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Abstract

The thin region of plasma at the edge of a tokamak, as the boundary condition to the confined

plasma in the core, plays an oversized role in the performance of such devices. As such, the

topic of exhaust physics is central to the ongoing effort to make magnetically confined fusion a

viable approach to clean energy generation. A defining feature of this edge plasma, called the

scrape-off layer (SOL), is a large temperature gradient in the direction parallel to the magnetic

field. Large temperature drops are probably crucial to avoid excessive heat loads to the solid

components which make up the walls of the device. However, their presence means that classical

transport models, which assume the plasma is at or close to local thermodynamic equilibrium

(LTE) and which are used widely in SOL modelling, can lose their predictive power [1–3].

The aim of this thesis is to investigate the extent of this effect in detail by performing kinetic

simulations of parallel transport in SOL plasmas, with a focus on the electrons. There is an

emphasis on quantifying the modelling uncertainties that exist in classical (‘fluid’) approaches

to SOL simulations by performing self-consistent comparisons between kinetic and fluid models.

To do this, the one-dimensional SOL kinetic code SOL-KiT has been used [4]. By extending

the capabilities of this code, reducing its computational expense, and developing a standalone

atomic physics code (all of which are described), it has been possible to study electron kinetics

in a range of conditions relevant to current and future tokamaks. A number of distinct investi-

gations have been performed. Firstly, it has been shown that fluid models are in fact very good

at capturing the transfer of energy between ions and electrons in SOL plasmas. Secondly, it

is demonstrated that a kinetic treatment leads to significant differences in parallel conductive

heat transport and behaviour at the wall boundary, both of which contribute to modified tem-

perature profiles. A set of simple scaling laws for these effects has been proposed. Finally, the

effect of non-LTE electrons on plasma-atomic physics has been investigated. Here, strongly en-

hanced reaction rates due to the form of the electron velocity distribution have been observed,

but this effect is largely reversed when considered alongside the modified temperature profiles.
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Chapter 1

Introduction

The source and availability of energy has been a key driver of societal development in the long

run of human history [5]. Most recently, the industrial revolution followed by rapid globalisation

has relied on large scale extraction of fossil fuel energy sources: coal, oil and gas are sufficiently

abundant and energy dense to facilitate energy-intensive activites such as manufacturing, long-

distance travel and heating, all of which are associated with increases in quality of life. As

such, total energy consumption in wealthy countries, supplied primarily by fossil fuels, has

increased rapidly in recent centuries. For countries which underwent this transition first, such

as the United Kingdom, energy consumption has plateaued in recent years (see Figure 1.1).

However, many nations across the world remain on an upward trajectory, and global energy

consumption is likely to continue to increase for the foreseeable future [6]. This state of affairs

is not compatible with the fact that burning fossil fuels drives unsustainable changes to the

climate via the release of carbon dioxide, nor with the fact that fossil fuel reserves are finite. Of

those finite reserves left in the ground, it has been estimated that 60% of oil and gas and 90%

of coal should be considered unextractable if internationally-agreed levels of global warming

are to be avoided [7].

The leading candidates to replace fossil fuel energy sources are nuclear fission, as well as re-

newable sources such as wind, solar, tidal, geothermal, etc. Nuclear fission is hindered by

issues with radioactive waste products, limited uranium supplies and public perceptions of its
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safety. At present, the most viable renewable energy sources are solar and wind. For both of

these, there are concerns over the availability of raw materials, storage, and transmission. Of

more long-term significance however is the issue of energy density, which is set by fundamen-

tal physics constraints. Wind and solar power have comparatively low energy density, which

puts an upper limit on the power consumption density (i.e. the power consumption per person

multiplied by the population density) which they can support. This is shown in Figure 1.1,

where we can see that the power consumption density of countries like the United Kingdom

is already close to the generating capacity for wind and, to a lesser extent, solar farms. For

the UK, with a modern consumption density of around 1W/m2, renewables are unlikely to

be able to meet demand without constructing very large farms (and associated infrastructure)

or importing from less densely-populated countries. This does not preclude renewables from

playing an important role in the transition away from fossil fuels, but it does highlight the need

for research into alternative, long-term solutions.
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Figure 1.1: Power consumption density (= power consumption per capita × population density)
over time for the UK and the globe. The horizontal lines show the power generation density
for the Hornsea wind farm and solar farms (the range is due to differences in solar capacity
depending on climate, latitude, efficiency, etc.). Data from [8], [9] and [10].

Nuclear fusion, where energy is released during the nuclear reaction in which light atomic nuclei

fuse to create a heavier nucleus, may represent a solution to this dilemma. Like renewable energy

sources and nuclear fission, no carbon dioxide is produced. It has a number of other advantages

beyond this:
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• The energy density of the fuel is high, being several million times higher than the stored

chemical energy in fossil fuels. A building-sized fusion device could produce a gigawatt

of power [11], consuming fuel at a rate of around a kilogram per day. By contrast, the

Hornsea 1 wind farm, with an output of 1.2 GW, is spread over 407 square kilometres,

and a 1 GW coal power station uses around 10,000 tonnes of fuel per day.

• The fuel source is abundant. Deuterium and tritium, isotopes of hydrogen, are used in

most fusion designs. Deuterium is abundant in seawater; lithium, from which tritium can

be derived, is found in both ore deposits and seawater. Both are available in quantities

which could meet the energy demands from the entire planet for at least thousands of

years [9].

• Nuclear fusion will not produce any long-lived, high activity radioactive waste [12]. Ra-

dioactive waste that is produced is predicted to be safe enough to recycle or reuse within

100 years.

• There is no risk of a fission-style meltdown, at least within conventional approaches to

fusion. The primary challenge with fusion is initiating and sustaining the reaction, and

the amount of fuel in the reactor at any one time is small (enough for only a few seconds

of operation).

Gaining the ability to extract useful quantities of energy from a controlled nuclear fusion re-

action would therefore be a transformative achievement. However, this remains an unsolved

problem, with both scientific and engineering challenges which first need to be overcome. These

problems typically stem from the need to achieve very high temperatures, often hotter than in

the sun’s core, in any proposed fuel source in order to achieve a high number of fusion reactions.

Containing such a high temperature substance, while simultaneously avoiding the destruction

of the reactor and extracting more energy than is put in to achieve these temperatures, is a

challenge.

The current leading approaches to fusion are differentiated by the method used to confine the

hot fuel. At the temperatures required, electrons dissociate from atoms and fusion fuel becomes
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a plasma, with qualitatively different behaviour to a neutral gas. Confinement of this fuel is

challenging, but vital to ensure that particles stay hot and do not escape faster than they

can react. This is typically done using either magnetic fields, or by accelerating the fuel in

an implosion such that its inertia does the job of confinement. There have been significant

recent advances in inertial confinement fusion experiments [13], and there is considerable effort

going into designing a roadmap towards fusion power plants based on magnetic confinement

fusion [14]. ITER is a magnetically confined fusion device currently under construction in

France. ITER will demonstrate several key aspects of a fusion power plant, including a long-

pulse burning thermonuclear plasma, tritium fuel breeding, and several important engineering

technologies related to control, diagnostics and safety [15]. See Figure 1.2 for a diagram of

the ITER tokamak. This project, along with DEMO [16] and several others [17–20], represent

serious attempts to solve the many challenges posed by attempting to harness fusion for energy

using magnetic confinement.

Figure 1.2: Diagram of the ITER tokamak. Key components can be seen such as the central
solenoid, vacuum chamber, main plasma (pink), exhaust region (bottom of the vacuum cham-
ber) and structural supports. Source: https://www.iter.org/album/Media.

https://www.iter.org/album/Media
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1.1 Nuclear fusion

Nuclear fusion of deuterium and tritium releases an alpha particle and a neutron,

2
1D+ 3

1T → 4
2He + n, (1.1)

where 2
1D is a deuterium nucleus with 1 neutron and 1 proton, and so on. The total binding

energy of the products is less than that of the reactants, meaning energy is released in this

reaction in the form of kinetic energy. For this reaction, 17.6 MeV is shared approximately 1:4

between the alpha particle and the neutron. Other fusion reactions with a net release of energy

are

2
1D+ 2

1D → 3
2He + n, (1.2a)

2
1D+ 2

1D → 3
1T + 1

1H, (1.2b)

2
1D+ 3

2He → 4
2He +

1
1H. (1.2c)

The cross-sections for these reactions are shown in Figure 1.3a. It is clear that D-T (deuterium-

tritium) fusion has the highest peak cross-section at the lowest energy, making it the favoured

candidate for controlled fusion experiments. The D-T cross-section peaks around 100 keV,

which is eminently achievable in modern particle accelerators. However, accelerating deuterons

into a stationary tritium target turns out to be impractical due to energy losses to collisions with

electrons in the target. Instead, we may heat a D-T mixture to a plasma and use the thermal

energy of the particles to achieve fusion. This approach is viable because any population

of particles in thermal equilibrium will have a distribution of particle energies, with a non-

negligible fraction having much higher energy than the average. This means temperatures

much lower than 100 keV can yield a significant reaction rate, as shown in Figure 1.3b.

The alpha particles from fusion are produced with 3.5 MeV of kinetic energy. In a D-T plasma

heated to fusion-relevant temperatures, the alpha particles can deposit some energy back into

the plasma via Coulomb collisions, acting as a heating source which can counteract losses. The
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(a) Cross-sections of various fusion reactions as a
function of the incident deuterium nucleus.

(b) Reaction rate for D-T fusion as a
function of temperature.

Figure 1.3: Figures reproduced from [21].

power balance is therefore

PH + Pα = PL, (1.3)

where PH is the external heating power, Pα is the alpha heating and losses are represented by

PL. When Pα > PL, the external heating used to heat the plasma initially can be removed,

the plasma temperature can be self-sustained and we have reached ‘ignition’. We can write

this ignition condition [21, 22] in terms of the plasma density n, temperature T and energy

confinement time τE (= W/PL, where W is the total energy content of the plasma),

nTτE > 3× 1021 m−3keVs. (1.4)

This quantity nTτE highlights the importance of all three of temperature, density and confine-

ment in achieving ignition. A measure of success in fusion experiments is the ratio

Q = Pfus/PH , (1.5)

where Pfus is the fusion power, i.e. the thermonuclear power produced in fusion reactions.

Variations on this parameter include an accounting of the efficiencies involved in both applying

external heating to the plasma and extracting usable energy from it. In the DT reaction (1.1),
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the 3.5 MeV given to the alphas is about 20% of the total 17.6MeV of energy released per

reaction, such that Q ≃ 5Pα/PH . This means Q = 1 (break-even) is reached when the alpha

heating reaches around 20% of the external heating power. Under ignition conditions (1.4) and

with external heating turned off, Q as defined in (1.5) goes to infinity. However, this is not a

requirement for a fusion power plant, and Q > 1 can be achieved without reaching ignition.

As discussed, the two main approaches to controlled fusion in the lab are magnetic confinement

fusion (MCF) and inertial confinement fusion (ICF). In MCF, particular configurations of

magnetic fields can lead to high confinement times, τE ∼ 0.1 s, and relatively low plasma

pressures (p = nT ) are used. In MCF experiments, a finite Q > 1 can in principle be sustained

for many confinement times with a constant input of external heating power. On the other hand,

ICF is a pulsed scheme where very short confinement times are achieved, τE ∼ 10−10 s, but

much higher plasma pressures help to produce fusion-relevant conditions (including ignition).

Experimental progress in the value of nTτE achieved in experiments since the late 1960s is

shown in Figure 1.4.
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1.2 Magnetic confinement fusion

Confinement of a gaseous plasma using magnetic fields relies on the Lorentz force, which aids

confinement in two ways. Firstly by causing plasma particles to orbit around the magnetic field

lines, inhibiting cross-field transport; secondly by exerting a net force on the plasma which may

counteract any forces acting to reduce confinement, such as pressure gradients.

A practical attempt at magnetic confinement may start with a cylindrical plasma with a mag-

netic field along the axis of the cylinder, inhibiting transport radially outwards. By also driving

a current in the plasma, we can create a poloidal component to the magnetic field, which exerts

a force radially inwards to counteract the outward force from the pressure gradient between the

plasma and the surrounding vacuum. By joining the ends together a torus-shaped plasma is

created, with helical field lines (shown in Figure 1.5). This very simple outline forms the basis

of magnetic confinement in tokamaks. An alternative approach is to create helical magnetic

field lines using magnetic coils only, without inducing a plasma current. See Figure 1.6 for a

comparison. Such a device is called a stellarator, and avoids some of the complications and

instabilities associated with plasma currents in tokamaks, but inherits issues related to precise

control of the magnetic field to yield good confinement properties. Here, we focus on the toka-

mak as the more developed method of plasma magnetic confinement at present, although much

of the physics is common to both configurations.

Figure 1.5: Simple diagram showing the magnetic field lines used for confinement in a tokamak.
Reproduced from [24].

Present-day conventional tokamaks such as JET (Oxfordshire, UK), DIII-D (California, USA),

and KSTAR (Daejon, South Korea), have a major radius of 1− 3 m and minor radius around

half that. The magnetic field strength in the core is 2−5 T, the plasma current is 2−4 MA and
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the external heating power is a few tens of MW. During operation, the core ion temperatures

peak at up to around 9 keV (∼ 108 K). The ITER tokamak is designed to have more than double

the major radius of JET, with a total plasma volume nearly an order of magnitude larger. The

magnetic field strength will be similar to that in present-day devices as this is limited by the

technology used in the field coils. However, there is active research into alternatives which may

offer higher field strengths and so better confinement in a smaller device. Examples are the

ARC and ST80-HTS tokamaks, which will employ high temperature superconducting magnets

to achieve core field strengths over 10 T in devices similar in size to current tokamaks.

Figure 1.6: Diagram of a tokamak (left) and a stellarator (right). Figure reproduced from [25].

1.3 Exhaust physics

Magnetic confinement of a plasma in a tokamak implies the existence of some surrounding

structure housing the magnetic field coils, structural supports, diagnostics, etc (this can be

seen in the ITER diagram in Figure 1.2). Therefore, the torus-shaped plasma in a tokamak

will not exist in an isolated vacuum, and some degree of plasma contact with a solid surface

is inevitable. As it turns out, magnetic confinement cannot completely eliminate this region of

plasma-surface interaction, and in fact some amount is desirable and necessary. This is because,

firstly, we can see from the D-T reaction (1.1) that Helium ‘ash’ will build up in the fuel mixture.

As charged particles, these will be confined to some extent by the same methods we are using

to confine the fuel, and having some mechanism of removing the ash is vital to prevent fuel

dilution. Secondly, ideal reactor conditions would involve steady-state (or quasi-steady-sate)
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operation at a constant temperature, in contrast to the pulsed operation envisaged in ICF

schemes. Therefore, excess heat needs to be manageably removed from the system. With these

considerations in mind, we see that some kind of exhaust region is necessary for the removal of

both particles and energy from a tokamak. Significant research effort is devoted to this exhaust

region, and it is a highly complex area of tokamak design. In Figure 1.7, a rendering of the

exhaust region as designed for the ITER tokamak is shown.

Figure 1.7: Diagram of the exhaust region designed for ITER, reproduced from [26].

A tokamak plasma can be divided into two regions, the core and the edge. Plasma in the core

is well-confined by the magnetic field configuration described in the previous section: magnetic

field lines here either close in on themselves or ergodically map out closed surfaces, and plasma

particles gyrate in tight orbits about these field lines and transport off of them is minimal. The

edge region is formed, by definition, by any solid surface which intersects the magnetic field lines

and renders them ‘open’. This is often called the scrape-off layer (SOL). If core confinement

were perfect, the edge region would be a vacuum. However, this is never the case in practice

and the core region leaks plasma slowly into the SOL, which is then transported towards a solid

surface primarily along the direction parallel to the magnetic field lines. It is this edge plasma

and region of plasma-surface interaction which makes up the tokamak exhaust.

Tokamak edge plasmas are characterised by supersonic flows towards the solid surfaces, steep

temperature gradients, large discrepancies in temporal and length scales in different directions,

surface interactions, the presence of several plasma species with distinct transport properties,



1.4. Theory and modelling in tokamak edge plasmas 39

and a vast and complex array of atomic and molecular physics processes. As well as this,

edge perturbations known as edge-localised modes (ELMs) and filaments result in time-varying

sources of particles and energy into the edge. Because of this, quantitative predictions of edge

plasma performance in current and future devices is highly challenging. A key quantity is the

value of the heat flux delivered to the walls of the device - if this exceeds the material constraints,

then the wall material can degrade and enter the plasma, causing critical confinement losses.

Replacing wall materials after each discharge is also operationally difficult as well as expensive.

Therefore, there is a need for a greater understanding of the physics determining the transport

of particles and energy from the core to the walls via the edge, where transport in the direction

parallel to the magnetic fields is dominant. This will enable better predictions in tokamak

experiments, and permit experimentalists to utilise any available control parameters to minimise

or manage issues related to this exhaust region.

1.4 Theory and modelling in tokamak edge plasmas

Accurate models of the plasma edge in tokamaks are essential for predicting reactor perfor-

mance. However, the physics governing the behaviour of these plasmas is multi-faceted and

difficult to model [27]. In general, models which contain a sufficient degree of fidelity do not

have analytical solutions, and so numerical solutions must be found. This is a challenge because

a huge range of length and temporal scales are relevant (see Figure 1.8), from the electron orbit

about the magnetic field (∼ 10−5m, 10−11s) to the parallel length of magnetic field lines con-

necting solid surfaces (∼ 102m) and the evolution of macroscopic plasma features (∼ 10−1s).

The physics of plasmas is also highly non-linear, where tight coupling exists between important

phenomena. This is most clearly demonstrated by the electromagnetic field, where plasma flows

drive fields which exert forces back on the plasma.

Plasmas are very well-described by kinetic equations, which are derived using a statistical

treatment of the equations of motion for all the charged particles in a plasma. They detail the

time evolution of a probability distribution function in the phase space made up of position
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Figure 1.8: A summary of relevant length and temporal scales in scrape-off layer plasmas.
Figure reproduced from [28].

and velocity or momentum. Variations on the kinetic equation stem from the treatment of

collisions. Long-range Coulomb collisions between charged plasma particles can often safely

be ignored at high temperatures because the cross-section decreases with energy, but at lower

temperatures or higher densities they will have an effect on the distribution function which can

be likened to a drag term and a diffusion term in velocity space. When neutral particles are

present in the plasma, short-range Boltzmann collisions describing inelastic processes such as

ionization may also be important.

The core challenge of modelling SOL plasmas with kinetic equations is in the fact that plasma

conditions range from nearly collisionless in the region close to the core, to highly collisional

and partially ionized (such that neutral particles are present) close to the walls. This means

that these collision terms are important, but in general they take integro-differential forms and

are thus expensive to compute. In addition, the high dimensionality of kinetic equations (7 in

total: time, three spatial dimensions and three velocity dimensions) make numerical solutions

to relevant problems intractable, and analytical solutions are rare.

A solution to this problem is offered by averaging over the velocity space dimensions, yielding

a set of equations which describe the behaviour of macroscopic fluid quantities such as density,

flow speed and temperature. While analytical solutions to fluid models remain elusive, they



1.4. Theory and modelling in tokamak edge plasmas 41

are typically amenable to computation. However, averaging over velocity space in this way

represents a loss of information: to avoid an infinite hierarchy of equations, a closure must be

applied at some point by assuming some form of the distribution function. A common choice

is to assume the distribution is at or close to a Maxwellian,

f(v) = n
( m

2πkT

)3/2
exp

−mv2

2kT
, (1.6)

where for a given species of plasma particle (e.g. electrons), v is the velocity magnitude, n is

the local density, T is the temperature, m is the particle’s mass and k is Boltzmann’s constant.

This choice is natural since collisions between particles in plasmas act to push the plasma

towards local thermodynamic equilibrium (LTE) and Maxwellian distributions, but this means

that fluid models rely on sufficiently high collisionality to be valid. In practice, this means

there is an assumption that the mean free path of plasma particles, λ, is short relative to some

length scale of interest, L (for example the plasma dimensions), i.e. λ/L ≪ 1. When this

condition is not met, local plasma behaviour can depend on spatially distant conditions and

so the behaviour may be termed ‘non-local’. Non-local plasma effects are coincident with a

strong departure from Maxwellian-distributed particles, highlighting that a kinetic treatment

is necessary to capture this behaviour. As such, the term kinetic is used synonymously with

non-local in this context. For a plasma consisting of electrons and ions, the greater mobility of

the electrons (due to their small mass) and their importance in plasma-atomic reactions in the

SOL means that kinetic effects in the electrons may be particularly relevant.

The presence of certain phenomena can push the plasma far from LTE and drive kinetic effects.

Some examples are: time-varying sources of particles or energy into the edge such as ELMs

and filaments; steep temperature gradients, where velocity-dependent particle mean free paths

can result in local energy transport which depends on distant plasma conditions; inelastic

collisions with atomic particles (including impurity species), which can deplete or seed high

energy particle populations; and plasma-surface interactions, which act to truncate distribution

functions above some threshold velocity leading to anisotropies. All of these phenomena are

present in SOL plasmas, but for fluid models to be invalid the necessary condition of low
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collisionality must also be met. Crucially, the hot edge plasma adjacent to the core can have

very long mean free paths relative to the parallel distance along the SOL, so it is plausible

that this is indeed the case. However, a defining feature of tokamak edge plasmas is that

collisionality varies significantly along the parallel direction, increasing to high collisionality in

the cool, dense plasma close to the walls. There is therefore a competition between drivers of

kinetic effects in SOL plasmas and collisions, which act to localise the plasma behaviour and

ensure fluid models are appropriate. Accordingly, there is an open question as to the validity

of some aspects of fluid models of SOL plasmas, in particular in relation to transport in the

parallel direction, and there is a clear motivation to compare predictions from kinetic models

with fluid treatments.

This question is more pressing for future devices under design and construction, since the

collisionality range spanned in the edge plasmas will be larger. We can define a collisionality

parameter [24]

ν∗
u = L/λu ≃ 10−16Lnu/T

2
u ,

where λu is the Coulomb mean free path of SOL plasma particles upstream, i.e. close to the

core plasma, L is the length parallel to the magnetic field of the SOL from surface to surface in

m, nu is the upstream plasma density in m−3 and Tu its temperature in eV. Both nu and Tu are

controllable in tokamak experiments to some extent, depending largely on conditions on the

core, so we can use ν∗
u to assess SOL conditions that result from a given tokamak experiment.

Given that collisionality will be high close to the walls (a result of the required low temperatures

there), ν∗
u ≪ ν∗

wall, and that pressure is approximately constant in a given SOL flux tube and

therefore collisionality increases monotonically along the SOL in the parallel direction between

the core and the wall, then ν∗
u is a good proxy for the collisionality range of a given SOL plasma.

Figure 1.9 shows how ν∗
u varies in current tokamaks and is expected to vary in future tokamaks

as a result of differences in the values of L, nu and Tu. It is clear that a different plasma regime

will be accessed in future devices, and it is not obvious that fluid plasma models will be able

to capture these collisionality ranges accurately.

The need for improved understanding and modelling of plasma transport in the SOL is demon-



1.4. Theory and modelling in tokamak edge plasmas 43

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Lnu [m 2] 1e21

0

50

100

150

200

250

300

350

T u
 [e

V]

*
u = 5

*
u = 15

*
u = 100

Current experiments
Future devices

Figure 1.9: Plot of the range of Lnu and Tu which are accessed in current tokamak experiments
and in future planned devices. Also shown are some contours of constant collisionality param-
eter ν∗

u. Data for current experiments (DIII-D and JET) from [29,30] and estimates for future
experiments (ITER, DEMO and SPARC) from [31–33]

strated by discrepancies in experimental observations compared to predictions. An example

comes from modelling with SOLPS-ITER [34], which is a widely-used edge plasma code for

modelling of tokamak experiments where the plasma is modelled as a fluid and the neutral

particles are modelled kinetically. Agreement between SOLPS-ITER and experiments is gen-

erally good, although this relies on post-hoc fitting of cross-field diffusive fluxes, meaning its

predictive capacity is limited somewhat. Moreover, discrepancies often exist in plasma condi-

tions close to the walls, with lower temperatures and higher densities predicted compared to

experimental observations [35]. This is closely related to the neutral pressure, where discrep-

ancies have been seen in a recent code comparison with experiments on the TCV tokamak by

Wensing et al. [36]. In Figure 1.10, reproduced from this paper, we see various unsuccessful

attempts to resolve differences in the measured divertor neutral pressure by making changes to

the modelling approach. It has been suggested [1, 37] that non-local transport in the direction

parallel to the magnetic field may be at the root of such differences. Differences from classi-

cal predictions have also been observed experimentally in measurements of conditions at the

plasma-surface interface [38].
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Figure 1.10: Attempts to resolve the discrepancy in divertor neutral pressure pdivn as measured
in experiments on the TCV tokamak and SOLPS-ITER simulations, while varying the line-
averaged electron density ⟨ne⟩l. Figure reproduced from [36].

1.5 Research outline

Having motivated the task of seeking greater understanding of plasma transport processes in

the edge plasma of tokamaks, and with particular reference to a kinetic treatment of the electron

parallel transport, here we will now discuss the approach to attempting to answer some of these

questions.

Chapter 2: Background

Here, we will work through the theoretical background required to carry out novel investigations

of plasma transport in the SOL. A general overview of plasma transport will be presented,

starting from a kinetic description and working towards a fluid description as is used in much

plasma modelling today. Specific physics related to the SOL will be presented, along with some

key insights gained from simplified analytical models. Plasma-atomic physics is discussed along

with methods used to handle the large number of atomic processes involved. Finally, there will
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be a discussion of non-local transport followed by a review of the current state of the field.

Chapter 3: Numerical modelling

The investigations in this work have been carried out using the plasma transport code SOL-

KiT [4], which is briefly outlined. The studies with this code presented later have required

upgrades to the physics model in SOL-KiT, and these will be discussed here and benchmarked.

These extensions relate to the models used for ions and neutral particles in SOL-KiT, as well

as a method of reducing the number of collision operators which need to be evaluated. In

addition, a standalone atomic physics code, SIKE, has been developed to study kinetic effects

in plasma-impurity reaction rates. This will also be described and benchmarked.

Chapter 4: Electron-ion energy transfer

An investigation into kinetic effects in electron-ion energy transfer in SOL plasmas is presented,

both in steady-state and transient regimes. This chapter has been adapted from a paper

published in the European Physical Journal Plus [39]. Results from this study inform the

direction of the subsequent investigations.

Chapter 5: Scaling laws for kinetic effects in scrape-off layer plasmas at equilibrium

Another investigation carried out with SOL-KiT was motivated by the desire to understand the

region of parameter space in which kinetic effects are and are not important in SOL plasmas.

From this, a set of scaling laws have been observed which predict the magnitude of kinetic

effects seen in simulations, which can be used as corrections to a fluid model. The results from

this study have been submitted to Nuclear Fusion for publication, and are currently under

review.
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Chapter 6: Kinetic effects in plasma-impurity reaction rates

Given that impurities play such an important role in the scrape-off layer and tokamak perfor-

mance more generally, there is a need to include them in our models. An initial investigation

has been carried out and presented here, which looks into the presence of kinetic effects in

plasma-impurity reaction rates, where it is natural to expect that modified electron velocity

distribution functions and temperature profiles may change predictions for impurity radiation

in SOL plasmas.

Chapter 7: Conclusions

The main conclusions of this body of work will be presented and discussed. Limitations will

also be discussed, along with some further research questions which have been raised in the

course of this study.



Chapter 2

Theoretical background

Plasmas exhibit an array of complex behaviour which is qualitatively different from that of

neutral gases. This is despite the fact that, at a microscopic level, the physics governing their

behaviour is similar. The key difference is the importance of the electromagnetic fields, which

influence and are influenced by the motion of the charged plasma particles.

The primary and most general question we are interested in in this thesis is that of transport,

which is to ask how macroscopic quantities move within and around a system containing a

plasma. This question is crucial in tokamak plasmas, where there is an enormous change in

conditions over just a few metres between the core and the walls. Understanding and predicting

the flux of quantities such as mass and energy, driven by such steep gradients (as well as sources

and sinks), is central to being able to create a sustained and controlled fusion reaction in the

lab.

We may start a description of plasma transport from a macroscopic (fluid) viewpoint, which is

intuitive, or a microscopic (kinetic) viewpoint, which is precise. In this thesis we are concerned

with plasmas where theories in terms of fluid quantities are useful, but may miss important

physics that only a kinetic treatment can capture. Because of this, a fluid transport theory

relevant to the scrape-off layer will be developed by first starting with a description of the

particle kinetics of plasmas. There will be an outline of the atomic physics which is relevant to

partially ionized tokamak plasmas, as well as some discussion of the distinct phenomena missed

47
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by fluid treatments of the scrape-off layer. Finally, a literature review of fluid and kinetic

approaches to modelling tokamak edge plasmas will be presented.

Although the discussion presented here will start from a general perspective, we are primarily

interested in electron kinetics in this work due to their significant role in scrape-off layer trans-

port, and so the focus will progressively lean towards that direction. The role of ion kinetics

will be discussed in Section 2.8.

2.1 Some basic plasma physics

A neutral gas with atomic number Z which has been ionized to form a plasma can be considered

as a sea of electrons with charge qe = −e, and ions with charge qi = Ze, all of which are free

to move independently and where the net electric charge is close to zero. If we were to place

an additional positively charged particle somewhere in the plasma, it would attract electrons

and repel ions so that the additional charge is locally neutralized. Under the assumptions of

Boltzmann-distributed particles and particle energies dominated by kinetic energy rather than

electrostatic potential energy, it can be shown [40] that the electrostatic potential ϕ around the

particle is ϕ(r) ∝ r−1 exp(−r/λD), where r is the distance from the additional charge and λD

is the Debye length,

λD =

(
ϵ0kT

nee2

)1/2

, (2.1)

where ϵ0 is the vacuum permittivity, k is Boltzmann’s constant, ne is the electron density and

T is the plasma temperature. So the electrostatic potential varies over a length scale set by

λD, meaning that the additional charge is effectively screened beyond a sphere with radius

approximately equal to λD. The number of particles in a Debye sphere is

ND =
4π

3
λ3
Dne, (2.2)

where ND ≫ 1 is required due to assumptions made for Debye shielding theory to be valid.

Such a plasma is called ‘weakly coupled’. For a weakly coupled plasma, Debye shielding predicts
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that random fluctuations will not produce charge imbalances over distances greater than λD

and so the plasma is said to be quasineutral, ne = Zni, where ni is the ion density.

Another fundamental parameter is the plasma frequency, ωpe, which is related to the speed at

which the electronic shielding process described above occurs. If we were to displace a slab of

electrons in the plasma some distance, their equation of motion in the electric field which arises

from this displacement describes simple harmonic motion with a frequency

ωpe =

(
nee

2

meϵ0

)1/2

. (2.3)

In the presence of a magnetic field, plasma electrons and ions will gyrate about the field lines at

a frequency which depends on their charge-to-mass ratio, q/m, and the strength of the magnetic

field, B. The Larmor frequency is thus

Ω =
qB

m
. (2.4)

The radius of this orbit depends also on the magnitude of the velocity component of the particle

which is perpendicular to the magnetic field, v⊥, so the Larmor radius is defined

rL =
v⊥
Ω
. (2.5)

Typically, the shortest time and length scales in plasmas are related to the plasma frequency

and the electron Larmor radius. It is also useful to relate the Coulomb collision times and mean

free paths of the different plasma species, since they are fundamental to understanding many

important aspects of plasma transport. Coulomb collisions will be discussed in detail later in

this chapter, but a simple estimate of the collisional mean free path is

λ ≃ 1016
T 2

n
, (2.6)

for temperature in eV and density in m−3, where the values for both electron-electron and
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ion-ion collisions are similar. The collision time is

τ =
v

λ
(2.7)

for some velocity v, which we may estimate with the thermal velocity, vth =
√
2kT/m. Because

of their much smaller mass, the thermal velocity of electrons is larger and so their collision time

is typically shorter than the ions.

2.2 The kinetic equation

There are several ways of arriving at the kinetic equation. Here, a brief derivation of the

Vlasov equation via the Klimontovitch equation is presented (following a similar approach to

that presented by Swanson [41]), and it is the Vlasov equation which is referred to as ‘the

kinetic equation’ here.

The starting point is a collection of N0 plasma particles of species α, where the position of the

ith particle is xi(t) and its velocity is vi(t). The number density function, which describes the

location of all particles in the 6-dimensional phase space made up of the position and velocity

coordinates, is then

Nα(x,v, t) =

N0∑
i=1

δ [x− xi(t)] δ [v − vi(t)] . (2.8)

To describe the plasma as a whole, we can sum over all species α (where α may be electrons

or any of the ion species present) to define a total number density function,

N(x,v, t) =
∑
α

Nα(x,v, t).

Integrating this equation over a small phase space volume gives the number of particles in that

volume, but the resulting function is not smooth due to (2.8) being made up of delta functions.

This will be dealt with shortly.
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The evolution of the particle positions in time is

∂xi

∂t
= vi, (2.9)

and the velocities evolve due to the Lorentz force (assuming no other forces are acting on the

particles),

∂vi

∂t
= Fi/mα = qα (E

m(xi, t) + vi ×Bm(xi, t)) /mα, (2.10)

where qα is the electric charge of particles of species α and mα is their mass. The electric and

magnetic fields, Em and Bm, are the electric and magnetic fields experienced by particle i due

to all other particles as well as any externally applied fields. These are described by Maxwell’s

equations,

∇ · Em(x, t) = ρ/ϵ0, (2.11a)

∇ ·Bm(x, t) = 0, (2.11b)

∇× Em(x, t) = −∂Bm(x, t)

∂t
, (2.11c)

∇×Bm(x, t) = µ0j
m(x, t) +

1

c2
∂Em(x, t)

∂t
, (2.11d)

where ρ =
∑

α qα
∫
Nαdv and j =

∑
α qα

∫
vNαdv are the charge and current densities respec-

tively, µ0 is the vacuum permeability and c is the speed of light.

To see how Nα evolves in time, we take the time derivative, noting that

∂

∂t
δ [r− xi(t)] δ [v − vi(t)] = −∂xi

∂t
· ∇δ [x− xi(t)]−

∂vi

∂t
· ∇vδ [v − vi(t)] . (2.12)

Therefore, noting also that ∂vi

∂t
is given by the Lorentz force (2.10), we have

∂Ns

∂t
=−

N0∑
i

vi · ∇δ [x− xi(t)] δ [v − vi(t)]

−
N0∑
i

qs
ms

(Em + vi ×Bm) · ∇vδ [x− xi(t)] δ [v − vi(t)] ,

(2.13)
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from which which we can arrive at the Klimontovitch equation,

∂Nα

∂t
= −

N0∑
i

v · ∇δ [x− xi(t)] δ [v − vi(t)]

−
N0∑
i

qα
mα

(Em + v ×Bm) · ∇vδ [x− xi(t)] δ [v − vi(t)]

= −v · ∇Nα − qα
mα

(Em + v ×Bm) · ∇vNα,

(2.14)

by letting vi → v (since the Dirac deltas will only be non-zero when v = vi).

At this point, Nα is not smooth and solving (2.14) requires detailed knowledge of the positions

and velocities of all particles. A more useful equation can be obtained by averaging over a small

phase space volume ∆V = ∆x∆y∆z∆vx∆vy∆vz, giving the probability distribution function

fα(x,v) =
Nα(x < xi < x+∆x,v < vi < v +∆v)

∆V
. (2.15)

The precise value of Nα can then be written as a sum of the average and deviation from the

average,

Nα = fα + δNα, (2.16)

and similarly for the electric and magnetic fields,

Em = E+ δEm (2.17a)

Bm = B+ δBm (2.17b)

We can now insert these expressions into the Klimontivitch equation (2.14) and take the average

values of all quantities (denoted by ⟨...⟩), making use of the fact that ⟨δNα⟩ = 0, etc. to yield

a general kinetic equation

∂fα
∂t

+ v · ∇fs +
qα
mα

(E+ v ×B) · ∇vfα = − qα
mα

⟨(δEm + v × δBm) · ∇vδNα⟩ . (2.18)

The left hand side here describes the average (macroscopic) behaviour, while the right hand
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side here describes the effect of microscopic deviations of the electric and magnetic fields, or

Coulomb collisions. If we ignore collisions on the basis that the relative effect of fluctuations

is small providing the number of particles in the averaging volume is large, then we get the

Vlasov equation,

∂fα
∂t

+ v · ∇fs +
qα
mα

(E+ v ×B) · ∇vfα = 0. (2.19)

Along with Maxwell’s equations for the average fields E and B, with the charge and current

densities defined ρ =
∑

α qα
∫
fαdv and j =

∑
α qα

∫
vfαdv, we now have a solvable equation

set.

It is possible to reformulate the distribution function, and the kinetic equation as a whole, as a

series solution in terms of spherical harmonics in velocity space [42], where we start by shifting

from Cartesian coordinates in velocity space, v = (vx, vy, vz), to spherical coordinates, (v, θ, ϕ),

where v is the velocity magnitude, and θ and ϕ are the polar and azimuthal angular coordinates

respectively. We can then write the distribution function as

fα(v) = fα(v, θ, ϕ) =
∞∑
l=0

l∑
m=−l

fm
l (v)P

|m|
l (cos θ)eimϕ,

where P
|m|
l are the associated Legendre polynomials. This is particularly useful for the electrons

in moderately collisional scenarios and where the electric field is not too strong, as the distribu-

tion can then be viewed as being mostly spherically symmetric with some corrections. What’s

more, spherical harmonics are eigenfunctions of the scattering operator for collisions between

electrons and heavy particles. The kinetic equation then becomes a series of equations for the

coefficients fm
l (v), and so offers a physically meaningful method of dimensionality reduction

providing the series is truncated at some point. See Section 3.1.1 and Appendix A.1 for more

details.
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2.3 Collisions

In deriving the Vlasov equation (2.19), we have assumed that plasma particles only interact with

other particles via electromagnetic fields from macroscopic, collective motion, over distances

greater than the Debye length. Short range encounters (i.e. collisions) do occur however, both

between charged particles and between charged and neutral particles. In general, the effect

of collisions is to cause the phase space position of particles to jump over timescales which

are short compared to the undisturbed motion of the particle. As such, they can be seen as

sources/sinks of the distribution function in phase pace, such that we can write the more general

kinetic equation,

∂fα(t, r,v)

∂t
+ v · ∇fα(t, r,v) + a · ∇vfα(t, r,v) =

∑
β

Cα,β(fα, fβ), (2.20)

where Cα,β is the collision operator for collisions between species α and β, which in general is

a function of the distributions of both species types.

Collisions of plasma particles with neutrals are akin to billiard ball collisions, where the mediat-

ing potential is short-range and the deflection angle may be large. On the other hand, collisions

between charged species via the Coulomb force are dominated by small, grazing collisions [41].

We use distinct formalisms to treat each interaction type but both start from the Boltzmann

integral, which will be presented first before presenting the Fokker-Planck collision operator for

Coulomb collisions. The discussion in this section is largely adapted from material contained

in [40–44].

2.3.1 Boltzmann collision operator

We want to determine the effect on the distribution function of collisions between particles of

species α and β. We will once again avoid providing a mathematically rigorous derivation here,

instead providing a simplified outline for brevity. See e.g. [45,46] for a more detailed discussion.

We will consider binary collisions where the initial velocities are vi
α, v

i
β and final velocities are
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vf
α, v

f
β, which interact via the potential V (r) where r is their relative position. The form of

the potential at this stage is unimportant, only that it depends of relative position only. The

relative velocity is

vi
rel = vi

α − vi
β, (2.21)

which changes in direction but not magnitude during an elastic collision, so that virel = vfrel =

vrel.

In a time δt, the change in the number of particles of species α in a given phase space volume

element drdv around the coordinates (r,v) due to collisions is

(2.22)Cα,βdrdvδt = δfα(t, r,v)drdv

= (collisions involving particles with velocity vf
α)

− (collisions involving particles with velocity vi
α),

i.e. there is a gain of particles into dv from particles of species α with vf
α, and a loss of particles

out of dv from particles with vi
α. To determine each of these terms on the right hand side, we

define the impact parameter b, which is the distance of closest approach if there is no interaction,

and the deflection angle χ, which is uniquely determined by b. See Figure 2.1a. The azimuthal

angle, ϕ, is measured relative to the orientation of the x-axis, although this decision is usually

arbitrary as the collision parameters of interest are typically independent of ϕ.

To proceed, we will have to assume that no correlations exist between incident particles; a

plausible but consequential leap which is responsible for introducing an arrow of time into the

kinetic equation.

For the first term in (2.22), the number of particles of species β which can interact is given by

their density at (r,vi
β) around dvi

β, multiplied by the spatial volume element swept in time δt

(see Figure 2.1b), which is vrelδtdϕbdb, integrated over all possible initial velocities vi
β, impact

parameters b and azimuthal angles ϕ. Multiplying by the number of particles of species α at

(r,vi
α) around dvi

α therefore gives the total number of collisions,

δtdrdvi
α

∫
dvi

β

∫
dϕ

∫
bdbfα(v

i
α)fβ(v

i
β)vrel, (2.23)
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(a) Collision geometry. We orient along the
vi
rel direction, and are primarily interested in

scattering angle χ rather than the orientation
of the x-y plane.
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α
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(b) Volume element, where we can integrate
over all b and ϕ to get the number of particles
(of species β) which can interact with a parti-
cle of species α around dvi

α.

Figure 2.1: Diagrams showing the setup for this heuristic derivation of the Boltzmann collision
integral.

where we have dropped the t, r dependence in fα and fβ to simplify the notation. With similar

arguments, the loss term in (2.22) is

δtdrdvf
α

∫
dvf

β

∫
dϕ

∫
bdbfα(v

f
α)fβ(v

f
β)vrel. (2.24)

We now use the fact that the determinant of the Jacobian on coordinate transformation from

vi
α, v

i
β to vf

α, v
f
β is 1, meaning that dvi

αdv
i
β = dvf

αdv
f
β. Furthermore, given we are free to

choose the volume element dv at which we are evaluating the effect of collisions, we may set

dv = dvi
α in (2.22) and arrive at a typical form of the Boltzmann collision integral,

Cα,β =

(
δfα(v

i
α)

δt

)
=

∫
dvi

β

∫
dϕ

∫
bdbvrel

[
fα(v

f
α)fβ(v

f
β)− fα(v

i
α)fβ(v

i
β)
]
.

