNIFICANT
ENHANCERS (please see Chapter 2 for a rationale and methods of developing enhancer-based
partitions); to do so, I used both dominant, recessive, and additive inheritance models. The
EP-WAS associations were calculated in UK Biobank, where they were initially internally
validated, before being externally validated in a PGC cohort — namely xs234 (please see
section [3.2.1]for a description of each PGC cohort, and for the rationale for selecting xs234 as

the main one for this work).


https://github.com/emosyne/UKBB_OR_develop
https://github.com/emosyne/lisa_validation
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4.3.1 Comparing Dominant and Recessive enhancer-based effects within

UK Biobank

Here I measured the ORs for schizophrenia for 26,607 SNPs (this is the number
before clumping) falling within NEURAL SIGNIFICANT ENHANCERS in 1,169 patients with
schizophrenia and 409,710 controls of European heritage within UK Biobank. As detailed in
the methods, the SNPs were selected and QCed using standard criteria, then an association
OR for schizophrenia for each was calculated utilising the three main inheritance models:
additive (standard, for comparison), dominant, and recessive. Following joint clumping
of the enhancer-based and residual partitions, NEURAL SIGNIFICANT ENHANCER-based SNPs
reduced to 13,953 for the dominant, and to 14,019 for the recessive inheritance models.

Figure 4.1/ shows the odds ratios for schizophrenia for top NEURAL SIGNIFICANT
ENHANCER-based SNPs in the UK Biobank cohort, using a dominant model (SNPs with dom-
inant p-value < 0.001). Please note that, due to the number of SNPs tested (~ 27K), only
SNPs with p-values < 2 x 10~° would be considered significant genome-wide, using a FDR
of 0.05. However, as I will be using these results as part of PRS building, and will therefore
consider specific thresholds as part of that work, I am showing SNPs with dominant p-value
< 107* as an example of the most significant results found, with no expectation that these
results would be considered significant genome-wide.

Figure [4.1{shows that using a dominant model (blue dots and 95% confidence in-
tervals) produces results that are different from those calculated using an additive model
(red dots and 95% confidence intervals), specifically at rarer alleles. In fact, the SNPs to-
wards the bottom of the plot are all showing MAFs ~ 1 — 3%, at the bottom end of the
spectrum for SNPs considered in GWAS (let’s remember that SNPs with MAF < 1% were
excluded from the analysis). One could also notice that these rarer SNPs effects, calculated
using a dominant model in UK Biobank — based on 1,169 patients and 409,710 controls —
are more extreme than those calculated in the same cohort using an additive model, and

also much more extreme than those obtained meta-analysing the 90 international cohorts
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Schizophrenia ORs for enhancer-based SNPs.
Blue: dominant model. Red: additive model. Small dots: closest PGC SNP - yellow if p<0.001

T
rs7702092 - O—e—=034
| 0.093
rs8100433 - |
rs35453809 - I
0.338] 0.062
rs12977767 -
0.358
rs3843755 - !

0.446 1
rs4917715 04|
rs1418709 —d&gf

0.315
rs11154490 4 !
0.258 |
rs75467304 - —‘1—01
0.19
r$72810793 - P
rs78185802 - ' - er
rs62123738 -
0.029 0.06 _q_
rs75341207 e+
0.029 1
rs17164769 - —e—
0.021
rs3798883 — —0:—
rs112121771 4 : - a
0.02
512201895 — —e—,
rs117958205 : — —e—k
X 1
rs61741562 - py —e—|
rs147269992 - : — —0—:—
.015
rs41396546 - - 015‘ e
rs151030554 0(’)120 — e
rs147826773 - s e
0.012 1
rs114064324 - & e
0.015 |
rs72777931 - é e
rs117263618 0019, 8
X 1
rs140540991 . 013, —O—=
rs76678079 - : QOOZ e :
rs77613851 - —p ' —r—
rs149094167 - O'O # —el—
rs149364533 o P ——+—
| 1
rs144364627 - e e
0.011
rs191915920 o @ —e— o
T T T T
0.03 0.10 0.30 1.00

log-transformed OR (p<0.001 for dominant) for schizophrenia

Figure 4.1: Odds ratios for schizophrenia for top enhancer-based SNPs, in the UK Biobank cohort — domin-
ant model.

Each row in the figure represents a SNP, with its s... code on the left; only top dominant SNPs (with dominant
p-value < 0.001 in UK Biobank) are presented. Blue dots (and 95% confidence intervals) represent schizo-
phrenia ORs calculated using a dominant inheritance model. Red dots (and 95% CI) represent schizophrenia
ORs calculated using a standard additive model for comparison. The smaller gray/yellow dots represent
schizophrenia ORs for the closest SNP calculated using a standard additive model as calculated in the PGC
meta-analysis; these dots are yellow when PGC p-value < 0.001; please note: the direction of association could
be reversed as the PGC SNP is not the same as the UKBB SNP, but the closest. The small text labels indicate
the minor allele frequency (MAF) for each SNP, as calculated in UK Biobank; SNPs with MAF < 0.01 were
excluded.
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Schizophrenia ORs for enhancer-based SNPs.
Green: recessive model. Red: additive model. Small dots: closest PGC SNP - yellow if p<0.001
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Figure 4.2: Odds ratios for schizophrenia for top enhancer-based SNPs, in the UK Biobank cohort — recessive
model.

Each row in the figure represents a SNP, with its rs... code on the left; only top recessive SNPs (with re-
cessive p-value < 0.001 in UK Biobank) are presented. Green dots (and 95% confidence intervals) represent
schizophrenia ORs calculated using a recessive inheritance model. Red dots (and 95% confidence intervals)
represent schizophrenia ORs calculated using a standard additive model for comparison. Smaller gray/yellow
dots represent schizophrenia ORs for the closest SNP calculated using a standard additive model as calculated
in the PGC meta-analysis; these dots are yellow when PGC p-value < 0.001; please note: the direction of as-
sociation could be reversed as the PGC SNP is not the same as the UKBB SNP, but the closest. The small text
labels indicate the minor allele frequency (MAF) for each SNP, as calculated in UK Biobank; SNPs with MAF
< 0.01 were excluded.
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included in the PGC (smaller gray/yellow dots, Trubetskoy et al.,[2022) — based on the geno-
types of 67,390 cases of schizophrenia and 94,015 control individuals. It is therefore possible
to suspect that these extreme effects might be the result of the rarity of these alternative
alleles, and won’t be replicated in external validation.

Moving on to recessive effects, figure 4.2 shows the odds ratios for schizophrenia
for top neural-specific, enhancer-based SNPs in the UK Biobank cohort, using a recessive in-
heritance model (top SNPs means those with a recessive p-value < 0.001 — the same caveat
applies as above about lack of genome-wide significance). As evidenced in the figure, the
use of a recessive model (green dots and 95% confidence intervals), produces much more
extreme results than both those obtained using an additive inheritance model in UK Biobank
(red dots and 95% confidence intervals), and those obtained as part of the PGC schizo-
phrenia meta-analysis (smaller gray/yellow dots, Trubetskoy et al.,[2022), especially for rarer
SNPs.

