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Abstract

This thesis focuses on risk and fragility within Decentralised Finance (DeFi). This thesis

presents new evidence on the interconnected and fragile nature of DeFi protocols and develops

an approach to mitigate risk in DeFi that relies upon redundancy. Within this context, our

contributions are threefold.

Firstly, we focus on a subset of DeFi protocols: Protocols for Loanable Funds (PLFs). PLFs

use smart contract code to facilitate the intermediation of loanable funds and, in doing so, allow

agents to borrow and save programmatically. Within these protocols, interest rate mechanisms

seek to equilibrate the supply and demand for funds. After reviewing methodologies used

to set interest rates in PLFs and examining how these interest rate rules have changed in

response to changes in liquidity, our main contribution is to model the market efficiency and

inter-connectedness between protocols.

Second, we make two contributions by focusing on one particular DeFi protocol, MakerDAO’s

DAI. The first is to examine how governance system design weaknesses could enable an attacker

to take complete control of the protocol. We present a novel strategy utilising flash loans that

enables the execution of a governance attack in just two transactions without locking any assets.

Second, we develop a stress-testing framework for a stylised DeFi lending protocol, focusing on

the impact of a drying-up of liquidity on protocol solvency.

Our third contribution is to develop an approach to minimising the frequency and severity of

exploits in DeFi attacks. The idea is to implement a program logic more than once, ideally

using different programming languages. Then, for each implementation, the results should

match before allowing the state of the blockchain to change. We provide a novel algorithm for

implementing dissimilar redundancy for smart contracts.

Taking these contributions together, this thesis presents new methods for modelling and mea-

suring financial risk in DeFi, and — focussing on smart contract risk alone — develops an

approach to mitigating it.
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Chapter 1

Introduction

1.1 Motivation

The 2007/08 Global Financial Crisis was the most severe financial crisis since the Great Depres-

sion of 1929 [Moh09]. While the precipitating factors were several, chief among them was a lack

of transparency in the global financial system. In the US subprime mortgage market, mortgages

were securitised into Mortgage Backed Securities. The securitisation process made it difficult

for credit rating agencies to ascertain the actual level of financial risk and exposure by financial

institutions [CGM09]. Securitised pools of loans that leveraged complex methods of pooling

and tranching various underlying instruments were at the centre of the meltdown [CGM09]. In

addition, parallel to complex securitisation methods was the rapid spread of an intermediation

model known as ‘originate to distribute’, whereby originates loans were immediately resold to

other investors, leading to an obfuscation of the underlying credit quality. As a result, counter-

party risks accumulated with a few key players [CGM09]. Of note is financial technology’s role

in the Global Financial Crisis [For08]. From the advent of Collateralised Debt Obligations one

year before the crisis, financial technology enabled the pooling and tranching of credit assets

into complex structured products [For08]. Such products were challenging for credit rating

agencies to correctly ascertain the inherent financial risk: modelling methodologies needed to

be stronger, and there needed to be more due diligence regarding the quality of collateral pools

underlying rated securities [For08].

While financial system opacity was one of the principal causes of the Global Financial Crisis,
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another was misbehaviour and due diligence failures. Investors did not sufficiently examine the

assets underlying structured investments, overlooking leverage and tail risks [For08]. Incentive

distortions were pervasive, with compensation schemes in financial institutions encouraging dis-

proportionate short-term risk-taking. While technology was a precipitating factor in the Global

Financial Crisis, the primary motivation of this thesis is to consider whether technology can

help prevent such crises. Bitcoin was released as a direct response to the twin problems of

financial opacity and misbehaviour of banks [Nak08]. Bitcoin sought to create a transparent

financial mechanism that did not require trusting third parties. Fifteen years later, Bitcoin has

been followed by an explosion of interest in the possibility of blockchain technology revolution-

ising finance. The central motivation for this thesis is to contribute to the evolution of this

technology, with a particular focus on risk.

The intended audience for this thesis is one with a pre-existing understanding of the funda-

mentals of blockchain technology who, primarily, wish to understand in detail aspects relating

to financial risk in blockchain systems.

1.2 Contributions

Protocols for Loanable Funds.

Chapter 3 coins the phrase Protocols for Loanable Funds (PLFs) and provides a taxonomy

of the interest rate models currently employed by PLFs, resulting in three categories: linear,

non-linear and kinked rates. We collect and analyse data on interest rates, utilisation and the

total funds borrowed and supplied on three of the largest PLFs, and make the dataset publicly

available. We present the first liquidity study of the markets for DAI, ETH and USDC across

these PLFs, finding that periods of illiquidity are common, often shared between protocols and

that liquidity reserves can be very unbalanced, with in some cases as few as three accounts

controlling c. 50% of the total liquidity. We also find that realised interest rates tend to cluster

around the kink of a kinked interest rate model. Investigating the largest PLF, Compound,

we find that the no-arbitrage condition of Uncovered Interest Parity typically does not hold,

suggesting that markets associated with these protocols may be relatively inefficient and agents

may not be optimally reacting to interest rate incentives. We examine the market dependence



between PLFs and find that the borrowing interest rates exhibit some interdependence, with

Compound appearing to influence borrowing rates on other, smaller PLFs.

Exposition of the Prospect of a Decentralised Financial Crisis.

In chapter 4, we examine the prospect of a decentralised financial crisis. We first examine

one specific potential trigger of a decentralised financial crisis: a governance attack on the

MakerDAO protocol. We show how, before Maker implemented a parameter change, it was

feasible to successfully steal the funds locked in the protocol covertly and within two blocks

or two transactions. By exploiting recent flash loan pool contracts, we show how an attacker

with no capital (besides gas fees) could have executed such an attack if the flash loan pools

provided sufficient liquidity (which they did not at the time of writing). We then turn to

the formal modelling of DeFi lending protocols, providing definitions for economically-resilient

DeFi lending protocols and introducing overcollateralisation, liquidity, and counterparty risk

as formal constraints. These definitions formalise financial risk constraints for more than 93%

of the funds locked in DeFi lending protocols as of April 15th, 2020 [Pul19a]. We develop a

methodology to quantitatively stress-test a DeFi protocol for its financial robustness, inspired

by risk assessments performed by central banks in traditional financial systems. We simulate

a price crash event with our stress-test methodology to a stylised DeFi lending protocol that

resembles the largest DeFi lending protocols to date by volume: Maker, Compound, Aave and

dYdX. For plausible parameter ranges, we find that a DeFi lending protocol could become

undercollateralised within 19 days.

Dissimilar redundancy for DeFi protocols.

In chapter 5, we focus on one aspect of risk in DeFi: smart contract risk. We provide an

implementation of a protocol for dissimilar redundancy for a DeFi protocol1. The idea is to

provide a mechanism to catch smart contract coding bugs using multiple implementations of

the same smart contract program. We evaluate the protocol on a smart contract auction system

implemented in both Solidity and Vyper, verify that a fuzzing approach would be able to detect

1https://github.com/danhper/smart-contract-dissimilar-redundancy



purposefully introduced bugs, and provide the costs in USD of using a protocol for dissimilar

redundancy.

1.3 Statement of originality

I hereby declare that this thesis represents my own original work, as well as joint work with

co-authors of the included publications. No work included in this thesis has been submitted

for any other degree or qualification, neither by myself or my co-authors. All sources used in

this research have been duly acknowledged and referenced. This thesis is the product of my

independent research and represents a significant contribution to the field of distributed ledgers

security.

1.4 Publications
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• Lewis Gudgeon, Sam M. Werner, Daniel Perez, and William J. Knottenbelt. DeFi Proto-
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(Chapter 3)

• Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais.

The Decentralized Financial Crisis. In 2020 Crypto Valley Conference on Blockchain

Technology (CVCBT), pages 1–15. IEEE, 2020 (Chapter 4)

• Daniel Perez and Lewis Gudgeon. Dissimilar redundancy in defi. In Mathematical Re-

search for Blockchain Economy: 3rd International Conference MARBLE 2022, Vilamoura,

Portugal, pages 109–125. Springer, 2023 (Chapter 5)

In addition, the following papers include work by the author and are incorporated into the

thesis where explicitly indicated.
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• Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
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Chapter 2

DeFi: Background

2.1 What is DeFi?

To understand Decentralised Finance (DeFi), we must start by stating what a financial sys-

tem is. A financial system is fundamentally concerned with apparatus that enables the ex-

change of funds between financial market participants, such as investors, lenders and borrow-

ers [OS03]. Financial systems can operate at various scales, from the regional such as the

Brixton Pound [Pou23] to the global. The core elements of a financial system are as follows:

Financial institutions: provide financial services to individuals and businesses. Examples in-

clude banks, credit unions, investment firms and insurance companies.

Financial instruments: assets that can be traded on financial markets. In traditional finance,

these are commonly stocks, bonds and currencies.

