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Abstract

Integrative genomics embodies a collaborative approach that brings together various disciplines,

merging genomic and computational methodologies to achieve a comprehensive understanding

of complex biological systems. By integrating and analysing various omics datasets, researchers

can uncover novel insights into biological processes, disease mechanisms, and molecular inter-

actions.

This thesis applies integrative genomic approaches to study the biological mechanisms of cog-

nitive disorders resulting from neurodegenerative and neurodevelopmental impairments. It

includes three studies that utilise transcriptomic profiling to identify and assess these mecha-

nisms. The final discussion chapter summarises the main findings, including shared and distinct

mechanisms across different cognitive disorders, addressing technical limitations, and outlining

future research directions.

The first study focuses on Lewy body diseases, utilising single-nucleus transcriptomics. Differ-

ential expression analysis reveals widespread dysregulation in neurons and glial cell types, with

similar gene expression profiles observed in Parkinson’s Disease Dementia (PDD) and Demen-

tia with Lewy Bodies (DLB), while Parkinson’s Disease (PD) shows distinct transcriptional

profiles. Heritability enrichment analysis highlights a genetic association between glial cell dys-

regulation and PD age of onset. Additionally, a unique population of neurons associated with

DLB, resembling medium spiny neurons, is identified.

The second study investigates early-stage abnormal tau species-related gene expression changes

in Alzheimer’s Disease (AD). Analysis of gene expression at the single-cell level demonstrates

distinct patterns between Tau-proximity Ligation Assay (tauPLA) positive and tauPLA neg-

ative brain tissues. Dysregulation of genes in various cell-types in tauPLA positive samples is

observed in the absence of neurofibrillary tangles. Reactive astrocyte activation, even in the

absence of neurofibrillary tangles, is also reported for the first time in a transcriptomic-based

study, suggesting their role in AD progression.

The third study examines the neurodevelopmental outcomes of valproate exposure. Transcrip-

tomic analysis reveals significant gene expression changes in the brains of gestationally exposed

pups, affecting synaptic function, neurodevelopment, and genes associated with schizophrenia,
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bipolar disorder, and IQ heritability. Differential splicing analysis suggests enduring effects on

brain function through epigenetic encoding.

Convergent and divergent mechanisms underlying various neurodegenerative disorders are iden-

tified across the studies, including pathways related to axonal degeneration, mRNA splicing,

synaptic organisation, autophagy, neuron death, phosphorylation, memory, mitochondrial func-

tion, and vesicle-mediated transport regulation.

This thesis contributes to understanding the biological basis of cognitive disorders through in-

tegrative genomic approaches, providing insights into shared and distinct mechanisms across

different disorders. The findings have implications for the development of therapeutic inter-

ventions and underscore the importance of rigorous experimental design in transcriptomic in-

vestigations. Future research directions are outlined, aiming to further unravel the complex

molecular mechanisms underlying cognitive disorders.
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Chapter 1

Introduction

Over the past few decades, interdisciplinary approaches to interrogate complex diseases have

transformed the field of neuroscience research (Figure 1.1). Integrative genomics approaches

using high throughput sequencing genomics data and computational tools are routinely used

to identify disease-relevant biological and molecular pathways and characterise and study the

function of vital organs [56, 77, 273]. Furthermore, associating disease-perturbed pathways

with disease outcomes facilitates disease prevention, diagnosis and treatment [120, 204, 266].

For example, Jagadeesh et al.(2022) [133] used Single-cell RNA Sequencing (scRNA-Seq),

epigenomic single-nucleotide polymorphism (SNP)-to-gene maps and Genome-Wide Associa-

tion Studies (GWAS) summary statistics to infer cell type-phenotype relationships for neu-

rological disorders, including γ-aminobutyric acid-ergic neurons in major depressive disorder.

Furthermore, the authors also identified a disease-specific complement cascade process in mul-

tiple sclerosis. Similarly, Mathys et al.(2019) [205] used single-nucleus transcriptomes from the

prefrontal cortex of late and early-stage AD samples to elucidate transcriptional changes in var-

ious cell-types. Additionally, the authors applied correlation analysis using gene expression and

AD-related neuropathological traits using self-organising maps (unsupervised machine learning

algorithms) to identify gene-trait correlation modules implicating genetic risk factors for both

general cognitive function and AD.

In another example, Johnson et al.(2016) [142] applied system-level approaches to gene ex-
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pression data from human hippocampus samples to draw connections between genetic factors

that contribute to variation in cognitive ability (specifically, intelligence quotient intelligence

quotient (IQ)) and those contributing risk to neurodevelopmental disease.

In this thesis, I will summarise three studies where I used integrative genomics approaches

to elucidate some of the mechanisms underlying cognitive disorders arising from heterogeneous

causes, including drug-induced neurodevelopmental impairments and neurodegeneration. In the

current chapter, I will introduce the computational techniques used to study the transcriptome

and briefly introduce the disorders of cognition under investigation. In Chapter 2 and Chapter 3,

I will focus on diverse mechanisms that can cause dementia, including Lewy Body dementia and

tau pathology, while Chapter 4 will focus on drug-induced neurodevelopmental impairments.

In Chapter 5.1, I will summarise the convergent and divergent mechanisms underlying various

types of dementia; lastly, I will discuss limitations and future work.

Figure 1.1: Decades of Progress. A timeline of some of the significant milestones in the field
of genomics of neuroscience in the past few decades, highlighting the key breakthroughs and
advancements that have shaped our understanding of the genetic basis of neurological disorders
and brain function.
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1.1 Genomics

Genomics is a branch of molecular biology that focuses on analysing and interpreting the entire

set of genes, known as the genome, or a specific set of genes within an organism. Since the

conception of the term “genomics” by Dr Thomas H. Roderick in 1986 [348], “omics” based

biological research has been used to characterise and study biological processes that are vital

for an organism to live. The omics era began in October 1990 after The Human Genome

Project Human Genome Project (HGP) started. The project was launched by an international

group of scientists with the aim of deciphering a reference human genome sequence to facilitate

more effective approaches to studying human genetics. The result was generating an accurate

reference sequence for each human chromosome (excluding large heterochromatic regions and

a small number of gaps). This led to the HGP being instrumental in developing sequencing

technologies for mapping and sequencing Deoxyribonucleic acid (DNA) [122]. Since the early

2000s, using in silico (computational) techniques for analysing large-scale genomics datasets

has broadened our understanding of biology, including the human brain. Following the HGP

project, several studies (Figure 1.1) have generated multiple biological data (including genomics,

transcriptomics, and proteomics) from both human and model organisms. In 2007, the first

genome-wide atlas of gene expression in the adult mouse brain was generated by Lein et al.

[177]. While in 2015, a multidimensional genomic database of the human brain (from both

healthy and diseased samples) was generated by the PsychENCODE consortium [5]. Although

these databases have proven effective in medical research, many questions remain regarding

brain disorders.

1.1.1 Bulk and Single-cell RNA-Sequencing

The first-generation DNA sequencing technology (FGS) was a chain termination method de-

veloped in 1977 by Sanger and Coulson [117]. The method uses gel electrophoresis to create

sequencing ladders and performs base calling using fluorescent-based labelling techniques. Over

the last decades, high-throughput next-generation sequencing (NGS) methods have evolved
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to enable Ribonucleic acid (RNA) analysis by first converting RNA to complementary DNA

(cDNA) by reverse transcription, followed by ligation of sequencing adaptors to the ends of the

cDNA fragments and finally amplification of the fragments by Polymerase chain reaction (PCR)

and generating RNA Sequencing (RNA-Seq) libraries [117]. Once libraries are prepared, DNA

sequences are generated through a series of steps, which varies depending on the technology

used [171, 277, 278, 368]. In general, libraries are first loaded onto a flow cell, where DNA

fragments are immobilised and amplified, forming clusters containing multiple copies of the

same sequences in close proximity. Next, a sequencing-by-synthesis process (using fluorescently

labelled reversible terminators) occurs, involving iterative cycles of nucleotide incorporation

and imaging for each cluster. The emitted fluorescence signal is detected to determine the

sequence of each fragment. Following this, the raw fluorescence signal data undergo a data

processing step, converting them into base calls that represent the DNA sequencing of each

fragment. These base calls, accompanied by quality scores indicating the confidence in each

call, are stored as sequence reads. The reads are then used in the down-stream analyses using

several computational tools [171, 277, 278, 368].

Depending on the down-stream analyses (Figure 1.2), there are two widely used sequencing

types: single-end short sequencing and paired-end longer sequencing, the latter of which is used

to gain more comprehensive information about the transcriptome and aimed at analysis focusing

on novel transcript identification, gene fusions, and point mutations as well as differential

expression [181]. Bulk RNA-Seq data provides measurements of gene expression values that

represent an average across all the different cell-types in the tissue being analysed. Until

recently, most gene expression analyses were based on gene expression data from bulk tissue

samples. However, developing methods to assay the transcriptomes of individual cells, using

a method referred to as scRNA-Seq, offered the opportunity to resolve gene expression within

individual cell-types. For example, early scRNA-Seq work identified novel transcriptionally

distinct classes of microglia [93] and dopaminergic neurons [123] and showed that these cell-

types were enriched in genetic risk to AD and PD, respectively. Initially, scRNA-Seq of the brain

was limited to fresh tissue samples, however, the introduction of Single-nucleus RNA Sequencing

(snRNA-Seq) enabled the application of scRNA-Seq advantages to frozen brain tissue samples
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Figure 1.2: Overview of Single-cell/Single-nucleus and bulk RNA Sequencing: Data
GenerationThe experimental design involves the selection of biological samples, library prepa-
ration, and sequencing on the appropriate platform. After sequencing, the raw data undergoes
several pre-processing steps, such as quality control and alignment to a reference genome. For
single-cell/single-nucleus RNA sequencing, data are further processed to identify and quantify
gene expression at the single-cell level, including normalisation, gene filtering, and clustering.
Finally, downstream analysis can include differential gene expression, pathway analysis, and
cell-type identification. Abbreviation: RNA-Ribonucleic acid.
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[166],[110]. Several studies have explored the comparability between the nuclear transcriptome

and the transcriptome of the whole cell. These studies have consistently demonstrated the

reliability of snRNA-Seq, providing strong evidence that snRNA-Seq accurately represents the

RNA content at the tissue level [110],[165]. Furthermore, Habib et al. (2017) showed the

expression profile of single nuclei to highly correlate with the average profile of single whole

cells (Pearson r=0.87)[110]. Additionally, 98% of transcripts are represented in whole nuclei

versus whole cells [319].

The challenges in detecting differences in gene expression levels associated with disease using

bulk-tissue RNA-Seq are confounded by differences in cell-type abundances that may result

from the disease itself or occur by chance due to sampling or other systematic differences

between case and control samples. In contrast, at least in principle, scRNA-Seq and snRNA-

Seq offers an opportunity to identify cell-type specific differences in gene expression associated

with disease states and discover rare or uncharacterised cell-types and cell states in diseased

compared to healthy tissues. Since then, both techniques have been widely used due to the

rapid technological advancement that allowed parallel analysis of thousands of cells, which

was also accompanied by the development of data analysis pipelines capable of analysing large

amounts of biological data [181].

1.1.2 Analytical methods to study the transcriptome

Both bulk and scRNA-Seq technologies provide powerful platforms for comprehensive analy-

sis of the whole transcriptome. Quantitative gene expression analysis is crucial for generating

hypotheses about the molecular mechanisms underlying disease and physiological states, and

several computational pipelines have been developed to carry out this task [162, 352]. The

pipelines for data analysis (after mapping reads to a specific reference genome and gene expres-

sion quantification), in general, include three main sections (Figure 1.3) [162, 352, 322, 58, 316]:

(A) Data pre-processing, including (i) quality control of count data; (ii) integration of count

data.
(B) Data analyses, including (i) dimensionality reduction; (ii) clustering.
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Figure 1.3: An overview of single-cell/single-nucleus RNA sequencing data analysis.
The Single-cell/Single-nucleus RNA-Seq analysis pipeline refers to a series of computationally
based analyses of transcriptomic data. The process involves several steps, including measuring
the level of gene expression, checking the quality of the read counts, integrating the data, nor-
malising the data, selecting specific features (most variable genes), reducing the dimensionality
of the data, clustering cells with similar profiles, annotating the cells based on their charac-
teristics (cell-type identification), and performing further analyses. The final set of analyses is
particularly important as it helps researchers to distinguish between different cell populations,
identify genes that are differentially expressed between different cell-types or conditions, and
conduct various other analyses based on the transcriptomic profiles of the cells. Abbrevia-
tions: LIGER (Linked Inference of Genomic Experimental Relationships); CPM (counts per
million);t-SNE (t-distributed stochastic neighbour embedding); UMAP (Uniform Manifold Ap-
proximation and Projection); PCA (Principal component analysis); RNA (Ribonucleic acid).

(C) Downstream analyses, including (i) differential splicing analysis; (ii) differential ex-

pression analysis; (iii) further downstream analyses to determine the functional consequences

of differentially expressed or spliced genes. These analyses include (a) functional enrichment

analyses, which test whether a set of genes is enriched for genes that contribute to certain bio-

logical processes, molecular function or cellular compartments beyond random expectation and

(b) heritability enrichment analysis which tests whether a gene set (for example one consisting

of genes differentially expressed between case and controls) is enriched for genes which con-

tribute genetic risk for disease (heritability enrichment analysis) and (c) single-cell trajectory

inference to explore the underlying path gene expression follows in a dynamic biological process

such as between disease or developmental states.
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1.1.3 Single-cell data pre-processing and analysis

Data pre-processing

A crucial requirement for a successful RNA-Seq study is a well-defined and meaningful experi-

mental design. The design should start with a clear understanding of the biological questions

to be addressed, which will influence the choice of library type, the number of biological repli-

cates per condition (which influences statistical power), sequencing depth and steps required

to minimise biases and/or confounding batch effects.

The preliminary steps for data pre-processing of RNA-Seq datasets include a quality check of

raw reads outputted from the sequencer. For bulk RNA-Sequencing datasets, this is done using

tools such as FastQC [10] and STAR [75] to map reads to a reference genome, adapter trimming,

and generate counts. For scRNA-Seq, data pre-processing analysis (Figure1.3a-b) steps can be

done using a tailored pipeline such as CellRanger [363](which was developed to carry out quality

checks of reads, mapping and count generation of single-cell datasets) or other computational

tools tailored for each step separately [209, 270]. As part of the quality control initial steps

for scRNA-Seq datasets, removing potentially ’empty’ cells from the data matrices is a crucial

step. These empty cells, also called ambient RNA-containing cells (cell-free transcripts in the

solution in which the cells are suspended [191, 196, 369]), are among the main issues of using

droplet-based scRNA-Seq assays. Their presence in the dataset could lead to systemic biases

in downstream analysis [191]. In order to resolve this, Fleming et al.(2019) [369] used a deep

generative model to learn the background RNA profile and separate cell-containing droplets

from empty ones.

In some cases, single-cell datasets are generated using different technology platforms with differ-

ences in equipment, capturing time, reagents, and even handling personnel. These differences

could introduce biases due to incomplete library sequencing, capture efficiency, differences in

technology platforms or amplification bias (Figure1.3b), making samples incomparable [279].;

therefore, batch-specific systemic effects need to be removed prior to downstream analysis [113].

To address this, several workflows have been developed. For example, to handle scRNA-Seq

data, a mutual nearest neighbours (MNNs) based algorithm is used to align the datasets into
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shared space. The algorithm first identifies similar cells (mutual neighbours) between batches.

The difference (batch effect) between the cells is then quantified and used as a scale to merge

the datasets (batches). The degree of difference is also used to assess the batch effect’s strength.

Recently, a computationally less demanding approach known as fastMNN has been developed

to compute the neighbours in dimensionally reduced space [113]. Among recently developed

integration tools are:

(i) Clustering On Network Of Samples (Conos), a method which uses a graph-based

approach to construct a global graph (connecting all cells across several datasets). First, the

algorithm identifies MNNs between cells in different datasets. Next, MNNs align the datasets

and integrate them into a unified representation. Further, Conos allows the identification of

clusters found across all datasets and those uniquely found in each dataset [19].

(ii) Seurat Version 3 provides a method which aligns data batches using canonical correlation

analysis (CCA) based approaches. Briefly, shared correlation structures are identified across

datasets using CCA (which projects the data into a subspace). Next, MNNs are computed in

the subspace and used as anchors to correct the data [299].

(ii)Linked Inference of Genomic Experimental Relationships (LIGER), an integration

tool which uses a graph-based approach to integrate datasets. Briefly, the algorithm first

constructs a graph using all cells, where each node represents a cell and the edges represent

the similarity between cells based on their expression profiles. Next, the algorithm uses a

graph-matching method to integrate the datasets by finding a common space in which cells

from different datasets are aligned based on their expression profiles. After integration, joint

clustering is performed to identify cell types conserved across the different datasets [338].

Data analysis

Furthermore, to ensure comparability of expression measurements across different cells in down-

stream analysis, it is crucial to address biases introduced due to technical variations, such as

differences in sequencing depth, gene length, GC content, and dropout events. These biases can

obscure underlying biological differences between samples, making it challenging to accurately
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interpret biological signals. To overcome this limitation, adjusting the expression measurements

to make them proportional to the true expression levels (to normalise the data) before using

raw counts in the downstream analysis is necessary [192, 41, 8].

Generally, the normalisation process includes either a linear regression approach (to estimate

size factors) or a non-linear approach using parametric modelling on count data [8, 41, 112]. In

both approaches, absolute counts are turned into ratios (i.e., how many transcripts of gene A are

there per 10,000 total counts), and then the relative number (normalised value) is transformed

to reduce the skewness or regress technical variation. Commonly used normalisation methods

in the scRNA-Seq analysis include:

i) LogNorm, a method that is based on log transformation in which each gene is first trans-

formed by taking the logarithm of the count values, followed by standardization of the value

across all cells by subtracting the mean expression value and dividing by the standard deviation

[41].

(ii) counts per million (CPM), a widely used normalisation method which accounts for

differences in sequencing depth. CPM is computed by dividing the raw count for each gene

by the total number of reads in the sample, followed by multiplying (scaling) the value by a

million [8].

(iii) sctransform, a method specifically designed for UMI-based scRNA-Seq data with high

levels of technical noise or batch effects. Unlike other normalisation methods, which make

assumptions about the data distribution, sctransform uses the Bayesian framework to model the

distribution of technical noise in each cell. Briefly, sctransform fits a generalised linear model

for sequencing depth as the explanatory variable, and UMI counts as the response variable.

Next, each count is transformed into a Pearson residual using the parameters computed by the

model. The transformed count is then used as a normalised value [112].

Moreover, dimensionality reduction techniques are applied in scRNA-Seq data analysis to mit-

igate noise that could impede the identification of meaningful patterns or structures [302].

By transforming the high-dimensional scRNA-Seq data into a lower-dimensional space, dimen-

sionality reduction techniques retain the essential features that contribute to variation in the
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datasets while removing irrelevant features and noise, thus, improving the accuracy and inter-

pretability of biological signals.

Principal component analysis (PCA) is a dimensionality reduction technique widely used to

visualise biological or technical variation within a dataset [143]. The PCA method takes large

input data (gene counts) and reduces the dimensions to a set of linearly transformed dimensions

while maintaining as much of the data’s variation as possible. The transformed dimensions are

plotted as a two-dimensional plot. The plot can also be used in identifying technical and

biological outliers. However, for complex structured datasets such as (single-cell datasets),

non-linear combination methods are used, such as t-distributed stochastic neighbor embedding

(t-SNE) [183] and Uniform Manifold Approximation and Projection (UMAP) [20]. While both

methods are used to visualise complex datasets, UMAP estimates low dimensions of the data

using cell-cell nearest neighbour network to characterise the global structure of the dataset,

while t-SNE reduces high dimensional dataset to low dimensional graph but focuses more on

capturing local structure instead of the global structure.

In general, dimensionality reduction is applied prior to clustering, as reducing the dimensionality

of high-dimensional data can help improve the performance and interpretability of clustering

algorithms. The main goal of clustering is to group cells based on the similarity of their gene

expression profiles, which can reveal cell-types, states, or sub-populations that may be present

in the dataset. The two commonly used algorithms, Louvain and Leiden are based on K-Nearest

Neighbour (KNN) graph [26, 313]. These (graph-based) clustering methods compute Euclidean

distance on the PC reduced expression space to connect each cell to its nearest (k most similar)

cell in the same dataset, and each cell is represented as a node in a graph. Once clusters are

defined, known cell-type specific marker genes are used to identify the cell-type and downstream

analyses are carried out on a cell-type basis.

The main difference between the Louvain and Leiden systems is their approaches to community

detection. While Louvain starts with individual nodes in different communities and repeatedly

combines them to optimise modularity scores, Leiden includes a refinement phase that evaluates

the quality of each individual node migrations across communities. Compared to Louvain, this

refining phase enables Leiden to create more accurate partitions, particularly in networks with
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highly heterogeneous community sizes or noisy data.

Data Interpretation

After clustering and identifying cell-types, several downstream analyses are carried out, includ-

ing differential expression analysis, gene sets enrichment analysis and enrichment of heritability.

(a) Differential expression analysis

Differential expression analysis methods seek to quantify differences in gene expression between

conditions and can be applied to single transcripts or genome-wide gene expression datasets

derived from microarray [288], bulk RNA-Seq or scRNA-Seq datasets [8, 88]. Count data are

usually normalised to enable direct comparison of gene expression between samples/groups,

which is then analysed using a statistical method. Current methods used for bulk RNA-Seq

differential analysis can be grouped into three main categories: (i) non-parametric methods (ii)

Poisson or negative binomial model-based and (iii) linear models [290]. Parametric methods

assume count distributions follow a specific distribution (log-normal, negative binomial, Pois-

son, or empirical bayes). For example, edgeR [257], a method which uses a parametric model

(negative binomial) to model the counts. In contrast, non-parametric methods do not rely

on such assumptions; therefore, they tend to be more robust when the expression of a gene

deviates from a distribution assumed by the model [290].

Unlike bulk RNA-Seq-based methods, single-cell-based methods can theoretically characterise

complex responses to biological or experimental perturbations. However, due to the hetero-

geneity, sparsity, small library sizes, drop-out events (due to the low capture efficiency of RNA

molecules, some transcripts can be highly expressed in one cell and completely missing in an-

other cell of the same population), and high noise level found in single-cell data, it is challenging

to produce biologically accurate results using bulk-RNA Seq based methods [127, 190, 88]. For

this reason, new methods have been proposed to address the challenges of drop-out events and

multimodal expression values. Among the most commonly used methods, Single-cell differen-

tial expression (SCDE) [153] and Model-based Analysis of Single-cell Transcriptomics (MAST)

[89] use a two-part joint model to identify differentially expressed genes.
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MAST is a tool tailored for scRNA-Seq data analysis. The method was developed to address the

challenges associated with scRNA-Seq data including, bimodality in expression levels; technical

assay variability, for example, messenger RNA (mRNA) quality; and extrinsic biological factors

including, differences in cell sizes. MAST is based on a two-part generalised linear model that

models the discrete expression rate of each gene across cells (using logistic regression) and the

continuous positive gene expression mean (using the Gaussian linear model) in parallel. This

allows a joint estimate of background and treatment effects. Further, MAST uses the fraction of

genes detectably expressed in each cell termed Cellular Detection Rate (CDR) as a covariate to

adjust for technical factors, including the dropout and biological factors, including cell volume.

Wang et al. 2019 [333] recently published a comparative study of Differential Expression Anal-

ysis (DEA) methods used, in which they observed methods with high true positive rates with

low precision, while methods with high precision showed low true positive rates. Therefore, the

authors concluded that precautions must be taken when choosing a method, and it is impor-

tant to have a trade-off between true positive rates and the precision of identifying differentially

expressed genes.

(b) Functional enrichment analysis

Functional enrichment analysis, including Gene-set enrichment analysis (GSEA) and overrep-

resentation analysis, is carried out to examine whether identified DEG sets are meaningful to

biological or molecular mechanisms and to generate hypotheses regarding the underlying biolog-

ical consequences of experiments. GSEA [301] has been used in downstream analysis since the

year 2001 when Gene Ontology (GO) [61] was first launched to facilitate the interpretation of

DEGs generated by cDNA microarrays. GO consists of a hierarchical structure of terms related

to biological processes, cellular components or molecular functions and their relationships to

lists of annotated genes. Gene annotations were manually assigned from experimental analysis

or automated/computational methods. GO enrichment analysis is carried out to test if GO

terms are under or over-represented within the DEGs sets or gene set of interest [301, 182].
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(c) Enrichment of heritability

Heritability enrichment analyses are statistical methods used to test whether a set of genes

(or genomic regions) are enriched for heritability to a specific trait or physiological phenotype

beyond random expectation. Since gene expression may vary both as a cause and a consequence

of disease, statistically significant enrichment of heritability is usually taken to suggest that the

gene set has a proximal (i.e., causal) relationship to the phenotype under investigation. These

forms of analysis can be done using common genetic variation SNP data from GWAS[324] or

rare variant analysis [176].

There are various methods available for analyzing rare variants; one such approach is the Com-

bined Multivariate and Collapsing Rare Variant Analysis (CMC) [179]. The method tests for

association between rare variants and a trait by first collapsing variants within a genomic region,

then comparing the frequency of the collapse variants between cases and controls. Further, it

can be applied to genomics regions, including exons, introns and regulatory regions. Further,

the heritability enrichment score (HES) for each region, as defined by the method, measures

the extent to which a genomic region is enriched for heritability relative to the genome-wide

average [179].

In a recent study, the authors performed a rare variant heritability enrichment analysis to

identify genomic regions enriched for heritability in schizophrenia. By meta-analysing the

whole exomes of over 121,000 cases and controls, the authors implicated several rare coding

variants in 42 genes as conferring risk for schizophrenia (odds ratios of 3–50, P < 2.14× 10−6

for 10 genes; and 32 genes at a false discovery rate of < 0.05) [282].

Common variants are typically used in heritability enrichment analyses because they are more

prevalent in the population than rare variants, making them easier to study. There are several

methods for conducting heritability enrichment analysis using common variants. Multi-marker

Analysis of GenoMic Annotation (MAGMA) [43], and Linkage Disequilibrium Score Regression

(LDSC) [40] are widely used methods to estimate genetic correlation. MAGMA uses a gene-level

regression approach by first generating gene-level p-value as the mean of association of variants

in the gene (using GWAS summary statistics and Linkage Disequilibrium (LD) corrected) and
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then calculates continuous p-values based on the association of the mean (overall) p-value of

the gene with that of the gene of interest. In other words, the gene-set analysis tests if the

genes in a specific set are more strongly associated with a trait than other genes.

Similarly, LDSC uses regression analysis to quantify the association between LD and test statis-

tics of variants (using GWAS summary statistics). The final LD score of a variant is the sum

of LD r2 measured with all other variants. Unlike MAGMA, LDSC produces variants-level

heritability estimates to partition heritability into separate categories. Additionally, an exten-

sion of LDSC known as stratified LD score regression (sLDSC), partitions heritability using

functional annotations by considering the genetic linkage between variants.

Further, LDSC can distinguish between confounding factors such as population stratification

and polygenicity. Both methods use GWAS genotype data to extract summary statistics about

the causal variant. This is because using well-powered GWAS data rather than other sources

of information (for example, using information from studies with well- characterised pathways

and well-studied genes) prevents biases towards specific genes. Typically in RNA-Seq studies,

enrichment of heritability is calculated using DEG sets as a set of interest to see if these genes

can be genetically linked to a disease or phenotype for which the GWAS summary statistics

were generated.
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(d) Single-cell trajectory Analysis

One of the challenges in the analysis of the scRNA-Seq dataset is that the data only provides

a snapshot of gene expression at a particular point in time. Throughout life or during develop-

ment, cells transition from one state to another, each cell in different states expressing different

sets of genes or genes at different levels of expression. This may be due to the cells being at

distinct points of a dynamic process, for example, cell cycle or cell differentiation, or some cells

in a tissue sample reflecting a particular developmental or disease state [263].