In conclusion, the results obtained from these nonadditive models appear diver-
gent from those obtained in the much larger PGC cohort — especially for rarer SNPs. In the
next section I will investigate whether these differences might be due to ‘winner’s curse’,
or small sample bias — given that the divergence appears to be most apparent at rarer SNPs
— or else if the results represent an interesting new lead. To do so, I will first validate the
results in the same UK Biobank cohort where these were developed. Then, I will externally

validate them on a separate, external cohort from the PGC consortium.

4.3.2 EP-WAS internal validation in UK Biobank

To validate the EP-WAS, I calculated partitioned PRSs for each partition — the
neural-specific, enhancer-based partition, this time based on the UK Biobank EP-WAS, using
both a dominant and recessive inheritance models — and the residual and original GWAS par-
titions, both based on the standard PGC GWAS and using an additive model. Then, using
the UK Biobank as the target population, I calculated the coefficients of determination for

each partition, and for the multivariable models.



4.3. Results 127

Internal validation in UKBB for the main three partitions: original, EP-WAS and residual
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Figure 4.3: Coefficients of determination for schizophrenia for the three main partitions — original
GWAS, EP-WAS for NEURAL SIGNIFICANT ENHANCERS, and residual — EP-WAS internal valida-
tion in the UKBB cohort.

The figure describes the proportion of schizophrenia variance explained by the genetic factor for the
three main genomic partitions — original GWAS, residual, and EP-WAS neural-specific enhancers, in
the UKBB cohort. The EP-WAS is based on two different inheritance models: dominant (Panel A)
and recessive (Panel B). In brick red, values are on the liability scale, corrected for ascertainment as
per Lee et al., 2012, utilising the formula by Choi and O'Reilly, 2019 - or coefficients of determination
(CoD). In baby blue the original Nagelkerke’s R? for comparison. Each plot on the left shows the
overall CoD % and 95% confidence interval, and on the right the corresponding point value adjusted
per SNP (x1077).

Base data: European ancestry PGC GWAS for schizophrenia (Trubetskoy et al.,|2022) for the Original GWAS
and residual partitions; UK Biobank-based EP-WAS for the enhancer-based partition. Target data: UK Biobank
European ancestry cohort.
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Internal validation in UKBB: CoDs % for the Original GWAS PRS vs
Composite Models Including EP-WAS and residual Partitions
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Figure 4.4: Coefficients of determination for schizophrenia for the original GWAS PRS vs composite mod-
els including EP-WAS for NEURAL SIGNIFICANT ENHANCERS — EP-WAS internal validation in the UKBB
cohort.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor. In
brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., utilising the
formula by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence inter-
vals. In baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs,
from top to bottom for: @ The original GWAS PRS, for comparison; @ Logistic model 1 — simple addit-
ive: SCZ ~ EP-WAS_PRS + residual_PRS; ® Logistic model 2 — additive model plus interactions:
SCZ ~ EP-WAS_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: SCZ ~ EP-W AS_PRS x residual_PRS + EP-W AS_PRS? + residual_PRS®.

The EP-WAS in each panel is based on two different inheritance models: dominant (Panel A) and recessive
(Panel B).

Base data: European ancestry PGC GWAS for schizophrenia (Trubetskoy et al., for the Original GWAS and resid-
ual partitions; UK Biobank-based EP-WAS for the enhancer-based partition. Target data: UK Biobank European ancestry

cohort.
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Figure4.3|shows that — as expected in internal validation — the CoDs for the UKBB-
based EP-WAS partitions for both inheritance models were very high within UK Biobank.
The dominant model, as applied to the NEURAL SIGNIFICANT partition, yielded a CoD of
10.42%, while the recessive model’s CoD equated to 34.3%. These were both much higher
than the 3.72% of adjusted variance explained by the NEURAL SIGNIFICANT partition pPRS
based on PGC effects (see section and Figure [3.3). Interestingly, the recessive model
seemed to explain more variance at internal validation, with a CoD per SNP ~ 3 times than
that of the dominant.

Similar results were apparent when using these UKBB-based EP-WAS partitions
in multivariable models. Figure 4.4 shows that, while the original PGC-based PRS had a
schizophrenia CoD of just 4.5% in UK Biobank, models combining the residual partition
(also PGC-based) with UKBB-developed EP-WAS partitions showed a large CoD boost.
More specifically, for a dominant model, the CoD reached 14.25% when considering a simple
additive, and 14.37% when using the fully interactive model including quadratic terms. For
a recessive model, the CoD reached 37.87% when considering a simple additive, and 38.16%
when using the fully interactive model including quadratic terms.

In the next section I will explore if these encouraging results from internal valida-

tion replicate when externally validated in a separate target sample.

4.3.3 EP-WAS external validation in a PGC cohort

In this section I have again validated the EP-WAS, utilising the same methodology
as in the previous section — this time on an external PGC cohort. This was necessary as the
EP-WAS was developed on the UK Biobank, and therefore the coefficients of determinations
generated on UK Biobank as a target population appeared inflated. Therefore, here I have
calculated partitioned PRSs for each partition — the enhancer-based partition based on UKBB
dominant and recessive EP-WASes — and the residual and original GWAS partitions, both based
on the xs234 leave-one-out (LOO) PGC original additive GWAS. Then, using the xs234 PGC

cohort as the target population, I calculated the coefficients of determination (CoDs) for each
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partition, and for the multivariable models.

From examining Figure it is evident that, while the LOO GWAS overall CoD
for schizophrenia in this cohort was once more equivalent to 9.85%, the NEURAL-SPECIFIC
ENHANCER-based pPRS for the UKBB-based EP-WAS was equivalent to just 0.04% for the
dominant, and to 0.01% for the recessive models, as compared to 3.72% for the same NEURAL
SIGNIFICANT ENHANCERS partition pPRS based on PGC effects (see figure [3.3]in section[3.4).
As a consequence, the CoD per SNP for UKBB-based EP-WAS pPRSs was also close to null,
and it would be meaningless to compare the results between the dominant and recessive
models given the modest results.

Similar (negative) results, as expected, are reflected in multivariable models. Fig-
ure 4.6/ shows that all models combining a residual partition (based on additive effects on
the PGC LOO GWAS) with the UKBB-based EP-WAS pPRSs — both utilising dominant or
recessive inheritance models — showed a smaller CoD for schizophrenia than the original

PGC GWAS.

4.4 Summary of findings

In this chapter I have explored the potential added value of utilising dominant vs
recessive, as compared to canonical additive SNP inheritance models, for a schizophrenia
GWAS. To do so, I first calculated the ORs for schizophrenia for enhancer-based SNPs within
the UK Biobank cohort using all three these inheritance models — something I named an EP-
WAS, and compared the results for the top SNPs for each model. I found that, while for
common SNPs the models did not seem to show disparate results, for rarer SNPs the ORs
became more extreme for both a dominant and a recessive models, as compared to the additive
one.