Financial markets: places where financial instruments are bought and sold. In traditional fi-

nance, examples include stock exchanges, bond markets, commodity markets and foreign-

exchange markets.

Payment and Settlement systems: used to facilitate funds transfer between parties (individu-

als and businesses). Traditional finance methods include wire transfers and card payment

6



networks such as VISA and Mastercard.

Regulatory bodies: responsible for overseeing and enforcing laws and regulations that govern

financial institutions and markets. In the UK, the financial regulators are the Financial

Conduct Authority (FCA) and the Competition and Markets Authority (CMA).

Central Bank: typically national entities responsible for managing national monetary policy.

In the UK, this is the Bank of England.

DeFi is an emerging, blockchain-based financial system that is an evolution of each of these

components of a financial system. The following will be used as a working definition of DeFi.

Definition 2.1 (Decentralized Finance). A financial system of smart contract protocols super-

venient on decentralised blockchains that is:

1. Non-custodial: participants always have full control over their funds

2. Permissionless: access to financial services cannot be blocked by third parties

3. Transparent: the system should be openly-auditable by anyone

4. Composable: financial services should be able to be arbitrarily composed, that is, connected

like “Lego”.

The project of DeFi is to take the core elements of a financial system and construct them per

Definition 2.1. Table 2.1 shows how DeFi implements a financial system’s functionality.

The following sections in this chapter provide a concise summary of essential background con-

cepts relied upon in later chapters. For a complete overview of DeFi, we refer the reader

to [WPG+21].

Component Traditional Finance (examples) DeFi

Financial institutions Banks, insurance companies Smart contracts
Financial instruments Stocks, bonds and currencies Smart contracts
Financial markets Stock exchanges, bond markets Smart contracts
Payment and Settlement systems Wire transfers, card payment net-

works
On-chain transactions

Regulatory bodies Financial Conduct Authority, Se-
curities and Exchange Commission

On-chain/off-chain hybrid

Central Bank Bank of England, Federal Reserve Smart contracts

Figure 2.1: CeFi vs DeFi.



2.2 Primitives

2.2.1 Blockchain

A DeFi protocol supervenes on a layer-one blockchain, which we assume provides standard

ledger functionality [BMTZ17,BGK+18,DGKR18,PSS17]. It is outside the scope of this thesis

to provide a complete exposition of a generic layer-one blockchain. Instead, we provide the

following list of properties we assume the blockchain underlying a DeFi protocol to have.

• We assume that there exists a transaction-based state machine [W+14]

• The underlying blockchain can provide finality [CL99,MXC+16], construed as a guarantee

that once committed to the blockchain, a transaction cannot be modified or reversed

• The blockchain offers sufficient protection from selfish mining attacks and that fewer than

1
3
of the miners are malicious [ES14]

• The blockchain allows its users to run psuedo-Turing complete programs on its distributed

infrastructure. These programs must be strictly deterministic: given the same inputs, the

same blockchain state should always obtain.

• Blockchain programs should be able to communicate with each other and affect each

other’s state

• Blockchain state changes should be atomic: they either occur in their entirety or fail in

their entirety.

2.2.2 Smart contracts

At the heart of DeFi are computer programs intended to execute automatically without reliance

on any particular third party to ensure that they do so. These are called smart contracts, and

many layer-one blockchains support their operation [W+14,Bin23,Car23,Pro23b,Ava23,Tro23,

Pro23a]. These programs are typically written in a Turing complete programming language

such as Solidity [Fou20] (i.e., roughly, can implement any arbitrarily complex program logic).



The Ethereum Virtual Machine (EVM) is the runtime environment [Fou20] that enables smart

contracts to run in Ethereum. Central to this is the world state, which is a mapping between

160-bit addresses and account states [W+14]. In Ethereum, this mapping from addresses is not

stored on the blockchain but instead maintained in a modified Merkle Patricia tree, stored in a

backend that maintains a mapping of byte arrays to byte arrays. The account state is comprised

of a nonce (scalar balance equal to the number of transactions sent from the address), balance,

storage root (a 256-bit hash of the root node of a Merkle Patricia tree that encodes the storage

contents of the account) and a code hash (the hash of the EVM code of the account). The

latter field is particularly pertinent to smart contracts as this code gets executed if the address

receives a message call.

Smart contracts communicate with each other via transactions that are constructed and ini-

tiated by an actor external to Ethereum [W+14]. There are two types of transaction: those

which result in a message call and those which cause a new account to be created. It is the

message-call transaction type that is necessary for smart contract communication. A message-

call transaction consists of an array of unlimited size that specifies the input data of a message

call.

To provide a suitable basis for DeFi, smart contracts must [WPG+21]:

• Be expressive enough programs to encode the rules of a financial application.

• Provide for conditional operation and iteration (with bounds).

Coupled with the requirements on a layer-one blockchain above, these conditions jointly provide

a suitable medium on which a DeFi protocol can execute.

2.2.3 Oracles

A crucial property of the programming environment offered by the EVM is that the virtual

machine is wholly sandboxed and isolated: the EVM has no access to network, filesystem or

other computer processes [Fou20]. This means a smart contract program deployed in the EVM

has no intrinsic way of communicating with the outside world. To communicate with the outside

world, a mechanism is needed to import off-chain information into the EVM execution context.



Figure 2.2: Breakdown of DeFi protocol type by chain and protocol type. Note that chains smaller
than 800m USD have been aggregated into the ‘Smaller chains’ category for readability. Protocol
categories smaller than 500m have also been aggregated. Data from DeFiLama https://defillama.com/,
a snapshot taken on 11 April 2023.



By construction, the correctness of the imported information is not verifiable on-chain, so DeFi

protocols need to rely on incentive mechanisms to ensure that oracles accurately and honestly

report prices.

We can distinguish between three different types of information in the context of a smart

contract powered DeFi [WPG+21]:

• Off-chain ground truth (e.g. the temperature in Hawaii today)

• On-chain ground truth (e.g. the balance of an on-chain address)

• On-chain estimates of off-chain ground truth (e.g., an important example of this is an

oracle reported price, e.g. the price of ETH in USD in an off-chain market)

Given their financial nature, DeFi protocols often rely on on-chain estimates of off-chain prices

to function. Thus, oracles are a crucial building block of DeFi in the context of sandboxed

execution environments. In the next section, we provide a landscape of the major categories of

extant DeFi protocol.

2.2.4 Governance

In traditional finance, governance is typically centralised, with several entities, such as regulators

and banks, possessing the power to govern financial institutions, instruments and markets. In

DeFi, governance is typically decentralised, with the power to change a DeFi protocol resting

with on-chain actors. Governance decisions are commonly achieved via a consensus mechanism,

with protocol stakeholders voting on proposals using tokens.

At least in theory, DeFi governance can be more transparent than traditional finance, with all

information regarding the governance process being publicly accessible. Typically, a governance

proposal is made and voted on for a change in system parameters to be effected.

Figure 2.3 demonstrates a typical on-chain governance dashboard.

The governing community of a DeFi protocol is commonly called a Decentralized Autonomous

Organisation (DAO). A DAO comprises a set of individuals and is then governed by rules



Figure 2.3: The Curve protocol governance dashboard, available at https://dao.curve.fi/dao

encoded in smart contracts. DAO members then participate in decision-making by voting on

proposals using tokens or other means.

2.3 Protocol types

2.3.1 Decentralized exchanges

In traditional finance, asset exchange typically requires a third party to facilitate it. Decen-

tralised exchanges (DEXs) are on-chain protocols that enable on-chain assets to be swapped

natively on-chain without the involvement of a third party [Ind,LBC+19]. All trades are settled

on-chain and, as such, are openly auditable.

There are two principal types of DEX. The first is an orderbook-DEX, which emulates the



order-book means of asset exchange in traditional finance: users submit a bid and ask quotes

for a particular asset, and these are then matched on-chain. The second construct is new: that

of an Automated Market Maker (AMM). An AMM defines the price of one asset in terms of

another in accordance with a rule, using a peer-to-pool method [XPCF23]. For instance, the rule

might be that the sum of two asset amounts must remain equal (Constant Sum Market Maker):

k = x + y, where k is held constant and x and y refer to the asset amounts. Alternatively,

another common AMM rule is that in a given asset pool, the product of the two asset amounts

must remain constant, such as k = xy. In such a construction, a trade is not allowed to change

the value of the product of the tokens x and y. For more information about AMMs, we refer

the reader to [XPCF23].

2.3.2 Protocols for loanable funds

Protocols for Loanable Funds (PLFs) intermediate markets for loanable funds, with suppliers of

funds earning interest. The term PLF was coined in [GWPK20] by the author. As mentioned

above, protocols must protect against borrowers defaulting on debt obligations. Where loans

need to be valid for more than a single transaction, this protection is currently achieved by

requiring borrowers to over-collateralise their loans, allowing the lender to redeem the pledged

collateral should a borrower default on a position1. Where the loan must be valid only for a

single transaction, flash loans enable agents to borrow without collateral, whereby the atomicity

afforded by smart contracts protects the loaned amount. The transaction is reversed if the loan

is not repaid with interest.