The differential cross-section, σ(vrel, χ), is defined in terms of the impact parameter, b, and the

scattering angle, χ,

σ(vrel, χ) =
b

sinχ

∣∣∣∣ ∂b∂χ
∣∣∣∣ ,

which allows us to rewrite the collision integral as a function of σ(vrel, χ) and an integral over
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solid angle d2Ω,

Cα,β(v
i
α) =

∫
dvi

β

∫
d2Ωvrelσ(vrel, χ)

[
fα(v

f
α)fβ(v

f
β)− fα(v

i
α)fβ(v

i
β)
]
. (2.25)

This Boltzmann collision operator is hard to deal with in practice: it gives the kinetic equation

an integro-differential form, while also being non-linear in fα. However, the general form

presented here is a useful starting point for developing more tractable collision terms which can

be used in kinetic modelling of plasmas. For example, for electrons colliding with heavy ions or

neutral particles (where the mass ratio is at least a few thousand), the collision is characterised

by an angular deflection and a small transfer of kinetic energy. This means we can put vi
β ≃ vf

β

in (2.25) and, given the distribution of the heavy scatterers looks like a delta function to the

electrons, fβ ≃ nβδ(0) with β referring to some heavy species, we can eliminate the dependence

on fβ entirely to yield a simplified operator,

Cα,β(v
i
α) = nβ

∫
d2Ωvrelσ(vrel, χ)

[
fα(v

f
α)− fα(v

i
α)
]
.

Appendix A.2 will outline a method, along similar lines and employing the spherical harmonic

expansion, of treating the Boltzmann collision operator for electrons which is amenable to

computation. For collisions between particles with equal mass however, such simplifications are

not possible. Some processes do still offer some opportunities for streamlining (2.25) though.

One SOL-relevant example is the charge exchange reaction, where a plasma ion collides with a

neutral particle and their identities are swapped. Here, we can assume vi
α ≃ vf

β and vi
β ≃ vf

α,

and a cross-section which has no angular dependence,
∫
d2Ωσ(vrel, χ) = σtot(vrel), to obtain the

simplified operator,

Cα,β(v
i
α) = fβ(v

i
α)

∫
dvi

βvrelσtotfα(v
i
α)− fα(v

i
α)

∫
dvi

βvrelσtotfβ(v
i
β).

Situations where such simplifying assumptions cannot be made, for example in collisions be-

tween like species in plasmas, have in part motivated the development of other approaches,

discussed in the next section.
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2.3.2 Fokker-Planck collision operator

For Coulomb collisions, especially between like particles, the Boltzmann collision operator is

not optimal. It has been developed for binary, short-range collisions, but for charged particles

in a plasma there are ∼ 103 particles within a Debye length. As such, Coulomb collisions in

plasmas are long-range compared to the mean inter-particle spacing, and involve interactions

between many particles. Furthermore, the overall effect of Coulomb interactions is dominated

by small-angle deflections, which is due to the relative weakness of the electrostatic potential

between interacting particles compared to their thermal energy. Strong interactions, where

the scattering angle is large, are rare [41]. This all suggests an alternative approach may be

appropriate.

The primary challenge with the Boltzmann collision operator (2.25) is that, for it to be useful,

we need to be able to relate the final velocities on the right hand side to the initial velocities.

The distinct nature of Coulomb collisions in plasmas offers a way forward. We will retain the

definitions and collision geometry of the previous section, see equation (2.21) and Figure 2.1.

Under the assumption that small angular deflections dominate, we can write

vf
α = vi

α +∆v +O(χ3)

and drop the O(χ3) term, where

∆v =
mβ

mα +mβ

[
χvrel(cosϕx̂+ sinϕŷ)− 1

2
χ2vi

rel

]
.

By inserting this into (2.25), an operator appropriate for Coulomb interactions between all

species in a plasma can be obtained. Doing so yields the Landau form of the Fokker-Planck

collision operator [41]. This is somewhat involved, so instead here we provide a simpler ap-

proach.

We start by considering a distribution function at time t, fα(t,v−∆v), where a particle changes

velocity by ∆v after a time ∆t. If we propose the existence of some function p(v,∆v), which
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gives the probability for a particle at v to change velocity by ∆v, then we can write

fα(t+∆t,v) =

∫
fα(t,v −∆v)p(v −∆v,∆v)d(∆v),

meaning we have arrived at fα(t + ∆t,v) by considering all possible velocity changes ∆v,

weighted by their probability. If we Taylor expand both the left hand side and the integrand

on the right hand side, we can get this expression in terms of functions evaluated at t and v

rather than ∆t and v −∆v,

fα(t,v) + ∆t
δfα(t,v)

δt
+ ...

=

∫
d(∆v)

(
fα(t,v)p(v,∆v)−∆v · ∂(fαp)

∂v
+

1

2
∆v∆v :

∂2(fαp)

∂v∂v
+ ...

)
,

where the δf
δt

notation on the left signifies that we are considering the change in fα only due

to collisions. For clarity, ∆v · ∂
∂v

=
∑

i∆vi
∂
∂vi

and ∆v∆v : ∂
∂v

=
∑

i,j ∆vi∆vj
∂2

∂vi∂vj
for i, j ∈

{x, y, z}. Now, we can drop terms of order ∆t2 and higher from the left hand side, but we

have to include terms up to ∆v∆v on the right hand side due to collisions being treated as

a random walk process, where the magnitude of ∆v and ∆v∆v both scale with ∆t. We can

simplify further by using the fact that p is a probability distribution and so integrates to one,

∫
p(v,∆v)d(∆v) = 1,

and by defining the average changes in ∆v and ∆v∆v in a time ∆t,

⟨∆v⟩ =
∫

∆vp(v,∆v)

∆t
d(∆v), (2.26a)

⟨∆v∆v⟩ =
∫

∆v∆vp(v,∆v)

∆t
d(∆v), (2.26b)

we arrive at the Fokker-Planck equation,

δfα(t,v)

δt
= − ∂

∂v
· (fα⟨∆v⟩) + 1

2

∂2

∂v∂v
: (fα⟨∆v∆v⟩) . (2.27)
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This equation describes the change in the distribution function due to frequent small-angle

Coulomb collisions between charged particles. It can be shown [40] that the first term here

produces a deceleration on particles undergoing Coulomb collisions, while the second term acts

to spread out a narrow beam in velocity space. Accordingly, the Fokker-Planck equation is

often said to constitute a drag and diffusion in velocity space.

Equation (2.27) does not yet tell us how to actually compute the effect of Coulomb collisions on

a distribution function, since we do not know the form of p(v,∆v). The derivation of analytical

forms for ⟨∆v⟩ and ⟨∆v∆v⟩ is somewhat involved so only the final results are presented here,

see [41] for details. The result is that, for collisions between species α and a (charged) scattering

species β, we get

⟨∆v⟩α,β = Γα,β
∂Hβ

∂v
, (2.28a)

⟨∆v∆v⟩α,β = Γα,β
∂2Gβ

∂v∂v
, (2.28b)

where we now have a few quantities to define. H and G are the Rosenbluth potentials, which

depend only on the scattering species β,

Hβ(v) =
mβ

µ

∫
fβ (v

′)

|v − v′|
dv′, (2.29a)

Gβ(v) =

∫
fβ (v

′) |v − v′| dv′. (2.29b)

The constant Γα,β is

Γα,β =
q2αq

2
β ln Λα,β

4πε20m
2
α

, (2.30)

where lnΛ is the Coulomb logarithm. A key step in deriving these terms, which is also re-

sponsible for the Coulomb logarithm appearing in them, involves a consideration of the range

of impact parameters b over which we must integrate to evaluate the number of collisions, as

in the Boltzmann collision integral (see Figure 2.1). Because of the long-range nature of the

Coulomb force, this integral diverges if we try to integrate over all possible impact parameters

(or similarly, all scattering angles χ). Instead, we recognise that the Debye length puts an

upper limit on the impact parameter, since the Coulomb potential from a scattering particle
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is shielded beyond that distance. We can also apply a lower limit by recalling that grazing

collisions dominate over large deflections. The Coulomb logarithm then becomes

lnΛα,β = ln

(
λD

bmin

)
, (2.31)

where bmin is the impact parameter yielding a deflection of χ = 90◦, which can be calculated

in terms of plasma parameters and the masses of the colliding species [47]. ln Λ varies slowly

with all parameters due to the logarithm and typically lnΛ ≃ 10 − 20; the case where lnΛ

approaches unity implies some assumptions on which plasma transport theory rely (such as

ND ≫ 1) may no longer be valid.

With this, we can write explicitly the usual form of the Fokker-Planck collision operator in

terms of the Rosenbluth potentials,

CFP
α,β = Γα,β

{
− ∂

∂v
·
(
fα

∂Hβ

∂v

)
+

1

2

∂2

∂v∂v
:

(
fα

∂2Gβ

∂v∂v

)}
, (2.32)

with Γα,β, Hβ and Gβ defined in equations (2.29) and (2.30), and where fα is evaluated at

(t, r,v). When appearing on the right hand side of the Vlasov equation (2.19), we are able to

treat a rich variety of plasmas where conditions mean collisions between plasma particles may be

important (both between like particles and different species). This is called the Vlasov-Fokker-

Planck (VFP) equation. When also combined with the Boltzmann collision operator (2.25),

sometimes referred to (rather clunkily) as the Vlasov-Fokker-Planck-Boltzmann equation, we

may treat partially-ionized plasmas where the presence of neutrals also plays an important role

in the plasma dynamics. Throughout this thesis, ‘the kinetic equation’ refers to this general

equation which includes the effect of both Fokker-Planck and Boltzmann collisions.

2.4 Moments of the distribution function

From the definition of the distribution function (??), the number of particles of species α in an

infinitesimal box in phase space is fα(t, r,v)drdv. It follows therefore that the spatial variation



62 Chapter 2. Theoretical background

of the particle density can be obtained by integrating out the velocity-dependence,

nα(t, r) =

∫
fα(t, r,v)dv, (2.33)

where the limits of integration are over all possible values of vx, vy and vz, from −∞ to +∞.

Similarly, we can evaluate the weighted average of any velocity-dependent quantity of interest

ϕ,

⟨ϕ⟩ = 1

nα

∫
ϕfα(t, r,v)dv, (2.34)

where ϕ may be a scalar, vector or arbitrary-rank tensor made of direct products of velocity

vectors. In equation (2.33), ϕ = 1 has been used. Such quantities are referred to as moments

of the distribution function.

In studying plasma transport, we are frequently interested in quantities like the flow velocity,

⟨v⟩ = uα =
1

nα

∫
vfα(t, r,v)dv, (2.35)

the pressure tensor,

⟨mαnαvv⟩ = p
α,tot

= mα

∫
vvfα(t, r,v)αdv, (2.36)

and the total energy flux,

〈
1

2
mαnαv

2v

〉
= qα,tot =

1

2
mα

∫
v2vfα(t, r,v)dv. (2.37)

Clearly, these four moments (2.33 - 2.37) are already useful macroscopic plasma parameters.

For example the charge density is related to the number density, ρα = qαnα, and the current

density is related to the flow velocity, jα = qαnαuα. However, it is often helpful to go further

by defining the ‘peculiar’ velocity,

w = v − uα,

such that ⟨w⟩ = 0, to allow us to distinguish between contributions to transport phenomena

from intrinsic (‘random’) and bulk (‘mean’) motion.
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With this we can calculate the intrinsic and bulk contributions to the total energy density,

Wα =

〈
1

2
mαnαv

2

〉
=

1

2
mαnα⟨w2 + u2

α + 2w · uα⟩ =
3

2
nαkTα +

1

2
mαnαu

2
α (2.38)

with the definition of temperature as kTα = 1
3
mα⟨w2⟩ and ⟨w · u⟩ = 0. Furthermore, we can

rewrite the total pressure tensor (2.36),

p
α,tot

= mα

∫
(w + uα)(w + uα)dv = p

α
+mαnαuαuα = pαI+ π

α
+mαnαuαuα, (2.39)

where p
α
= mα

∫
wwdv = pαI + π

α
is the intrinsic pressure tensor. Here, I is the identity

matrix, pα = nαkTα is the isotropic static pressure, and π
α
is the anisotropic contribution to

p
α
(also called the stress tensor or viscosity tensor). For an isotropic plasma at rest therefore,

p
α,tot

has only diagonal components equal to pα = nαkTα. Furthermore, we can recast the total

energy flux (2.37),

qα,tot = qα +

(
5

2
pα +

1

2
nαmαu

2
α

)
uα + π

α
· uα, (2.40)

where qα = ⟨1
2
mαnαw

2w⟩ is the conductive heat flux.

Moments of the distribution function as described form the basis of fluid models of plasma

transport, which are distinct from a kinetic treatment by modelling the evolution of macroscopic

plasma parameters like density and flow velocity. Clearly, some information is lost in averaging

over velocity space in this way, which will be discussed further in Section 2.8. Nonetheless, it

remains useful to make regular reference to these macroscopic plasma descriptions due to the

clear intuitive meaning of concepts like temperature and heat flow.

2.5 Transport equations

Analogously to taking moments of the distribution function directly, we can take moments of

the entire kinetic equation (2.20) to arrive at evolution equations for macroscopic quantities of
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interest, i,e,

∫
ϕ
∂fα(t, r,v)

∂t
dv +

∫
ϕv · ∇fα(t, r,v)dv +

∫
ϕa · ∇vfα(t, r,v)dv

=
∑
β

∫
ϕCα,β(fα, fβ)dv.

The resultant equations have reduced dimensionality (having no dependence on v), and describe

the transport of quantities which typically have some counterpart in human intuition. If we do

this for ϕ = 1,mαv and 1
2
mαv

2, we arrive at a set of conservation equations for mass, momentum

and energy,

∂nα

∂t
+∇ · (nαuα) = Sα, (2.41a)

∂

∂t
(mαnαuα) +∇ · p

α,tot
+ Zαenα (E+ uα ×B) = Rα, (2.41b)

∂Wα

∂t
+∇ · qα,tot + ZαenαE · uα = Qα, (2.41c)

where Sα, Rα and Qα are the sources of particles, momentum and energy due to collisions

with all species. The charge on each species is written Zαe here to avoid confusion with the

energy flux (qα,tot).

It’s worth noting that if we add the equations from all species in a plasma, assuming no net

currents, the Lorentz force contributions cancel. The plasma transport equations then have the

following general form,

∂X

∂t
+∇ · ΓX = SX ,

where X is some conserved quantity, ΓX is the flux of X and SX is the source of X due

to collisions (or may be externally imposed). As such, the conservation of each quantity X

depends on a quantity ΓX which is a moment involving a higher power of v. Only three

equations are listed in (2.41), but a precise description would require an infinite hierarchy of

transport equations. For them to be useful, we therefore need to provide a closure at some point;

a closure involving the energy flux in the energy equation (2.41c) will be discussed shortly. It

is common to truncate at (2.41c) because the resultant set of equations is adequate in many

circumstances, and higher-order moments lose their simplicity and explanatory power because



2.5. Transport equations 65

there are no simple analogues in human experience.

These transport equations (2.41) are very general in form, and not particularly useful at this

stage: they are unbounded because we do not have an expression for qα,tot or π
α
, and we

have yet to define the source terms on the right hand sides. What’s more, we are frequently

interested in the evolution of quantities like temperature, related to the internal energy, rather

than the total energy, as there is often a distinction to be drawn between the physics which

is driven by the random motion of particles compared to their directed motion. We tackle

this last issue by splitting up the particle velocity into intrinsic and bulk contributions again,

v = w + uα with ⟨w⟩ = 0, as described in the previous section. Taking moments as before

yields modified forms of the conservation equations in (2.41),

∂nα

∂t
+∇ · (nαuα) = Sα, (2.42a)

∂

∂t
(mαnαuα) +∇ · (mαnαuαuα) +∇pα +∇ · π

α
+ Zαenα (E+ uα ×B) = Rα, (2.42b)

∂

∂t

(
3

2
pα +

1

2
mαnαu

2
α

)
+∇ ·

[
qα +

(
5

2
pα +

1

2
mαnαu

2
α

)
uα + π

α
· uα

]
= ZαenαE · uα +Qα,

(2.42c)

where the total pressure and total energy flux have been rewritten using (2.39) and (2.40).

The evolution equation for nα has not changed but has been included again for completion. As

written, these equations are still in the form of conserved quantities. With some manipulation,

we can reformulate them as evolution equations for the density, flow velocity and temperature,

∂nα

∂t
= −∇ · (nαuα) + Sα, (2.43a)

∂uα

∂t
= −uα · ∇uα − Sα

nα

uα − 1

mαnα

(∇pα +∇ · π
α
) +

Zαe

mα

(E+ uα ×B) +
Rα

mαnα

, (2.43b)

∂kTα

∂t
=− uα · ∇(kTα)

+
2

3

[
−kTα∇ · uα − π

α
: ∇u− 1

nα

∇ · qα

−Sα

nα

(
3

2
kTα − 1

2
mαu

2
α

)
− uα ·Rα

nα

+
Qα

nα

]
.

(2.43c)
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The two sets of equations in (2.42) and (2.43) will hereon be referred to as the conservative

and intrinsic transport equations respectively. To make these equations solvable we must now

define the unknowns, which are the source terms Sα, Rα and Qα, as well as qα and π
α
. Some

assumption on the shape of the distribution must be made, which allows unknowns to be written

in terms of other moments for which we have evolution equations. Braginskii [48] provided the

seminal example for a two-component plasma, where the plasma is treated as being close to

Maxwellian,

fα = f 0
α + f 1

α, (2.44)

where f 0
α is a drifting Maxwellian,

f 0
α = nα

(
mα

2πkTα

)−3/2

exp

(
− mα

2kTα

(v − uα)
2

)
(2.45)

and f 1
α ≪ f 0

α. We will not go through all of the Braginskii results here, but an important

quantity with relevance to tokamak edge plasmas is the conductive heat flux along the direction

parallel to the magnetic field, which for electrons is

qe,∥ = 0.71nekTeue,∥ − κe∇∥kTe, (2.46)

where the Spitzer-Härm thermal conductivity [49] is

κe = 3.2
nekTeτe

me

,

which uses the electron collision time,

τe =
3
√
me (kTe)

3/2 (4πϵ0)
2

4
√
2πZine ln Λe4

.

Quantities like (2.46) will be referred to as transport coefficients. Some more recent refinements

to the Braginskii transport coefficients and extensions to multi-component plasmas have been

provided by Helander [50] and Zhdanov [51].

In developing a general plasma transport model, it is common at this point to derive a form
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of Ohm’s law, which relates the electric and magnetic fields to plasma fluid quantities by

neglecting the electron inertia, me∂ue/∂t = 0. For the plasma transport model used in this

thesis we instead use Ampère-Maxwell’s law (2.11d) to calculate the electric field, since we are

primarily interested in the direction parallel to the magnetic field and will be solving the kinetic

equation for the electrons directly.

The assumption that distributions are close to Maxwellian (2.44), a requirement in developing

a solvable set of transport equations along the lines of Braginskii, limits the validity of these

models. Further details and the consequences of this will be discussed in Section 2.8.

2.6 Plasma atomic physics

For plasmas at sufficiently high temperatures, it is often adequate to assume they are fully

ionized. For a hydrogen plasma for example, a temperature above a few eV means it will

be nearly 100% ionized. In tokamak exhaust physics, it is desirable to reduce the plasma

temperature close to the walls as much as possible, potentially to the point where a significant

fraction of the particle content is made up of neutrals. There is also significant interest in adding

gases which are not part of the fuel mixture (impurities) to the edge plasma for their favourable

radiative properties. Both electrons and ions in plasmas will readily collide with any neutral

particles present, undergoing a host of elastic and inelastic collisional processes. Spontaneous

processes, typically involving photon emission, can also occur on timescales which compete

with these collisional processes. These plasma-atomic interactions can be very important for

the particle, momentum and energy balance in scrape-off layer plasmas, and so need to be

modelled.

We start by outlining the most important fundamental atomic processes in exhaust physics.

For an atomic or ionic particle X, with electric charge +z in some initial atomic state µ and

final state ν with potential energies εµ and εν , colliding with a plasma electron (e) or fuel ion

(i) these are
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• electron-impact ionization,

Xz
µ + e → Xz+1

ν + 2e, (2.47a)

• three-body recombination,

Xz+1
µ + 2e → Xz

ν + e, (2.47b)

• electron-impact excitation,

Xz
µ + e → Xz

ν + e (2.47c)

with εν > εµ,

• electron-impact deexcitation,

Xz
µ + e → Xz

ν + e (2.47d)

with εν < εµ,

• resonant charge exchange,

Xz
µ + i → i+Xz

ν (2.47e)

where the plasma ion and particle X have swapped an electron and ν = µ,

• radiative recombination,

Xz+1
µ + e → Xz

ν + γ (2.47f)

with emission of a photon γ,

• radiative deexcitation,

Xz
µ → Xz

ν + γ (2.47g)

with εν < εµ.

Ionization and three-body recombination are inverse processes, so we can combine (2.47a) and

(2.47b) as

Xz
µ + e ⇌ Xz+1

ν + 2e. (2.48)
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Similarly for excitation/deexcitation, we can combine (2.47c) and (2.47d),

Xz
µ + e ⇌ Xz

ν + e. (2.49)

This list of processes is not exhaustive, but does cover those which are dominant in the plasma

regimes encountered in tokamak edge plasmas. Importantly, we have not included photon-

induced ionization and excitation processes, which would allow us to write the radiative reac-

tions (2.47f) and (2.47g) as reversible too. This is based on an assumption that the mean free

paths of photons in tokamak plasmas are long, i.e. they are optically thin, so all photons emit-

ted in radiative processes exit the plasma. This is generally a valid approximation, and provides

a very useful cooling mechanism for scrape-off layer plasmas because isotropically emitted pho-

tons will deposit their energy over a wider area than the energy deposited by plasma in direct

contact with the walls. For larger devices planned for the future, operated at higher densities,

this assumption may need to be revisited.

The electron-impact processes listed here are dominant in tokamak edge plasmas. Each of

these collisional processes have an associated cross-section which is in general dependent on the

relative velocities of the colliding particles and the scattering angle. For any collisional process

between electrons and some speciesX with density nX , we can compute the number of collisions

per unit time by taking the first moment of the relevant collision operator, S =
∫
Ce,Xdv, which

can be written

S = nXneK (2.50)

with the definition of the rate coefficient as

K =
1

ne

∫
fe(v)vσ(v)dv =

1

ne

∫
fe(ε)v(ε)σ(ϵ)dε (2.51)

The fact that the relative velocity is dominated by the electron velocity has been used here, and

σ is the total rather than differential cross-section. K has also been written here on the right

hand side in terms of the electron energy ε. Note that the integral over the electron distribution

in (2.51) highlights that some sensitivity to a departure from Maxwellian electrons may exist.
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This will be explored in Chapter 6.

To understand the effect of plasma-atomic interactions on tokamak plasmas, it is in principle

necessary to track the effect of collisions with all types of atomic species present, where atomic

just means any particle which is not fully ionized. These collisions will directly modify the

distribution, and will appear as source terms in the transport equations (2.42). There are

several ways we can avoid this brute force approach.

In the absence of any radiative processes, transport or external sources, the atomic levels of a

given species present in a plasma will come to local thermodynamic equilibrium (LTE) with

the electrons. Within a given ionization stage (the set of states with the same charge +z), this

is the point when the rate of each excitation process is balanced by its inverse. The atomic

states are then described by the Boltzmann distribution, where we can relate the densities of

two states j and k with potential energy εj and εk (εk > εj),

nk

nj

=
gk
gj
e−(εj−εk)/kTe , (2.52)

where gj is the statistical weight of state j. Similarly, at LTE the ionization rate matches the

three-body recombination rate, and the densities of adjacent ionization stages with charge +z

and +(z + 1) are described by the Saha equation,

nz+1ne

nz

=
2

λ3

gz+1

gz
e−∆εz/kTe (2.53)

where ∆εz is the ionization energy for a particle with charge z. LTE implies Maxwellian

electrons so the rate coefficients (2.51) become functions of Te only. Under these conditions

therefore, it is straightforward to compute the source terms from plasma-atomic interactions in

the plasma transport equations.

In tokamak edge plasmas, radiative processes do occur on competitive timescales to the colli-

sional ones, and this will push the atomic state distributions away from the Saha-Boltzmann

distribution, modifying the source terms in the plasma equations. Collisional-radiative models

(CRMs) aim to capture the balance between these processes by computing the evolution of
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atomic state densities in the presence of plasma electrons. Given the complexity of the atomic

structure of even simple elements however, along with the fact that the number of processes

scales with the square of the number of distinct atomic states, this is quite a challenge. To

make headway, Bates et al. [52] originally outlined a method of capturing the dynamics of both

collisional and radiative processes without resorting to a brute force computation. The method

here follows the more recent formalisms of Summers [53] and Greenland [54]. We first define the

evolution of the number density of atomic particles in state k (which may specify the electric

charge as well as the internal atomic state),

dnk

dt
= ne

∑
j

njK
k
e,j +

∑
j

Ak
jnj − nkne

∑
j

Kj
e,k − nk

∑
j

Aj
k + ne

∑
j

rkjnj − nenk

∑
j

rjk + Γk,

(2.54)

where

• Kk
e,j is the rate coefficient for the production of particles in state k due to collisions

between electrons and particles in state j, i.e. from ionization, excitation and their

inverse processes1,

• Ak
j is the transition rate (Einstein coefficient) for radiative deexcitation from state j to

state k,

• rkj is the radiative recombination rate from j to k,

• Γk is the external source of state k.

This equation lends itself to being rewritten in a matrix form, which describes the evolution of

the vector of all atomic states n, where the total number of states is N ,

dn

dt
= Mn+ Γ, (2.55)

1Note that, for three-body recombination, it is common to formulate the particle source in a way that reflects
n2
e dependence, S3br = n2

eniα, for some ion density ni and three-body recombination coefficient α. Here, we
would define α = neK

3br =
∫
fevσdv.
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where M is the N × N rate matrix containing information on the transition rate between all

states and Γ is the source of particles from collisions between species whose densities are not

being evolved (in SOL modelling for example, we may evolve the atomic state densities sepa-

rately and treat the electron and fuel ion plasma background as fixed or solved independently).

The elements of M are

Mjk = neK
j
e,k + Aj

k + ner
j
k k > j (2.56)

Mjk = neK
j
e,k k < j (2.57)

Mjj = −
∑
k ̸=j

Mkj (2.58)

Computing M directly is undesirable as it contains N2 elements. Instead, we can define a

subset of states P with size NP , which we evolve, and a subset Q with size NQ, which we do

not. This allows us to rewrite (2.55) as in [54],

d

dt

nP

nQ

 =

MPP MPQ

MQP MQQ


nP

nQ

+

ΓP

ΓQ

 =

dnP

dt

0

 . (2.59)

where MPP is the NP ×NP rate matrix for transitions between P states, MPQ is the NP ×NQ

rate matrix for transitions of P states involving Q state densities, and so on. Using this, we

can derive an evolution equation for just the P states,

dnP

dt
= MeffnP + Γeff, (2.60)

where

Meff = MPP −MPQM
−1
QQMQP (2.61)

is the effective rate matrix and

Γeff = −MPQM
−1
QQΓQ + ΓP (2.62)

is the effective source. To compute the time evolution of nP , we now have only an NP × NP
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matrix to compute, which is hopefully much smaller than M. For neutral hydrogen for exam-

ple, which is frequently present close to the walls in tokamaks, it is usually sufficient to model

the ground state only [52] such that NP = 1 and Meff contains the ‘effective’ ionization and

recombination coefficients. These effective rate coefficients capture the complex nature of ion-

ization and recombination, which can involve many intermediate steps. If we put a Maxwellian

for the electron distribution into the definition of the rate coefficient (2.51), then Meff and Γeff

are functions of the electron temperature and density only, and can be precomputed. Much

scrape-off layer modelling uses techniques along similar lines to compute the source terms in

the transport equations (2.42) or (2.43) [53,55–58].

We should note that this division into two separate subsets, P and Q, is based upon the assump-

tion that the Q states evolve on timescales fast relative to plasma fluctuations, and therefore

they can be treated as time-independent. A typical choice for the P states is the ground state

of atomic ions, plus potentially some ‘metastable’ states. This is normally adequate, but more

care may need to be taken for CRMs involving molecules [54].

2.7 Scrape-off layer models

So far, plasma transport has been discussed in the most general terms. Here we will now outline

some specifics of scrape-off layer plasma modelling.

2.7.1 Outline of the scrape-off layer

In a tokamak, the magnetic field lines looping around the torus typically ergodically map

out surfaces of constant magnetic flux. These toroidally nested surfaces are considered closed

because, in the absence of collisions or drifts, plasma particles would stick to field lines on those

surfaces and confinement would be perfect. Taking a cross-sectional slice through the torus, see

Figure 2.2, the intersection of any solid surface (which we will call a limiter) with this magnetic

geometry as described will result in the creation of a ‘last closed flux surface’ (LCFS). Any
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position radially outward of the LCFS will sit on an open flux surface, where the field lines will

terminate (after some toroidal distance) on the limiter. This is a limiter SOL.

Figure 2.2: Schematic of a limiter SOL, showing a cross-section on the poloidal plane through
a tokamak. The toroidal direction is into the page here. The scrape-off layer is the region
radially outward of the last closed magnetic surface. Figure taken from [59].

For a strong magnetic field, plasma particles will orbit tightly around the field lines. This means

that, while transport is uninhibited in the parallel direction, transport of any quantity in the

perpendicular direction can only happen via drifts or collisions. While small, the effect of drifts

and collisions is not negligible, meaning confinement to the closed flux surfaces is imperfect and

the SOL is not merely a geometric designation and does in fact contain plasma. Calculation of

the effective cross-field velocities from first principles is difficult, but experimental observations

suggest values of the order u⊥ ∼ 1m/s. This is in contrast to the parallel flow velocities, which

reach the plasma sound speed close to the walls,

cs =

√
k(Te + Ti)

mi

, (2.63)
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which for a typical deuterium plasma in a tokamak gives u∥ ∼ cs ∼ 104m/s. The large ratios

in parallel to perpendicular fluxes that result from this highlights that the scrape-off layer is

typically a thin, elongated region of plasma. Along with the diffusive nature of the cross-field

transport, it is common and useful to model SOL plasmas in 1D, either in the parallel direction

or projected onto a poloidal plane.

A key length scale in the SOL is the connection length, L, which is the parallel distance between

solid surfaces. In Figure 2.2, this would be the total length of a field line (dashed) starting at

one side of the limiter and culminating at the other. Because a cross-section in the poloidal

plane is shown, this length may be much longer than the poloidal distance of this field line,

depending on the ratio of the toroidal to poloidal components of the magnetic field.

An important aspect of SOL plasmas is the formation of the sheath in front of the walls,

something which is common to all regions of plasma-surface interaction. Due to the high

mobility of electrons compared to heavier ions, they will initially reach a surface first, setting

up a net negative electric charge there. The ions will accelerate towards the wall under the

influence of this potential, creating a region of net positive charge just in front. There is

therefore a small region where quasineutrality is violated, over which there is a large drop in

electric potential. Debye shielding ensures this potential drop does not extend far into the

plasma, and the sheath region is typically a few Debye lengths thick [24]. It can be shown [24]

that there is a condition imposed on the plasma by the presence of the sheath, which is that

the ion flow velocity in the parallel direction is accelerated to at least the sound speed at the

sheath entrance,

ui ≥ cs, (2.64)

which is known as the Bohm criterion. Ambipolar flux, where the ion particle flux is equal

to that of the electrons and so there is no net plasma current to the walls, can be achieved

with some cut-off in the forward-going part of the electron distribution function at the sheath

entrance, so that only electrons with sufficient velocity reach the walls while all others are

reflected back by the potential drop. This is shown in Figure 2.3. This is responsible for

introducing strong anisotropy in the electron distribution and will be discussed further in this
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thesis. The sheath results in a loss of energy from the SOL plasma, partly from the particle

flux, but also partly from the preferential loss of high-energy particles in the case of electrons.

We can define a sheath heat flux coefficient, γ, which helps quantify the energy flux across the

sheath for a given species,

qsh = γkTΓsh, (2.65)

where Γsh is the sheath particle flux, Γsh ≥ nshcs from the Bohm criterion (for a density at the

sheath of nsh). For the electrons, assuming a Maxwellian distribution at the sheath entrance

which is truncated at some velocity determined by the sheath potential drop gives

γe = 2− 0.5 ln (2π (1 + Ti,sh/Te,sh)me/mi) (2.66)

Assuming a drifting Maxwellian for the ions gives γi = 2.5 (not including the contribution from

the kinetic energy of the lost ions), although experiments suggest γi ≃ 1.5 is more appropriate

[24].

vx

fe

vc

vx

fi

0 0 cs

Electrons Ions

To wall

Figure 2.3: Characteristic electron and ion distributions at the entrance to the sheath. The
electrons are close to Maxwellian, with a cut-off in the rearward-travelling part at vc. The ions
are approximately a drifting Maxwellian at the sound speed, cs.

The plasma particles reaching the walls via the sheath tend to stick around long enough to

undergo surface recombination (a distinct process from the volume recombination, (2.47b) and

(2.47f), discussed in the previous section). The neutral particles are released back into the

plasma, where they can be ionized again after travelling some distance. This process, known as

recycling, provides the ingredients for steady-state flows to form in the SOL: there is a plasma

sink at the sheath, and a source of plasma from ionized neutrals further away from the wall.
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A key area of interest in SOL plasmas is the transport of impurity species, which can enter

either via physical sputtering of wall materials (typically carbon or tungsten), or by deliberate

injection in an attempt to cool the edge plasma. Plasma transport is in general a strong

function of the electric charge Z of a given species, especially so for the radiative losses driven

by Bremsstrahlung and inelastic collisions, and so a sufficiently accurate treatment of the atomic

physics (which determines Z) alongside the transport physics is necessary. There is typically a

delicate balance to be struck with SOL impurities: they are very effective at cooling the edge

plasma, but can significantly degrade the energy confinement if they reach the core.

Another important ingredient in understanding SOL plasmas are transient events such as edge-

localised modes (ELMs), which result in time-dependent sources of particles and energy entering

the scrape-off layer. A tokamak operating in high confinement mode will have a radial pressure

profile which features a region of increased pressure gradient close to the transition from the

core to the edge, called an edge transport barrier or pedestal (see Figure 2.4). This transport

barrier turns out to be somewhat unstable, and tends to periodically collapse and reform.

During this collapse, some fraction of the core particle and energy content is released into the

plasma over a short space of time, increasing fluxes into the SOL. There is significant interest

in accessing ELM-free operating regimes in tokamaks, but it is also of interest how the SOL

responds to this temporary increase in the inward particle and energy flux.

A final aspect of SOL physics to consider is filamentary transport, where filaments are elongated

plasma structures seen in almost all tokamak devices. Similar to ELMs, filaments can be viewed

as perturbations to upstream quantities resulting in a time-dependent sources of particles and

energy into the SOL. However, their origin is different, arising instead from plasma turbulence,

and filaments may originate in the divertor region as well as from the core. Filaments play a

role in distributing power and particles across the plasma-facing components, and may also be

important in accessing detachment [60].
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0 1
Normalised radius

Pressure Edge transport barrier

Figure 2.4: Typical radial profile of plasma pressure in a tokamak with (red) and without (blue)
an edge transport barrier, where the radial coordinate is normalised to the minor radius of the
tokamak. The edge transport barrier can release particles and energy into the SOL during
periodic collapse and reformation.

2.7.2 Two-point model

A highly useful analytical tool for SOL plasmas is the two-point model (2PM) [24]. We will

pick out two important locations in the SOL: upstream (u), which is some location far from the

walls in the direction parallel to the magnetic field, and the target (t), which is at the wall or

the sheath entrance. See Figure 2.5 for a simple diagram of the straightened-out SOL used in

building the 2PM. Tokamak operators have some limited control over what happens upstream,

so the aim is to understand how conditions there relate to conditions at the walls.

If we assume that all ionization happens in a thin region in front of the target, and that the

plasma is stationary everywhere else, the parallel flow speed rapidly accelerates to the sound

speed in the ionization region. We may also make a further simplifying assumption in taking

the total (static plus dynamic) pressure as a constant along the flux tube.

At the upstream location therefore, assuming equal electron and ion temperatures, pu = 2nukTu.

At the target we find pt = 2ntkTt+ntmiu
2
t . Taking the equality of the Bohm criterion in (2.64),

we can relate these pressures through

nuTu = 2ntTt. (2.67)

Since there is no flow velocity in the bulk of the SOL in this model, parallell heat flow q∥

is conductive only. Power enters via cross-field transport from the core into the SOL, where
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Figure 2.5: Simple diagram of the SOL, from which we can relate conditions at the target to
those upstream using the two-point model. It is common to assume q∥ enters entirely at the
upstream location, as this does not make a significant difference to the model predictions [24].

parallel transport then takes over. Taking the classical Braginskii heat flow (2.46), we can show

by assuming any heat entering the SOL leaves at the target that

T 7/2
u = T

7/2
t +

7

2

q∥L

κe

, (2.68)

where ∇∥q∥ = 0 and so is constant along the domain. The length of the domain we are

considering is given by L, and the heat conductivity is dominated by the electrons, κe ≫ κi.

Finally, we can constrain q∥ at the target by making some assumptions on the electron and ion

distributions there, giving

q∥ = γntTtcs, (2.69)

where γ is the sheath heat transmission coefficient, γ ∼ 7 [24], including contributions from

both electrons and ions.

The 2PM is therefore given by equations (2.67 - 2.69), from which some important consequences

drop out. q∥ and nu are the closest things to control knobs in this model, so we can find solutions

for the other three unknowns with this set of equations. Fairly modest temperature drops along

the SOL yield situations where T
7/2
t ≪ T

7/2
u , simplifying (2.68) to

T 7/2
u ≃ 7

2

q∥L

κe

,
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which shows that the upstream temperature changes very slowly with all parameters. Combin-

ing this result with (2.67) and (2.69) yields

Tt ∝
q
10/7
∥

L4/7n2
u

,

where it can be seen that increasing upstream density is a viable way of reducing target tem-

peratures (Tt ∝ n−2
u ). This is a useful result for achieving more benign target conditions, and

increasing nu also facilitates qualitatively different SOL regimes as will be discussed next.

2.7.3 Divertors and detachment

The limiter SOL shown in Figure 2.2 is not a particularly desirable tokamak configuration

because of the close proximity of the solid surfaces with the core plasma. Heavy ions hitting

the walls at the plasma sound speed can cause physical sputtering of the wall material, which

can leach into the core and reduce confinement performance. There is a motivation therefore to

find some way of dragging the region of plasma-surface interaction away from the core, which

leads to the divertor configuration of a tokamak. See Figure 2.6. By inducing a current in coils

radially outward of the core plasma, a figure-of-eight magnetic field is created when viewed in

the poloidal plane. The centre of the eight is a magnetic null in the poloidal direction, called

the X-point, and a flux surface passing through the X-point is the separatrix. The scrape-

off layer is now defined as the region beyond the separatrix. The targets are positioned to

intersect the field lines such that there is some radial separation between them and the core.

The key advantage of the divertor configuration is to ensure that the region of plasma-surface

interaction is kept away from the core, which means this region can be exploited to remove as

much momentum and power from the plasma as possible, facilitating relatively docile target

conditions without degrading core confinement.

It is common to characterise the operating regime of a tokamak scrape-off layer in terms of the

temperature drop along the parallel length, which is directly related to the collisionality of the

plasma. If we define a SOL collisionality parameter as the ratio of the connection length to the
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Figure 2.6: Schematic of a divertor SOL; the scrape-off layer is the region outside the separatrix.
The axes units are metres. Figure taken from [59].

self-collision mean free path of particles upstream,

ν∗ =
L

λu

≃ 10−16Lnu

T 2
u

, (2.70)

with nu in m−3 and Tu in eV, we can use the two-point model along with an assumption that

T
7/2
t ≪ T

7/2
u to show that the ratio of upstream to target temperatures is

Tu

Tt

∝ (ν∗)2.

For low collisionality we have an approximately isothermal SOL, Tu ≃ Tt, and the temperature

and density profiles at equilibrium are primarily determined by the amount of energy leaving

via the sheath. In this regime, high thermal conduction means a small temperature gradient is

sufficient to transport the energy entering the SOL upstream towards the targets. This regime

is therefore called ‘sheath-limited’. For increased collisionality, thermal conduction plays an

increasingly important role in determining the plasma profiles and the temperature drop is
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large, leading to a ‘conduction-limited’ regime.

Divertors facilitate access to a third distinctive regime at higher collisionalities, ‘detachment’,

where significant volumetric losses in the particle, momentum and/or energy content of the

plasma help to partially extinguish the plasma in front of the targets. Detachment is char-

acterised experimentally by a reduction in the particle flux to the surfaces as plasma density

is increased, as shown in Figure 2.7, known as flux rollover. During detachment, typically

Tt < 2eV, and a protective neutral cloud forms in front of the walls.

A high-collisionality divertor SOL can still be understood in simple analytical terms with a

modified form of the two point model [24], see Figure 2.8. We start by defining a momentum

loss factor, which is half the ratio of the pressure at the target to the pressure upstream,

fmom = pt/2pu. This arises due to frictional forces between the plasma and neutrals in front of

the targets, and modifies (2.67) to become

fmomnuTu = 2ntTt. (2.71)

In deriving the second equation of the two-point model (2.68) we have assumed that conductive

heat flow dominates, but in reality some amount of convection wil occur, reducing temperature

gradients. We can therefore define a conduction factor, fcond, and use fcondq∥ for the heat flow

within the SOL. This modifies (2.68) to become

T 7/2
u = T

7/2
t +

7

2

fcondq∥L

κe

, (2.72)

Finally, we capture the net effect of volumetric power losses within the scrape-off layer with

the power loss factor, fpow, such that the energy lost to the sheath is qsh = (1− fpow)q∥ so that

(2.69) becomes

(1− fpow)q∥ = γntTtcs. (2.73)

With the modified 2PM (2.71 - 2.73), all of the complex transport physics is wrapped up in the

values of fmom, fcond and fpow, enabling straightforward analysis of experimental observations,

for example the values which predict rollover in a given tokamak.
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Figure 2.7: Experimental observation of rollover during experiments on the JET tokamak,
indicating the onset of detachment, where the target ion flux (top) reduces at increasing plasma
density. Figure reproduced from [61].
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Figure 2.8: Simple diagram of the divertor SOL. Once again it is common to assume q∥ enters
entirely at the upstream location.

One further benefit of divertor configurations is that the magnetic geometry can be shaped in

the divertor region with field coils to achieve expansion of the magnetic flux lines along the

parallel direction. This flux tube expansion is being actively researched on tokamaks such as

MAST-U, where it is expected to help reduce particle and heat fluxes towards the targets.

This technique has also been shown to reduce the threshold for detachment with respect to

control parameters such as the upstream density or the heat flux into the SOL, by an amount

proportional to the degree of flux tube expansion [62].