I then validated the results in terms of the proportion of the total variance ex-
plained by PRS on the liability scale, corrected for ascertainment. I first calculated this meas-

ure for each genomic partition (original PGC GWAS, NEURAL SIGNIFICANT ENHANCERS,
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External validation in PGC for the main three partitions: original, EP-WAS and residual
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Figure 4.5: Coefficients of determination for schizophrenia for the three main partitions — original
GWAS, EP-WAS for NEURAL SIGNIFICANT ENHANCERS, and residual — EP-WAS external valida-
tion in the xs234 PGC cohort.

The figure describes the proportion of schizophrenia variance explained by the genetic factor for the
three main genomic partitions — original GWAS, residual, and EP-WAS neural-specific enhancers, in
the UKBB cohort. The EP-WAS is based on two different inheritance models: dominant (Panel A)
and recessive (Panel B).

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019 — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison. Each plot on the left shows the overall CoD % and 95%
confidence interval, and on the right the corresponding point value adjusted per SNP (x1077).

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort for the
Original GWAS and residual partitions; UK Biobank-based EP-WAS for the enhancer-based partition. Target
data: xs234 European PGC schizophrenia cohort.
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External validation in PGC: CoDs % for the Original GWAS PRS vs
Composite Models Including EP-WAS and residual Partitions
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Figure 4.6: Coefficients of determination for schizophrenia for the original GWAS PRS vs composite mod-
els including EP-WAS for NEURAL SIGNIFICANT ENHANCERS — EP-WAS external validation in the xs234
PGC cohort.

The figure describes the proportion of the variance of schizophrenia explained by the genetic factor. In
brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., utilising the
formula by Choi and O'Reilly, — or coefficients of determination (CoDs) — and 95% confidence inter-
vals. In baby blue the original Nagelkerke’s R? for comparison. In each panel are represented the CoDs,
from top to bottom for: @ The original GWAS PRS, for comparison; @ Logistic model 1 — simple addit-
ive: SCZ ~ EP-WAS_PRS + residual_PRS; ® Logistic model 2 — additive model plus interactions:
SCZ ~ EP-WAS_PRS x residual_PRS; ® Logistic model 3 — additive model + interactions + quadratic
terms: SCZ ~ EP-W AS_PRS x residual_PRS + EP-W AS_PRS? + residual_PRS>.

The EP-WAS in each panel is based on two different inheritance models: dominant (Panel A) and recessive
(Panel B).

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort for the Ori-
ginal GWAS and residual partitions; UK Biobank-based EP-WAS for the enhancer-based partition. Target data: xs234

European PGC schizophrenia cohort.
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and residual partitions) within the UKBB development sample: this showed that enhancer-
based SNP effects from the EP-WAS were very large, and much larger than expected. The
results within UK Biobank, however, appeared inflated, due to the fact that the EP-WAS
was also developed in UKBB. Finally, I validated the results externally in the xs234 PGC co-
hort. This external validation step showed that EP-WAS effects did in fact suffer from a large
‘winner’s curse’ bias, as these results based on an external cohort not only did not improve
on the original PGC-based effects, but they showed a very significant drop to the amount of

variance explained by PRS. The findings are discussed in Chapter 5.
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Discussion

Since the mid-2000s (DeWan et al., 2006; Klein et al.,2005; The Wellcome Trust Case
Control Consortium, 2007) we have witnessed a sharp increase in the number of GWASes.
Due to the need for ever larger development samples, the field of psychiatry has seen the
formation of large consortia, such as the Psychiatric Genomics Consortium (PGC, https:
/ /pgc.unc.edu/). The PGC Schizophrenia working group, for example, is a group of re-
searchers and clinicians world-wide who share the common aim to advance the genomics
of schizophrenia; they have worked by collecting samples that accumulate over time, and
publishing the Consortium papers in waves. Together with discovering new loci, the in-
crease in sample size at each wave has led to a very welcome increase in the replicability
of genetic findings: as an example, in the latest PGC schizophrenia GWAS (wave 3, includ-

ing over 53K cases, Trubetskoy et al., [2022), all but one of the 108 genome-wide hits from
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the previous wave 2 analysis (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014) were replicated. However, the amount of variance explained by PRS
(Pr = 0.05) on the liability scale has failed to keep up with the increases: this has gone from
7.0% in PGC wave 2 to 7.3% in PGC wave 3, using all ancestries (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014; Trubetskoy et al., 2022). This is well
below the estimated heritability of ~ 64 — 80% for schizophrenia (Lichtenstein et al., 2009;
Sullivan et al., [2003).

In this thesis I decided to tackle the issue of this ‘missing heritability” (see section
through the study of two model conditions: schizophrenia and HCM. I have picked
schizophrenia as the main model condition due to its prevalence, unmet therapeutic need,
high genetic burden, and neurodevelopmental nature. The genetic susceptibility and en-
vironmental risk factors for schizophrenia are likely to converge on the neuron, and its ge-
netic risk from GWAS is enriched in non-coding areas. Further, schizophrenia genetic risk
variants have been shown to preferentially fall within regions containing ultra-conserved
genetic elements and GRBs, as discussed in more detail in section and in BareSi¢ et al.,
2020. I have then decided to use hypertrophic cardiomyopathy (HCM) as a comparison to
schizophrenia, as discussed in section due to its different genetic architecture, likely
more pronounced tissue-specific genetic milieu, and lower likelihood of a developmental ae-
tiology. HCM has several high-risk variants and is less polygenic than schizophrenia (Maz-
zarotto et al., 2020). Most high-risk variants affect the sarcomere within the heart, and the
disease mostly appears in adults.

In this work I have addressed the overarching issue of complex disorder ‘missing

heritability” from several perspectives:

I. In Chapter 2, Schizophrenia and HCM heritability enrichment in tissue-specific en-
hancers, I began by measuring the amount of heritability for schizophrenia and HCM
that resides within various regulatory genomic partitions including several classes of
enhancers, and whether heritability levels diverged from the expected. This work al-

lowed me to select heritability-enriched partitions to use for subsequent analysis.
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II.

II1.

In Chapter 3, Schizophrenia and HCM heritability from partitioned PRSs, I strived to
address the same issue of ‘missing heritability’ by prioritising enhancer-based SNPs as

follows:

* First I developed partitioned polygenic risk scores, or pPRSs — these are PRSs
where SNPs based in different parts of the genome (e.g., within tissue-expressed en-
hancers or not) are separated. pPRSs allowed me to study the contribution to complex
disorder heritability of tissue-specific, enhancer-based partitions separately, and with pri-
ority over, the partition representing non-enhancer-based SNPs, which I have called
residual.