In the context of lending protocols, a borrower defaults on a loan when the value of the locked

collateral drops below some fixed liquidation threshold. The liquidation thresholds vary between

asset markets across different protocols. In the event of default, the lending protocol seizes

and liquidates the locked collateral at a discount to cover the underlying debt. Additionally,

a penalty fee is charged against the debt before paying out the remaining collateral to the

borrower.

1Therefore loans of this type on DeFi lending protocols are instances of secured loans, where an agent can
only borrow against collateral they already own; they cannot enter into ‘net debt’. We address this further in
Section 3.2.



2.3.3 Stablecoins

For a crypto asset to be a viable medium of exchange and store of value, price stability needs to

be guaranteed. Stablecoins are crypto assets with a price stabilisation mechanism to maintain

some target peg. Here we briefly outline two of the most widely used stabilisation mecha-

nisms [MSS20]:

Fiat-collateralized. Each unit of stablecoin is pegged to some fixed amount of fiat currency

(typically USD). This is generally realised via a network of banks maintaining the fiat

collateral and is not decentralised. Stablecoins such as USDT [Lim16] and USDC [Cir20]

belong in this category.

Cryptoasset-collateralized. An amount of some other crypto asset backs each unit of the stable-

coin. A stabilisation mechanism is needed to protect against the volatility of the collateral.

The most prominent of such stablecoins is DAI [Mak]. To borrow newly minted units of

DAI, where one DAI is pegged to 1 USD, a user has to pledge an over-collateralised

amount of cryptocurrency (e.g. ETH), which becomes locked up in a smart contract.

In case the price of DAI deviates from its peg, arbitrageurs are incentivised to buy or

sell DAI should the price drop below or rise above 1 USD, respectively. A borrower of

DAI must keep the associated collateralisation ratio above some liquidation threshold.

Otherwise, the borrow position will be liquidated at a discount, and a penalty fee will be

charged against the debt.

2.4 The emergence of DeFi

At the commencement of this thesis, DeFi was in its infancy. In October 2018, there was less

than 1m USD locked in DeFi protocols; as of 3 January 2023, there is 39bn USD locked in

DeFi protocols. In the intervening period, there was a spike to more than 180bn USD. See

Figure 2.4.

Many extensive surveys exist of DeFi protocol types (e.g. [WPG+21]). Figure 2.2 shows the

main protocol types across the major blockchains. This thesis only presents background mate-



Figure 2.4: Total Value Locked (TVL) in all DeFi projects across all blockchains. Data from DeFiL-
ama https://defillama.com/, a snapshot taken on 11 April 2023.

rial on a subset of these protocol types relevant to the later chapters. We provide an overview

of all types in the figure for completeness.

2.5 Risk, bugs and hacks

A notable feature of the DeFi protocol ecosystem is the large number of software exploits that

have occurred, often leading to significant financial losses [PL21,ABC17].

Table A.1 in the appendix lists most known hacks to protocols since the industry’s inception.

It makes clear that the frequency and severity of exploits are immense, with an average loss of

2,531,366 USD per day since mid-2017. There are many different ways in which smart contracts

can be exploited, as indicated under the ‘Technique’ column.



Chapter 3

Protocols for Loanable Funds

3.1 Introduction

The first contribution of this thesis is to examine the development within DeFi of protocols

which facilitate programmatic borrowing and saving. Such protocols represent a significant

advancement for DeFi due to the importance of these operations to an economy. Markets for

loanable funds, a matching market for savers and would-be borrowers, in principle, enable agents

to engage in inter-temporal consumption smoothing, whereby agents choose their present and

future consumption to maximize their overall welfare [Fis30]. That is, access to loans enables a

borrower to consume more today than their income would permit, paying back the loan when

their income is higher. On the other hand, savers, for whom income is higher than their present

consumption, can deposit their funds and earn interest on them [Rob34,Ohl37].

Here, we term protocols that intermediate funds between users as Protocols for Loanable Funds

(PLFs). In doing so, we note such protocols are not directly acting as a fully-fledged replace-

ment for banks, not least because traditional banks are not intermediaries of loanable funds.

Instead, they provide financing through money creation [JK15] (see Section 3.2). Further, at

present PLFs only offer secured lending, where agents can only borrow an amount provided

they can front at least this amount as collateral. This reflects the trustless setting within which

PLFs operate: absent the typical repercussions of reneging on debt commitments in traditional
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finance, in DeFi, agents could default on their loans without recourse.1 Therefore, the extent

to which PLFs facilitate ‘true’ borrowing—where an agent gets into a position of net debt—is

limited.

In PLFs, interest rates reflect the prevailing price of funds resulting from supply and demand.

Therefore, the mechanism used to set these rates is a crucial aspect of protocol design: it pro-

vides the pre-conditions under which the process of tatonnement—or reaching the equilibrium—

occurs [Wal87]. In traditional finance, interest rates are primarily set by central banks—via a

base rate—and function as a key lever in the management of credit in economies [oE20,Boa20].

Lowering the base rate makes it relatively cheaper to borrow while discouraging saving. In

the context of PLFs, the interest rate setting mechanism is decided upon at the protocol level,

commonly via a governance process.

In this chapter, we seek to gain insights into how currently-deployed PLFs operate, setting

out the interest rate models they employ. Moreover, we seek to characterize the periods of

illiquidity—roughly, where most of the funds within a PLF are loaned out and unavailable

for withdrawal by their depositors—that these protocols have experienced. We then seek to

understand how efficient these protocols are at present, investigating whether the no-arbitrage

condition of Uncovered Interest Parity (UIP) holds within a particular protocol. The effi-

ciency of the markets indicates the level of financial maturity and the responsiveness of agents

to economic incentives. Finally, we look at the interrelation of interest rate markets across

protocols, developing a Vector Error Correction Model (VECM) for the dynamics between

Compound [Com19], dYdX [dYd20] and Aave [AAV20a] in the markets for the stablecoins DAI

and USDC.

Contributions

This chapter makes the following contributions:

• We provide a taxonomy of the interest rate models currently employed by PLFs, resulting

in three categories: linear, non-linear and kinked rates.

1The enforcement of strong identities, mapping on-chain to real-world identities, would plausibly alter this
trade-off.



• We collect and analyze data on interest rates, utilization and the total funds borrowed

and supplied on three of the largest PLFs. We have made the dataset publicly available.

This dataset is composed of data stored on the Ethereum blockchain.

• We present the first liquidity study of the markets for DAI, ETH and USDC across these

PLFs, finding that periods of illiquidity are common, often shared between protocols and

that liquidity reserves can be very unbalanced, with in some cases as few as three accounts

controlling c. 50% of the total liquidity. We also find that realized interest rates tend to

cluster around the kink of a kinked interest rate model.

• Investigating the largest PLF, Compound, we find that the no-arbitrage condition of

Uncovered Interest Parity typically does not hold, suggesting that markets associated

with these protocols may be relatively inefficient and agents may not be optimally reacting

to interest rate incentives.

• We examine the market dependence between PLFs and find that the borrowing interest

rates exhibit some interdependence, with Compound appearing to influence borrowing

rates on other, smaller PLFs.

The remainder of this chapter is organized as follows. Section 3.2 outlines the general design

of PLFs. Section 3.3 presents a taxonomy of different interest rate models. Sections 3.4,

3.5 and 3.6 provide an analysis of market liquidity, efficiency and dependence, respectively.

Section 3.7 discusses related work, before Section 3.8 concludes.

3.2 Protocols for loanable funds

3.2.1 Comparison to traditional lending

PLFs facilitate matching would-be borrowers and lenders with the interest rate set program-

matically. Importantly, unlike peer-to-peer lending, funds are pooled such that a lender may

lend to many borrowers and vice versa. In so doing, an open lending protocol provides a market

for loanable funds. A set of smart contracts has replaced an intermediary’s role in traditional

finance.



By creating markets for loanable funds—as protocols for loanable funds—such protocols are not

functionally equivalent to banks. The construal of banks as primarily intermediaries of loanable

funds (ILFs), as in some economic theory, has been debunked (see, e.g. [JK15]). Rather than

accepting deposits of pre-existing funds from savers and lending these funds to borrowers, banks

primarily provide financing through money creation, creating new money when making a loan

and constrained by their profitability and solvency requirements [JK15]. Therefore since banks

are not primarily ILFs, PLFs are not functional replacements.

3.2.2 Use cases

The introduction of PLFs significantly extends the existing trading capabilities in DeFi, offering

several use cases for DeFi actors. Predominantly, PLFs empower decentralised margin trading

by facilitating short sells and leveraged longs. Margin is defined as the collateral that an agent

gives to a counterparty to cover the credit risk that the agent poses for the counterparty. In

a short sell, a trader sells the borrowed funds, seeking to profit by repurchasing the borrowed

position at a lower price. Similarly, in a leveraged long, a trader buys another asset with

the borrowed funds and profits if the purchased asset appreciates. Because of margin trading,

suppliers of loanable funds can earn interest.