2.8 Kinetic vs. fluid SOL transport models

The fact that fluid models lose information contained in the kinetic equation has been discussed

in general terms so far, but we will now outline this more concretely. The issue is most clearly

demonstrated in tokamak edge plasmas by the electron energy flux, where the component in

the direction parallel to the magnetic field is

q∥ =

∫ (
1

2
mev

2v∥

)
fe(v)dv. (2.74)

If we plot the integrand of q∥ as a function of the velocity magnitude, Figure 2.9, we can see that

the dominant contribution to the energy flux comes from particles at around 2-3vth, with the
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thermal velocity defined in terms of the temperature for electrons as vth =
√

2kTe/me. Particles

with velocity in this range are often referred to as heat carrying electrons (HCEs) [63]. The

velocity-dependent collisional frequency of plasma electrons is [42]

νe =

(
e2

4πε0me

)2
4πZ2ni ln Λ

v3
∝ v−3,

which means their collision mean free path is λe = v/νe ∝ v4. The HCEs therefore travel on

the order of ∼ 30 times farther than the thermal bulk before depositing their energy. Note that

these estimates are lower than the predictions in [63], where a different definition of vth is used

resulting in higher predicted ratios of the HCE to thermal bulk λe.

The consequence of this is that, in the presence of a steep temperature gradient, the HCEs

can deposit their energy far beyond the region of changing temperature. The energy transport

is then said to be non-local, because the local plasma state may depend on conditions which

are spatially distant. Furthermore, there is a depletion of HCEs within the region of the

temperature gradient because they have escaped, leading to suppression of the local energy flux

there. The parameter which predicts this phenomenon is the Knudsen number kN (specifically

the heat transport Knudsen number), which is the ratio of the mean free path to a length scale

of interest, which in this case is the distance which characterises the temperature gradient,

kN = λe/L∇Te . For local transport theory to be valid, kN ≪ 1 is required. The presence of

HCEs mean that a kN which is small but approaching unity can still lead to significant non-local

transport.

This issue of non-local transport is a manifestation of the more general closure problem, where

the hierarchy of moment equations in a fluid model must be truncated at some point, which

is typically achieved by formulating the closing moment in terms of lower-order moments. A

similar problem to the heat flux in Braginskii-like fluid equations also occurs for the viscosity

term. Generally, these fluid equations are valid in the high collisionality limit, when the distri-

bution function is close to Maxwellian. We will use the term ‘non-local’ here to be synonymous

with situations where there is significant departure from Maxwellian distributions.
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Figure 2.9: A plot of the energy flux density (2.74) as a function of velocity magnitude for the
case where fe is close to Maxwellian, normalised to the local thermal velocity. The dominant
contribution is from electrons with v/vth ≃ 2− 3.

A very basic corrective treatment for non-local energy flux employs the use of a flux limiter. The

classical Braginskii conductive heat flow (2.46) is unbounded when ∇T is large. For an entirely

collisionless, Maxwellian plasma the energy flux reaches a maximum at the free-streaming one-

way energy flux [64],

qFS
e =

∫ ∞

0

dv∥

∫ ∞

−∞
dv⊥

(
1

2
mev

2v∥

)
fe(v) ≃ nekTevth.

This provides a recipe for limiting the classical heat flux to some fraction of qFS
e ,

qe =
qSHe

1 + |qSHe /αqFS
e |

, (2.75)

where qSHe is the Spitzer-Härm heat flux and α is the ‘flux limiter’, a tunable parameter. This

procedure can capture the effect of heat flux suppression in low collisionality plasmas, but does

not capture the transport of heat-carrying electrons directly, and there is no first-principles

basis for choosing α. More sophisticated models exist, which aim to capture non-local heat

flow without resorting to a fully kinetic treatment, and these will be discussed in the next

section.

Another important process which may be affected by non-local transport in SOL plasmas is
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Figure 2.10: An example electron distribution (the isotropic part), taken from a kinetic SOL
simulation with the SOL-KiT code, with an enhanced ‘tail’ of fast electrons due to non-local
transport occurring in a steep temperature gradient. Inelastic processes with high threshold
energies will sample the tail, and will encounter more electrons than in an equivalent Maxwellian
at the local density and temperature.

plasma-atomic reactions. The assumption of Maxwellian electrons is ubiquitous in modelling

these processes, as this ensures the rate matrices in the atomic state density evolution equation,

(2.55) or (2.60), are functions of the electron temperature and density only (see Section 2.6).

However, the non-local heat transport phenomenon outlined above can lead to an accumulation

of fast electrons at the bottom of a steep temperature gradient. Inelastic collision processes

which sample this region of the electron distribution may therefore show significant departures

from Maxwellian-averaged rates, see Figure 2.10.

Tokamak scrape-off layers feature large parallel temperature gradients, dropping ∼ 100eV or

more over tens of metres with no transport-inhibiting magnetic field as in other directions within

a tokamak. For an upstream temperature Tu = 250eV, upstream density nu = 3 × 1019m−3

and connection length L = 100m (as envisaged in future devices, see Figure 1.9), the thermal

electrons upstream have kN ∼ 0.2, but the HCEs have kN ∼ 6. It may be expected then that

the tokamak SOL is sufficiently collisionless that non-local transport will be important, but

realistic operating conditions also demand the plasma is cool close to the target and therefore

highly collisional. Further complicating factors are the presence of the sheath, which adds
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anisotropy to the electron distribution, and inelastic collisions which will preferentially sample

parts of the distribution over others. The competition between these various processes is a

central theme of this thesis, where we would like to understand the extent to which a kinetic

treatment of electron transport is necessary, and how predictions may differ with a classical

model.

2.9 Literature review

It’s worthwhile now to present an overview of the research from recent years with relevance

to the questions posed in this thesis. The research presented covers a wide range of adjacent

disciplines, and the aim is to provide context in light of the research aims which will be inves-

tigated in later chapters. It is divided into sections broadly based on modelling approach, and

chronologically therein.

2.9.1 SOL kinetic modelling

An important code for the study of SOL kinetics was developed in the 1990s by Batischev et

al., called ALLA [65–68]. In one spatial dimension (parallel to the magnetic field) and two

velocity dimensions (v and µ = v∥/v), kinetic equations were solved for the electrons, ions

and neutral atoms. Fokker-Planck operators (2.32) for collisions between charged species are

included, along with Boltzmann collisions (2.25) for electron-neutral inelastic collisions and ion-

neutral charge exchange collisions. A simplified BGK collision operator [69] for neutral-neutral

collisions is used,

Cnn = (fM
n − fn)/τnn,

where τnn is the neutral-neutral collision time and fM
n is a drifting Maxwellian neutral distri-

bution at the local density, flow velocity and temperature. Simulations of a 10m long scrape-off

layer with line-averaged density ⟨n⟩l = 6 × 1019m−3 were carried out with ALLA, in both

steady-state and transient regimes, where in the latter an ELM-like event was simulated with a
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(a) Snapshot of the electron, ion and neutral
distributions during a transient regime studied
with the ALLA code. Anisotropies are seen in
all three, particularly in the neutrals where the
shape is attributed to charge exchange collisions.

(b) Ratio of the kinetically-calculated electron
heat flux to the Spitzer-Härm prediction at three
different times during a simulated ELM with
ALLA. The x-axis is the spatial coordinate, with
the target at x = 0.

Figure 2.11: Results from time-dependent simulations with ALLA. Both figures reproduced
from [68].

temporary increase in upstream heat flux from the core. During the ELM simulations, strong

anisotropies were observed in the distributions of all species (Figure 2.11a) as well as departures

from the Spitzer-Härm electron heat flux prediction (Figure 2.11b). ALLA set a surprisingly

high benchmark for model fidelity in kinetic studies of the scrape-off layer for the time, which

in some senses has not been exceeded in the intervening years. One drawback of ALLA is that

a limited plasma regime was explored, making extrapolation to reactor-relevant devices (or

even some present-day tokamaks) difficult. In addition, the lack of a benchmark fluid model to

compare to has also made it hard to ascertain the magnitude of the effect a kinetic treatment

has on important SOL parameters such as target heat fluxes.

A large body of work has resulted from the 1D particle-in-cell (PIC) code BIT1, developed

by Tskhakaya et al. [70]. In the PIC method, a large number (∼ 1010) of macroparticles are
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tracked, moving according to the equations of motion in the presence of electric and magnetic

fields and with a finite chance of undergoing a collisional process, alongside the self-consistent

updating of the fields by solving Maxwell’s equations. In this way, a solution to the kinetic

equation is approximated statistically.

BIT1 has been used to show significant differences in conditions at the sheath when treated

kinetically, compared to classical treatments [71, 72], where in the latter reference a detached,

recombining SOL was simulated. The effect of impurities have been simulated in [73,74], where

carbon and tungsten ions have been included in the model and the focus has been on investi-

gating the effect of erosion of tungsten from the target plates. The flux of tungsten ions into

the SOL plasma was found to be low in these studies, with the main ion friction and potential

drop across the sheath being responsible for significant redeposition of sputtered tungsten back

onto the target plates. Non-local parallel heat transport has been observed with BIT1 [75,76].

In [37], BIT1 was used to show that Langmuir probe measurements may significantly over- or

underestimate Te due to non-Maxwellian electrons in stationary and transient SOL regimes.

ELMs have also been simulated [75], where a fit has been provided for the time-dependent re-

sponse of the sheath heat flux coefficients. In [77,78], further studies of ELMs have been carried

out, where BIT1 was coupled to SOLPS-ITER for an ELM simulation with kinetic corrections

to the sheath boundary conditions.

In summary, BIT1 is an extremely powerful tool allowing fully kinetic studies of SOL plasmas in

1D across a wide range of collisionalities, in time-dependent regimes and at equilibrium. Like all

PIC codes however, statistical noise can be an issue. This was found in the studies with tungsten

impurities, where the small numbers of highly-ionized tungsten ions made reliable estimates

of tungsten leakage into the core (where very small fractions can strongly affect confinement)

impossible. Furthermore, BIT1 is very computationally demanding, requiring ∼ 105−106 CPU

hours for each simulation [72], which makes broad parameter scans unfeasible.

A recent code developed to study SOL transport kinetically is KIPP [79]. KIPP is a continuum

code solving a similar model to ALLA: the kinetic equation is solved in two velocity dimensions,

v∥ and v⊥, along the parallel spatial direction. It was originally developed for electrons only,
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but has since been extended to solve for the ions kinetically too [80]. In [63] and [3], it is

shown that in typical SOL scenarios the heat carrying electrons are collisionless, and parallel

heat flux suppression in the electrons was observed along with deviations in the sheath heat

flux coefficient. In [81], Chankin et al. performed a quasi-2D kinetic electron study with KIPP

by using profiles from EDGE2D (a fluid code for studying edge plasmas in the JET tokamak)

at several radial locations as fixed backgrounds for KIPP runs, where the macroscopic profiles

were kept constant in KIPP with particle and power sources. Once again, parallel heat flux

suppression was observed along with heat flux enhancement close to the walls, although this

latter effect is dominated by the convective contribution (see Figure 2.12). In [80], similar

effects were observed when the ions were treated kinetically. Strong kinetic enhancement of the

ion thermal conduction close to the targets was observed (by a factor of ∼ 100), but this was

not enough to match the electron contribution. An important numerical study with KIPP was

performed by Zhao et al. [82], where an inelastic Boltzmann collision operator for electrons was

implemented and used to study the effect of treating excitation and ionization of deuterium.

It was found that there are only small kinetic effects on a) the effective ionization rates due to

non-Maxwellian electrons, and b) the kinetic effect of electron cooling from inelastic collisions.

It should be noted these conclusions apply to atomic processes involving deuterium, and may

not necessarily be taken to hold for reactions with other impurity species.

The central work of this thesis is building upon the work carried out by Mijin et al. using

the code SOL-KiT [4]. SOL-KiT is a self-contained code (i.e. no coupling is required) solving

the kinetic equation for electrons along with a fluid model for the ions and neutral hydrogenic

atoms, see Section 3.1 for a brief description of the code. The electrons can also be solved with

a self-consistent fluid model allowing for direct comparison with the kinetic treatment, some-

thing which has been missing from most kinetic SOL studies to date. Similarly to behaviour

observed in other kinetic codes, suppression upstream and enhancement close to the target of

the parallel heat flux has been seen at equilibrium [83], but this has been shown to produce

steeper temperature gradients at moderate collisionalities and a change in the onset of rollover

(a proxy for detachment) during a scan of input power, Figure 2.13. During an ELM-like burst

of energy into the SOL, it was shown in [84] how heat flux at the target rises quicker in the
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Figure 2.12: Spatial profile of the energy flux in a KIPP simulation couled to EDGE2D. Dif-
ferences can be seen in the conductive contributions calculted kinetically with KIPP (red) and
the Braginskii prediction (blue). Figure reproduced from [81].

kinetic model due to fast electron transport from upstream. Here, significant enhancements to

the sheath heat flux transmission coefficient (and sheath potential drop) were seen as well as

moderate increases in the deuterium ionization rate.

2.9.2 SOL fluid modelling

Fluid SOL models are much more computationally tractable than kinetic models, making them

more amenable to including more realistic physics in the models, making precise experimental

predictions, or running a large number of simulations if required (for example to carry out

parameter scans). Much of the fluid modelling of the SOL in recent years has been carried

out with 2D plasma transport codes such as SOLPS-ITER [34] and UEDGE [85]. These

codes solve a 2D form of the plasma transport equations presented in Section 2.5 with closures

from Braginskii [48] or Zhdanov [51, 86], coupled to a fluid or kinetic model for the neutral

particles. In SOLPS-ITER, transport along the direction parallel to the magnetic field is

solved using the fluid equations, sometimes with simple kinetic corrections in the form of

flux limiters, while transport in the perpendicular direction uses diffusion-advection models
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(a) (b)

Figure 2.13: (a): Electron temperature profiles in fluid and kinetic simulations, showing steeper
temperature gradients due to heat flux suppression. (b): Flux rollover occurs earlier (i.e. at
higher input power) when electrons are treated kinetically with SOL-KiT. Figures reproduced
from [83].

with transport coefficients adjusted to match data from experiments. It is then possible to

explore the sensitivity of plasma profiles and wall conditions to SOL ‘inputs’ such as the power

from the core, the separatrix density, etc. This approach is very useful for understanding

experimental observations, and is used for designing wall components in future devices, but

has limited predictive capabilities. Codes exist which aim to solve for the cross-field transport

self-consistently [87,88], but an ongoing challenge is the simultaneous and accurate solution of

the plasma and neutral dynamics.

In light of the complex and multi-faceted processes governing SOL dynamics, it is very useful

sometimes to study a one-dimensional system with reduced model complexity. This approach

offers much more straightforward analysis and affords first-principles explanations of key be-

haviour. Examples are SOLF1D [89], SD1D [90] and DIV1D [91], and studies have been

carried out with a 1D version of SOLPS-ITER. With SD1D, which is based on the BOUT++

framework [88], Dudson et al. explored the processes contributing to detachment in density

scans [90], see Figure 2.14. It was found that both momentum and power losses are required to

reach detachment, and that recombination as a particle sink plays only a small role at the onset

of detachment, but is increasingly important as detachment deepens. The SD1D model has

been found recently to overestimate the hydrogen ionisation rate at high plasma densities [92],
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Figure 2.14: Target temperatures (red) and particle flux (blue) in density scans with SD1D.
Here, the code is run with and without recombination, where it can be seen that differences
only occur long after rollover. Figure reproduced from [90].

which changes rollover behaviour and is discussed in Chapter 5. Furthermore, the assumption

of equal ion and electron temperatures in SD1D limits the validity of the energy transport in

low collisionality regimes.

2.9.3 Reduced kinetic modelling

The results of kinetic modelling of SOL plasmas have highlighted the relevance of kinetic

treatments of parallel transport. If the most significant differences in predictions made by

kinetic models can be incorporated into a fluid model at low additional computational cost, then

the typical trade-off between accuracy and model completeness may be avoided. A common

approach is to use a flux limiter on the heat flux, but Fundamenski [64] showed that this simple

approach is inadequate for predictive modelling due to the wide range of values it can take

in different SOL plasma regimes as well as having time-dependence. The central issue of the

complexity of kinetic models remains, however, so there is a clear motivation to develop more

sophisticated models which aim to capture the important facets of non-local transport without

resorting to a fully kinetic treatment.
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Reduced kinetic models in this context are typically concerned with providing a more sophisti-

cated calculation of the parallel heat flux within a fluid transport model. A prominent example

is the model of Schurtz, Nicoläı and Busquet (SNB) [93]. Here, the deviation of the isotropic

part of the electron distribution from Maxwellian, δf0, is calculated using a simplified form of

the kinetic equation and used to calculate the deviation from local (Braginskii) heat flow. If

simplified collision operators are used such as BGK [69] or AWBS [94], then the calculation of

δf0 is local in velocity space and the additional computational cost is low. The SNB model has

been used frequently in ICF applications [95–98], where key features of non-local transport are

captured (both heat flux suppression and enhancement), but has also been shown to provide

good quantitative agreement with a fully kinetic treatment in a SOL plasma context with a

steep temperature drop [97]. The SNB model is derived by assuming time-derivatives in ve-

locity space are zero, which means it is not clear that transient SOL regimes (where non-local

transport may be particularly relevant [37, 83, 84]) will be captured accurately. Furthermore,

a self-consistent treatment of non-local parallel transport with SNB alongside an appropriate

sheath boundary condition has not yet been explored.

Another reduced kinetic model is that of Ji, Held and Sovinec [99], with modifications proposed

by Omotani et al. [100]. Similarly to the SNB model, the perturbation in the electron distribu-

tion function from a local Maxwellian is calculated using a simplified, time-independent form

of the VFP equation. This is then used to calculate the local parallel heat flux. In [97], it was

found that the Ji-Held-Sovinec model showed good agreement with kinetic predictions of the

heat flux in the SOL regimes studied. Agreement was worse than in the SNB model however,

see Figure 2.15, and only suppression of the heat flux is captured and not enhancement. How-

ever, it was suggested that the range of applicability for different collisionalities may be larger

with Ji-Held-Sovinec than SNB. Numerical issues with the Ji-Held-Sovinec have been reported

simulating detached SOL conditions in [101].

In [101], Wigram et al. implemented the Ji-Held-Sovinec non-local transport model into the 1D

fluid code SD1D, which was used to explore an ITER-like scrape-off layer problem. Doing so

with a fully kinetic kinetic model would be computationally challenging due to the large domain

length and significant change in plasma conditions from upstream to the targets. Here, signif-



96 Chapter 2. Theoretical background

Figure 2.15: A comparison of different parallel heat flux models studied in [97]. The temperature
drop is shown in shaded grey (right axis). The ratio of the heat flux prediction to the free-
streaming value is shown on the left axis for KIPP (cyan); SNB with two variations of model
parameters (orange, solid and dashed); the Ji-Held-Sovinec model (dot-dashed red, labelled
‘EIC’); flux limited values for a range of limiters (light blue); and the local Braginksii value
(black dashed).

icant non-local effects in the form of modified plasma profiles (see Figure 2.16) are predicted

in future devices such as ITER and DEMO, where the SOL collisionality parameter ν∗ is ex-

pected to be smaller than in current devices. It was also found that, by increasing the fractional

abundance of a background radiating impurity species to stimulate detachment, the non-local

transport model predicts detachment at higher impurity seeding than a flux-limited model.

Neither the impurity radiation or the sheath boundary conditions were treated self-consistently

with the non-local heat flux in this study.

Other reduced kinetic models exist (for example that of del Sorbo et al. [102, 103], and Man-

heimer et al. [104]) which have yet to be applied to a study of SOL plasmas. There is generally

good agreement in the parallel heat flux using the models discussed here with kinetic predic-

tions, with a much-reduced computational cost, but there is some uncertainty as to whether

they are applicable to transient regimes because there is typically an underlying assumption

that time-derivatives are zero in velocity space. However, it should be said that such models
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Figure 2.16: Temperature (left) and density (right) profiles in simulations of an ITER-like
SOL using the SD1D code [101]. Profiles are shown for three parallel heat flux models:
Braginksii/Spitzer-Härm, Ji-Held-Sovinec, and flux-limited with α = 0.2.

can accurately resolve time-dependence in some cases [105]. A final point is that self-consistent

treatments of the heat-flux using reduced kinetic models with other important aspects of SOL

physics, for example the sheath boundary, are rare.

2.9.4 Simple SOL models

Due to the complexity of fluid SOL models, even relatively simple ones such as the 1D fluid

model in SD1D [90], there remains signficiant interest in reduced, semi-analytic models which

may offer simple yet powerful approaches to predicting the necessary operating conditions for

future tokamaks.

An important example is the model by Lenygel [106] which aims to predict detachment onset

for a given concentration of radiating impurity species, cα. The Lengyel model is similar to the

two-point model (Section 2.7.2) in that similar assumptions are made and the aim is to relate

conditions at the target (t) to those upstream (u), but the effect of a radiating impurity species is

incorporated into the calculation of the parallel heat flux. This leads to a modified expression

for the parallel heat flux along the SOL, which becomes a function of the concentration of

a given impurity species. In [107], Moulton et al. compared Lengyel model predictions for

detachment onset with SOLPS-ITER simulations for an ITER baseline scenario, where the

impurity concentration required for flux rollover was typically overpredicted by a factor of ∼ 4,
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but the qualitative predictions for scalings between ne,u, q∥,u and cα were in good agreement.

Another example is the detachment location sensitivity (DLS) model of Lipschultz et al. [62],

where an inverse relationship has been shown to exist between the degree of flux tube expansion

(i.e. the ratio of the total magnetic field at the X-point to that at the target) and detachment

onset.

Reduced models such as these typically make predictions which are functions of parameters

which are sensitive to non-local transport effects such as the parallel heat flux, the sheath heat

transmission coeficient and the rate coefficients of plasma-impurity reactions. Because of this,

they offer a potential test of the sensitivity of qualitative SOL behaviour (such as detachment

onset) to kinetic effects like heat flux suppression.

2.9.5 Conclusions

Here we have summarised some important recent research into SOL plasmas with relevance to

the questions posed in this thesis. It can be seen that it is by now well-established that suppres-

sion of the heat flux compared to classical predictions is a common feature of SOL plasmas, and

that this can lead to steeper temperature gradients and modified density profiles in moderate

to low collisionality regimes. Furthermore, simple flux limiters applied to Spitzer-Härm heat

flow are not appropriate for predictive modelling because the degree of flux suppression varies

spatially and temporally, and is highly dependent on plasma profiles across the whole SOL

domain.

It is less clear how significant these changes to the parallel heat flux will be for future tokamaks

such as ITER and DEMO. These devices will almost certainly need to operate in detached mode,

meaning target conditions will necessarily be highly collisional and so non-local transport may

not be significant. This raises the question of whether kinetic effects may modify the onset of

detachment, either in terms of the amount of impurity seeding required or the plasma density

at the speparatrix. The work by Wigram et al. in [101] suggests kinetic effects may delay

detachment onset, but the treatment of impurity radiation there was not self-consistent with

the parallel heat flux. Some of these questions will be explored in detail in Chapter 5, where
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kinetic simulations will be compared to fluid predictions in a range of plasma regimes, from

attached to detached. Furthermore, in Chapter 6 the question of kinetic effects in the presence

of impurities will begin to be investigated.

Few studies of non-local transport have been attempted in the context of a fully-featured SOL

model which includes accurate ion and neutral physics as well as realistic geometry. Vasileska

et al. [78] used the BIT1 code to compute kinetic boundary conditions in a study of ELMs with

SOLPS-ITER, but this study did not simultaneously compute the parallel heat flux kinetically.

In Chapter 3, a model for the ions and neutral particles in the context of a kinetic treatment

of the electrons will be developed. This model has been applied to the physics investigations

in later chapters.

Much kinetic modelling carried out to date has sought to identify the presence and magnitude of

kinetic effects in scrape-off layer plasma regimes. However, there has not yet been a systematic

attempt to quantify the strength of these kinetic effects with respect to SOL control parameters.

This is clearly a challenge to do in any sufficiently realistic model given the multitude of

uncertainties in other aspects of SOL physics, but it is currently an open question whether

or not fluid models of parallel transport in the tokamak edge are appropriate for devices such

as ITER, DEMO and SPARC. In Chapter 5, this will be addressed directly by attempting to

develop a set of simple scaling laws which predict the magnitude of expected kinetic effects in

a given SOL scenario, based on kinetic simulations across a broad range of conditions.

A key focus of much of the modelling work discussed here has been on kinetic effects in the

parallel heat flux, particularly for electrons, and to a lesser extent the conditions at the sheath

boundary. There has been less attention paid to non-local transport in other areas relevant to

parallel transport such as the role of electron-ion equipartition and electron-impurity reaction

rates, which will be explored here in Chapters 4 and 6.

We have not paid much attention here to ion kinetics, apart from mentioning the study per-

formed by Chankin et al. [80] which looked at kinetic effects in the parallel ion transport.

While we may not expect parallel thermal conduction of the ions to play as significant a role in

plasma transport as for the electrons, there is clearly some interest in understanding the veloc-
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ity distribution of ions incidient on the targets, which may for example alter physical sputtering

rates. Ion kinetics may also be important in turbulent transport in the core and into the edge.

Furthermore, it has recently been suggested that parallel heat flux suppression in the ions may

significantly increase upstream ion temperatures in reactor-relevant tokamak conditions [108].

These considerations are beyond the scope of the work presented here, where there are many

questions still to be answered in the area of electron kinetics.

Finally, it should also be noted that the treatment of SOL geometry in this thesis will be rather

simplified despite it playing an important role in edge plasma transport, as evidenced by the

studies cited in this section which feature a sophisticated geometrical treatment of the edge

plasma. The discussion from hereon will be limited to transport in the parallel direction. This

is motivated in part by computational considerations, where there is a price to be paid for

solving the kinetic equation, and in part by an attempt to explore the fundamental physics

at play, where the model chosen should be the minimum viable one such that conclusions

are relevant, but analysis does not become too convoluted. One important geometric effect,

flux tube expansion, has been considered and an approach to modelling it kinetically will be

presented (without implementation) in Appendix C.



Chapter 3

Numerical modelling

The bulk of the work carried out in this thesis has made use of the kinetic electron code SOL-

KiT, originally written by Mijin [4]. To carry out the studies which will be discussed in later

chapters, I have developed and implemented several upgrades to SOL-KiT, with the aim of

introducing additional physics not included in the original model and reducing the computa-

tional cost of running the code. These two avenues for improvement have been motivated by

a desire to explore the effect of electron kinetics in more realistic SOL regimes, and to carry

out parameter scans where we can identify the relevance of a kinetic treatment to current and

future tokamak experiments. A third direction of the numerical modelling work carried out is

in the treatment of non-Maxwellian reaction rates for SOL impurities. To assess the importance

of kinetic effects in plasma-impurity reaction rates, and as a precursor to a self-consistent treat-

ment of impurities in a code such as SOL-KiT, a separate collisional-radiative model (CRM)

has been developed to investigate the atomic population kinetics of various tokamak-relevant

impurities against background plasma profiles from SOL-KiT.

In this chapter, the original SOL-KiT model from [4] will be outlined first. Following this, three

improvements to SOL-KiT will be presented: adding an ion temperature equation; adding a

fluid neutral model; and bundling electron-neutral collision operators. Finally, a CRM for

exploring the effect of non-Maxwellian reaction rates in SOL impurities will be presented.

Benchmarking results for all newly-developed code will also be provided. As such, Section 3.1

101



102 Chapter 3. Numerical modelling

is a review of previously published work carried out by Mijin [4], while Sections 3.2 onwards

are a description of original work.

3.1 SOL-KiT

This section describes the original version of SOL-KiT, written by Mijin. All studies with SOL-

KiT presented in later chapters used the upgraded version of SOL-KiT which are described in

Sections 3.2, 3.3 and 3.4.

SOL-KiT is a 1D code, where the spatial coordinate x is oriented parallel to the magnetic

field; see Figure 3.1 for a diagram of the SOL-KiT geometry. A hydrogenic plasma is modelled,

consisting of electrons, singly-charged ions and neutral atoms (where the number density of

excited states, specified by principal quantum number, are individually tracked). For the

electrons, we can choose to simulate them by solving the kinetic equation or a set of equivalent,

Braginskii-like fluid equations which are moments of the kinetic model. The ions are treated as

a fluid, and a simple diffusive transport model is used for the neutrals. A collisional-radiative

model is included for the evolution of the neutral atomic states and computing plasma-neutral

source terms.

For the following discussion, unless specified otherwise the variable f with no subscript refers

to the distribution function of the electrons. This section is largely adapted from [4,109], but is

provided here to serve as a reference for the improvements to SOL-KiT which will be presented

after. Only the key aspects of the SOL-KiT model are presented here; further details are

provided in Appendix A. The development work on SOL-KiT has been incremental, meaning

some aspects of the model which are presented early in this chapter will later be redefined. For

physics investigations which are presented in later chapters it will be made clear which version

of the code has been used.
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Figure 3.1: Diagram of SOL-KiT geometry. A flux surface in the scrape-off layer is shown
on the left, where a single magnetic field line is drawn from a point upstream to the target
(red). The radial, r, toroidal, ϕ, and poloidal, θ, directions are also shown. In SOL-KiT, this
surface is ‘flattened out’ (right), and a single flux tube is modelled along the spatial coordinate

x oriented parallel to B⃗, assuming toroidal symmetry and reflective symmetry around the
upstream location, as well as uniform field strength.

3.1.1 Kinetic electron model

When the electrons are modelled kinetically, the electron velocity distribution function f(t, x,v)

is evolved according to the 1D form of the kinetic equation (2.20),

∂f(t, x,v)

∂t
+ vx

∂f(t, x,v)

∂x
− e

me

E
∂f(t, x,v)

∂vx
=
∑
α

Ce,α, (3.1)

where v is the velocity space coordinate and Ce,α is the collision operator for collisions between

electrons and species α (electrons, ions or neutral atoms). The spatial domain is along the

x-axis, see Figure 3.1. For collisions between charged particles (electron-electron and electron-

ion), the Fokker-Planck collision operator is implemented. For collisions between electrons and

neutral atoms, the Boltzmann collision integral is used.

Similar to codes such as KALOS [110], IMPACT [111] and OSHUN [112], a spherical harmonic
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expansion of f is employed as a physically meaningful method of dimensionality reduction, as

discussed briefly in Section 2.2, based on the formalism of Shkarofsky et al. [42]. The cartesian

velocity coordinates (vx, vy, vz) are transformed to spherical coordinates (v, θ, φ). Spherical

harmonics allow us to write a function in this coordinate system as a product of Legendre

polynomials, Pm
l (cos θ), and the complex phase, eimφ. The distribution function becomes

f(v, θ, φ) =
∞∑
l=0

l∑
m=−l

fm
l (v)P

|m|
l (cos θ)eimφ.

Macroscopic transport quantities become natural functions of different harmonics of f in this

formalism. For a scalar function in v, its moment uses the l = 0 harmonic,

∫
ϕf(v)dv = 4π

∫ ∞

0

ϕf 0
0 (v)v

2dv.

If a is a vector function of v, its moment uses the l = 1 harmonic,

∫
af(v)dv =

4π

3

∫ ∞

0

|a|


f 0
1

2Re(f 1
1 )

−2Im(f 1
1 )

 v2dv,

and so on for higher-order tensor quantities.

Since the model is 1D in space and azimuthal symmetry about the x-axis is assumed in velocity

space (as well as uniform magnetic field strength along x), magnetic field effects are ignored.

This means the m indices are always zero and the decomposition reduces to one in Legendre

polynomials only, f(v, θ) =
∑

l fl(v)Pl(cos θ). The m superscript is hereby dropped.

As in the case of transport quantities, we can similarly decompose each term in the kinetic

equation (3.1), resulting in a series of evolution equations for fl(t, x, v) up to some lmax for the

highest resolved harmonic. Details are provided in Appendix A.1. The result is that the kinetic

equation becomes

∂fl
∂t

= Al + El + Cl (3.2)
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where Al, El and Cl are the decomposed forms of the spatial advection, electric field and

collision terms respectively. The spatial advection term is

Al = − l

2l − 1
v
∂fl−1

∂x
− l + 1

2l + 3
v
∂fl+1

∂x
. (3.3)

The velocity space advection due to the electric field is

El =
e

m
E

[
l

2l − 1
Gl−1 +

l + 1

2l + 3
Hl+1

]
, (3.4)

where

Gl(v) = vl
∂v−lfl
∂v

,

Hl(v) =
1

vl+1

∂vl+1fl
∂v

.

The collision terms, Cl, are somewhat more involved and so presented in A.2. Contributions to

Cl come from electron-electron and electron-ion Coulomb collisions, where the Fokker-Planck

operator (2.32) is decomposed in Legendre polynomials, and electron-neutral collisions with a

decomposition of the Boltzmann collision operator (2.25). Included electron-neutral processes

are elastic collisions, excitation, de-excitation, ionization and three-body recombination. There

is also a heating operator, included to simulate energy entering the SOL from the core.

The electric field is calculated using Ampère-Maxwell’s law, containing only the displacement

current,

∂E

∂t
= − 1

ε0
(je + ji), (3.5)

where je = −e4π
3

∫∞
0

v3f1(v)dv is the electron current density and ji = eniui is the ion current

density (where ni is the ion density and ui the ion flow velocity).

The model for the background ions and neutrals in kinetic mode is presented alongside the fluid

electron model in the next section.
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3.1.2 Fluid model

The fluid model for electrons is obtained by taking mass, momentum and energy moments of

the 1D kinetic equation, either in its traditional form (3.1) or in the Legendre form (3.2), and

then reformulating as evolution equations for the density, flow velocity and temperature. What

results is a 1D form of the intrinsic transport equations presented in Chapter 2, equation (2.43),

where isotropy is assumed so that π
e
= 0. We thus have equations for the electron density ne,

∂ne

∂t
+

∂ (neue)

∂x
= Se, (3.6)

flow velocity ue,

∂ue

∂t
= −ue

∂ue

∂x
− e

me

E − Se

ne

ue −
1

mene

∂ (nekTe)

∂x
+

Re

mene

(3.7)

and temperature Te,

∂kTe

∂t
= −ue

∂kTe

∂x
+

2

3

[
−kTe

∂ue

∂x
− 1

ne

∂qe
∂x

− Se

ne

(
3

2
kTe −

meu
2
e

2

)
− ueRe

mene

+
Qe

ne

]
. (3.8)

The parallel electric field is given by E. Se, Re and Qe are sources of particles, momentum and

energy, where there may be contributions from electron-ion collisions, electron-neutral collisions

and external sources. Source term notation in this section will use subscripts for the species

to which they apply, and superscripts for the process involved. No subscript means a quantity

may be applied to equations for more than one species, sometimes with a change of sign.

The particle source term is

Se = Sion − Srec + Sext
e , (3.9)

where Sion is the particle source resulting from ionization and Srec from recombination, and

Sext
e is any external particle source. The friction term contains contributions from electron-ion

friction and from electron-neutral collisions,

Re = Rei
e +Ren

e ,
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where the Braginskii form of Rei
e is used [48],

Rei
e = −Rei

i = −mene

τe
0.51 (ue − ui)− 0.71ne

∂ (kTe)

∂x
, (3.10)

where ui is the ion flow velocity and τe is the Braginskii electron collision time (2.5). The

energy source Qe is determined by electron-neutral collisions and external heating,

Qe = Qen
e +Qext

e , (3.11)

where Qext
e is used to simulate energy input from the core. For an input heat flux qin distributed

uniformly over length Lh, Q
ext
e = H(Lh − x)qin/Lh where H is the step function, which is

equivalent to the kinetic heating operator (A.17). No electron-ion energy transfer is included

in this original version of SOL-KiT because the ions are assumed to be either cold or equal to

the electron temperature. This assumption is relaxed in Section 3.2.

Sen
e , Ren

e and Qen
e are computed by taking the appropriate moments of the Boltzmann collision

operators

Sen
e = 4π

∫ ∞

0

dvv2
(
Cel

0 + Cex
0 + Cion

0 + C3br
0

)
(3.12a)

Ren
e =

4π

3

∫ ∞

0

dv (mev) v
2
(
Cel

1 + Cex
1 + Cion

1 + C3br
1

)
(3.12b)

Qen
e = 4π

∫ ∞

0

dv

(
1

2
mev

2

)
v2
(
Cel

0 + Cex
0 + Cion

0 + C3br
0

)
(3.12c)

for operators from elastic, excitation, ionization and three-body recombination (see Appendix

A.2 for definitions). A Maxwellian electron distribution is used in this fluid electron model,

f0(v) = ne

(
me

2πkTe

)3/2
e

−mev
2

2kTe ,

f1(v) = −ue
∂f0
∂v

,

fl≥2(v) = 0.

In this way, numerical equivalence with the kinetic model is ensured for the source terms, with

differences arising solely from differences in the distribution function.
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Closure of the fluid equations is achieved with the Braginskii expression for heat flow (2.46),

presented again here,

qe = 0.71nekTeue − κe
∂kTe

∂x
,

using the Spitzer-Härm value for heat conductivity, κe [49].

For the ions, only the flow velocity, ui, is directly evolved. Quasi-neutrality is enforced, so

the ion density is calculated with ni = ne. Ions are assumed to either be cold, or equal in

temperature to the electrons, Ti = Te. The ion flow velocity is evolved using a similar equation

to (3.7) featuring the ion mass, mi,

∂ui

∂t
= −ui

∂ui

∂x
+

Ze

mi

E − Si

ni

ui −
1

mini

∂ (nikTi)

∂x
+

Ri

mini

. (3.13)

Particle sources Si are the same for both species, Si = Se. The friction term, Ri, has contribu-

tions from electron-ion friction and ion-neutral friction via charge exchange collisions,

Ri = Rei
i +Rcx

i . (3.14)

For electron-ion friction, Rei
i , in kinetic mode the momentum moment of the e-i collision opera-

tor is calculated, while in fluid mode the Braginskii expression is used (3.10), where momentum

conservation is enforced with Rei
i = −Rei

e . The charge exchange friction between ions and

neutrals is

Rcx
i = Scxmi(un − ui), (3.15)

where Scx is the charge exchange rate per unit volume and un is the neutral flow velocity. A

simplified form is considered, where neutrals are treated as a cold, stationary target, so that

un = 0 and Scx = ni|ui|
∑

b nbσcx,b, where the density of a given neutral atomic state is nb and

the charge exchange cross-section is σcx,b. These are summed over all tracked atomic states1,

1Note that the variable b here is used as both an index on the neutral atomic state and the principal quantum
number of that state.
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and the cross-sections are low-energy values of those given in Janev [113],

σcx,1 = 3× 10−19 m2, σcx,2 = 24 × 10−19 m2

σcx,3 = 34 × 7× 10−20 m2, σcx,b≥4 = b4 × 6× 10−20 m2.

Atomic neutrals are treated with a diffusive model, where the density of each excited state b

evolves according to

∂nb

∂t
=

∂

∂x

(
Db

∂nb

∂x

)
+ Sb, (3.16)

where b ∈ {1, bmax}, b = 1 being the ground state. For a given state b, the particle source term

Sb is similar in form to the right-hand side of the generic equation for the evolution of atomic

state densities in plasmas presented in Chapter 2, equation (2.54),

Sb =
∑
b′<b

[
Kex

b′→bnenb′nb −Kdeex
b→b′nenb − Ab→b′

]
+
∑
b′>b

[
Kdeex

b′→bnenb′ −Kex
b→b′nenb + Ab′→bnb′

]
−Kion

b nenb +K3br
b neni + βbneni.

(3.17)

The rate coefficients for transitions due to excitation (ex), deexcitation (deex), ionisation (ion)

and three-body recombination (3br) are given by K, which is defined

K =
4π

ne

∫ ∞

0

(σ(v)v)f0(v)v
2dv (3.18)

for a process with cross-section σ. Radiative de-excitation coefficients are given by A and

radiative recombination coefficients by β. For all terms, a subscript b → b′ refers to a transition

from initial state b to final state b′. From Sb, the particle source for the plasma species is then

Se = −
∑

b Sb, where only the ionization and recombination processes do not cancel so we can

write Se = Sion − Srec. The 1D diffusion coefficient Db is

Db =
vth,n

2 [(ni + n1)σel,b + σcx,bni]
, (3.19)

where σel,b is the cross-section for elastic electron-neutral collisions, where the Bohr radius is
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used, n1 is the ground state neutral density and vth,n is the thermal velocity of the neutrals,

vth,n =
√
2kTn/mi. The neutrals are assumed isothermal at Tn = 3 eV.

3.1.3 Boundary conditions

The upstream boundary is reflective, with all spatial gradients set to zero. At the target

the plasma particles crossing the sheath boundary are lost and recycled as neutral particles,

where the flow velocities are set equal to the sound speed according to the Bohm criterion,

ue = ui = cs, where cs =
√
2kTe/mi. For a target plasma particle flux Γt = ntcs, neutral

recycling is given by Γrec = −FrecΓt, where Frec is the recycling coefficient (a number between

0 and 1). The target density, nt, is extrapolated from the last two spatial grid cells. There are

no diffusive neutral fluxes at the boundary, such that Db
∂nb

∂x
= 0 in equation (3.16) for b > 1.

For b = 1, recycling into the ground state is imposed by setting D1
∂n1

∂x
= Γrec at the boundary.

In fluid mode, the boundary condition on the electron heat flux is qt = γentkTt, where

γe = 2− 0.5 ln (2π (1 + Ti,t/Te,t)me/mi) (3.20)

is the sheath energy flux coefficient.

A zero-gradient boundary condition is used for the target temperature, Tt. The target density,

nt, is calculated using an extrapolation from previous spatial cells.

In kinetic mode, the velocity and energy flux boundary conditions are calculated self-consistently

by applying a cut-off to the backwards-travelling part of the electron distribution at the sheath

edge. The position of this cut-off can be calculated numerically given knowledge of the ion flux,

where ambipolarity is assumed so that ion and electron fluxes across the sheath are equal.
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3.2 Adding an ion temperature equation to SOL-KiT

Parts of this section are adapted from an article by the author published in the European

Physical Journal Plus [39].

In a hydrogenic plasma, the ratio of the thermal conductivity for electrons and ions in the

direction parallel to the magnetic field is κe/κi ∼
√

mi/me ∼ 60. Heat conduction is therefore

dominated by the electrons, which provides a justification for models which treat the plasma

with a single temperature with heat conduction at κe, for example the two-point model [24]

and SD1D [90]. However, when thermal equilibration between the electrons and ions is not

complete, as in the hot, low collisionality upstream regions of divertor tokamaks, this less-

efficient ion heat conduction means we expect them to reach higher temperatures in the SOL

than the electrons, assuming equal input power via cross-field transport from the core. We

might expect this to play a role in determining plasma behaviour in the SOL and the eventual

escape mechanism for energy that makes its way into the SOL. For example, physical sputtering

yields are determined primarily by the amount of heat flux carried to the solid surfaces by the

ions, while the amount of energy radiated away via inelastic collisions with neutral particles

depends more on the properties of the electrons. There is therefore an interplay between thermal

equilibration and parallel transport, with each affecting the other, which should be included in

a sophisticated treatment of SOL plasmas.