¢ Then, through the use of multivariable models including both enhancer-based and
residual pPRSs, I explored the adjusted PRS-based variance explained by each predictor
separately, as well as measuring the contribution of interaction and quadratic terms.

e Finally, for enhancer-based SNPs I multiplied SNP-disease association measure /3
coefficient by either the effect size of each tissue-specific enhancer (its association meas-
ure with a target gene), or by its tissue-specific expression, to test if enhancer-based

annotations could improve overall disease /. p -

In Chapter 4, Leveraging nonadditive disease inheritance models, I explored the h2p
contribution of alternative inheritance models (i.e., additive or recessive) — through the
development of an enhancer-based schizophrenia association study (EP-WAS). I then
validated the findings both internally within UK Biobank, and externally in a separate

schizophrenia cohort taken from the PGC.

I will discuss each chapter’s findings, as well as how they fit in with my initial hypotheses,

and their potential limitations, below.
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5.1 Chapter 2: Schizophrenia and HCM heritability enrich-
ment in tissue-specific enhancers

Chapter 2 builds upon previous work from the Lenhard and Howes labs (Baresi¢
et al., 2020), which had investigated the potential role of genomic regulatory blocks (GRBs)
in understanding the genetics of neuropsychiatric disorders. The authors had reviewed
GRB-based approaches to assigning loci in non-coding regions to potential target genes and
had applied them to reanalysing the results of the (then) largest schizophrenia GWAS (PGC
wave 2, Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). The
authors had found that disease-associated SNPs are over-represented in GRBs, and that the
GRB model is a powerful tool for linking these SNPs to their correct target genes under
long-range regulation.

In this chapter I took this approach further, by looking at all bidirectionally tran-
scribed enhancers identified in FANTOMS genome-wide (Andersson et al., 2014), and not
just at those within GRBs. Secondly, working with the AR+C dataset (Georgieva, 2022),
as well as with the FANTOMS5 resource, I created genome-wide lists of neural- and heart-
expressed enhancers, with evidence of co-expression and chromatin 3D contact with at least
one gene within 3Mb (significant, tissue-specific enhancers). Finally, I tested whether these
tissue-specific enhancer lists (as well as a number of control lists) showed enrichment in
the heritability for exemplar conditions schizophrenia and HCM, updating the findings to
the latest GWASes to date (schizophrenia PGC wave 3 by Trubetskoy et al., 2022, and HCM
Consortium by Tadros et al., 2023).

Due to schizophrenia’s highly polygenic genetic architecture, as well as due to its
neuro-developmental credentials, my hypothesis was that neural-tissue-expressed enhan-
cer genomic compartments would be enriched in schizophrenia-associated common genetic
variants. On the other hand, due to HCM'’s less polygenic architecture, as well as its likely
more tissue-specific genetic contribution, I had hypothesised that cardiac-tissue-expressed

enhancer genomic compartments would not be enriched in HCM-associated common ge-
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netic variants.

As part of the results, I found confirmation that neural-expressed enhancers were
highly enriched in schizophrenia heritability, and that this enrichment was specific to those
enhancers falling within human-mouse GRBs. On the other hand, heart-expressed enhan-
cers appeared enriched in HCM heritability, however not to a statistically significant extent
after adjusting p-values for multiple testing. These findings were largely in accordance with
my expectations and hypothesis, and extend the literature on this topic, including confirm-

ing previous findings from Baresi¢ et al., 2020, as discussed above.

5.1.1 Interpretation of findings

Based on the existing literature, my first hypothesis (see section was precisely
that GRBs and long-range enhancer-based regulatory elements would be enriched in schizo-
phrenia heritability, while HCM would not. Both these hypotheses proved correct. Why was
I able to anticipate these findings? First of all, as described in section in the introduc-
tion, as well as in section [2.1.T conserved genetic elements such as GRBs have been studied
in the context of the regulation of human (and animal) development (Polychronopoulos et
al., 2017). In particular, CNEs have been studied as cis-regulatory elements coordinating
spatial-temporal gene expression, especially during embryonic development (Sandelin et
al.,2004).

Schizophrenia, as we have seen in section is a neuro-developmental condi-
tion which is likely to owe its manifestation in early to mid life to multiple insults, usually
considered to be a combination of genetic, pre-birth, early life as well as later life insults
(McCutcheon et al., 2019). What most, if not all, theories about the development of schizo-
phrenia have in common, is the focus on the fact that there seems to be a convergence on the
synapse and on abnormal neuron-neuron communication (Howes & Onwordi, 2023} Mc-
Cutcheon et al., 2020; Onwordi et al., 2020; Osimo et al., 2019). Multiple lines of evidence
have linked GRBs, as well as to development in general, as we have seen, more specifically

to neuro-development, and the formation and maintenance of synapses: for example, Geor-
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gieva,[2022 recently found that predicted GRB target genes were enriched in gene ontologies
including axon development, embryonic organ development, forebrain development, axon guidance,
and neuron projection, among others. These findings, surprisingly, were based on genome-
wide analyses of enhancer-based GRB target genes, without even the need to subset neural-
expressed enhancers. Furthermore, Baresi¢ et al., 2020 had already found an enrichment in
schizophrenia signal in human-mouse GRBs. They had further concluded that, because of
the known involvement of GRB target genes in regulation of development, the GRB model
might represent a powerful tool for linking schizophrenia SNPs to their correct target genes
under long-range regulation.

The fact that cardiac-tissue-specific enhancer lists, as well as GRBs, did not appear
significantly enriched in HCM heritability can be interpreted as a potential sign that HCM
might be a condition that develops because of stronger, more targeted, molecular signals,
which might affect a terminally differentiated tissue such as the myocardium. This would
be compatible with the genetic aetiology of HCM, a condition showing a polygenic inherit-
ance but with a stronger component of high-risk mutations, which are known to be directly
affecting the sarcomere (Mazzarotto et al.,[2020).

In conclusion, we know that both HCM and schizophrenia are complex genetic dis-
orders, as defined and discussed in section however they show varying degrees of
polygenicity, with schizophrenia notoriously at the higher end of the polygenicity spectrum
(Visscher et al., 2021), and HCM likely at the other, lower end; moreover, schizophrenia-
related genes are known to rely on a wider network of regulatory elements, which justi-
ties the higher number of non-coding associated regulatory variants (Roussos et al., 2014).
Furthermore, my findings support the developmental (and even more specifically, neuro-

developmental) credentials of enhancer-based gene regulation.

5.1.2 Limitations

The main limitation of this work is the use of FANTOMS5 data (Andersson et al.,

2014), as further analysed in the AR+C (Georgieva, 2022). While the human section of the
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dataset, which I have used, is very rich, and includes annotations on co-expression based on
CAGE data on 800 human samples — 241 cell line, 447 primary cell, and 120 tissue samples —
the preponderance of cell lines and primary cells over tissue samples might have meant that
the results would be limited in their ability to represent the complexity of the human brain
— or the human heart. However:

* Georgieva, 2022 has already benchmarked her results against existing enhancer-
target gene assignment methods, as discussed in section and shown that the AR+C
excels in differentiating long-distance enhancer-promoter regulatory interactions in devel-
opmental genes, which overlaps with the aims of this work.