A further use case of PLFs lies in borrowers being able to leverage their funds as collateral

while maintaining the right to repurchase the collateralised token, thereby not giving up direct

ownership.

3.2.3 Design space dimensions

Interest rate model

Suppliers of loanable funds receive interest over time, while borrowers have to pay interest. A

key differentiating factor across lending protocols is the chosen interest rate model, which is

generally some linear or non-linear function of the available liquidity in a market. As loans

on protocols for loanable funds have unlimited maturities, variable interest rates may fluctuate

from the opening of a borrowing position. Using variable rate models, lending protocols can

dynamically adjust the interest rate depending on the ratio of funds borrowed to supplied. This



can prove particularly useful during periods of low liquidity by incentivising borrowers to repay

their loans.

Reserve factor

Additionally, lending protocols employ a reserve factor, specifying the amount of a borrower’s

accrued interest to be deducted and set aside for periods of illiquidity. Hence, the interest

earned by lenders is a function of the interest paid by borrowers less the reserve factor.

Interest disbursement mechanism

Interest is typically accrued per second and paid out on a per-block basis. Since the repeated

payment to lenders of the accrued interest (denoted in the supplied token) would incur unde-

sired transaction costs, accrued interest is often paid out through the use of interest-bearing

derivative tokens, which are ERC-20 tokens that are minted upon the deposit of funds and

burned when redeemed. Each market has such an associated derivative token, which appreci-

ates with respect to the underlying asset at the same rate as interest is compounded, thereby

accruing interest for the token holder. Even though loans are made with indefinite maturity,

a loan is liquidated should the value of the borrowed asset’s underlying collateral fall below

a fixed liquidation threshold. In the case of an undercollateralised borrow position, so-called

liquidators can purchase the collateral at a discount, and a penalty fee is imposed upon the

borrower.

Governance mechanism

A critical component of lending protocols is decentralised governance. Lending protocols achieve

decentralised governance through ERC-20 governance tokens specific to the lending protocol,

whereby token holders’ votes are weighted proportionally to their stake. Token holders are

empowered to propose new features and changes to the existing protocol.



Protocol
Interest Rate

Model
Stable

Interest Rate
Variable

Interest Rate
Governance

Token
Interest-bearing
Derivative Token

Additional
Functionalities

Compound Kinked � � � � –
Aave Kinked � � � � Swap rates, flash loans
dYdX Non-linear � � � � Decentralized exchange, flash loans

Table 3.1: Comparison of different protocols for loanable funds.

3.2.4 Maker

Protocol overview. The Maker protocol is an Ethereum-based smart contract platform which

backs and stabilises the value of the DAI stablecoin. Maker is fundamentally different to other

lending protocols as Maker does not serve as an intermediary of loanable funds by matching

borrowers with lenders; instead, DAI can be generated, or “borrowed”, at all times. On Maker,

DAI2 can be minted by depositing some Ethereum-based asset as collateral in vaults3, which

are collateral-locking smart contracts specific to the collateral type that track the total debt

of a position. As with other lending protocols, borrow positions are indefinite as long as the

collateralisation ratio exceeds the liquidation threshold, where the latter depends on the risk

profile of a collateral asset and may thus vary across vaults.

Interest rate model. The interest to be paid for borrowing DAI is the stability fee and varies

between different collateral types. DAI holders can also earn interest from their tokens via the

DAI savings rate (DSR), which denotes the interest one receives from depositing DAI into a

specific savings contract. Unlike the stability fee, which differs between collateral asset types,

there is only one DSR. The stability fee and the DSR are temporarily fixed and readjusted

through voting via the Maker governance structure over time (see below). In theory, the DSR

should be funded by the pool of stability fees paid by borrowers of collateralised DAI. However,

the DSR yield is paid out in newly minted DAI, offering a counterparty risk-free investment

to DAI holders. Furthermore, not only are the stability fees and DSR set independently from

one another, but the pool of stability fees is also used to cover losses in the case of a collateral

auction’s yield not covering the associated debt. Hence, there could be periods during which

the sum of stability fees is insufficient to cover the DSR returns. MKR tokens are minted and

sold for DAI to compensate for this imposed system debt. This suggests that MKR token

holders are the predominant Maker participants exposed to DSR risk through the depreciation

2Note that when we speak of DAI, we are strictly referring to multi-collateral DAI unless stated otherwise.
3Before multi-collateral DAI, these were termed collateralised debt positions (CDPs)



of their tokens. Ultimately, Maker uses both the stability fee and the DSR as its levers for price

stabilisation, balancing the supply and demand of DAI.

Governance. Maker uses the MKR governance token with which token holders can vote on

protocol changes (e.g. stability fee of an asset, collateral asset types, DSR) and thereby maintain

the financial stability of DAI. There are two general voting mechanisms on maker: governance

polls and executive votes, where the latter is specific to voting on changes to the DAI credit

system (e.g. risk parameters). Voting takes place through Maker participants staking their

MKR tokens and can take place at any point in time, where any participant can make a

proposal. For instance, if the value of DAI drops below 1 USD, the DSR could be raised via a

so-called executive vote to increase demand for DAI.

3.3 Interest rate models

This section outlines the main classes of interest rate models employed by PLFs. The interest

rate model can differ across PLFs and by market within a particular PLF. We also describe an

approach that has been taken to enable these variable rate models to offer more interest rate

stability.

Definitions. For a market m, total loans L and gross deposits A, we define the utilization of

deposited funds in that market as

Um =
L

A
(3.1)

Assuming both L and A are positive and L < A, 0 ≤ Um ≤ 1. The Interest Rate Index, I for

block k, is calculated each time an interest rate changes, i.e. as users mint, redeem, borrow,

repay or liquidate assets. It is given by:

Ik,m = Ik−1,m(1 + rt) (3.2)



where r denotes the per-block interest rate and t denotes the difference in block height. There-

fore, starting with some debt level in an initial block D0, debt D in a market is given by

Dk,m = Dk−1,m(1 + rt) (3.3)

where a portion of the interest is kept as a reserve (Π), set by reserve factor λ:

Πm = Πk−1,m +Dk−1,m(rtλ) (3.4)

We now turn to classifying the actual interest rates into three main models.

3.3.1 Model one: linear rates

The first model we present is one in which interest rates are set as a linear function of utiliza-

tion. With a linear interest rate model, interest rates are determined algorithmically as the

equilibrium value in a loanable market m, where the borrowing interest rates ib are given by:

ib,m = α + βUm (3.5)

where α is some constant and β is a slope coefficient on the responsiveness of the borrowing

interest rate to the utilization rate. Saving interest rates is are given by:

is,m = (α + βUm)Um (3.6)

where in essence, the interest rate ib,m is scaled by the utilization to arrive at an interest rate

for saving that is lower than that of the rate paid by borrowers. This serves to ensure that

the interest rate spread (ib,m − is,m) is positive. Some portion of this spread can be kept for

reserves.



3.3.2 Model two: non-linear rates

Interest rates may also be set non-linearly, and here we present the non-linear model employed

by dYdX [dYd19]. For a loanable funds market m, the borrowing interest rates ib follow a

non-linear model and are computed as:

ib,m = (α · Um) + (β · U32
m ) + (γ · U64

m ) (3.7)

The saving interest rates is with reserve factor λ are given by:

is,m = (1− λ) · ib,m · Um (3.8)

In comparison to the linear rate model, a non-linear model allows for the interest rate to

increase at an increasing rate as the protocol becomes more heavily utilized, creating a non-

linearly increasing incentive for suppliers to supply to the protocol and for borrowers to repay

their borrows.

3.3.3 Model three: kinked rates

In the final interest rate model, interest rates exhibit some form of kink: they sharply change

at some defined threshold. Such interest rates are employed by several protocols, includ-

ing [Com19,Com20,Aav20d,Aav20e].

Mathematically, kinked interest rates can be characterized as follows.

ib =

⎧⎪⎨
⎪⎩
α + βU if U ≤ U∗

α + βU∗ + γ(U − U∗) if U > U∗
(3.9)

where α denotes a per-block base rate, β denotes a per-block multiplier, U denotes the utilization

ratio (with U∗ denoting the optimal utilization ratio) and γ denotes a ‘jump’ multiplier.

In the case of Compound, the associated saving rates are given by equation (3.10).



is = U(ib(1− λ)) (3.10)

where λ is a reserve factor.

Such models share the property of sharply changing the incentives for borrowers and savers

beyond some utilization threshold, as with the non-linear model. However, they also introduce

a point of sharp change in the interest rate, beyond which the interest rates start to rise sharply,

in contrast to non-linear models with no kink. Therefore it might be expected that this kink

would become a Schelling point4 of convergence among agents [Sch58].