Ion-electron energy transfer is an intrinsically velocity-dependent phenomenon in a similar way

to the spatial transport of heat (see Section 2.8), where fast particles are able to transfer more

energy but do so less frequently. Since there is also evidence of kinetic effects in other aspects of

SOL plasma behaviour, it is natural to investigate whether a fluid model is adequate to describe

this ion-electron energy exchange. In order to do this, a fluid ion temperature equation has

been implemented in SOL-KiT along with a collision operator in the electron kinetic equation

for f0 (and equivalent for the fluid electron model). The model will be outlined, and then some

tests to benchmark the implementation will be discussed. A study carried out with this version

of SOL-KiT is presented in Chapter 4.
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3.2.1 Model

A fluid equation for the ion temperature Ti can be derived in a very similar way to the Te

equation used in SOL-KiT (3.8), where we start with the kinetic equation for the ions (2.20)

and take the mass, momentum and energy moments, splitting velocity into a flow component

and random component, which gives a set of transport equations for conserved quantities like

(2.42). In the 1D geometry of SOL-KiT, the energy equation is

∂

∂t

(
3

2
pi +

1

2
miniu

2
i

)
+

∂

∂x

(
qi +

(
5

2
pi +

1

2
miniu

2
i

)
ui

)
= ZeniEui +Qi,

(3.21)

where we have assumed pressure isotropy, π
i
= 0, as in the electron fluid model. Here, pi =

nikTi is the ion pressure in terms of density, ni, and temperature, Ti, qi is the ion conductive

heat flux and Qi is the ion energy source. Straightforward manipulation of this equation, see

A.3, allows us to arrive at an evolution equation for Ti,

∂kTi

∂t
= −ui

∂kTi

∂x
+

2

3

[
−kTi

∂ui

∂x
− 1

ni

∂qi
∂x

− Si

ni

(
3

2
kTi −

1

2
miu

2
i

)
− ui

ni

Ri +
Qi

ni

]
. (3.22)

This equation has been implemented in SOL-KiT, see A.4 for details on the numerics. The

friction term Ri and particle source Si are the same as that used in the fluid model described

in the previous section, equations (3.9) and (3.14). The Braginskii form of the ion heat flow is

used with Spitzer-Härm conductivity [48,49],

qi = −κi
∂(kTi)

∂x
,

where κi = 3.906nikTiτi/mi, the ion collision time is

τi =
3
√
mi(kTi)

3
2 (4πϵ0)

2

4
√
πZ4ni ln Λe4

,

and lnΛ is the electron-ion Coulomb logarithm.
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New source terms

The ion energy source,

Qi = Qext
i +Qcx

i +Qs
i +Qei

i , (3.23)

arises from external heating (simulating input power to the SOL from the core plasma), Qext
i ,

charge exchange collisions with neutrals, Qcx
i , particle sources, Qs

i , and from collisions with

electrons, Qei
i . For a given heat flux qin entering over a heating length Lh, Q

ext
i = H(Lh −

x)qin/Lh, where H is the step function. For Qcx
i , only the contribution from the transfer of

kinetic energy is included and not internal energy. This is to avoid an excessively large energy

sink from charge exchange for situations where Ti > Tn, which was seen to arise in testing due

to the fact that the neutral temperature is not evolved in this form of the model. Thus,

Qcx
i =

1

2
mi(u

2
n − u2

i )S
cx, (3.24)

where un is the neutral flow velocity and Scx is charge exchange rate per unit volume. As

described in the previous section, the neutrals are treated as a cold, stationary target so un = 0

and Scx = ni|ui|
∑

b nbσcx,b. For Qs
i , we include the effect of changing particle identity from

ionization and recombination, where heavy particles retain their energy during such processes.

This term is therefore

Qs
i = Sion

(
3

2
kTn +

1

2
mnu

2
n

)
− Srec

(
3

2
kTi +

1

2
miu

2
i

)
(3.25)

for a net ionization source Sion and recombination source Srec, where un = 0 and the neutral

temperature is Tn = 3 eV. The neutral mass ismn = mi here. The electron-ion energy exchange,

Qei
i , is discussed shortly.

For conservation of energy in this model, now that the ion energy is evolved independently,

we must add an additional contribution Rs
i to the ion momentum source, Ri, which appears

in (3.13) and (3.22), due to the exchange of particles during ionization and recombination and
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the associated transfer of momentum. This is analogous to the Qs
i term above. Thus we have

Ri = Rei
i +Rcx

i +Rs
i , (3.26)

with

Rs
i = Sionmnun − Srecmiui (3.27)

and Rcx
i and Rei

i unchanged from (3.15) and (3.10) respectively.

The electron-ion energy exchange is treated differently for fluid or kinetic electrons. For fluid

electrons, a standard form [47] is used,

Qei
i = −Qei

e = −3me

mi

nek

τe
(Ti − Te), (3.28)

where the electron collision time is

τe =
3
√
me(kTe)

3/2(4πϵ0)
2

4
√
2πZne ln Λe4

.

A positive value of Qei
e here corresponds to energy moving from the ions to the electrons.

When electrons are considered kinetically, the energy moment is taken of the collision operator

for electron-ion collisions, Cei, such that

Qei
i = −

∫
dv

1

2
mev

2Cei = −4π

∫
dv

1

2
mev

4CFP
0 , (3.29)

where the Fokker-Planck collision operator for l = 0 is used, CFP
0 , since Qei

e is a scalar quantity

(noting the second equality represents the transition from the usual formulation of the collision

operator to the decomposition in spherical harmonics). Cei is a function of both f and F , the

ion distribution function. As described by Shkarofsky et al. in [42], we can obtain a form of

this collision operator by starting from the Rosenbluth potential form of the Fokker-Planck

collision operator for electron-ion collisions (2.32). By expanding this in spherical harmonics,
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it can be shown that the l = 0 Fokker-Planck operator for electron-ion collisions becomes

1

Γei

CFP
0 =

1

3v2
∂

∂v

[
3

µr

f0I0 (F0) + v (I2 (F0) + J−1 (F0))
∂f0
∂v

]
, (3.30)

where the integrals Ii and Ji are defined as

Ii (F0) =
4π

vi

∫ v

0

F0(u)u
i+2du, Ji (F0) =

4π

vi

∫ ∞

v

F0(u)u
i+2du.

Next, we assume Maxwellian ions and we arrive at a form of the collision operator which is just

a function of the electron distribution, f0, and Ti,

C0
ei =

1

v2
∂

∂v

[
ΓeiI0me

mi

(f0 +
kTi

mev

∂f0
∂v

)

]
, (3.31)

where I0 for Maxwellian F0 has reduced to

I0 = ni (erf (y)− y erf ′ (y)) ,

where erf is the standard error function,

erf(y) =
2√
π

∫ y

0

e−t2dt

and erf ′ is its derivative,

erf ′(y) =
d

dy
erf(y) =

2√
π
e−y2 ,

with y defined as the ratio of v to the ion thermal velocity, y = v/vth,i = v/
√

2kTi/mi.

We can first note that I0 tends to ni for large y, and y is indeed large because the electron

velocity is typically much larger than the ion thermal velocity. If we insert a Maxwellian for

f0 into (3.31), let I0 = ni and recall the definition of Γei (2.30), then the fluid expression for

Qei
i (3.28) is recovered. If we do not assume I0 = ni, then a corrective factor appears which

multiplies (3.31) by (1 + meTi/miTe)
−3/2, which is close to unity for all but extremely high

Ti/Te ratios.
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In fluid mode, conservation of energy is achieved by adding Qei
e , equation (3.28), to the total

energy source term Qe in the electron temperature equation for fluid electrons. In kinetic mode,

equation (3.31) is added to the right hand side of the electron kinetic equation (3.2), and the

energy moment is taken to compute Qei
i in (3.23).

It should be pointed out that Qei
i as defined here, using the total rather than intrinsic velocity,

Qei
i =

∫
1

2
miv

2Cei
i edv =

∫
1

2
mi|w + ui|2Cei

i dv,

is missing a contribution from Joule heating, so to match the Braginskii form we should have

Qei
i = −3menek

miτ
(Ti − Te) + uiR

ei
i ,

which would cancel with the uiR
ei
i term in the Ti equation (3.22), and result in the usual

(ui − ue)R
ei
e contribution in the Te equation (3.8). However, to match this in the kinetic

equation we would need to translate the collision operator (3.31), which for flowing ions can

be considered as applicable in the centre of mass frame, back to the lab frame. The correction

is expected to be small, in part because ui is small relative to the electron thermal velocity in

SOL plasmas, and also because no net currents can enter or leave the plasma in the SOL-KiT

model so ui − ue is also small. Therefore, we do not employ this correction and leave Qei
i as

defined in (3.28) in fluid mode to ensure consistency with the kinetic treatment. However,

an approach to performing this translation on collision operators has been considered and is

outlined in Section 3.3.3.

Boundary conditions

At both upstream and sheath boundaries, zero gradient is assumed on Ti. There is a boundary

condition imposed on the total (convective plus conductive) energy flux crossing the sheath,

qtoti,sh = γintkTi,tcs +
1

2
miniu

2
i cs (3.32)
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where γi = 2.5 is the ion sheath heat flux coefficient, Ti,t is the target ion temperature and nt is

the target density. The values of ni and ui in the second term are evaluated at the last evolved

grid location. The sound speed at the target is now defined as cs =
√

k(Te,t + Ti,t)/mi, which

modifies the electron boundary condition in fluid mode (see Section 3.1.3).

In order to implement this boundary condition in practice, because Ti is evolved rather than

the ion energy density, in (3.22) qi is set to zero at the boundary and ui = cs is used for the

convection term, ui
∂kTi

∂x
. The equations for ni and ui (where ui = cs is also imposed at the

boundary) supply the remaining total energy flux.

The value of γi implemented here is obtained with a simple treatment of the sheath boundary

condition for ambipolar flow, where the ion distribution is set to a Maxwellian drifting at the

sound speed at the sheath edge [24]. Physically, this value corresponds to the sheath having

no net cooling effect on the ions, unlike the electrons, meaning energy is lost to the boundary

solely through convection. Experiments suggest γi ∼ 1.5 may be more appropriate [24], but

the simple treatment is employed here.

3.2.2 Benchmarking

Electron-ion thermal equilibration

To test both the new collision operator for f0 (3.31) and the Qei term in the fluid model

(3.28), we observe the thermal equilibration between electrons and ions in a 0D system without

neutrals. The initial temperatures are Te = 50 eV, Ti = 10 eV and the density is constant

at ne = 3 × 1019 m−3. Both fluid and kinetic electrons were simulated. In kinetic mode, the

velocity grid consisted of 80 cells, with grid widths ranging from ∆v = 0.05vth,0 to 0.35vth,0

and total length 12.2vth,0, where vth,0 is the electron thermal velocity of a reference plasma at

Te = 10 eV. The timestep was the same in both fluid and kinetic simulations, ∆t = t0, where

t0 is the electron collision time of a reference plasma at 10 eV.

At this moderate collisionality, electron-electron collisions ensure f0 stays close to Maxwellian
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in kinetic mode, so that the temperature evolution should be the same in both simulations. In

kinetic mode, by taking the energy moment of the collision operator (3.31) the temperatures

should evolve according to

∂Te

∂t
= −∂Ti

∂t
= −8niΓei

3
√
π

me

mi

Te − Ti

(2kTi/mi + 2kBTe/me)
3/2

,

which differs from the fluid expression by a factor (1+meTi/miTe)
−3/2 ≃ 1. This equation can

be written [42]

∂ξ

∂t′ei
= − ξ

(1 + ξ)3/2,

where

ξ =
ni(Te − Ti)

(ni + ne)T
,

T being the temperature of the plasma as a whole, and

t′ei =
8Γei(ne + ni)

3
√
π

me

mi

( me

2kT

)3/2
t.

The analytical solution to this, for a given initial ξ0, is

t′ei =
2

3

[
(1 + ξ0)

3/2 − (1 + ξ)3/2
]
+ 2

[
(1 + ξ0)

1/2 − (1 + ξ)1/2
]

+ ln

[
(1 + ξ0)

1/2 − 1

(1 + ξ0)1/2 + 1

]
− ln

[
(1 + ξ)1/2 − 1

(1 + ξ)1/2 + 1

]
.

(3.33)

The time evolution of Te and Ti is shown in Figure 3.2a for both kinetic and fluid electrons,

where there is good agreement in the electron and ion profiles. Total plasma energy is conserved,

to within 10−11 % in fluid mode and 10−4 % in kinetic mode. The deviation of the temperature

difference from the analytical solution in (3.33), δ(Te−Ti) = (Te−Ti)
SOL−KiT−(Te−Ti)

analytical,

is shown in Figure 3.2b. The error peaks at 0.1 eV in kinetic mode and 0.06 eV in fluid mode.

In kinetic mode, the ions equilibrate slightly higher than the electrons; Te − Ti = −0.06 eV at

the last timestep. The reason for this is that some energy is lost numerically from the electrons

in calculating the energy moment of the collision operator, even when Ti = Te, due to finite

grid effects.
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Figure 3.2: (a): Thermal equilibration of ions and electrons over time for both fluid and kinetic
electrons.

Energy balance

To test the energy conservation in the ions, a fully-featured SOL model for a deuterium plasma

has been simulated. Ionization and recombination were both included, but only ground state

neutrals were tracked. The electrons are fluid, and all other physics described in Sections 3.1.2

and 3.2.1 is included. Temperature and density profiles were initialised to the 2PM values,

T (x)
(
T

7/2
u + x

L

(
T

7/2
u − T

7/2
d

))2/7
n(x) = nuTu/T (x)

where the temperature and densities were initially equal for the electrons and ions, nu =

7.8×1018 m−3 and Tu = 20 eV. The simulation was then run until steady state conditions were

reached. The length of the simulation domain was 6.7 m and qin = 1MWm−2 of heating was

delivered uniformly over the first 2.2 m, to both the ions and electrons (giving a total heating

of 2 MWm−2). 64 cell centres were used for the spatial grid, with cell widths ranging from

26.6cm upstream to 2.7cm at the target.

The temperature and density profiles are shown in Figure 3.3. We can see that the ion tem-
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Figure 3.3: Profiles of Ti, Te and ne in the simulation described in this section. x = 0 is the
upstream location, and the target is at x = 6.7 m.

perature equilibrates at around twice the electron temperature upstream, but they are nearly

thermally equilibrated at the target.

To check for energy conservation, we rearrange the ion energy equation (3.21),

∂Wi

∂t
=

∂

∂t

(
3

2
pi +

1

2
miniu

2
i

)
=− ∂

∂x

(
qi +

(
5

2
pi +

1

2
miniu

2
i

)
ui

)
+ eniEui +Qi,

where ∂Wi

∂t
= 0 at equilibrium. If we integrate this equation along the spatial domain, using the

definition of qtoti,sh at the boundary (3.32) and splitting Qi into its constituent parts (3.23), we

should find

qin = qtoti,sh − qEi − qsi − qeii − qcxi , (3.34)

where qEi =
∫
L
eniEuidx, q

s
i =

∫
L
Qs

idx, q
ei
i =

∫
L
Qei

i dx and qcxi =
∫
L
Qcx

i dx. The result is shown

in terms of energy flows into and out of the ions in Figure 3.4. There is a small discrepancy

in the energy balance here, which has been shown by adding an additional contribution ∆q,

which is the difference between the left and right hand sides of (3.34). Here, ∆q represents an
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Figure 3.4: Energy flow diagram for the ions. All quantities are in units of MWm−3. The
additional quantity ∆q is the numerical discrepancy between all energy entering and leaving
the system.

additional heating source in the code, since an analysis of the code outputs cannot account for

all energy leaving the system.

To understand where the source of this discrepancy lies, we can look at the conservation of

intrinsic and kinetic energy separately. Rewriting (3.22) yields a pressure equation,

∂

∂t

(
3

2
pi

)
= − ∂

∂x

(
qi +

5

2
piui

)
+ ui

∂pi
∂x

+
1

2
miu

2
iSi − uiRi +Qi (3.35)

which we can subtract from (3.21) to get an equation for the kinetic energy,

∂

∂t

(
1

2
miniu

2
i

)
= − ∂

∂x

(
1

2
miniu

3
i

)
− ui

∂pi
∂x

+ eniEui −
1

2
miu

2
iSi + uiRi. (3.36)

Once again, at equilibrium the left hand sides of these equations are zero and the terms on the

right should sum to zero. The spatial profiles of each of these terms is shown in Figure 3.5,

where the x-axis is the distance from the sheath boundary and is shown on a log scale in order

to highlight detail at the end of the domain. It is clear that the discrepancy is entirely localised

to the last few cells.

By varying the grid from 32 cells to 256, we can see in Figure 3.6 how the discrepancy in

the energy balance changes. The quantities ∆qkinetic and ∆qintrinsic are computed in the same
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Figure 3.5: Profiles of the terms contributing to the ion intrinsic and kinetic energy balance.
Totals are shown in black.

way as for the total energy equation, where ∆q = ∆qkinetic + ∆qintrinsic. These are shown as

functions of the grid width in the last cell, ∆xN . It can also be seen (dashed lines) how using

upwinding in the ion momentum equation adds significant discrepancies in the energy balance.

Figure 3.6 shows that total error in the energy conservation can be kept under ∼ 1% providing

sufficient grid resolution is used and upwinding is not used in the ion velocity equation. The

remaining discrepancies are likely due to finite grid error, as well as the fact that the equations

solved in SOL-KiT are not in conservative form. While they are analytically equivalent, when

discretised the equivalence is not exact between the equation for Wi (3.21) and the equations

for ni (3.6), ui (3.13) and Ti (3.22), and so conservation properties are not necessarily ensured.

This is particularly the case in regions with large spatial gradients in plasma parameters, as is

found close to the target in 1D SOL simulations.

It should be noted that this discrepancy is found to be smaller in the electron energy balance in

SOL-KiT [84]. This is because their total energy is dominated by intrinsic rather than kinetic

energy, where it can be seen the latter is a larger contribution to ∆q in the ions in Figure 3.6.
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Figure 3.6: Intrinsic and kinetic contributions to ∆q as a function of the grid width in the last
cell, ∆xN .

3.3 Fluid neutral model

Neutral particles play a key role in the physics of tokamak edge plasmas. In even the most

basic SOL models, such as the two-point model, the presence of a source of neutral particles at

the walls is a necessary ingredient to making predictions of plasma conditions at the targets.

Refinements to the two-point model recognise that the presence of this neutral gas in front of

the targets, through which the plasma is flowing, will result in momentum and power losses

from the plasma, due to both elastic and inelastic collisional processes.

The diffusive, isothermal neutral model in SOL-KiT aims to capture the dominant aspects

of plasma-neutral physics in the SOL. As such, several important collisional and radiative

processes are included self-consistently with the plasma model, both kinetically and in fluid

mode. However, this model does not account properly for the momentum transfer due to

plasma-neutral friction, as it assumes cold, stationary neutrals and the lost plasma momentum

leaves the system. A proper treatment of this process will significantly change the neutral

profile and therefore the plasma dynamics. The same can also be said for the exchange of

energy with the neutrals, which is important for predicting the power balance in the SOL.

The loss of momentum and power in plasma-neutral interactions has been shown to play an
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important role in detachment onset [90], so treating both accurately is necessary if we wish

to study detachment kinetically with SOL-KiT. More generally, the importance of the neutral

dynamics in SOL plasmas means a more sophisticated model is required if we want to explore

electron kinetics in more reactor-relevant regimes.

Common approaches to neutral modelling in the scrape-off layer adopt a particle-based ap-

proach, such as the Monte Carlo neutral codes EIRENE [57] and DEGAS 2 [114]. These are

used because typical SOL neutral gases can be highly rarefied and so a fluid model will not

necessarily accurately capture their dynamics [115], and because the magnetic field-aligned co-

ordinates used in fluid plasma codes is not appropriate for neutral particles. However, Monte

Carlo codes can be computationally demanding, as a large number of particles are needed to be

modelled to get accurate statistics. As we are primarily concerned with physics investigations

of electron kinetics in SOL-KiT, which is already a computationally expensive task, a fluid neu-

tral model has been developed here. Furthermore, a fluid neutral model sits straightforwardly

within the framework of the other fluid equations in SOL-KiT, reducing the development effort

and numerical complexity of the code. In this section, we will describe the fluid neutral model

which has been implemented in SOL-KiT, with additional equations for the neutral momentum

and temperature, followed by a description of some benchmarking tests.

3.3.1 Model

Fluid equations for a monatomic neutral gas can be derived in a similar way to the general

fluid plasma equations in equation (2.42), with the key difference that the Lorentz force term

does not appear in the kinetic equation for a neutral particle species. If we do this, we arrive

at a set of equations involving the neutral density nn, flow velocity un and temperature Tn,

∂nn

∂t
+∇ · (nnun) = Sn, (3.37a)

∂

∂t
(nnmnun) +∇ · (nnmnunun) +∇pn +∇ · π

n
= Rn, (3.37b)

∂
∂t

(
3
2
pn +

1
2
nnmnu

2
n

)
+∇ ·

[
qn +

(
5
2
pn +

1
2
nnmnu

2
n

)
un + π

n
· un

]
= Qn, (3.37c)
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Figure 3.7: Geometry of the quasi-2D treatment of neutral transport described here. An ion
flux incident on the walls, Γi, returns as a recycled neutral flux, Γrec, which will not be confined
to the magnetic field in the same way.

where Sn, Rn and Qn are particle, momentum and energy sources, pn = nnkTn is the isotropic

neutral pressure, mn is the neutral particle mass (mn ≃ mi for hydrogenic neutrals), and qn is

the conductive heat flux.

We could at this point adopt the same approach used when deriving the plasma fluid equations,

where we apply these generalised 3D equations to the particular case of 1D SOL modelling,

and solve along the direction parallel to the magnetic field lines. However, neutral transport is

not confined by the magnetic field in the same way, and transport across field lines cannot be

so easily neglected.

So, to capture the neutral dynamics correctly, we should try to account for this cross-field

transport in our 1D model. Adopting the same geometry as in the right of the SOL-KiT

geometry diagram, Figure 3.1, in Figure 3.7 it is shown how the field lines are pitched at some

angle α with respect to the direction parallel to the wall on a 2D flux surface in the SOL, where

α = tan−1(Bθ/Bϕ) for a magnetic field with poloidal and toroidal component magnitudes Bθ

and Bϕ respectively. The incident plasma ion flux, Γi, travels along this direction, but the flux

of recycled neutral particles, Γrec, will not be bound to the field lines in the same way. The x

and y axes in Figure 3.7 are defined as parallel and perpendicular to the magnetic field lines

respectively. The x− y plane is therefore rotated an angle α with respect to the ϕ, θ axes.

Consider a location in the x − y plane at r = (0,∆y); see the red dot in Figure 3.8. We

define a new set of axes, x′ and y′, which are shifted in the toroidal direction such that the
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Figure 3.8: Transformation enabling perpendicular transport to be captured as an effective
parrallel transport, under the assumption of toroidal symmetry. On the left, the red dot has
a y-coordinate but the x-coordinate is zero. On the right, the location of the red dot in the
x′ − y′ plane can be described by an x′-coordinate only.

coordinate in this plane is r′ = (∆x, 0). Because we assume toroidal symmetry in this model,

these coordinates are equivalent. We can therefore eliminate the y coordinate by projecting

transport in the perpendicular direction onto the x-axis. For a distance ∆y, the resulting

∆x = ∆y/tanα.

In the manner described above, we can capture perpendicular transport as an effective parallel

transport in a 1D model. Taking the limit of small ∆y, we can relate gradients in the parallel

and perpendicular directions,

∂

∂y
=

1

tanα

∂

∂x
, (3.38)

and therefore, for a velocity u = u∥x̂+u⊥ŷ, we can arrive at an effective velocity in the parallel

direction,

ueff = u∥ +
u⊥

tanα
. (3.39)

We can now use these two relations, (3.38) and (3.39), along with (3.37), to form a quasi-2D

fluid model for the neutral particles (see Appendix B.1 for a full derivation), which features an

equation for both the parallel and perpendicular neutral velocities un∥ and un⊥,

∂nb

∂t
= −∂(nbun,eff )

∂x
+ Sb, (3.40a)

∂un∥

∂t
= −un,eff

∂un∥

∂x
− 1

mnnn

∂pn
∂x

− Sn

nn

un∥ +
1

mnnn

Rn∥, (3.40b)

∂un⊥

∂t
= −un,eff

∂un⊥

∂x
− 1

mnnn tanα

∂pn
∂x

− Sn

nn

un⊥ +
1

mnnn

Rn⊥, (3.40c)
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∂kTn

∂t
= −un,eff

∂kTn

∂x
+

2

3

[
Qn

nn

− kTn
∂un,eff

∂x
− Sn

nn

(
3

2
kTn −

1

2
mnu

2
n∥

)
− 1

nn

(
1 +

1

tan2 α

)
∂qn
∂x

−
un∥Rn∥

nn

]
,

(3.40d)

where Rn∥ and Rn⊥ are the momentum source terms in the parallel and perpendicular directions.

For the neutral heat flow qn, we use the expression from Helander et al. [50],

qn = −2.4

(
nnTn

mnνcx

)
∂Tn

∂x
, (3.41)

where νcx is the charge-exchange collision frequency. Note the subscript b on the density and

source term in the mass continuity equation (3.40a), which comes from the fact that SOL-KiT

solves for the density of each excited state of neutral hydrogen individually, with source terms

made up of particle exchange both between neutrals and plasma (ionization and recombination)

but also between atomic states (excitation and de-excitation). It would be computationally

costly to solve individual velocity and temperature equations for each atomic state, and most

probably unnecessary due to the strong coupling between each state via excitation and de-

excitation. Therefore, un∥, un⊥ and Tn are solved for the entire neutral species using nn =
∑

b nb

and Sn =
∑

b Sb.

It should be noted that there is some similarity in this treatment of cross-field neutral transport

in the scrape-off layer with that used in the SD1D code [90], where the parallel neutral transport

is enhanced by a diffusive term. Such a model can be obtained by dropping the inertial terms

in the un⊥ equation (3.40c); the perpendicular neutral dynamics is then determined by the

balance between pressure gradients and friction, Rn⊥ = 1
tanα

∂pn
∂x

. The neutrals experience a

stationary plasma in the perpendicular direction, so Rn⊥ ∝ un⊥. This yields a modified form

of (3.40a),

∂nb

∂t
= −

∂(nbun∥)

∂x
− 1

tan2 α

∂

∂x

(
D
∂pn
∂x

)
+ Sb, (3.42)

which looks like a typical mass continuity equation for flows in the parallel direction with an

additional diffusive term arising from perpendicular transport, with a diffusion coefficient D

enhanced by a geometric factor 1/tan2 α. This enhanced diffusive factor is equivalent to the

factor
(

Bϕ

Bθ

)2
reported in [90].
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While this neutral model captures the effect of cross-field neutral transport, it is not conservative

in momentum or energy when the entire plasma-neutral system is considered, because of the

assumption of no perpendicular plasma transport. This means that neutral frictional losses

in the perpendicular direction are not transferred to the plasma, and similarly kinetic energy

in the perpendicular direction is lost during particle exchange (e.g. ionisation). We could in

principle carry out a similar quasi-2D transport treatment for the plasma here as well, but

parallel transport is dominant for the plasma species and perpendicular transport depends on

unknown transport coefficients.

A final point to mention is that there is of course a third, radial dimension to neutral SOL

transport, which has not yet been considered here. A crude method of capturing this additional

neutral transport is with a redistribution of the neutral recycling flux, similarly to the method

used in DIV1D [91] and SD1D [90]. This has been implemented in SOL-KiT, but is not used

in the physics investigations presented later in this thesis. For a redistribution coefficient Rd, a

fraction 1−Rd of the recycling flux enters at the target, while the remainder is inserted uniformly

as a volumetric particle source across the divertor leg, below the X-point. The redistributed

neutrals are inserted with zero momentum at a temperature equation to the Franck-Condon

dissociation energy, TFC = 3 eV.

3.3.2 Source terms

This neutral model entails some new and updated source terms in the SOL-KiT model which

need (re)defining.

The redistributed neutrals are added to the ground state, such that there is an additional

contribution to Sb for the b = 1 equation,

S1 = ...+ Γredist/Lredist (3.43)

where Γredist is the particle flux of the redistributed neutrals, defined in the section describing

the boundary conditions (3.3.4), since it is a function of what is occurring at the target. The
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redistribution length is Lredist = L − Lheating, i.e. particles are redistributed uniformly across

the divertor leg, beyond the X-point.

The contributions to Rn are from charge exchange collisions between ions and neutrals, Rcx
n ,

and particle sources, Rs
n, so

Rn∥ = Rcx
n∥ +Rs

n∥ (3.44)

and

Rn⊥ = Rcx
n⊥ +Rs

n⊥. (3.45)

We neglect the contribution from electron-neutral friction as it is smaller than the friction

between heavy particles by ∼ me/mi. Also, there is no contribution to Rn from neutral redis-

tribution because they are inserted with zero momentum. The energy source term is

Qn = Qcx
n +Qs

n, (3.46)

where Qcx
n is the energy transfer in charge exchange collisions with ions and Qs

n is the contri-

bution from particle sources.

We will now outline the specific form of these terms, starting with charge exchange. The simple

model used in SOL-KiT thus far should be extended to account for the finite momentum and

temperature of both the ions and neutrals. Here, we use a simplified version of the forms

developed by Pauls [116] and Meier [117], where the momentum transfer is derived from the

Boltzmann operator for ion-neutral charge exchange collisions. The result is

Rcx
n∥ = mi(ui − un∥)S

cx, (3.47a)

Rcx
n⊥ = −miun⊥S

cx, (3.47b)

where Scx =
∑

b σcx,b(vcx)ninbvcx, which is the charge exchange rate per unit volume. The

summation is over all neutral excited states tracked, where the charge exchange cross-section

for hydrogen used (from Janev [113]) varies with principal quantum number and is a function

of the relative velocity of colliding particles. For this, we use a simple form of the characteristic
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collision velocity from [117],

vcx =

√
8k

πmi

(Ti + Tn).

For the energy transfer, we have

Qcx
n =

(
1

2
mi(u

2
i − u2

n∥) +
3

2
(kTi − kTn)

)
Scx, (3.48)

where again a simplified form of the expression from [117] is used.

The terms involving particle sources have a contribution from ionization, where the particle

source is Sion, and recombination, with particle source Srec. The friction terms are

Rs
n∥ = miun∥S

ion +miuiS
rec, (3.49a)

Rs
n⊥ = −miun⊥S

ion. (3.49b)

For the energy source we have

Qs
n =

(
1

2
miu

2
n∥ +

3

2
kTn

)
Sion −

(
1

2
miu

2
i +

3

2
kTi

)
Srec +

3

2
kTFC

Γredist

Lredist

. (3.50)

Note that, as we are now aiming to self-consistently solve for the neutral pressure and mo-

mentum, to maintain conservation properties we must update some of the source terms in the

ion velocity and temperature equations, described in Sections 3.1.2 and 3.2.1. We update the

friction term, Ri = Rcx
i + Rs

i + Rei
i which appears in (3.13) and (3.22), with new forms of Rcx

i

and Rs
i

Rcx
i = −Rcx

n∥,

Rs
i = −Rs

n∥

(3.51)

using Rcx
n∥ from (3.47a) and Rs

n∥ from (3.49a). Similarly, the ion energy source term Qi =

Qext
i +Qcx

i +Qs
i +Qei

i , which appears in (3.22), has updated forms of Qcx
i and Qs

i ,

Qcx
i = −Qcx

n ,

Qs
i = −Qs

n

(3.52)
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using Qcx
n from (3.48) and Qs

i from (3.50).

In the energy source terms (3.48) and (3.50), we have used un∥ rather than un,eff for the neutral

kinetic energy. The reason for this is that the quasi-2D model described here effectively allows

neutral parallel pressure gradients to do excess work on the neutrals via acting on un⊥ as well as

un∥. Therefore, some care must be taken to avoid an excessive energy source being introduced

in the system in situations where the pitch angle α is small and therefore un⊥ may be large.

3.3.3 Electron collision operators for moving scatterers

With the bulk motion of the neutrals now included in the model, we may ask how the collision

operators in the electron kinetic equation will change. Here we outline an approach to account-

ing for non-stationary scatterers in Boltzmann collisions, although it will subsequently argued

that the modification does not justify the additional computational expense.

We start with collisions between electrons and neutrals, where in the centre-of-mass frame

the electron distribution is f(v) and the neutral distribution is F (V) ≃ nnδ(V). Electron

velocities, again measured in the centre-of-mass frame, before and after the collision are v′ and

v, and the scattering angle is χ. The pre- and post-collision neutral velocities are V′ and V.

The relationship between v′ and v depends on the collision process being considered, which we

will not specify at this point. The Boltzmann collision integral is therefore

Ce,ndv =

∫
dΩ′

∫
dV′ (nnδ (V

′) f (v′) v′relσ (v′rel, χ) dv
′)

−
∫

dΩ

∫
dV (nnδ(V)f(v)vrelσ (vrel, χ) dv)

= nn

(∫
dΩ′f(v′)v′σ(v′, χ)dv′

−
∫

dΩf(v)vσ(v, χ)dv

)
,

(3.53)

where we have used the fact that vrel = |V−v|≃ v and dΩ is the solid angle element, integrated

over all scattering angles.

The above equation can be decomposed into spherical harmonics to yield the collision operators
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implemented in SOL-KiT (Appendix A.2). However, for neutrals which are not stationary the

centre-of-mass frame is moving at some velocity vc with respect to the lab frame. The electron

velocity in the lab frame is therefore

vl = v + vc ≃ v +V,

where we assume vc is dominated by the neutral velocity. To transform (3.53) back to the lab

frame, we can Taylor expand f(vl),

f(vl) = f(v +V) = f(v) +V · ∂f
∂v

+ ...

If we truncate this expansion after two terms, then (3.53) becomes

Ce,ndv =nn

(∫
dΩ′f̃(v′)v′σ(v′, χ)dv′

−
∫

dΩf̃(v)vσ(v, χ)dv

)
,

(3.54)

where for a neutral flow velocity un,

f̃(v) = f(v) + un ·
∂f

∂v
, (3.55)

i.e. the operator has the same form as previously, but acts on a shifted version of the electron

distribution.

To proceed with the spherical harmonic expansion of this operator, we must expand f̃(v). We

first simplify the analysis by adopting the SOL-KiT assumption of azimuthal symmetry of the

distribution function about the x-axis, meaning ∂f
∂vy

= ∂f
∂vz

= 0 and (3.55) becomes

f̃(v) = f(v) + un
∂f(v)

∂vx
.

where un is assumed to lie solely along the x-axis. Rewriting this in (azimuthally-symmetric)
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spherical coordinates v = (v, θ), with θ being the angle from the x-axis, gives

f̃ = f + un

(
cos θ

∂f

∂v
− sin θ

v

∂f

∂θ

)
.

The second term here is equivalent in form to the electric field advection term in the 1D kinetic

equation (3.1), and can be expanded in the same way using Legendre polynomial recurrence

relations, as described in A.1. The result is that

f̃(v) =
∑
l

f̃l(v)Pl(cos θ) (3.56)

with

f̃l = fl(v) + un

(
l

2l + 1
Gl−1 +

l + 1

2l + 3
Hl+1

)
, (3.57)

where Gl and Hl are unchanged from before,

Gl(v) = vl
∂v−lfl
∂v

,

Hl(v) =
1

vl+1

∂vl+1fl
∂v

.

Proceeding from this point, the spherical harmonic form of the collision operators for elastic and

inelastic processes can be developed in the same way as before (see A.2), but with fl replaced

with f̃l. For an expansion up to l = 1, a similar result is shown in [42].

The procedure outlined here would allow for total momentum conservation in the plasma-

neutral model in SOL-KiT, as well as provide the capability to accurately capture the effect

of electron-neutral collisions on the electric field. However, the inelastic collisions already

represent a computational bottleneck in the code, and the coupling of adjacent harmonics in

(3.57) represents a trebling of the number of operations required to evaluate each operator. It

is natural therefore to ask whether such a refinement is worth it.

Firstly, the neutral velocity will be small compared to the electron thermal velocity in 1D SOL

simulations, being at most approximately equal to the plasma sound speed. This means the

correction to fl, proportional to un, will be small. Furthermore, the momentum transfer in



134 Chapter 3. Numerical modelling

electron-neutral collisions is smaller than between ion-neutral collisions by a ratio me/mn ≃

me/mi. Therefore, both the dynamics of the neutrals and the effect of electron friction on

the electric field will be dominated by ion-neutral collisions. For these reasons, the correction

to electron-neutral collision operators described here is not implemented in SOL-KiT, and the

effect of electron-neutral momentum transfer is neglected from the neutral momentum equation.

3.3.4 Boundary conditions

Boundary conditions for a fluid neutral model in the presence of a wall are intrinsically more

complex than for the plasma species. This is because there is a surface interaction, some amount

of reflection, and a source of recycled ions at the boundary. A simple version is presented

here, which has minimal free parameters and which assumes 100% reflection of the neutrals

incident on the target, with some loss of energy. A more detailed boundary condition has been

implemented, which includes the effect of less than 100% neutral reflection at the target and

from which this simpler approach is derived, and this is presented in B.2.

To crudely capture some of the basic physics of cross-field neutral transport, we make use of

a redistribution of the recycling flux. This is parameterised by a redistribution coefficient, Rd,

where Rd = 0 means all recycling occurs at the target. For Rd > 0, the recycled ions which

do not re-enter at the target are inserted as a volumetric particle source along the portion of

the domain beyond the X-point, Lredist. Assuming 100% recycling of the ions incident on the

target into neutral atoms, which have a particle flux Γi,t, the neutral particle flux at the target

is then

Γn,t = −(1−Rd)Γi,t, (3.58)

and so the redistributed flux is Γredist = −RdΓi,t.

The flow velocity at the target is

un,t =
Γn,t

nn,t

. (3.59)

We can find nn,t by assuming the neutral distribution at the wall is made up of two components:

a Maxwellian at the neutral density just in front of the wall, nn, and a distribution of recycled
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neutrals emitted away from the wall at the Franck-Condon dissociation energy, TFC = 3 eV. The

flow velocity of this recycling distribution is urec = −2vFC
th (1−Rd)/3, where v

FC
th =

√
2kTFC/mi,

and so it has a density nrec = 3Γi,t/2v
FC
th . The target neutral density is then

nn,t = nn +
3Γi,t

2vFC
th

. (3.60)

If both un∥ and un⊥ are evolved, this boundary condition on the flow velocity is applied to

un,eff . The value of un∥ at the boundary is then free
(

∂un∥
∂x

= 0
)
and un⊥ is constrained by

un,eff = un∥ + un⊥/tanα.

The net energy flux of neutrals across the boundary is

qn,t = γnkTnnncs − (1−Rd)kTFCΓi,t, (3.61)

where cs =
√

kTn/mi is the neutral sound speed just in front of the wall and γn = 0.25 is a

neutral wall heat transmission coefficient. This value assumes that neutrals incident on the wall

are reflected back with, on average, 75% of their original energy, which is a reasonable estimate

for deuterium neutrals incident on a Tungsten wall at small incidence angle from the TRIM

database (http://www.eirene.de/html/surface_data.html). We can see that qn,t may be

positive or negative depending on the neutral temperature at the wall and the recycling flux.

3.3.5 Benchmarking

Charge exchange friction

To test the updated form of charge exchange friction (3.47a), we perform a 0D simulation where

the temperatures of all species are initialised to Te = Ti = Tn = 5 eV, with flow velocities

ui = −un∥ = cs =
√

k(Ti + Te)/mi, where only the parallel neutral velocity is evolved. All

neutrals are in the ground state, and the densities are equal at ni = nn = 1019 m−3. To isolate

the effect of the friction term, we turn off electron-ion friction and the electric field, and do not

evolve the temperature equations. We also do not include ionisation or recombination. The

http://www.eirene.de/html/surface_data.html
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Figure 3.9: Equilibration of ion and neutral flow velocities over time due to charge exchange
friction (3.47a). In red the deviation from the analytical solution is shown for three different
integrating timesteps.

charge exchange rate and densities are then time-independent, and the analytical solution is

∂∆u

∂t
= ∆u(t0) exp(−2Scx∆u/ni)

where ∆u = ui − un and ∆u(t0) is the initial value of ∆u. The simulation was run for 36 µs

with different timesteps, from ∆t = 0.01t0 to ∆t = t0, where t0 is the electron collision time of

a reference plasma at 10 eV.

In Figure 3.9, we show the value of ∆u = ui − un over time along with the deviation from

the analytical solution, δ(ui − un) = ∆uSOL−KiT −∆uanalytical, for the different timesteps used.

We can see that agreement is good, with a maximum error of a few percent at large values

of t, when ∆u is smallest. Total momentum is conserved to within 10−10% of the initial ion

momentum in all simulations.
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Figure 3.10: Thermal equilibration of electrons, ions and neutral species in SOL-KiT.

Thermal equilibration

In Figure 3.10, we show the thermal equilibration of a 0D simulation where we evolve the (fluid)

electron, ion and neutral temperatures from initial values of 15, 10 and 5 eV respectively. There

are no flows, the densities are equal at ne = ni = nn = 1019 m−3, and only ground state neutrals

are evolved.

For these conditions, the charge exchange collision time is τcx ∼ 3 µs, while the ion-electron

collision time is τie ∼ 250 µs, so the observed relaxation rates are as expected. The total plasma

plus neutral energy density is conserved in this simulation to within numerical tolerance.

Energy and momentum balance

As in integrated test, we can check that momentum and energy are conserved in the total plasma

plus neutral system, focussing on the ions and neutrals as new additions to the model. A 6.7m

long SOL was simulated with 256 grid cells, with grid widths ranging from 67.7 cm upstream

to 0.7cm at the target. The fluid model for the electrons, ions and neutrals was modelled,



138 Chapter 3. Numerical modelling

qin
i

1.00

qtot
i, sh

0.51

qE
0.22

qs
i

0.22

qei
i

0.69

qcx
i

0.26
0.26

0.22

qn, sh
0.05

Ions
Neutrals

(a)

6.0 6.2 6.4 6.6 6.8
x [m]

0

10

20

30

40

50

60

Pr
es

su
re

 [P
a]

Electrons
Ions
Neutrals
Total

Static
Dynamic

(b)

Figure 3.11: (a): Energy flow diagram for the ion-neutral system in a realistic SOL simulation.
All quantities are in MWm−2. (b): Static and dynamic pressure profiles close to the target
for electrons, ions and neutrals. Total pressure is shown in black, where a flat spatial profile
indicates no numerical momentum sources are present.

assuming no neutral cross-field transport. Only ground state neutrals were included. An input

power of qin = qini qine = 1 MWm−2 is injected upstream into both the ions and electrons.