* AR+C co-expressed enhancer-promoter pair predictions were further refined based
on 3D chromatin interaction data. The Hi-C and Micro-C datasets used for this aim included
both cardiac- (Zhang et al., 2019) and neural-specific (Akbarian et al., 2015) human interac-
tion data, as further introduced in section2.2.1

Further, to overcome this limitation, I compared AR+C-based results with the
PsychENCODE pre-frontal cortex ‘high-confidence” enhancers dataset as a sensitivity ana-
lysis: LDSC on this dataset showed a high degree of overlap with AR+C-based results —
including enrichment in schizophrenia heritability; however, the NEURAL SIGNIFICANT EN-
HANCERS WITHIN GRBs AR+C-based list, generated as part of this work, showed an even
higher enrichment in heritability (see figure 2.2), suggesting that AR+C-based lists com-
pensate for the potential limitations due to the use of cells with the high quality of available
annotations, based on co-expression, 3D contact, as well as data on tissue-specific expres-

sion.

5.1.3 Further work

This chapter — by developing tissue-specific enhancer lists that are enriched in
schizophrenia heritability — formed the basis for the subsequent analyses, presented in chapters
3 and 4 — discussed next. In these chapters I have utilised the tissue-specific enhancer lists

generated here, aiming to increase the amount of disease heritability explained by schizo-
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phrenia PRSs.

5.2 Chapter 3: Schizophrenia and HCM heritability from par-

titioned PRSs

In Chapter 3, Schizophrenia and HCM heritability from partitioned PRSs, I de-
veloped partitioned PRSs, or pPRSs, to dissect the heritability contribution of tissue-specific
enhancer-based SNPs separately, and with priority over, every other SNP. Because of the
heritability enrichment in tissue-specific enhancers for schizophrenia, which I showed in
Chapter 2, I had reason to believe that enhancer-residing SNPs would carry a higher schizo-
phrenia per-SNP h%yp. Therefore, I had hypothesised that the hppg for schizophrenia
would increase by considering prioritised tissue-specific enhancer-based SNPs and residual
partitions separately, as compared to the original GWASes for the condition. Given the non-
significant enrichment in heritability for HCM for cardiac-specific enhancers, I hypothesised
the same for HCM, however with a lower confidence.

Confirming the results of Chapter 2, I found that — for schizophrenia — neural-
specific enhancer-based SNPs, and especially those within human-mouse GRBs, explained
several times the per-SNP variance than the average GWAS SNP; this was also the case
for cardiac-specific enhancers and HCM. Further, using logistic models where the tissue-
specific, enhancer-based and residual partition PRSs were separate predictors, I tested whether
the total variance explained by the genetic factor on the liability scale, corrected for ascer-
tainment — called coefficient of determination — by pPRS (%7 prs) would increase over that
explained by the original GWAS for schizophrenia and for HCM (h%.5). For schizophrenia
the use of multivariable models produced only modest increases compared to the h% . fig-
ure — and with quite wide confidence intervals, which does not allow to refute the null
hypothesis. The best multivariable model, for the logit additive model plus interactions
plus quadratic terms including NEURAL SIGNIFICANT ENHANCERS WITHIN GRBS, reached

a CoD of 10.49%, which, compared to the original leave-one-out GWAS coefficient of 9.85%,
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represents a 6.5% improvement.

Similarly, for HCM the use of multivariable models seemed to drive an increase
in h2ppg, as compared to the original GWAS PRS alone (h} ), in both the UK Biobank and
the Royal Brompton cohorts — even if the increases for the UK Biobank cohort were much
larger. Differently from schizophrenia, however, this increasing trend was apparent both for
the CARDIAC SIGNIFICANT ENHANCERS partition, as well as for non associated partitions
(derived from ‘control” enhancer lists, where the enhancers did not necessarily have any
association with a promoter, and/or were not necessarily cardiac-specific), suggesting that
this pattern might not be driven by the use of tissue-specific enhancer-based partitions. In
fact, the main improvement in A2, .4 came with the use of quadratic terms. This appeared
to suggest that up-weighting extreme PRS values — in this case by the use of a quadratic PRS
term — might benefit less polygenic, and more tissue-specific conditions such as HCM.

Finally, in this chapter I have tested if enhancer-based annotations can help im-
prove PRSs. The rationale for this analysis resides in the importance of enhancer-promoter
interactions for tissue- and time-specific gene expression regulation (as introduced, among
others, in section[I.1.3.2). Previous research had also shown that GRBs can act as regulatory
domains that delimit the span of long-range gene regulatory interactions (section and
Baresic¢ et al., 2020; Georgieva, 2022). Therefore, it is possible to hypothesise that the ge-
netic effects of a SNP tagging a specific enhancer might be affected by either how strong the
enhancer-promoter association is for the same enhancer, or by how expressed the enhancer
is, in the specific tissue of interest. For these reasons, in this analysis I have included two
measures: the association effect size for enhancer-promoter co-expression from the AR+C —
a measure of how strong an enhancer can modulate its target gene — as well as a measure
of enhancer tissue-specific expression (neural or cardiac for each analysis). In other words, I
tested the hypothesis that tissue-specific enhancer PRSs for schizophrenia and HCM would
increase the overall disease h2prs When accounting for tissue-specific enhancer expression
or target gene association measures — by multiplying SNP-disease association measure 3

coefficient for enhancer-based SNPs by either the effect size of the tissue-specific enhancer,



5.2. Chapter 3: Schizophrenia and HCM heritability from partitioned PRSs 143

or by its tissue-specific expression. This part of the work did not show any promise, as the

results were negative for both conditions.

5.2.1 Interpretation of findings

This chapter moved from the premises set in my hypothesis that the ppq for
schizophrenia and HCM would increase by considering tissue-specific enhancers and resid-
ual partitions separately, as compared to the original GWASes for the conditions, and that
the tissue-specific enhancers partition PRSs for schizophrenia and HCM would increase by
accounting for tissue-specific enhancer expression or target gene association measures. As
discussed more extensively elsewhere, these hypotheses were driven by multiple sources of
previous evidence, and in summary:

* GWAS, paired to polygenic risk scoring, are techniques that allow to estimate SNP-
based heritability for complex disorders. However, h% 4 estimates have been shown to be
consistently smaller than disease h?, as measured by twin studies (see section[1.5.2).

* GWAS does not take into account tissue-specific annotations or expression features,
nor it does account for the theories around what might drive a specific condition’s heritabil-
ity, such as the fact, for example, schizophrenia heritability has been shown to culminate in
neural-specific effects, and particularly on the synapse (see section [2.T).

* This work makes use of annotations based on co-expression and 3D chromatin con-
tact information that allowed to create a genome-wide list of high-confidence enhancer-
promoter pairs. These were refined with tissue-specific enhancer expression information
to generate tissue-specific enhancer lists (see section [2.2).