3.3.4 Making rates stable

Some platforms, such as Aave, allow the borrower to choose between a variable and a stable

interest rate. However, it is essential to note that the “stable” interest rate is not entirely

stable, as it can be revised if it significantly deviates from the market average. Examining

Aave’s implementation in detail, we first present their instantiation of a kinked interest rate

model before showing how the stable rate is derived5.

The variable interest rate is based on several parameters defined by the system. Given a

particular asset’s utilization rate U , the parameter Uoptimal is the optimal utilization. In practice,

this value was set to 0.8 and updated to 0.9 in May 2020 [Fra20a]. Two interest rate slopes,

parameters of the system, are used to compute the variable interest rate: Rslope1 is used when

U < Uoptimal and Rslope2 when U ≥ Uoptimal. Finally, given a base variable borrow rate ib,m,v0 ,

the variable borrow interest rate ib for market m is computed as follows:

ib,m,v =

⎧⎪⎨
⎪⎩
ib,m,v0 +

U
Uoptimal

·Rslope1 if U < Uoptimal

ib,m,v0 +Rslope1 +
U−Uoptimal

1−Uoptimal
·Rslope2 if U ≥ Uoptimal

(3.11)

To compute the stable rate, Aave computes the lending protocol-wide market rate mr as the

4Informally, a solution of a coordination game that agents tend to arrive at in the absence of communication,
such as two strangers who wish to meet but cannot communicate deciding to meet at noon at the Grand Central
Terminal in New York City, since this somehow seems a natural choice [Sch58].

5These formulae are an adapted version of those that appear in the Aave whitepaper [AAV20a]



arithmetic mean of the total borrowed funds weighted by the borrowing rate ib,m for given

platform p as follows:

mr =

∑n
p=1 ib,m,p · Bm,p∑n

p=1Bm,p

(3.12)

where Bm,p denotes the total amount of borrowed funds for market m on lending protocol p.

Hence, using the mr as the base rate, the stable borrowing rate ib,s for a market m is given by:

ib,m,s =

⎧⎪⎨
⎪⎩
mr +

U
Uoptimal

·Rslope1 if U < Uoptimal

mr +Rslope1 +
U−Uoptimal

1−Uoptimal
·Rslope2 if U ≥ Uoptimal

(3.13)

It will be revised if the stable rate deviates too much from the market rate. The stable borrow

rate ib,m,s for user z is revised upwards to the most recent stable borrow rate for the respective

market when

ib,m,s,z <
Bm,v · ib,m,v +Bm,s · ib,m,s

Bm,v +Bm,s

(3.14)

If (3.14) holds, a borrower of funds could earn interest from a borrow position. On the contrary,

should the stable rate of a borrow position exceed the latest stable rate, it would be adjusted

downwards should

ib,m,s,z > ib,m,s · (1 + Δib,m,s,t) (3.15)

where Δib,m,s,t denotes the change in the stable rate for a specified adjustment window t. Unlike

variable interest rate denominated loans, stable rate loans have a definite maturity.

3.3.5 Summary

We have reviewed the three main interest rate models for variable interest rates and explained

a mechanism which seeks to bring stability to these rates. An emergent key feature of these



models is the incentive they provide to borrowers and savers at times of high utilization. In the

next section, this behaviour at high utilization becomes a central object of concern.

3.4 Market liquidity

This section analyses liquidity and interest rates for loanable funds markets on Compound,

dYdX and Aave.

3.4.1 Liquidity and illiquidity across PLFs

The total amount of locked loanable funds for the largest markets across Compound, Aave and

dYdX are given in Table 3.2.

Currency Total Amount Locked

(median in millions of USD)

Compound Aave dYdX

(W)ETH 76.58 4.80 19.41

USDC 31.54 4.12 6.58

DAI 24.82 0.95 4.64

SAI 36.94 - -

USDT - 3.92 -

BAT 0.95 0.08 -

LEND - 3.60 -

LINK - 12.21 -

Table 3.2: Median of the total supply of loanable funds in USD for the largest markets on Compound,
Aave and dYdX, since each market’s inception until 7 May 2020.

It can be seen that ETH, USDC and DAI account for the majority of loanable funds on all

three PLFs.6 Hence we focus on these markets for an in-depth analysis. From Figure 3.1, it

6As single-collateral DAI (SAI) has been replaced by multi-collateral DAI (DAI), we solely focus on the latter
for this analysis.



Figure 3.1: Average utilisation and borrowing interest rates for all markets on Aave, Compound and
dYdX. These plots are of values stored on-chain.

becomes apparent that these three markets are very similar regarding their average borrow and

utilisation rates, particularly for DAI and ETH.

Liquidity

The difference between the total supply and total borrows in the respective market gives the

available liquidity for loanable funds for an asset. High liquidity allows actors to borrow funds

at lower rates while guaranteeing suppliers of funds that funds can be withdrawn at any point

in time. On the one hand, regarding the liquidity for ETH (see Figure 3.2), all three PLFs

maintain high liquidity over time, mainly due to the total borrows remaining relatively stable.

On the other hand, the markets for DAI and USDC (see Figures 3.3 and 3.4) frequently exhibit

periods of much lower liquidity, with utilisation exceeding 80% and 90% respectively. Moreover,

such periods of low liquidity are somewhat shared across protocols, particularly for the smaller

PLFs dYdX and Aave from January to mid-March 2020.

On Thursday, 12 March 2020—Black Thursday [Reu20]—the total amount of locked funds



Figure 3.2: Total funds borrowed and supplied (i.e. liquidity) for ETH markets on dYdX, Compound
and Aave.

Figure 3.3: Total funds borrowed and supplied (i.e. liquidity) for DAI markets on dYdX, Compound
and Aave. Periods where utilisation was between 80% and 90%, are highlighted in salmon, while
utilisation higher than 90% is shaded in red.



Figure 3.4: Total funds borrowed and supplied (i.e. liquidity) for USDC markets on dYdX, Compound
and Aave. Periods where utilisation was between 80% and 90%, are highlighted in salmon, while
utilisation higher than 90% is shaded in red.

across all DeFi protocols dropped from 897.2m USD to 559.42m USD.7 For DAI, it can be seen

how on Black Thursday, even the largest PLF, Compound, was exposed to prolonged periods

of low liquidity before attracting increased liquidity again at the same time as dYdX and Aave.

However, after mid-April, the market for DAI on Compound re-experienced low liquidity.

Illiquidity

On PLFs, agents are incentivised to provide liquidity via the employed interest rate model,

as high interest rates would make borrowing more cost prohibitive in periods of low liquidity.

However, borrowers need to be incentivised to repay their loans by sufficiently high interest

rates at times of full utilisation to maintain sufficient liquidity. In the event of such illiquidity

materialising, suppliers of funds would be unable to withdraw them, being forced to hold on to

and continue to earn interest through their cTokens.

Out of the three PLFs, only Aave enforces a utilisation ceiling at 100%, while Compound and

7Source: https://defipulse.com. Accessed: 05-06-2020.



Figure 3.5: Utilisation and borrow rates for DAI on Aave (top), dYdX (middle) and Compound
(bottom). Periods in which utilisation equalled or exceeded 100% are highlighted in red.

dYdX permit borrows even beyond full utilisation. When examining the market for DAI in

Figure 3.5, it can be seen how utilisation of funds has been multiple times at and even above

100% on Compound and dYdX.

It can be seen that Aave has experienced periods of near-illiquidity. In contrast, Compound

and dYdX have experienced periods of full illiquidity for DAI, i.e. all supplied funds were

loaned out. When comparing the DAI borrow rates during periods of full utilisation (red) in

Figure 3.5, notable differences can be made between the different interest rate regimes. On

dYdX, the borrowing rate hits the model-imposed interest rate ceiling of 50%. In contrast, on

Compound, the rate does not exceed 25% even at full utilisation, which can be explained by

the linear nature of Compound’s interest rates. Despite Aave never reaching full utilisation

for DAI, due to an optimal utilisation target of 80% during the measurement period, borrow

rates on Aave exceed rates on Compound during periods of high utilisation. This suggests that

holding on to loans during periods of illiquidity is cheaper on Compound than on dYdX or

Aave.



Fund distribution

Periods of low liquidity have several implications for market participants. On one side, high

utilisation implies lucrative interest rates for suppliers of funds, thereby attracting new liquidity.

On the other hand, suppliers are faced with the risk of being unable to redeem their funds, for

example, in the case of a ‘bank run’.