In Figure 3.11a, we see the energy flow diagram for the ion-neutral system. It can be seen

that total energy is conserved, to within 1.5% of qin. Each energy channel is calculated in the

same way as described for the ions in Section 3.2.2, by line-integrating all sources and taking

the sheath values for energy transport quantities. The net energy flux across the boundary for

the neutrals is the sum of the conductive loss and the input from recycled neutrals at 3 eV,

qtotn,sh = +0.05 MWm−2 here. qsn = −qsi is the line-integrated energy source from particle sources

(ionization and recombination).

In Figure 3.11b, we see the spatial profiles of static and dynamic pressure for each species,

along with the total for the plasma-neutral system. There are no external momentum sources

in this problem, so the momentum equations for each species should ensure the total pressure is

constant throughout the domain. Small grid-scale errors can be seen close to the target, where

pressure gradients are strongest. The maximum error is 0.6% of the total pressure.
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Figure 3.12: (a): Neutral density profiles close to the wall for different values of the pitch angle
α. Solid lines are for the fluid un⊥ model, dashed for the diffusive un⊥ model. (b): Neutral
penetration distance, λn, as a function of the parameter 1/tan2 α.

To verify that the quasi-2D neutral model does lead to enhanced transport upstream, a scan in

pitch angle α has been carried out on a simple SOL problem. With 1 MWm−2 going into both

the ions and the electrons (2 MWm−2 total), we solve the electron, ion and neutral fluid models

simultaneously. 128 grid cells were used, with grid widths ranging from 13.4 cm upstream to

1.35 cm at the target. For un⊥, both the fluid momentum equation (3.40c) and the diffusive

model (3.42) have been tested. Only ground state neutrals were evolved.

In Figure 3.12a, we see the neutral density profiles close to the target, where it can be seen

that decreasing the pitch angle from 90◦ (B⃗ normal to the wall) to 20◦ results in a broader

neutral cloud. Results for the fluid and diffusive calculations of un⊥ are similar. This can be

represented by defining a neutral penetration distance, λn, as the distance from the wall over

which the neutral density falls to 1/e of its value at the target. For the diffusive calculation

of un⊥, the factor 1/tan2 α appears in front of the diffusion coefficient, so we would expect λn

to scale with this parameter; this is shown in Figure 3.12b. The relationship is not linear in

part because the neutrals are penetrating further into the hot upstream plasma at lower pitch
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angles and so are ionized more readily.

In practice, it has been found that the fluid calculation of un⊥ presents some numerical chal-

lenges, where grid-scale oscillations occasionally appear and become unstable. A possible ex-

planation for this is that un,eff can become unphysically supersonic for small values of α. In

these scenarios, a stable solution can be achieved by adding a viscosity term to the parallel

neutral momentum equation, which has the form

∂un∥

∂t
= ...− 1

nnmi

(∇ · π
n
)∥ = ...+

∂

∂x

(
ηn

∂un∥

∂x

)
, (3.62)

where the neutral viscosity arising from charge exchange collisions can be derived via Chapman-

Enskog’s method [50], ηn = nnkTn

niσcxvcx
. The corresponding viscous heating term is

∂kTn

∂t
= ...− 2

3nn

(π
n
: ∇un)∥ = ...+

2

3nn

ηn

(
∂un∥

∂x

)2

. (3.63)

3.4 Bundled atomic states in SOL-KiT

SOL-KiT models a number Nn of excited neutral states individually, each with a particle

source term with contributions from numerous collisional and radiative processes. Calculating

these source terms, which means computing the associated electron-neutral collision operators

and associated moments, is computationally expensive. In the case of excitation/de-excitation

collisions, we have to evaluate O(N2
n) collision operators. Given that Nn ≳ 20 is required to

accurately capture experimentally observed reaction rates, the number of collision operators

required to be evaluated is ≳ 400, and so this represents a significant bottleneck in SOL-KiT

run times. Therefore, we want to find a way of capturing realistic reaction rates without

evaluating the full set of collision operators, by bundling excited states together. We can then

solve a reduced number of equations and source terms for the bundle densities.

In developing an approach to bundled atomic states, we are aiming to improve the computa-

tional performance of the code without deviating significantly from the predictions made by
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the full calculation. In particular, the method should yield similar source terms and impact on

the electron distribution as the non-bundled approach.

The primary challenge of bundling is to separate the neutral state dependence in the collision

operators from the velocity dependence, so that a single operator can be computed to approx-

imate the effects of collisions across all states within a bundle. Similarly, we wish to extract

individual neutral state dependence from all fluid source terms.

The motivation for bundling is twofold. Firstly, an order of magnitude improvement in com-

pute times would facilitate SOL-KiT studies over a larger parameter space, for example in

regimes relevant to a range of different tokamak devices. Given the general difficulty of scal-

ing insights into SOL behaviour to future devices, this is hugely useful. Secondly, developing

a bundling approach is necessary in order to render simulations of impurity transport with

SOL-KiT tractable, due to the significantly more complex atomic physics of elements with

high atomic number. As such, the technique outlined here, developed with hydrogenic neu-

trals in mind, may be seen as a prototype for handling other, more challenging plasma-neutral

interactions.

In this section we will outline an approach to bundling collision operators. The method enables

bundling of collision operators of the same type, primarily with the aim of reducing the number

of excitation and de-excitation operators which are evaluated by the code. A more general

but more abstract approach, where the effect of all collisional and radiative processes on the

electron distribution are treated with a single ‘effective’ collision operator, is discussed briefly

in Chapter 7. The model described in this section has been implemented in SOL-KiT for

hydrogenic neutral atoms, and some benchmark results will be presented.

3.4.1 States and bundles

Atomic states are given subscript j, while bundles are labelled with subscript β. If Nn states

are tracked, we group these into a smaller number Nβ of bundles.

If we are to avoid solving for the full atomic state distribution of a given atomic species, we
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must start with some knowledge of the internal distribution of neutrals within each bundle.

We may make some assumption at this point, for example Boltzmann-distributed states, but

we will avoid doing so prematurely. For a given neutral state j, which sits within bundle β, we

will write the density

nj

nβ

= N j
β (...) (3.64)

where N is some function which returns the relative density of state j, which may be specific to

each bundle. The ellipses indicate that N j
β may be a function of other parameters, for example

the electron temperature as in the case of Boltzmann-distributed atomic states. The density of

the bundle β is nβ =
∑

j∈β nj, such that
∑

j∈β N
j
β = 1.

3.4.2 Bundling of particle and energy sources

Bundling is more straightforward for particle and energy sources than for the collision operators

themselves, so this is presented here first for clarity.

We start by considering an electron collisional process such as ionization or excitation. We

adopt the same notation as in Section 2.6, where the rate coefficient for the production of

particles in state k due to collisions between electrons and particles in state j is written Kk
e,j.

The particle and energy sources from collisions between electrons and atomic states within a

given bundle β are therefore

Sk
e,β = −

∑
j∈β

Kk
e,jnj,

and

Qk
e,β = −

∑
j∈β

Kk
e,jnjε

k
j ,

where the minus sign indicates these are loss terms for particles in state j; inverse processes

(three-body recombination and de-excitation) would be positive sources for j particles. The

reaction rate is defined by taking the σv moment of f0,

Kk
e,β = 4π

∫
dvv3f0(v)σ

k
e,j(v),
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σk
e,j is the cross-section for collisions between electrons and particles in state j to produce

particles in state k, and εkj is the transition energy of this process.

We can bundle these terms straightforwardly by employing bundle-averaged quantities, denoted

here by ⟨. . .⟩. For the particle source, this is

Sk
e,β = −nβ⟨K⟩ke,β = −nβ4π

∫
dvv3f0(v)⟨σ⟩ke,β, (3.65)

where the bundle-averaged cross-section is

⟨σ⟩ke,β =
1

nβ

∑
j∈β

σk
e,jnj =

∑
j∈β

σk
e,jN

j
β (...). (3.66)

The bundled expression for the energy source term is

Qk
e,β = −nβ4π

∫
dvv3f0(v)⟨σε⟩ke,β, (3.67)

where

⟨σε⟩ke,β =
1

nβ

∑
j∈β

σk
e,jε

k
jnj =

∑
j∈β

σk
e,jε

k
jN

j
β (...). (3.68)

Friction terms cannot be treated with this approach because the momentum moments of colli-

sion operators do not reduce to the same simple form in which state and velocity dependence

naturally separate. Note also that, while it may appear more straightforward to find some

bundle-averaged transition energy ⟨ε⟩ke,β to calculate Qk
e,β, this depends on the relative rates

for each process within the bundle, which depends on the electron distribution. As it turns

out, this is required for evaluating the collision operators anyway (see next section), which also

allows us to evaluate terms involving l > 0 moments of the collision operators.
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3.4.3 Bundling of collision operators

The Boltzmann collision operator for inelastic collisions between electrons and an atomic

species, as implemented in SOL-KiT (see A.2 for more details), is

(Cl)
k
e,j = −njv

{
σtot(v)fl(v)− fl(αv)α

2
(
σtot(αv)− σ(l)(αv)

)}
, (3.69)

where fl is the electron distribution for the lth harmonic and α = v′/v, where the post-collision

velocity is v′ = v(1 + 2εkj/mev
2)1/2. We have dropped the subscript and superscript on σk

e,j

here to avoid the notation becoming overly cumbersome. The integral cross-section is defined

σtot =
∫
dΩσ(χ, v), and σ(l) =

∫
dΩ (1− Pl(cosχ))σ(χ, v).

Bundling this collision operator is more challenging due to the evaluation of fl and σ at αv,

which makes extraction of the atomic state dependence less trivial because α is a function of

the transition energy, εkj . The two quantities needed to bundle (3.69) are the bundle-averaged

cross-section, ⟨σ⟩ke,β, and the bundle-averaged transition energy, ⟨ε⟩ke,β.

⟨σ⟩ke,β is given by equation (3.66), while for ⟨ε⟩ke,β we can use the fact that there exists a

transition energy for which Qk
e,β = Sk

e,β⟨ε⟩ke,β. Rearranging and making use of equation (3.68)

gives

⟨ε⟩ke,β =
Qk

e,β

Sk
e,β

=

∫
dvv3f0(v)⟨σε⟩ke,β∫
dvv3f0(v)⟨σ⟩ke,β

. (3.70)

These two quantities can be used to evaluate a single collision operator for each collisional

process, identical in form to the original collision operator, which will yield the same energy

and particle sources as the non-bundled approach, assuming the neutral distribution is the

same. For excitation/de-excitation between bundles, we must sum over the states in the final

bundle β′, to get

⟨σ⟩β
′

e,β =
∑
k∈β′

⟨σ⟩ke,β, (3.71)

and

⟨ε⟩β
′

e,β =
Qβ′

e,β

Sβ′

e,β

=

∑
k∈β′ Qk

e,β∑
k∈β′ Sk

e,β

. (3.72)
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At this point, we have not yet provided a method for reducing the computational load of

evaluating the collision operators because we still have to sum over all initial and final states to

find the bundle-averaged quantities. This is achieved by pre-computing the values of ⟨σ⟩ and

⟨ε⟩ for each process and for each bundle, where we make some assumption on N and f0. This

is discussed in Section 3.4.6.

3.4.4 Effect of inelastic collisions within bundles

An important step is to capture the effect of inelastic collisions within bundles: if we were to

reduce the full set of collision operators to a smaller set involving bundle-averaged transitions

between bundles, using the method outlined in the previous section, the particle source from

excitation and de-excitation collisions would cancel and we cannot estimate ⟨ε⟩β
′

e,β for β = β′.

To handle this, we can recognise that the steady-state behaviour is for radiative de-excitation

to push the neutrals out of thermal equilibrium with the electrons, and energy must be taken

from the electrons via the excitation collisions to maintain this state. This means

Qβ
e,β = Qrad−deex

β , (3.73)

where Qrad−deex
β is the loss of atomic energy of the neutrals due to radiative de-excitation,

Qrad−deex
β = −nβ

∑
j>k

Ak
j ε

k
jN

j
β (...),

for j, k ∈ β, and where Ak
j is the spontaneous emission rate from j to k. We then evaluate

⟨σ⟩βe,β and Sβ
e,β using excitation collisions only,

⟨σ⟩βe,β =
∑
j<k

σk
e,jN

j
β (...) (3.74)

and

Sβ
e,β = −nβ4π

∫
dvv3f0(v)⟨σ⟩βe,β, (3.75)

which we can then use to calculate ⟨ε⟩βe,β = Qrad−deex
β /Sβ

e,β, similarly to (3.72).
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3.4.5 Other processes

The general approach outlined here for electron collisional processes can be applied to the other

atomic processes treated in SOL-KiT which do not involve electrons, namely charge exchange,

radiative de-excitation (between bundles) and radiative recombination.

For radiative de-excitation, we only need a bundled particle source. This is

Sβ′

β = −nβ

∑
k∈β′

∑
j∈β

Ak
jN

j
β (...) (3.76)

for k < j.

For radiative recombination, we have

Sβ
rad−rec =

∑
j∈β

neniα
j(Te), (3.77)

where αj is the rate coefficient for radiative recombination into state j, which is a function of

the electron temperature.

Finally, for charge exchange we just need to compute the particle source Scx, which then enters

the friction and energy sources as described in the section on the fluid neutral model source

terms, 3.3.2. The result is

Scx =
∑
β

nβ

∑
j∈β

σcx,j(vcx)nivcxN j
β (...), (3.78)

where the first sum is over all bundles.

3.4.6 Implementation

We can now discuss the implementation of this approach to bundling of atomic hydrogen in

SOL-KiT. Each state represents atoms with a given principal quantum number, from the ground

state up to Nn, where the state index j also refers to the principal quantum number.
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For simplicity, we assume the neutrals are Boltzmann-distributed within each bundle, which

allows us to relate the densities of state j and some other state with lower energy jc (which will

be specified shortly),

nj

njc

=
gj
gjc

e−εjjc/kTe ,

where gj is the statistical weight of state j, which for hydrogen is gj = 2j2. The transition

energies for hydrogen are εjjc = εj − εjc = −13.6
(

1
j2
− 1

jc2

)
eV. If jc is the lowest-energy state

within the bundle β, then we can use the fact that
∑

j∈β N
j
β (...) = 1 to define

N j
β (...) = N j

β (Te) =
gje

−εjjc/kTe∑
j∈β gje

−εjjc/kTe

, (3.79)

where the relative density of a state within a bundle is now a function of the electron temper-

ature as well as the state index.

We may now decide how to divide up the modelled atomic states into bundles. The use

of Boltzmann-distributed neutrals within bundles suggests that a logical approach is with a

closure, where lower states are modelled in full and all states equal to or greater than jc are

placed into a single bundle. This captures the fact that atomic states with high principal

quantum number are expected to be more collisionally coupled to the electrons than lower

states, and hence the Boltzmann-distribution is a more accurate description. The number of

collision operators which need to be evaluated is then proportional to ∼ j2c .

For the calculation of ⟨ε⟩β
′

e,β (3.72) we need to estimate f0. Since most inelastic processes

for hydrogen atoms have transition energies well below 10 eV, which is approximately at or

lower than the expected electron temperature close to the walls in scrape-off layer plasmas,

these collisions will be sampling a highly collisional part of the electron distribution. We may

therefore assume f0 is Maxwellian at Te and some reference density. This density will cancel

(see (3.70)) and so ⟨ε⟩β
′

e,β is also only a function of the electron temperature.

For a number Nβ bundles, for each electron collisional process (ionization, three-body recombi-

nation, excitation and de-excitation) we pre-compute the values of ⟨σ⟩β
′

e,β and ⟨ε⟩β
′

e,β for a range

of electron temperatures. We use 50 values of Te, from 0.1 to 250 eV, on a geometrically-
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spaced grid. A linear interpolation is then used at runtime to get the required local values at

each spatial grid cell. For the other processes considered (radiative recombination, radiative

de-excitation and charge exchange), we do the same for the particle sources.

The conservative implementation of inelastic collisions in SOL-KiT requires pre-computing a

set of grid weights, Wnm, which determine the contribution of the emission in velocity space

from a cell m to an absorption in cell n (see [4] for details). These weights are a function of the

transition energy, Wnm = Wnm(ε), and so for a given set of collisional atomic processes which

are to be modelled it is possible to compute the full set of weights required at initialisation

for each unique value of ε. However, in the approach to bundling outlined here, the bundle-

averaged transition energy for each process is now a function of the electron temperature and

therefore evolves in time and varies spatially. To resolve this, we pre-compute a set of weights

on a mirrored geometric grid from ε = 10−4 eV to ±13.6 eV. At runtime, we then find the

nearest value on this transition energy grid, which we label ε̂, to the local value of ⟨ε⟩β
′

e,β, given

by (3.72), and use those grid weights. It is then necessary to scale the reaction rate accordingly,

which we do by multiplying the cross-section by ⟨ε⟩β
′

e,β/ε̂.

3.4.7 Benchmarking

The aim of this benchmarking section is to answer two questions of the bundling method

outlined above. Firstly, is it accurate? And secondly, is it fast?

Detailed balance

To test the source terms and electron collision operators, we confirm that detailed balance can

be achieved for the bundled neutral states. In a 0D system, we initialise a fully ionized plasma

to Te = 3 eV and ne = 2.0 × 1019 m−3. The neutral state/bundle densities are evolved until

equilibrium is reached for jc = 2, where all states greater than or equal to jc are bundled

together. The maximum principal quantum number of the modelled states was Nn = 30.

Electrons were treated kinetically, and all collisional processes involving electrons (ionization,



3.4. Bundled atomic states in SOL-KiT 149

14 12 10 8 6 4 2 0
j [eV]

1011

1012

1013

n j
/g

j [
m

3 ]

Non-bundled
Bundled (jc = 2)

Figure 3.13: Atomic state densities of neutral hydrogen, normalised to the statistical weight
gj. The case of bundled neutrals from jc = 2 up to j = 30 is shown in red, and compared with
a simulation without bundling. The x-axis is the ionization energy of each state, where the
shaded grey region highlights the bundled part of the distribution.

three-body recombination, excitation and de-excitation) were turned on.

Given that all neutrals above the cut-off are assumed to be Boltzmann-distributed, and radiative

processes were not included in this test, we should achieve a Saha-Boltzmann distribution. This

means all neutral states (both above and below jc) will be Boltzmann-distributed, and for any

value of jc the electron density is expected to be

n2
e

ntot − ne

=
2

λ3

e−I/kTe∑
j gje

−(I−εj)/kTe
, (3.80)

where ntot = ne +
∑

j nj, λ is the electron de Broglie wavelength, λ =
√

h2

2πmekTe
, h being

Planck’s constant, I = 13.6 eV is the ionization energy for hydrogen and εj is the energy of

state j, εj = I/j2. For bundled atomic states, we can recover the individual densities from nβ

(which is what is actually evolved), using the definition of N j
β (Te) from (3.79).

The atomic state distribution is shown in Figure 3.13, and compared to the case without

bundling. The bundled part of the distribution is shaded grey. There is good agreement in the

densities of states both above and below jc, with a maximum relative error of 0.8 %.
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The expected ionization degree, X = ne/ntot, can be calculated from (3.80). The relative error

between this and the ionization degree observed in the simulation with bundling is 1.4×10−6 %.

The source of this error is the linear interpolation of bundled-averaged quantities (⟨σ⟩, ⟨ε⟩, etc)

for the local value of Te. If we double the number of precomputed values for these quantities,

this error in ionization degree reduces by around an order of magnitude. For reference, the

error in ionization degree for the case without bundling is 1.3× 10−8 %.

Similar performance was seen in fluid mode, where a number of different values of jc were tested

and no dependence of the error in the ionization degree on jc was observed.
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Figure 3.14: Electron temperature (red) and density (black) profiles for simulations with
bundling for jc = 2, jc = 5, and without bundling.

We now compare the effect of bundling in an integrated SOL test. For both fluid and kinetic

electrons, we model a 10.19 m scrape-off layer with 64 spatial grid cells, spaced logarithmically

with grid widths ranging from 0.76 m upstream to 0.50 cm at the target. No ion temperature

equation was evolved, and the diffusive neutral model was used. The input power to the

electrons was qin = 4 MWm−2. The velocity grid consisted of 80 cells, with grid widths ranging

from ∆v = 0.05vth,0 to 0.35vth,0 and total length 12.2vth,0, where vth,0 is the electron thermal

velocity of a reference plasma at Te = 10 eV. In kinetic mode, the highest resolved harmonic was
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lmax = 1. The line-averaged density was 2× 1019 m−3. All electron-neutral inelastic collisional

processes were turned on. 30 neutral states were included in the model; with no bundling, all

30 states are evolved directly. The temperature and density were initialised to 2PM profiles,

and allowed to evolve until equilibrium was reached.

Te,t [eV]
Fluid Kinetic

jc = 2 4.60 3.38
jc = 5 2.37 1.98

No bundling 2.50 1.81

Table 3.1: Target temperatures for simulations with and without bundling, with both fluid and
kinetic electrons.

Temperature and density profiles for jc = 2 and jc = 5 are shown in Figure 3.14, and com-

pared to simulations without bundling. The target electron temperatures are shown in Table

3.1. Agreement is good for jc = 5, although the differences are larger in kinetic mode. This

is expected due to the assumption of Maxwellian f0 in pre-computing the bundle-averaged

quantities, meaning kinetic effects in electron-neutral collisions may be underestimated.
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Figure 3.15: Spatial profiles of the electron energy given to neutrals, Qn, close to the target.

In Figure 3.15, we show spatial profiles of the net electron energy loss to neutrals Qn, defined

as the sum of the energy moment of all electron-neutral collision operators minus the neutral

radiated energy. It is clear that, despite reasonable agreement in the Te and ne profiles for
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bundling with jc = 2, this is inadequate for capturing the total energy loss due to electron-

neutral collisions and a higher value of jc is necessary.

Computational speed-up

To estimate the computational savings from this bundling method, we initialise a scrape-off layer

simulation to two-point model profiles for the density and temperature, with nu = 1.5 × 1019

m−3, Tu = 18 eV and Tt = 5 eV. Both fluid and kinetic electron models are compared, the

ion temperature is not evolved and the neutrals are diffusive. In kinetic mode, the maximum

harmonic evolved was lmax = 1. All atomic processes are turned on. 30 neutral states were

included. There are 64 spatial grid cells, and 80 velocity grid cells. We run SOL-KiT for

100 timesteps for a simulation time of 0.77 µs, varying jc and comparing the run time to the

non-bundled approach. All simulations were run with 4 parallel processes on an Intel i9 CPU.

jc Fluid run time Kinetic run time
No bundling 5:23 35:54

15 0:14 5:38
10 0:08 4:36
8 0:07 3:53
5 0:04 3:08
2 0:03 3:03

Table 3.2: Computational run time (minutes:seconds) for fluid and kinetic SOL simulations
with different values of the cut-off state index, jc, using the bundling method outlined in the
text.

The results are shown in Table 3.2. We can see that even a relatively high cut-off of jc = 15

provides significant speed improvements, and that the advantages plateau around jc = 5.

Speed-ups are greater in fluid mode, highlighting the contribution of other terms in the kinetic

equation to the total run time.

The large drop from the no bundling cases to jc = 15 arises due to the fact that cross-sections

for inverse processes, de-excitation and three-body recombination, are functions of Te. With

bundling on, they are pre-computed at different values of Te and the local value is linearly

interpolated at each timestep. Without bundling, these cross-sections are re-computed using
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analytical formulae at each spatial cell for each timestep, which proves to be a more costly

procedure.

Combined with the integrated test results in the previous section, a value of jc = 5 provides a

good balance between speed and accuracy, so this has been used for the simulations which use

bundling in Chapters 5 and 6.

3.5 Collisional radiative model for SOL impurities

The final piece of development work which will be discussed in this chapter is a relatively

simple collisional radiative model which has been developed to investigate the effect of non-

Maxwellian electron distributions on reaction rates for SOL impurities. The motivation here

lies in the fact that electron distributions with strongly enhanced high-energy tails, as are often

seen in kinetic simulations of SOL plasmas, may lead to significantly different reaction rates

for inelastic collisions with impurity species. These impurity species may come from physical

sputtering, in which case we would consider species such as carbon, tungsten or beryllium, or

they may be injected deliberately in order to cool the edge region by radiating away plasma

energy, in which case some typical species considered are nitrogen, neon and argon. For the

latter category of impurities, the impurity concentration is an important control parameter

for tokamak operators, and it is strongly linked with the overall device performance. The

balancing act of impurity seeding involves cooling the edge plasma sufficiently to ensure target

heat loads are low, but not so much that impurities can reach the core plasm. If they do reach

the core, they can become highly ionized and radiate away significant energy, degrading the

energy confinement of the tokamak. Both the cooling effect of impurities and their transport

is largely determined by atomic physics, in particular excitation and ionisation rates, and so

modelling these processes accurately is important for future tokamak design and operation.

The starting point for such an investigation is to first determine whether a kinetic treatment

is worth doing. The assumption of Maxwellian-averaged reaction rates is ubiquitous in SOL

atomic physics databases, in large part because it makes the problem tractable. The number of
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atomic states required for an accurate treatment of typical SOL impurities is in the thousands,

so a self-consistent treatment, where the electron distribution is solved alongside the atomic

population kinetics, is much more computationally expensive. To relax the assumption of

Maxwellian electrons will require the development of techniques to overcome this problem (see

discussion in Chapter 7), but first we will investigate how predictions of impurity atomic physics

differ between Maxwellian and non-Maxwellian electrons assuming they are a fixed background,

i.e. whether there is a kinetic effect worth exploring further. To this end, a method of solving

the system of atomic state density equations for SOL-relevant impurities has been developed,

called SIKE (Scrape-off layer Impurities with Kinetic Electrons), and is described in this section.

The full code and atomic data for SIKE is available on Github,

https://github.com/ImperialCollegeLondon/SIKE. It is written in Python, and makes use

of the petsc4py module which provides access to the PETSc suite of matrix solver routines [118].

3.5.1 SIKE model

The model used in SIKE very closely follows that described in Section 2.6, with the relevant

parts repeated here in condensed form.

For a given impurity species, we solve the density evolution equations for each tracked atomic

level, assuming no transport or external sources/sinks. For an atomic state k, with a given

ionization level and electronic configuration, the density evolves according to

(3.81)
dnk

dt
= ne

∑
j

njK
k
e,j +

∑
j

Ak
jnj − nkne

∑
j

Kj
e,k − nk

∑
j

Aj
k + ne

∑
j

rkjnj − nenk

∑
j

rjk,

where Kk
e,j is the rate coefficient for the production of particles in some state k due to collisions

with electrons and particles in state j (ionization, three-body recombination, excitation and

de-excitation), Ak
j is the radiative transition rate from state j to k (which includes spontaneous

de-excitation and auto-ionization), rkj is the radiative recombination rate from j to k, and ne is

the electron density. The collisional rates are calculated by integrating over the isotropic part

https://github.com/ImperialCollegeLondon/SIKE
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of the electron distribution, f0,

Kk
e,j =

4π

ne

∫ ∞

0

v2(vσk
e,j(v))f0(v)dv. (3.82)

As such, the inputs to the code are either a set of f0 distributions, defined on a given spatial and

velocity grid, or spatial profiles of electron temperature and density, in which case Maxwellian

electrons are assumed. If distribution functions are provided, the equations are solved for both

the provided values of f0 and Maxwellians at the same temperature and density.

The system of equations defined by (3.81) for all k is written in matrix form,

dn

dt
= Mn, (3.83)

where n is the vector containing all nk, and the rate matrix M is filled according to

Mjk = neK
j
e,k + Aj

k + ner
j
k, k > j (3.84)

Mjk = neK
j
e,k, k < j (3.85)

Mjj = −
∑
k ̸=j

Mkj. (3.86)

We may solve for equilibrium state densities by either evolving (3.83) using implicit time in-

tegration, or by solving the matrix equation directly for dn
dt

= 0. In the latter approach, an

additional equation specifying the total impurity density is be added to (3.83),

ntot
imp =

∑
k

nk, (3.87)

which simply adds a row of ones to M, and means we can solve via

n = M−1A, (3.88)
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where

A =

 dn
dt

ntot
imp

 =

 0

ntot
imp

 . (3.89)

This is equivalent to finding the null space of M, and then applying the constraint given by

(3.87).

It is useful to compute the effective particle source terms, for example for recombination from

one ionization stage of the impurity species to another, which is a complex function of multi-

step collisional and radiative processes involving many atomic levels. We compute these in

the manner described in Section 2.6. Dividing the impurity atomic states into P states and Q

states, where the time derivatives of Q states are zero, allows us to re-write (3.83),

d

dt

nP

nQ

 =

MPP MPQ

MQP MQQ


nP

nQ

 =

dnP

dt

0

 (3.90)

and so

dnP

dt
= MeffnP , (3.91)

where

Meff = MPP −MPQM
−1
QQMQP . (3.92)

We may choose arbitrarily which states belong in the P subset. A useful choice is the ground

states of each ionization stage of the impurity species, in which case the lower off-diagonal

elements of Meff are the effective ionization coefficients, and the upper off-diagonal elements

are the effective recombination coefficients. It should be noted that, if we evolve (3.91) in time,

we will arrive at the same equilibrium as solving the larger set of equations in (3.83), where

the densities of the Q states can be extracted via

nQ = −M−1
QQMQPnP . (3.93)

Another useful output is the electron energy loss due to inelastic collisions with the impurity

species, where we are typically interested in the contribution from each ionization stage sepa-
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rately. At equilibrium, the energy to drive radiative emission comes from electron collisional

processes, so we can compute the electron energy loss from all z-ionized levels (given by the

subset Z) with

Qz =
∑
k′∈Z

∑
k∈Z

Ak′

k nkε
k′

k +
∑
j∈Z′

∑
k∈Z

ner
j
knkε

j
k (3.94)

where we have a sum over all radiative de-excitation transitions within Z and all radiative

recombination transitions from Z to Z ′, where Z ′ is the set of all (z − 1)-ionized levels.

3.5.2 Atomic data

Comprehensive sets of atomic data for SOL-relevant impurity species are not readily available.

Experimentally-verified data exists, for example on the NIFS database(https://dbshino.

nifs.ac.jp/), but these datasets typically cover a limited subset of atomic levels and tran-

sitions. For this reason, the atomic data used in SIKE has been generated using the Flexible

Atomic Code (FAC) [119]. This approach sacrifices some accuracy, for example the energy lev-

els are typically only accurate to within 1-2 eV, but does ensure that the dataset used is fully

self-consistent. This is important, as missing transitions can result in significantly different or

even unphysical equilibrium density distributions, for example in the case of ‘orphaned’ levels

which can be populated but not de-populated (or vice versa).

For each impurity species considered, atomic data is generated with FAC for

• energy levels,

• radiative de-excitation rates,

• auto-ionization rates (spontaneous emission of an electron from a highly-excited atomic

state),

• radiative recombination cross-sections,

• electron-impact ionization cross-sections, from which we can obtain three-body recombi-

nation cross-sections via detailed balance,

https://dbshino.nifs.ac.jp/
https://dbshino.nifs.ac.jp/
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• electron-impact excitation cross-sections, from which we can obtain de-excitation cross-

sections via detailed balance.

Energy levels for an ion with a given number of electrons are computed in FAC by diagonalizing

the relativistic Hamiltonian, and collisional cross-sections are treated in the distorted wave

approximation. Further details on the theory and numerics of FAC can be found in [119].

The cross-section data is generated on an energy grid made of 16 points spaced geometrically

from ϵ′ = 3.6 × 10−3 eV to 500 eV, where ϵ′ is the post-collision electron energy. We assume

cross-sections fall to zero at ϵ′ = 0. For ϵ′ > 500 eV, or for ϵ′ greater than 200 times the

transition energy in the case of excitation, we use the high-energy asymptotic fits provided by

FAC. This is a polynomial fit for ionization and radiative recombination, and the Bethe formula

is used for excitation. With this, we can specify the cross-section data on an arbitrary energy

grid on which an electron distribution is defined, for example from SOL-KiT, by appropriate

translation to the pre-collision energies and linear interpolation.

Species Levels Transitions
Helium 217 20658
Lithium 496 61949
Beryllium 1069 151529
Boron 1278 180461
Carbon 1479 200485
Nitrogen 1775 230721
Oxygen 2069 261085
Neon 2553 310975

Table 3.3: The number of levels and transitions in the FAC-generated atomic data for different
impurity species.

Atomic data has been computed with FAC for all ionization stages of helium, lithium, beryllium,

boron, carbon, nitrogen, oxygen and neon. Atomic levels are resolved in n (principal quantum

number), l (orbital angular momentum quantum number) and j (total angular momentum

quantum number). The total number of levels and transitions for which data has been computed

is listed in Table 3.3. Datasets have also been generated which are aggregated in j-levels,

assuming an even distribution of states with a given value of n and l, which allows for a

more efficient computation if required by reducing the number of levels and transitions by
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approximately a factor of 5.

Cross-sections for inverse processes are calculated using the principal of detailed balance. For

an inelastic process with transition energy ε, the pre- and post-collision velocities are related

via

1

2
mev

′2 =
1

2
mev

2 + ε.

Therefore, for a given excitation cross-section σj′

e,j for transitions from state j to j′, the de-

excitation cross-section is

σj
e,j′(v

′) =
gj
gj′

v2

v′2
σj′

e,j(v), (3.95)

where gj is the statistical weight of state j. Similarly, three-body recombination cross-sections

are calculated from a given ionization cross-section σj′

e,j,

σj
e,j′(v

′) =
1

2
neλ

3 gj
gj′

v2

v′2
σj′

e,j(v), (3.96)

where λ =
√

h2

2πmekTe
is the de Broglie wavelength of an electron at Te.

3.5.3 Numerics

Inputs to the code (either f0 and a velocity grid, or Te and ne profiles) and expected in standard

units. That is, [m−6s−3] for f0, [ms−1] for velocity grids, [eV] for Te and [m−3] for ne. Within

the code, all quantities are normalised. Temperature and density are normalised to T0 and n0,

which are taken to be the mean quantities of the input values of Te and ne (calculated from

moments of the distribution if f0 is provided as input). We then normalise velocities to vth,0,

which is the thermal velocity of electrons at T0, and times to τ0, which is the Braginskii collision

time of electrons at T0. Cross-sections are normalised to σ0 = 8.797 × 10−21m−2, which is the

cross-section of a circle with the Bohr radius. Normalised quantities, denoted with a tilde, are
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therefore

T̃e = Te/T0, t̃ = t/τ0,

ñe = ne/n0, f̃0 = v3th,0f0/n0,

ε̃ = ε/T0, σ̃ = σ/σ0.

Rate coefficients (3.82) are calculated with midpoint numerical integration. For a velocity grid

with cell-centred values vj, a given rate coefficient is therefore

K =
4π

ne

∑
j

v3jσ(vj)f0(vj)∆vj. (3.97)

The inverse process cross-sections, (3.95) and (3.96), are calculated for values of v′j =
√

v2j + 2ε/me

for a process with transition energy ε. These cross-sections are then linearly interpolated to

the velocity grid vj to calculate the appropriate rate coefficients. While this is not a fully

conservative approach, this is not considered to be an issue since the electron distribution is

not evolved.

The rate matrix M is constructed as a PETSc sparse matrix, or optionally as a collection of

spatially local 2D numpy arrays. The global matrix approach is not strictly necessary, since

the rate matrix for each spatial cell is completely independent and also typically quite dense,

meaning a series of dense local matrices (i.e. one for each spatial cell) does suffice. However,

this choice has been made to enable the addition of an impurity transport model to the code at

a future date, which will link adjacent local rate matrices. PETSc matrix inversion routines can

be used to solve for the state densities. Several matrix pre-conditioners and Krylov subspace

methods have been tested; the most reliable combination was found to be the block Jacobi

pre-conditioner and the bi-conjugate gradient solver. Alternatives may be specified at input.

A direct solve of the density evolution equation (3.88) has been found to occasionally be nu-

merically unstable, sometimes producing negative densities. This is understood to be due to

the significant scale separation in the elements of M, which results in a matrix with a high
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condition number relative to the numerical tolerance of the code. For this reason, an alternative

approach has been implemented which is slower but more stable, where the density evolution

equation (3.83) is evolved in time. For this we use backwards Euler time integration, where the

array of densities at timestep i+ 1 is calculated using

ni+1 = (I−∆tM)−1ni,

where ∆t is the timestep, I is the identity matrix and M is independent of time since the

electron quantities are not evolved. This step is performed repeatedly until

dn

dt
≃ ni+1 − ni

∆t

falls below a threshold value, specified at input. This allows us to get close to a solution without

the numerical problems introduced by attempting to compute the exact solution.

3.5.4 Benchmarking

Saha-Boltzmann distribution test

In the absence of any radiative processes, the atomic state distribution at equilibrium for each

ionization stage should follow a Boltzmann distribution, i.e.

nj

n0

=
gj
g0
e−εj0/kTe ,

where 0 indicates the ground state of the given ionization stage. In Figure 3.16a, we compare the

state density distribution for Li+ at equilibrium, obtained with SIKE with radiative processes

turned off, with the Boltzmann distribution at Te = 2 eV. The densities are shown normalised

to the statistical weight, where the total impurity density was initialised to 1020 m−3, and the

energy of each level is displayed relative to the bare ion, which has ε = 0 eV. The maximum

error in the SIKE prediction is 103m−3 for the state with ε = −138.2 eV, which is ∼ 10−15 in

normalised density units, i.e. close to the machine precision.
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Figure 3.16: (a): Atomic state density distribution from SIKE for Li+ at Te = 2 eV, without
radiative processes, compared to the Boltzmann distribution. (b): Average ionization from
SIKE for Ne at a range of Te, compared to the Saha ionization equilibrium.

Similarly, the distribution of ionization stages should follow the Saha ionization equilibrium in

the absence of radiative recombination,

nz+1ne

nz

=
2

λ3

gz+1

gz
e−εzz+1/kTe ,

where λ is the electron de Broglie wavelength, and z refers to a given ionization stage. In Figure

3.16b, the average ionization resulting from the Saha equilibrium prediction is compared to

SIKE for Ne at a range of electron temperatures, where only ionization between ground states

is considered. The maximum error in the average ionization prediction is 0.05 at Te = 4.6 eV.

Comparison with ADAS

A commonly used database for impurity reaction rates is ADAS https://open.adas.ac.uk/,

which provides ionization stage-resolved coefficients for quantities such as ionization rates

and radiative energy loss for a range of SOL-relevant impurity species. ADAS rates assume

Maxwellian electrons, so we would expect some level of agreement with SIKE outputs under

the same assumptions. It should be made clear, however, that SIKE’s purpose is not to make

https://open.adas.ac.uk/
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precise quantitative predictions, but rather it is to capture the differences between a kinetic

and fluid treatment of plasma-impurity reactions. The aim of this comparison with ADAS is

to ensure that predictions from SIKE are in approximately the right ballpark.
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Figure 3.17: Effective ionization (a) and recombination (b) rate coefficients for each ionization
stage of beryllium, as calculated with SIKE and compared to ADAS for a range of electron
temperatures.

In Figure 3.17, we compare for beryllium the effective ionization and recombination coefficients

from SIKE, Kion
eff and Krec

eff , assuming only the ground states are evolved in time, with those

from ADAS at a range of Te, from 0.5 to 250 eV, for ne = 1020 m−3. These are defined via

Meff ; see Section 3.5.1. Agreement is generally good for the ionization coefficients, being within

around a factor of 2 at all temperatures. There are larger discrepancies in the recombination

coefficients, up to an order of magnitude at some temperatures. The source of these differences

is most likely to be from differences in the energy levels. These are not published with ADAS,

but comparing the FAC predictions to those on the NIST database [120] highlights differences of

up to a few eV for some low-energy levels of Beryllium. The ionization coefficients are arguably

more important to the impurity and main plasma dynamics than recombination coefficients,

since the latter only become significant at very low electron temperatures.

In Figure 3.18, we compare the radiative energy loss curves (3.94), or ‘cooling curves’, for each

ionization stage of Beryllium as a function of Te. Again we see reasonably good agreement,
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within around a factor of 3 across all temperatures.
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Figure 3.18: Cooling curves for Beryllium as a function of Te, with SIKE results compared to
ADAS.

As a further test of SIKE calculations, the average ionization at equilibrium, z̄, has been

calculated three ways:

1. using the FAC atomic data, directly calculating the rate equations for all states,

2. using values of Kion
eff and Krec

eff from ADAS (specifically the the SCD and ACD files from

https://open.adas.ac.uk/adf11),

3. a dataset of curated collisional cross-sections for Carbon published by Suno and Kato

[121].

The Suno & Kato dataset does not include radiative processes or level energies, so spontaneous

emission rates and atomic level energies are obtained from the NIST database [120] and radiative

recombination rates are obtained from ADAS (specifically the ADF08 files from https://open.

adas.ac.uk/adf08, which are true rates and not effective rates). On a temperature profile from

Te = 0.5 eV to 100 eV, ne = 1020 m−3, these three methods of calculating z̄ are shown in Figure

3.19. We can see that, firstly, agreement between the FAC and ADAS data is reasonable,

suggesting that the differences in effective recombination coefficients seen in Figure 3.17b are

https://open.adas.ac.uk/adf11
https://open.adas.ac.uk/adf08
https://open.adas.ac.uk/adf08
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not severely affecting the ionization balance. Secondly, the use of the Suno & Kato dataset,

which is expected to be more accurate than the FAC dataset, improves agreement with ADAS.

The implication here is that disagreements between SIKE and other tools may be resolved by

modifying the atomic data, although this can be a detailed and time-consuming task.
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Figure 3.19: Comparison of the average ionization, z̄, for Carbon, calculated using atomic data
from FAC, ADAS and published by Suno & Kato [121].



Chapter 4

Investigation of kinetic effects in

ion-electron energy transfer

This chapter is based on the article by D. Power, S. Mijin, F. Militello, and R. J. Kingham.,

Ion-electron energy transfer in kinetic and fluid modelling of the tokamak scrape-off layer, The

European Physical Journal Plus, 136(11):1-13, 2021. The work described in this chapter has

been carried out in collaboration with the co-authors of this paper, but I am the lead author

and carried out all SOL-KiT simulations and analysis presented. Parts of this paper are repro-

duced here under CCA4.0 license, copyright of the authors.