Based on previous knowledge on GRB biology, which assigns a role to GRBs in long-range
developmental gene regulation, tissue-specific enhancer lists were further subset based on
GRB overlap (see section [1.2.2).

e Work from Chapter 2 in this thesis, that confirms that tissue-specific enhancer lists,

as well as GRBs, appear to be enriched in schizophrenia heritability.

This chapter’s results appear conclusive in one main respect: in showing that
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tissue-specific enhancer-based partitions appear to carry significantly more heritability (between
8 and 13 times) than non-enhancer-based ones for schizophrenia, and also for HCM (between
5 and 19 times). The other result is to show that the use of multivariable models seems to
drive a small increase in h2ppq for both schizophrenia and HCM, as compared to the ori-
ginal GWAS PRS alone (h%5). However, the fact that for HCM this pattern was apparent
both using a significant cardiac enhancers partition, as well as non associated partitions
(where the enhancers did not necessarily have any association with a promoter, and were
not cardiac-specific), suggests that this pattern might not be necessarily driven by the use of
tissue-specific enhancer-based partitions. In fact, the main improvement in A2 4 came with
the use of quadratic terms. This appears to suggest that up-weighting extreme PRS values
— in this case by the use of a quadratic PRS term — might benefit less polygenic, and more
tissue-specific conditions such as HCM.

In conclusion, I am unable to reject the null for both my main hypotheses for this
chapter, with relation to schizophrenia: NEURAL SIGNIFICANT ENHANCER-based partitions
did not show significant improvements in h?pps for schizophrenia, and the same meas-
ure did not increase when accounting for tissue-specific enhancer expression or target gene
association measures. Previously, regulatory annotations had been used to improve PRS
trans-ancestry “portability” (Amariuta et al.,2020; Weissbrod et al., 2022), producing modest
relative improvements in the explained disease liability when applying a GWAS developed
in one population to a different ethnicity. In Marquez-Luna et al., 2021, the Authors intro-
duce LDpred-funct, a tool that leverages trait-specific functional priors to increase prediction
accuracy. The model considers predictors including whether a variant is coding, conserved,
regulatory, and LD-related annotations. Using this method, they produce a +4.6% relative
improvement in R?, which is comparable in scale to the 6.5% improvement in CoD that I
tind in this work. My findings, therefore, despite not being likely clinically relevant or stat-
istically significant due to the wide confidence intervals, are comparable to previous work
on the topic. It is possible that functional annotations might not grant very large improve-

ments in the amount of variance explained by the genetic factor, and in future work it might
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be best to combine existing approaches.

Finally, as with most negative findings, there is the possibility that I did not have
the statistical power to detect differences in CoDs, e.g. a type II error. This might be the case
especially for analyses that involved enhancer-list-based genomic partitions, as compared
to residual partitions, as these were many times the size of the enhancer-based ones. This is
especially true with regards to smaller enhancer lists, such as the lists overlapping eQTLs.
In fact, as an example, BRAIN ENH-PROMOTER-EQTLS did show large values of heritability
enrichment for schizophrenia, however these did not pass the FDR threshold. For this very

reason I excluded these smaller E-P_eQTL lists from the analyses in this chapter.

5.2.2 Limitations

The main limitation to this work resides in how tissue-specific enhancers were
selected, and then in how PRSs were partitioned. First of all, the approach relied on en-
hancer expression in any tissue/cell: for example, an enhancer was marked as ‘neural’ if it
was expressed in any of a list of neural-related FANTOMS cells or tissues. This approach,
despite being not very specific, did generate lists appropriate to warrant consideration in
the remainder of this work. In future work, more refined measures of enhancer tissue spe-
cificity could be utilised alongside this. However, as noted earlier, the comparison of the
neural-specific lists I generated for this work using this approach with existing ones (such
as the PsychENCODE pre-frontal cortex ‘high-confidence” enhancers) produced favourable
results, something that supports the current approach.

Secondly, the generation of enhancer-based PRSs relied on selecting SNPs within
+100 bps of enhancer coordinates, and then prioritising them over nearby SNPs in reciprocal
LD when clumping. This approach is sensitive, however it does not capture any SNPs for a
number of significant enhancers — for example because no SNPs were genotyped within 100
bps of a given enhancer. The variance of such missed enhancers is therefore lost. Further,
the approach prioritises all available SNPs within significant enhancers, without selecting

enhancers that might be more or less promising. Of course, if an enhancer is within a “signi-
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ficant’ list, this will mean that it has features that make it — on average — more important than
nearby DNA. However, in future, approaches tailored to specific enhancers — e.g. based on
some sort of score — and the use of genome sequencing to capture most enhancers, might be
more fruitful.

Further, as more extensively discussed in section there are limitations to the
work behind the creation of the tissue-specific enhancer lists, as these are based on FAN-
TOMS data (Andersson et al., [2014), as further analysed in Georgieva, 2022, While this is a
very rich dataset, including various human cells and tissues, its neural samples might not
accurately represent the complexity of the human brain — more specifically, these annota-
tions might not capture some of the regulatory elements (enhancers) important for gene
regulation in the human brain (and relevant to schizophrenia). However, I did find signific-
ant results for enrichment in schizophrenia heritability — which makes me confident that the
dataset might be effective at building relevant tissue-specific lists which are highly enriched

in schizophrenia heritability.

5.2.3 Further work

I am aiming to combine existing approaches such as LDpred-funct (Marquez-Luna
et al., 2021) with mine, to test whether the combined use of multiple annotations can further

increase the amount of variance for schizophrenia explained by the genetic factor.

5.3 Chapter 4: Leveraging nonadditive disease inheritance
models

Chapter 4, Leveraging nonadditive disease inheritance models, explored the value
of using alternative, nonadditive inheritance models to developing an enhancer-based schizo-
phrenia association study (EP-WAS). This analysis starts from the observation that A) to
study each SNP’s association with a trait or phenotype within a GWAS one has to make

assumptions about a specific inheritance model (as discussed in section|1.4.2.1); and B) most
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existing GWASes for complex disorders have utilised an additive model of inheritance — this
assumes that the risk for each additional SNP is small, and that each additional allele acts
independently by increasing risk (Psychiatric GWAS Consortium Coordinating Committee,
2009; Uffelmann et al., 2021). Further, while most Mendelian disorders and conditions are
classified as following a dominant or a recessive inheritance pattern, and it is postulated
that most deleterious mutations are recessive, nonadditive effects have seldom been stud-
ied in the context of SNP-based heritability for complex human disorders (Manna et al.,
2011). On the other hand, dominance effects are central to the study of model disease fitness
by population geneticists, and across organisms and conditions the average dominance of
mutation of small effects should be approximately one-quarter (Manna et al., 2011). As a
consequence, I have hypothesised that some higher-priority variants (e.g., those falling in-
side tissue-specific enhancers for a relevant tissue) might follow a nonadditive (e.g., domin-
ant/recessive) model of inheritance, and that considering dominant or recessive inheritance
models for enhancer-based SNPs in schizophrenia could increase its /2 p .