To better assess the risk of a market becoming fully illiquid, we examine the cumulative per-

centage of locked funds for the number of Ethereum accounts on Compound in Figure 3.6. Note

that we decided to focus solely on Compound because a similar pattern was found for Aave

and dYdX. The distribution of funds across accounts is very similar for DAI, ETH and USDC

in that a very small set of accounts controls most of the supplied funds. For instance, 50.3% of

total locked DAI is controlled by only three accounts. Similarly, for ETH and USDC, the same

number of accounts control 60.0% and 47.3%, respectively. Hence, for all three markets, even

in times of high liquidity, a small number of suppliers of funds are in a position to drastically

reduce liquidity or cause full illiquidity.

3.4.2 Case Study: DAI on Compound

In the context of liquidity, we present a case study of interest rate behaviour in the market for

DAI on Compound, focusing on the period of 21 February to 21 April 2020 and its interest-

bearing token cDAI. It could be seen in Figure 3.5 that for the period mentioned above, this

market was exposed to a range of different utilisation levels, experiencing periods of relatively

high liquidity but also illiquidity. Hence, we investigate market participants’ behaviour—given

by the interest rates that are observed—for different interest rate regimes during the period of

interest.

Interest rate models for the cDAI contract To illustrate kinked rates, we present the case

of the DAI interest rate in Compound Finance. The cDAI token is an example of an interest-

bearing derivative token based on a linear kinked interest rate model. Since 17 December 2019,

the borrowing rates (ib) have operated with equation (3.9). However, the precise parameter val-



(a) DAI

(b) ETH

(c) USDC

Figure 3.6: Cumulative percentage of locked funds on Compound for DAI, ETH and USDC on 2020-
06-04.



ues used by the model have been revised multiple times. We include a list of these modifications

in Table 3.3.

Parameters
Date α β γ U∗

17 Dec ’19 19637062989 264248265 570776255707 9e17
8 Jan ’20 29174130900 264248265 570776255707 9e17
26 Jan ’20 37372598273 264248265 570776255707 9e17
4 Feb ’20 41997859121 264248265 570776255707 9e17
9 Feb ’20 36209575847 705029680 570776255707 9e17
21 Feb ’20 38532925389 264248265 570776255707 9e17
14 Mar ’20 19637062989 264248265 570776255707 9e17
6 Apr ’20 0 2900146648 570776255707 9e17
21 Apr ’20 0 264248265 570776255707 9e17
27 Apr ’20 0 10569930661 570776255707 9e17

Table 3.3: Interest rate model and parameter changes for the cDAI contract since 17 December 2019
(before this date, an earlier variation of the interest rate model —‘Jump Rate Model’—was in force
since 23 November 2019; we omit this period for clarity of exposition.).

Interest rate behavior We consider in detail how, since 17 December 2019, agents have op-

timised their selection of borrowing and saving amounts given an interest rate schedule. Here

we focus on a subset of three periods, namely:

• 21 February — 13 March 2020

• 14 March — 5 April 2020

• 6 April — 21 April 2020

These regimes are plotted in Figure 3.7. At the start of each period, the interest rate parameters

were changed to values as specified in Table 3.3. Here we plot the behaviour of the borrowing

rates, but the behaviour of the supply rates is broadly similar.

Figure 3.8a and the corresponding Figure 3.10 plot the interest rate model (the blue surface)

as well as the realised interest rate (black crosses). The two points to note are that (i) there

appears to be a clustering of the realised interest rates at the kink of the interest rate function

and (ii) otherwise, interest rates are typically higher than the kink, corresponding to utilisation

of above 90%.



Figure 3.7: Three interest rate regimes in Compound.

Figure 3.8b shows the interest rate model and the realised interest rates in the next period after

the base rate α is reduced via a parameter change by 49.04%. Despite this change, we continue

to observe a clustering of the realised interest rates at the kink. However, there does appear to

be some effect of reducing the typical utilisation ratio to below the kink.

Figure 3.8c shows how the system behaves once the base rate α is set to zero, while the multiplier

β is increased by nearly 1000%. Again, we observe a similar pattern: most realised interest

rates appear at the kink. However, if not at the kink, now typically utilisation is above 90%.

Figure 3.9 plots the evolution of the borrowing rate as a time series, and Figure 3.10 provides

a histogram focussing on the distribution of the borrowing rate for the period 21 February to

13 March.



(a) 21 February — 13 March

(b) 14 March — 5 April

(c) 6 April — 21 April

Figure 3.8: Borrowing rates surface for DAI.



(a) 21 February — 13 March

(b) 14 March — 5 April

(c) 6 April — 21 April

Figure 3.9: Borrowing rate (hourly mean) distribution around kink for DAI.



Figure 3.10: Borrowing rate distribution around kink, 21 February — 13 March.

3.4.3 Summary

We saw that, especially for DAI, there were several periods of illiquidity and that they were often

shared across the three protocols. We also showed that the locked funds were very concentrated

and in Figure 3.6 that a very small number of accounts had the potential to make the markets

illiquid. Finally, we analysed the interest rate behaviour of DAI on Compound. We showed

that the interest rates appeared clustered around the kink of the interest rate function during

all the observation periods.

3.5 Market efficiency

In this section, we consider the capital market efficiency of DeFi lending protocols. Loosely, a

capital market is said to be efficient if, in determining prices, it fully and correctly reflects all

relevant information [Mal89]. More precisely:

Definition 3.1 (Market efficiency). A market is efficient with respect to some information set φ



if prices would be unaffected by revealing that information to all market participants [Mal89].

A notable consequence of Definition 3.1 is that such efficiency implies the impossibility of

making economic profits based on the information set φ. The market efficiency of PLFs is a

question of central interest because it provides a mechanism to assess the markets’ maturity

and understand the agents’ responsiveness to changes in the information set φ. Moreover, since

a core mechanism common to many PLFs is the use of high interest rates at times of high

utilisation —to encourage saving and discourage borrowing, incentivising agents to behave in

a certain way—the extent to which PLFs are capital efficient will inform how reliable this

mechanism is, at present, in incentivising agents to act in the intended way. If agents do not

respond to high interest rates by reducing their borrowing requirements and increasing their

supply of funds to a PLF, illiquidity resulting from high utilisation rates on a given protocol may

be expected to result. Such illiquidity events, where agents cannot withdraw their funds, can

be expected to cause panic in financial markets. Therefore from the point of view of financial

risk, the efficiency of markets is of central interest.

Thus in this section, we consider whether PLFs are efficient within a given protocol, considering

Compound [Com19] within a standard framework in assessing the efficiency of markets in the

context of foreign exchange: Uncovered Interest Parity.

3.5.1 Uncovered interest parity

First, we set out Uncovered Interest Parity (UIP) as it would typically appear in the context

of foreign exchange between two countries: domestic and foreign. An investor has the choice of

whether to hold domestic or foreign assets. UIP is a theoretical no-arbitrage condition, which

states that in equilibrium if the condition holds, a risk-neutral investor should be indifferent

between holding the domestic or foreign assets because the exchange rate is expected to adjust

such that returns are equivalent.

For example, consider UIP holding between GBP and USD. An investor starting with 1m GBP

at t = 0 could either:

• receive an annual interest rate of iGBP = 3%, resulting in 1.03m GBP at t = 1



• or, immediately buy 1.23m USD at an exchange rate SGBP/USD = 0.8130, receiving an

annual interest rate of iUSD = 5%, resulting in 1.2915m USD at t = 1. Once converted

to GBP at the new exchange rate at t = 1, SGBP/USD = 0.7974, identically yields 1.03m

GBP.

If UIP holds, despite the differences in interest rates, adjustments in the exchange rate between

the currencies offset any potential gain such that arbitrage is impossible. Mathematically, UIP

is stated as follows.

1 + ιi = (1 + ιj)
Et[St+k]

St

(3.16)

where Et[St+k] denotes the expectation in period t of the exchange rate Si/j between assets i

and j at time t+ k, k is an arbitrary number of periods into the future, St is the current spot

exchange rate between assets i and j, ιi is the interest rate payable on asset i and ιj is the

interest rate payable on asset j. If equation (3.16) holds, then investors cannot make risk-free

profit through simply exploiting the real difference in interest rates after the impact of the

exchange rate is accounted for.

3.5.2 UIP in a PLF

Here, analogously, we perform a pairwise analysis of all possible pairs of tokens available within

a protocol, seeking to establish whether UIP holds for that pair. For UIP to hold, it must be

the case that a risk-neutral investor would be indifferent between saving (or borrowing) either

of the tokens within the pair because the exchange rate between any token pair adjusts such

that no risk-free profit can be made. As it is the largest PLF [Pul19a] at the time of writing,

we consider to what extent the condition holds within Compound [Com19].

3.5.3 Empirical approach

To develop our empirical specification, we assume that agents have rational expectations:

St+k = Et[St+k] + εt+k (3.17)



where ε denotes a random error. Taking logs of equation 3.16 and approximating log(1+ιi) ≈ ιi,

we test whether UIP obtains with the following empirical specification:

st+1 − st = α + β(ιi − ιj) + ε (3.18)

where logSt+1 = st+1 and log St = st.