Trajectory inference methods, also known as pseudotime analysis, aim to order cells (using

scRNA-Seq data) along a trajectory or continuum from one state to another based on similarities

in the expression patterns of individual cells [45]. The trajectories (branches) are conceptualised

as cellular ”decisions” and can be linear, cyclic or tree-branch. This is because there are

several lineages within a population of cells, each lineage steaming from a common initial

group. Therefore, each branch (trajectory) can be used to investigate several cellular processes,

including cell differentiation and development as well as transitions between disease states

[45, 144].

A recently developed method, Monocle [316], uses scRNA-Seq data to construct single-cell

trajectories. The algorithm first uses an unsupervised algorithm to learn the sequence of gene

expression changes a cell goes through as part of the biological process of interest. Then, each

cell is placed at its specific position in the trajectory. Monocle also uses regression analysis

or graph autocorrelation analysis to identify genes that change expression as a function of the

inferred pseudotime-a quantitative measurement of progress. Furthermore, monocle identifies

co-regulated modules of differentially expressed genes [251]. In Monocle, modules refer to

sets of genes that exhibit co-expression or co-regulation during a specific biological process.

These modules are identified using unsupervised clustering techniques that group genes with

similar expression patterns. By grouping co-expressed or co-regulated genes, Monocle enables

the identification of key regulatory pathways and molecular mechanisms underlying cellular

processes [46].
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1.2 Disorders of cognition

The Oxford English Dictionary defines cognition as “the mental action or process of acquiring

knowledge, thought, experience and the senses”. Cognition encompasses all aspects of intellec-

tual functioning (termed domains). The Diagnostic and Statistical Manual of Mental (DSM-

5), 5th Edition classifies these domains into six key categories: executive function, language,

complex attention, learning and memory, perceptual-motor control, and social cognition [116].

These main cognitive domains play a key role in diagnosing neurological disorders. Assessments

are typically carried out by several tasks aimed at each ability area. The main aim of the task

is to measure and differentiate between different domains; a pattern of impairment in specific

domains or across domains is often used to underpin a clinical neurological or neuropsychiatric

diagnosis [116]. Neurocognitive disorders are a group of heterogeneous disorders encompassing

a broad spectrum of clinical phenotypes. They may arise through multiple physiological (e.g.,

ageing) and pathological processes (e.g., neurodevelopmental abnormalities, genetic mutation,

drugs, brain injury, epilepsy, neurodegeneration) [208, 148]. Therefore, they are classified in

multiple ways and levels, such as the nature of the cognitive impairment or the aetiology.

1.2.1 Neurodevelopmental influences on cognition

Neurodevelopment, i.e., the development of the nervous system, is a complex and precisely

regulated process involving neural tube formation, neural and glial proliferation and neuronal

migration and organisation. A deficit introduced at any critical stage of development could lead

to neurodevelopmental disorders [238]. Neurodevelopmental Disorders (NDDs) are neurological

disorders arising from a defect in neurodevelopment and may affect both the Central nervous

systems (CNS) and peripheral nervous systems (PNS), respectively [256]. Examples of CNS

NDDs include learning disabilities, Autism Spectrum Disorder (ASD), intellectual disability

(ID), Attention-deficit/hyperactivity disorder (ADHD), cerebral palsy, conduct disorders, vision

and hearing impairments and epilepsy. Individuals with these types of disorders may experience

difficulties across a range of neurological functions such as memory and learning, motor skills,

language and speech[238]. Treatments often involve a combination of pharmaceuticals as well
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as occupational and physical therapy. The prevalence of NDDs (as defined by DSM-5)58 is

between 0.7-17% under 18 years old worldwide (spanning Africa, Asia, Australia, Europe,

Latin America and the United States of America (USA)) [92]. The reported prevalence rates

of individual NDDs include ADHD (5-11%), ASD (0.7-3%), and epilepsy (0.5%) [92]. Most

NDDs have multiple risk factors, including genetic, biological, environmental (e.g., alcohol,

illicit drugs, environmental contaminants), psychological and social. However, recent studies

have shown some NDDs (e.g., IDs) are associated with mutations in specific genes. For example,

DNA variants in sodium voltage-gated channel alpha subunit 1 (SCN1A), a gene that provides

instructions for a protein responsible for the flow of sodium into neurons, are known to cause

Dravet Syndrome, a severe form of epilepsy and intellectual disability [83].

Intellectual Disability

Intellectual disability (ID) is a neurodevelopmental disorder affecting around 1–3% of the

world’s population [18]. DSM-5 defines intellectual disability as a neurological condition char-

acterised by (i) cognitive impairment in intellectual functioning (domains) such as problem-

solving, learning (from experience as well as academic learning), vocabulary, reasoning, plan-

ning, abstract thinking, and judgement (ii) deficits in adaptive functioning including self-care,

social and interpersonal skills (iii) early onset of these deficits (during the developmental pe-

riod) [318]. Previously, ID classification was based on Intelligence quotient (IQ) scores. For

example, an IQ between 50-70 is mild mental retardation, and IQ < 50 is used to define severe

mental retardation [318, 129]. The severity of ID is assessed based on the level of support an

individual has (based on the severity of the adaptive functioning deficits in the social, con-

ceptual and practical domains). As with many other NDDs, the main causes of intellectual

disability are not well defined. Among many contributing factors, including de-novo rare dele-

terious mutation [197, 325] as well as exposures to environmental contaminants (such as lead

and mercury), which have been associated with intellectual disorders [207].
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1.2.2 Neurodegenerative influences on cognition

Neurodegenerative Diseases (NDs) are ultimately debilitating conditions associated with pro-

gressive neuronal loss. For CNS NDs, symptoms can range from a progressive motor dys-

function, as in amyotrophic lateral sclerosis (also known as motor neurone disease) or PD, to

cognitive deficits in memory and executive function, as in various forms of dementia, including

AD, DLB and PDD (the latter two also referred to as “Lewy Body Dementias”). Research has

shown that age and a combination of genetic and environmental factors contribute to the risk

of developing a neurodegenerative disease [124, 343, 36, 168].

Dementia is a term used to describe a deterioration in cognitive function beyond what is

considered to be the biological consequence of ageing [235]. Dementia has many causes, unified

around damage and loss of neurons. Dementia can affect several brain functions, including

learning and memory, executive function, comprehension, calculation, movement and language.

According to a recent report published by World Health Organization (WHO), approximately

55 million people live with dementia worldwide, and 10 million new cases are added every

year. The social and economic impact of dementia is expected to increase with an increasing

population. Although dementia is considered an age-related disease, it does not exclusively

affect older people, and about 9% of cases are early onset-meaning the onset of symptoms

began before the age of 65 [235], AD is the most common cause of dementia and accounts for

60-80% of cases. This type of dementia affects behaviour, thinking and memory. AD changes

usually in the part of the brain responsible for learning, the entorhinal-hippocampal system

[267]; therefore, early AD symptoms include difficulty remembering newly learned information.

As the disease progresses, it affects other areas of the cerebral cortex involved in navigation,

spatial orientation, behaviour, and personality [234].

PD is the second most common neurodegenerative disease. Typically, the basal ganglia and the

substantia nigra are among the first regions to be involved. These brain regions play a key role

in movement, leading to early symptoms that include rigid muscles, slowed movement (bradyki-

nesia), lack of facial expression and difficulty with balance and coordination [218]. As brain
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changes caused by PD gradually spread, other brain areas begin to be affected. For example,

the individual may experience cognitive decline, including fluctuation in attention, memory and

executive function [218]. By convention, if the cognitive decline develops more than one year

after a PD diagnosis, then the individual is diagnosed with PDD [81]. However, if the cognitive

decline is a presenting symptom or develops within one year of the onset of the motor symptoms

characteristic of Parkinsonism, then the individual is diagnosed with DLB [210]. Therefore, the

timing between the identification of dementia and the initiation of parkinsonism symptoms is

used to determine if the dementia phenotype is diagnosed as PDD or DLB. The pathological

hallmark of PD, DLB and PDD is the abnormal deposits of alpha-synuclein known as “Lewy

bodies”, leading to these three disorders as Lewy Body Diseases (LBDs). The mechanisms un-

derlying LBDs remain largely unknown but include genetic [245]and environmental risk factors

[245].
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1.3 Overview of Thesis

Figure 1.4: An overview of the chapters of the thesis.The chapters are divided into
three main sections. Section A (2) focuses on cognitive impairments caused by in utero drug
exposure. Section B (3 and 4) focus on cognitive impairments caused by neurodegeneration.
Section C (5.1) is the discussion and conclusion chapter.
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Abstract

Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD), and Dementia with Lewy

bodies (DLB) are neurodegenerative disorders collectively known as Lewy body diseases (LBDs).

This study aimed to comprehensively profile the transcriptomes of LBDs using single-nucleus

RNA-Sequencing. Analysis of anterior cingulate cortex samples from neurologically healthy

controls, PD, PDD, and DLB (n=7 per group) cases revealed significant transcriptional al-

terations across multiple cell types, providing insights into the commonalities and distinctions

among these disorders. The selective vulnerability of medium spiny neurons (MSN) in DLB

was observed, whereas PD and PDD subjects exhibited MSN-like neurons. Pathway analysis

highlighted shared and distinct perturbations in biological processes, with (i) synaptic vesi-

cle transport and oxidative stress response being uniquely down-regulated in the dementias

(PDD and DLB); and (ii) up-regulated genes in PD were associated with metabolic processes,

mRNA splicing, and autophagy. Furthermore, genetic associations indicated a link between

up-regulated genes in astrocytes and oligodendrocyte precursor cells with PD age of onset risk,

while microglia showed enrichment for Alzheimer’s disease (AD) risk. However, down-regulated

genes in LBDs did not exhibit significant genetic associations. The findings provide valuable

insights into the transcriptomic landscape of LBDs, emphasizing the unique vulnerability of

MSN in DLB and revealing shared and distinct molecular pathways. The study contributes

to our understanding of LBDs and lays the groundwork for targeted therapeutic interventions.

Nonetheless, limitations in sample composition and data analysis tools should be considered

when interpreting the results.
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2.1 Introduction

First described in 1817 by an English surgeon James Parkinson [101], Parkinson’s disease (PD)

is a progressive neurodegenerative disorder reported to affect approximately 10 million people

worldwide [229]. Clinically, PD affects both the motor system [102], which causes symptoms

collectively known as parkinsonism, including rigid muscles, slowed movement (bradykinesia)

and lack of facial expression and non-motor systems across several cognitive domains, including

executive and visuospatial functions. Neuropathologically, PD is characterised by the presence

of Lewy bodies, eosinophilic intraneuronal inclusions first described in 1912 by Fritz Heinrich

Lewy [82]. It is estimated between 50 to 80% [2] of people with PD eventually develop dementia

[7], with an average time of about ten years from the onset of parkinsonism (motor symptoms)

to the development of dementia. This form of PD is known as PD with Dementia (PDD)

[7, 244].

Dementia, as described in previous Chapters 1.2.2, is a term used to describe a group of

symptoms characterised by a progressive decline in attention, memory and behaviour, and

frequently also involves autonomic dysfunction [242]. After Alzheimer’s disease, the second

most common form of dementia is Dementia with Lewy Bodies (DLB) [146]. As with PD, DLB

is characterised by the presence of Lewy bodies, now understood to represent aggregates of

alpha-synuclein protein [82, 146]. The clinical features of DLB and PDD are similar due to

the overlap of cognitive impairments and diagnostic features. For example, the core diagnostic

features of DLB, such as parkinsonism, fluctuating attention and cognition, are also considered

core features of PDD [137]. This overlap led to a theory suggesting a continuous clinical

spectrum for Lewy Body Dementias, which collectively encompasses both PDD and DLB (not

to be confused with Lewy Body Diseases (LBDs), which includes PD) [62].

The distinction between DLB and PDD clinically is the time of onset of the parkinsonism

relative to the cognitive impairment, such that if cognitive impairment begins within 1 year

of the onset of parkinsonian motor symptoms, then clinically, the symptoms are described as

DLB. However, if cognitive impairments happen after 1 year of the onset of parkinsonism, the
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symptoms are clinically defined as PDD [137, 62, 12]. With the recognition of the severity

of the disease and the frequent difficulties in distinguishing PDD from DLB, there have been

growing efforts to identify distinct clinical, neuropathological and genetic features of LBDs [12].

2.1.1 Neuropathological features of Lewy Body Diseases

Since the discovery of the chemical composition of Lewy Bodies by Spillantini et al. (1997) [292],

PD has been described as a disorder of α-synuclein (α-syn), a neuronal protein responsible for

regulating synaptic plasticity, promoting the synaptic organisation and vesicle transportation

[297]. The two major neuropathological features of PD are (i) accumulation of intraneuronal

α-synuclein-containing aggregates in the form of Lewy bodies and Lewy neurites, termed Lewy

bodies pathology and (ii) loss of dopaminergic neurons in the substantia nigra [159].

The Braak staging system assesses the stage of α-synuclein pathology in PD. First introduced

in 2003, Braak and colleagues developed six stages of Lewy bodies pathology in PD based on

the idea that the temporal spread of the pathology originates in the brainstem (stages 1-2)

and then spreads through the midbrain, basal forebrain, subcortical, temporal mesocortical

regions (stages 3-4), and eventually spreads to the cerebral cortices where it appears in the

anterior cingulate mesocortex and spreads to other cortical regions (stages 5-6) [35, 34, 317].

This predictable spread of Lewy bodies pathology supports the hypothesis that pathology

propagates through the brain via a prion-like process [328]. Although this holds in most post-

mortem cases, in which there is a predictable sequence of lesions, results from other studies

have shown that the severity of symptoms and the duration of parkinsonism does not always

correlate with the Lewy bodies density and distribution [237].

For example, Jellinger (2009) reported that in some autopsy studies, up to 43% of PD cases

do not follow the proposed pattern of progression [136]. In light of this, McKeith et al. (2017)

[211] updated their diagnostic guidelines for assessing Lewy bodies pathology based on the pre-

dominance of pathology in specific regions, including the neocortical regions. Further, Levernez

et al. (2008) [178] increased the specificity of this method by reducing the number of regions

assessed and adding an amygdala-predominant category. PD, PDD and LBD can be viewed
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as existing on a spectrum of diseases related to each other via Lewy body pathology [137, 62].

In autopsy-based studies involving PD and PDD cases, the prevalence and load of neocortical

α-synuclein were higher in PDD cases than in PD cases [287]. Similarly, α-synuclein loads

in cortical regions (including the entorhinal, parietal, frontal, cingulate, and temporal cortex)

are observed to be the highest in DLB and the lowest in PD, and intermediate in PDD cases

[119, 27]. These observations are consistent with the dementia arising as a result of spread of

Lewy bodies pathology through the cerebral cortex.

In addition to being conceptualised as alpha-synucleinopathies, Lewy body diseases (PD, PDD

and DLB) are frequently associated with, and may be modulated by, comorbid AD-related

pathology (hyperphosphorylated tau and amyloid-β plaques) [256]. For example, Jellinger et

al. (2018) [137] observed amyloid-β (Aβ) burden was significantly higher in cortical regions

in DLB than in PDD. Similarly, Kalaizakis et al. (2013) [145] showed that Aβ lesions were

increased in PDD compared to PD in the entorhinal cortex. Further, studies have revealed an

intriguing finding that links amyloid-β and tau neurofibrillary pathology to a reduced timeframe

between the initiation of parkinsonism symptoms and the development of dementia [100, 57].

Furthermore, a cortical load of Lewy pathology was a good predictor of dementia in PD cases.

Therefore, it has been suggested that the neuropathologies of tau, Aβ, and α-syn may all

synergistically contribute to cognitive decline in the dementias with Lewy bodies [55].

2.1.2 Genetics of Lewy Body Diseases

Currently, PD is identified as a genetically heterogeneous disorder with two subtypes: (i) mono-

genic (variation in a single gene) familial PD with mendelian inheritance, a type of biological

inheritance in which a single gene of high penetrance confers risk for a trait with dominant

and recessive alleles inherited from either parent; (ii) a sporadic form arising from complex

inheritance with less familial aggregation [157, 25]. In contrast, sporadic forms of PD are

thought to result from a contribution of several factors, including environmental exposures,

lifestyle and genetic susceptibility [157]. The first breakthrough in PD genetics came in 1997

when a missense mutation in the gene encoding α-synuclein (SNCA) was found to be asso-
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ciated with the autosomal dominant PD phenotype [297]. Since then, several other genes

associated with autosomal dominant PD, including coiled-coil helix coiled-coil helix domain 2

(CHCHD2) [175], homolog subfamily C member 13 (DNAJC13) [25], Eukaryotic translation

initiation factor 4 gamma 1 (EIF4G1), HtrA serine peptidase 2 (HTRA2) [157], eucine-rich

repeat kinase2 (LRRK2), ubiquitin c-terminal hydroxylase 1 (UCHL1), and vacuolar protein

sorting 35 (VPS35) [25] were identified through several studies. Further, mutations in LRRK2

gene was found to be the most common monogenic PD in the Ashkenazi and Arab population

[308]. Similarly, genes associated with autosomal recessive PD were also discovered through

genetic studies. These include ATPase Cation Transporting 13A2 (ATP13A2), DNAJ/HSP40

homolog subfamily C member 6 (DNAJC6), F-box only protein 7 (FBX07), PTEN-induced

putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), synaptojanin 1

(SYNJ1) and vacuolar pro- tein sorting 13C (VPS13C) [66, 219]. These findings highlight the

genetic heterogeneity of monogenic PD, which may explain the difference in clinicopathological

features, dementia risk, ages of onset and the presence and extent of Lewy body pathology in

PD cases.

Kelin and Westenberger (2012) estimated monogenic forms of PD to account for 30% of familial

and 3%–5% of sporadic cases [157]. However, numerous genetic studies have highlighted other

forms (not related to monogenic forms) of PD. Notably, mutations in the gene Glucosylcerami-

dase Beta 1 (GBA), which encodes for glucocerebrosidase, an enzyme involved in metabolising

glucosylceramide, are considered to be a major genetic risk factor for PD [74]. Further, im-

paired activity of the enzyme was shown to cause an accumulation of α-synuclein. Moreover,

in a population-specific study, Velez-Pardo et al. (2019) found that age at the onset of PD was

significantly earlier in GBA carriers than non-carriers [321]. As of today, several GWAS studies

have successfully mapped several loci associated with sporadic PD. Nalls et al. (2014) used

data from over 14,000 individuals (including PD patients and control) to identify risk loci for

sporadic and familial PD[223]. Surprisingly, the loci were found in genomic regions containing

the genes SNCA and LRRK2. In a similar study, Nalls et al. (2019) used data from over 1.5

million subjects to identify 90 genome-wide significant risk loci (38 novel risk variants) across

78 genomic regions. Other notable GWAS studies: PD progression GWAS (Iwaki et al. (2019);
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Tan et al. (2020)) [132, 304]; and PD age at onset GWAS (Blauwendraat et al. (2019)) [24],

highlight that a different set of genes may play a role in the age of onset and/or progression of

PD once it is established. For example, PINK1, PRKN, SNCA, LRRK2 and Transmembrane

Protein 175 (TMEM175) are genes associated with PD age at onset, while Solute Carrier Fam-

ily 44 Member 1 (SLC44A1), GBA and Apolipoprotein E 4 (APOE4) were associated with PD

disease progression [132, 304].

Based on the overwhelming evidence of shared clinical and pathological features of Lewy Body

diseases, several studies were carried out to assess the genetic overlap between the diseases.

Meeus et al. (2012) [213] performed a gene-based mutation analysis using genotype data from

PDD and DLB cases (including familial and sporadic forms) and found several AD and PD-

related genes to contribute to the genetic aetiology of PDD and DLB. For example, pathogenic

missense mutations were detected in the AD genes in Presenilin 1 (PSEN1), Presenilin 2

(PSEN2), LRRK2 and icrotubule-associated protein tau (MAPT), and duplications in PD-

related gene SNCA [213]. Similarly, Clark et al. (2009) [54] found GBA mutations to be

associated with cortical Lewy body pathology and a less severe form of AD after adjusting for

sex, age of death and APOE4 status, which is the strongest risk factor gene for AD [54]. Re-

cently, a Lewy body dementia GWAS identified novel risk loci with a similar direction of effect

in the genes GBA, TMEM175, Apolipoprotein E (APOE) and Bridging Integrator 1 (BIN1),

identified in previous AD and PD GWAS [52]. Further, Guo et al. (2022) [107] used GWAS

summary statistics from late-onset AD GWAS, PD GWAS and LBD GWAS and found positive

genome-wide genetic correlations between the four neurological conditions. The strongest cor-

relation was found between PD and Lewy Body dementias (PDD and DLB) (rg = 0.6352, se =

0.1880; P = 0.0007), while the weakest was between AD and PD (rg = 0.2136, se = 0.0860; P

= 0.0130) [107]. Further, the authors carried out pathway enrichment analysis of 40 common

genes identified through transcriptome-wide association analysis (TWAS) and found significant

enrichment for GO term related to neurofibrillary tangle assembly. Genetic risk scores from

these GWAS demonstrate that AD and PD share genetic risk factors and pathways (including

lysosomal and endocytic related pathways) with Lewy Body dementias [107].
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2.1.3 The influence of environment, diet and lifestyle factors

Although GWAS studies have found numerous genetic variations contributing to the risk and

progression of Lewy Body diseases (with heritability estimates spanning from 20 to 30%)

[151, 103, 106], environmental factors are still among the risk factors for neurological diseases.

Recently, epidemiological studies have found several environmental factors, such as exposure to

pesticides, cigarette and drug intake, abdominal obesity (body mass index (BMI)), caffeine and

alcohol consumption, and physical activity, to be associated with PD risk [307, 217, 169]. For

example, in 1976, a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which

kills dopaminergic neurons, was accidentally synthesised by a student who was trying to make

synthetic heroin and which resulted in devastating parkinsonism in the predominantly young

people exposed to this toxin [169]. Again, in 1983, in a peculiar but similar case involving young

drug addicts, individuals who were exposed (injected intravenously) to the drug meperidine

(MPTP is a potent analog of meperidine), developed parkinsonism [169]. Further investigation

revealed that their parkinsonism was caused by the MPTP by-product of 1-methyl-4-phenyl-

4-propionoxypiperidine (MPPP) synthesis. MPTP is a lipid-soluble neurotoxin that has the

potential to cross the blood-brain barrier. Therefore, the drug is widely used to mimic PD

symptoms in an experimental PD model [217, 310].

In an earlier study, Tanner et al. (2011) [307] applied a case-control study to explore the

relationship between PD risk and certain pesticides. The findings showed a positive association

between PD risk and exposure to a group of pesticides (including rotenone (OR=2.5; 95%

CI, 1.3-4.7)) that inhibit mitochondrial complex I and other pesticides (including paraquat

(OR=2.5; 95% CI, 1.4-4.7)) that cause oxidative stress. Interestingly, paraquat and rotenone

(well-known pesticides used in animal models of PD) share a similar chemical structure with

MPTP. Similarly, Xu et al. (2016), [346] performed a systemic search for studies on PDD

risk factors and found a positive association between PDD risk and several non-genetic factors,

including advanced age (odds ratio [OR] 1.07, 95% CI 1.03-1.13), male (OR 1.33, 95% CI 1.08-

1.64), hallucination (OR 2.47, 95% CI 1.36-4.47), sleep behaviour disorder (OR 8.38, 95% CI

3.87-18.08) and smoking (RR 1.93, 95% CI 1.15-3.26). Interestingly, the authors found higher
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education (RR 0.94, 95% CI 0.91-0.98) a protective factor for PDD. Further, other studies

have highlighted that cognitive reserve may be protective against the progression of dementia

[224]. However, more studies are needed to draw definitive conclusions. In 2020 the Lancet

Commission report on dementia prevention identified 12 modifiable risk factors for dementia,

including alcohol consumption, air pollution, diabetes, depression, obesity, traumatic brain

injury (TBI), early education, hypertension, smoking, hearing loss, lack of physical activity

and social isolation (which were estimated to account for 40% of worldwide dementia cases,

although the prevalence of risk factors differ between countries) [187].

Given that epidemiological studies are susceptible to various biases [173], residual confounding,

confounding by indication and reverse causation, their findings may not be reliable enough to es-

tablish causal relationships between environmental factors and PD risk. Therefore, researchers

have employed Mendelian randomisation (MR), which uses genetic variants as instrumental

variables to examine the causal effects of modifiable risk factors on disease outcomes [173].

For example, Heilbron et al., 2021 applied MR (using data from over 2 million PD cases and

controls) to examine causal relationships and found smoking (OR 0.955; 95%confidence interval

[CI] 0.921-0.991; p = 0.013) and higher BMI (OR 0.988, 95%CI 0.979-0.997; p = 0.008) to have

a protective effect on PD; and higher daily alcohol intake (OR 1.125, 95%CI 1.025-1.235; p =

0.013) to increase the risk of PD[118]. Therefore, in order to dissect the pathogenesis of Lewy

Body diseases, it is more beneficial to use integrative genomics (by combining multiple form of

genomic analyses including RNA-Seq technology, integrative GWAS, MR [173]) approaches to

assess the aetiology of the diseases.
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2.1.4 Aim and objectives

In spite of the substantial progress made in the effort to describe the overlapping genetic, clinical

and neuropathological features of LBDs, the biological basis and cellular drivers of pathology

remain unclear. In the current study, Single-nucleus RNA-Sequencing was applied to anterior

cingulate cortex samples derived from twenty-eight subjects to assess the extent of molecular

and cellular heterogeneity in Lewy Body diseases (Figure 2.1). The anterior cingulate cortex

was picked as a region of interest because previous studies have shown it to be one of the first

cortical regions to be affected by Lewy body pathology and Lewy Body density in the region

correlated with the development of dementia in PD-related studies [327, 131]. The objectives

of the research reported in this Chapter were as follows:

• To generate source- single nucleus RNA-sequencing profiles across Lewy body diseases

(PD, PDD, DLB).

• To assess cell-type specific transcriptional changes (namely excitatory neurons, inhibitory

neurons, microglia, astrocytes, oligodendrocytes, oligodendrocyte precursor cells, and vas-

cular cells) in PD, PDD and DLB.

• To assess cell-type transcriptional changes associated with Lewy body dementia (PDD

and DLB compared to control and PD brains).

• To identify disease-associated cell types and biological processes enriched in the set of

genes differentially expressed.

• To test for heritability of enrichment for relevant phenotypes (e.g., PD, AD) in the dif-

ferentially expressed genes across the disease states.
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2.2 Methods

2.2.1 Sample and tissue sectioning, nuclei and RNA isolation

Professor Steve Gentleman and Dr Bension Tilley [310] performed sample selection. PD, PDD,

DLB and neurologically “healthy” individuals were obtained from the Parkinson’s UK Tissue

Bank. In total 21 cases (n=7 per condition) and 7 control samples were matched for age and

other demographic and pathologic factors where possible. Parkinsonism was classified based

on the current official International Parkinson and Movement Disorder Societ (MDS) Clinical

Diagnostic Criteria for Parkinson’s disease (MDS-PD criteria)[248], while PDD was defined by

the latest clinical diagnostic criteria for dementia associated with Parkinson’s disease [81]; and

DLB was defined using the criteria set by the fourth consensus report of the DLB Consortium

[81].

Furthermore, PDD and DLB individuals were separated based on positive clinical features,

including fluctuating cognition, visual hallucination and rapid eye movement sleep behaviour

disorder (RBD); and the “1-year rule” used to differentiate between PDD and DLB. Routinely

used diagnostic process, Braak α-synuclein and Tau, were used for pathological assessment of

the tissue samples. In order to ensure dementia arose from α-synucleinopathy, individuals with

severe AD pathology were filtered out using Braak tau stage 3 as the maximum threshold. PD

individuals were selected based on a lack of evidence for any cognitive impairments, including

memory impairment, executive dysfunction and visuo-spatial dysfunction in the clinical case

notes. Neurologically “healthy” controls were selected based on a lack of neurological features

alongside other pathological diagnoses (refer to Appendix A, Table 1 for sample demographics

and clinical and pathological measures).