Abstract

Using the 1D kinetic electron code SOL-KiT, simulations of the tokamak scrape-off layer

were carried out to explore the presence of kinetic effects in energy transfer between

the ions and electrons. During steady-state conditions, it was found that the ion-electron

energy transfer is well-described by a fluid model, with only minimal differences seen when

electrons are treated kinetically. During transient regimes (featuring a burst of energy

into the scrape-off layer) we see evidence of enhanced energy exchange when calculated

kinetically as compared to a fluid model. The kinetic correction represents an additional 8-

38% ion-electron energy transfer across the domain, depending on the pre-transient plasma
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collisionality. Compared to the total energy going into the plasma during the transient,

the correction is less than 1%, so its impact on plasma profiles may be small. The effect is

seen to increase in strength along the domain, peaking in front of the divertor target. The

overall discrepancy (integrated along the domain) increases during the transient energy

burst and disappears on a similar timescale. However, at the target the effect peaks

later and takes several multiples of the transient duration to relax. This effect may be

only partially explained by an additional population of cold electrons arising from neutral

ionization.

4.1 Introduction

As discussed in Section 3.2, we expect the ions to generally reach higher temperatures in SOL

plasmas if the total power going into both the ions and electrons via cross-field transport from

the core is approximately equal. Therefore, we expect energy to flow to the electrons through

elastic ion-electron collisions. This energy transfer may play a role in determining plasma

behaviour in the SOL and the method through which energy escapes. Since kinetic effects are

observed in other aspects of SOL behaviour, as shown in Section 2.9, an investigation will be

presented here into whether a fluid model is appropriate for ion-electron energy exchange.

Here, results are presented of 1D simulations of the divertor SOL using the kinetic electron

code SOL-KiT [4], which has been outlined in Chapter 3, and upgraded as described in Section

3.2. Simulations of equilibria and transients have been run for a divertor SOL in a medium-

sized tokamak at a range of different collisionalities, described in section 4.2. The focus of this

investigation is the transfer of energy between the electrons and ions, and it will be shown

(section 4.3) that a kinetic treatment of the electrons results in modifications to the amount

of energy transfer as compared to a fluid approximation under certain conditions. Potential

causes and consequences of this effect will be discussed in Section 4.4. Also in Section 4.4,

the outcomes of this work will be used to direct the investigations carried out in subsequent

chapters.
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4.2 Simulation setup

The original SOL-KiT model was extended to include a fluid ion temperature equation for this

study, which was described in detail in Section 3.2. The version of SOL-KiT used in this study

is the one which has been described there (further improvements discussed in Chapter 3 were

added at a later date): a temperature equation is evolved for the ions, while the neutrals are

treated as diffusive. The electrons are solved both kinetically and with a fluid model.

The spatial domain was 10.18m in length, where symmetry about the midplane is assumed

so that this represents half of the connection length of the modelled SOL. External heating is

applied over the first 3.51m, simulating input power to the SOL from the core. For both fluid and

kinetic electrons, equilibrium conditions were obtained for four input powers, qin = 1.0MWm−2,

3.0MWm−2, 4.5MWm−2 and 6.0MWm−2. Equal amounts go into the electrons and ions, so

that the total input power is 2qin. In the discussion that follows, runs are referred to by the

qin going to each species, not the total input. The plasma response to conductive transients

was also simulated, where the input power was temporarily increased to qin = 45MWm−2 for a

duration of 10µs, before returning to the original input power.

The spatial domain was divided into 64 cells, representing the region between the midplane

and the sheath entrance. Spatial cells were spaced logarithmically, with higher resolution close

to the target. Spatial grid widths ranged from 0.48m to 0.03m. In velocity space (for kinetic

electron runs), a geometric grid of 80 cells was used up to a velocity of ∼ 12vth,0, where vth,0 is

the thermal velocity of electrons at a reference temperature of 10eV. The resolution was higher

at low velocities, such that grid widths ranged from 0.05vth,0 to 0.35vth,0.

For kinetic runs, the kinetic equation was solved up to the harmonic lmax = 3. A constant line-

averaged plasma plus neutral density of ⟨n⟩ = 1019m−3 was maintained through 100% recycling

of neutral deuterium atoms, where thirty excited states were modelled.
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4.3 Results

It is informative to first present the equilibrium plasma profiles obtained for two input powers,

qin = 1MWm−2 and 6MWm−2, shown in Figure 4.1. Solid lines show results for fluid electrons,

while dashed lines represent simulations with kinetic electrons. For the 1MWm−2 case we see a

detached profile, however the 6MWm−2 case is not detached. The low power run shows minimal

differences when the electrons are treated kinetically, while in the high power run (corresponding

to lower collisionality) a steeper electron temperature gradient is seen (this effect is discussed

in [83]). As expected, the ions tend to be hotter than the electrons, especially upstream, owing

to their lower heat conductivity.
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(a) Plasma conditions in equilibrium for an input
power of 1MWm−2.
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(b) Plasma conditions in equilibrium for an input
power of 6MWm−2.

Figure 4.1: Plasma temperature and density profiles for a detached and non-detached case
(1MWm−2 and 6MWm−2 input power respectively). Solid/dashed lines represent simulations
with fluid/kinetic electrons. The boundary at x = 0 is the midplane, while x ∼ 10m is the
sheath entrance.

For the focus of this study, we now turn to the energy transfer between electrons and ions,

Qei
e = −Qei

i . The notation will be simplified here compared to that used in Section 3.2, where

we will write Qei
e = Qei such that a positive Qei means energy is being transferred from the ions

to the electrons. We limit the analysis to the kinetic runs, exploring differences in Qei caused

by deviations of the electron distribution function from Maxwellian. In Figure 4.2, we compare
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the heat exchange calculated using

Qkin
ei = −

∫
dv

1

2
mev

2Cei,

for the f0 obtained by SOL-KiT with an equivalent-temperature Maxwellian, Qfl
ei . Cei here is

the electron-ion collision operator. For Maxwellian electrons, this calculation is equivalent to

using the familiar Braginskii expression,

Qfl
ei =

3me

mi

nek

τe
(Ti − Te).

Heat exchange across all runs peaks close to the target due to reduced temperatures and

increased densities leading to higher collisionality there, outcompeting the reduced temperature

differences (see Figure 4.1). For the lowest power run, the uptick at x ≃ 10m arises because

the electrons and ions decouple slightly just in front of the sheath entrance, presumably due to

differences in the sheath heat transmission coefficients. Small differences can be seen between

a kinetic and fluid calculation of Qei, across all runs, particularly in the high power cases close

to the target, but there is good overall agreement. In all cases, a kinetic treatment leads to

a (small) suppression of energy transfer upstream, and enhanced energy transfer close to the

target. Table 4.1 shows the total energy transfer in equilibrium integrated over the whole

domain, i.e. ⟨Qei⟩ =
∫
Qeidx. The differences are minimal, being less than 0.01MWm−2 in all

cases, suggesting Qei is well-described by a fluid model here.

qin [MWm−2] ⟨Qfl
ei⟩ [MWm−2] ⟨Qkin

ei ⟩ [MWm−2]
1.0 0.78 0.79
3.0 1.42 1.43
4.5 1.35 1.36
6.0 1.21 1.22

Table 4.1: Line-integrated ion-electron energy transfer using a kinetic or fluid model, for four
different equilibrium conditions.

For the conductive transients studied, Figure 4.3 shows the difference in Qei when calculated

kinetically or with the fluid model, Qkin
ei − Qfl

ei , for a spatial cell in the middle of the domain

(x ≃ 5m) and close to the target (x ≃ 10m). The different runs are referred to here by the
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Figure 4.2: Ion-electron energy exchange for kinetic equilibria at four different input powers
(positive values mean energy is going to the electrons), for the electron distribution obtained
by SOL-KiT, Qkin

ei (dashed), and for an equivalent-temperature Maxwellian, Qfl
ei (solid).

value of qin prior to the transient, which represents the background plasma conditions on which

the transient was launched. All runs experience the same increase of qin to 45MWm−2 for 10µs,

before returning to the original input power.

In the middle of the domain (Figure 4.3a), we see enhanced energy transfer associated with

the transient across all runs, before relaxing quickly to the pre-burst value (slight suppression)

and a small secondary perturbation on an acoustic timescale at t ≃ 100µs. The peak occurs

in all runs before the transient energy burst has finished, at around 4µs. For context, in

order of increasing qin the peaks in Figure 4.3a represent respectively 25%, 12%, 9% and 7%

enhancement of Qkin
ei compared to Qfl

ei .

Close to the target (Figure 4.3b), we see peak differences in energy exchange an order of

magnitude larger than that in the middle of the domain, and slower relaxation to the pre-

transient level, occurring on a timescale of the order 40-100µs. The peak kinetic enhancement

of Qei happens at different times for different background plasmas, occurring 10-30µs after the

transient has ended. For the 4.5MWm−2 and 6MWm−2 runs, the peak represents 111% and

77% enhancement of Qkin
ei compared to Qfl

ei . For the 1MWm−2 and 3MWm−2 runs, the peak

occurs at times when Qfl
ei = 0, so a kinetic treatment of Qei captures energy transfer which is

missed under a fluid treatment.

To assess the total magnitude of the effect seen here, we again integrate over the spatial domain
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(b) x = 10.16m

Figure 4.3: Time evolution of the difference in Qei for kinetic (Qkin
ei ) and fluid (Qfl

ei) electrons,
for conductive transients launched on background equilibria obtained at four different input
powers. The origin of the ripple effect occurring on an electron timescale in the lowest power
run at the target (right) is unclear, but may be connected to an oscillating detachment front.

and take the difference for a kinetic and fluid treatment at each point in time, ⟨Qkin
ei ⟩ − ⟨Qfl

ei⟩.

This is shown in Figure 4.4. We see that the peak kinetic enhancement of ⟨Qei⟩ is slightly

stronger for low power runs (corresponding to higher collisionality before the transient), and

that the duration of the effect is similar to that of the transient energy burst. This is despite

the fact that the area of strongest enhancement, close to the target, takes longer to relax

than elsewhere - this may be explained by the fact this particularly strong effect occurs over a

relatively small region. Taking the first 10µs and subsequent 40µs (up to t = 50µs), Table 4.2

compares the time integrated total energy transfer from the ions to the electrons during the

simulations, Wei =
∫
⟨Qei⟩dt. During the transient energy burst (first 10µs), a kinetic treatment

predicts 38% more energy transfer than a fluid model for the 1MWm−2 background, with the

effect reducing to 8% for the 6MWm−2 background. There are much smaller differences in the

subsequent 40µs, peaking at 3% enhancement for the 1MWm−2 background, suggesting the

effect is significant only during the burst phase of the transient.
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First 10µs Subsequent 40µs

qin [MWm−2] W fl
ei [Jm−2] W kin

ei [Jm−2] W fl
ei [Jm−2] W kin

ei [Jm−2]
1.0 2.43 3.35 35.70 36.82
3.0 9.09 10.04 52.34 53.52
4.5 9.31 10.11 41.28 42.25
6.0 8.82 9.50 35.28 36.27

Table 4.2: Total time-integrated ion-electron energy transfer using a kinetic or fluid model,
comparing the first 10µs (duration of transient energy burst) with the following 40µs. For
context, the total input energy to the plasma during the first 10µs is 900Jm−2.
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Figure 4.4: Evolution during a conductive transient of the difference in Qei when calculated
with the SOL-KiT-obtained f0 and a Maxwellian, integrated over the spatial domain.

4.4 Discussion and conclusions

We have seen that ion-electron energy transfer is described well by a fluid model in the steady-

state SOL regimes studied here. Differences that do exist appear unlikely to affect plasma

profiles and behaviour as they are small in magnitude and occur over a relatively small region.

During transient regimes, however, a kinetic treatment of the electrons predicts additional heat

exchange, particularly during the transient energy burst into the SOL. Before proceeding, it’s

worth noting that finite grid effects are unlikely to be contributing significantly to these effects.

A subset of the runs analysed here were repeated on a velocity grid with quadrupled resolution

(not presented here), and only negligible differences were seen.

We may investigate the cause of the observed effects by looking at the electron distribution in

a region of kinetic enhancement of Qei, and its effect on the collision operator. In Figure 4.5,
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these quantities are shown for a spatial cell close to the target (x = 10.16m) at a timestamp

correlating with the peak of the enhancement in the 3MWm−2 transient run in Figure 4.3b

(t = 25µs).

The obtained distribution in this region deviates strongly from a Maxwellian (Figure 4.5a),

featuring an additional low-temperature electron population, depletion around the middle of the

energy range and an enhanced high-energy tail. This deviation contributes to the enhancement

of Qei, as can be seen in Figure 4.5b, where the integrand (dashed) of the energy moment of

the collision operator, Qei =
∫

1
2
mv2C0

eidv, is plotted alongside the running integral (solid), as

a function of electron energy. Shown are the curves for the SOL-KiT-obtained distribution and

a Maxwellian, as well as that of a two-temperature Maxwellian (discussed shortly). A distinct

low-energy feature can be seen, which is not present for the Maxwellian. Around the middle

of the energy range, there is also some additional kinetic contribution to Qei. The high energy

tail does not contribute to the kinetic enhancement of Qei here, as expected due to the low

collisionality of fast electrons.

We might expect the additional cold electrons seen in the f0 obtained by SOL-KiT, which

produces the distinct low-energy contribution to Qei seen in Figure 4.5b, to originate from

electrons involved in collisional ionization. While the exact form of this collisional operator

implemented in SOL-KiT places the ejected electrons in the lowest velocity cell, and so the

effect may be exaggerated, we would anyway expect electrons generated during the ionization

process to be colder than the background population due to loss of the ionization energy. By

fitting a two-temperature Maxwellian to the contribution to Qei, keeping overall density and

temperature the same, good agreement is obtained with the low-energy feature in Figure 4.5b

(inset) with T cold
e = 0.12eV and ncold

e = 3.7 × 1015m−3. This accounts for 0.13MWm−3 of

the additional 0.34MWm−3 energy exchange seen here when treated kinetically. Putting a

two-temperature Maxwellian into the collision operator yields Qei = Qcold
ei +Qbulk

ei , where Qcold
ei

and Qbulk
ei take the form of Equation (3.28) with the appropriate temperature and density for

the cold population and the bulk electron population respectively. It is feasible, but not done

here, that a value for the temperature and density of the cold electron population based on

considerations of the ionization rate may be obtained, which could be used to modify the value
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of Qei used in fluid simulations.
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(a) f0 obtained by SOL-KiT (red) and an
equivalent-temperature Maxwellian (black). An
enhanced low-temperature electron population
can be seen in the SOL-KiT distribution (inset).
The electron temperature at this point is 11.2eV.
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Figure 4.5: Electron distribution function and contribution to Qei at x = 10.16m, during a
transient on a 3MWm−2 background at the peak Qei enhancement (t ≃ 25µs). The low-energy
feature in the contribution to Qei (right, inset) is well-approximated by a two-temperature
Maxwellian, but does not explain the entire discrepancy.

So, the addition of a population of cold electrons arising from ionization appears to explain

around a third of the enhancement in energy exchange seen here when electrons are treated

kinetically. There are several factors contributing to the distortion of f0 from Maxwellian at

this location, including the presence of the sheath as well as plasma-neutral interactions and

sharp temperature gradients. A simple model accounting just for ionized electrons does not

fully account for the kinetic enhancement in Qei seen, and the majority component of the effect

may require a kinetic model to capture accurately. It should also be noted that this effect is

seen in regions where minimal ionization is occurring, albeit less strongly, as seen in Figure

4.3a.

From the discussion here it is feasible then that transient regimes may lead to increased en-

ergy coupling between electrons and ions in the divertor SOL, which would manifest as hotter

electron temperatures and colder ion temperatures at the target. This would in turn impact

sputtering yields and target heat flux. On the other hand, kinetic corrections to Qei on the or-
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der of 1Jm−2, as seen in Table 4.2, contrast with a total input energy to the plasma of 900Jm−2

during the 10µs transient. So while a kinetic effect is apparent, even strong enhancement of

Qei may not significantly affect plasma behaviour. Further investigation would therefore be

required to determine the extent to which plasma profiles are modified by this effect. Given the

overall, line-integrated value of the kinetic enhancement in Qei appears to only be significant

during the energy burst phase of the conductive transients modelled, any impact on plasma

profiles would be dependent on the frequency and duration of the transient events. For example,

type I edge-localised modes (ELMs) would drive this effect differently to type III ELMs. Some

saturation of the effect is observed in Figure 4.4 before the energy burst has ended, raising the

possibility that there is a ceiling to its magnitude, and that more energetic transients do not

result in stronger kinetic enhancement of Qei. On the other hand, the effect appears to persist

long after the energy burst at regions close to the target compared to elsewhere in the domain

(Figure 4.5b), and the saturation behaviour is not observed, so that target temperatures may

be affected even if the overall energy exchange between species is modified only slightly.

An important overall result of this study is that kinetic effects in ion-electron energy transfer

appear likely to be less significant in determining SOL behaviour in the regimes studied than

modifications to the parallel heat transport, which has been seen for example in [68,81–83,97,

101]. This suggests that further research efforts should be directed towards either an improved

understanding of kinetic modifications to parallel heat transport, or other processes which

are important in determining the SOL power balance, such as plasma-impurity interactions.

Therefore, in Chapter 5, the former will be addressed, while in Chapter 6 the impact of kinetic

effects in plasma-impurity reactions will be investigated.

This study is, to the author’s knowledge, the first to directly compare fluid and kinetic calcu-

lations of electron-ion energy transfer in SOL plasmas. However, we may compare the results

here to the study by Zhao et al. [82], and Adamek et al. [122]. In [82], the kinetic electron code

KIPP is coupled to the SOLPS fluid code, and a density scan is performed for a 1D SOL with

25m connection length in equilibrium conditions. The ion-electron energy transfer channel is

shown there to be dwarfed by the parallel heat flux and radiated power. In [122], the particle-

in-cell code BIT1 is used to simulate an ELM in a 15m SOL flux tube. There, it is found that
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energy transfer between the ions and electrons via Coulomb collisions during the ELM is small.

While neither of these studies provides a comparison with an equivalent fluid model, they do

both provide further evidence that Qei is not a likely source of kinetic effects in SOL plasmas.

On the other hand, in [123], Costea et al. suggest that, during kinetic simulations of a transient,

hot upstream particle source, a decoupling of the hot electrons and hot ions may result in excess

kinetic energy transfer between the two species via changes to the electric field. This effect would

not be captured by a fluid model. For this reason, an interesting piece of future work would be

to simulate an upstream particle source with SOL-KiT in a similar way to the energy source in

this study, and directly quantify the effect of any differences of this nature by comparing with

the fluid treatment.



Chapter 5

Scaling laws for electron kinetic effects

in tokamak scrape-off layer plasmas

This chapter is based on an article by D. Power, S. Mijin, M. Wigram, F. Militello, and R. J.

Kingham., Scaling laws for electron kinetic effects in tokamak scrape-off layer plasmas, which

has been published in Nuclear Fusion (https://doi.org/10.1088/1741-4326/acdca6). Parts

of this paper are reproduced here under CC BY 4.0 license, copyright of the authors. The work

presented in this chapter has been carried out in collaboration with the co-authors, but I am

the lead author, and I performed the SOL-KiT simulations and analysis which is presented.

Abstract

Tokamak edge (scrape-off layer) plasmas can exhibit non-local transport in the direction

parallel to the magnetic field due to steep temperature gradients. This effect along with

its consequences has been explored at equilibrium for a range of conditions, from sheath-

limited to detached, using the 1D kinetic electron code SOL-KiT, where the electrons

are treated kinetically and compared to a self-consistent fluid model. Line-averaged sup-

pression of the kinetic heat flux (compared to Spitzer-Härm) of up to 50% is observed,

contrasting with up to 98% enhancement of the sheath heat transmission coefficient, γe.

Simple scaling laws in terms of basic SOL parameters for both effects are presented. By

178

https://doi.org/10.1088/1741-4326/acdca6


5.1. Introduction 179

implementing these scalings as corrections to the fluid model, we find good agreement with

the kinetic model for target electron temperatures. It is found that the strongest kinetic

effects in γe are observed at low-intermediate collisionalities, and tend to increase (keep-

ing upstream collisionality fixed) at increasing upstream densities and temperatures. On

the other hand, the heat flux suppression is found to increase monotonically as upstream

collisionality decreases. The conditions simulated encompass collisionalities relevant to

current and future tokamaks.

5.1 Introduction

As discussed previously in this thesis, transport in SOL plasmas is often treated with fluid

models, where a Braginskii-like set of transport equations [48] may be solved. However, the

presence of steep temperature gradients parallel to the magnetic field, as would be expected in

reactor-class devices, means heat transport can become non-local . This can be quantified with

the upstream collisionality parameter ν∗
u = L/λu [24], defined as the ratio of the parallel SOL

length L and the upstream mean free path λu. Conditions where ν∗
u is small and temperature

gradients are large may not be described accurately by a fluid model.

This effect has been explored in recent years [68,72,81–83,97,100,101,124], where it is now well-

documented that kinetic suppression of the heat flux can result in steeper temperature gradients

and lower target temperatures when compared to a fluid model. Somewhat less understood

is the region of operating parameter space where such effects may become important, and

the consequences for the overall energy balance at equilibrium (i.e. how energy going into

the SOL makes its way out). Furthermore, it has been suggested by Coster et al. [125] that

a population of fast electrons from upstream in the plasma close to the walls may facilitate

divertor detachment at lower upstream densities. Overall, it is still unclear whether kinetic

effects in parallel transport pose a significant uncertainty in modelling approaches for future

devices.

Here we present kinetic and fluid simulations of a 1D SOL plasma model, across a wide range of



180 Chapter 5. Scaling laws for electron kinetic effects in tokamak scrape-off layer plasmas

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Lnu [m 2] 1e21

10

20

30

40

50

60

70

80

T e
,u

 [e
V]

*
e, u = 25
*
e, u = 50
*
e, u = 100

Figure 5.1: SOL-KiT simulations carried out for this study, where each black dot represents a
simulation at a given qin and ⟨n0⟩. The exact values of nu and Te,u are taken from the kinetic
simulations. For context, lines of constant collisionality are shown at ν∗

e,u = 25, 50 and 100.

the relevant parameter space (input power, plasma density and connection length), in order to

assess and understand kinetic deviations from fluid model predictions. The model description

is omitted here as it has been described in detail in Chapter 3. In Section 5.2, there will be an

explanation of the simulations that have been carried out. The results will then be summarised

(Section 5.3), highlighting the areas in which kinetic effects are (and are not) seen. Following

a discussion of the observed results (Section 5.4), scaling relationships in terms of basic SOL

parameters will be presented for the main kinetic effects seen - enhancement to the sheath heat

transmission coefficient and suppression of the parallel conductive electron heat flux - in Section

5.5. These will be used to reproduce electron temperature profiles from kinetic simulations in a

(corrected) fluid model. A prediction is made for the strength of these kinetic effects in ITER.

5.2 Parameter scan simulations

For this study, the original version of SOL-KiT (described in Section 3.1) was upgraded to

include an ion temperature equation, a fluid neutral model and bundling on the electron-neutral
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collision operators. These improvements are described in Sections 3.2, 3.3 and 3.4 respectively.

Two SOL parameters which we have some degree of control over in tokamaks (and which

determine SOL behaviour) are Tu and nu, the plasma temperature and density measured at some

upstream location. In these simulations, these are varied by changing the input power flux to the

SOL from the core, qin, and the initial line-averaged plasma density, ⟨n0⟩ = 1
L

∫ L

0
ne(t = 0)dx,

where the plasma is fully ionised at initialisation. The total number of particles (plasma plus

neutrals) stays constant in the simulations due to 100% recycling of the target particle flux.

The input heat flux is distributed uniformly across the heating region, Lheat, as a volumetric

energy source, Qin, such that qin =
∫ Lheat

0
Qindx = LheatQin.

Of interest in this study is how conditions upstream determine the electron transport, and a

useful measure of this is the electron upstream collisionality parameter ν∗
e,u, defined as the ratio

of the connection length L to the electron Coulomb mean free path upstream λee,u [24],

ν∗
e,u =

L

λee,u

≃ 10−16Lnu

T 2
e,u

(5.1)

for Te,u in [eV] and nu in [m−3]. Note that this differs slightly from some forms of ν∗ = L/λu

employed in the literature (e.g. [101]), and ν∗
e,u here will typically be smaller than collisionality

defined in terms of total plasma temperature because Ti,u > Te,u generally.

For a deuterium plasma, a number of density scans were performed at different input powers

and connection lengths. Connection lengths ranged from L = 11.93m to 30.97m, input powers

from qin = 4MWm−2 to 128MWm−2, and densities from ⟨n0⟩ = 1.0×1019m−3 to 1.4×1020m−3.

With these input parameters, the simulations cover ν∗
e,u from 6.3 to 203.6. At the lowest

collisionalities the plasma is sheath-limited, while detachment is reached at the highest values

of ν∗
e,u (measured by rollover of the target particle flux).

qin is distributed over approximately the first third of the domain and spread equally between

the ions and electrons; 100% of plasma particles lost to the sheath are recycled as neutrals,

and the pitch angle used in the neutral model was α = 15◦. Note that this pitch angle is

somewhat larger than may be expected in some current and future tokamak experiments. It
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was found originally that very small angles appeared to be related to some numerical difficulties

reaching convergence in the least collisional simulations, so a larger angle was used to reduce

the risk of the (long-running) kinetic simulations failing. 100 spatial cells were used, which

were spaced logarithmically with higher resolution close to the target. For the simulations with

the longest connection length, the spatial grid widths ranged from 2.28m upstream to 1.05mm

at the target. In velocity space (for kinetic electron runs), a geometric grid of 80 cells was

used up to a velocity of ≃ 12vth,0,where vth,0 is the thermal velocity of electrons at a reference

temperature of 10eV. The resolution was higher at low velocities, such that grid widths ranged

from 0.05vth,0 to 0.35vth,0. In the kinetic runs, the kinetic equation for electrons (3.2) was solved

up to the spherical harmonic lmax = 3.

For the neutral bundling, a cut-off index of jc = 5 was used, meaning the first four neutral

atomic states are evolved in full, and all excited states with principal quantum number n ≥ 5

are bundled together.

To reach equilibrium, determined by when the power and particle balance has converged, the

kinetic simulations with SOL-KiT each take a few weeks running on 8 CPUs, while the fluid

simulations typically take a day or less on 4 cores.

These simulations are situated on the Te,u-Lnu plane along with lines of constant ν∗
e,u in Figure

5.1. For reference, present-day tokamaks (JET, DIII-D, etc.) operate with Lnu ≃ 1020−1021m−2

and Te,u ≃ 20 − 60eV. Future devices like ITER and DEMO will operate with Lnu ∼ 1 ×

1021 − 4 × 1021m−2 and Te,u ∼ 150 − 300eV [126,127]. Simulating such regimes kinetically is

computationally demanding, but this study represents an attempt to explore kinetic effects in

regimes beyond those attainable in existing devices. The simulations presented here fall short

of reaching the highest values of Te,u expected in future tokamaks, but do encompass reactor-

relevant values of Lnu, detached conditions, and a broad range of upstream collisionalities.
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(a) qin = 4MWm−2, L = 11.93m.
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(b) qin = 16MWm−2, L = 11.93m.
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(c) qin = 80MWm−2, L = 18.79m.
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(d) qin = 128MWm−2, L = 30.96m.

Figure 5.2: Target electron temperatures, Te,t, and ion fluxes, Γi,t, for four of the density scans
at different input powers and connection lengths. Results with fluid and kinetic electrons are
shown. The lowest input power runs exhibit detachment, indicated by rollover of Γi,t.

5.3 Results

We start by displaying in Figure 5.2 the target temperatures and particle fluxes of four of the

density scans carried out. Rollover of the target flux, an indicator of detachment onset, is

expected when particle, momentum and power losses are sufficient to reduce the target flux

despite increasing plasma density. Only the lowest-power run reaches flux rollover here, while

all other runs are partially or fully attached. The absence of rollover at high input powers is not

unexpected given the lack of impurity radiation in the SOL-KiT model, which would provide

additional power dissipation. It can be seen in Figure 5.2 that target temperatures are lower

when the electrons are treated kinetically, with the biggest differences in both absolute and
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relative terms occurring at low upstream densities. However, there are only small differences

observed in the rollover behaviour in the one density scan which does reach detachment, 5.2a,

where a kinetic treatment of the electrons does not change the position of detachment onset

when varying nu, i.e. the qualitative behaviour of Γi,t is the same. There is a decrease in Γi,t

with kinetic electrons at high upstream densities, up to around 15%, while there is a slight

increase at low densities.

The reduction in target temperatures in Figure 5.2 is a reflection of the suppression of the

parallel conductive electron heat flux which is observed in kinetic simulations, as has been

observed in other kinetic studies of parallel transport [32, 81, 84, 97]. This can be seen in

Figure 5.3a, which shows temperature profiles for two simulations at low collisionality, along

with differences in target electron temperatures across all simulations in Figure 5.4. Figure

5.3b shows the ratio of the kinetic to Spitzer-Härm heat flux calculated on the kinetic plasma

profiles in 5.3a. This suppression of the heat flux relative to that predicted by a fluid treatment,

where for a given heat conductivity κ the Spitzer-Härm heat flux is qSH∥,e = −κ∇T , arises due

to fast electrons not depositing their energy locally due to their large mean free path relative

to the temperature gradient length scale. This means that a steeper temperature gradient is

required to achieve the same heat flux along the SOL, which is fixed by qin. There is an uptick

in Te close to the wall in the least collisional simulations, which is seen in the hotter Te profile

in Figure 5.3a and as a spike in the heat flux ratio in Figure 5.3b.

In Figure 5.5 we can see the accumulation of fast electrons from upstream at the target, where

an electron energy distribution from just in front of the sheath boundary is shown. There is a

clear enhanced high-energy tail, while the thermal bulk is close to the local Maxwellian.

In Figure 5.6, the kinetic enhancement of the sheath heat transmission coefficient is shown, γe,

shown as ∆γe = γkinetic
e − γfluid

e . Maximum and minimum values of ∆γe seen here are 4.96

and 0.47. Differences in γe here arise because, in kinetic mode, γe is calculated self-consistently

from the logical boundary condition on the electron distribution, whereas in fluid mode it is

calculated from fluid quantities in the classical way (3.20). For reference, in fluid mode typically

γe ≃ 4.8, and this varies slowly with SOL conditions. In Figure 5.6, there is a non-monotonic
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Figure 5.3: Kinetic heat flux suppression resulting in steeper temperature gradients and lower
target temperatures for two low collisionality simulations (qin = 64MWm−2, L = 11.93m).
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Figure 5.4: Difference in target temperatures for kinetic vs. fluid electrons across all simulations,
∆Te,t = T fluid

e,t − T kinetic
e,t .

behaviour in ∆γe, where the classical value is approached at both high and low collisionalities.

Similar behaviour was seen in a power scan in [84] and in a collisionality scan in [3]. The

largest differences occur at low-intermediate collisionalities, but there is an additional increase

in magnitude of this effect along lines of constant collisionality, moving towards larger Te,u and

nu. This can be seen by tracing along the red ν∗
e,u = 25 line in Figure 5.6, where simulations at
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Figure 5.5: Electron energy distribution (isotropic part) close to the wall in a SOL-KiT sim-
ulation (qin = 64MWm−2, L = 11.93m, ⟨n0⟩ = 5 × 1019m−3). Dashed line is the local
Maxwellian. A prominent high-energy tail and thermalised bulk can both be seen. Te = 7.3eV,
ne = 3.2× 1020m−3.

higher Te,u have larger ∆γe. Additionally, even at the highest collisionalities, where we would

expect good agreement between fluid and kinetic predictions, there is a residual ∆γe ≃ 0.5. It

would therefore appear that convergence of γe to the fluid value is slow as a function of ν∗
e,u.

Given the enhancement in γe for kinetic electrons, it is natural to investigate the heat lost to

the sheath boundary, qsh,e = γekTe,tΓi,t, where Te,t is the electron temperature at the target.

This is shown in Figure 5.7, where the variation of qsh,e for kinetic and fluid simulations with

nu is plotted for simulations grouped by connection length and input power.. In contrast to

the kinetic enhancement in γe, we see that qsh,e is generally in good agreement for kinetic and

fluid simulations. This is perhaps not surprising, since qsh,e is to a large extent fixed by qin,

as well as the fact that kinetic enhancement in γe may be offset by the reduction in target

temperatures (Figure 5.3a). However, this does show that the overall power balance in these

simulations (for example, how much power is radiated away by electron-neutral collisions) is

broadly unchanged despite modifications to the conductive transport as well as behaviour at

the boundary.
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Figure 5.6: Enhancement to the electron sheath heat transmission coefficient, ∆γe = γkinetic
e −

γfluid
e , across all simulations.

Finally, it is worth commenting that the findings in [84] and [82], that electron-neutral re-

action rates are well-approximated by Maxwellian-averaged rates, is replicated in this study.

Differences in rate coefficients for deuterium ionisation and line radiation are negligible. Some

differences in the total line-integrated particle source do exist in kinetic simulations (which

takes into account ionisation and recombination as well as multi-step processes involving ex/de-

excitation), but these are all under 10%, and are driven purely by differences in temperature

profiles.

5.4 Discussion

The detachment behaviour observed in these simulations contrasts somewhat with the obser-

vation of flux rollover at nu ∼ 2× 1019m−3 in the study by Dudson et al. in [90], which uses a

similar simulation setup for the SD1D fluid code with qin = 50 MWm−2 and L = 30m. With

the model presented here, qin must be reduced to below 25 MWm−2 to reach detachment at

this connection length. A separate investigation has highlighted that an underestimation of

the ionisation rate at high electron densities in SD1D may be the part of the reason for this
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Figure 5.7: Sheath heat flux from electrons, qsh,e, for kinetic and fluid simulations, grouped
into density scans at different connection lengths and input powers.

difference [92], as well as the fact that SOL-KiT does not include impurity radiation or flux

tube expansion.

The uptick in Te close to the target in the least collisional simulations is seen in the hotter

Te profile in Figure 5.3a and in a spike in the heat flux ratio in Figure 5.3b, where qkinetic∥,e

can become negative in some simulations. This is the reason why the least collisional simula-

tions do not have the largest differences in target temperatures (Figure 5.4) despite exhibiting

higher flux suppression, where the uptick in Te close to the wall to some extent cancels the

increased temperature gradient. This feature comes primarily from the perpendicular electron

temperature, which has been seen elsewhere [?, 128], where it is proposed to be related to an

enhancement in the parallel flux of the perpendicular electron energy.

The results in Figure 5.2 suggest that a kinetic treatment of electron transport does not predict

easier access to detachment. However, it should be said that only the most collisional density

scan considered here actually reaches detachment, which is where kinetic effects are weakest,

and it is possible that differences in detachment thresholds may exist in conditions with higher

Te,u.

The largely unchanged target flux behaviour in simulations with kinetic electrons, along with
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broadly similar heat loads to the walls (Figure 5.7), is indicative of the fact that a kinetic

electron treatment does not significantly change the particle, momentum or power balance at

equilibrium in this 1D SOL model. This is despite strong heat flux suppression (Figure 5.3) and

enhancement of the sheath heat transmission coefficient (Figure 5.6). This can be understood

as resulting from the fact that heat transport is primarily determined by the input power qin.

While a modified temperature profile is needed in kinetic mode to achieve the same parallel

heat flux in these simulations, this is compensated by an enhanced γe which gives a similar qsh,e,

leaving the power balance broadly unchanged. In addition, differences in the temperature profile

are insufficient to significantly change the particle source from electron-neutral interactions.

This power balance behaviour would not necessarily continue to be the case in the presence of

strong radiation sinks from impurities, where modified temperature profiles and reaction rates

could lead to differences in overall energy transport. This is the subject of an ongoing study.

The unchanged power balance despite the presence of kinetic effects in parallel heat flux and

γe suggests that any attempt to capture kinetic effects in a fluid framework would need to

consider both phenomena. As such, approaches which treat only the modified heat flux [101]

or the boundary condition [77] may not provide better predictive power than a purely fluid

model.

The strong enhancements to γe are a result of the modified potential drop across the sheath

when calculated kinetically. This depends on vc, the cut-off velocity at which the electron

distribution at the sheath is truncated. The value of vc is set to ensure ambipolar particle flux,

and is therefore somewhat sensitive to a strongly enhanced tail of the electron distribution, of

the kind observed in Figure 5.5. This may therefore have consequences for measurements of

the electron heat flux, which requires knowledge of γe, and the electron temperature, where

electrons are assumed to be close to Maxwellian. In [37], Tskhakaya et al. observed large

discrepancies in simulated Langmuir probe measurements of Te due to the departure of the

electrons from Maxwellian. Similarly to the study presented here, the largest discrepancies

were seen at intermediate collisionalities.

It is worth noting that the most collisional kinetic simulations here exhibit a γe which is ∼ 0.5
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Figure 5.8: Electron energy distributions at two locations, upstream (Te = 39.9eV ) and close to
the wall (Te = 8.0eV). Electrons are close to Maxwellian upstream, and the fast tail survives to
some extent further downstream. The gradient of the tail, related directly to the temperature
on these axes, is the same in both cases.

higher than the classical value (3.20). Since the electron and ion momenta are treated separately

and used to solve for the electric field in this model, this residual discrepancy is not from the

pre-sheath acceleration of the ions. Instead, it is a result of the departure of the electrons from

Maxwellian at the wall.

As discussed, and shown in [84] and [82], electron-impact ionisation rates of hydrogen are

very well approximated by a Maxwellian distribution. This is unsurprising when considering

the distribution shown in Figure 5.5, which is non-Maxwellian in the tail but very close to

Maxwellian in the thermal bulk. Given the energy threshold of inelastic processes involving

hydrogen are all at or lower than 13.6eV, the Maxwellian bulk electrons dominate the rates. This

does suggest however that inelastic processes with threshold energies ≳ 50eV (e.g. ionisation of

high-Z impurities) may exhibit strong kinetic enhancement due to the presence of this enhanced

tail. An ongoing study is currently investigating this.

The enhanced tail of the electron distribution seen close to the wall in these simulations is an

imprint from upstream, as can be seen clearly in Figure 5.8, where the upstream distribution is

plotted alongside that close to the target. Therefore, if we assume the tail of the distribution

at the target has temperature T tail
e,t = Te,u, then two conditions existing simultaneously produce
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a ‘strongly enhanced’ tail, which can lead to strong kinetic effects as discussed. These are

Te,u ≫ Te,t and small ν∗
e,u.

In this study, we see that the imprint can survive up to moderate values of ν∗
e,u and hence drive

kinetic effects, for example in the peak enhancement to γe occurring at ν∗
e,u ≃ 20 (Figure 5.6).

It is the interplay of upstream collisionality and parallel temperature drops which determines

the strength of this imprint. For tokamak edge plasmas with large Te,u as well as significant

power dissipation via impurities, we might expect both of these conditions to be satisfied.

Contrary to the heat flux suppression, which appears to be a monotonic function of ν∗
e,u, the

enhancement to γe is more complex. It peaks at ν∗
e,u ≃ 20, but also appears to increase for

increasing Te,u at constant ν∗
e,u. If this behaviour can be extrapolated to reactor-class devices

then we may expect significant deviations from classical values of γe. This is discussed further

in the next section.

5.5 Scaling relationships for observed kinetic effects

Any attempt at capturing kinetic effects at equilibrium in a fluid model of the scrape-off layer

would appear to need to capture both modifications to the heat flux and enhancement to the

sheath heat transmission coefficient. While models do exist for the former [93, 99, 102], they

do not typically provide a self-consistent method for calculating modifications to the boundary

behaviour. In [75], Tskhakaya et al. provide fits to the modifications to γe and parallel heat

flux for the time-dependent response to a simulated edge-localised mode (ELM). Here, fits to

the kinetic modifications to γe and q∥,e seen at equilibrium across a range of Te,u and nu (and

hence ν∗
e,u) have been presented as functions of basic SOL parameters.

The approach taken in developing the relationships presented here has been to parameterise

each simulation in terms of SOL quantities which are either control parameters or are easily

obtainable from experiment or simulation. We can then quantify the two strongest kinetic

effects observed in the kinetic simulations, which will be called kinetic factors. These are the
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line-averaged heat flux suppression

fκe =
1

L

∫
qkinetic∥,e /qSH∥,e dx,

and the enhancement to γe,

∆γe = γkinetic
e − γfluid

e .

We have then used a least squares fit, allowing a set of fit parameters to vary, to find combina-

tions of these SOL parameters which provide the best predictive power for the kinetic factors.

In general, it has been found that there are several forms of the relationships between these

kinetic factors and SOL parameters which provide a comparably good fit. In this case, it has

been chosen to present fits which are functions of a small number of SOL parameters to avoid

over-fitting the data and keep the approach simple, and which also have physically realistic

asymptotic behaviour (for example, fκe should be close to 1 at high collisionality).

The fits presented here are in terms of control/upstream SOL parameters only. If there is

knowledge of the target conditions, for example in a SOL fluid code, relationships with very

good predictive power have been found, in particular for ∆γe. One example is provided below.

However, it has been found that some of these do not extrapolate well to conditions where

the upstream collisionality is low and power dissipation is large, for example due to impurity

radiation. Conditions of this nature have not been simulated yet with SOL-KiT, although this

is planned for future work.

The proposed relationship for the heat flux suppression is

fκe = a exp
{
(b(ν∗

e,u)
c)
}
+ d, (5.2)

with

a = 0.696, b = −8.059, c = −1.074, d = 0.260.

This is a function of ν∗
e,u only, which was found to be sufficient for an accurate prediction of

fκe . This is plotted against the simulation data in Figure 5.9, where the RMS error on the fit
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Figure 5.9: The variation of fκe as a function of ν∗
e,u in simulations alongside the fit in equation

(5.2).

is 0.01. There is clearly significant heat flux suppression at low upstream collisionalities. If

this behaviour can be extrapolated beyond the region of ν∗
e,u explored here, this will lead to

increased temperature gradients in sheath-limited regimes where the plasma would otherwise

be expected to be nearly isothermal. This can be seen to some extent in the temperature

profiles of the low collisionality runs in Figure 5.3a.

For the enhancement to the electron sheath heat transmission coefficient, we have

∆γe =
a(qin)

b exp
(
cν∗

e,u

)
1 + d exp

(
eν∗

e,u

) + 0.5 (5.3)

with

a = 9.93× 10−4, b = 0.186, c = 0.514, d = 2.62× 10−4, e = 0.553.

This is shown in Figure 5.10 and compared to simulation data for several values of qin. The

RMS error on this fit across all simulation data is 0.18. It can be seen that this fit captures both

the peak to ∆γe at ν
∗
e,u ∼ 20 and that fact that the peak increases slowly with qin. It also drops

to 0.5 for ν∗
e,u ≲ 7, but there is some disagreement with the simulation data in this regime

so precise values may be higher. This low collisionality behaviour is somewhat speculative,

but it is reasonable to expect that ∆ν∗
e,u will at any rate be small at low collisionalities. This

is because temperature gradients, which appear to be a necessary condition for significant

enhancement to γe, are likely to be smaller at very low collisionalities than for intermediate
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Figure 5.10: Fit to ∆γe from equation (5.3) as a function of ν∗
e,u for several values of qin. Data

from simulations with the same qin is shown alongside.