H0 Strict form UIP: α = 0 and β = 1 (3.19)

Alternatively, we could impose no restriction on α perhaps reflecting a risk premium [Ale01].

H’0 Weak form UIP: β = 1 (3.20)

A risk premium reflects the extra return in the form of interest payment required for investors

to receive the same risk-adjusted return as on a less risky token. We test both hypotheses,

considering all possible token pairings on Compound and separately reporting borrowing and

saving interest rates.

3.5.4 UIP regression results — borrowing rates

We use heteroskedasticity and autocorrelation robust standard errors for both borrowing and

saving rate regressions, which we report in brackets in the results8.

Considering first data at the daily frequency (Table 3.4), we find that for 20 market pairs, we

reject both H0 and H’0 at the 1% level, suggesting UIP does not hold in either its strong or

weak form for daily data.

The evidence is more mixed at the weekly frequency in Table 3.5. We reject H0 at the 1%

level for 12/20 pairs but find evidence consistent with H0 for eight pairs. Regarding H’0, we

cannot reject it at the 1% level in 11 cases. However, the standard errors are typically large,

8WBTC was excluded from the analysis due to data quality issues.



Pair N.obs α β R-squared α p-value β p-value Strict form (3.19) p-value Weak form (3.20) p-value

eth bat 392 0.01 -0.482483 0.02 0.05 0.11 0.00 0.00
(0.01) (0.30)

eth zrx 389 0.00 -0.194958 0.00 0.30 0.17 0.00 0.00
(0.00) (0.14)

eth usdc 393 0.00 -0.0357526 0.00 0.74 0.76 0.00 0.00
(0.01) (0.12)

eth dai 175 0.01 -0.252845 0.01 0.10 0.22 0.00 0.00
(0.01) (0.20)

eth sai 397 0.00 -0.0315418 0.00 0.61 0.58 0.00 0.00
(0.01) (0.06)

eth rep 392 0.00 0.0512982 0.00 0.58 0.65 0.00 0.00
(0.00) (0.11)

bat zrx 387 -0.00 -0.478467 0.03 0.64 0.05 0.00 0.00
(0.00) (0.25)

bat usdc 392 0.00 -0.0913661 0.00 0.60 0.40 0.00 0.00
(0.01) (0.11)

bat dai 175 0.00 -0.328409 0.02 0.37 0.11 0.00 0.00
(0.00) (0.20)

bat sai 393 0.01 -0.134668 0.01 0.20 0.11 0.00 0.00
(0.01) (0.08)

bat rep 388 0.00 0.0854052 0.00 0.64 0.65 0.00 0.00
(0.00) (0.19)

zrx usdc 388 0.00 -0.0676933 0.00 0.62 0.54 0.00 0.00
(0.01) (0.11)

zrx dai 175 0.01 -0.514228 0.03 0.09 0.04 0.00 0.00
(0.01) (0.25)

zrx sai 389 0.01 -0.0759909 0.00 0.38 0.27 0.00 0.00
(0.01) (0.07)

zrx rep 387 -0.00 -0.23005 0.01 0.60 0.08 0.00 0.00
(0.00) (0.13)

usdc dai 175 -0.00 -0.0111104 0.00 0.77 0.53 0.00 0.00
(0.00) (0.02)

usdc sai 394 0.00 -0.00474335 0.00 0.74 0.52 0.00 0.00
(0.00) (0.01)

usdc rep 390 -0.00 -0.0510679 0.00 0.77 0.64 0.00 0.00
(0.01) (0.11)

dai sai 175 0.01 -0.267694 0.01 0.24 0.08 0.00 0.00
(0.01) (0.15)

dai rep 175 -0.01 -0.158339 0.00 0.20 0.38 0.00 0.00
(0.00) (0.18)

Table 3.4: Table of UIP results for daily frequency data, using borrowing rates. Using Newey-West
heteroscedasticity and autocorrelation robust standard errors (reported in parentheses.)



Pair N.obs α β R-squared α p-value β p-value Strict form (3.19) p-value Weak form (3.20) p-value

eth bat 56 0.05 -2.27281 0.02 0.47 0.56 0.64 0.40
(0.07) (3.86)

eth zrx 56 0.01 -0.652686 0.00 0.71 0.24 0.00 0.00
(0.02) (0.56)

eth usdc 56 0.02 -0.254169 0.00 0.72 0.69 0.00 0.05
(0.06) (0.64)

eth dai 25 0.07 -1.86555 0.12 0.18 0.30 0.30 0.12
(0.05) (1.80)

eth sai 56 0.02 -0.263629 0.01 0.52 0.47 0.00 0.00
(0.03) (0.36)

eth rep 56 0.01 0.718818 0.01 0.68 0.48 0.91 0.78
(0.02) (1.02)

bat zrx 56 -0.01 -1.03856 0.01 0.44 0.46 0.10 0.15
(0.02) (1.41)

bat usdc 56 0.03 -0.630377 0.03 0.46 0.15 0.00 0.00
(0.04) (0.44)

bat dai 25 0.02 -2.11941 0.17 0.49 0.12 0.10 0.03
(0.03) (1.37)

bat sai 56 0.07 -0.920485 0.10 0.12 0.04 0.00 0.00
(0.05) (0.45)

bat rep 56 0.03 2.65716 0.09 0.07 0.01 0.17 0.13
(0.02) (1.09)

zrx usdc 56 0.04 -0.5622 0.01 0.59 0.53 0.00 0.09
(0.07) (0.90)

zrx dai 25 0.09 -3.48611 0.17 0.18 0.08 0.06 0.03
(0.07) (1.98)

zrx sai 56 0.05 -0.544193 0.02 0.17 0.21 0.00 0.00
(0.04) (0.44)

zrx rep 56 0.01 -0.702555 0.01 0.75 0.08 0.00 0.00
(0.02) (0.40)

usdc dai 25 -0.00 -0.0976848 0.10 0.55 0.23 0.00 0.00
(0.00) (0.08)

usdc sai 56 0.00 -0.0525398 0.09 0.08 0.02 0.00 0.00
(0.00) (0.02)

usdc rep 56 -0.03 -0.593887 0.03 0.29 0.08 0.00 0.00
(0.03) (0.34)

dai sai 25 0.07 -1.84099 0.12 0.39 0.28 0.00 0.11
(0.09) (1.69)

dai rep 25 -0.07 -1.9174 0.16 0.10 0.14 0.10 0.03
(0.04) (1.29)

Table 3.5: Table of UIP results for weekly frequency data, using borrowing rates. Using Newey-West
heteroscedasticity and autocorrelation robust standard errors (reported in parentheses.)



Pair N.obs α β R-squared α p-value β p-value Strict form (3.19) p-value Weak form (3.20) p-value

eth bat 392 0.00 -1.10434 0.02 0.02 0.00 0.00 0.00
(0.00) (0.28)

eth zrx 389 0.00 -0.61295 0.00 0.51 0.09 0.00 0.00
(0.00) (0.36)

eth usdc 393 0.00 -0.0164582 0.00 0.86 0.91 0.00 0.00
(0.01) (0.15)

eth dai 175 0.01 -0.21499 0.01 0.13 0.24 0.00 0.00
(0.01) (0.18)

eth sai 397 -0.00 -0.00335582 0.00 0.89 0.95 0.00 0.00
(0.00) (0.05)

eth rep 392 0.00 -0.0695602 0.00 0.44 0.28 0.00 0.00
(0.00) (0.06)

bat zrx 387 -0.00 -1.37843 0.05 0.76 0.00 0.00 0.00
(0.00) (0.48)

bat usdc 392 0.00 -0.100931 0.00 0.70 0.52 0.00 0.00
(0.01) (0.16)

bat dai 175 0.01 -0.263267 0.01 0.11 0.13 0.00 0.00
(0.01) (0.17)

bat sai 393 0.00 -0.095 0.01 0.35 0.14 0.00 0.00
(0.00) (0.06)

bat rep 388 0.00 0.0467639 0.00 0.85 0.85 0.00 0.00
(0.00) (0.25)

zrx usdc 388 0.00 -0.0559146 0.00 0.74 0.70 0.00 0.00
(0.01) (0.14)

zrx dai 175 0.02 -0.341124 0.02 0.09 0.08 0.00 0.00
(0.01) (0.19)

zrx sai 389 0.00 -0.0586814 0.00 0.47 0.31 0.00 0.00
(0.01) (0.06)

zrx rep 387 0.00 -0.692352 0.01 0.96 0.01 0.00 0.00
(0.00) (0.28)

usdc dai 175 0.00 -0.0174017 0.00 0.31 0.44 0.00 0.00
(0.00) (0.02)

usdc sai 394 0.00 -0.00493231 0.00 0.77 0.51 0.00 0.00
(0.00) (0.01)

usdc rep 390 -0.00 -0.0931906 0.00 0.67 0.50 0.00 0.00
(0.01) (0.14)

dai sai 175 -0.00 -0.216161 0.01 0.24 0.09 0.00 0.00
(0.00) (0.13)

dai rep 175 -0.01 -0.153443 0.00 0.23 0.39 0.00 0.00
(0.01) (0.18)

Table 3.6: Table of UIP results for daily frequency data, using saving rates. Using Newey-West
heteroscedasticity and autocorrelation robust standard errors (reported in parentheses.)

making it difficult to reject any null hypothesis. Overall, we find no evidence of UIP holding

for daily data, while for weekly data, we find some supporting evidence.