To test this hypothesis, in this chapter I measured the associations of enhancer-
based SNPs with schizophrenia using both dominant and recessive, as compared to canonical
additive inheritance models, within the UK Biobank cohort. I then validated the results in
terms of the proportion of the total variance explained by PRS on the liability scale, corrected
for ascertainment. I first calculated this measure for each genomic partition (original PGC
GWAS, NEURAL SIGNIFICANT ENHANCERS, and residual partitions) within the UKBB devel-
opment sample: this showed that enhancer-based SNP effects from the EP-WAS were very
large, and much larger than expected. The results within UK Biobank, however, appeared
inflated, due to the fact that the EP-WAS was also developed in UKBB. Finally, I validated
the results externally in the xs234 PGC cohort. This external validation step showed that
EP-WAS effects within UKBB did in fact suffer from a large ‘winner’s curse’ bias, as results
based on an external cohort not only did not improve on the original PGC-based effects, but
they showed a very significant drop to the amount of variance explained by PRS.

How do my negative findings fit into the existing literature on this topic? Since



148 Chapter 5. Discussion

completing this work, in April 2023 an analysis from a Broad Institute group was pub-
lished, asking exactly the same question, i.e., whether there was evidence of nonadditive
effects genome-wide in more than 1,000 phenotypes in the UK Biobank population (Palmer
et al., 2023). After analysing 361,194 samples for 13.7 million SNPs, and testing for associ-
ations with 1060 phenotypes, Palmer et al., 2023| found just 183 phenotype-locus pairs that
were genome-wide significant at p < 4.7 x 107!, They concluded that additive effects ex-
ist, but that they are rare, and that minimum sample sizes of millions are required to detect
nonadditive effects at the same strength of association as those reported for additive effects.
Palmer et al., 2023 did not test for schizophrenia, because they excluded binary traits with
fewer than 3,000 cases (or controls), as this implied less than eight samples in both categories
(case and controls) to be homozygous down to an allele frequency of 5% (which they had
set as the minimum MAF for including a SNP in the analysis).

It is therefore evident that, despite having had the right instinct in performing
this analysis, my main limitation was that I was not powered to detect dominant effects
in the UK Biobank, which can count only on 1,169 people with schizophrenia (within the
European ethnicity I had planned to analyse). Further, I found the largest effects in SNPs
with MAFs < 0.05, which I should have instead excluded due to power constraints. Finally,
Palmer et al., 2023/ show that the nonadditive variance contributions decreases as the MAF
decreases from 0.5, i.e., for rarer SNPs, even if a dominant effect is demonstrated (which — as
discussed —requires very large samples sizes), this would not make significant contributions
to the amount of variance explained by the model.

In further work I plan to repeat this analysis on dominant effects on the whole PGC
schizophrenia cohort, to interrogate a much larger sample, powered to detect nonadditive
effects. To do so, I will need to overcome the limitations posed by the PGC sample, the
main of which is that it is composed of over 90 datasets, each with a maximum of a few
thousands patients, therefore perpetuating some of the small-sample limitations that I have

encountered in this work.
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5.4 Conclusions

In this work I have tackled the issue of complex disorder ‘missing heritability”
through a diverse set of analyses. To test my hypotheses, I have used two model conditions,
schizophrenia and hypertrophic cardiomyopathy (HCM). Schizophrenia was chosen as a
highly polygenic disorder, while HCM appeared a good comparison because of lower poly-
genicity (it is a condition with a few very high-risk variants — including some for sarcomeric
proteins — alongside a number of common, low risk variants). Further, while schizophrenia
has been described as a multi-system, developmental disorder — with multiple insults con-
verging on the synapse as the final common pathway (Howes & Onwordi, 2023; Pillinger et
al., 2019a) - HCM is a more tissue-specific condition, whose genetic roots might fully exert
their effects in the adult, fully differentiated tissue (Marian & Braunwald, 2017; Mazzarotto
et al., 2020; Tadros et al., 2023).

In Chapter 2 I have found that, as hypothesised, neural-specific significant enhan-
cer partitions — particularly when enhancers overlapped GRBs — were highly enriched in
schizophrenia heritability. On the other hand, cardiac-specific significant enhancer parti-
tions” enrichment in HCM heritability did not survive FDR correction.

In Chapter 3 I found that the use of multivariable logistic models including parti-
tioned PRSs — particularly the model including NEURAL SIGNIFICANT ENHANCERS WITHIN
GRBs and a residual partition as predictors, and including predictor interactions and quad-
ratic terms — showed a 6.5% increase in the Coefficient of Determination for schizophrenia
over the original leave-one-out GWAS. However, this increase did not appear statistically
significant, due to the width of the confidence intervals, nor is probably clinically relevant
for the production of improved risk prediction models for psychosis. However, the findings
are in line with similar recent attempts from large groups, including for example Marquez-
Luna et al., 2021l
For HCM, I found limited effects from the use of partitioned PRSs, and, especially in the UK

Biobank sample, CoD increases following the use of quadratic terms — possibly due to the
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fact that squaring predictors increased the weight of extreme PRS values, which appeared
much more common in this less polygenic condition. This effect appeared similar but much
smaller using the Royal Brompton cohort.

Lastly, in this chapter I have showed that, in a completely negative finding, and contrary to
my expectations, enhancer-based annotations could not help improve PRSs.

In Chapter 4 I tested nonadditive effects as applied to enhancer-based SNPs, within
an EP-WAS (an enhancer-based association study) of schizophrenia. For this analysis my
results are inconclusive, as the sample I have used has been shown in the very recent lit-
erature to be insufficiently powered to detect nonadditive effects (Palmer et al., 2023). My
results also highlight one of the reasons additive scores are normally considered in most
GWASes: they require smaller sample sizes to be powered to detect associations. I plan on
repeating this analysis in larger samples as part of my future research endeavours, once I
can resolve a few important difficulties based on the PGC’s sample structure.

Overall, pending further validation for some of the findings, my research points to
the fact that:

1. Selecting neural tissue-expressed enhancers does select for genomic areas of increased
importance for schizophrenia heritability, especially when these overlap GRBs.

2. Partitioned PRSs could potentially modestly increase schizophrenia’s coefficient of de-
termination — however this does not seem to be an approach that can revolutionise the
field.

3. When modelling the risk for less polygenic conditions such as HCM, it might be worth
considering both linear and quadratic terms.