All lab-based sample processing steps, including tissue sectioning, were carried out by Dr Amy

Smith in the following steps: (i) 80 µm tissue block of cortical grey matter was sectioned from

the anterior cingulate cortex, and adjacent sections were used for nuclei isolation; (ii) Buffer

solutions (e.g., Homogenisation Buffer) were prepared using a combination of protocols from
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10X Genomics and Krishnaswami et al. (2016) protocol; (iii) Tissue sections were suspended

in 800 µL HB, homogenised, filtered through a BD Falcone tube and centrifuged at 1000g for

8 minutes. Further clean-up of nuclei was performed as per Krishnaswami et al. (2016) [160]

with some adjustments including using 29% iodixanol solution at 13,000 g for centrifugation

of the layered nuclei and adjusting the time to 20 minutes instead of 40 minutes suggested by

the authors; (iii) the supernatant was removed, nuclei pellet washed with PBS bugger, filtered,

centrifuged and washed again (all specific steps including time take for each step can be found in

Krishnaswami et al. (2016) protocol); (iv) finally, nuclei were counted using Acridine orange dye

routinely used to stain nuclei. RNA isolation was performed by BioXpedia using the following

protocol: (i) samples were lysed and RNA extracted using QIAzol and Qiagen’s RNeasy 96

Kit, respectively, (following manufacturer instructions). Quality of samples were evaluated

by measuring their RNA integrity number (RIN), obtained using Agilent 4200 Tapestation

(Agilent). Only samples with RIN value of 4.2 or above were selected for downstream analysis.

2.2.2 Single-nucleus RNA sequencing data generation and process-

ing

snRNA-Seq data was generated using 10X Genomics Chromium Single Cell 3’ Reagent Kit

(v2 chemistry) following 10X protocols. Briefly, (i) approximately 10,000 nuclei were targeted,

followed by amplification process (8 cycles of cDNA and PCR indexing (14 cycles); (ii) Qubit

dsDNA HS Assay Kit (ThermoFisher) was used to measure cDNA concentration, while Bioana-

lyzer High-Sensitivity DNA Kit (Agilent) was used to assess quality and length of libraries; (iii)

finally, samples were pooled and sequenced on 8 lanes of Illumina Hi-Seq 4000 high-throughput

sequencer.

2.2.3 Mapping and post-alignment quality control

Generation of sequencing reads was carried out using Cell Ranger (v 3.0.2) protocol in the

following steps: (i) raw base files were converted to FASTQ files; (ii) reads were mapped

to exonic and intronic regions of the reference human genome version GRCh38, and gene
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annotations were obtained from Ensembl v93; (iii) finally, gene barcode (unique molecular

identifier (UMI)) matrices were generated for each sample. Following alignment to a reference

genome, each sample was assessed for the following RNA-Sequencing metrics: (i) percentages

of mapped reads; (ii) number of genes detected; (iii) average UMI count. All samples passed

the threshold set for each metric (Figure 1). Quality control of reads was carried out in the

following steps: (i) reads from “empty” droplets, a droplet which contains ambient RNA,

were removed using EmptyDrops algorithm from the R package DropletUtils [193]. The

algorithm removes nuclei droplets containing low amounts of RNA by applying the Dirichlet-

multinomial model of UMI count sampling in order to distinguish true nuclei from “empty”

nuclei based on their deviation from the calculated profile of an ambient RNA pool (a pool

of low amounts of RNA containing nuclei in datasets; and the parameter for UMI count (a

measure of RNA content) was threshold at 300, a value based on in-house calculations); (ii)

CreateSeuratObject() from the R package Seurat (v 3.0) [41] was used to generate an R

object for each sample; (iii) for each sample, genes containing greater than 5% mitochondrial

reads (mitochondrial genes with the prefix MT-) were removed; and genes detected in less than

5 nuclei were removed.

2.2.4 Normalisation, clustering and doublet detection

Once low-quality reads and genes were removed: (i) each sample was normalised using the

Seurat’s function LogNormalize(), in which counts for each nucleus are divided by the total

counts for that nucleus and multiplied by a scale factor (set at 10,000 based on targeted num-

ber of nuclei) and natural-log transformed; (ii) each sample was then clustered using the func-

tion FindClusters() with the parameters 30 for principal components (principal components

(PC)) selection and 2 for resolutions and visualised using a non-linear dimensionality reduc-

tion algorithm known as UMAP; (iii) finally, potential doublets or multiplets were removed

using a doublet prediction function doubletFinder v3(), as implemented in the R package

DoubletFinder[209]. Briefly, the algorithm removes technical artefacts from each cluster (per

sample) by first computing the distance between each nucleus to artificially generated doublets

(which are generated by calculating the average expression profile of randomly selected nuclei
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pairs), and if a nucleus has a higher proportion of artificial nearest neighbours, it is labelled as

a “doublet” and removed from the cluster.

2.2.5 Joint graph generation and cell-type identification

Once the doublets or multiplets were removed, the Seurat function FindAllMarkers() was

used to identify differentially expressed genes in each cluster compared to all other clusters.

Each cluster was then assigned a cell-type by first calculating (using Fisher’s exact test) the

overlap between each cluster marker genes and a cell-type marker gene list derived from two

human single-cell datasets [332]; and assigning a cell-type to a cluster based on the lowest

p-value. A joint graph of all nuclei across all individuals was generated using Conos [19]

pipeline. Briefly, pair-wise comparisons were performed across the datasets, followed by inter-

sample edges calculations, combined with intra-sample edges to generate a joint graph; finally,

cell-type labels were propagated using a randomly selected pre-labelled nuclei vector.

2.2.6 Generation of condition-specific cell-type specificity matrices

For each group (control, PD, PDD and DLB, separately), a gene cell-type specificity matrix

was generated using the generate.celltype.data() function from the R package Expression

Weighted Celltype Enrichment (EWCE) [285], a method which statistically assesses whether

a specific cell type exhibits a higher expression of a set of genes than what would be expected

by random chance. The matrices contain values from 0 to 1, with 0 value implying a gene is

not expressed in a cell-type, while 1 implies a gene is expressed only in that cell-type. These

values represent the proportion of the total expression of a specific gene in that cell-type.

2.2.7 Differential expression analyses

Differential expression analysis was carried out to compare transcriptional differences and sim-

ilarities between the four groups. Briefly, separate matrices were generated for the seven cell-

types identified in the dataset, and DEA was performed using the tool MAST [89] (refer to the

method section in Chapter 1.1.2 Downstream data analysis, for a brief description of MAST).
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To explore gene expression differences across all cell-types between the three groups, after

adjusting for sex, with age at death, post-mortem interval (PMI), CDR (which acts as a sub-

stitution for intrinsic and extrinsic factors that could influence gene expression) and individual

identification number, the following comparisons were taken: 1) Comparisons between disease

states (PD,PDD and DLB) and control (case-control); 2) Comparisons between disease states

(case-case comparisons; a full list of comparisons can be found on Table 2.1). Genes with FDR

< 0.05 and absolute fold-change > 1.5 were considered significant (differentially expressed).

2.2.8 Functional enrichment analysis

Functional term enrichment analyses were run for cell-type-specific differentially expressed gene

sets from each pairwise comparison using the R package WebGestaltR (version 0.4.4) [182]. The

analyses were carried out using (i) GO biological process terms and (ii) pathways associated

with increased PD-risk in a large-scale pathway-specific polygenic risk analysis and rare variants

analysis. The default values for WebGestaltR parameters were used, and false discovery rate

(FDR) were adjusted using Benjamin and Hochberg (BH) FDR correction method. Pathways

with FDR < 0.05 were considered significantly enriched. Furthermore, GO-derived pathways

were reduced for redundant terms using the R-based functions from rutils https://github.

com/RHReynolds/rutils, which is a combination of two R packages, GOSemSim [352] and rrvgo

https://ssayols.github.io/rrvgo. Briefly, GO terms with less than 20 genes or more than

2000 genes are removed and semantic similarity scores are calculated for each enriched GO term

using the function mgoSim() from the GOSemSim package. The function calculates the scores

using a hierarchical clustering approach (complete linkage). The hierarchical tree was then cut

at a threshold of 0.7. Next, a distance matrix is calculated from the semantic similarity scores

using the function reduceSimMatrix() from the rrvgo package. Finally, the parent term with

the highest semantic similarity score was used to represent each group of child terms.

https://github.com/RHReynolds/rutils
https://github.com/RHReynolds/rutils
https://ssayols.github.io/rrvgo
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2.2.9 H-MAGMA and LDSC

Genetic enrichment of association analyses were performed using two methods:Hi-C-coupled

MAGMA (H-MAGMA) and sLDSC. Two different methods with different assumptions were

used to increase the credibility of the genetic associations.

Both methods were run with two sets of gene lists: (i) DE gene sets across all comparisons

and (ii) Cell-type specificity matrices (per group) calculated using the R package EWCE, which

uses expression data to impute specificity values from 0 to 1. The annotations (gene lists) were

run with 3 GWAS, including Parkinson’s disease (PD)[222], Parkinson’s disease Age of Onset

(PD AOO)[24] and Alzheimer’s disease (AD)[134]. For all the analyses, p-values were FDR

calculated for the number of cell-types tested. Cell-type specific differentially expressed genes

were tested to see they are genetically associated with a disease state (PD, PD-AOO, AD).

H-MAGMA, an extension of MAGMA, uses fetal and adult brain Hi-C to compute chromatin

interactions to exons and promoters in order to assign intronic or promoter (2kbp upstream

of transcription start site) and exonic SNPs to their cognate genes based on their genomic

location. The parameters used to compute association statistics were 10kb downstream and

35kb upstream. Similar parameters were applied to test for top 10% most specific gene sets in

each group per cell-type.

stratified LDSC (v 1.0.0)(sLDSC)[90] was run by Dr Regina Reynolds. sLDSC was used to

test for genetic association between genetic risk of PD, PD-AOO, and AD and cell-type specific

DEGs or top 10% most specific gene sets per group. In order to capture regulatory elements, the

window coordinates were extended by 100kb upstream and downstream of their transcription

start and end site. Furthermore, all SNPs were a minor allele frequency of 0.05 were used

to define a SNP using binary terms 0 (absent) and 1 (present). Next, the annotations were

added to an existing baseline model of 53 annotations (provided by Finucane et al. (2015) (v

1.2)[90]) to generate new annotation files. Thereafter, HapMap Project Phase 3 (HapMap3) [60]

SNPs were used for regression and 1000 Genomes Project Phase 3 [59] European population

SNPs were used for LD reference panels. Due to their complexity and distance, the major
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histocompatibility complex regions were excluded from the analyses. Finally, using coefficient

z-scores from the association statistics one tailed p-values were imputed and corrected for

multiple testing (FDR). Those values with a positive contribution to a disease heritability were

reported.

2.2.10 Sub-clustering analysis

In order to analyse level 2 (for example neuronal sub-types) cell-type specific clustering was

performed for neurons (since they were the cell-type mainly highlighted by DEA and pathway

enrichment analysis). Briefly, new matrices were generated for neuronal cell-type based on

previous classification (refer to Chapter 2.2.5). For each matrix, a new Seurat object was

generated and the following analyses were performed: (i) normalisation; (ii) clustering: (iii)

cell-type identification. To classify the neuronal nuclei, a gene list curated by combining the

top 10% most cell-type specific marker genes from Skene et al., 2018 [284] was used.

2.2.11 Code and Data availability

Code used to process and analyse single-nucleus RNA-sequencing data and to generate H-

MAGMA outputs is available at: https://github.com/rahfel/snRNAseqProcessingSteps . snRNA-

Seq data can be accessed through the Gene Expression Omnibus (accession ID: GSE178146).
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2.3 Results

2.3.1 Study design

Figure 2.1: Overview of approach. Single-nucleus RNA-Sequencing data generated using
28 subjects. Abbreviation: GWAS, Genome-wide Association Studies. UMI, Unique molecular
identifiers; PD, Parkinson’s Disease; PDD Parkinson’s Disease with Dementia; DLB, Dementia
with Lewy Bodies.

Anterior cingulate cortex tissue samples were taken from a cohort of 7 non-neurological controls,

7 Parkinson’s Disease without cognitive impairment (PD), 7 PDD and 7 DLB (Figure 2.1).

Thereafter, snRNA-Seq data was used to generate cell-type-specific differential gene expression

profiles.

2.3.2 Data generation and pre-processing

The tissue samples were taken from the anterior cingulate cortex, a region of the brain in which

Lewy body densities correlate with Lewy Body Diseases (PD, PDD and DLB) severity. The

subjects were matched for demographic and pathologic factors. However, there were significant

differences in disease duration and the proportions of sexes between the group (which is also

reflective of male bias in PDD and DLB previously described in the literature [225]) the ratio

in each group was: 6 male / 1 female in control, 2 male / 5 female in PD, 5 male / 7 female in

PDD and 7 male / 0 female in DLB. The mean disease duration in years for each group was: PD

= 12, PDD = 11, and DLB = 6. The fact that DLB subjects had the lowest recorded disease
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duration before death may reflect parkinsonism appearing several years before the development

of cognitive impairment in subjects with PDD. Each group’s mean age at death was: control

= 75, PD = 83, PDD = 78 and DLB = 73. Median Braak tau stage was: controls = 1, PD=

2, PDD =2 and DLB = 2 (we considered a tau Braak state less than 3 to be indicative of

no significant tau pathology). The median Braak α-synuclein stage was: control = 0, PD =

6, PDD = 6 and DLB = 6. Alafuzoff α-synuclein staging was used to stain the density of α-

synuclein in each brain tissue sample. The density was observed to increase in the order of PD

> PDD > DLB. (The subjects’ full clinical and demographic data are in Appendix A, Table

1). A total of 205,948 droplet-based single-nucleus were obtained from the samples after initial

quality control (QC) assessments. The mean values for the QC metrics were: (i) an average

of 89% of reads were mapped to the genome; (ii) an average of 1,398 genes were detected per

nucleus; (iii) an average of 7,355 nuclei were detected per sample; (iv) an average 2,358 UMI

counts were detected per nucleus (average of 98% valid barcodes). (Full QC metrics data can

be found in Appendix A, Table 2)

2.3.3 Joint graph generation

A joint graph of all nuclei across all subjects was generated using Conos algorithm which com-

putes a graph by estimating multiple inter-sample mappings (Figure 2.2). Each cluster was

assigned a cell-type by assessing the overlap between Differentially Expressed Genes (DEGs)

sets in each cluster and a list of marker genes derived from Wang et al. (2018) [332] in which

a list of cell-type marker genes was generated by combining two human single-cell datasets.

Fisher’s exact test was used to carry out the significant overlap (p < 0.01). In total, across the

full sample set, 75,826 excitatory neurons, 46,662 oligodendrocytes, 26,467 inhibitory neurons,

25,726 astrocytes, 12,497 oligodendrocyte precursors (OPCs), 13,788 microglia, and 4,532 vas-

cular cells (including endothelial cells and pericytes) were identified. The proportions of cell

types across each group were visualised using the R package ggplot2 (Figure 2.2). Full number

of nuclei per individual can be found in Appendix A, Table 3.
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(a) Joint graph of all nuclei derived from all individuals

(b) Cell-type proportions per disease
group.

Figure 2.2: Cell-type proportions.Proportion of Excitatory neurons, Inhibitory neurons, Mi-
croglia, Astrocytes, Oligodendrocytes, Oligodendrocyte precursor cells and Vascular (a mixture
of pericytes and endothelial nuclei) derived from 27 subjects (n = 7 per disease group). Ab-
breviations: OPC, Oligodendrocyte precursor cells
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Comparison type Comparisons Total number of subjects Cases Controls

Case-Control

Control vs DLB 14 7 7

Control vs PDD 14 7 7

Control vs PD 14 7 7

Case-Case

PDD vs DLB 14 14 0

PD vs DLB 14 14 0

PD versus PDD 14 14 0

Table 2.1: Number of subjects per group

2.3.4 Cell-type specific differential gene expression analysis

Differential expression (DE) analysis was carried out to explore the transcriptional changes

associated with the disease state versus controls (case-control comparison) and between condi-

tions (case-case comparison). The analyses were performed separately for each cell-type in a

pair-wise manner (Table 2.1).

After adjustment for the covariates sex, age, PMI and CDR- defined as the fraction of genes that

are detectable in each cell, 9,242 genes were found differentially expressed (|log2(fold change) |

> log2(1.5), FDR < 0.05) across all six pairwise comparisons across all seven cell-types (Figure

2.3a). Most of the differentially expressed genes (DEGs) overlapped across all comparisons,

suggesting that most variable genes were similar across disease groups and reflective of the

LBDs continuum hypothesis mentioned in previous studies. Further, the significant overlap

of DEGs suggest that gene expression changes may not be entirely driven by the differences

in cell-type proportions in the groups. Out of all the DEGs, approximately 36% were found

to be uniquely (only found in one comparison and in one cell-type) differentially expressed in

cell-type specific pairwise comparisons (across the six comparisons), in line with the view that

gene expression changes exist between disease groups (Figure 2.3b).
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Figure 2.3: Gene expression changes and perturbed pathways across cell-types and
disease state. a Total number of differentially expressed gene (DEGs) across each pair-wise
comparison ((|log2(fold change) | >log2(1.5), FDR < 0.05). b Binary plot (yes or no) indicating
with bars whether a specific gene (column) is down-regulated (upper panel) or up-regulated
(lower panel) in a given cell type (rows). Number of DE genes in each comparison indicated on
the x-axis. All results related to cell-type specific differential expression analysis and functional
pathway enrichments across all comparisons can be found in Appendix A, Table 4 and Table 5,
respectively. This figure was created for Feleke et al. (2021), which was generated during the
course of this work and subsequently published [87]
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Focusing on PD versus control comparisons, excitatory neurons had the largest number of

DEGs (423 genes were up-regulated (have a higher expression in PD) and 665 down-regulated),

followed by oligodendrocytes (436 gene up-regulated and 282 down-regulated) (Appendix A,

Table 4 for a list of DEGs across all comparisons). For PDD versus control comparisons, there

were more DEGs found in excitatory neurons (848 up-regulated and 1,293 down-regulated)

as well as oligodendrocytes (392 up-regulated and 1,526 down-regulated). Expectedly, the

total number of DEGs were higher for the DLB versus control comparison than any other

comparison carried out: for excitatory neurons there were 1,136 genes were up-regulated and

2,971 down-regulated genes (nearly 4.5-fold found in PD versus control comparison); and for

oligodendrocytes 353 gene up-regulated and 1,687 down-regulated genes.

Interestingly, among the genes differentially expressed (up-regulated in excitatory neurons in

cases) across all three diseases (i.e., PD, PDD and DLB) versus control comparison, were genes

involved in synaptic plasticity, signalling and memory formation including Calcium/Calmodulin

Dependent Protein Kinase II Delta (CAMK2D), Calcium/Calmodulin De- pendent Protein Ki-

nase II Beta (CAMK2B), G protein-activated inward rectifier potassium chan- nel 2 (KCNJ6),

cyclic nucleotide phosphodiesterase 1 (PDE1A) and Tissue inhibitor of metal- loproteinases 2

(TIMP2). Furthermore, genes that were down-regulated in the excitatory neurons in the disease

groups compared to control groups were genes involved in neurotransmitter pathways, includ-

ing PD-associated genes calcium voltage-gated channel subunit alpha1 A (CACNA1A), calcium

voltage-gated channel auxiliary subunit gamma 8 (CACNG8) and discs large MAGUK scaffold

protein 2 (DLG2). These observations align with the notion that α-synuclein aggregates-related

synaptic dysfunctions are associated with cognitive impairment.

2.3.5 Differentially expressed genes distinguish Lewy body demen-

tias from Parkinson’s disease

Looking at the comparison between disease and control groups separately from disease against

disease comparisons, three main themes emerged (Figure 2.3):

1. There was widespread gene dysregulation in the glia and the neurons.
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2. Most of the DEGs detected in the disease groups, compared to controls, were only DE

in one cell-type. For example, focusing on PD versus Control comparison, out of the

1,246 up-regulated genes, 945 (76%) were specific to a single cell-type, while for down-

regulated genes, 893 genes out of 1,131 (79%) were cell-type specific. Similar observations

were made for PDD, with 74% for up-regulated genes and 66% for down-regulated genes;

and for DLB, 74% and 67%, respectively.

3. The gene expression profiles of PDD and DLB were very similar, in keeping with the

overlapping clinical features and pathology between these two conditions (Figure 2.3a).

Notably, there were fewer transcriptional similarities observed between PD and PDD

(Figure 2.3a), again consistent with cortical involvement in patients with PDD compared

to those without dementia.

Variable expression of SNCA across disease groups

Next, differential expression of genes derived from a recently published study of mutations im-

plicated in PD susceptibility [25, 16], including a well-characterised gene SNCA, were explored.

Of the 21 genes considered, 13 were differentially expressed in at least one major cell-type

in at least one disease versus control comparison (Figure 2.4a). For example, excitatory neu-

rons, inhibitory neurons, astrocytes and oligodendrocytes all showed significant up-regulation

of SNCA in PD cases when compared with controls (fold change: 0.64–1.30; FDR: 2.6× 10–7 –

7.2× 10–157, Figure 2.4a).

Focusing on SNCA expression, the following observations were made (Figure 2.4b): (i) SNCA

expression was up-regulated in PD relative to control samples across four cell-types (excitatory

neurons, inhibitory neurons, astrocytes and oligodendrocytes); (ii) there was a decrease in the

proportion of SNCA- expressing nuclei in PDD; (iii) there was a similar expression range of

SNCA in control and PD; (iv) there was an absence of a neuronal subpopulation expressing

higher levels of SNCA (top 10% highest expressing nuclei; Figure 2.4) in Lewy body dementias,

as compared with PD and control group. The absence of nuclei with high SNCA expression in

PDD and DLB may highlight a selective vulnerability of subpopulations of excitatory neurons
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Figure 2.4: Cell-type-specific alterations of PD-associated genes and pathways across
disease versus control comparisons. a Differential expression analysis of genes genetically
linked to PD across cell-types and pairwise comparisons of disease groups with the control group.
Non-significant genes (FDR > 0.05) are coloured grey, all other tiles are significantly expressed
genes (FDR < 0.05). b SNCA expression distribution (in excitatory neurons) represented on
ridgeline plot. Distributions have been split into 3 cumulative quantiles (0–50%, 50–90% and
90–100%) of the nuclei in each disease group. (Feleke et al., 2021)
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which express high SNCA levels to neurodegeneration. Taken together, these observations

support the notion that while there are transcriptional similarities between the Lewy Body

diseases (based on the overlapping DEGs identified), PD has a distinct transcriptional profile

from the other two Lewy bodies, likely relating to the absence of Lewy body pathology in the

cortex of PD patients with solely motor features. In contrast, the Lewy body dementias PDD

and DLB showed high levels of transcriptional concordance.

2.3.6 Identifying distinct and common molecular pathways in Lewy

Body diseases

Functional enrichment analyses were performed on cell-type specific differentially expressed

genes to explore their potential biological implications (Appendix A, Table 4 for terms identified

using gene sets from case-case comparisons). Focusing on PD, PDD and DLB versus control

comparisons, a total of 235 and 312 GO terms were enriched (significant at FDR < 0.05) for

up and down-regulated DE gene sets, respectively. The significant pathways were reduced

based on semantic similarity (carried out using R package rutilis). In total, 57 pathways for

up-regulated and 68 pathways for down-regulated were enriched after adjustment for multiple

testing (FDR < 0.05) (Figure 2.5).Focusing on the child terms which were significant using

up-regulated DEG sets (including redundant terms), 106 out of 235 GO terms were uniquely

enriched for a specific cell-type. For example, for DLB versus controls, GO terms including

calcium ion transmembrane transport (FDR =0.037), calcium-mediated signalling (FDR =

0.023) and chemical synaptic transmission, postsynaptic (FDR = 1.48× 10−07) were perturbed

only in excitatory neurons. A full list of all significant terms for each comparison including

child terms are found in Appendix A, Table 5. Furthermore, the highest number of enriched

pathways were observed in those Lewy body diseases with cortical involvement (PDD and

DLB), which is also reflected when comparing PD with PDD/DLB (Figure 2.6).

As well as analysing functional enrichment using GO categories, a set of curated PD-associated

pathways were used from Bandres-Ciga et al. (2020) [16], in which the authors had prioritised

46 pathways for PD by using large-scale gene-set specific Polygenic risk score (PRS) based
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Figure 2.5: Pathways significantly enriched for up-regulated genes.(Up-regualted in
cases in comparison to control). Significance at FDR < 0.05. Abbreviations: GTP, guanosine
triphosphate
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Figure 2.6: Pathways significantly enriched for down-regulated genes.(Down-regualted
in cases in comparison to control).Significance at FDR< 0.05. Abbreviations: ERBB, epidermal
growth factor receptor family; ATP, Adenosine triphosphate ; NADH, nicotinamide adenine
dinucleotide (NAD) and hydrogen (H); SRP, signal-recognition particle



2.3. Results 51

Figure 2.7: Genetically PD-linked pathways significantly enriched for up-regulated
genes.(Up-regualted in cases in comparison to control). Significance at FDR < 0.05. Abbre-
viations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; GLUR2, Glutamate
Receptor 2; ER, Endoplasmic Reticulum; GPCR, G protein-coupled receptor; KEGG, Kyoto
Encyclopedia of Genes and Genomes
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Figure 2.8: Genetically PD-linked pathways significantly enriched for down-
regulated genes.(Down-regualted in cases in comparison to control). Significance at FDR
< 0.05. Abbreviations: COPII, Coat Protein Complex II; NMDARs: Stands for N-Methyl-D-
aspartate receptors
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assessment of 2,199 gene sets to evaluate the role of common variation on PD risk[16]. Some of

these pathways include terms related to neuronal transmission-related pathways, metabolism,

programmed cell death and vesicle-mediated transport. In general, the number of perturbed

pathways increased with increasing cortical involvement (i.e., PD -> PDD -> DLB) While

most (17 of 31) pathways were enriched among up-and down-regulated genes, 13 pathways

were uniquely enriched among down-regulated genes (Figure 2.7) and (Figure 2.8).(Appendix

A, Table 6 for a full list of significant terms).

2.3.7 Heritability enrichment analysis

A major drawback of differential gene expression analysis, even at a single-cell level, is that

transcriptional changes between conditions may arise both as a cause and a consequence of the

disease. To try to identify transcriptional changes with a potential proximal relationship to

disease, differentially expressed gene sets can be tested for enrichment of genetic variants that

are associated with disease susceptibility. Here, two approaches with different assumptions and

algorithms were used: (i) Stratified LD score regression (sLDSC)- a statistical method which

tests the contribution of a genomic annotation to a trait heritability. In the current study,

enrichment (the proportion of heritability explained by SNPs in the annotation divided by the

proportion of SNPs in the annotation) was used to evaluate the significance of the association;

(ii) MAGMA- a method which tests the collective association of all SNPs in a given gene with a

trait while accounting for Linkage Disequilibrium between SNPs. In this study, H-MAGMA was

used, which is an extension of MAGMA which uses chromatin interaction profiles from human

brain tissue to assign intergenic and intronic SNPs to their nearest genes (refer to Method

Section for full description of the methods).

Since co-existent AD pathology (for example, hyperphosphorylated tau and amyloid-β plaques)

is a common feature in the Lewy body dementias (PDD and DLB), in addition to GWAS studies

for PD age of onset [24] and PD-susceptibility [222], included GWAS summary statistics derived

from a recent AD [134] GWAS was also used. For genetic enrichment analysis we considered

cell-type-specific DE genes significant at FDR < 0.05 and |log2(fold change)| > 1.5), which
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Figure 2.9: Genetic association analysis using Hi–C-coupled MAGMA and stratified
LD score regression. a) association test using cell-type-specific differentially expressed genes
in disease comparisons with controls (b) association test using top 10% most cell-type-specific
genes in each disease group. Significance level are indicated by * for nominal significance
(unadjusted p-value < 0.05) and ** for significant association (FDR-corrected p-value < 0.05)
after adjusting for the number of cell-types tested.
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were further split based on their direction of effect (Figure 2.9).