ν∗
e,u. This is, however, complicated somewhat by the increased heat flux suppression predicted

at low collisionalities.

By including conditions at the target into the fits, and considering relationships of the form

∆γe = a0
∏

i X
ai
i , where ai are fit parameters and Xi are SOL parameters, it was found that

∆γe = a
( nu

1020

)b
(Te,u)

c(Te,t)
d(qin)

e,

with a = 3.768, b = −1.123, c = −1.603, d = −0.886, e = 1.556 is a good fit to the data,

with an error of 0.10. Fits in terms of fewer SOL parameters than this have also been found,

but the error is comparable to that of the fit in (5.3). In addition, it was found that this fit

predicts unphysically large values of ∆γe when upstream collisionality is small but temperature

gradients are large. This was found to be a common issue with fits of this kind, where SOL

conditions upstream and at the target are correlated and therefore there is a risk of over-fitting

to the simulation data presented here. As such, it is recommended to use (5.3) in regimes

not studied here, despite slightly worse agreement with the SOL-KiT data, because physically

realistic limiting behaviour is ensured. It is also worth noting that no relationship of this kind

was found to perform better for fκe than (5.2).

The scalings presented here are straightforward to implement in a fluid model. Because of

the spatial variation in heat flux suppression observed in these simulations (see Figure 5.3b),
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implementing the line-averaged quantity fκe as a prefactor to the Spitzer-Härm conductivity

may not yield accurate temperature profiles, but should be adequate for predicting the overall

power balance and target temperatures. These scalings may also be used in simple analytical

SOL models such as the modified two-point model [129] or the Lengyel model for predicting

detachment onset with radiating impurities [106].

To test these relationships, (5.2) and (5.3) have been implemented in the fluid version of SOL-

KiT, using self-consistent values of ν∗
e,u, to calculate the modifications to γe = γfluid

e +∆γe and

q∥,e = fκeq
SH
∥,e . In Figure 5.11a, the target temperatures in kinetic simulations are compared with

those in fluid simulations, with and without the kinetic corrections. Temperature profiles for a

particular simulation are shown in Figure 5.11b. Agreement with Te,t is good, with the RMS

error reduced from 43.3% to 8.2% with the addition of the kinetic corrections. Temperature

profiles show that agreement is improved at the upstream and target locations, but differences

exist in the rest of the domain and the Te uptick close to the wall is not captured. This is

expected due to the line-averaging of fκe .

If we assume these scalings can be applied for larger values of Te,u and Lnu, then for the plasma

profiles obtained with the ITER scenario modelled in [126] (‘standard transport’ case; profiles

shown in Figure 5.12b), Figure 5.12a shows the expected values of kinetic factors as a function

of radial distance at the outer midplane. Here, qin = 800MWm−2 at the separatrix has been

assumed, with a radial decay width of λq = 3mm. The collisionality ranges from ν∗
e,u ∼ 6− 25.

We see values of ∆γe up to 2.59 at the peak, representing an enhancement of around 50% over

the classical value, and over 50% heat flux suppression just beyond the separatrix. It would

be straightforward to implement (5.2) and (5.3) in a code such as SOLPS-ITER to explore the

significance of such effects.

As an additional test of how these scaling relationships behave in reactor relevant conditions,

the scaling equations were implemented (by co-author M. Wigram) into a two-point model

(2PM) [24] solver, with modifications to the thermal conduction and sheath heat transmission

coefficient provided by equations (5.2) and (5.3). This is used to solve iteratively for target

conditions, with and without the kinetic factors, in a range of SOL conditions similar to those
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Figure 5.11: Adding kinetic corrections to SOL-KiT fluid mode using equations (5.3) and (5.2).

expected in the SPARC tokamak [33]. The range of ν∗
e,u covered was ∼0.2-100. Significantly

steeper temperature gradients, with higher Te,u and lower Te,t, were observed at low and in-

termediate collisionalities due to the added fκe and ∆γe factors. This is part of a forthcoming

study which is planned to be published elsewhere.

A caveat to the fits presented is that the plasma model in SOL-KiT does not currently include

flux tube expansion (or other SOL geometry effects) or contributions from molecules or impurity

species. The former will alter plasma behaviour, in particular with respect to detachment, and

there may also be a kinetic effect due to the mirror force on the electrons. The latter will

represent additional particle, momentum and energy sources/sinks. An ongoing project to

redevelop SOL-KiT with a more flexible physics model, as well as improved computational

efficiency and parallelisation, should make it possible to study kinetic effects in the presence of

such additional physics.

5.6 Conclusion

Kinetic studies of electron transport in tokamak scrape-off layer plasmas across a range of input

powers and densities have been presented, under steady-state conditions.
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Figure 5.12: Radial profiles at the outer midplane of (a) kinetic factors and (b) plasma density
and electron temperature for the ITER scenario modelled in [126].

One of the primary aims of this study has been to validate the local approximation in fluid

models, which are frequently employed to model SOL plasmas. We see that, for SOL equilibria,

a kinetic treatment of the electrons does not change qualitative behaviour in terms of the particle

flux to the target with this plasma model, as shown in Figure 5.2, despite changes to the electron

temperature profiles and reductions in the target temperatures (Figure 5.3).

Typically, it has been assumed that the classical value of γe is valid at equilibrium, but here

there are differences of up to 98%, as shown in Figure 5.6. A qualitative understanding of

this enhancement in terms of an imprint of the fast electrons from upstream on the electron

distribution at the target has been provided. The presence of this enhanced tail is predicted

to have significant impacts on collision rates for inelastic processes with threshold energies ≳

50eV, for example the ionisation of plasma impurities. This is the subject of an ongoing study.

The enhancement of γe and reduction in q∥,e at equilibrium is shown to follow scalings based on

basic SOL parameters, (5.2) & (5.3). The performance of these fits is shown in Figures 5.9 and

5.10. To test the ability of these corrections to capture kinetic effects in SOL simulations, it has

been shown that implementing them in the fluid version of SOL-KiT does improve agreement

with the fully kinetic Te profiles. While there are caveats to the use of these scalings outside of

SOL-KiT simulations, particularly in relation to the aspects of SOL physics not included in the

model used here, it does suggest it is viable to capture kinetic effects at equilibrium in studies

of future devices, either in fluid codes or reduced analytical models. Extrapolating to the ITER
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tokamak for example does predict significant kinetic effects, suggesting at the very least that

further study into non-local parallel transport in reactor-class tokamaks is warranted.

To the authors’ knowledge, this is the first attempt at providing relatively simple scaling laws

for kinetic effects in equilibrium SOL plasmas. The principle that kinetic effects are directly

related to basic descriptors of SOL conditions is a potentially useful approach to analysing their

significance.

The modifications to γe and q∥,e in conjunction with good agreement in power balance and

target particle flux behaviour (discussed in Section 5.4 and shown in Figure 5.2), suggest that

both effects contribute in a way which approximately cancels. As such, attempts to capture

kinetic effects in fluid models should treat both phenomena simultaneously.

In this study, the changes to γe and q∥,e are in contrast to the behaviour at equilibrium found

using the PIC code BIT1 in [130]. There, γe is found to be well-approximated by the classical

value, and q∥,e is a non-monotonic function of collisionality, which is contradicted by (5.2).

There are significant differences in the simulations carried out in [130], in particular that plasma-

neutral interactions were neglected and that only attached regimes were studied. Furthermore,

the differences in γe seen here are of a similar magnitude to those seen with the KIPP code

in [81].

It should also be noted that this investigation has been done for equilibrium plasma conditions.

For the sheath boundary condition in particular, much stronger kinetic effects may be present

in transient regimes as shown in [83, 130], albeit for short durations relative to inter-ELM

equilibria.

In this chapter, we have explored in detail how a kinetic treatment of the electrons changes

parallel heat transport behaviour. The main drawback of the simulations presented here is that

they do not include impurities, which are expected to be present to some degree in most future

tokamak experiments, and which will will significantly alter the power balance in SOL plasmas.

There is therefore a strong motivation to begin exploring how these phenomena might interact,

and this will therefore be the focus of the next chapter.



Chapter 6

Kinetic effects in plasma-impurity

reaction rates

Abstract

Plasma-impurity reaction rates are a crucial part of modelling impurity transport in toka-

mak scrape-off layer (SOL) plasmas. To avoid calculating the full set of rates for the

large number of important processes involved, a set of effective rates are typically derived

which assume Maxwellian electrons. Here, the validity of this approach is investigated

by computing the full set of rate equations for a fixed plasma background from kinetic

and fluid SOL simulations. Results are presented for lithium, beryllium, carbon, nitrogen

and neon. In kinetic SOL simulations, the electron distribution is non-Maxwellian close

to the wall and the plasma profiles are modified, and both effects are considered here. It

is found that the former results in considerable enhancement to ionization and excitation

rates for some impurity ions at low electron temperatures, up to many orders of mag-

nitude. However, it is found that the modified profiles act to reverse the impact of this

rate enhancement to some extent. The net effect, comparing a fully kinetic to a fully fluid

treatment of reaction rates, is shown to result in changes to the average ionization of up to

+0.38 for neon and −0.73 for nitrogen in the region close to the wall. Differences of order

±50% in the total radiated power are observed at low and moderate SOL collisionalities,

199
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but this is seen in regimes where the magnitude of the radiated power is small for both

treatments. Agreement is good for all quantities in the hotter upstream region.

6.1 Introduction

The work presented thus far in this thesis has focussed on the effects of modelling electron

transport kinetically. An important missing piece of the physics in the simulations presented

in Chapters 4 and 5 is the presence of impurities - elements present in the plasma which are

not part of the fuel mixture. Impurities can significantly impact the plasma behaviour in both

the edge and the core, and so their behaviour and interaction with the fuel plasma must be

understood. Of particular interest is the plasma-impurity reaction rates, since this defines the

radiative and transport properties of a given species present in a tokamak plasma.

The vast majority of tokamak devices currently under design or construction plan to utilise

the radiative properties of an impurity species to achieve favourable conditions at the plasma-

surface interface. A typical approach to modelling impurities in SOL plasmas is to take effective

rate coefficients from a database such as ADAS (https://open.adas.ac.uk/), which assumes

Maxwellian electrons, and use these as inputs to a transport model for the fuel and impurity

plasma species (e.g. [58,131–133]). However, as seen in previous chapters, the electrons may be

far from Maxwellian in SOL plasmas with moderate to low upstream collisionality and steep

temperature gradients, which are the conditions envisaged in reactor-class devices. For the

case of electron-impact reactions such as ionization and excitation, where there is a minimum

energy which the incident electrons must possess for the reaction to occur, a modification to

the number of particles in the tail of the distribution may significantly alter the rate at which

the reaction proceeds. Furthermore, a kinetic treatment of the electron transport can lead to

modified plasma profiles, which may be expected to also change the impurity physics.

To illustrate the effect of non-Maxwellian electron distributions, we may compare what happens

to a SOL-relevant impurity species in the presence of Maxwellian electrons with a situation

where the electron distribution contains a (small) fraction of hot particles. Using the SIKE

https://open.adas.ac.uk/
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collisional radiative model, as described in Section 3.5, this is shown for neon in Figure 6.1.

For the ‘two-temperature’ solution, we use an electron distribution which is the sum of a bulk

Maxwellian at ncold, Tcold, and a hot Maxwellian at nhot = 10−5ncold, Thot = 100eV1. For an

electron density of ne = 1019m−3, the temperature is varied from Te = 0.5 to 25eV. The presence

of a population of hot electrons clearly modifies the ionization balance, as can be seen in the

density profiles for each ionization stage, Figure 6.1a, and the average ionization, Figure 6.1b.
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Figure 6.1: Fractional density and average ionization of neon as a function of electron tem-
perature. Results for Maxwellian electrons are shown in solid, dashed lines are results for a
two-temperature distribution with 0.001% of electrons at Thot = 100eV.

To investigate this, SIKE will be used to assess the validity of Maxwellian-averaged plasma-

impurity reaction rates using electron distributions from equilibrium SOL-KiT simulations of

a realistic scrape-off layer. We will also explore the differences in plasma-impurity physics

between fluid and kinetic SOL-KiT simulations. The SIKE model will be very briefly restated

along with important quantities describing the impurities (6.2), the simulation setup will be

presented (6.3), followed by the results (6.4) and discussion (6.5).

1The density of this distribution is then ne = nhot + ncold, and the temperature is Te = (ncoldTcold +
nhotThot)/ne.
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6.2 SIKE model and derived atomic physics quantities

As was described in Section 3.5.1 (some of which is briefly restated here), for a given impurity

species we solve the density evolution equations for each tracked atomic level, assuming no

transport or external sources/sinks. For an atomic state k, with a given ionization level and

electronic configuration, the density evolves according to

(6.1)
dnk

dt
= ne

∑
j

njK
k
e,j +

∑
j

Ak
jnj − nkne

∑
j

Kj
e,k − nk

∑
j

Aj
k + ne

∑
j

rkjnj − nenk

∑
j

rjk,

where Kk
e,j is the rate coefficient for the production of particles in state k due to collisions

with electrons and particles in state j (ionization, three-body recombination, excitation and

de-excitation), Ak
j is the radiative transition rate from state j to k (which includes spontaneous

de-excitation and auto-ionization), rkj is the radiative recombination rate from j to k, and ne is

the electron density. The collisional rates are calculated by integrating over the isotropic part

of the electron distribution, f0,

Kk
e,j =

4π

ne

∫ ∞

0

v2(vσk
e,j(v))f0(v)dv. (6.2)

The system of equations defined by (6.1) for all k is written in matrix form,

dn

dt
= Mn, (6.3)

where n is the vector containing all nk, and the rate matrix M is filled according to

Mjk = neK
j
e,k + Aj

k + ner
j
k, k > j (6.4)

Mjk = neK
j
e,k, k < j (6.5)

Mjj = −
∑
k ̸=j

Mkj. (6.6)

We solve for equilibrium state densities by evolving (6.3) using implicit time integration.

From 6.3, we can compute a set of effective ionization and recombination coefficients between
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the ground states of each ionization stage. In Section 3.5.1, it is shown how to calculate this

via an effective rate matrix. Alternatively, we can define it explicitly in terms of the elements

of M. The effective ionization coefficient is

Kion,z
eff = Kz+

e,z −Kz+

e,i′M
−1
ii′ Miz, (6.7)

which describes ionization from a given ground state z to a ground state of a higher ionization

stage z+. Here, i and i′ are indices of all non-ground states in the same ionization stage as z,

and Kz+

e,i′ is the array of all possible ionization coefficients from states i′ to z+. Similarly, the

effective recombination coefficients from a ground state z to that of a lower ionization stage z−

may be written

Krec,z
eff = rz

−

z −Mzi′M
−1
ii′ r

z−

i , (6.8)

where rz
−

i is the array of all recombination coefficients from i to z−.

It is often useful to compute the average ionization for the impurity species as a whole,

z̄ =

∑
nkzk

nz,tot

, (6.9)

where the summation is over all states, nz,tot =
∑

nk is the total impurity density, and zk is

the ionization of level k (i.e. the level has electric charge +ezk).

Another useful output is the electron energy loss due to inelastic collisions with the impurity

species, where we are typically interested in the contribution from each ionization stage sepa-

rately. At equilibrium, the energy to drive radiative emission comes from electron collisional

processes, so we can compute the electron energy loss from all z-ionized levels (denoted by the

set Z) with

Qz =
∑

k,k′∈Z

Ak′

k nkε
k′

k = ne

(∑
k>k′

Kk′

e,knkε
k′

k −
∑
k<k′

Kk′

e,knkε
k′

k

)
, (6.10)

where we have a sum over all radiative de-excitation transitions within Z. The second equality

here represents the fact that, at equilibrium and without transport effects, the radiated energy

is supplied by the cooling of the the electrons via collisional excitation and de-excitation.
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Normalising to the electron and total impurity density gives a line emission coefficient,

Lz =
Qz

nenz

(6.11)

It is also useful to aggregate both these quantities for all ionization stages, such that the total

radiated power is

Qz,tot =
∑
z

Qz, (6.12)

which is simply summed over all ionization stages, and the average line emission per ion is

L̄z =

∑
Lznz

nz,tot

, (6.13)

where nz =
∑

k∈Z nk is the density of particles of ionization stage z.

Note that there is an additional contribution to radiative losses from recombination, but this

is small in the plasma conditions studied here and so is neglected in the analysis.

6.3 Setup

For a given plasma background, SIKE allows us to compute the impurity atomic state distri-

bution. The plasma backgrounds used in this study come from equilibrium simulations with

SOL-KiT, which is described in Section 3.1. The SOL-KiT simulations used are a subset of

those presented in Chapter 5. The full details of these simulations are outlined in Section 5.2,

with the key aspects repeated here.

These SOL-KiT simulations are for a scrape-off layer with connection length L = 30.96m,

total input power qin = 128MWm−2. The line-averaged plasma plus neutral density, ⟨n⟩, was

varied from 3× 1019m−3 to 14× 1019m−3, giving a range of upstream collisionality parameters,

ν∗
e,u ≃ 1016nu/T

2
e,u, from 12 to 51. The simulations were run for both kinetic and fluid electrons.

In kinetic mode, the maximum resolved harmonic was lmax = 3. Figure 6.2 shows an example

plasma profile and electron distribution for one of these simulations. Three distributions are
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shown in Figure 6.2b: the distribution at a location close to the target from the kinetic run,

an equivalent Maxwellian at the same local temperature and density, and a Maxwellian at the

same location (but different temperature and density) from the fluid run. These three ways of

treating the electrons will be used as the basis for the forthcoming analysis.

0 10 20 30
x [m]

10

20

30

40

50

60

70

T e
 [e

V]

1

2

3

4

5

6

n e
 [m

3 ]

1e20
Kinetic
Fluid

(a)

0 200 400 600
Electron energy [eV]

10 11

10 9

10 7

10 5

10 3

10 1

101

f 0

Kin. profile and distribution
Kin. profile
Fluid profile

(b)

Figure 6.2: (a): Example temperature and density profiles of a kinetic and fluid simulation used
in this study, ⟨n⟩ = 4.7× 1019m−3, ν∗

e,u = 19.8. (b): Isotropic part of the electron distribution
close to the target for this example simulation. Shown is the evolved distribution in the kinetic
simulation (‘Kin. profile and distribution’), a Maxwellian at the local temperature and density
in the kinetic simulation (‘Kin. profile’), and a Maxwellian at the temperature and density of
the same location from the fluid run (‘Fluid profile’).

To compute the impurity atomic state densities, outputs from the SOL-KiT simulations were

provided as input to SIKE. For the kinetic SOL-KiT simulations, these outputs were the electron

distribution and velocity grid. The impurity state densities were then solved for both this

electron distribution and Maxwellian electrons with the same Te and ne profiles. For SOL-KiT

simulations with fluid electrons, the electron temperature and density profiles were provided as

input to SIKE, and the distributions were assumed to be Maxwellian on the same velocity grid

as the kinetic runs. The impurity species treated were lithium, beryllium, carbon, nitrogen and

neon. The impurities were initialised to a Saha-Boltzmann distribution, and then evolved in

time until convergence. The total impurity density was set to 1% of the local electron density

in all runs.
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Figure 6.3: Effective ionization coefficients for lithium, beryllium, carbon and neon, where the
plasma background is the kinetic run shown in Figure 6.2. Dashed lines are for the electron
distribution from the SOL-KiT simulation, and solid lines are for Maxwellian electrons. The
XZ+ labels refer to the particle before ionization, i.e. the process XZ+ → X(Z+1)+.

6.4 Results

The amount of relevant data generated in this study is quite large: five impurity species have

been treated on 12 plasma backgrounds, with the electrons treated in three separate ways. It

is informative to present some of this data in full, but to avoid the analysis becoming overly

dense detailed results will in general be presented for only a subset of the modelled impurity

species on a single plasma background (the one shown in Figure 6.2). Results for all impurity

species across all plasma backgrounds will be presented for some aggregated quantities.

For all impurities across all plasma backgrounds, there are significant enhancements to the
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Figure 6.4: Effective recombination coefficients for beryllium and neon, where the plasma
background is the kinetic run shown in Figure 6.2. Dashed lines are for the electron distribution
from the SOL-KiT simulation and solid lines are for Maxwellian electrons, but differences
are minimal. The XZ+ labels refer to the particle before recombination, i.e. the process
XZ+ → X(Z−1)+.

ionization rate coefficients, Kion
eff , when solved for the simulated electron distributions and

compared to Maxwellians. This is shown for lithium, beryllium, carbon and neon in Figure 6.3.

The ‘Maxwellian’ calculation also uses the plasma profile from the kinetic run; we will discuss

the effect of different plasma profiles between kinetic and fluid plasma simulations later in this

section. From Figure 6.3, we see the kinetic enhancement to Kion
eff is strongest for highly ionized

impurity atoms at low temperatures, where the rate increases many orders of magnitude. This

may be described as a flattening of the rates with respect to Te, which is due to the presence of

fast electrons from the hot upstream region in the cooler plasma close to the wall. Ionization

rates of the neutral atom generally agree well for all impurity species. We do not necessarily

expect a high proportion of highly ionized impurities to be present at low electron temperatures,

so these changes may not be as drastic as it appears at first glance. This is discussed in more

detail shortly.

It is interesting to note that there is a slight suppression of the ionization rate of Ne8+ and Ne9+

at the highest temperatures seen in Figure 6.3d. This results from the fact that the tail of the

electron distribution is quite strongly depleted in the heating region in SOL-KiT simulations,

an effect which correlates with the input power. It is possible that this is an artefact of the
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Figure 6.5: Average ionization for kinetic electrons, Maxwellian electrons on a kinetic plasma
profile, and Maxwellian electrons on a fluid plasma profile.
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heating operator implemented in SOL-KiT, but this would require further investigation.

In Figure 6.4, we compare the effective recombination rate coefficients, Krec
eff , shown for beryl-

lium and neon. We see very good agreement across all ionization stages at all temperatures, to

within a few percent.

We can explore how these changes to the ionization coefficients, but not the recombination

coefficients, affect the ionization balance of different impurity species. There are two kinetic

effects to consider here: the departure of the electrons from Maxwellian, which we will call

the distribution effect, and the modified temperature and density profiles in kinetic vs. fluid

SOL-KiT simulations, which we will call the profile effect.

In Figure 6.5, we show the average ionization for several species, where we compare the results

for kinetic electrons, Maxwellian electrons on the plasma profile from the kinetic SOL-KiT

simulation, and Maxwellian electrons on the plasma profile from the fluid simulation. The x-

axis here is now the spatial distance from the target instead of Te because the fluid and kinetic

SOL-KiT simulations cover different temperature ranges.

Differences in z̄ peak close to the target. Differences between kinetic and Maxwellian electrons

on the same profile are larger than between a fully kinetic and fully fluid treatment, suggesting

that the distribution effect is cancelled out to some extent by the profile effect. This is perhaps

intuitive, since the lower target temperatures in kinetic simulations also coincide with a popu-

lation of hot electrons in the tail. For inelastic processes with some threshold energy, such as

ionization, this enhanced tail will serve to increase reaction rates and close the gap with the

Maxwellian-averaged rates at a higher temperature.

This effect is seen more clearly when we compare the difference in z̄, as shown in Figure 6.6 for

all impurity species. In Figure 6.6a, we plot the difference arising from the distribution effect

as

∆z̄d = z̄kin − z̄Max,

where z̄kin is the average ionization for kinetic electrons from the kinetic SOL-KiT simulation

and z̄Max is that for Maxwellian electrons on the same plasma profile. In Figure 6.6b, we plot
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Figure 6.6: Difference in z̄ for different treatments of the background electrons from a SOL-KiT
simulation. (a): distribution effect, (b): profile effect, (c): profile + distribution effect (i.e. fully
kinetic vs fully fluid treatment).

the difference arising from the profile effect,

∆z̄p = z̄Max − z̄fl,

where z̄fl is the average ionization for Maxwellian electrons on the fluid plasma profile. Finally,

in Figure 6.6c, we show the difference arising from both effects,

∆z̄d+p = z̄kin − z̄fl = ∆z̄d +∆z̄p.

We see that ∆z̄d is similar in magnitude but opposite in sign to ∆z̄p for all impurities, and

that they partially cancel when considering the fully kinetic vs. fully fluid comparison, ∆z̄d+p.

There is good agreement between all three approaches in the hotter upstream region.

We may now turn our attention to the radiative losses predicted for impurities present in the

plasma background which is being considered. In Figure 6.7, we see the excitation radiation

per ion, Lz, for lithium, beryllium, carbon and neon. This is shown here for kinetic and

Maxwellian electrons on the kinetic plasma profile from Figure 6.2. Similarly to the ionization

rates, Figure 6.3, there are enhancements to the rate of energy loss due to excitation when

the evolved electron distribution is used, particularly in the cold regions close to the target.

These enhancements are almost exclusively found in the hydrogen-like (Li2+, Be3+, ...) and
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Figure 6.7: Cooling curves (excitation radiation per ion) for four impurity species for kinetic
and Maxwellian electrons on a plasma profile from the kinetic SOL-KiT run in 6.2.
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helium-like (Li1+, Be2+, ...) ions, and all other impurity ions show good agreement, at least to

within a factor of two. This is most likely due to the fact that atomic energy level spacings

are larger in these highly-ionized stages, meaning tail electrons are contributing more to the

collisional excitation rates.
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Figure 6.8: Spatial profiles of the impurity line radiation for the three different treatments of
the electrons.

As in the case of the ionization rates, the cooling curves per ion do not tell the whole story,

and we must look at the overall radiative loss rates. In Figure 6.8, the spatial profile of Qz,tot

(defined in equation (6.12)) is plotted. In all cases, the fully kinetic calculation of Qz,tot (‘kin.

profile + distributions’) peaks higher than the fluid treatment (‘fluid profile’) close to the target.

Comparing just the effect of the electron distribution (‘kin. profile + distributions’ vs. ‘kin.

profile’), the sign and magnitude of the difference varies across impurity species. There are

some differences in the characteristic shape of the radiation profiles, which will be discussed in

the next section.



6.4. Results 213

20 30 40 50
*
e, u

1

0

1

2
(a)

qd
z, tot

Li
Be
C
N
Ne

20 30 40 50
*
e, u

(b)

qp
z, tot

20 30 40 50
*
e, u

(c)

qd+ p
z, tot

Figure 6.9: Relative differences in the total radiated power from impurities for different treat-
ments of the background electrons from a SOL-KiT density scan. (a): distribution effect, (b):
profile effect, (c): profile + distribution effect.

We will now consider the line-averaged radiative losses, qz,tot =
∫
L
Qz,totdx, to gain an un-

derstanding of how these kinetic affects might change the power balance in a SOL plasma.

Similarly to the results for the ionization balance, we will look at the contribution from the

distribution effect and the profile effect separately. In Figure 6.9a, the distribution effect is

considered,

δqdz,tot = (qkinz,tot − qMax
z,tot )/q

fl
z,tot,

where qkinz,tot is the total radiated power for the fully kinetic electrons, qMax
z,tot is for the Maxwellian

electrons on the plasma profile from the kinetic SOL-KiT simulations, and this is normalised to

qflz,tot, which is for Maxwellian electrons on the fluid plasma profiles. In Figure 6.9b, the profile

effect is considered,

δqpz,tot = (qMax
z,tot − qflz,tot)/q

fl
z,tot,

and in Figure 6.9c we compare the fully kinetic vs. fully fluid treatment,

δqd+pz,tot = (qkinz,tot − qflz,tot)/q
fl
z,tot = δqdz,tot + δqpz,tot.

To also understand how this behaviour varies with plasma conditions, this is plotted as a

function of ν∗
e,u for the SOL-KiT density scan. Results are in Figure 6.9.

The distribution effect, Figure 6.9a, shows that Maxwellian-averaged rates on the same plasma
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background generally lead to an over-prediction of the total radiated power from impurities.

This is particularly the case for carbon and nitrogen at intermediate collisionalities, where the

kinetic treatment results in δqdZ,tot = −1.2 at ν∗
e,u ≃ 20. This is perhaps counter-intuitive, since

we have seen in Figure 6.7 how kinetic electrons increase the energy rates from excitation. The

reason for the reduction in qz,tot here is that different ions have different radiative properties,

and changes in the ionization balance bring these to the fore. For carbon, the kinetic electrons

increase the average ionization from ∼3 to ∼4, and C4+ is a much less efficient radiator (Figure

6.7c). Agreement for the other impurities is generally good, although some moderate differences

are seen at low collisionalities.

The profile effect, Figure 6.9b, generally acts in the opposite direction to the distribution

effect, but comparing the fully kinetic with the fully fluid treatment, Figure 6.9c, we see that

the cancellation is not complete. For example, the suppression of radiated power for carbon

and nitrogen from the distribution effect at ν∗
e,u ≃ 20 has been turned into an approximately

45% enhancement in the radiated power compared to the fluid treatment. Differences remain

in all impurity species at low collisionalities, and generally lead to a lower predicted value of

qz,tot for the kinetic treatment, apart from in the case of carbon. There is convergence in the

values of qz,tot predicted at high collisionalities for all impurity species, as expected.

6.5 Discussion

Calculations of the effective ionization rate coefficients show that assuming Maxwellian elec-

trons can drastically underestimate the rates compared to a realistic electron distribution close

to the target in SOL simulations, Figure 6.3. This is particularly the case for highly-ionized im-

purity ions at low electron temperatures, while the rates for neutral and near-neutral particles

show good agreement at all temperatures. The reason for the rate increases is the accumulation

of fast electrons close to the target in the SOL-KiT simulations considered, which is shown in

Figure 6.2b as an enhanced tail of the electron energy distribution. For inelastic processes

with high threshold energies, there are many times more electrons above the threshold than
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for an equivalent Maxwellian distribution at the same temperature. However, since these en-

hancements occur at low Te, where the average impurity ionization is low, the modifications to

the ionization balance are moderate. Considering only the effect of the electron distribution, a

kinetic treatment predicts higher average ionization by an amount which varies for the impurity

species, but peaks at +1.6 in front of the target for neon (Figure 6.6a).

When the fully kinetic treatment of the ionization balance is compared with the fully fluid

treatment, there is improved agreement, as seen in Figure 6.6c. This behaviour is caused by

the fact that the enhanced rates due to the distribution effect are nullified to an extent by the

profile effect, where fluid simulations predict higher Te close to the targets. The net change

is smaller in magnitude than either the distribution or profile effect considered alone, and is

positive or negative depending on the impurity species and spatial location. It peaks close to

the target at +0.38 for neon and -0.73 for nitrogen, Figure 6.6c.

Changes to the effective recombination rate coefficients, Figure 6.4, are negligible. This is

unsurprising, given that the cross-sections for both radiative and three-body recombination

are typically largest at low values of the incident electron energy, and these electrons are well-

thermalised in the plasma regimes studied here.

The behaviour described above for the ionization balance also occurs to some extent in the

radiative loss rates due to impurities. However, the situation is a little more complicated

because there are three possible ways in which kinetic effects can occur,

(i) changes to the excitation radiation per ion,

(ii) changes to the ionization balance,

(iii) changes to the electron temperature profiles.

There are some significant differences in the excitation radiation rates per ion due to the non-

Maxwellian electron distributions, Figure 6.7, but they are primarily confined to highly-ionized

ions at low Te, which suggests that (i) is small. Indeed, this has been confirmed to be the

case for carbon, nitrogen and neon, where Maxwellian values of Lz can be used with kinetic
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Figure 6.10: The magnitude of the total radiated power as a function of ν∗
e,u for each plasma

background and each impurity species.

calculations of the ionization balance to recover the fully kinetic Qz,tot in Figure 6.8. However,

this approach was found to be inadequate for lithium and beryllium.

The remaining contribution from the distribution effect, (ii), results from the fact that different

ionization stages have different radiative properties, and this is entirely responsible for the

changes seen in Figure 6.9a for carbon, nitrogen and neon. It should be pointed out that the

reduction in radiated power seen in Figure 6.9a is to some extent a coincidence of the fact that

the changes to the ionization balance result in an increase in density of impurity ions which

are less efficient radiators, for example C4+. Changes to the ionization balance can result in

an increase in radiated power, as seen close to the target in the radiation profile for lithium

in Figure 6.8a, but this depends on the relative radiative efficiency of the impurity ions being

considered.

The contribution from (iii), which is the profile effect, is clearly significant as seen in Figure

6.9b, and generally acts in the opposite direction to the distribution effect without completely

cancelling.

It is clearly a complex set of processes which lead to kinetic effects changing the radiation profiles

and the total radiated power, which makes a prediction of the sign and magnitude of such kinetic

effects challenging. Qualitatively, the changes observed can be explained by electrons close to

the target acting as if they were Maxwellian at a higher temperature. However, since the cooling
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Figure 6.11: Average excitation radiation per ion, L̄z, plotted for all simulations for a kinetic
and fluid treatment of the electrons.

effects of impurities can have sharp gradients with respect to Te, both positive and negative, it

is difficult to make a general prediction for the impact this will have.

It is worth noting that differences in radiated power, while significant for some impurities, are

generally biggest in regions where the total radiated power is low. This can be seen in Figure

6.10, where qz,tot is plotted with ν∗
e,u for each impurity. The fact that absolute differences are

significant at low collisionalities could plausibly change behaviour during impurity seeding, for

example, which will be required to facilitate benign target conditions in such regimes where

the upstream SOL is hot. A self-consistent treatment, where the corresponding impact of the

impurities on the electrons is modelled, would be worthwhile to investigate this.

An additional kinetic effect observed in the impurity radiation results, seen to some extent

in Figure 6.8, is in the spatial profile of the radiative peak, which is of diagnostic interest in

tokamak experiments. In Figure 6.11, we show the total excitation radiation per ion, L̄z, for

lithium and neon across all simulations on top of each other as a function of Te. Black lines are

the fully fluid treatments and red lines are fully kinetic. It is seen that, for a kinetic treatment,

L̄z is generally higher at lower temperatures and peaks at a different temperature. For lithium,

the peak is at a higher temperature, while for neon it is lower. This suggests that a kinetic

treatment of impurity radiation may do a better job of accurately predicting the position of

the radiative front in a divertor tokamak.
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A somewhat similar study to the one presented here is the one by Zhao et al. [82], where very

good agreement was found between ADAS rates and a kinetic treatment of inelastic collision

rates between electrons and neutral hydrogen. The kinetic electron code KIPP was used there,

and the scrape-off layer conditions simulated were broadly similar to the ones considered here.

This result has also been observed with SOL-KiT, as discussed in Chapter 5.

In [134] and [135], Garland et al. explore the effect of relativistic enhancements to electron-

impact inelastic cross-sections. This is relevant to tokamaks, because runaway electrons with

relativistic energies can be produced under certain conditions, and impurity injection (neon and

argon are considered in [135]) is proposed as a method to control them. This is a distinct process

from the one considered here, where differences in observed rates are due to modifications to

the cross-sections as well as to the electron distribution. There, the distribution effect of this

population of very fast electrons (representing a factor 10−3 of the bulk electrons) is shown

to be small, but the effect of relativistic corrections to the cross-sections results in significant

changes to the ionization balance and the radiated power. This does further highlight that

Maxwellian-averaged (and typically non-relativistic) reaction rates should be approached with

some caution in tokamak edge plasma modelling, and that particular care must be taken to

treat inelastic collisions appropriately when the problem requires a kinetic treatment.

Similar tools to SIKE are AURORA [58] and ColRadPy [131]. While these are both more fully-

featured atomic physics codes than SIKE, it is not straightforward to relax the assumption

of Maxwellian electrons in either of them. An interesting piece of future work would be to

incorporate the impurity transport model from AURORA into SIKE. This would enable studies

of kinetic effects in plasma-impurity reactions under conditions where sources and transport

are important, and this could in principle be coupled to kinetic simulations with a code such

as SOL-KiT for a more self-consistent treatment.
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6.6 Conclusions

We have seen how both non-Maxwellian electrons and kinetic differences in the plasma profiles

in scrape-off layer simulations can result in different predictions for plasma-impurity reaction

rates in several fusion-relevant impurity species. Comparing to Maxwellian rates, it has been

shown that ionization rates and excitation energy loss rates can show considerable kinetic

enhancement close to the target in these SOL plasma backgrounds for highly-ionized impurity

ions, while recombination rates are well-approximated by Maxwellian electrons.

If we confine the analysis to just the effect of the departure of the SOL electrons fromMaxwellian,

the net result of these effects is to considerably increase the average ionization and change the

line radiation profiles. However, when the different plasma profiles from kinetic vs. fluid

treatments of the electron transport are also accounted for, the differences are to some ex-

tent cancelled out. The remaining differences in average ionization are small, typically within

15%. For the radiated power, significant relative differences remain in SOL conditions with low

collisionality, but the total radiative losses are small in these regimes.

A common theme of the results presented here is that, where kinetic effects are apparent, they

vary in sign and magnitude depending on the particular properties of the impurity species being

considered, the local plasma conditions and the overall scrape-off layer regime. It is therefore

challenging to make generic statements of the importance of kinetic effects at this stage.

The fact that kinetic effects are large when considering just differences in the electron distri-

butions or the plasma profiles alone, but not together, mirrors one of the conclusions of the

investigation in Chapter 5. There, it was observed that kinetic SOL simulations predict both

conductive heat flux suppression and enhancement to the sheath heat transmission coefficient,

and it was concluded that accounting for both of these effects would be necessary if aiming to

capture kinetic effects in a fluid model. The situation is similar here: it would in principle be

possible to capture the enhancement to the ionization and excitation rates observed in kinetic

SOL simulations and incorporate these as modifications to Maxwellian-averaged rates from a

database such as ADAS. However, if this is not done in conjunction with the modifications to
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the plasma profiles due to kinetic effects in the electron transport, there is a risk that the results

would be less accurate than an entirely fluid approach. The flip side of this is that the use of

flux limiters or other reduced kinetic models such as SNB [93] or Ji-Held-Sovinec [99], which

are commonly-used approaches to capturing kinetic modifications to the electron parallel heat

flux, is akin to introducing a profile effect in the reaction rates but ignoring the distribution

effect. Given that these broadly cancel in the results shown here, a reduced kinetic model which

treats only the heat flux may therefore make agreement with a fully kinetic model worse.



Chapter 7

Conclusion

7.1 Summary of results

The performance of magnetic confinement fusion experiments is to a large extent determined

by the physics occurring at the edge of the device. Particles and energy will make their way

to the walls via the scrape-off layer, and the physics at play in this region is multi-faceted and

involves processes acting on a wide array of spatial and temporal scales. Modelling these edge

plasmas is therefore challenging, but there is a strong motivation to do so accurately.

Plasma transport in the direction parallel to the magnetic fields in the scrape-off layer dom-

inates over other directions, and is an important factor in determining the heat loads to the

walls. Classical, Braginskii-like transport theory is often used to make predictions or explain

experimental results for SOL plasmas, but the steep temperature gradients which are typically

present means transport can become non-local, and so a kinetic approach may be more appro-

priate. There is therefore a need to validate the classical approach to SOL transport modelling,

and this has been a key motivation of the work presented here.

Having seen that a kinetic treatment highlights some differences with fluid model predictions,

primarily for the electrons, in the work by Batishcheva et al. [68], Chankin et al. [81], Mijin

et al. [83], among others, one of the primary aims has been to extend the analysis of non-local

221
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transport in tokamak scrape-off layer plasmas to include more of the dominant physics at play

in real devices in numerical simulations. This includes allowing for the distinct behaviour of

the electron and ion energy transport in SOL plasmas, capturing the important role played

by neutral transport, and including the effect of radiating impurities. The development work

required to carry out kinetic studies of these behaviours has been described in detail in Chapter

3. This has included significant extensions to an existing code, SOL-KiT, and the development

of a collisional radiative model for investigations of impurity atomic physics in SOL plasmas,

SIKE. Another research aim has been to better understand the SOL regimes where kinetic

effects are more apparent, and hence where fluid models may be less appropriate. This was a

key motivation for the investigation presented in Chapter 5.

In Chapter 4, we saw that a fluid treatment of the energy transfer between the ions and

electrons, Qie, is a good approximation at equilibrium in the medium-sized tokamak conditions

studied. Some kinetic enhancements to this rate of energy exchange were observed during edge-

localised mode (ELM)-like transient conditions, but the differences were small compared to the

total energy going into the SOL during the transient, and parallel transport of the input power

was the dominant mechanism. Subsequent investigations therefore focussed on other processes

which are likely to be more important in determining the SOL power balance and/or exhibit

strong kinetic effects: parallel transport and the presence of radiating impurities.

In Chapter 5, a large number of kinetic and fluid simulations were carried out with a more

fully-featured SOL model. In density scans, it was found that a kinetic treatment does not

predict changes in the onset of detachment, and there is generally good agreement in the

particle fluxes at the target. It was also found that there was good agreement between kinetic

and fluid predictions of the target heat fluxes, despite significant differences in the temperature

profiles (driven by electron conductive heat flux suppression) and kinetic enhancements to

the electron sheath heat transmission coefficient, γe. This suggests that there is some degree

of cancelling which occurs between the modifications to the parallel heat transport and γe,

resulting in minimal changes to the power balance. It was found that the heat flux suppression

effect increases monotonically as the upstream collisionality parameter, ν∗
e,u, is decreased. On

the other hand, γe is classical at high and low collisionalities but is enhanced when calculated
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kinetically at intermediate collisionalities, peaking at ν∗
e,u ∼ 20. Simple scaling laws for these

two kinetic effects were presented, which may be applied to fluid modelling or 0D analyses of

future experiments.

The final physics investigation carried out was into plasma-impurity reaction rates, presented

in Chapter 6. Using a newly-developed collisional-radiative model, plasma profiles and electron

distributions from kinetic and fluid SOL simulations were used as fixed plasma backgrounds

and the resultant impurity ionization balance and radiative power losses were investigated.

Two distinct kinetic effects were observed, one driven by the departure of the electrons from

Maxwellian in kinetic simulations, and one driven by the different plasma profiles. Taken alone,

each of these effects is significant. However, when taken together the kinetic effects are much

weaker, although they do persist to some extent in conditions with small ν∗
e,u.

7.2 Conclusions

7.2.1 Numerical development

A key challenge of kinetic plasma simulations, and one reason why fluid models remain popular,

is that they are computationally expensive. The enhancements to the SOL-KiT code presented

in Chapter 3, and in particular the atomic state bundling in Section 3.4, have enabled parame-

ter scans of parallel electron kinetics in SOL simulations with realistic ion and neutral physics

(Chapter 5). This has in turn facilitated the development of scaling laws for two important

kinetic effects. Without the computational speed-up provided by bundling, this would not have

been possible in a reasonable time-frame. Furthermore, the fact that this speed-up is achieved

without significant loss of accuracy suggests that more fully-featured physics investigations us-

ing kinetic models may be possible in the future, in particular for problems where the bottleneck

is of a similar nature, for example in simulating impurities.