4. Nonadditive effect should be explored in GWAS — however this requires very large

samples.
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Figure A.1: Coefficients of Determination for Schizophrenia for Neural significant enhancers,
clz2a cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models. In brick red, values are on the liability scale, corrected for ascertainment as per Lee
et al., 2012} utilising the formula by Choi and O'Reilly, 2019 - or coefficients of determination (CoD).
In baby blue the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the clz2a cohort. Target
data: clz2a European PGC schizophrenia cohort.
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Figure A.2: Coefficients of Determination for Schizophrenia for Neural significant enhancers
within GRBs, clz2a cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the clz2a cohort. Target
data: clz2a European PGC schizophrenia cohort.
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Figure A.3: Coefficients of Determination for Schizophrenia for Non neural enhancers, clz2a co-
hort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the clz2a cohort. Target
data: clz2a European PGC schizophrenia cohort.
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Coefficients of determination for the main three partitions: original, enhancer and residual
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Figure A.4: Coefficients of Determination for Schizophrenia for Non associated enhancers, clz2a
cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the clz2a cohort. Target
data: clz2a European PGC schizophrenia cohort.
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A.1.2 celso cohort

celso Neural significant enh

Coefficients of determination for the main three partitions: original, enhancer and residual
7

A) Total CoD %, and 95% CI B) Coefficients of determination per SNP x 10
Original GWAS PRS (SNP =
N=110993) 7o7 i
2
»
2
% Residual partmon[\lj’RS (S%\IQF; 6.46 1427
8
N
(@]
2 cels%g%u(rjal Signf%g“?ﬁg .06
i . S
partition riginal N:f(i847) o [38.36] (88.55]
0 5 10 15 20 0 25 50 75
CoDs % and 95% Cls for the three enhancer partitions: CoDs % and 95% Cls for the Original GWAS PRS vs
Original OR, enhanced by ES, enhanced by expression Additive Models Including the Residual and Enhancer Partitions
-
celso Neural significant enh Original GWAS,\?ﬂ% éggNaP
partition PRS Original OR (SNP T— = ) 16.71
\ N=6847) 263 (6.06]
K%} Residual + celso Neural
8 significant enh partition PRS >
c celso Neural significant enh (SNP N=108566) R
S partition PRS OR x enh ENSéSL\I;)’ @ Choi
— =| 257 5.95
© Residual x celso Neural s
N significant en artition PRS ;— —E Nagelkerke
8 SNP N=108566)
celso Neural significant enh 259 5.99 .
partition PRS OR x enh TS tpm F;(iagsrlu(ij#cﬂnxt gﬁﬁ%g‘rﬁﬂgﬂ )
(SNP N=6847) PRS + quadratic terms (SNP
N=108566)
0 2 4 6 8 0 5 10 15 20

Figure A.5: Coefficients of Determination for Schizophrenia for Neural significant enhancers,
celso cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., util-
ising the formula by Choi and O'Reilly, — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the celso cohort. Target
data: celso European PGC schizophrenia cohort.
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Figure A.6: Coefficients of Determination for Schizophrenia for Neural significant enhancers
within GRBs, celso cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., util-
ising the formula by Choi and O'Reilly, — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the celso cohort. Target
data: celso European PGC schizophrenia cohort.
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Figure A.7: Coefficients of Determination for Schizophrenia for Non neural enhancers, celso co-
hort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., util-
ising the formula by Choi and O'Reilly, — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the celso cohort. Target
data: celso European PGC schizophrenia cohort.
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Figure A.8: Coefficients of Determination for Schizophrenia for Non associated enhancers, celso
cohort.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., util-
ising the formula by Choi and O'Reilly, — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the celso cohort. Target
data: celso European PGC schizophrenia cohort.
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Figure A.9: Coefficients of Determination for Schizophrenia for Neural significant enhancers,
xs234 cohort, 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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Figure A.10: Coefficients of Determination for Schizophrenia for Neural significant enhancers
within GRBs, xs234 cohort, 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., util-
ising the formula by Choi and O’Reilly, — or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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Figure A.11: Coefficients of Determination for Schizophrenia for Non neural enhancers, xs234 co-
hort, 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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Figure A.12: Coefficients of Determination for Schizophrenia for Non associated enhancers, xs234
cohort, 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original LOO GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the
corresponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determina-
tion and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on
the original OR, the second based on the OR enhanced by the effect size (ES) of association between
each enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific
expression value of each enhancer. Panel D) shows the coefficients of determination and 95% con-
fidence intervals for each PRS for the original GWAS PRS, as well as for the three partitions using
additive models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: leave-one-out (LOO) European ancestry PGC GWAS for schizophrenia for the xs234 cohort. Target
data: xs234 European PGC schizophrenia cohort.
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Figure A.13: Coefficients of determination for HCM for Cardiac significant enhancers, in the
UKBB cohort - 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the corres-
ponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determination
and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on the
original OR, the second based on the OR enhanced by the effect size (ES) of association between each
enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific expres-
sion value of each enhancer. Panel D) shows the coefficients of determination and 95% confidence
intervals for each PRS for the original GWAS PRS, as well as for the three partitions using additive
models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison.

Base data: HCM GWAS by Tadros et al.,|2023, Target data: UKBB European sample.
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Figure A.14: Coefficients of determination for HCM for Non cardiac enhancers, in the UKBB co-

hort — 0.05 threshold.

Panel A) shows the coefficients of determination and 95% confidence intervals for the three main
partitions (original GWAS, residual, and enhancer-based) in this cohort. Panel B) shows the corres-
ponding point values, adjusted per SNP (x107). Panel C) shows the coefficients of determination
and 95% confidence intervals for each PRS for the three enhancer-based partitions — one based on the
original OR, the second based on the OR enhanced by the effect size (ES) of association between each
enhancer and promoter, and the final one based on the OR enhanced by the tissue-specific expres-
sion value of each enhancer. Panel D) shows the coefficients of determination and 95% confidence
intervals for each PRS for the original GWAS PRS, as well as for the three partitions using additive

models.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al., 2012, util-
ising the formula by Choi and O’Reilly, 2019|- or coefficients of determination (CoD). In baby blue

the original Nagelkerke’s R? for comparison.

Base data: HCM GWAS by Tadros et al.,|2023, Target data: UKBB European sample.
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Figure A.15: Coefficients of determination for HCM for Non associated enhancers, in the UKBB
cohort — 0.05 threshold.

The figure describes the proportion of the variance of HCM explained by the genetic factor for each
PRS for the three enhancer-based partitions — one based on the original OR, the second based on the
OR enhanced by the effect size (ES) of association between each enhancer and promoter, and the final
one based on the OR enhanced by the tissue-specific expression value of each enhancer.

In brick red, values are on the liability scale, corrected for ascertainment as per Lee et al.,
utilising the formula by Choi and O’Reilly,— or coefficients of determination (CoD). In baby blue
the original Nagelkerke’s R? for comparison. Plots represent the CoD % and 95% confidence interval
for the measure. Panel A) shows the CoD for each genomic partition for the CARDIAC SIGNIFICANT
list. Panel B) shows the CoD for each genomic partition for the NON CARDIAC list. Panel C) shows
the CoD for each genomic partition for the NON ASSOCIATED list.

Base data: HCM GWAS by Tadros et al., Target data: UKBB European sample.
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