In summary, the concordance between the two methods was low; therefore, results obtained

using both methods were reported separately in Appendix A, Tables 7 and 8. Using sLDSC,

there was a significant association between up-regulated genes in OPCs and dysregulated (up

and down) genes in astrocytes derived from PD versus control comparisons (FDRLDSC = 0.0076

in OPC and FDRLDSC = 0.0085 in astrocytes) and PD risk (Figure 2.9). Similarly, there was

a significant association between up-regulated genes in excitatory neurons from comparison of

PDD with control and PD genetic risk (FDRLDSC = 0.0040). Furthermore, using HMAGMA

there was a significant association between down-regulated genes in vascular and up-regulated

genes in oligodendrocytes from PD-control comparison and PD genetic risk (FDRHMAGMA =

0.0082 in vascular; FDRHMAGMA = 0.013 in oligodendrocytes) (Figure 2.9; Full result table

available in Appendix A, Table 7 and 8).
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Neuronal sub-type preferential vulnerability in DLB

The above analyses revealed significant differential expression in all three diseases (PD, PDD,

DLB) compared to controls in neurons, microglia and oligodendrocytes. Among these cell

types, neuronal differential expression was enriched for functions relevant to the development

of PD and genetic risk to PD, suggesting a possible aetiological relationship to PD.

To explore if genes differentially expressed in neurons in PD, PDD and DLB arise from a global

transcriptional change across all neuronal sub-types or from a specific subset of neurons, all

neurons (inhibitory and excitatory) across all 4 conditions (PD, PDD, DLB, controls) were

clustered using Louvain clustering implemented in Seurat. This identified 10 neuronal clusters

(Figure 2.10a).

Among the 10 clusters, Cluster 2 consisted predominantly of nuclei from PD and control cases

(specifically, 90% of nuclei from Control and PD subjects), suggesting an absence of nuclei from

subjects with cortical Lewy body pathology (PDD and DLB) in this cluster (Figure 2.11 and

2.10a). In contrast, Cluster 6 consisted entirely of nuclei derived from non-DLB subjects (i.e.,

controls, PD, and PDD), suggesting these neurons are preferentially lost in DLB. To investigate

this further, neuronal clusters were assigned to cell-type subtypes using a classification scheme

based on Skene et al., 2018 [284] (Figure 2.10). Nuclei in cluster 6 were identified as coming

from medium spiny neurons while the remaining clusters were identified as either pyramidal

neurons, interneurons or unclassified. This suggests that medium spiny neurons may represent

a vulnerable cell-type in DLB, and indeed unrelated research has suggested a selective dendritic

degeneration of medium spiny neurons in the caudate nucleus in DLB subjects [354].

The reason for the apparent selective vulnerability of medium spiny neurons in DLB is unclear.

Several genes identified as marker genes for medium spiny neuron (cluster 6), namely Cyclin-

Dependent Dinase-Like 5 (CDKL5), Mitogen-Activated Protein Kinase 1 (MAPK1), Forkhead

Box Protein P2 (FOXP2), Protein Phosphatase 2 Regulatory Subunit Beta (PPP2R2B), Pro-

tein Phosphatase 1 Regulatory Inhibitor subunit 1B (PPP1R1B), Insulinlike Growth Factor1

Receptor (IGF1R) and SCN1A are ubiquitously expressed across all neuronal types. In con-
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(a) A plot of all neuronal (excitatory and inhibitory) derived from
all individuals.

(b) Cell-type identification of each cluster.

Figure 2.10: Cell-type specific clustering of neurons.
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Figure 2.11: Proportions of neurons derived from each group for each cluster.

trast, PPP1R1B was highly specific to cluster 6 (medium spiny neurons), and the protein

product of PPP1R1B is an inhibitor of PP-1 (Protein Phosphate-1), which is known to play a

role in synaptic function and dopaminergic neurotransmission [184, 195, 228].
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2.4 Discussion

This study applied snRNA-Seq to profile the gene expression of 21 Lewy Bodies disease and

seven neurologically “healthy” cortical samples. Differential expression analysis was performed

using a scRNA-Seq-specific method, MAST[89], which produced a set of DEGs across multiple

cell-types in case-control and case-case-based comparisons. Overrepresentation analysis of the

DEGs identified several pathways with a previously implicated role in the development of

PD, including pathways related to metabolism, the immune system and signal transduction.

Overall, transcriptional similarities and differences between LBDs and control were observed for

multiple cell-types. More detrimental effects were observed in excitatory and oligodendrocytes

in the dementia subjects (PDD and DLB) relative to PD.

2.4.1 Transcriptional altercations in multiple cell-types distinguishes

the Lewy Body diseases

The significant points that emerged from the DE analyses were: (i) cell-type specific gene ex-

pression changes were identified across different comparisons; (ii) most of the DEGs were com-

monly dysregulated across multiple comparisons (including Lewy Body Disease (LBD)-control

and LBD-LBD comparisons); (iii) over a third (36%) of DEGs were differentially expressed

in cell-type disease-specific manner; (iv) several well studied and characterised PD-associated

genes were also found to be dysregulated in dementia groups (PDD and DLB). Further, most

were among the commonly dysregulated genes in the LBDs. Of the 21 genetically linked PD-

genes considered , 13 were dysregulated in one or more comparisons (Figure 2.2). Although

this was not surprising given the neuropathological and clinical overlaps between the LBDs, the

direction of effect of some of these genes was not the same in PDD and DLB as observed in PD.

For example, GBA, a gene that encodes a lysosomal enzyme, was only dysregulated in PDD (in

excitatory neurons), even though previous genetic studies have identified mutations in GBA as

common genetic risk factors in PD and DLB [74]. However, it has also been reported that GBA

mutation carriers in PD cases have a reduced survival rate and an increased risk for early de-
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mentia than noncarriers[321]. Further, a mutation of the glucocerebrosidase enzyme (encoded

by GBA) was considered to induce the transition of the monomeric form of α-synuclein to an

oligomeric, aggregated toxic form observed in PD [206, 297]. Similar results were observed for

SNCA (up in PD, down in PDD and DLB), VPS35 (Vacuolar Protein Sorting-Associated Pro-

tein 35; up in PD, down in PDD and DLB), UCHL1 (up in PD and DLB, down in PDD), and

DNAJC6 (down in PD and DLB, up in PDD). In contrast, examples of genes with the same

direction of effects in the LBDs include Parkinsonism associated deglycase (PARK7), PINK1,

SYNJ1 and Vacuolar Protein Sorting 13 Homolog A (VPS13A). Taken together, these obser-

vations suggest that, while it may appear at first that the two dementias are a continuation of

PD, upon closer inspection, all three LBDs represent genetically heterogenous conditions with

a distinct gene expression pattern of genetically linked synaptic or neuronal genes.

2.4.2 Selective vulnerability of medium spiny neurons in Dementia

with Lewy bodies

The observation that excitatory neurons were more strongly impacted than other cell-types in

the LBDs suggests a selective vulnerability of certain cell populations, but this effect could be

confounded by the higher proportion of excitatory neurons in the samples. To address this issue,

sub-clustering analysis was applied to dissect the cellular heterogeneity and identify different

subpopulations of vulnerable neurons in the LBDs. This approach improved the resolution of

the analysis, revealing previously unrecognised patterns of vulnerability. Furthermore, these

“vulnerable” neurons were found to have a similar transcriptional profile to that of MSN, also

known as GABAergic projection neurons. In a study, a selective loss of MSN was reported

in the caudate nucleus regions in DLB cases [354]. Interestingly, in the current study, MSN-

like neurons were present in PD and PDD subjects; therefore, it appears that the selective

vulnerability of these neuronal types is unique to DLB.

2.4.3 Pathways perturbed across multiple-cell types

Functional enrichment analysis of DEGs using gene ontology (GO) terms corresponding to

biological processes revealed several pathways perturbed in multiple-cell types. PDD and DLB
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showed a higher degree of commonality (Figure 2.5). Most GO terms were commonly enriched

for both down- and up-regulated DEGs. However, it was evident that:

1. Most significantly (FDR < 0.05) enriched terms were mainly enriched for down-regulated

genes in a given dementias-control comparisons, and terms related to synaptic vesicle

transport and response to oxidative stress were uniquely enriched for down-regulated

genes in the two dementias in comparison to control and PD.

2. Up-regulated genes, which were identified primarily in comparisons of PD with con-

trol, were mainly enriched for genes involved in pathways related to metabolic processes,

mRNA splicing and autophagy.

3. There were no significant (FDR < 0.05) terms found enriched for DEGs in comparisons

of DLB with PDD. In summary, GO-terms-based enrichment analyses highlighted the

commonalities between DLB and PDD, while PD exhibit pathological characteristics

distinct from the dementia groups.

Similarly, genetically associated PD-related pathways were (i) mainly enriched for down-regulated

genes in the dementias (PDD and DLB); and terms related to cell programmed death were

uniquely enriched for down-regulated genes found exclusively in glial cell-types (Figure 2.8); (ii)

while, up-regulated genes in comparisons of PD with control were enriched for terms related to

transmission across synapses, chromatin organisation and autophagy-lysosomal systems(Figure

2.7).

Focusing on overlapping impaired pathways in the LBDs, the most noticeable difference be-

tween PD and PDD-DLB was the down-regulation of genes involved in the autophagy–lysosome

system in the two dementias and their up-regulation in PD (Figure 2.5 and 2.6). This observa-

tion was partially explained by Kong et al. (2014) [158] in which the authors demonstrated the

elevated expression of genes encoding transport ATPases (for example, ATP13A2 observed in

PD may be brought about by the surviving neurons of the substantia nigra pars compacta in

PD overexpressing these genes as a result of increased export of exosome-associated α-Synuclein

[158]. Although contradictory results have been reported in the frontal cortex of PD and DLB



62 Chapter 2

cases, decreased protein levels have been observed in disease cases compared to controls [221].

Furthermore, the expression of several genes that directly encode for autophagy-lysosomal com-

ponents in excitatory neurons from PDD and DLB as compared to PD and control was marked

by a shift in the range of the top 25% highest expressing nuclei and were highly expressed in

sub-neuronal cluster 2 which mainly contained nuclei derived from PD and control subjects

(Figure 2.11), suggesting these types of neurons may have been lost earliest in the progression

of PDD and DLB.

2.4.4 Heritability enrichment analysis reveals a genetic association

between differentially expressed genes and genetic determi-

nants of Alzheimer’s disease.

In genetic association analyses carried out using DEG sets, surprisingly, down-regulated genes

in the LBDs were not enriched for genetic determinants of PD age of onset or PD risk and AD

risk, suggesting that the observations may have been consequences of the disease process and

not the cause. In contrast, up-regulated genes (from PD-control comparisons) were enriched

for genetic risk of PD age of onset in astrocytes and OPC. Although it has previously been

reported in OPCs [39, 4], the involvement of astrocytes in PD age of onset needs to be further

explored since this may be the first study to have highlighted such a connection (Figure 2.9).

Furthermore, several genetic associations were identified using 10% of most cell-type-specific

genes in each disease group. While there was a nominal (FDR < 0.1) genetic association

between PD genetic determinants and genes highly expressed in excitatory neurons, there was

a significant (FDR < 0.05) enrichment of heritability for genes highly expressed in microglia

and AD risk. These findings mirror similar observations reported in previous literature in which

the majority of risk loci discovered through GWAS were highly expressed in microglia, which

then led to the hypothesis that microglia play a role in the progression of dementia [230, 240].
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2.4.5 Limitations of the study

A few limitations may complicate the interpretation of some of the observations made in this

study. These limitations can be divided into technological – related to the tools and methods

used- and non-technical – related to biological biases. Starting with biological limitations,

there was a clear difference in the proportions of sexes between the four groups, although

this is a well-known issue in the literature [225], although this could also be due to the low

number of samples. Furthermore, the use of post-mortem tissue samples prevents comparing

the magnitude of the difference between molecular events associated with the early stages of

the disease and those that arise later. Focusing on the technical factors, except for sub-cell-type

clustering analysis, all other findings presented in this chapter were based on snRNA-Seq data,

which has a few challenges limiting the interpretability of the results. For example, although

single-cell analysis provides a better view of the at a single-cell resolution, the tool used in

the differential expression analysis is known to have a high false positive rate. However, based

on a recently published study that analysed several tools used in single-cell analysis, MAST

performed better than most available tools [290, 333]. Therefore, though DEA carried out using

MAST provides a better result than pseudobulk analysis (which produced a significantly low

number of DEGs ranging from 1-10), interpreting the results obtained from MAST should be

done cautiously.
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Abstract

Understanding the early cellular changes in AD is crucial for the development of effective

disease-modifying therapies. This study aimed to investigate gene expression changes associ-

ated with early detectable abnormal tau species at the single-cell level. Brain samples with

neurofibrillary tangles (NFTs) and tau oligomers were analysed, revealing transcriptional simi-

larities and differences between these two tau species. Differential expression analysis identified

several well-known neurodegenerative disease-associated genes, highlighting their dysregula-

tion in the tau oligomer-positive (with few or no NFTs) group. Functional enrichment analysis

revealed dysregulated pathways involved in protein aggregation processes, protein modifica-

tion, mRNA splicing, and interleukin 12 (IL-12) signalling pathways. Additionally, the study

observed the activation of reactive astrocytes in early tau pathology, suggesting their involve-

ment in tau aggregate formation. The findings emphasize the importance of characterising tau

oligomers in AD brain tissue to differentiate early-stage AD from established AD and avoid mis-

classification. In summary, this study provides valuable insights into the early molecular events

in the formation of abnormal tau species, facilitating the development of targeted therapeutic

strategies.
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3.1 Introduction

3.1.1 Amyloid and Tau pathology in Alzheimer’s disease

The German Bavarian neuroanatomist Alois Alzheimer first describedAD in 1907 when he

presented his long-term study of a case involving a woman who suffered from what he described

as “a severe disease process of the cerebral cortex” [28]. Since the original description, the

neuropathological features of AD have included: (i) the amyloid plaques (first described by

Alzheimer as “miliary foci”), which are extraneuronal aggregates of the protein amyloid beta

(Aβ); (ii) and neurofibrillary tangles (NFTs), which are composed of aggregated filamentous tau

protein, a microtubule-associated protein. The amyloid plaques are formed due to the abnormal

processing of Amyloid Precursor Protein (APP) by beta- and gamma-secretases [241]. Two

main amyloid plaques are primarily observed in AD pathology- the dense core and the diffuse

[70]. Diffuse plaques form in the neuropil and generally lack neuritic components, while cored

plaques are associated with dystrophic neurites. While NFTs in the brain of AD mainly consist

of hyperphosphorylated and aggregated tau proteins, the lesions can also include pretangle

material and neurophil threads [70].

3.1.2 The role of tau oligomers in disease

Since the initial description of AD, the underlying causes and pathogenic mechanisms of AD

have remained largely elusive. There are currently many proposed AD pathogeneses, including

the tau pathology hypothesis [241, 70], oxidative stress [42] and the amyloid cascade hypothesis

[70, 72]. The tau hyperphosphorylation hypothesis proposes that abnormal phosphorylation

causes tau to dissociate from microtubules and fold into paired helical filaments, the constituents

of NFTs, presumed to be neurotoxic. Further, studies have shown the pathological features of

tau pathology in AD are quite distinct from that of other tau-related diseases; for example,

aggregates incorporate tau molecules carrying both 3 and 4 units of the microtubule-binding

domain; and elevated levels of phosphorylated tau are observed in cerebrospinal fluid (CSF) of

AD patients and tau pathology has been shown to correlate more closely with cognitive decline

than amyloid pathology [71, 13, 365, 345].
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Physiologically tau is an unfolded protein made up of four domains: (i) an acidic N-terminal

domain (ii) a proline-rich region, (iii) an MT-binding, microtubule binding (MTBR), and (iv) a

carboxy-terminal tail [37]. Functional tau is involved in actin reorganisation, microtubule sta-

bilisation and neurite growth regulation [17]. Post-translational modifications, including ubiq-

uitination, acetylation and phosphorylation are needed to regulate the physiological functions

of tau proteins[15]. However tauopathies (a group of tau-related pathologies) are associated

with excessive or abnormal phosphorylation [15], although it is not completely clear if phospho-

rylation is the cause or consequence of tau misfolding and aggregation, as tau multimerisation

can be detected at early stages, even before several phosphorylated epitopes. In some ani-

mal studies, over-expression of tau caused cell death, synaptic dysfunction and behavioural

abnormalities [351, 130]. Interestingly, Santacruz et al. (2005) [269] showed that despite the

continuous formation of NFTs, a reduced tau expression in mutant transgenic mice decreases

neuronal cell loss, suggesting NFTs formation may not cause neuronal loss.

Additionally, some studies have suggested that NFTs may not be the toxic species but in-

stead the tau oligomers, an intermediate species made of soluble tau aggregates, may mediate

neuronal toxicity [227]. These oligomers are formed when an individual tau binds to another,

forming a soluble aggregate. In some studies, the levels of tau oligomers correlated with the

clinical symptoms of AD suggesting that tau oligomers may be involved in the progression of

AD [227]. Furthermore, in one study [99] tau oligomers derived from traumatic brain injury

were shown to cause cognitive impairment, suggesting that oligomeric forms of tau may be

involved in initiating the onset and spread of neurodegenerative diseases. Additionally, unlike

tau monomers, tau oligomers were shown to inhibit axonal transport [147]. By far, the most

noteworthy finding was the prion-like transmission mechanism by which tau misfolded conform-

ers propagate in tau-related neurological disorders, in which tau oligomers may play a central

role [15].
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3.1.3 Tau seeding and propagation

Figure 3.1: .
Insights into Alzheimer’s Disease progression through visualisation of tau protein
aggregates. a Top: Different staining patterns for tau using Tau-proximity ligation assay
(tauPLA) from left to right: Normal refers to non-pathological state; Diffuse is characterised
by the accumulation of small, diffuse tau protein aggregates; Pretangle refers to the early
accumulation of tau aggregates; Mature stage is characterised by the formation of mature
tangles that are densely packed, paired helical filaments of tau; Ghost pathology refers to the
presence of tau protein aggregates that persist after the death of neurons. Scale bar 50 µm.
Bottom: distribution of tau at different Braak stages. Scale bar 2 mm. b Alzheimer’s disease
progression. Blue arrow indicates detectable tau in cerebrospinal fluid (CSF) c Neurofibrillary
tangle formation (Khanahmadi et al. (2015) and Bengoa- Vergniory et al. (2021))

The mechanism behind the prion-like spreading of tau has been studied using cell models that

mimic tau seeding and propagation. In vitro studies have demonstrated the ability of tau to

recruit soluble monomeric tau in a similar manner to prions [15]. As the disease progress, the ac-

cumulation of tau follows structurally linked pathways. Studies in animal models have revealed

that endogenous tau misfolds and propagates from unaffected brain regions to affected brain

regions through neuroanatomical networks. Usually from the entorhinal cortex and progress

to the hippocampus, eventually to the surrounding cortex region (Figure 3.1) [3]. In addition,

tau pathology propagates at different rates in different brain regions [149]. Collectively, these

observations demonstrate the existence of abnormal tau species (different strains of tau) with

distinct neuropathological and morphological characteristics [128]. Therefore, identifying and
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characterising these tau “toxic” species is essential in designing therapies to lower the level of

toxic tau, to decrease tau aggregation or to prevent the spread of pathology. Further, failure in

identifying abnormal tau species, which do not carry the phosphorylated signature recognised

by commonly used antibodies, could lead to a misclassification of diseased brain tissue (e.g.

early stages of disease) as control, thus leading to false negative error.

3.1.4 Techniques for detecting tau species

Current methods used to identify misfolded tau on tissue sections are mostly dependent on

the identification of phosphorylated tau epitopes with specific antibodies. Visualisation of

phosphorylated tau has been used to develop staging schemes to classify the different phases of

the pathology (Figure 3.1). Braak observed that pathological tau spreads throughout the brain

in a stereotypical predictable pattern and categorised the progression of pathology in several

Braak stages (I-VI)[33](Figure 3.1), currently the standard neuropathological staging of tau

AD-related changes. In 2006, Braak et al. improved their staging method, originally based on

the visualisation of NFTs with silver stain, by incorporating immunohistochemistry with AT8

antibody, which detects phosphorylated tau. Several other antibodies have been developed to

visualise abnormal tau on tissue sections, recognising different phosphorylated tau epitopes or

another biochemical characteristic of abnormal tau, such as the monoclonal Receptor Polyclonal

Antibody (MC1) is an antibody, which recognise conformation-dependent epitopes in tau [140].

3.1.5 Using tau-proximity ligation assay to visualise early tau-tau

interaction in situ

Despite the recent advancement in detecting phosphorylated tau species, a large portion of tau

pathology is still not being detected using immunochemistry techniques. Recent studies have

shown that tau-tau interactions occur early in the development of AD pathology (Figure 3.1),

and that seed propagation of tau can happen in the absence of phosphorylation [150]. There-

fore, visualising early tau-tau interaction could help identify early pathological tau-multimers

and potentially representing early stages of AD. Bengoa-vergniory et al., 2021 [21] used a novel
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tau-proximity ligation assay to directly visualise tau-tau interactions in situ regardless of tau

phosphorylation state or conformational changes (Figure 3.1). The assay was able to recognise

the multimers but not monomers. Furthermore, Bengoa-vergniory et al. were able to detect

NFTs-like lesions and a small-sized diffuse pathology, which had not been reported before. The

authors concluded that tau multimers were present from the earliest pre-symptomatic Braak

stages [269, 21]. Most recent studies have looked at gene expression changes at late-stages of

tau pathology including AD and were able to identify genes involved in the pathogenesis of

AD. However, many late-stage clinical trials that were based on these studies were unsuccessful

at treating AD, which has led to the recognition for the need to intervene at an early stage

in the disease progression [84]. This was supported by studies showing that gene expression

changes can occur even at the early stages of tau pathology [252, 154]. Therefore, it is believed

that early intervention could potentially prevent the cascade of multiple pathologic pathways

associated with tau pathologies and help in identifying early molecular changes that are critical

for diagnosis and therapeutic strategies. Here we used snRNA-Seq analysis (to look at expres-

sion changes at the cell-type level, for example to assess the role of astrocytes in the disease

progression) to identify gene expression changes occurring at the early stage of tau pathology.

3.1.6 Aims and objectives

The main aims of this study were:

1. To assess transcriptional signatures associated with oligomeric tau in the postmortem human

brain using single-nucleus RNA-seq.

2. To evaluate and contrast transcriptomic similarities and dissimilarities between two distinct

groups, brain tissues with tau oligomers (referred to as AT8-/tauPLA+) and those with tau

oligomers and tau tangles (referred to as AT8+/tauPLA+).
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3.2 Methods

3.2.1 Sample selection and tissue extraction

Figure 3.2: Overview of samples used in the study. 5 subjects were AT8 negative and
tauPLA negative (A); 7 subjects were AT8 negative and tauPLA positive (B); 4 subjects were
AT8 positive and tauPLA positive (C).

Brain tissue sample selection and preparation were performed by Dr Javier Alegre-Abarrategui

and his group members using post-mortem samples donated to the Multiple Sclerosis and

Parkinson’s Brain Tissue Bank of Imperial College London. The samples were from tempo-

ral lobe neocortex, which sits halfway through in the Braak tau pathway between the early

affected medial temporal lobe to the late affected primary sensorimotor cortices and can there-

fore harbour a range of tau pathology. Given that we aim at studying gene expression changes

associated with the earliest tau species, and that these changes likely start at the pre-clinical

phase of the disease process, all brain tissue samples were ascertained from donors with no
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history of neurological disease antemortem (i.e., the pathological findings are in the absence

of documented AD). Tau immunohistochemistry with AT8 antibody for phosphorylated tau

and tauPLA was used to classify the temporal lobe samples of these cases into three groups

(Figure 3.2). Immunohistochemistry for AT8 identified a group of samples with overt NFTs

formation characterised by scattered NFTs. The remaining samples included cases with no

tangles or rare isolated NFTs. This group was further subdivided with tauPLA into a group

with negligible tauPLA signal (tauPLA negative) and a group with overt tauPLA diffuse signal

(tauPLA positive) (Figure 3.2). The three sample groups were therefore:

• AT8 negative/tauPLA negative (double negative) – i.e., no abnormal tau deposition.

• AT8 negative/tauPLA positive (intermediate group) – i.e., tau oligomers but very little

NFTs/hyperphosphorylated tau.

• AT8 positive/tauPLA positive (double positive) i.e., presence of both tau oligomers and

NFTs / hyperphosphorylated tau.

To be consistent, a cut off of 0.78 of the quantification of tauPLA diffuse signal was used to

define double negative groups (tauPLA- and AT8-). Clinical and pathological features of the

cohort are available in Appendix B, Table 1.

Tissue extraction

Tissue sectioning was performed by Elisavet Velentza-Almpani under the supervision of Dr

Javier Alegre-Abarrategui. Tissue sections of 5 µm thick Formalin-Fixed Paraffin-Embedded

(FFPE) from the temporal cortex were used for tauPLA, and immunohistochemistry, and

adjacent frozen tissue samples were homogenised in iced-cold PBS (10% w/v) using a Tissue

Ruptor II with disposable probes (Qiagen) for snRNA-Seq analysis.

3.2.2 Immunohistochemistry

FFPE 5 µm thick human brain tissue samples from each individual were heated for 45 minutes at

70°C followed by dewaxing in xylene, rehydrated in 70-100% graded alcohols and finally blocked
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with hydrogen peroxide (H2O2). Microwave heating was used to retrieve antigens (with citrate

buffer pH 6 for 10 minutes). Samples were then incubated (after blocking the non-specific

binding sites) with antibodies AT8, AT180, MC1 for 1 hour at room temperature. Antibodies

were obtained from ThermoFisher Scientific (1:500 and 1:1000) and the MC1 antibodies were

provided by Peter Davies, The Feinstein Institute for Medical Research, Manhasset, New York,

United States. Next day, samples were incubated with biotinylated goat anti-mouse/anti-

rabbit IgG secondary antibody for 1 hour at room temperature, then washed and incubated

with Vectastain ABC reagents. Finally, slides were counterstained with Mayer’s haematoxylin

solution (Sigma-Aldrich), dehydrated with alcohols and xylene, and mounted with Distyrene,

a Plasticizer, and Xylene (DPX) mounting reagent.

3.2.3 In situ tau proximity ligation assay

Following manufacturer’s instructions, Duolink PLA kits (Sigma) was used to perform tauPLA.

Tau5 antibody (ab80579, Abcam), along with Duolink PLA +/- kits, was used to prepare

conjugated tau. Dewaxing was performed as mentioned in the previous section. Samples were

incubated at 37 °C for 1 hour and diluted with tau conjugates at 4°C overnight. After being

washed, the samples were incubated again with ligation stock and ligased for 1 hour at 37°C,

washed again, followed by incubation with the amplification stock and polymerase for further

2.5 hours at 37 °C. As a final step, samples were incubated and washed again using detection

solution for 1 hour at room temperature, washing and incubation step were repeated using

substrate reagent for further 20 minutes at room temperature, counterstained for 5 minutes,

dehydrated and finally mounted using DPX mounting reagent.

3.2.4 Neuropathological analysis

Aperio-Scanscope (40x objective) was used for imaging analysis. Three random samples were

blindly taken as representative images. Neuropathological analysis was carried out using ImageJ

software. For large perikaryal lesions (which consists mostly NFTs and neuropil threads (NTs)),

a threshold of 12.5–100 µm2 was used, while for small structures a threshold 1.5–3.5 µm2 was
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used. The average µm2 was calculated for each image and semi-quantitative analysis was carried

out by randomly sampling three representative images for each sample. Statistical analysis and

comparison analysis was carried out using GraphPad Software. Finally, unpaired two-tailed

Student’s t test and one-way Analysis of Variance (ANOVA) test was carried out (statistical

significance at P < 0.05).

3.2.5 Nuclei Isolation and sequencing

Isolation of nuclei for snRNA-Seq and RNA isolation was performed by Elisavet Velentza-

Almpani. Library preparation and sequencing of snRNA-Seq data was performed by Source

BioScience. A minimum of 5,000 nuclei per sample were targeted, and nuclei were sequenced at

a depth of 30,000 paired-end reads per nucleus. All samples were sequenced on a single flow-cell

to avoid sequencing batch effects using NovaSeq 6000. The libraries were prepared following

10X Genomic Chromium scRNA protocol. All samples passed all internal QC steps. Raw base

calls were converted to FASTQ files (Phred+33 Illumina 1.9), a text-based format used to store

biological data along with their quality scores and identification numbers. Adapter sequences,

which are sequences ligated to the ends of cDNA fragments that can be introduced at the

library preparation, were not detected. Therefore, adapter trimming step was not needed.