The collisional radiative model developed in Section 3.5, SIKE, has facilitated an initial inves-

tigation into kinetic effects in plasma-impurity reaction rates in SOL plasmas. This code may



224 Chapter 7. Conclusion

be applied to other research problems in the future, not necessarily limited to tokamak plasma

regimes. The advantage of SIKE is that a full set of self-consistent, fine structure resolved

atomic data from the Flexible Atomic Code (FAC) is included, and all that is required as input

is a plasma profile. The form of the atomic data - json files which are human-readable and

can easily be loaded as dictionaries in commonly-used programming languages - also facilitates

straightforward modification or addition of new data. This means that other impurity species

may be investigated, or the atomic data may be refined to provide greater agreement with

experiment. Interesting improvements to SIKE would be to add an impurity transport model

and/or sources and sinks of impurity particles. This would require minimal structural changes

to the code since a global sparse PETSc matrix has already been implemented, and would

enable studies of impurity physics in realistic tokamak regimes where impurity transport is

important. A limitation of SIKE is that the plasma is assumed to be optically thin. Photon-

induced reactions are included in the FAC data, so this assumption may be relaxed to extend

the code’s applicability to high-density SOL plasmas and non-tokamak applications, but this

would require knowledge of the background radiation.

The extensions to SOL-KiT described in Chapter 3 have extended the range of problems which

can be studied by the code. A remaining limitation of SOL-KiT is the lack of realistic geometric

effects, one of the most significant of which is flux tube expansion. This is an active area of

research, where novel divertor configurations have shown promise in facilitating detachment

[62, 136, 137]. An interesting study would be to explore the interaction of kinetic effects in 1D

SOL models with expanding field lines. Two upgrades to SOL-KiT would be required to do

this: a modification to the spatial gradient terms to account for changing cross-sectional areas

of the flux tube, which is straightforward, and a treatment of the magnetic mirror force in the

electron kinetic equation, which is less so. A method of treating the mirror force in a Legendre

decomposition of the electron kinetic equation is outlined in Appendix C.
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7.2.2 Physics investigations

A key result of Chapter 5 is that detachment onset is not affected by a kinetic treatment

of the electron parallel transport. This should, however, be placed in the context that only

the density scan with the lowest input power actually reached detachment in that study. It

is possible that, at very high input powers and in the presence of radiating impurities (i.e.

reactor-relevant conditions), kinetic effects may be important in detachment onset. It is in

these conditions where the scaling laws in Chapter 5 predict significant heat flux suppression,

and kinetic modifications to the impurity radiation in Chapter 6 are largest. This highlights

the need for a self-consistent study of kinetic electrons with impurities.

It is worth noting that the result in Chapter 5, with modified electron temperature profiles but

largely unchanged heat fluxes compared to a fluid model, may have a further significance in

altering the three-dimensional turbulence behaviour, as noted in [100]. Fully kinetic simulations

in 3D are computationally challenging, but the scaling laws presented in Chapter 5 may offer

a simple way to do a preliminary investigation of this effect.

While an obvious next step in the work on kinetic effects in plasma-impurity physics is to carry

out a self-consistent study, a computationally tractable method of doing so must be developed

first. One approach may be to use SIKE to assess the extent to which the fine structure resolved

atomic data can be compressed or aggregated while still capturing the kinetic effects observed

in Chapter 6. In addition, the atomic state bundling techniques developed in Section 3.4 may

be used to further reduce the number of collision operators and impurity atomic states which

need to be evolved. A logical enhancement of this technique would be to drop the assumption

of Boltzmann-distributed states within bundles, and instead use SIKE to make estimates of

atomic state distributions as functions of macroscopic plasma parameters.

An alternative approach to bundled atomic states is to develop collisional-radiative ‘effective’

cross-sections for inelastic processes, in a similar way to the effective ionization and recom-

bination rates discussed in Section 2.6. This would involve weighting the rate matrix with

the appropriate cross-sections to produce a single effective cross-section which accounts for the
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cumulative effect of many processes, and would yield the same particle and energy sources for

the same electron distribution. To evaluate effective Boltzmann collision operators with this

approach, it would also be necessary to compute effective transition energies.

It is possible that an even simpler approach would be viable, such as the effective cooling oper-

ators implemented in KIPP [3]. Minimal detailed knowledge of the impurity atomic physics is

required, and the net cooling effect due to radiation is applied to the electron distribution either

uniformly in velocity space or preferentially to the tail. This would not capture kinetic effects

in electron-impurity reactions directly, but would facilitate kinetic studies of the interaction of

parallel transport with significant power dissipation. Moreover, while the focus here has been

on plasma-impurity reaction rates, there are other questions posed by a kinetic treatment of

SOL electrons. One example is a study of kinetic effects on the thermal forces, which may

modify impurity transport properties.

The scaling laws for kinetic effects presented in Chapter 5 are novel, and provide the ability to

capture kinetic modifications to parallel transport in fluid codes and simple analytical models.

This is an improvement over traditional approaches which use flux limiters, as there is no

reliance on a tunable parameter which can change depending on the plasma conditions [64].

Furthermore, the results in Chapter 5 suggest that a flux limiter alone, even if tuned correctly,

may incorrectly capture the heat loads on the walls, which show good agreement with a fluid

treatment because the heat flux suppression and enhancement to γe largely cancel. Similar

behaviour has also been seen in the kinetic effects in impurities. A flux limiter applied to

a fluid code would predict changes to impurity radiation profiles (via modified temperature

profiles) which are not seen in a fully kinetic treatment due to modifications to the Maxwellian-

averaged reaction rates. This is, therefore, a key result of this study, which suggests that the

use of flux limiters on their own is inadequate at capturing kinetic effects in SOL plasmas. The

same can be said for other reduced kinetic models such as SNB [93] or Ji-Held-Sovinec [99],

which do not require fine-tuning in the same way as a flux limiter, but still only treat the

parallel heat flux.
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SOL-KiT further details

Some more details of the SOL-KiT model are provided here as a reference. All instances of f

without subscript here refer to the distribution of the electrons.

A.1 Derivation of the Legendre decomposition of the ki-

netic equation

In one spatial dimension oriented along the x-axis, the kinetic equation is

∂f(v)

∂t
+ vx

∂f

∂x
+ ax

∂f

∂vx
=
∑
α

Ce,α, (A.1)

where ax = − e
me

E is the acceleration due to the electric field. Writing this in spherical coordi-

nates gives

∂f(v)

∂t
+ v cos θ

∂f

∂x
+ ax

(
cos θ

∂f

∂v
− sin θ

v

∂f

∂θ

)
=
∑
α

Ce,α, (A.2)

where θ is the angle between v and the x-axis.

If we let ξ = cos θ, this becomes

∂f(v)

∂t
+ vξ

∂f

∂x
+ ax

(
ξ
∂f

∂v
− 1− ξ2

v

∂f

∂ξ

)
=
∑
α

Ce,α. (A.3)
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We may now apply the spherical harmonic expansion of f(v), which reduces to an expansion

in Legendre polynomials in one spatial dimension,

f(v) =
∞∑
l=0

fl(v)Pl(ξ) ≃
lmax∑
l=0

fl(v)Pl(ξ), (A.4)

where the second equality comes from truncating this expansion at some harmonic lmax. Sub-

stituting (A.4) into each term in (A.3), and making use of the Legendre polynomial recurrence

relations,

ξPl =
l + 1

2l + 1
Pl+1 +

l

2l + 1
Pl−1, (A.5a)

(ξ2 − 1)
dPl

dξ
=

l(l + 1)

2l + 1
(Pl+1 − Pl−1), (A.5b)

yields the following form of the kinetic equation,

∑
l=0

{
∂fl
∂t

}
Pl +

∑
l=0

{
v
∂fl
∂x

+ ax

(
∂fl
∂v

+
fl
v
(l + 1)

)}
l

2l + 1
Pl−1

+
∑
l=0

{
v
∂fl
∂x

+ ax

(
∂fl
∂v

− fl
v
l

)}
l + 1

2l + 1
Pl+1 =

∑
l=0

{∑
α

C l
e,α

}
Pl,

(A.6)

where we have also decomposed the collision operators in Legendre polynomials, Ce,α =
∑

C l
e,αPl,

which is discussed in Section A.2.

We can now change the summation indices in (A.6) and exploit vanishing terms, which allows

us to group terms involving the same Legendre polynomials. This gives

∑
l=0

[
∂fl
∂t

+

{
v
∂fl+1

∂x
+ ax

(
∂fl+1

∂v
+

fl+1

v
(l + 2)

)}
l + 1

2l + 3

+

{
v
∂fl−1

∂x
+ ax

(
∂fl−1

∂v
− fl−1

v
(l − 1)

)}
l

2l − 1

]
Pl =

∑
l=0

{∑
α

C l
e,α

}
Pl.

(A.7)

This can be written as a set of equations for each coefficient fl(v), as outlined in Section 3.1.1,

∂fl
∂t

= Al + El + Cl, (A.8)
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where

Al = − l

2l − 1
v
∂fl−1

∂x
− l + 1

2l + 3
v
∂fl+1

∂x
,

is the spatial advection term,

El = −axE

{
l

2l − 1
Gl−1 +

l + 1

2l + 3
Hl+1

}

is the velocity space advection due to the electric field, with

Gl(v) = vl
∂v−lfl
∂v

,

Hl(v) =
1

vl+1

∂vl+1fl
∂v

,

and, finally, the collision terms are

Cl =
∑
α

C l
e,α.

A.2 Collision operators in the Legendre decomposition

of the kinetic equation

A.2.1 Coulomb collision terms

For the electrons, SOL-KiT includes the effect of Coulomb collisions between charged species

and both elastic and inelastic collisions with neutrals. The treatments are quite different, and

we start with the Coulomb collisions.

Starting from the Fokker-Planck collision operator in terms of the Rosenbluth potentials (2.32)

for species α, with distribution f , colliding with species β, with distribution F , it is decom-

posed in spherical harmonics following the procedure laid out by Shkarosfky et al. [42]. The

distributions of both species are split into isotropic and anisotropic parts, f = f0 + fa and

F = F0+Fa, where we assume the anisotropic part is small so that the Fokker-Planck operator
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can be linearised. For l = 0 this becomes

CFP
0 =

∑
β

Γα,β
1

3v2
∂

∂v

[
3

µ
f0I0 (F0) + v (I2 (F0) + J−1 (F0))

∂f0
∂v

]
, (A.9)

while for l ≥ 1, the result is [112]

CFP
l≥1 =

∑
β

Γα,β

{
4π

µ
[F0fl + f0Fl]

− (µ− 1)

µv2

(
∂f0
∂v

[
l + 1

2l + 1
Il (Fl)−

l

2l + 1
J−1−l (Fl)

]
+I0 (F0)

∂fl
∂v

)
+

I2 (F0) + J−1 (F0)

3v

∂2fl
∂v2

+
−I2 (F0) + 2J−1 (F0) + 3I0 (F0)

3v2
∂fl
∂v

− l(l + 1)

2

−I2 (F0) + 2J−1 (F0) + 3I0 (F0)

3v3
fl

+
1

2v

∂2f0
∂v2

[L1Il+2 (Fl) + L1J−1−l (Fl) + L2Il (Fl) + L2J1−l (Fl)]

+
1

v2
∂f0
∂v

[L3Il+2 (Fl) + L4J−1−l (Fl) + L5Il (Fl) + L6J1−l (Fl)]

}
,

(A.10)

where µ = mβ/mα, Γα,β is a collection of constants defined in (2.30), Il and Jl are a set of

integrals defined as

Ij(Fl) =
4π

vj

∫ v

0

Fl(u)u
j+2du, Jj(Fl) =

4π

vj

∫ ∞

v

Fl(u)u
j+2du,

and the L coefficients are constants in terms of l,

L1 =
(l+1)(l+2)

(2l+1)(2l+3)
, L2 = − (l−1)l

(2l+1)(2l−1)
, L3 = − (l+1)l/2+l+1

(2l+1)(2l+3)

L4 =
−(l+1)l/2+l+2
(2l+1)(2l+3)

, L5 =
(l+1)l/2+l−1
(2l+1)(2l−1)

, L6 = − (l+1)l/2−l
(2l+1)(2l−1)

.

For collisions between electrons, α = β = e and µ = 1, equations (A.9) and (A.10) are

implemented in full. For collisions with ions (α = e, β = i), a Dirac delta is assumed for the

ion distribution at their flow velocity, F (v) = niδ(v − ui), which in the Legendre expansion is

Fl =
ni(2l + 1)

4π
δ(v − ui).
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This simplifies (A.10) as the Ij and Jj integrals reduce to step functions. The l = 0 term for

electron-ion collisions (A.9), responsible for the transfer of energy between the two species, is

not included because the ion temperature is not evolved (either assuming they are cold or at

the same temperature as the electrons).

A.2.2 Boltzmann collision terms

Both elastic and inelastic collisions between electrons and neutrals are included in the SOL-

KiT model. For the latter, we have contributions from excitation/de-excitation, ionization and

three-body recombination. The decomposition of the Boltzmann collision operator (2.25) in

Legendre polynomials again follows the formalism of Shkarofsky et al. [42].

Starting with elastic electron-neutral collisions, the neutral distribution is assumed to be a delta

function at v = 0. Although the mass ratio me/mn is small, if we assume the electron velocity

magnitude does not change in collisions, i.e. that |vi
α|= |vf

α| in equation (2.25), the collision

operator for l = 0 disappears. Instead, we assume the change in velocity is merely small and

use a Taylor expansion, giving

Cel
0 =

∑
b

me

mn +me

1

v2
∂

∂v

{
nbv

4

(∫
d2Ω(1− cosχ)σel,b(χ, v)

)(
f0 +

kTn

mev

∂f0
∂v

)}
, (A.11)

where the sum is over all neutral atomic states b, nb is the density of neutrals in state b, Tn

is the neutral temperature and σel,b(χ, v) is the differential cross-section for elastic collisions,

which is a function of v and the scattering angle χ. For l ≥ 1, we do employ the assumption of

constant velocity magnitude and the collision operator is

Cel
l≥1 =

∑
b

−nbvfl

{∫
d2Ω(1− Pl(cosχ))σel,b(χ, v)

}
, (A.12)

where Pl is the lth Legendre polynomial.

For inelastic collisions the procedure of Makabe et al. [44] is used. We first treat inelastic

collisions which conserve particle number (i.e. excitation and de-excitation). For a process
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with energy loss ε, the pre- and post-collision velocities are related via

1

2
mev

′2 =
1

2
mev

2 + ε.

We can then define α = v′/v =
√

1 + 2ε
mev2

, and the collision operator for any l becomes

Cex
l =

∑
b,b′

−nbv
{
σtot
b→b′(v)fl(v)− fl(αv)α

2
(
σtot
b→b′(αv)− σ

(l)
b→b′(αv)

)}
(A.13)

where the sum is over transitions from all initial atomic states b to final states b′, where for

excitation b < b′, and for de-excitation b > b′. Also, σtot =
∫
d2Ωσ(χ, v) is the integral cross-

section, σ(l) =
∫
d2Ω(1−Pl(cosχ))σ(χ, v) is the cross-section for a given harmonic l, and σb→b′

refers to the cross-section for excitation or de-excitation from b to b′.

For ionization, a collisional process which does not conserve particles, it is in theory necessary to

know how the post-collision energy and momentum is shared between the incident and ejected

electrons. However, a simplification is employed where it is assumed the ejected electron is

stationary, and the incident electron therefore has post-collision energy 1
2
mev

′2 = 1
2
mev

2+ ε, as

was the case for excitation. The ionization collision operator is then the sum of a term identical

in form to the excitation collision operator (A.13) and a term which places ionized electrons at

v = 0,

Cion
l =

∑
b

[
−nbv

{
σtot
ion,b(v)fl(v)− fl(αv)α

2
(
σtot
ion,b(αv)− σ

(l)
ion,b(αv)

)}
+nbneKion,b

δ(v)

4πv2
δl,0

]
,

(A.14)

where σion,b is the ionization cross-section of neutrals in state b, and Kion,b is the ionization rate

coefficient, where

K =
1

ne

4π

∫
dvv3f0(v)σ

tot(v).
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Finally, for three-body recombination we have an operator with nearly identical form to (A.14),

C3br
l =

∑
b

[
−nbv

{
σtot
3br,b(v)fl(v)− fl(αv)α

2
(
σtot
3br,b(αv)− σ

(l)
3br,b(αv)

)}
−nbneK3br,b

δ(v)

4πv2
δl,0

]
,

(A.15)

except the term responsible for the particle source has reversed sign and ε < 0.

One remaining aspect of these operators which needs specifying is the cross-sections used. For

all processes, differential cross-sections have not been used in practice and instead integral cross-

sections are used, leading to a set of simplifications discussed shortly. For elastic collisions, the

Bohr radius is used. For excitation, cross-sections for hydrogenic atoms from Janev [113] are

used. Deexcitation cross-sections are related via detailed balance,

σtot
b′→b(v

′) =
gb
gb′

v2

v′2
σtot
b→b′(v)

for b′ > b, where gb is the statistical weight of state b. Similarly for ionization, cross-sections

from Janev are used [113], and three-body recombination cross-sections come from detailed

balance,

σtot
3br,b(v

′) =
1

2
negb

(
h2

2πmekTe

)3/2
v2

v′2
σtot
ion,b(v),

where h is Planck’s constant.

For cross-sections with no scattering angle dependence, we get the simplified set of Boltzmann
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collision operators,

Cel
0 =

∑
b

me

mn +me

1

v2
∂

∂v

{
nbv

4σtot
el,b(v)

(
f0 +

kTn

mev

∂f0
∂v

)}
,

Cel
l≥1 =

∑
b

−nbvflσ
tot
el,b(v),

Cex
l =

∑
b,b′

−nbv
{
σtot
b→b′(v)fl(v)− δl,0fl(αv)α

2σtot
b→b′(αv)

}
Cion

l =
∑
b

[
−nbv

{
σtot
ion,b(v)fl(v)− δl,0fl(αv)α

2σtot
ion,b(αv)

}
+ nbneK

ion
b

δ(v)

4πv2
δl,0

]
,

C3br
l =

∑
b

[
−nbv

{
σtot
3br,b(v)fl(v)− δl,0fl(αv)α

2σtot
3br,b(αv)

}
− nbneK

3br
b

δ(v)

4πv2
δl,0

]
,

(A.16)

Thus equations (A.9), (A.10) and (A.16) constitute all collisional contributions to the term

Cl in the Legendre decomposition of the electron kinetic equation (3.2), as implemented in

SOL-KiT.

A.2.3 Heating operator

An additional contribution to Cl is a spatially uniform heating operator, which enables simu-

lation of input power from the core into the SOL. This has the form

Cheat
0 = Θ(Lh − x)D(x, t)

1

3v2
∂

∂v
v2

∂f0
∂v

, (A.17)

where Θ is the step function, Lh is the length over which heating occurs and D(x, t) =

qin(t)/mene(x, t)Lh for an input heat flux qin. Defining Qext
e as the energy moment of the

heating operator, Qext
e = 4π

∫
(1
2
mev

2)v2Cheat
0 dv, we see that Qext

e = qin/Lh as expected.

A.3 Ion temperature equation derivation

Starting from the generic plasma transport equations (2.42), we assume isotropic ion pressure.

Therefore, in the direction parallel to the magnetic field (the x-axis) and for deuterium ions we
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have

∂ni

∂t
+

∂

∂x
(niui) = Si, (A.18a)

∂

∂t
(miniui) +

∂

∂x
(miniu

2
i ) +

∂nikTi

∂x
+ eniE = Ri, (A.18b)

∂

∂t

(
3

2
nikTi +

1

2
miniu

2
i

)
+

∂

∂x

(
qi +

(
5

2
nikTi +

1

2
miniu

2
i

)
ui

)
= eniEui +Qi,

(A.18c)

The ion momentum equation (A.18b) can be combined with (A.18a) to give

mini
∂ui

∂t
+miniui

∂ui

∂x
+miSiui +

∂ (nikTi)

∂x
= niZeE +Ri. (A.19)

Similarly, the ion energy equation (A.18c) can be written

ni

(
∂

∂t
+ ui

∂

∂x
+ Si

)(
3

2
kTi +

1

2
miu

2
i

)
+

∂

∂x
(qi + nikTiui)

= eniEui +Qi.

(A.20)

We then subtract the ui equation (A.19), multiplied by ui, from (A.20) to give

3

2
ni

(
∂kTi

∂t
+ ui

∂kTi

∂x

)
+

∂qi
∂x

+ nikTi
∂ui

∂x
+

(
3

2
kTi −

1

2
miu

2
i

)
Si = Qi − uiRi. (A.21)

Finally, this is rearranged to give an evolution equation for the ion temperature,

∂kTi

∂t
= −ui

∂kTi

∂x
+

2

3

[
−kTi

∂ui

∂x
− 1

ni

∂qi
∂x

− Si

ni

(
3

2
kTi −

1

2
miu

2
i

)
− ui

ni

Ri +
Qi

ni

]
. (A.22)

A.4 Numerics

Here, a brief description of the SOL-KiT numerics is provided. For more details, see [4].

All evolved quantities are normalised with reference to a plasma with temperature T0 (in eV)

and density n0 (in m−3). Velocities are thus normalised to the electron thermal speed, vth,0 =√
2eT0/me. Time is normalised to the 90◦ electron-ion collision time, t0 = v3th,0/(Γei,0n0 ln Λei,0/Z).
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Here, Γei,0 = Z2e4/4π(meϵ0)
2 and lnΛei,0 is the electron-ion Coulomb logarithm at T0 and n0.

Distances are normalised with x0 = vth,0t0. All normalised quantities, denoted with a tilde, can

therefore be defined,

ṽ =
v

vth,0
, t̃ =

t

t0
, x̃ =

x

x0

, f̃l =
fl

n0v
−3
th,0

,

Ẽ =
Eet0

mevth, 0
, q̃ =

q

men0v3th,0
, T̃ =

T

T0

,

ε̃ =
ε

T0

, σ̃ =
σ

σ0

, ñ =
n

n0

, ũ =
u

vth,0
.

From hereon the tilde will be dropped.

The velocity grid is a cell-centred grid of Nv cells with increasing grid widths. The initial grid

width is ∆v1, and the width multiplier cv. Therefore, the grid is defined

v1 =
1

2
∆v1, ∆vn = cv∆vn−1, vn = vn−1 +

1

2
(∆vn +∆vn−1).

The spatial grid consists of cell centres and cell faces. The total number of cell centers is Nc.

Quantities such as T , n and f0 are evolved on the cell centres, while quantities which relate to

fluxes, such as u and f1, are evolved on cell edges. A linear interpolation is then carried out to

estimate the value of these quantities on non-evolved grid locations. Spatial grid widths, ∆xc,

are defined for cell centres, decreasing exponentially from the upstream location (at x = 0) to

the target. The two extremes are defined at input. The grid is thus

x1 = 0, xk = xk−1 +
1

2
∆xc

m,

where m = k if k is odd (cell centres) or m = k − 1 if k is even (cell edges). A visual

representation of the grid, including both boundaries, is shown in Figure A.1.

Implicit time integration is carried out using the backwards Euler method. For a variable vector

F , containing all evolved variables at all grid locations, and a matrix M , which applies all terms

in the SOL-KiT equations which evolve the quantities in F , the variable vector is evolved from

timestep i to i+ 1 with

F i+1 = (I −∆tM(F i∗))−1F i,
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Last evolved grid point

Cell centres Cell edges

First evolved grid point

Sheath boundaryUpstream boundary

∆xkx = 0

Figure A.1: Diagram of SOL-KiT spatial grid, showing cell centres and boundaries. The first
and last evolved grid points are both cell centres, with boundary conditions applied on the
upstream and sheath boundary cell edges.

where I is the identity matrix and M is evaluated at the lagged timestep i∗. This is solved

iteratively by setting i∗ = i initially, then updating M and so on until convergence.

For all derivatives (in velocity and configuration space), finite differencing is used. Velocity

derivatives are evaluated with central differencing, where for some function F evaluated at

spatial location xk and velocity location vn,

∂F

∂v
(xk, vn) =

F (xk, vn+1)− F (xk, vn−1)

vn+1 − vn−1
,

and

∂2F

∂v2
(xk, vn) =

1

∆vn

(
F (xk, vn+1)− F (xk, vn)

vn+1 − vn
− F (xk, vn)− F (xk, vn−1)

vn − vn−1

)
.

An exception to this is in the velocity advection terms in the kinetic equation, where a conser-

vative form is used instead,

∂F

∂v
(xk, vn) =

F
(
xk, vn+1/2

)
− F

(
xk, vn−1/2

)
∆vn

,

using linear interpolation to compute values at vn±1/2. Spatial derivatives are treated with

central differencing, except for when upwinding is used, in which case

∂F

∂x
(xk) =

F (xk)− F (xk−1)

xk − xk−1
, u(xk) ≥ 0,
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∂F

∂x
(xk) =

F (xk+1)− F (xk)

xk+1 − xk

, u(xk) < 0.

The diffusion terms are, in velocity space,

∂

∂v

(
A
∂F

∂v

)
(xk, vn) =

1

∆vn

[
A
(
xk, vn+1/2

) F (xk, vn+1)− F (xk, vn)

vn+1 − vn

−A
(
xk, vn−1/2

) F (xk, vn)− F (xk, vn−1)

vn − vn−1

]
,

and in configuration space,

∂

∂x

(
A
∂F

∂x

)
(xk) =

1

xk+2 − xk−2

[
A (xk+1)

F (xk+2)− F (xk)

xk+2 − xk

−A (xk−1)
F (xk)− F (xk−2)

xk − xk−2

]
,

for some diffusion coefficient A.
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Fluid neutral model details

B.1 Transport model derivation

We start from the neutral transport equations, assuming isotropic pressure,

∂nb

∂t
+∇ · (nbun) = Sb, (B.1a)

∂

∂t
(mnnnun) +∇ · (mnnnunun) +∇pn = Rn, (B.1b)

∂

∂t

(
3

2
pn +

1

2
mnnnu

2
n

)
+∇ ·

[
qn +

(
5

2
pn +

1

2
mnnnu

2
n

)
un

]
= Qn, (B.1c)

where for the mass continuity equation (B.1a) we treat each neutral excited state individually,

and nn =
∑

b nb and Sn =
∑

b Sb are the total neutral density and particle source respectively.

As outlined in Section 3.3, we will consider a quasi-2D geometry, where gradients in the direction

parallel to the magnetic field, x, can be related to those in the perpendicular direction, y, via

∂

∂y
=

1

tanα

∂

∂x
, (B.2)

and therefore, for a velocity u = u∥x̂+u⊥ŷ, we can arrive at an effective velocity in the parallel

239
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direction,

ueff = u∥ +
u⊥

tanα
. (B.3)

Here, α is the pitch angle of the magnetic field, measured from the direction of normal incidence

to the wall (see Figure 3.7).

Using (B.2) and (B.3),

∇ · (nbun) =
∂(nbun∥)

∂x
+

∂(nbun⊥)

∂y
=

∂(nbun,eff )

∂x

and so (B.3) becomes

∂nb

∂t
= −∂(nbun,eff )

∂x
+ Sb. (B.4)

For the momentum equation, we can separate into a parallel component,

∂

∂t

(
mnnnun∥

)
= −

(
∂

∂x
(mnnnu

2
n∥) +

∂

∂y
(mnnnun∥un⊥)

)
− ∂pn

∂x
+Rn∥,

= − ∂

∂x

(
mnnnun∥un,eff + pn

)
+Rn∥

(B.5)

and a perpendicular component,

∂

∂t
(mnnnun⊥) = −

(
∂

∂x
(mnnnun∥un⊥) +

∂

∂y
(mnnnu

2
n⊥)

)
− ∂pn

∂y
+Rn⊥,

= − ∂

∂x

(
mnnnun⊥un,eff +

1

tanα
pn

)
+Rn⊥

(B.6)

From these two equations, and using (B.4), we can obtain

nnmn

∂un∥

∂t
+ nnmnun,eff

∂un∥

∂x
+

∂pn
∂x

+mnSnun∥ = Rn∥, (B.7)

and

nnmn
∂un⊥

∂t
+ nnmnun,eff

∂un⊥

∂x
+

1

tanα

∂pn
∂x

+mnSnun⊥ = Rn⊥, (B.8)

from which we can arrive at the form of the un∥ and un⊥ evolution equations implemented in

SOL-KiT, (3.40b) and (3.40c), by dividing through by mnnn and rearranging.
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For the energy equation, we can use (B.2) and (B.3) to rewrite it as

∂

∂t

(
3

2
nnkTn +

1

2
mnnnu

2
n

)
+

(
1 +

1

tan2 α

)
∂qn
∂x

+
∂

∂x

((
5

2
pn +

1

2
mnnnu

2
n

)
un,eff

)
= Qn,

(B.9)

where we have used the Helander form of the neutral heat flow [50],

qn = −2.4
nnkTn

mnνcx
∇kTn

allowing us to write

∇ · qn =
∂

∂x

(
−2.4

nnkTn

mnνcx

∂kTn

∂x

)
+

∂

∂y

(
−2.4

nnkTn

mnνcx

∂kTn

∂y

)
=

(
1 +

1

tan2 α

)
∂qn
∂x

with qn = −2.4nnkTn

mnνcx
∂kTn

∂x
. Now we use (B.1a) to rewrite (B.9),

nn

(
∂

∂t
+ un,eff

∂

∂x
+ Sn

)(
3

2
kTn +

1

2
mnu

2
n

)
+

(
1 +

1

tan2 α

)
∂qn
∂x

+
∂

∂x
(nnkTnun,eff ) = Qn.

(B.10)

Finally, we take equation (B.10) − (equation (B.7) ×un∥ + equation (B.8) ×un⊥) to give

3

2
nn

(
∂kTn

∂t
+ un,eff

∂kT

∂x

)
+

(
1 +

1

tan2 α

)
∂qn
∂x

+ nnkTn
∂un,eff

∂x

+ Sn

(
3

2
kTn −

1

2
mnu

2
n

)
= Qn − un∥Rn∥ − un⊥Rn⊥.

(B.11)

Straightforward rearrangement of this gives the form of the neutral temperature equation which

has been implemented in SOL-KiT, equation (3.40d). As noted in Section 3.3, we choose to

avoid introducing excessive neutral energy sources or sinks in this model with small values of

the pitch angle α by only using the parallel components of the Sn and Rn terms in (B.11).
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B.2 Boundary conditions

Boundary conditions for a fluid neutral model in the presence of a wall are intrinsically more

complex than for the plasma species. This is because there is a surface interaction, some amount

of reflection, and a source of recycled ions at the boundary. The approach taken here follows

a similar outline to that of Horsten et al. [138, 139], applied to a 1D (or quasi-2D) simulation

domain and with a simplified treatment of the surface physics.

We start by describing the neutral distribution at the boundary as consisting of three one-sided

component distributions,

fn,t(v) = finc(v) + fref (v) + frec(v), (B.12)

where finc is the incident (forward-going) neutral distribution, fref is the reflection of finc, and

frec is the distribution of recycled particles, which we take to be made up of Franck-Condon

atoms. We assume all incident ions are released from the wall as molecules which quickly

dissociate to become Franck-Condon atoms, i.e. there is no ‘fast recycling’ of ions.

We can now define the components of fn,t in more detail. We will take finc to be a half-

Maxwellian at the same density and temperature of the neutrals in the last evolved location,

finc(v) = H(vx)nn

(
mi

2πkTn

)3/2

exp

(
−miv

2

2kTn

)
, (B.13)

where H is the Heaviside step function. The reflected distribution is the other half of the

incident distribution, where reflected neutrals return with a fraction αn of their incident energy

and a fraction Rr of the incident particles are reflected,

fref (v) = RrH(−vx)
nn√
αn

(
mi

2πkTnαn

)3/2

exp

(
− miv

2

2kTnαn

)
. (B.14)

The recycled distribution consists of atoms emitted from the wall at TFC = 3 eV, which is
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written in spherical coordinates as

frec(v) = (1−Rd)H(θ − π/2)nrec
cos(π − θ)

πv2
δ(v − vFC

th ), (B.15)

where we have made use of the cosine emission law, with the emission angle measured from

the normal to the wall, and Rd is the fraction of recycled neutrals which are redistributed

further upstream instead of being recycled at the target. The density of this distribution is

nrec (to be defined later), and vFC
th =

√
2kTFC/mn. This is made up of recycled ions as well as

non-reflected neutrals (which are absorbed and then re-emitted as Franck-Condon atoms).

With this, we can take the appropriate moments of fn,t to calculate the boundary conditions on

the fluid neutral equations, where we need values of the particle flux, flow velocity and energy

flux.

Particle flux

For the particle flux, Γn,t, we have

Γn,t =

∫
vxfn,t(v)dv

=

∫
vxfincdv︸ ︷︷ ︸
Γinc

+

∫
vxfrefdv︸ ︷︷ ︸
Γref

+

∫
vxfrecdv︸ ︷︷ ︸
Γrec

,
(B.16)

where each term evaluates to

Γinc =
nn

4

√
8kTn

πmi

≃ 1

2
nncs

Γref = −Rr
nn

4
√
αn

√
8kTnαn

πmi

= −RrΓinc

Γrec = −(1−Rd)
2

3
nrecv

FC
th ,

(B.17)
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where cs =
√

kTn/mi is the neutral sound speed and Γi,t is the ion flux crossing the sheath.

We can simplify Γn,t by making use of the fact that

Γrec = −((1−Rr)Γinc + Γi,t)(1−Rd) (B.18)

from particle conservation (assuming 100% plasma recycling). Therefore,

Γn,t = Γinc + Γref + Γrec

= Rd(1−Rr)Γinc − (1−Rd)Γi,t,

(B.19)

where, for Rd = 0, we get

Γn,t = −Γi,t (B.20)

as expected.

For non-zero redistribution, equation (B.19) allows us to define the redistribution flux,

Γredist = −Rd(1−Rr)Γinc −RdΓi,t, (B.21)

such that Γn,t + Γredist = −Γi,t, confirming that redistribution conserves particles, assuming

100% plasma recycling.

Flow velocity

The boundary condition on the flow velocity is

un,t =
Γn,t

nn,t

≃ −(1−Rd)Γi,t

nn,t

, (B.22)

which always points into the simulation domain as expected. The boundary density, nn,t is

nn,t =

∫
fn,tdv =

1

2
nn(1 +Rr) + nrec, (B.23)
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which requires us to evaluate nrec. We can do this by finding the velocity moment of frec,

urec =
1

nrec

∫
vxfrecdv = −(1−Rd)

2

3
vFC
th , (B.24)

and so

nrec =
Γrec

urec

=
3

2vFC
th

((1−Rr)Γinc + Γi,t) . (B.25)

If both un∥ and un⊥ are evolved, this boundary condition on the flow velocity is applied to

un,eff . The value of un∥ at the boundary is then free (
∂un∥
∂x

= 0) and un⊥ is constrained by

un,eff = un∥ + un⊥/tanα.

Energy flux

The energy flux across the boundary is

qn,t =

∫
1

2
miv

2vxfn,tdv

=
1

2
mi


∫

v2vxfincdv︸ ︷︷ ︸
qinc

+

∫
v2vxfrefdv︸ ︷︷ ︸

qref

+

∫
v2vxfrecdv︸ ︷︷ ︸

qrec

 .

(B.26)

These three terms are

qinc =

∫
1

2
miv

2vxfincdv =
1

2
nnkTn

√
8kTn

πmi

= 2kTnΓinc

qref =

∫
1

2
miv

2vxfrefdv = −2RrαnkTnΓinc

qrec =

∫
1

2
miv

2vxfrecdv = −(1−Rd)
2

3
nreckTFCv

FC
th = kTFCΓrec,

(B.27)

so the net heat flux across the boundary can be written

qn,t = γnkTnnncs − (1−Rd)kTFCΓi,t, (B.28)
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with a neutral sheath heat transmission coefficient defined as

γn = 1− αnRr − (1−Rr)(1−Rd)
TFC

2Tn

. (B.29)

The first term in (3.61) is the neutral heat loss to the walls, while the second term is the input

from the recycled ions. The effect of the non-reflected neutrals is included in γn. Depending

on the choice of Rr and αn, as well as the plasma and neutral conditions at the wall, the net

heat flux across the boundary for the neutrals may be positive or negative. Reasonable values

for deuterium neutrals incident on a Tungsten wall can be obtained from the TRIM database

(http://www.eirene.de/html/surface_data.html), and here we may use αn = 0.75 and

Rr = 0.8. This results in γn = 0.3 at Tn = TFC , assuming Rd = 0.

http://www.eirene.de/html/surface_data.html
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Mirror force in Legendre

decomposition of kinetic electron

equation

Expanding magnetic field lines produce a mirror force on electrons. We seek here to develop

a form of this magnetic mirror force in the Legendre polynomial decomposition of the kinetic

equation, which will enable a kinetic treatment of flux tube expansion in SOL simulations in

codes such as SOL-KiT. We will treat only the mirror force here and not other effects due to

flux tube expansion, which are relatively straightforward and involve modified spatial gradients

in the parallel direction.

C.1 Mirror force

An electron moves with parallel and perpendicular velocity components,

v = vxx̂+ v⊥ϕ̂,
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x̂

B⃗

(a) Expanding field lines.

x̂

ŷ

ϕ

x̂

ϕ̂
ρ̂

ẑ

(b) Coordinate system for an electron orbiting
about the x-axis.

x̂

ŷ
vx

v⊥

ẑ

Fρ

Fx

Fϕ

(c) Diagram of the velocity (cyan) and Lorentz
force (purple) components acting on the electron.

Figure C.1: Geometry of an electron orbiting about the x-axis in an expanding flux tube.

in an expanding magnetic flux tube such that the magnetic field has radial and parallel com-

ponents,

B = Bρρ̂+Bxx̂,

where ρ̂, ϕ̂ and x̂ are the cylindrical coordinate unit vectors, i.e. ρ̂ = cosϕŷ + sinϕẑ, ϕ̂ =

− sinϕŷ + cosϕẑ, where ϕ is the azmithual angle in the yz-plane. The acceleration from the

Lorentz force on the electron due to the magnetic field is

a = − e

me

v ×B = − e

me

(v⊥Bxρ̂+ vxBρϕ̂− v⊥Bρx̂) (C.1)

This is shown in Figure C.1.

Assuming the magnetic field strength is approximately constant over a Larmor orbit (with

radius rL), and Bρ ≪ Bx, then we can write

Bρ ≃ −1

2
rL

∂Bx

∂x
=

mev⊥
2eBx

∂Bx

∂x
, (C.2)

where e is the electric charge and me is the electron mass.
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C.2 Derivation of the mirror force term in the kinetic

equation

Starting from the kinetic equation,

∂f(v)

∂t
+ v · ∇f(v) + a · ∇vf(v) = C, (C.3)

we consider the consequences of the addition (compared to the SOL-KiT treatment of the kinetic

equation, Section A.1) of a force due to the magnetic field. It can be shown, by rewriting the

a · ∇vf(v) term above in spherical coordinates, that the ρ̂ and ϕ̂ components of a in (C.1)

do not drive azimuthal asymmetries in f , and are non-zero only if f already has azimuthal

asymmetries, i.e. if ∂f
∂ϕ

̸= 0. As such, we can justify a 1D treatment along the x-axis, assuming

symmetry of f about x, such that this becomes

∂f(v)

∂t
+ vx

∂f(v)

∂x
+ ax

∂f(v)

∂vx
= C. (C.4)

This will enable a Legendre decomposition of the mirror force along similar lines to the treat-

ment of the Vlasov terms outlined in Section A.1.

Focussing solely on the mirror force term, the x-component of a can be written

ax =
e

me

v⊥Bρ = − v2⊥
2Bx

∂Bx

∂x
= −v2 sin2 θ

1

2B

∂Bx

∂x
(C.5)

where θ is the polar angle between v and the x-axis. In spherical coordinates therefore,

ax
∂f(v)

∂vx
= −v2 sin2 θ

1

2B

∂Bx

∂x

(
cos θ

∂f

∂v
− sin θ

v

∂f

∂θ

)
. (C.6)

Expanding f(v) in Legendre polynomials,

f(v) =
∞∑
l=0

f(v)Pl(cos θ),
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and writing ξ = cos θ, then (C.6) becomes

ax
∂f(v)

∂vx
=

v2

2Bx

∂Bx

∂x

∞∑
l=0

{
(ξ2 − 1)

(
ξPl

∂fl(v)

∂v
+ fl(v)

1− ξ2

v

dPl

dξ

)}
. (C.7)

This can be dealt with in a similar way to the velocity space advection due to the electric field,

as outlined in Section A.1. Using the Legendre polynomial recurrence relations,

ξPl =
l + 1

2l + 1
Pl+1 +

l

2l + 1
Pl−1,

(ξ2 − 1)
dPl

dξ
=

l(l + 1)

2l + 1
(Pl+1 − Pl−1),

we can obtain

ξ2Pl =
(l + 1)(l + 2)

(2l + 1)(2l + 3)︸ ︷︷ ︸
≡αl

Pl+2 +
2l2 + 2l − 1

(2l − 1)(2l + 3)︸ ︷︷ ︸
≡βl

Pl +
l(l − 1)

(2l − 1)(2l + 1)︸ ︷︷ ︸
≡γl

Pl−2. (C.9)

Using these relations (noting the definitions of the constants αl, βl and γl) and making use of

the functions

Fl(v) ≡
l

2l + 1

(
∂fl
∂v

+ (l + 1)
fl
v

)
,

Jl(v) ≡
l + 1

2l + 1

(
∂fl
∂v

− l
fl
v

)
,

equation (C.7) becomes

(C.11)
ax

∂f(v)

∂vx
=

v2

2Bx

∂Bx

∂x

∞∑
l=0

{Pl−3Flγl−1 + Pl−1 [Fl(βl−1 − 1) + Jlγl+1]

+ Pl+1 [Flαl−1 + Jl(βl+1 − 1)] + Pl+3Jlαl+1} .

Now, we can group into factors of the same order polynomial by changing summation indices

and exploiting vanishing terms, meaning the summation part of this can be written

∞∑
l=0

{Fl+3γl+2 + Fl+1(βl − 1) + Jl+1γl+2 + Fl−1αl−2 + Jl−1(βl − 1) + Jl−3αl−2}Pl. (C.12)
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Finally, by using the orthogonality of Legendre polynomials we arrive at a set of coefficients

Bl,

Bl = − v2

2Bx

∂Bx

∂x
{Fl+3γl+2 + Fl+1(βl − 1) + Jl+1γl+2

+Fl−1αl−2 + Jl−1(βl − 1) + Jl−3αl−2} ,
(C.13)

which are readily inserted into the evolution equation for each fl,

∂fl
∂t

= Bl + Al + El + Cl (C.14)

where El, Al and Cl are the usual electric field, spatial advection and collision terms respectively

as defined in Section A.1.
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