3.2.6 Analysis of single-nucleus data

3.2.7 Quality control

Figure 3.3: Overview of pre-processing steps and downstream analysis carried out
using 16 human brain tissue samples.

FASTQ files were processed using Cell Ranger(v 3.1.0). Reads were mapped to both intronic

and exonic regions using the human reference genome GRCh38. Genes were annotated using
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Ensembl v93 and the final cell matrices (both raw and filtered) were generated.

Ambient RNA containing droplets (also known as empty droplets) were distinguished from

droplets containing real nuclei using CellBender algorithm [91]. The following parameters were

applied: (i) false positive rate (FPR) value set to 0.01; (ii) expected-cells (expected number

of nuclei from each sample) set to 10,000; (iii) total-droplets-included (the total number of

droplets from the rank-ordered UMI plot) set to 15,000. The final output, a new .h5 count

matrix with ambient RNA removed, was used directly in the downstream analyses.

The next few QC steps were carried out using the R package Seurat pipeline [41]. Briefly, for

each sample a Seurat object was created using the function CreateSeuratObject(). Genes

detected in a minimum of 5 nuclei and nuclei with less than 10 % mitochondrial reads and

at least 200 detected genes were retained. The R package DoubletFinder removed potential

doublets from each sample. DoubletFinder [209] is a software that predicts doublets (technical

artefacts or two or more nuclei that appear to be one) in snRNA-Seq data.

Default parameters were used: (i) PCs (statistically-significant principal components) value

set to 10; (ii) pN (number of generated artificial doublets, expressed as a proportion of the

merged real-artificial data) value set to 0.25; (iii) pK (a parameter used to compute the pro-

portion of artificial nearest neighbours) value set to 0.09; (iv) nExp (total number of predicted

doublets estimated from cell densities loads used in the 10x device) value varied per sample.

DoubletFinder first simulates artificial doublets by calculating the average transcriptional

profile of randomly selected nuclei pairs. Doublets are then identified by comparing artificial

doublets profiles to “singlets” nuclei. Nuclei with a high proportion of artificial neighbours,

calculated by dividing the number of artificial neighbours by the neighbourhood size, in gene

expression space are removed from the dataset.

3.2.8 Integration of samples and cell-type identification

After removing doublets, an integrated data matrix was generated for downstream analysis.

All individual samples were integrated using Seurat integration pipeline. First, each dataset

was normalised for sequencing depth using SCTransform [112], a variance stabilising and trans-
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formation tool from Seurat. SCTransform removes technical variations, including sequencing

depth (the total UMI counts per cell), by modelling the counts using a regularised negative

binomial model. The variance is adjusted by merging information across genes with simi-

lar abundances after the transformation. The primary purpose for variance adjustment is

due to the fact that in scRNA-Seq data, cells with low UMI counts show disproportionately

higher variance for highly abundant genes, reducing the variance contribution from other lowly

abundant genes. Briefly, prior to integration SCTransform() function with the default pa-

rameters was used to normalise each sample. SelectIntegrationFeatures() function was

used to select 3,000 features for integration. PrepSCTIntegration() function, followed by

FindIntegrationAnchors() function, were used to identify anchors (cell pairwise correspon-

dences between single cells). Finally, IntegrateData() function was used to generate an

integrated assay dataset containing: (i) all UMI counts and (ii) centred and corrected Pearson

residuals. The integrated assay dataset was visualised using UMAP after integration. Seurat

functions FindNeighbors() and FindClusters() were used to compute the nearest neighbours

and identify clusters using a shared nearest neighbour modularity optimisation based on the

Louvain clustering algorithm. FindAllMarkers() function was then used to identify marker

genes for each cluster (differentially expressed genes in each cluster compared to all other clus-

ters). Each cluster was assigned a cell type using Fisher’s exact test to examine the overlap

between a cluster and a list of cell-type markers from Wang et al. (2008) [332].

3.2.9 Differential gene expression

In order to identify genes that were differentially expressed across the three groups, we ap-

plied MAST [89] for each pair-wise comparison (refer to section Chapter 1.1.2 for a detailed

description of MAST). To explore gene expression differences at a single-cell level between the

three groups (after adjusting for sex, age and individual ID), the following comparisons were

undertaken:

i) AT8 negative/tauPLA negative (double negative) versus AT8 negative/tauPLA positive

(intermediate group).
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ii) AT8 negative/tauPLA negative (double negative) versus AT8 positive/tauPLA positive

(double positive).

iii) AT8 negative/PLA positive (intermediate group) versus AT8 positive/tauPLA positive

(double positive). (Table 3.1).

Analysis Number of Subjects

AT8-/tauPLA- (double negative)

vs AT8-/tauPLA+ (intermediate)
12

AT8-/tauPLA- (double negative)

vs AT8+/tauPLA+ (double positive)
9

AT8-/tauPLA+ (intermediate)

vs AT8+/tauPLA+ (double positive)
11

Table 3.1: Differential expression analyses

3.2.10 Functional enrichment of differentially expressed genes

Once differentially expressed genes were identified for each pair-wise comparison in each cell-

type, WEB-based GEne SeT AnaLysis Toolkit (WebGestaltR) (v 0.4.4)[182] was used to ex-

tract underlying biological themes from the identified gene sets. WebGestalt is a widely used

gene set enrichment analysis software tool that has integrated functional categories derived

from centrally curated databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG)

and GO, and from locally curated databases originated from experimental and computational

analyses. The R package of WebGestalt, WebGestaltR [182] was implemented using the de-

fault values, including overlap of 10 for minimum and maximum 500 genes and FDR-correction

for multiple testing was performed using BH method and significant pathways identified using

a threshold of FDR < 0.05. Briefly, gene sets were divided into up- and down-regulated DEG

sets across the main cell types, resulting in fourteen gene sets per pairwise comparison. Each

set was tested for enrichment against gene sets annotated with biological processes GO terms.
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3.2.11 H-MAGMA and LDSC

Two statistical methods, H-MAGMA [275, 67], and LDSC [40, 90] were used to prioritise DEG

sets associated with neurological phenotypes based on 3 publicly available GWAS summary

statistics (refer to Appendix B, Table 6 and 7 for a full list of GWAS used). The methods

account in different ways for confounders, including linkage disequilibrium and gene sizes. The

first method, H-MAGMA is an extension of MAGMA which assigns intronic and intergenic

SNPs to their nearest genes by incorporating chromatin interaction profiles from human brain

tissue. Using default parameters, H-MAGMA was run in three parts:

1. Using GWAS summary statistics and H-MAGMA generated annotation files for an adult

brain, association statistics at the gene-level were obtained by combining individual p-

values. (H-MAGMA uses a window size 35-kb upstream and 10-kb downstream surround-

ing each gene, and LD is accounted for using data files from phase 3 of the 1000 Genome

Project European population.) This step is used to quantify the association of each gene

to a phenotype, while estimating gene correlations to reflect LD between genes. The out-

put file includes information such as gene ID, gene mapping region (CHR, START, STOP),

number of SNPs mapped to the gene, sample size for a gene, test statistic (ZSTAT and

P-value), and r-squared (r2) and adjusted r-squared values which explain the proportion

of variance in the phenotype explained by the SNPs in a specific gene.

2. Using gene-level statistics created in the previous step, each gene set in the list of DEGs

was then analyzed using a linear regression framework. The output file contains: the

total number of genes in the gene set for the analysis; the linear regression parameters,

including: β - the regression coefficient of the gene set, βSTD - obtained by dividing β by

the standard deviation of the gene set (which can be used to compare the effect size of

the gene sets), SE - standard error; and corresponding p-value.

3. Finally, significant gene sets are identified after running Bonferroni correction for the total

number of analysed sets (significance level set at FDR < 0.05).
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The second method LDSC, is a technique widely used to estimate heritability (Chpater 1.1.2).

As mentioned in the previous chapter, LDSC estimates heritability by considering that SNPs in

higher LD with other SNPs have higher test statistics on average for a polygenic trait/disease

because of more causal SNPs being tagged. In other words, LDSC quantifies the contributions

of polygenic effects and estimates its bias by assessing the relationship between LD scores and

test statistics of SNPs from GWASs. The analysis was carried out as follows (after converting

GWAS summary stats to LDSC format using (munge sumstats.py)):

1. Annotation files were generated for each gene set using default parameters. SNPs were

then mapped to genes using dsSNP file NCBI Build 37 co-ordinates (build 147 and hg19).

2. LD scores were computed for each annotation file using a 1 cM window (restricted to

Hapmap3 SNPs), and the full baseline model was downloaded from the LDSC GitHub

page (https://github.com/bulik/ldsc).

3. An enrichment score and its corresponding P-value were calculated based on the pro-

portion of total SNPs per annotation, after taking into account all other annotations.

Annotation categories with significant positive enrichment of SNP-heritability (tested

using a one-tailed test) are then reported as a final result.

3.2.12 Single-nucleus trajectory analysis

Cellular asynchrony, in which a population of cells/nuclei captured are widely distributed in

terms of progress, is a major problem that contributes to the apparent high variability of gene

expression in snRNA-Seq data. To overcome this challenge, Monocle [46] was used to con-

struct trajectories to identify changes in pseudo-temporal trajectories across the three groups.

Monocle orders individual cells/nucleus in an unsupervised manner along a trajectory (for this

analysis along tau oligomers load (A> B > C)) and assigns a pseudotime value to each nucleus

that represents where the nucleus is along a given path. To identify genes driving differential

trajectories and assess their biological implications, the following steps were taken:

1. Each cell type was analysed separately in order to extract cell-type specific driver genes.



80 Chapter 3

2. Nuclei are clustered using Leiden community detection method with the default parame-

ters implemented in Monocle 3 function cluster cells(). The function also calculates

partitions (different branches), which are computed using a kNN pruning method and

represent Leiden communities’ superclusters.

3. Using learn graph() function, the algorithm then learns the trajectory graph. This is

done under the idea that in a high-dimensional space, a cell can be viewed as a point

in space, and each dimension describes the expression of a gene. Therefore, by learning

the trajectory the cells follow through that space, we can identify the program of gene

expression changes. Since in snRNA-Seq data, there are many dimensions, Monocle 3

uses the UMAP algorithm to reduce these dimensions.

4. The algorithm then uses get earliest principal node() function to select a root node.

Briefly, nuclei are grouped based on which trajectory they are nearest to. Then at each

node, the fraction of nuclei coming from the earliest point is calculated. The node with

the highest number of early nuclei (for this analysis, early nuclei are those belonging to

group A) is returned as the root.

5. Once the root is defined, Monocle 3 uses principal graph node IDs to specify the start of

the trajectory. Further, using order cells() function, a pseudotime value was assigned

to each nucleus using the principal graph learned in the previous step and the position of

the root state.

6. Next, genes that are differentially expressed across a trajectory were identified using spa-

tial autocorrelation analysis (executed using the function graph test()). Using Moran

I test, nuclei with close proximity on a trajectory were tested to determine if they have

similar gene expression for a given gene. The output of Moran I’s test statistics include

values from -1 to 1, with 0 representing no correlation, -1 anti-correlated and 1 perfect

correlation. Significant genes (q-value < 0.05 and positive Moran I test statistics) were

then selected for further analysis.

7. Using find gene modules() gene with similar expression (co-expressed) are then clus-

tered into modules.
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8. Finally, in order to gain more biological insight, functional enrichment analysis was run

for each module identified in the previous step.

3.2.13 Code and Data availability

The raw and processed rat sequencing data generated in this study have not yet been deposited.

All scripts used in this study can be found in GitHub urlhttps://github.com/rahfel. Supplemen-

tary materials including full tables can also be found in GitHub https://github.com/rahfel.

https://github.com/rahfel
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3.3 Results

3.3.1 Transcriptomic profiling of the temporal cortex

snRNA-Seq analysis was performed on 16 subjects with no history of brain disease. Each sam-

ple was allocated to one of three groups (Figure 3.2): 5 subjects with AT8-/tauPLA- (double

negative), 7 subjects with AT8-/tauPLA+ (intermediate) and 4 subjects with AT8+/tauPLA+

(double positive). A diffusion score (quantification of tau-PLA labelled diffuse signal) of < 0.78

was used as a cut-off to define a tauPLA negative sample. Samples were matched for demo-

graphic factors; however, there was a difference in the proportions of sexes between groups due

to sample unavailability (refer to Appendix B, Table 1 for sample demographics including age,

sex and tauPLA diffuse score). The ratio of males in each group was as follows (male/female):

4/1 in double-negative groups, 2/5 in intermediate groups and 0/4 in double-positive groups.

Overall, quality measures for read mapping and sequencing were high (Appendix B, Table 2).

On average 87% of reads were mapped to the human genome version Genome Reference Con-

sortium Human Build 38 (GRCh38-hg38). In total, snRNA-Seq was generated on 52,008 nuclei.

Across the sample set, 17,483 genes were expressed (defined as genes detected (0 > read) in at

least 5 nuclei), with an average of 1, 923 genes detected per nucleus (Appendix B, Table 2 for

full metrics).

3.3.2 Cell-type identification

The snRNA-Seq datasets were integrated (using Seurat) and an integrated plot (using UMAP)

was generated to visualise clusters representing different cell-types (Figure 3.4). Clusters were

assigned a cell type using a Fisher’s exact test (FET) and a list of cell-type markers from Wang

et al., 2018 [332]. In total, there were 18,492 nuclei identified as excitatory neurons; 4,823 as

astrocytes; 3,670 as inhibitory neurons; 18,267 as oligodendrocytes; 2,535 as OPC; 3,671 as

microglia and 550 as vascular (refer to Appendix B, Table 3 for a list of nuclei derived per

subject).
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Figure 3.4: A UMAP plot representing nuceli dervied from all subjects. A joint plot
was generated by combining approximately 52,000 nuclei. Abbreviations: UMAP, Uniform
Manifold Approximation and Projection; Oligo, Oligodendrocytes.

3.3.3 Similar differential gene expression pattern was observed be-

tween intermediate and double positive groups

To explore cell-type specific transcriptional changes across the three groups, DEA was carried

out in a pairwise manner across 6 broad cell-types (Table 3.1). There were significant (FDR <

0.05) DEGs in all three pairwise comparisons across all cell-types. The largest number of DEGs

were identified in AT8-/tauPLA- (double negative) versus AT8+/tauPLA+ (double positive)

comparison. While, the least number of DEGs were identified in AT8-/tauPLA+ (intermediate)

versus AT8+/tauPLA+ (double positive) comparisons (Figure 3.5; see Appendix B, Table 4

for a full list of genes DE in each comparison).
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Figure 3.5: Cell-type-specific gene expression changes and pathway across all com-
parison. a Total number of differentially expressed genes (DEGs) across all pairwise com-
parisons (FDR < 0.05, | log2(fold change)| > log2(1.5)). b A yes/no plot indicating if a gene
(column) is expressed in a given cell-type comparison. The upper panel shows down-regulated
genes, while the bottom panel shows up-regulated genes. The total number of DEGs (unique)
in each comparison is indicated on the x-axis.

Figure 3.6: Total number of differentially expressed genes across all cell-types. (FDR
< 0.05, | log2(fold change)| > log2(1.5)). A yes/no plot indicating if a gene (column) is expressed
in a given cell-type comparison. The total number of DEGs (unique) in each cell-type is
indicated on the x-axis.

From the DEA carried out between nuclei isolated from AT8-/tauPLA- (double negative) versus

AT8+/tauPLA+ (double positive) subjects, excitatory neurons showed a strong signature of

down-regulation (i.e., 6,207 of DEGs were up-regulated (had higher expression level in double

positive groups in comparison to double negative groups) while only 695 were down-regulated).

While, in astrocytes, 552 genes were up-regulated while 135 were down-regulated. A similar

trend was observed for AT8-/tauPLA- (double negative) versus AT8-/tauPLA+ (intermediate)

comparison: 4,134 genes were up-regulated while 557 genes were down-regulated in excitatory

neurons, while in astrocytes, 1,037 were up-regulated and 334 were down-regulated. Moreover,

only a few numbers of genes were found to be differentially expressed in astrocytes and ex-

citatory neurons in AT8-/tauPLA+ (intermediate) versus AT8+/tauPLA+ (double positive)
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comparisons (Figure 3.5).

Overlap between cell-type specific gene sets from each comparison was visualised on a plot

generated by the R package ggplot (Figure 3.5 and 3.6). Focusing on excitatory neurons,

50 % of DEGs overlapped between AT8+/tauPLA+ (double negative) versus AT8-/tauPLA-

(double negative); and AT8+/tauPLA+ (double negative) versus AT8-/tauPLA- (double neg-

ative)(2,335 of 4,691 DEGs and 2,335 of 6,902 DEGs respectively). This observation may

suggest similar neuronal pathways might be perturbed in the two tau pathologies. Further, for

astrocytes, the overlap was 41% and 35% for oligodendrocytes (Figure 3.6).

3.3.4 Pathway enrichment analysis

To associate DEG sets with downstream functional consequences, over-representation analysis

was carried out using the R package WebGestaltR [182]. In total, 694 biological process GO

(child) terms were enriched for DEG sets derived from AT8-/tauPLA- (double negative) ver-

sus AT8+/tauPLA+ (double positive) comparison, while 420 and 81 GO (child) terms were

enriched for AT8-/tauPLA- (double negative) versus AT8-/tauPLA+ (intermediate) and AT8-

/tauPLA+ (intermediate) versus AT8+/tauPLA+ (double positive), respectively (Figure 3.7;

refer to Appendix B, Table 5 for a list of significant GO child and corresponding parent terms

across all comparisons).

Focusing on terms that were uniquely enriched for the up-regulated genes (mainly in excitatory

neurons) in AT8+/tauPLA+ (double positive) group in comparison to AT8-/tauPLA- (double

negative) group were terms related to:

1. Mitochondrion organisation, including mitochondrial electron transport, NADH to ubiquinone

(FDR = 3.28 × 10−09), protein targeting to mitochondrion (FDR = 3.12 × 10−06) and

regulation of autophagy of mitochondrion (FDR = 3.14× 10−05).

2. Ubiquitination, including protein polyubiquitination (FDR = 3.05×10−08), histone ubiq-

uitination (FDR = 1.48× 10−02), and positive regulation of protein ubiquitination (FDR

= 3.82× 10−03).
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Figure 3.7: Reduced biological process gene ontology (GO) terms (referred to as par-
ent terms) enriched for cell-type specific differentially expressed genes (up or down-regulated
divided into two columns). The fill of each tile indicates the -log10FDR value of the most
significant child term associated with the parent term. The full list of child GO terms assigned
to each parent term across all pairwise comparisons in the panel is available in Appendix B,
Table 5.

3. Interleukin-12 related pathways, including cellular response to interleukin-12 (FDR =

6.80 × 10−03), interleukin-12-mediated signaling pathway (FDR = 1.65 × 10−02), and

response to interleukin-12 (FDR = 4.21× 10−03).

Among pathways enriched for down-regulated genes in the same comparisons were pathways

related to cognition, including memory (FDR = 6.6311), cognition (FDR = 4.92 × 10−12) and

regulation of system process (FDR = 2.34× 10−04).

3.3.5 Heritability enrichment in differentially expressed genes

Genetic enrichment of association (heritability enrichment) to neurological disease among the

genes DE between the various comparisons was assessed using HMAGMA and LDSC (Figure 3.8).

The aim was to test if cell-type specific DEGs from the three comparisons contribute to the

common SNP heritability of AD, PD, and IQ. DEGs were split into up and down-regulated gene

sets and tested separately (to provide information on the potential direction of effect). Using

DEG sets from AT8-/tauPLA- (double negative) versus AT8+/tauPLA+ (double positive)
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comparisons, the following were observed:

1. A significant (FDR < 0.05) association observed between AD genetic risk and genes

up-regulated in oligodendrocytes (FDRLDSC= 4.09× 10−02, FDRHMAGMA= 0.25) and ex-

citatory neurons (FDRLDSC = 7.22× 10−09, FDRHMAGMA = 0.14).

2. A significant (FDR < 0.05) association observed between PD genetic risk genes and up-

regulated genes in excitatory neurons (FDRLDSC = 5.28× 10−06, FDRHMAGMA = 0.71).

3. A significant (FDR < 0.05) association observed between IQ genetic risk genes and down-

regulated genes in excitatory neurons (FDRLDSC = 1.29× 10−05, FDRHMAGMA = 0.09).

Using DEG sets from AT8-/tauPLA+ (intermediate) vs AT8-/tauPLA- (double negative) com-

parisons, the following were observed:

1. A significant (FDR < 0.05) association observed between AD genetic risk and genes

down-regulated in oligodendrocytes (FDRLDSC= 2.53 × 10−03, FDRHMAGMA= 0.61) and

excitatory neurons (FDRLDSC = 3.47× 10−02, FDRHMAGMA = 0.24).

2. A significant (FDR < 0.05) association observed between IQ genetic risk and genes down-

regulated in astrocytes (FDRLDSC= 1.96 × 10−04, FDRHMAGMA= 0.18, oligodendrocytes

(FDRLDSC= 4.94×10−04, FDRHMAGMA= 0.18) and excitatory neurons (FDRLDSC = 3.98×

10−02, FDRHMAGMA = 0.15).

No significant association (FDR < 0.05) between any of the genetic risks and DEGs from

AT8-/tauPLA+ (intermediate) versus AT8+/tauPLA+ (double positive) comparisons across

all cell-types. A full list of analysis statistics, including LDSC and H-MAGMA based analyses can

be found in Appendix B, Table 6 and 7.
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Figure 3.8: Genetic association with cell-type specific differentially expressed genes
across all pairwise comparisons. LDSC was used to identify associations. The x-axis
indicates enrichment p-values. The black line indicates Bonferroni significance threshold (p-
values adjusted for the number of cell-types tested; FDR < 0.10). The colour of the bars
indicates if the DEGs were up or down-regulated. Abbreviations: AD, Alzheimer’s disease;
PD, Parkinson’s Disease; IQ, Intelligence quotient. Full results can be found in Appendix B,
Table 6

.
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3.3.6 Trajectory analysis

Using Monocle 3 [46], graph-autocorrelation analysis was carried out to identify co-regulated

sets of genes (also referred to as modules) that vary (i.e., have a trajectory) across the natural

ordering of the groups from AT8-/tauPLA- (double negative) > AT8-/tauPLA+ (intermediate)

> AT8+/tauPLA+ (double positive).

Focusing only on astrocytes, Monocle 3 generated 18 modules, with each module consisting of

several genes (ranging from 231 to 1,048; Figure 3.9a). To determine whether any of the modules

contain genes that might play a role in the development of AD pathology, functional enrichment

analysis (using over-representation analysis as implemented in the R package WebGestaltR) was

carried out (Figure 3.9c). Among the modules, module 7,9, 11,12 and 18 had the largest number

of enriched biological process GO (child) terms (50, 51, 51, 50 and 49, respectively; refer to

Appendix B, Table 8 and 9 for genes per module and enrichment of pathways result).

In addition, a one-sided Fisher’s exact test was used to determine if any of these modules are

enriched for reactive astrocytes, a population of astrocytes previously reported to be involved in

the pathogenesis of several neurodegenerative diseases [233, 180]. Among the modules, module

11 was found to be enriched (Fisher’s P-value = 6.12 × 10−03) for reactive astrocyte marker

genes (p-values for other modules can be found in Appendix B, Table 10).

Biological process GO terms related to innate immune response (FDR = 5.67× 10−10), regula-

tion of cytokine production (FDR = 1.60E-06), cytokine-mediated signalling pathway (FDR =

1.72×10−03), defence response to virus (FDR = 8.84×10−05) and ageing (FDR = 8.96×10−03)

were found to be enriched for module 11 genes (refer to Appendix B, Table 9 for a full list of

significant child and parent terms).

Furthermore, enrichment of genetic association analysis revealed a significant genetic association

(FDR < 0.05) between gene sets in modules 5, 6, 9 and 14 and AD genetic risk (FDR =

2.73× 10−04, FDR = 4.76× 10−02, FDR = 2.08× 10−02 and FDR = 5.05× 10−04, respectively;

Figure 3.9b). Functional enrichment analysis for these modules showed significant enrichment

for biological process GO terms related mRNA splicing (module 5, FDR = 6.62×10−05; module



90 Chapter 3

Figure 3.9: Monocle 3 identified astrocytic gene sets referred to as modules. a Number
of genes per module. b Genetic associations carried out using LD score regression (LDSC). c
Functional enrichment analysis using gene sets from each astrocytic module. Reduced (parent)
Gene Ontology (GO) terms of the top 50 significantly enriched (FDR < 0.05) child terms per
cell-type identified using overrepresentation analysis. Full overrepresentation analyses results
and LDSC results can be found in Appendix B, Table 9 and Table 11, respectively.
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9, FDR= 3.99×10−03; module 14 FDR= 6.03×10−03) and synaptic vesicle transport (module 5,

FDR = 2.45×10−02; module 9, FDR = 4.54×10−12; module 14, FDR= 2.30×10−12; Appendix

B, Table 11).

Focusing on excitatory neurons, Monocle 3 generated 20 modules containing between 312 to

1,415 genes. Genetic association test revealed a significant association between AD genetic risk

and module 3 and 11 genes. Furthermore, overrepresentation analysis of module 3 and 11 genes

revealed significant (FDR = 8.26 × 10−03 for module 3 and FDR = 2.22 × 10−02 for module

11) enrichment for terms relating to sodium ion transport (module 3, FDR = 3.00 × 10−02),

calcium ion homeostasis (module 3, FDR = 1.60×10−02) and negative regulation of proteolysis

(FDR = 2.95×10−03). A full list of result tables for excitatory neurons can be found Appendix

B, Table 12-14.
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3.4 Discussion

Despite decades of research, the knowledge of early cellular changes in AD remains unknown.

This knowledge gap has made it difficult to design effective disease-modifying or preventing

therapies. Recent studies have shown that early tau oligomers are toxic species that may be

responsible for the spread of tau pathology [227]. The current study used brain tissue samples

with NFTs and brain tissue samples with tau oligomers to assess gene expression changes

associated with the earliest detectable abnormal tau species at the single-cell level.

3.4.1 Differential expression analysis highlights transcriptional simi-

larities and differences between neurofibrillary tangle and early

detected tau multimers

Differential expression analysis revealed several well-known and characterised neurogenerative

disease-associated genes (50/57) derived from Genomics England Gene Panel (Adult-onset neu-

rodegenerative disorder V 4.13; refer to Appendix B, Figure 1 for overlap plot) were differentially

expressed in AT8-/tauPLA+ group compared with AT8-/tauPLA- group. Example of these

includes APP, LRRK2, PINK1, SNCA, MAPT, PSEN1, PSEN2 and PARK7. Interestingly,

most of these genes were not differentially expressed in any comparison carried out between

the two tauPLA positive groups (AT8+/tauPLA+ (double positive) in comparison to AT8-

/tauPLA+ (intermediate)). Furthermore, fewer genes were found to be differentially expressed

between the two tauPLA positive groups indicating transcriptional similarities. This observa-

tion mirrors the low number of significantly enriched terms identified using DEGs from the two

tauPLA positive group comparisons (Figure 3.7).

3.4.2 Dysregulated neuronal and non-neuronal pathways identified

in early tau pathology

Functional enrichment analysis revealed DEGs in the tauPLA positive groups (AT8-/tauPLA+

and AT8+/tauPLA+) compared with double negative (AT8-/tauPLA-) group were highly en-
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riched for pathways involved in:

1. Protein aggregation processes including tau and amyloid β. Examples of these pathways

include phosphorylation, splicing, autophagy of mitochondrion, memory and ubiquitina-

tion [186, 315, 232].

2. The process of modifying proteins by removing ubiquitin or ubiquitin-like molecules.

Deubiquitination was among the pathways significant in up-regulated genes in tauPLA

positive groups. Deubiquitinating enzymes (DUBs), which play a role in reversing the

action of ligases by removing ubiquitin chains, are involved in several processes including

synaptic plasticity, axonal growth, modulate mitochondrial clearance and neuronal cell

fate [6, 185]. Dysregulation of certain DUBs has been found in several neurodegenerative

diseases [6]. Consistent with the literature, some of these DUBs, mainly Ubiquitin Specific

Protease (USPs), protease DUBs were dysregulated in the tauPLA+ groups, specifically

in excitatory neurons and astrocytes. The role of USPs in glial cells is currently being

investigated in various neurodegenerative disease models [139, 185]. USPs are involved

in removing post-translational modification ubiquitin, thus preventing the degradation

of several overexpressed proteins including tau [336]. For example, USP14 is involved in

removing ubiquitin from substrate proteasome targets such as TAR DNA-binding pro-

tein 43 (TDP43), thereby rescuing the protein from degradation; and the inhibition of

USP14 by 1-[1-(4-fluorophenyl)-2,5-dimethylpyrrol-3-yl]-2-pyrrolidin-1-ylethanone (IU1)

was shown to enhance the degradation of proteins related to neurodegenerative diseases

[172].

3. The process of mRNA splicing. Dysregulation of RNA Splicing in tauopathies has been

reported in recent studies[125]. In the current study, genes involved in mRNA splicing

were observed to be dysregulated in AT8-/tauPLA+ samples. This may indicate the role

of tau oligomers in the disruption of the spliceosome.

4. Interleukin 12 (IL-12) -signalling pathways. Interestingly, a recent study has shown that

Inhibition of IL-12 signalling reduced Alzheimer’s disease-like pathology and cognitive

decline [329]. In the current studies, genes that were up-regulated in tauPLA+ groups
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compared with tauPLA- group were enriched in IL-12 signalling pathways.

3.4.3 Activation of reactive astrocytes observed in early tau pathol-

ogy

Among the identified astrocytic modules, module 11 was enriched for reactive astrocytes marker

genes. Reactive astrocytes (A1) are astrocytes that get activated as a response to abnormal

events in the CNS [233, 180]. Unlike normal activated astrocytes as a result of being consis-

tently activated by signals in the CNS, reactive astrocytes are activated due to pathological

stimuli. In response to pathology (neurodegeneration, trauma, infection, etc), reactive astro-

cytes are reported to be involved in molecular programs, including transcriptional regulation,

and physiological and morphological remodelling. Moreover, studies have highlighted the role of

A1 astrocytes in removing dysfunctional neurons to preserve neuron circuit function and killing

virally infected neurons to prevent the spread of viruses [233, 180]. In the current study, marker

genes for A1 astrocytes are highly expressed in tauPLA+ groups (including AT8-/tauPLA+

group), suggesting that reactive astrocytes have an earlier role in the formation of tau aggre-

gates than previously reported.

3.4.4 Designing effective AD transcriptional analyses/ practical lessons

sample selections

Surprisingly, until now, no single macroscopic feature has been used to diagnose AD. However,

what is now considered the standard for pathologic diagnosis is a combination of features which

taken together, are highly suggestive of AD. These features include not only the extracellular Aβ

and intracellular NFTs but also tau-positive neuropil threads and dystrophic neurites. Several

histological stains and immunohistochemical methods have been developed to microscopically

examine AD in multiple brain regions. However, most of these methods rely on the presence of

hyperphosphorylated tau or neurofibrillary tangles, which are events appearing in the late stage

of the disease. Therefore, this study shows how a novel in vitro assay, tauPLA which allows

specific histological visualisation in situ of tau oligomers which are considered early molecular
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events in AD. These features have a similar transcriptional profile as pre-AD samples with

numerous NFTs and Aβ load. Further, (assuming tau oligomers as true toxic species) failure

to characterise tau oligomers in samples could potentially lead to misclassification of AD brain

tissue as control, therefore increasing the likelihood of false-negative or positive findings or a

failure to differentiate early-stage AD from established AD.
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Abstract

Prenatal exposure to sodium valproate (VPA), an anti-seizure medication, is associated with

an increased risk of adverse neurodevelopmental outcomes in children. This study aims to

elucidate the molecular mechanisms underlying these consequences using integrative genomics.

A rat model of VPA teratogenicity was utilised to mimic chronic oral VPA treatment during

pregnancy at therapeutically relevant doses. Gene expression analysis was performed on the

brains of VPA-exposed rat pups, revealing substantial differential gene expression and dys-

regulated splicing, independent of neuronal gain or loss. Pathway analysis demonstrated that

VPA downregulated genes related to neurodevelopment and synaptic function, which were also

significantly associated with heritability of human intelligence, schizophrenia, and bipolar dis-

order. These findings establish a mechanistic link between chronic prenatal VPA exposure and

neurodevelopmental disability through transcriptional dysregulation.
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4.1 Introduction

Neurodevelopmental disorders (NDDs) are a group of heterogeneous disorders that disturb the

development of the central nervous system, which encompasses the brain and the spinal cord.

It is estimated that >3% of children worldwide suffer from some form of NDDs [238]. As

mentioned in the previous chapter, the prevalence of NDDs as defined by DSM-5 is 0.7-17%

under 18 years old worldwide [92]. NDDs impair cognition, communication, behavioural, motor

and daily living skills [238]. Studies have suggested that several factors contribute to the disease

aetiology, including genetics variations, epigenetic mechanisms (which involve perturbations

that disrupt the expression of risk genes) and environmental factors, or a combination of any of

these factors [238, 268, 236]. Similar to neurodegenerative diseases, NDDs are characterised by

multiple clinical features, and comorbidity is frequently reported in individual patients [236].

4.1.1 The genetic architecture of neurodevelopmental disorders

The genetic factors that determine and influence NDDs phenotypes consist of different muta-

tions, including copy number variations (CNVs), small insertions or deletions (indels), point

mutations and chromosomal rearrangements [341]. Identifying and characterising the potential

genetic basis of NDDs is essential for understanding the functional and molecular mechanisms

responsible for the onset and progress of these disorders. So far, several potential NDDs risk

genes have been identified through GWAS, RNA-Seq-based studies and phenotype-genotype

correlation studies. More importantly, family-based studies, including monozygotic twin stud-

ies, have been used to identify genetic risk factors as well as other environmental risks and

protective factors that influence NDDs [341, 295].

Furthermore, GWAS, whole-exome sequencing studies and other functional studies have shown

that common and risk variants associated with NDDs were found in genes involved in con-

served functional molecular pathways, including chromatin remodelling, protein synthesis, epi-

genetic regulation, synaptic signalling and mRNA splicing [298]. Examples of NDDs-associated

chromatin remodeler or splicing regulator genes, include chromodomain helicase DNA binding

protein 1 (CHD1), chromodomain helicase DNA binding protein 8 (CHD8), DS cell adhesion
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molecule (DSCAM), ASH1 like histone lysine methyltransferase (ASH1L), AT-rich interac-

tive domain-containing protein 1B (ARIDIB) and Lysine [K]-specific Methyl Transferase 2A

(KMT2A) [298]. Other examples of NDD-associated genes involved in mRNA splicing include

SON DNA binding protein (SON) [298, 155], RNA Polymerase III Subunit B (POLR3B) [265],

Transcription Factor 4 (TCF4), Transcription Factor 20 (TCF20) and Lysine demethylase 6B

(KDM6B) [268, 271].

4.1.2 Drug-induced neurodevelopmental disorders

Over the last decades, cross-sectional and longitudinal human studies have shown that exposure

to harmful stimuli in the womb during crucial postnatal developmental stages leads to short or

long-lasting changes in brain structure. Recent studies using animal and human models of NDDs

have shown harmful substances such as alcohol [170], caffeine [360, 23], nicotine, cocaine [340],

amphetamine, ecstasy, opiates, and prescription drugs such as anti-psychotics and antiepileptic

drugs [344, 53, 65, 335] produce alterations in neurodevelopmental trajectories.

Among the proposed underlying molecular mechanisms for drug-induced cognitive impairments,

the role of the drug (methamphetamine) treatment on the disruption of cAMP signalling and

glutamate regulation was identified in human embryonic stem cells (hESCs) derived from cere-

bral organoids [296]. Furthermore, RNA sequencing was used in a similar study to show a

substantial down-regulation of genes involved in neurogenesis and neuronal system develop-

ment in the drug-treated organoids compared with control organoids [64]. Another study used

cortical organoids from human induced pluripotent stem cells (hiPSCs) to show transcriptional

similarities between antiseizure drug-exposed organoids and autism patient-derived organoids,

as well as postmortem ASD brain [216].

Antiepileptic drugs

Antiepileptic drugs (AEDs) are a diverse group of drugs used to prevent epileptic seizures; how-

ever, they are also commonly used to treat non-epileptic CNS disorders, including schizophrenia,

migraine, neuropathic pain, anxiety, myotonia (described as a failure of muscle relaxation after

activation) and bipolar affective disorder [215, 258]. Based on the specific molecular target in
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the brain and the drugs’ mechanism of action, AEDs can broadly be divided into four groups:

1. neuronal ion channel blocking AEDs, including phenytoin, carbamazepine, lamotrigine,

and ethosuximide. Many of AEDs ion channel targets overlap with known human epilepsy

genes, suggesting that genetic mutations and the AEDs have opposite effects on the func-

tion of these channels. For example, while gain-of-function mutations in the Calcium

channel, voltage-dependent, T type, alpha 1H subunit ( CACNA1H ) could potentially

increase seizure susceptibility by increasing the propensity of neurons to fire action poten-

tials [337, 249, 51], the AED ethosuximide acts by inhibiting these channels (specifically

T-type calcium channel) in the thalamus [258, 215].

2. AEDs which enhance inhibitory gamma-aminobutyric acid A (GABAA) receptor-mediated

synaptic interactions. For example, benzodiazepines, such as diazepam and phenobar-

bital, are AEDs that facilitate binding inhibitory neurotransmitter GABA with its re-

ceptors, thus increasing the chloride channel opening frequency and enhancing synaptic

inhibition [258].

3. AEDs that are glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptor antagonists. While GABAA receptor-targeting drugs mediate synaptic inhibi-

tion, AEDs such as perampanel inhibit AMPA receptor-mediated synaptic excitation.

4. AEDs with mixed mechanisms including felbamate and sodium valproate [215].

Valproic Acid

Sodium valproate (VPA) is an AED widely used in the treatment of epilepsy, being the most

effective drug to treat seizures in Genetic Generalized Epilepsy (GGE) [203, 202]. Furthermore,

VPA is also used to treat other neurological conditions, including migraine headache and bipolar

disorders [330]. Furthermore, it was recently discovered that VPA acts as a positive modulator

of chemotherapy in a wide range of cancer treatments [309, 47]. Studies have suggested several

mechanisms by which VPA controls seizure generation and propagation. These mechanisms

include increasing Gamma-aminobutyric acid (GABA) levels in the cerebral, blocking voltage
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dependant sodium and T-type calcium channels, increasing GABA synthesis and release in

substantia nigra, reducing neuronal excitation by stimulating N-metyl-D-aspartate (NMDA)

glutamate receptors [31, 259, 98, 22]. Furthermore, VPA was observed to activate the extracel-

lular signal-regulated kinase (ERK) pathway, which is involved in neurogenesis and neuronal

plasticity [31, 259]. Besides its role in neuronal membrane excitability, VPA is an established

inhibitor of histone deacetylase (HDAC), a negative regulator of gene expression [22].

Although VPA is considered the first-line treatment for epileptic children and adults with

either focal or general seizures [203], recent evidence suggests that VPA exerts both long-term

beneficial and detrimental effects on neurons [49, 243, 320]. Neurodevelopmental Effects of

Antiepileptic Drugs (NEAD) study reported cognitive impairments, including verbal and non-

verbal abilities, memory, IQ and executive function in children of mothers treated with VPA

[212]. In accordance with the human data, similar results were observed in animal model studies

in which a higher incidence of autism was observed in the offspring born to mothers taking VPA

during their first trimester of pregnancy [261]. On the contrary, positive cognitive effects were

also observed in animal models of epilepsy [38, 201, 115]. Furthermore, animal-based studies

have demonstrated that early and longitudinally maintained VPA exposure caused dendritic

morphology alterations [289]. So far, it has been suggested that ASD like behaviour observed in

VPA treated experimental models of epilepsy may be due to an imbalance between GABAergic

and glutamatergic transmission; therefore, studies have proposed the use of an endogenous

NMDA receptor antagonist, agmatine, to rescue activated ERK1/2 signalling in the brain thus

restoring VPA-induced neurobehavioral impairment [156].

4.1.3 Translational animal model of VPA-induced teratogenicity

Although animal studies have been successfully used to give insight into the mechanisms by

which VPA induces gene expression changes in the central nervous system and neurons [49, 63]

, their relevance to human neurodevelopmental outcomes remains poorly defined. This could be

due to the use of non-clinically utilised drug delivery systems or the use of non-therapeutically

relevant VPA concentrations observed in human subjects. Recently, Jazayeri et al. (2020)
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[135] developed and validated a translational animal model of VPA induced teratogenicity

that mimics several clinical features of human gestational VPA exposure. Furthermore, the

authors managed to treat maternal rats before and after conception with VPA oral treatment

concentration reflective of VPA blood levels observed in humans [135]. The model recapitulated

VPA-induced brain abnormalities, including maldevelopment, altered intravertebral distances

and a significant developmental delay of vertebral arches. Therefore, the model evaluated the

molecular mechanisms underpinning VPA-induced adverse neurodevelopmental outcomes.

4.1.4 Aims and objectives

The main aim of this study were:

1. To evaluate the mechanistic underpinnings of VPA induced neurodevelopmental effects using

brain expression changes observed in rat pups chronically exposed to VPA in utero.

2. To investigate the influence of epilepsy and genetic background on gene expression changes

(for this both epileptic (Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a model of

GGE) and Non-Epileptic Control (NEC) dams were used).
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4.2 Methods

4.2.1 Experimental Design

Figure 4.1: Overview of experimental design and data processing. Two genetic strains
of rats were studied, Genetic Absence Epilepsy Rats from Strasbourg (GAERS) rats and Non-
Epileptic (NEC) control rats. Whole brain samples were extracted from valproate-exposed
(E-GAERS and E-NEC) and non-exposed (N-GAERS and N-NEC) pups (total n=30). Gene
expression was assayed using RNA-Sequencing (RNA-Seq). Data pre-processing steps included
quality control for sequence reads alignment to the rat genome and library size normalization.
Differential gene expression and differential splicing analyses were carried out with downstream
analyses consisting of pathway and enrichment of heritability analyses. (Feleke et al. (2022))

All wet lab-based work, including animal selection, was performed by Professor Terence J.

O’Brien group members. Two strains of female rats, inbred NEC and GAERS, were obtained

from the Department of Medicine, Royal Melbourne Hospital, University of Melbourne Bio-

logical Research Facility [48]. VPA was administered orally at a clinically relevant dose. The

rodents were fed either standard chow or a standard rodent diet mixed with 20g/kg VPA [135].

The presence of a plug was used to mark Day 0 of pregnancy. Foetuses were extracted from the
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uterus on the 21st day of the pregnancy using Caesarean section (C-section). Thereafter, the

QIAGEN Simultaneous Purification of Genomic DNA was used to extract pup brain tissues

and immediately samples were frozen and stored at -80 degree Celsius. Additionally, foetuses

were examined for any form of birth defects using external assessments including spinal mea-

surements (Figure 4.1).

4.2.2 Transcriptome sequencing and gene expression data process-

ing

Total RNA was extracted from pup brain tissue samples using mRNA Isolation Kit, following

manufacturer’s instructions and the quality and quantity of the RNA was examined using the

TruSeq Stranded Total RNA Library Prep Gold. Sequencing libraries were quantified and

sequence reads per sample generated. FastQC [10] was used to carry out QC of RNA-Seq

reads. Low-quality reads and ribosome RNA reads were removed and final trimmed reads were

mapped to the Rattus norvegicus reference genome (rno6) using STAR [75] (v 2.5).

Fetal sex determination

Strain VPA-Exposure Number of pups Abbreviation Male Female

GAERS
Exposed 7 E-GAERS 4 3

Non-Exposed 8 N-GAERS 3 5

NEC
Exposed 7 E-NEC 4 3

Non-Exposed 8 N-NEC 5 3

Table 4.1: Number of pups per group and exposure status. Abbreviations: GAERS
(Generalised epileptic rats from Strasbourg); VPA (Sodium Valproate).

Fetal sex determination was carried out using a list of prenatally expressed Y-chromosome-

encoding genes derived from a recently published study [253]. The list of genes was generated

by comparing mRNA levels in different brain regions from human prenatal brain samples. In

the current study, the expression of marker genes were assessed using the rodent orthologs:
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Ubiquitin Specific Peptidase 9 Y-Linked (USP9Y), DEAD-Box Helicase 3 Y-Linked ( DDX3Y

), and Ubiquitously Transcribed Tetratricopeptide Repeat Containing, Y-Linked (UTY). The

samples were then categorised into male or female based on the expression profile of those

genes. In total,14 samples were categorized as female and 16 as male (Table 4.1).

4.2.3 Differential gene expression analysis

Differential expression analysis was performed using the R package edgeR [257]. A threshold

of FDR < 0.05 was used to identify DEGs. After regressing any technical differences due to

sex, mRNA expression differences were explored between VPA-exposed and non-exposed pup

brains. The comparisons were done in the following order:

1. Exposed Non-Epileptic Control (E-NEC) vs Non-Exposed Non-Epileptic Control (N-

NEC)

2. Exposed Genetic Absence Epilepsy Rats from Strasbourg (E-GAERS) vs Non-Exposed

Genetic Absence Epilepsy Rats from Strasbourg (N-GAERS)

3. All exposed pups (i.e., E-GAERS + E-NEC) vs All non-exposed pups (N-GAERS +

N-NEC)

Although the primary aim of the study was to assess transcriptional changes following gesta-

tional VPA exposure, the gene expression changes in the rat pup brain due to epilepsy were

also conducted in the following order:

1. E-GAERS vs E-NEC

2. N-GAERS vs N-NEC

(Appendix C, Table 1)
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4.2.4 Functional enrichment analysis

Functional enrichment analyses of DEGs from each pairwise comparisons were performed using

the R package WebGestaltR (v 0.4.4) [182], which uses databases from Gene Ontology Con-

sortium. Default values for WebGestaltR default parameters, including the overlap of 10 for

minimum and maximum 500 genes. P-values were corrected (for multiple testing) using the BH

FDR-correction method. Significant pathways were then identified using a threshold of FDR

< 0.05. Significant GO-terms were reduced in the following order:

1. To avoid redundancy, GO terms with ≥ 20 genes or ≤ 1000 genes were filtered out for

each of the analyses.

2. go reduce() function from the R package r-utils was used to calculate semantic simi-

larity of GO terms.

3. A threshold of 0.9 was applied to the hierarchical tree generated by reduceSimMatric()

function from the R package rrvgo (v 1.1.4) (which uses a bottom-up clustering method)

to get fewer GO-terms. (Appendix C, Table 2a-c).

4.2.5 LD regression

LDSC was used to test if the dysregulated gene in the pups’ brain due to VPA exposure were

enriched for common genetic variants associated with 7 neurological traits, namely ADHD

[69], Bipolar Disorder (BD) [293], ASD [105], schizophrenia (SCZ) [255], full-scale IQ [272],

Epilepsy (EPI) [1] and Cross Disorders Group (CDG) which is a GWAS meta-analysis across

8 psychiatric traits [174]. The following steps were taken to test for enrichment of heritability

of the DEGs for any of the 7 traits:

1. Single nucleotide polymorphisms (SNPs) annotation files containing rows corresponding

to a SNP and a column for each sub-annotation were generated and dsSNP file NCBI

Build 37 co-ordinates (build 147 and hg19) were used to map the SNPs to genes and

values of 0 were given to SNPs not present in the file. Ten annotation files were generated

https://rhreynolds.github.io/rutils/articles/rutils.html
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for all the comparisons, 5 files were for up-regulated and 5 were for down-regulated DEGs

from each comparison.

2. For each generated file, LDSC was run using data files from phase 3 of the 1000 Genome

Project Phase 3 European population. LD scores were calculated for the annotations

using 1cM window (a default value), and the analysis was restricted to Hapmap3 SNPs.

3. LDSC python scripts munge sumstats.py were used to format the summary statistic files,

and for the regression weights, LD calculated for HapMap3 SNPs were downloaded from

the LDSC Github page (https://github.com/bulik/ldsc) – the full baseline model was

used for the analysis.

4. An enrichment score and its associated P-value was calculated based on the proportion of

total SNPs per annotation (column), after considering all other annotation. Annotation

categories with significant positive (FDR < 0.05) enrichment of SNP-heritability were

then reported as a final result (a one-tailed test).

GWAS summary statistics were obtained from The European Molecular Biology Laboratory-

European Bioinformatics Institute (EMBL-EBI) and Psychiatric Genomic Consortium (PGC)

Cross-Disorder Group. All subjects were of European ancestry. A full detailed list of all the

summary statistics used in these analyses can be found in Appendix C, Table 3.

4.2.6 Deconvolution

To deconvolute the bulk RNA-seq signature into its component single cell-type expression

profiles, a scRNA-Seq dataset derived from Manno et al., 2021 [94] was utilised. In the study,

the authors constructed a single-cell transcriptomic atlas of the embryonic mouse brain from

gastrulation up until birth [164]. In the current study, cells from embryonic day 18 (E18) were

extracted, and gene by cell-matrix was generated. Following this, cell-types were identified

using functions from the R package, Seurat [270]. Cell-type identification was carried out in

the following order:

https://github.com/bulik/ldsc
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1. The dataset was normalised using the NormalizeData() function, which uses a global

scaling normalisation method that normalises the gene expression values by multiplying

the total expression of the cell by the number (n) of cells and log transforms the values

for a final expression values (a default value of 10,000 was used as a scaling factor).

2. The distances between two cells with similar expressions were calculated using the Eu-

clidean algorithm, and edges were drawn.

3. Cells were clustered using FindClusters() function (parameters used: 30 PCs and 2

resolution value).

4. The clusters were visualised using non-linear dimensionality reduction algorithm UMAP

(v 0.1.10).

5. DEGs in one cluster compared with all other clusters (cluster-specific genes) were identi-

fied using the function FindAllMarkers() (DE method: rank sum test (FDR < 0.05)).

6. Cell-types were allocated by testing if a cluster-specific DEGs set was enriched (Fisher’s

exact test) for cell-type specific marker genes from a gene list derived from Zeisel et

al.(2018) [356].

Once cell-types were identified for each cluster, the relative proportions of cell-types in rat

pups brain tissue samples were determined using, weighted least squares-based deconvolution

algorithm Dampened Weighted Least Squares (DWLS). The following steps were taken to

generate relative proportions of cell-types per group, namely, E-NEC, E-GAERS, N-GAERS,

and N-NEC:

1. Expression matrix from samples was normalised using counts per million based normali-

sation methods.

2. biomaRt R package (v 4.1)[79] was used to infer the orthologous mouse gene (for the rat

genes) (Ensembl Genes 104).

3. Cells were deconvolved using weighted least squares approach.

(https://github.com/dtsoucas/DWLS).

https://github.com/dtsoucas/DWLS
https://github.com/dtsoucas/DWLS
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4.2.7 Code and Data availability

The raw and processed rat sequencing data generated in this study have been deposited in

NCBI Gene Expression Omnibus database under accession number GSE198756. All scripts

used in this study can be found in GitHub https://github.com/rahfel/VPA. Supplementary

materials including full tables can also be found in GitHub https://github.com/rahfel/VPA).

https://github.com/rahfel/VPA
https://github.com/rahfel/VPA)
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4.3 Results

4.3.1 Study workflow and data collection

Female rats were taken from Wistar rat colony and selectively inbred to either express or not

express absence seizures (a summary of the study workflow can be found in Figure 4.1) [48, 198].

The rats were maintained at a facility on a light-dark cycle of 12 hours light, 12 hours dark

and at a temperature range of 19 to 22 degree Celsius. The rats were fed a diet consisting of

either a pre-mixed meal or a standard rodent diet as listed by Senn and colleagues [274] for 2

weeks before mating with males of the same strain and continued throughout pregnancy. This

dose of orally administrated VPA was initially reported in the study by Jazayeri et al. (2020)

[135], and resulted in a significant seizure suppression in adult GAERS.

Moreover, measured blood serum levels were equivalent to human therapeutic levels of VPA.

Once the plug was present (day 0 of pregnancy), females were separated from the males for the

course of their pregnancy, and the following day was classified as the first day of pregnancy.

The fetuses were extracted from the uterus via C-section one day before expected birth (day

21), and the fetus’s brains were removed, snap frozen and stored at -80 degree Celsius. The

teratology studies, including spinal measurements are reported in Jazayeri et al. (2020) [135].

In total, 7 litters were generated for each treatment group and pup brains were randomly

processed from each litter (one for exposed groups and one or two for non-exposed groups).

Total RNA was extracted from 30 pup brains (Table 4.1) and genome-wide gene expression

data was generated using RNA-Seq.
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4.3.2 Deconvolution analysis reveals no difference in cell-type com-

position between VPA-exposed and non-exposed pup brains

Figure 4.2: Deconvolution on bulk samples showing cell-type proportion for each
group comparison and for each major brain cell-type. Wilcoxon rank sum test was
used to determine the significance of differences in cell-type proportion between conditions.
FDR correction for multiple testing was applied. There were no significant differences in cell-
type proportion at FDR < 5 for any of the valproate-exposured vs non-exposured comparisons.
Refer to Appendix C Table 4 for DWLS cell fractions and FDR values.

Cell-type proportions in bulk-tissue RNA-Sequencing samples were estimated to test whether

in utero VPA exposure is associated with significant changes in the proportion of cell-types

in the rat pup brain. A weighted least squares-based deconvolution algorithm, DWLS, (which

estimates cell-type composition in a bulk tissue RNA-seq dataset using prior information from

an unrelated scRNA-Seq signature from an analogous tissue) was used to assess the cell-type

proportional changes due to VPA exposure. Taking this approach, there was no significant

(FDR-corrected Wilcoxon rank sum test) difference in cell-type composition observed between

valproate-exposed and non-exposed pup brains, for either GAERS or NEC rats, suggesting

gestational VPA exposure does not cause apoptosis and alter gene expression via epigenetic

mechanisms (Figure 4.2 and Appendix C, Table 5).
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4.3.3 Differential gene expression analysis highlights transcriptional

changes in VPA-exposed pup brains

Figure 4.3: Principal component analysis plots. Epileptic and non-epileptic rat pups are
broadly separated by PC1 and VPA-exposed and non-exposed pups by PC2.

The principal components of variation between the groups were explored prior to carrying out

differential expression analysis. The function prcomp() from the R package stats (v 3.6.2) was

used to calculate the PCs, and the function fviz pca ind() from the R package factoextra(v

1.0.7) was used to visualise the PCs (Figure 4.3). The epileptic and non-epileptic pups were

separated by the first principal component (PC1) and VPA-exposed and non-exposed pups

were separated by PC2. Following this, differential gene expression analyses for case (exposed)

versus non-exposed comparisons were undertaken (a full list of comparisons carried out is found

in Table 4.2).

Focusing on VPA-exposed versus non-exposed pup brains, the largest number of DEGs (FDR <

0.05) were observed when comparing all VPA-exposed pups (i.e., All Exposed (All-E) consisting

of E-GAERS + E-NEC pups) versus all non- exposed pups (i.e., All Non-Exposed (All-N)

consisting of N-GAERS + N-NEC pups), where 3,470 genes were significantly (FDR < 0.05)
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Comparisons
Sample

size

Number of DEGs

(FDR <0.05)

Up-regulated

(FDR <0.05)

Down-regulated

(FDR <0.05)

E-NEC vs N-NEC 15 2,973 1,307 1,666

E-GAERS vs N-GAERS 15 553 248 305

All-E (E-GAERS + E-NEC)

vs

All-N (N-GAERS + N-NEC)

30 3,470 1,632 1,838

E-GAERS vs E-NEC 14 1,885 1,039 846

N-GAERS vs N-NEC 16 1,066 548 518

Table 4.2: Differential gene expression analysis: case control comparisons. Table Ab-
breviations NEC: non-epileptic control; GAERS: Genetic Absence Epilepsy Rats from Stras-
bourg; E-NEC: VPA-exposed NEC pups; E-GAERS: VPA-exposed GAERS pups; N-NEC:
non-exposed NEC pups; N-GAERS: non-exposed GAERS pups; All-E: All exposed pups (E-
NEC + E-GAERS); All-N: All non-exposed pups (N-NEC + N-GAERS).

differentially expressed. Of these, 1,632 genes were up-regulated and 1,838 down-regulated.

Figure 4.4 shows the overlaps in genes DE for each of the 3 pairwise VPA-exposed versus non-

exposed comparisons (i.e., E-NEC versus N-NEC, E-GAERS versus N-GAERS and ALL-E

versus ALL-N). Refer to Appendix C, Table 1 for a full list of genes DE in each comparison.

Moreover, there was a substantial overlap between genes DE following VPA exposure in GAERS

pups compared to genes DE in NEC pups. Further, the majority of genes differentially expressed

by VPA in GAERS pups were also differentially expressed in NEC pups, suggesting that genetic

epilepsy status is not a major determinant of the pattern of differential expression induced by

VPA, as was previously the case for VPA induced birth defects in this model [135] (Figure 4.4).
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Figure 4.4: Summary of differential gene expression results for valproate-exposed
versus non-exposed comparisons. Total number of differentially expressed genes (DEGs)
for each comparison are shown (single brown dot corresponding to the first three histograms).
The number of genes overlapping between each of the case versus control comparisons are
shown in black (2-way) or red (3-way). The bars are arranged based on the highest number of
overlaps. (Feleke et al. (2022))[86]

4.3.4 Pathway enrichment analysis reveals functional consequences

of VPA-Induced differential gene expression in the developing

brain

Pathway enrichment analyses of DEGs were conducted to assess the functional consequences

of VPA induced differential gene expression in the developing brain. Interestingly, genes that

were down-regulated following VPA exposure were significantly enriched for functional pro-

cesses relating to modulation of synaptic function and neuronal processes (Figure 4.5; refer

to Appendix C, Tables 2 for full details relating to pathways enrichment analysis, including

significantly enriched biological processes, cellular components and molecular functions GO

terms).

When considering all VPA exposed pups versus non-exposed pups (All-E vs All-N), among the

set of genes down-regulated by VPA were found to be significantly enriched for terms relating to

glutamate receptor complex (FDR = 9.74× 10−12), regulation of membrane potential (FDR =
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2.08× 10−14), synapse assembly (FDR = 2.17× 10−11), regulation of actin cytoskeleton organi-

sation (FDR = 9.94×10−05), post-synaptic membrane (FDR = 2.11×10−04), neurotransmitter

receptor activity (FDR = 2.33×10−04) and axon guidance (FDR = 1.97×10−12). Furthermore,

among the pathways enriched in the down-regulated set of genes was the regulation of insulin

secretion (FDR = 9.5× 10−03), suggesting a possible drug-induced transcriptional mechanism

for the increased incidence of impaired glucose control in patients treated with VPA [14, 281].

In contrast to the substantial enrichment of neuronal functions in genes down-regulated by

VPA, the genes up-regulated by VPA were generally enriched for functional terms not directly

related to neural processes namely mRNA splicing (FDR = 7.29 × 10−14), translation (FDR

= 1.40× 10−13), extra-cellular matrix organisation (FDR = 2.41× 10−12) and cell cycle (FDR

= 2.40 × 10−09). Furthermore, there was an enrichment for biological processes relating to

chromatin organization (FDR = 7.37 × 10−07) and chromatin assembly/disassembly (FDR =

1.45× 10−06) among the genes up-regulated by VPA. Given the functional enrichment of chro-

matin assembly/disassembly terms among the genes upregulated by VPA, along with VPA’s

known activity as a histone deacetylase inhibitor [22], it seems likely that this transcriptional

dysregulation is epigenetically encoded with potentially long-lasting consequences for the hu-

man brain function and health even in the absence of valproate exposure.

Taken together, genes up- and down-regulated by chronic in utero VPA exposure in the de-

veloping rat brain were represented by divergent functional categories, including neuronal and

non-neuronal pathways. Additionally, genes down-regulated by VPA were predominantly char-

acterized by pathways relating to nervous system function.

Therefore, the relationship between genes differentially expressed in pup brains gestationally

exposed to VPA and genetic determinants of neurodevelopmental disease and behavioural traits

were investigated. Further, given that neurodevelopmental diseases were shown to arise from ge-

netic mutations, namely deleterious and loss-of-function mutations [238], in rare variant genetic

analyses, it was hypothesised that genes significantly down-regulated by VPA in the developing

brain are enriched for genetic risks of neurodevelopmental diseases.
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4.3.5 Genes down-regulated by gestational VPA exposure are highly

enriched for heritability for neurodevelopmental traits and dis-

ease

In the context of rare variant genetic analyses, neurodevelopmental disability primarily arises

from loss of function and deleterious mutations [142]. Therefore, here LDSC [40] method was

used to investigate if genetic risks for neurodevelopmental diseases and behavioural traits are

enriched in the set of genes significantly down-regulated in pup brains following gestational

VPA exposure. Given the broad range of adverse neurodevelopmental outcomes in children

gestationally exposed to VPA, the following brain disorders and neurobehavioral traits related

GWAS were considered: (i) ADHD [69]; (ii) BD [293]; (iii) ASD [105]; (iv) SCZ [255]; (v)

full-scale IQ [272]; (vi) EPI [1]; and (vii) CDG [174] which is a GWAS meta-analysis across 8

psychiatric traits. Further, a GWAS study forWaist-to-hips ratio (WHR) [250], which was not

expected to be enriched in the set of genes differentially expressed in pup brains as a result of

VPA exposure, was used as a negative control.

Enrichment of genetic association analyses were run for all sets of genes significantly (FDR

< 0.05) DE in the VPA-exposed pup brain (Figure 4.6; refer to Appendix C, Table 3 for full

details). Interestingly, for genes down-regulated by VPA, there was a significant enrichment of

heritability for BD (All-E vs All-N, FDRLDSC = 1.16× 10−08; E-NEC vs N-NEC, FDRLDSC =

2.93×10−09; E-GAERS vs N-GAERS, FDRLDSC = 1.55×10−03), SCZ (All-E vs All-N, FDRLDSC

= 6.04×10−08; E-NEC vs N-NEC, FDRLDSC = 6.40×10−08; E-GAERS vs N-GAERS, FDRLDSC

= 2.91× 10−02), IQ (All-E vs All-N, FDRLDSC = 1.17× 10−03; E-NEC vs N-NEC, FDRLDSC =

7.03 × 10−04; E-GAERS vs N-GAERS, FDRLDSC = 1.62 × 10−02), and CDG (All-E vs All-N,

FDRLDSC = 3.89×10−04; E-NEC vs N-NEC, FDRLDSC = 1.82×10−04; E-GAERS vs N-GAERS,

FDRLDSC = 5.44×10−02). However, no significant enrichments of heritability were observed for

these traits in non-exposed GAERS pups compared to non-exposed non-epileptic controls, and

enrichments of association for WHR were non-significant across all comparisons (Appendix C,

Table 3).
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Furthermore, for VPA-exposed pups, there was no significant enrichment of heritability to

ADHD (All-E vs All-N, FDRLDSC = 0.69; E-NEC vs N-NEC, FDRLDSC = 0.24; E-GAERS

vs N-GAERS, FDRLDSC = 0.88), ASD (All-E vs All-N, FDRLDSC = 0.66; E-NEC vs N-NEC,

FDRLDSC = 0.68; E-GAERS vs N-GAERS, FDRLDSC = 0.68). Moreover, there was no sig-

nificant enrichment of heritability for Epilepsy (EPI) when considering DEG from the All-

E vs ALL-N comparison (All-E vs All-N, FDRLDSC = 0.77), and for the E-NEC vs N-NEC

or E-GAERS vs N-GAERS (E-NEC vs N-NEC, FDRLDSC = 0.57; E-GAERS vs N-GAERS,

FDRLDSC = 0.77). Notably, for genes up-regulated by gestational VPA, there was no signifi-

cant enrichment of genetic association to any neurodevelopmental disease or trait, other than

a marginal enrichment to BD (All-E vs All-N, FDRLDSC = 2.7 × 10−02; E-NEC vs N-NEC,

FDRLDSC = 3.6× 10−03; E-GAERS vs N-GAERS, FDRLDSC = 0.84) as well as SCZ (All-E vs

All-N, FDRLDSC = 4.3× 10−02; E-NEC vs N-NEC, FDRLDSC = 0.32; E-GAERS vs N-GAERS,

FDRLDSC = 0.56) concordant with the pathway enrichment analysis.

In summary, these results suggest VPA exerts its adverse effects on fetal neurodevelopment

predominantly via the down-regulation of genes highly relevant to neurodevelopment and ner-

vous system function. The directionality of the effect is consistent with that observed from

rare-variant analyses of genetic risk to neurodevelopmental disease where the predominant

mechanism is a dominant negative effect [142].

4.3.6 Alternatively spliced genes in VPA exposed pups compared

to non-exposed pups

Among the pathways enriched in genes up-regulated by VPA, there was a significant (FDR <

0.05) enrichment for genes involved in mRNA splicing related pathways. Therefore, the role

of VPA on differential splicing was assessed by first quantifying read count to individual gene

exons and then comparing differential exon usage using the R package edgeR [257]. In total,

there were 57 significantly (FDR < 0.05) alternatively spliced genes, among which 21 were also

differentially expressed following VPA exposure (14 were down-regulated, 7 up-regulated) (refer

to Appendix C, Table 5 for full result table). Whilst there were no significant enrichments
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for known functional pathways or enrichment of genetic association to neurodevelopmental

disease among these genes, individual differentially spliced genes included neuronal proteins

such as Calmodulin Binding Transcription Activator 1 (CAMATA1) (FDR = 3.69 × 10−26)

which is known to play a role in the regulation of glutamate levels and neuronal excitability,

glutamate decarboxylase 2 (GAD2) (FDR = 9.03× 10−25) which plays a role GABA-synthesis

in neurons [331] and Forkhead box P4 (FOXP4) (FDR = 4.62 × 10−3) which is known to

regulate neurogenesis and in which mutations are associated with speech delay and congenital

abnormalities [262].

4.3.7 A substantial overlap between genes down-regulated in VPA-

exposed pup brains and genes genetically linked to increased

autism risk

To further assess the association between VPA exposure and ASD risk, the overlap of DEGs

taken from VPA-exposed versus non-exposed comparisons and three different ASD-associated

gene sets were carried out. A total of 3,162 DEGs (1,454 up-regulated genes and 1,708 down-

regulated) remained after converting 3,470 rat genes to their human orthologs. The three sets

of ASD-associated genes used in the analysis were:

1. A set of 913 genetically linked ASD genes from Simons Foundation Autism Research

Initiative (SFARI) https://gene.sfari.org/, an online database of ASD risk genes

generated by integrating genetic data from several studies.

2. A set of 1,611 ASD associated genes identified through differential expression analysis

performed using transcriptomic data from postmortem brain samples (51 ASD subjects

and 936 controls) from the PsychENCODE Consortium [96]

3. A set of 7,418 dysregulated genes in VPA exposed cortical organoids (early stage, day 18)

derived from a male iPSC line [63].

In total, 223 VPA-induced DEGs from the current study significantly (P = 9.99× 10−5) over-

https://gene.sfari.org/
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lapped with genetically linked ASD risk genes from SFARI (Figure 4.7). Strikingly, the overlap

was mainly for down-regulated genes (168 of the 223 overlapping genes) in VPA exposed pup

brains, suggesting that there is a convergence of molecular and biological pathways underly-

ing ASD and VPA-induced postnatal neurodevelopmental outcomes. Similarly, 219 of the 320

(nominally significant overlap, P = 0.067) overlapping genes between VPA-induced DEGs and

genes dysregulated in PsychENCODE ASD brains organoids were down-regulated in the pup

brains (Figure fig:Figure 4.7.Overlap). There was no significant (Overlapped genes = 1,366, P

= 0.55) overlap between DEGs from the current study and DEGs identified in VPA-exposed

organoids from the Cui et al. (2020) [63] (Figure 4.7).
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Figure 4.5: Pathway enrichment for valproate-exposed versus non-exposed pups.
Partitioned Linkage Disequilibrium Score Regression (LDSC) was used to test for enrichment
of heritability in genes differentially expressed for each of the 5 case-control comparisons. En-
richment -log10(FDR) for the enrichment of genetic association is indicated by the horizontal
bars coloured by the comparison group from which the differentially expressed genes were
identified. Vertical line indicates FDR values at 0.05. Genome-wide association studies used
for the enrichment analysis are indicated on the vertical axis. Abbreviations: ASD: Autism
Spectrum Disorder, ADHD: Attention Deficit Hyperactivity Disorder, BD: Bipolar Disorder,
SCZ: Schizophrenia, IQ: Intelligence Quotient, EPI: Epilepsy, WHR: Waist-to-Hip-Ratio, CDG:
Cross-Disorder Group. (Feleke et al. (2022))[86]
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Figure 4.6: Heritability enrichment in differentially expressed genes. Partitioned LDSC
was used to test for enrichment of heritability in genes differentially expressed for each of the
5 case control comparisons. Enrichment -log10(FDR) for the enrichment of genetic association
is indicated by the horizontal bars coloured by the comparison group from which the differen-
tially expressed genes were identified. Vertical line indicates FDR values at 0.05. Genome- wide
association studies used for the enrichment analysis are indicated on the vertical axis. Abbrevia-
tions: ASD: Autism Spectrum Disorder, ADHD: Attention Deficit Hyperactivity Disorder, BD:
Bipolar Disorder, SCZ: Schizophrenia, IQ: Intelligence Quotient, EPI: Epilepsy, LDSC: Link-
age Disequilibrium Score Regression, WHR: Waist-to-Hip-Ratio, CDG: Cross-Disorder Group.
(Feleke et al., 2022)
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Figure 4.7: Overlapping genes between different ASD-associated genes. VPA-induced
DEGs set were genes identified in the current study. Abbreviations: ASD: Autism Spectrum
Disorder; N: Number of genes in the set, VPA: Sodium Valproate, DEGs: Differentially Ex-
pressed Genes, SFARI: Simons Foundation Autism Research Initiative. (Feleke et al.(2022))
[86]
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4.4 Discussion

Although VPA is considered one of the most effective treatments for epilepsy [203], women of

childbearing potential are advised against the use of the drug due to its well-known and doc-

umented adverse neurodevelopmental consequences. Moreover, the biological mechanisms by

which valproate contributes to behavioural and cognitive problems in children following gesta-

tional exposure remain poorly defined. Further, few studies have examined transcriptome-wide

alterations in brain gene expression [63] and often are limited by non-physiological drug ad-

ministration and dosing regimens. In this study, an established rat model of valproate-induced

teratogenicity [135] that recapitulates human prenatal valproate exposure and chronicity of

oral dosing during pregnancy was utilized to identify and assess the mechanisms by which VPA

exposure induces adverse fetal health effects.

4.4.1 No substantial shifts in the composition of the major cell-types

There was no evidence for substantial shifts in the composition of the major cell-types of the

brain (i.e., excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, oligodendro-

cyte precursor cells, microglia) following VPA-exposure using deconvolution analysis. This does

not reflect the proportion of cell-type specific sub-types occurring as a result of VPA exposure,

which will require single-cell RNA-sequencing of large numbers of cells from VPA-exposed and

non-exposed brains; however, these findings are consistent with no measurable differences in

the proportion of the major cell-types. Focusing on major cell-types, the observed differences in

gene expression between exposed and non-exposed brains arise predominantly from differential

gene expression rather than substantial differences in the proportions of the major cell-types

between VPA exposed and non-exposed brains.

4.4.2 Transcriptional dysregulation in pup brains following gesta-

tional VPA exposure

Furthermore, there was statistically significant (FDR < 0.05) transcriptional dysregulation in

the pup brains following gestational VPA exposure. Pathway enrichment analysis revealed a
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noticeable separation of enriched terms between the up- and down-regulated genes. While,

up-regulated genes were predominantly enriched for terms relating to mRNA splicing divi-

sion, translation, cell division and extracellular matrix organisation, down-regulated genes were

highly enriched for neurodevelopmental-related terms, including Extracellular Signal-Regulated

Kinase 1 (ERK1) and Extracellular Signal-Regulated Kinase 2 (ERK2) cascade, regulation of

neuronal membrane activity, glutamate receptor signalling pathway, gamma-aminobutyric acid

signalling pathway and synaptic transmission.

4.4.3 Enrichments of heritability in the down-regulated genes

Differentially expressed genes were integrated with GWAS summary statistics from a wide

range of neurological traits and diseases to assess the functional consequences of VPA-induced

differential gene expression. There was significant heritability enrichment in the genes down-

regulated by VPA for bipolar disorder (unsurprising, due to the fact that VPA is widely used

to treat bipolar disorder), schizophrenia, IQ and cross disorder (Figure 4.6). Though there was

no enrichment of heritability for ASD in the down-regulated gene sets (which was surprising

given that some of the features of the valproate-neurodevelopment syndrome have been likened

to autism, and maternal valproate exposure has been associated with autism-like behaviours

in non-human primates) [361], there was a significant (P = 9.99 × 10−05) overlap between

genes genetically linked to ASD and down-regulated genes in the VPA exposed pup brains

4.7. These include genes SCN1A, Sodium Voltage-Gated Channel Alpha Subunit 2 (SCN2A)

[214], Gamma-Aminobutyric Acid Type A Receptor Subunit Beta3 (GABRB3) [305], Hyper-

polarization Activated Cyclic Nu- cleotide Gated Potassium Channel 1 (HCN1) [200], Cal-

cium/Calmodulin Dependent Protein Kinase IV (CAMK4) [355], and ATPase Plasma Mem-

brane Ca2+ Transporting 2 ( ATP2B2) [349] which harbour mutations responsible for the

increased risk of ASD and other neurodevelopmental disorders. However, due to the absence

of a genetic association with ASD (from the enrichment of heritability analyses results Figure

4.6), which was in stark contrast to the enrichment for bipolar disorder, schizophrenia and

IQ, it is possible that valproate fetal neurodevelopmental syndrome may have specific clinical

characteristics unique to valproate exposure and points to a requirement to continue to define
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the phenotype.

It is worth noting that the directions of effect of valproate-induced gene expression on brain

function is consistent with that observed from rare-variant analyses of genetic risk to neu-

rodevelopmental disease where the predominant mechanism is a dominant negative effect from

deleterious mutations [142]. The functional enrichment of chromatin assembly/disassembly

terms among the genes up-regulated by VPA suggests the VPA induced transcriptional dysreg-

ulation is epigenetically encoded and, therefore, may have potentially long-lasting consequences

for human brain function, even after birth prompting the need for further clinical research on

the long-term outcomes of children born following fetal VPA exposure.

4.4.4 Differential mRNA splicing in the brain

Given the significant (FDR = 7.29 × 10−14) enrichment for genes involved in mRNA splicing

in functional enrichment analysis, differential splicing analysis was performed to assess if VPA-

induced transcriptional dysregulation is epigenetically controlled. In addition, recent studies

have shown evidence implicating the regulatory role of neuron-specific alternative splicing in

neurodevelopmental disorders [247, 334]. Further, alternative splicing in the brain is vital for

several neurological processes, including cell differentiation, neurogenesis, synaptogenesis and

the generation of functional neuronal networks [300]. Of those genes observed to be significantly

differentially spliced in the prenatal brain following VPA exposure were GAD2 (also known as

GAD65), which plays a role in GABA-synthesis in neurons [331] and FOXP4, which is known to

regulate neurogenesis and is associated with speech delay and congenital abnormalities [262].

These results suggest that alternative splicing may be an additional mechanism for adverse

neurodevelopment in VPA-exposed fetal brains.

4.4.5 Other anti-epileptic drugs

Though, valproate is the most widely recognised AED to affect neurodevelopment and signif-

icantly increase the risk of ASD, prenatal exposure to other anti-seizure medications such as
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phenytoin and phenobarbital was also associated with an increased risk of neurodevelopmental

deficits [152]. However, this was not observed for lamotrigine or levetiracetam, which appear

safer with respect to cognitive and behavioural outcomes [330, 152]. Additionally, studies have

suggested that anti-depressant use during pregnancy may be associated with an increased risk

of neurodevelopmental disorders, including ASD and ADHD [29, 335], although not for expo-

sure to antipsychotics [335]. The research presented here, which demonstrates a robust brain

transcriptional response to VPA that is both functionally and genetically associated with rel-

evant cognitive (IQ) and psychiatric (BD, SCZ, CDG), outcomes suggests that the rat model

of chronic dosing followed by transcriptional assay in pup brains may provide a more general

approach for screening for drug-induced adverse neurodevelopmental effects. Moreover, the

inference that the adverse behavioural and cognitive outcomes from gestational VPA exposure

arise from transcriptional dysregulation, the model presents a potential system for testing drugs

capable of reversing or improving these changes. For example, as previously highlighted, VPA

is a well-recognised HDAC inhibitor, and pre-treatment with methionine has been shown to

significantly reduce the incidence of spina bifida and other VPA-associated defects in mice [80].

4.4.6 Conclusion and future direction

In conclusion, the findings presented here offer a mechanistic explanation for the adverse neu-

rodevelopmental effects caused by VPA. These effects are rooted in the dysregulation of gene

transcription induced by the drug. The extent to which these transcriptional effects are linked

to irreversible brain development or persistent changes encoded in the epigenetic makeup, or

whether they are associated with a gradual restoration of normal brain transcription and func-

tion over time after birth, could be explored using the experimental approach described in this

study. This underscores the critical importance of long-term follow-up studies on children born

after gestational exposure to VPA.
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5.1 Discussion

In the previous chapters, I have detailed three studies that utilised integrative genomic ap-

proaches to identify and evaluate the underlying biological mechanisms involved in cognitive

disorders stemming from neurodegenerative and neurodevelopmental impairments. In this

chapter, I will (a) provide a summary of the main findings from each study; (b) provide a

summary of the primary mechanisms that were shared between these two types of cognitive

disorders, as well as those that were unique to each; (c) I will address any biological or techni-

cal limitations that arose during the course of these analyses, while also discussing the notable

advancements made in RNA-sequencing technologies; and (d) I will outline my research plans

for future endeavours in this field.

5.1.1 Using transcriptomics profiling to study brain disorders: A

summary of key findings from the current studies.

Transcriptomic analysis is a powerful tool for identifying gene expression signatures and associ-

ated biological processes in cognitive disorders Chapter 2, 3, 4. Although it cannot distinguish

between causal and compensatory factors, it offers valuable insights into the molecular path-

ways underlying the pathogenesis of these disorders. This knowledge can aid in understanding

the biological basis and help discover new therapeutic targets.

Below are summaries of the major findings, including novel discoveries, identified through

transcriptomic profiling from the studies mentioned in this thesis:

Chapter 2: Single-nucleus transcriptomics identifies common and distinct molecu-

lar pathologies in Lewy body diseases.

1. In this study, transcriptional altercations were observed in multiple cell-types across sev-

eral comparisons distinguishing the three LBDs under investigation. From differential

expression analysis (Chapter 2.3.4; Figure 2.3), the following observations were made:



5.1. Discussion 129

(a) there was a widespread dysregulation in neurons, as well as glial cell-types; (b) gene

expression profiles of PDD and DLB were very similar (this likely stems from the fact

that both conditions are cortical diseases and in contrast, PD without dementia primarily

affects the motor system), while there were less transcriptional similarities between PD

and PDD; (c) approximately around 36% of DEGs were found uniquely expressed in one

comparison; (d) focusing on the disease-control comparison, it was evident that there

was more down-regulation of genes in PDD and DLB and up-regulation of genes in PD

(Figure 2.4), suggesting that PD may have a distinct transcriptional profile compared to

the dementia groups.

2. Heritability enrichment analysis revealed a genetic association between DEGs in glial cells

(up-regulated genes in OPCs and dysregulated (up and down) genes in astrocytes derived

from PD versus control comparisons; FDRLDSC = 0.0076 in OPC and FDRLDSC = 0.0085

in astrocytes) and genetic determinants of PD age of onset (Chapter 2.3.7 and Figure

2.9). Although the involvement of OPCs has been shown in previous studies [39, 4], the

role of astrocytes in PD age onset was also observed in the current study, Chapter 2.3.7.

3. A unique population of neurons associated with DLB was identified through clustering

analysis (Chapter 2.3.7). These neurons were found to share a transcriptional profile

similar to that of medium spiny neurons (MSN). As mentioned in the previous chapter,

MSN are a type of GABAergic neurons primarily found in the striatum (a region involved

in movement control). In PD, the progressive degeneration of dopaminergic neurons in

the substantia nigra leads to a reduction in dopamine levels in the striatum, which in

turn, contributes to the loss of MSN [342, 364]. Interestingly, these particular sub-types

were not present in DLB groups (although extensively present in PDD group Figure 2.11),

which mirrors earlier findings indicating that medium spiny neurons experience selective

dendritic degeneration in DLB [354]. Furthermore, Skene et al. (2018) [283] were able to

find a significant enrichment for schizophrenia in striatal medium spiny neurons using both

LDSC and MAGMA. This may indicate that the loss of MSNs represents a convergent

mechanism for the hallucinations seen in DLB and those in schizophrenia. However, what

is unclear is the role of MSNs in PDD, since they are more abundantly present in the PDD
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samples than PD samples. It is worth noting that this study represents the first instance

in which these neurons have been identified and characterized at the transcriptional level

(refer to Appendix A, Table 5 for full list of enriched functional terms).
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Chapter 3: Uncovering Early-Stage Abnormal Tau Species-Related Gene Expres-

sion Changes Through Transcriptomic Profiling.

1. The study in Chapter 3 looked at transcriptional profiling of brain tissue samples from

both tauPLA positive (tauPLA+; containing tau oligomers and NFTs) and tauPLA neg-

ative (tauPLA-) brain tissues from temporal cortex. Analysis of the gene expressions at

the single cell-level revealed distinct and similar patterns between the two groups. No-

tably, there was a significant down-regulation of genes in excitatory neurons in tauPLA+

samples compared to tauPLA- samples. While it is widely recognized that the presence of

NFTs (in samples with tauPLA+ and AT8+) leads to changes in gene expression patterns

in neurons [97, 78], this study is unique in that it explores alterations in gene expression

in the absence of NFTs and in the presence of tau multimers/oligomers (tauPLA+ and

AT8- samples; 3.7).

2. The early activation of reactive astrocytes was observed in the study. It is well-established

that reactive astrocytes play a crucial role in the progression of AD [286]. Nevertheless,

the observation of their activation in the absence of NFTs has not been reported pre-

viously. To our knowledge, this is the first study to have shown similar transcription

profile between astrocytes derived from samples that were both AT8+/tauPLA+, and

those that were AT8-/tauPLA+, suggesting that reactive astrocytes are activated even

in the absence of NFTs (refer to Appendix B, Figure 1 for average expression of marker

genes across the three groups).

3. The findings of this study highlight the need for meticulous consideration when using

control samples in transcriptomic investigations that involve aged or AD brains. Notably,

this study demonstrates that the presence of newly discovered tau species (containing tau

oligomers/multimers) can lead to significant disruptions in various pathways, even in the

absence of NFTs. These results underscore the complexities of studying the transcriptome

in AD and further emphasize the importance of rigorous experimental design to achieve a

more nuanced understanding of the underlying molecular mechanisms of this devastating

disease.



132 Chapter 5

Chapter 4: Integrative genomics reveals pathogenic mediator of valproate-induced

neurodevelopmental outcomes.

1. In this chapter, valproate exposure was shown to cause significant changes in gene ex-

pression in gestationally exposed pup brains, specifically down-regulating genes related

to synaptic function and neurodevelopment. Furthermore, these differentially expressed

genes were shown to be preferentially enriched for heritability to schizophrenia, bipo-

lar disorder and IQ (Figure 4.6). This finding indicates that foetal valproate exposure

can negatively affect the developing brain through drug-induced transcriptional dysreg-

ulation of genes that may be involved in neurodevelopment, synaptic dysfunction and

protein homeostasis (Appendix C, Table 2 and 3 for full functional enrichment and LDSC

result tables).

2. Through differential splicing analysis, some of the DEGs were shown to be also differ-

entially spliced; this may suggest that the dysregulation of transcription induced by val-

proate is encoded epigenetically and may have enduring effects on human brain function

(Chapter 4.4.4).

5.1.2 Convergent and divergent mechanisms underlying various types

of neurodegenerative disorders.

Below is a summary of convergent and divergent mechanisms identified:

1. Although there were novel findings found in each chapter, most identified perturbed path-

ways in Chapter 2 (involving PD, PDD and DLB) and Chapter 3 (samples with NFTs

(a feature of AD)) were similar. Examples of these pathways include axonal degenera-

tion, mRNA splicing, synaptic organisation, autophagy, neuron death, phosphorylation,

memory, mitochondrial function, and regulation of vesicle-mediated transport.

Given the widely accepted notion that NFTs are a hallmark of dementias such as PDD

and DLB [33, 13, 78], it is perhaps not surprising that the present study’s findings support
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previous observations made in similar studies [104, 131]. However, what is of particular

interest is that the same molecular pathways were found to be perturbed in samples

with few or no NFTs (Chapter 3.3.4 and Figure 3.7). This observation may indicate that

tau aggregates (specifically tau oligomers/multimers) induced neurotoxicity represents an

early molecular event in the pathogenesis of these diseases.

2. Another striking parallel between the two investigations was the observation of the down-

regulation of genes (in the diseases tissue samples, namely PD, DLB, PDD and tau-

PLA+/AT8+ samples) in glial cell types, implying that not only are neurons suscepti-

ble to toxic tau species (in this case tau oligomers/multimers), but also glial cell-types.

Specifically, several genes were found to be dysregulated in astrocytes (including reactive

astrocyte marker genes) and oligodendrocytes within tauPLA+ brain tissues compared

to controls (tauPLA-) (Figure 2.3 and Figure 3.5.). These findings suggest that further

research into the involvement of glial cells in the aetiology of neurodegenerative diseases

and their potential contribution to the spread of tau pathology is needed.

5.1.3 Overlapping and distinct perturbed pathways in neurodegen-

eration and neurodevelopment

Neurodevelopmental disorders (NDDs) and neurodegenerative diseases (NDs) are two distinct

neurological conditions, with the former commonly manifesting during the critical period of

brain development, and the latter typically presenting in later stages of life. As such, NDDs

are often characterised by compromised brain development and function, while NDs are marked

by the gradual degeneration of neurons (as seen in this study, for example, losses of medium

spiny neurons-associated nuclei in DLB (Chapter 2.3.7) and related brain function).

1. Among the similarities between NDs and NDDs is the role of abnormal protein aggre-

gation/synthesis. In NDs, misfolded proteins such as β-amyloid, tau, and α-synuclein

accumulate in different regions of the brain, leading to neuronal dysfunction and selective

neuronal death [57, 315, 125]. In NDDs such as ASD and schizophrenia, there is growing
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evidence of altered synaptic plasticity [109, 30], and neuronal connectivity [109], which

may be related to aberrant protein synthesis and degradation [189, 76]. These common-

alities suggest that there may be shared mechanisms underlying protein homeostasis in

both NDs and NDDs. These previous findings were mirrored in the current studies, in

which terms such as protein-containing complex disassembly, protein secretion, regula-

tion of protein polymerization were enriched for down-regulated genes across all disease

groups (such as PD, PDD, DLB, tauPLA+/AT8+, VPA-Exposed groups) in comparison

to control groups (2.5, Figure 2.6, Figure 3.7, Figure 4.5).

2. The involvement of GABAergic signalling in NDs and NDDs has been extensively studied

in animal and human models [254, 199, 306, 156, 32]. It is widely recognized that GABAer-

gic neurons play a crucial role in brain development and function. In NDDs, studies have

shown that there may be alterations in GABAergic system [306, 126, 121] which leads

to an imbalance between excitatory and inhibitory neurotransmission [306, 32]. This im-

balance is believed to contribute to these disorders’ cognitive and behavioural symptoms.

Notably, the current study revealed that terms related to the regulation of GABAergic

transmission were enriched for down-regulated genes in VPA-exposed pup brains.

In contrast, it has been reported NDDs such as AD and PD exhibit a reduction in

GABAergic interneurons in certain brain regions [347, 132, 231], in addition to the loss

of other types of neurons. This loss of GABAergic neurons is known to contribute to

the cognitive and motor symptoms observed in these disorders. Strikingly, in the current

study, medium spiny neurons (a type of GABAergic neurons) were shown to be entirely

lost in DLB (Figure 2.10).

3. Inflammatory responses and inflammation-associated pathways are common features of

both NDs and NDDS. Studies have shown that chronic inflammation contributes to the

pathophysiology of NDs and NDDs, with increased levels of pro-inflammatory cytokines

observed in individuals with AD [294, 362] and ASD. Interestingly, however, the present

study did not find any enrichment of inflammation-related pathways among the DEGs

identified in VPA-exposed pup brains, although these pathways were enriched for DEGs
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in PD, PDD and DLB.

4. In addition to inflammation, mitochondrial dysfunction is another hallmark of both

NDs and NDDs [175, 276, 312]. However, the current study’s perturbed pathways in

VPA-exposed pup brains did not include mitochondrial dysfunction. While, several

mitochondrial-associated pathways, including mitochondrion organization, apoptotic mi-

tochondrial changes and mitochondrial transmembrane transport were enriched for DEGs

from NDs (PD, PDD, DLB and tauPLA+/AT8+) versus control comparisons.

In summary, NDs and NDDs are two distinct categories of neurological conditions, each involv-

ing different underlying mechanisms and pathologies. In NDDs, pathways related to neurodevel-

opmental processes such as neuronal migration, differentiation, and neurogenesis are primarily

affected, while in NDs, pathways related to neurodegenerative processes such as protein aggre-

gation, autophagy, and neuroinflammation are mainly affected. However, despite their distinct

differences, the current study has shown that NDDs and NDs share some commonalities in

the perturbed pathways and processes that contribute to their respective pathologies. These

similarities suggest that there may be some overlap in the underlying mechanisms of these dis-

orders and highlight the need for further investigation into the shared pathways and potential

therapeutic targets.

5.1.4 Challenges in transcriptomic data analysis arising from bio-

logical aspects

Ageing

Ageing is a biological process which results from the accumulation of diverse forms of molecular

and cellular damage. The ageing brain undergoes a series of intricate changes, including a

decline in cellular function, loss of synaptic connections, and a reduction in the production of

neurotrophic factors [343, 124]. These age-related alterations contribute significantly to the

onset and progression of NDs including AD and PD, by disrupting the delicate balance of the
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brain’s physiological and biochemical processes [124].

For example, one of the hallmark features of NDs as mentioned in previous chapter is the ac-

cumulation of misfolded protein in the brain, which can lead to the formation of aggregates

and neuronal death [264, 323]. Age-related changes in protein turnover and clearance mecha-

nisms can impair the ability of the brain to remove these toxic proteins, further exacerbating

disease pathology [264]. Interestingly, in the current study, trajectory analysis (Chapter 3.3.6)

demonstrated an increase expression pattern of reactive astrocyte marker genes (an astrocyte

population which play a key role in clearing tau protein and other debris from the brain in

response to injury or disease [180]) increased with age. This may be due to reactive astrocytes

becoming dysfunctional and losing their ability to clear tau protein effectively as the brain ages.

This may lead to the accumulation of tau protein and the formation of toxic tau species, such

as NFTs, a hallmark of AD’s pathology [141]. Notably, the current study found that these

marker genes were activated even in the absence of NFTs (Appendix B, Figure 1), suggesting

that tau oligomers may have a similar level of neurotoxicity as hyperphosphorylated NFTs.

In addition, age-related changes in the immune system can also contribute to neurodegeneration

[124]. Microglia, specialised immune cells of the brain, play a crucial role in maintaining brain

homeostasis and responding to injury and infection. However, with age, microglia can become

dysfunctional, leading to chronic inflammation and further damage to neurons [194]. Unlike

the astrocytes, early microglia activation was not observed in samples with only tau oligomers

(and few to no NFTs), suggesting that astrocytes may have an early role in the pathogenesis

of neurodegeneration than microglia.

Other age-related factors include: (i) sample heterogeneity: for example, the presence of senes-

cent cells [161], which are cells that have stopped dividing due to a variety of stressors, such as

damage to their DNA or other forms of cellular stress, can affect gene expression patterns and

confound interpretation of results; (ii) comorbidities: due to the nature of ageing, individuals

are more likely to develop multiple health conditions [73, 357], making it difficult to detangle

the effects of different factors on disease development and progression; and (iii) other time-
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dependent variables including, duration of disease, time since intervention, length of exposure

to treatment and survivorship bias (older individuals may be healthier or have a different health

trajectory)[9].

Separating the effects of ageing from the effects of the disease in transcriptomic

based studies.

To address the challenges related to age-related factors in case-control transcriptomic studies,

careful study design is essential. Important considerations for designing such studies include

the use of appropriate statistical methods to account for potential confounding variables, and

the utilisation of reference datasets containing age-matched controls to ensure that age-related

effects are accurately accounted for.

Stratifying samples by age groups can be an apparent choice for case-control studies. However,

this approach may lead to smaller sample sizes within each age group, which can lower the

statistical power and make it challenging to detect significant differences in gene expression

between groups. Apart from stratifying samples into age groups, researchers have applied

several means to account for age-related changes in gene expression. For example:

1. Age can be incorporated as a covariate in statistical models to control its effects on

gene expression (as done in the current study). This approach allows the identification of

disease-related changes in gene expression that are independent of age. However, this may

not completely eliminate the confounding effect of age-related changes on gene expression,

as there may be other variables that are also affected by aging and contribute to gene

expression changes.

2. Recently, machine learning algorithms have been utilised to identify age-related patterns

in gene expression data [163, 85]. Briefly, the algorithms are trained on gene expression

profiles from individuals of different ages, and then the model created is used to pre-

dict gene expression changes associated with ageing. Hence, this could be one way for

accounting the effect of ageing on gene expression.
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In addition to age, PMI can pose a challenge in transcriptomic studies, as variations in PMI

among samples can impact gene expression patterns. Recently, Zhu et al., 2017 [366] conducted

a systematic analysis of gene expression patterns associated with PMI in human tissues and

revealed tissue and cell-type specific mRNA degradation profiles. Although PMI is currently

used as a covariate in statistical methods, identifying PMI-associated genes could enhance the

interpretation of gene expression patterns linked to disease status.

In both studies related to NDs and NDDs, sex-bias may possess a challenge when it comes

to identifying sex-based changes or disease-driven expression changes. This is because the

expression of genes can vary between males and females due to differences in hormonal and

genetic factors [314, 260].

For instance, in AD, women are known to have a higher prevalence and faster progression

than men. One possibility could be due to the protective effect of testosterone in males as

demonstrated by Rosario et al., 2011 [260] in which the authors found inverse relationship

between brain levels of testosterone and soluble Aβ. In contrast, as seen in the current study,

in DLB men were more likely to develop the disease than women. However, there are conflicting

reports have been seen in other studies [95]. Therefore, failing to account for sex differences

in gene expression patterns could lead to a lack of understanding of the underlying disease

mechanisms in both males and females.

Similarly, in ASD, males are known to be affected more frequently and severely than females

[95]. This suggests that there could be sex-specific mechanisms underlying the disorder that

are not accounted for when sex differences are not taken into consideration. Therefore, to

overcome these challenges, it is important to design studies that include both males and females

in sufficient numbers and to statistically account for sex differences in gene expression. This

can be done by stratifying (having equal/equivalent male and female samples) or including sex

as a covariate in the statistical models, as done in this study.
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5.1.5 Technical differences between single-cell and single-nucleus

RNA-Seq

The development of scRNA-Seq technology has revolutionised our understanding of disease

by revealing previously undiscovered cellular heterogeneity and novel cell-types through the

analysis of gene expression patterns at the single-cell level [127, 181]. This capability enables

researchers to examine gene expression across a vast range of cell subpopulations, revealing

unique cell-types that may play pivotal roles in disease pathogenesis and progression [285]. Ad-

ditionally, scRNA-Seq can identify key regulatory genes and pathways that are dysregulated in

disease, uncovering potential molecular mechanisms that lead to disease pathology or those in-

volved in the progression of the disease. Hence providing new insights into disease pathogenesis

and potential targets for therapeutic intervention.

Although, scRNA-Sequencing gives a comprehensive understanding of cellular heterogeneity

which allows the identification of individual cell-types, splicing events and different isoforms,

which may be missed in bulk RNA-Sequencing, scRNA-Seq requires the isolation of viable

single cells, which can be technically challenging and may introduce bias due to the isolation

process [160]. In order to overcome this technical challenge, snRNA-Seq was developed as an

alternative to scRNA-Seq for analysing gene expression in samples with degraded RNA (or low

RNA content) [160]. By using the nuclei of the cells rather than the entire cell, snRNA-Seq

enables the analysis of gene expression in intact tissue samples at a single-cell resolution. One

of the main advantages of snRNA-Seq is that it can be performed on frozen, fixed, or even

archived tissues, which may be the only available samples for certain studies [160, 167].

5.1.6 The limitations of single-nucleus RNA-Sequencing

Over the last few years, numerous studies have used snRNA-Seq to unravel the complexities

of the brain. These studies have focused on understanding the transcriptional and epigenetic

states of the human brain, identifying neuronal subtypes, and or even exploring the single-
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cell transcriptional landscape of mammalian organogenesis. Notably, Habib et al., 2020 [111]

identified rare cell types in the mouse brain using snRNA-Seq, while Lake et al., 2016 [166]

employed the same method to uncover novel neuronal subtypes using nuclei from post-mortem

brain. In another study, Zeng et al., 2016 [359] conducted both snRNA-Seq and scRNA-Seq on

immortalized human myoblasts and found them to be comparable, with a distinct enrichment

for long non-coding RNAs in snRNA-seq.

However, it is worth noting that snRNA-Seq has several limitations compared to scRNA-Seq

including:

1. The potential loss of information due to the isolation of nuclei instead of whole cells

(low sensitivity); thus, leading to underestimation or loss of expression patterns from rare

cell-types.

2. Low coverage, due to low capture efficiency of nuclei and higher dropout rates, could

reduce the ability to detect lowly expressed genes, or low-abundance transcripts, which

could lead to inaccurate quantification of gene expression levels.

3. Damage to cells due to the isolation process which could lead to unreliable or lower quality

data [44].

4. Batch effects due to the use of different isolation protocols and library preparation meth-

ods making it challenging to compare results across multiple studies.

5. Challenges in differentiating between transcripts present in the nucleus and cytoplasm

[353].

6. High level of background noise (specifically in 10x-based platforms) due to the presence

of mitochondrial RNA (mtRNA) and ribosomal RNA (rRNA) in the nuclei [44]. mtRNA

and rRNA are highly abundant in the nucleus, and their transcripts are captured along

with the mRNA during the snRNA-Seq process, leading to a large proportion of reads

being derived from these RNAs [193, 369]. This can result in decreased sensitivity and

accuracy of downstream analyses, as well as an increased cost due to the need for deeper
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sequencing to achieve sufficient coverage. For the current study, CellBender was applied

to overcome this challenge. In conclusion, snRNA-Seq remains a valuable tool for studying

gene expression in individual nuclei and has led to many significant discoveries in brain

sciences. However, researchers should carefully design their studies and when choosing

which technology to use. Furthermore, it is important to take into account the appropriate

normalisation and statistical methods when analysing the data to avoid common pitfalls

in differential expression analysis.

5.1.7 Other technical limitations

(i) Proteomics

RNA-seq experiments are susceptible to technical biases, such as library preparation artefacts

and amplification biases, which can lead to false positives and distort the representation of

specific RNA species [280]. One notable limitation of the current studies is their exclusive

reliance on mRNA expression levels, thereby overlooking the assessment of protein levels. Until

recently, it was widely assumed in systems biology literature that mRNA and protein expres-

sions measured from a tissue exhibited a proportional relationship. However, multiple studies

analysing mRNA and protein expression data from the same cells under similar conditions

have challenged this assumption, revealing a lack of high correlation between these two distinct

molecular entities with unique properties and behaviour within cells [50, 114, 239, 108].

Several factors contribute to the disparities between mRNA and protein measurements. For

example, various post-transcriptional regulations, including mRNA stability and protein degra-

dation, can influence the abundance of proteins without corresponding changes in mRNA levels

[350, 114, 326]. In addition, protein-protein interactions, post-translational modifications, such

as phosphorylation, glycosylation, and acetylation, can impact the function and localisation

of proteins, however, these modifications are not directly captured by mRNA measurements

[11, 138, 68]. In a recent study, Takemon et al.(2021) [303] conducted a study in which they

measured mRNA and protein levels in mice across various ages. The findings revealed that
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age-related alterations in protein levels were not solely attributed to corresponding changes in

mRNA levels.

In general, the analysis of mRNA transcripts is considerably more accessible compared to pro-

teins. Transcripts can be readily detected and characterised using techniques such as northern

blotting, PCR amplification, and cDNA sequencing. Whereas, studying proteins requires a

range of costly and labour-intensive methodologies, including mass spectrometry [311]. There-

fore, despite the limitations, transcriptomics continues to be a valuable tool in unravelling bio-

logical processes, gene regulation, and disease mechanisms. Integrating protein measurements

and other omics data can further enhance our understanding of complex cellular processes and

facilitate more comprehensive investigations in the future.

(ii) Differential expression analysis methods

New tools for analysing gene expression, along with advances in scRNA-Seq technology, are

greatly improving our ability to study gene expression patterns with more accuracy than ever

before. While scRNA-Seq/snRNA-Seq enables the measurement of gene expression at the

single-cell level, DEA allows for the identification of genes that are differentially expressed

between two or more conditions, cell-types or cell-states, providing insight into the molecular

basis of disease pathogenesis and progression.

However, current DEA methods have several limitations including:

1. The assumption (especially in MAST) that the genes are independently and identi-

cally distributed across cells, which has been shown to not be the case in some studies

[112].Furthermore, MAST assumes genes across cells follow a negative binomial distri-

bution, which may not always be the case. This can result in inflated test statistics or

inaccurate estimation of expression variability and increased number of false positives in

DEA [112, 333, 291].

2. To address these issues, alternative methods have been developed that do not make as-

sumptions about the distribution of gene expression levels, such as the non-parametric
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approach scVI [188], which uses deep learning to model the gene expression distribu-

tion. However, machine-learning based methods also has limitations, including difficulty

in identifying rare cell-types due to their absence in the training data; and requiring sig-

nificant computational resources to train and implement, which may limit its accessibility

for some researchers.

5.1.8 Alternatives to using single-nucleus RNA-Sequencing based

differential expression analysis methods:

Pseudobulk methods are becoming widely used for differential expression analysis using sn/scRNA-

Seq data [220]. These methods involve averaging the expression values of cells/nuclei within the

same individual, such as cells from the same tissue or cell type, to obtain a bulk-like expression

profile. However, these methods have several limitations. For example, they may fail to detect

subtle gene expression changes and cell-to-cell variation within a given sample [367], potentially

leading to the loss of important information regarding subpopulation-specific gene expression

changes and rare cell types with distinct transcriptional profiles, as seen in the current study.

Another limitation of pseudobulk methods is the assumption that the same cell-type compo-

sition/proportion is the same across samples, which may not be the case in reality. This can

mask differences in cell-type composition between samples and confound identification of DEGs.

Additionally, pseudobulk methods may not perform well in detecting differential expression in

lowly expressed genes.

Despite these limitations, pseudobulk methods can still be a useful tool for DEA. However,

researchers should carefully consider the limitations when deciding to use the methods and

supplement them with other approaches, such as MAST or other sn/scRNA-Seq based methods,

to obtain a more comprehensive understanding of gene expression changes.
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5.1.9 Future work

Most of the analyses carried out in the current study rely heavily on identifying potentially

disease-related genes by comparing their expression levels between groups of individuals with or

without the pathology. If reverse causality is present, the observed difference in gene expression

could potentially be due to the disease-causing changes in gene expression rather than the gene

expression changes causing the disease. Reverse causality is a type of bias that can occur in

research (including ones where DEA is used) when the cause-and-effect relationship between

two variables is incorrectly assumed due to an observational association. For example, instead

of A (gene expression) causing B (disease), it may be that B causes A [226].

In order to explore potential causal relationships between variables and mitigate the impact

confounding factors such as reverse causality, it is important to complement DEA with other

additional methodologies such as expression quantitative trait loci (eQTLs) analysis, Mendelian

Randomisation (MR), colocalization and mediation analysis [226]. By utilising these methods,

researchers can better assess whether a given exposure (such as drug exposure) or trait is

causally linked to a particular outcome of interest, such as disease risk or progression.

A brief explanation of these analyses is as follows:

1. expression quantitative trait loci (eQTLs) analysis is a widely used method which was

first introduced as a means of identifying relationships between genetic polymorphisms

and gene expression variation. These eQTLs (genetic variants associated with gene ex-

pression levels) are used in colocalization analysis (CA) to investigate the potential causal

relationships between genetic variants and complex traits, including diseases [226, 246].

2. Colocalisation analysis (CA) is a method used to investigate whether two traits or pheno-

types are associated with the same causal genetic variant; and to test if the same genetic

variants are found to be associated with both the disease and the gene expression, this

suggests that the genetic variant is likely to be causal for the disease through its effect

on the gene expression [339].
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3. MR is used to test the causal relationship between the genetic variants disease by utilising

the variant as an instrumental variable. Briefly MR is a statistical method that uses ge-

netic variants to determine the causal relationship between a risk factor and an outcome

of interest (for example, a disease). MR utilises the random distribution of genetic vari-

ants during meiosis (gamete formation), leading to their independence from confounding

factors such as lifestyle or environmental factors [173]. These genetic variants are used as

instrumental variables to estimate the causal effect of the risk factor on the outcome.

4. Mediation analysis is a method used to investigate the mechanism or pathway through

which an independent variable influences a dependent variable. The mediator variable is

a variable that explains or accounts for the relationship between the independent and de-

pendent variables. For example, when studying genes expression change, age and disease

outcome; gene expression level is a mediator variable, as changes in gene expression levels

with age could affect disease risk; age is the independent variable (or predictor variable)

as it could predict disease outcome; and finally, disease outcome can be the dependent

variable (or outcome variable) as it is the variable of interest and could be predicted by

age and gene expression levels. Other variables such as sex, smoking, diet, exercise and

race could be included as covariates in the analysis to control for potential confounding

effects [358].

In summary, integrating these methods in a broad-ranging causal inference framework, as I

plan to do in my future analyses, can provide more reliable and accurate assessment into the

underlying biological mechanisms and the potential for therapeutic interventions.
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1. Appendix A, Table 1.Sample demographics and clinical and pathological measures

2. Appendix A, Table 2.Quality control metrics

3. Appendix A, Table 3.The full number of nuclei per subject

4. Appendix A, Table 4.Cell-type specific differential expression analyses results

5. Appendix A, Table 5.Functional pathway enrichments across all comparisons

6. Appendix A, Table 6.Functional pathway enrichments across all comparisons (PD-linked

pathways)

7. Appendix A, Table 7.HMAGMA full results table

8. Appendix A, Table 8.sLDSC full results table

9. Appendix B, Table 1.Clinical and pathological features of the cohort

10. Appendix B, Table 2.Quality measures for read mapping and sequencing

11. Appendix B, Table 3.List of nuclei derived per subject

12. Appendix B, Table 4.Cell-type specific differential expression analyses results

13. Appendix B, Table 5.Functional pathway enrichments across all comparisons

14. Appendix B, Table 6.LDSC full results table

15. Appendix B, Table 7.HMAGMA full results table

16. Appendix B, Table 8.Number of genes per astrocyte module

17. Appendix B, Table 9.Enrichment of biological processes pathways result for astrocyte

modules

https://github.com/rahfel/Appendices
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18. Appendix B, Table 10.Fisher’s exact test result for enrichment of reactive astrocyte marker

genes

19. Appendix B, Table 11.Enrichment of heritabilty result table for astrocyte modules

20. Appendix B, Table 12.Number of genes per excitatory module

21. Appendix B, Table 13.Enrichment of biological processes pathways result for excitatory

modules

22. Appendix B, Table 14.Enrichment of heritabilty result table for excitatory modules

23. Appendix B, Figure 1.Reactive astrocyte average gene expression per group

24. Appendix B, Figure 2.Overlap of DEGs and neurodegenerative associated genes from

Genomics England gene panel.

25. Appendix C, Table 1.Differential expression analyses results table

26. Appendix C, Table 2.Functional enrichment.Overrepresentation analysis results table

27. Appendix C, Table 3.LDSC full results table

28. Appendix C, Table 4.DWLS reuslt table

29. Appendix C, Table 5.Differential splicing analyses result table
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E. H., Rodŕıguez-Rodŕıguez, E., Infante, J., Lage, C., González-Aramburu,

I., Sanchez-Juan, P., Ghetti, B., Keith, J., Black, S. E., Masellis, M., Ro-

gaeva, E., Duyckaerts, C., Brice, A., Lesage, S., Xiromerisiou, G., Bar-

rett, M. J., Tilley, B. S., Gentleman, S., Logroscino, G., Serrano, G. E.,

Beach, T. G., McKeith, I. G., Thomas, A. J., Attems, J., Morris, C. M.,

Palmer, L., Love, S., Troakes, C., Al-Sarraj, S., Hodges, A. K., Aarsland,

D., Klein, G., Kaiser, S. M., Woltjer, R., Pastor, P., Bekris, L. M., Lev-

erenz, J. B., Besser, L. M., Kuzma, A., Renton, A. E., Goate, A., Bennett,

D. A., Scherzer, C. R., Morris, H. R., Ferrari, R., Albani, D., Pickering-

Brown, S., Faber, K., Kukull, W. A., Morenas-Rodriguez, E., Lleó, A.,
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dentoft, M., Nöthen, M. M., O’Donovan, M. C., Oedegaard, K. J., Owen,

M. J., Paciga, S. A., Pato, C., Pato, M. T., Posthuma, D., Ramos-Quiroga,

J. A., Ribasés, M., Rietschel, M., Rouleau, G. A., Schalling, M., Schofield,

P. R., Schulze, T. G., Serretti, A., Smoller, J. W., Stefansson, H., Ste-

fansson, K., Stordal, E., Sullivan, P. F., Turecki, G., Vaaler, A. E., Vieta,

E., Vincent, J. B., Werge, T., Nurnberger, J. I., Wray, N. R., Florio, A. D.,

Edenberg, H. J., Cichon, S., Ophoff, R. A., Scott, L. J., Andreassen, O. A.,

Kelsoe, J., and Sklar, P. Genome-wide association study identifies 30 loci associated

with bipolar disorder. Nature Genetics 51 (5 2019). 4.2.5, 4.3.5

[294] Stamouli, E., and Politis, A. Pro-inflammatory cytokines in alzheimer’s disease.

Psychiatriki 27 (10 2016), 264–275. 3

[295] Stamouli, S., Anderlid, B.-M., Willfors, C., Thiruvahindrapuram, B., Wei,

J., Berggren, S., Nordgren, A., Scherer, S. W., Lichtenstein, P., Tam-

mimies, K., and Bölte, S. Copy number variation analysis of 100 twin pairs enriched

for neurodevelopmental disorders. Twin Research and Human Genetics 21 (2 2018), 1–11.

4.1.1

[296] Stankovic, I. N., and Colak, D. Prenatal drugs and their effects on the developing

brain: Insights from three-dimensional human organoids. Frontiers in Neuroscience 16

(3 2022). 4.1.2

[297] Stefanis, L. -synuclein in parkinson’s disease. Cold Spring Harbor Perspectives in

Medicine 2 (2 2012), a009399–a009399. 2.1.1, 2.1.2, 2.4.1

[298] Stessman, H. A. F., Xiong, B., Coe, B. P., Wang, T., Hoekzema, K., Fenck-

ova, M., Kvarnung, M., Gerdts, J., Trinh, S., Cosemans, N., Vives, L., Lin,



BIBLIOGRAPHY 201

J., Turner, T. N., Santen, G., Ruivenkamp, C., Kriek, M., van Haeringen,

A., Aten, E., Friend, K., Liebelt, J., Barnett, C., Haan, E., Shaw, M.,

Gecz, J., Anderlid, B.-M., Nordgren, A., Lindstrand, A., Schwartz, C.,

Kooy, R. F., Vandeweyer, G., Helsmoortel, C., Romano, C., Alberti, A.,

Vinci, M., Avola, E., Giusto, S., Courchesne, E., Pramparo, T., Pierce, K.,

Nalabolu, S., Amaral, D. G., Scheffer, I. E., Delatycki, M. B., Lockhart,

P. J., Hormozdiari, F., Harich, B., Castells-Nobau, A., Xia, K., Peeters,
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