3.5.5 UIP regression results — saving rates

Looking at saving rates at the daily frequency, Table 3.6, similarly to borrowing rates for all

20 pairs, we reject both H0 and H’0 at the 1% level, suggesting UIP does not hold in either its

strong or weak form for daily data.

The evidence is more mixed at the weekly frequency, in Table 3.7. We reject H0 at the 1%

level for 12/20 pairs but find evidence consistent with H0 for eight pairs. Regarding H’0, we



Pair N.obs α β R-squared α p-value β p-value Strict form (3.19) p-value Weak form (3.20) p-value

eth bat 56 0.04 -11.4299 0.21 0.01 0.00 0.00 0.00
(0.02) (1.51)

eth zrx 56 0.00 -2.21453 0.01 0.86 0.04 0.00 0.00
(0.02) (1.06)

eth usdc 56 0.01 -0.174619 0.00 0.84 0.83 0.01 0.16
(0.05) (0.83)

eth dai 25 0.08 -1.62795 0.10 0.25 0.35 0.28 0.14
(0.07) (1.73)

eth sai 56 0.00 -0.154556 0.01 0.79 0.65 0.00 0.00
(0.02) (0.34)

eth rep 56 0.01 -0.079075 0.00 0.48 0.84 0.03 0.01
(0.02) (0.40)

bat zrx 56 -0.01 -5.48743 0.07 0.41 0.21 0.20 0.15
(0.01) (4.39)

bat usdc 56 0.03 -0.841115 0.02 0.48 0.18 0.00 0.00
(0.04) (0.63)

bat dai 25 0.07 -1.73374 0.12 0.31 0.26 0.10 0.09
(0.07) (1.54)

bat sai 56 0.04 -0.817567 0.10 0.17 0.03 0.00 0.00
(0.03) (0.38)

bat rep 56 0.00 5.60551 0.14 0.77 0.00 0.00 0.00
(0.01) (0.39)

zrx usdc 56 0.04 -0.819943 0.01 0.53 0.46 0.00 0.10
(0.06) (1.10)

zrx dai 25 0.13 -2.35098 0.11 0.18 0.15 0.07 0.05
(0.10) (1.62)

zrx sai 56 0.04 -0.543762 0.03 0.08 0.09 0.00 0.00
(0.02) (0.32)

zrx rep 56 0.01 -1.1295 0.01 0.50 0.00 0.00 0.00
(0.02) (0.38)

usdc dai 25 0.00 -0.166452 0.18 0.10 0.10 0.00 0.00
(0.00) (0.10)

usdc sai 56 0.00 -0.0475424 0.09 0.15 0.02 0.00 0.00
(0.00) (0.02)

usdc rep 56 -0.03 -0.866689 0.03 0.28 0.03 0.00 0.00
(0.03) (0.40)

dai sai 25 -0.02 -1.31716 0.07 0.22 0.36 0.24 0.12
(0.02) (1.43)

dai rep 25 -0.09 -1.72587 0.14 0.13 0.18 0.09 0.05
(0.06) (1.29)

Table 3.7: Table of UIP results for weekly frequency data, using saving rates. Using Newey-West
heteroscedasticity and autocorrelation robust standard errors (reported in parentheses.)

cannot reject it at the 1% level in 9 cases. However, the standard errors are typically large, so

it would be difficult to reject any hypothesis. Overall, we again find no evidence of UIP holding

for daily data, while for weekly data, we find some supportive evidence.

3.5.6 Summary

Looking at daily and weekly frequency data for borrowing and saving, we find weak evidence

that UIP holds as the time horizon increases. This parallels empirical results in traditional

foreign exchange markets [Isa06]. This suggests that overall the markets within the Compound

PLF may not be fully capital efficient. It seems plausible that these results are not only



idiosyncratically valid for Compound. The finding that this PLF is not capital efficient at the

daily frequency is not surprising — there is considerable evidence that UIP does not hold even

in traditional foreign exchange markets [CM05]. In addition, this suggests that the currency

carry trade—where an investor borrows a low yield currency to obtain a high yield currency—is

likely to be profitable since, in such inefficient markets, differences in yield are not offset by

corresponding changes in the exchange rate between the currencies. Moreover, we submit that

in the context of a PLF, to the extent that there is market inefficiency, agents may not be fully

responding to these incentives.

3.6 Market dependence

We now consider the extent of inter-connectedness between protocols by considering how changes

in an interest rate for a given token on one PLF are related to changes in the interest rate for

the token on another PLF.

For example, consider the borrowing rate for DAI, ib,DAI . A priori, we expect that if ib,DAI is

higher on one PLF than others, agents would be incentivized to borrow from those PLFs with

a lower borrowing rate, deleveraging on one PLF and leveraging on others. But this influx of

borrowers for the token on other PLFs would, in turn, increase the borrowing rates on those

protocols.

In this section, taking the stablecoins DAI and USDC, we investigate whether there is evidence

of such dynamics and find that such behaviour is indeed observable. Moreover, we quantify

the speed of adjustment to new equilibria values and, in so doing, measure in one way the

responsiveness of agents to their incentives in PLFs.

3.6.1 Vector error correction models

We model both the short and long-run dynamics between borrowing rates for DAI and USDC

by using a Vector Error Correction Model (VECM).



Where time series are non-stationary (e.g. a random walk), the required criteria for a regression

to produce the Best Linear Unbiased Estimator (BLUE) are not satisfied because the variables

are not covariance stationary.9 However, if a linear combination of non-stationary time series

exists, where this combination is stationary, the series is said to be cointegrated. VECMs permit

the modelling of the stationary relationships between such time series and allow estimation of

both the long-run and short-run adjustment dynamics. This is appropriate for interest rates in

PLFs which a priori might be expected to display both short and long-run dynamics. A VECM

model is as follows.

Δyt = v +Πyt−1 +
p−1∑
i=1

ΓiΔyt−i + εi (3.21)

where Δ denotes a single time step, yt is a vector of K variables, v is a vector of K × 1

parameters, Π =
∑j=p

j=1 Aj − Ik (Ik denotes an indicator vector), where Aj is a matrix of K×K
parameters from a vector autoregression (VAR)10, Γi = −∑j=p

j=i+1 Aj and ε is a K × 1 vector

of disturbances. Assuming that Π has reduced rank 0 < r < K it can further be expressed

as Π = αβ′ [Sta13]. In terms of interpretation, α provides the adjustment coefficients, and β

provides the parameters of the cointegrating (i.e. long-run) equations.

3.6.2 Results

Separately, we focus on the borrowing rates for DAI and USDC, considering Compound, Aave

and dYdX. We present the borrowing rates for DAI in Figure 3.11 and for USDC in Figure 3.12.

DAI results First, we consider the markets for DAI. Testing for the number of cointegrating

relationships between the three series using Johansen’s multiple trace test method [Sta13], we

find evidence of at most two cointegrating relationships. After iteratively tuning the model

with post-estimation results, we find the optimum lag length to be 5. The results are presented

in full in Table 3.8.

In terms of short adjustment coefficients, we find a statistically significant coefficient on Aave

DAI of 0.38. When the borrowing rate on Compound is high, Aave’s borrowing rate quickly

9Covariance stationary means that the mean and autocovariance are finite and time-invariant.
10A VAR(p) can be expressed as yt = v +A1yt−1 +A2yt−2 + ...+Apyt−p + ε
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Figure 3.11: Daily borrowing interest rates on DAI across protocols.
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Figure 3.12: Daily borrowing interest rates on USDC across protocols.



(1)

D c dai
L. ce1 -0.0695

(-1.20)

L. ce2 0.143
(1.60)

D a dai
L. ce1 0.381∗∗∗

(4.66)

L. ce2 -0.533∗∗∗

(-4.23)

D d dai
L. ce1 0.284∗∗∗

(4.07)

L. ce2 -0.0387
(-0.36)

Long-run ( ce1)
Compound DAI 1

Aave DAI 0
(omitted)

DyDx DAI -1.151∗∗∗

(-5.75)
Constant 0.0296

Long-run ( ce2)
Compound DAI 0

(omitted)
Aave DAI 1

DyDx DAI -0.9906∗∗∗

(-5.94)
Constant 0.0051

Observations 116

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3.8: Vector Error Correction Model Results — DAI.



increases to match it. Similarly, we find a similar effect for dYdX DAI, with a slightly slower

adjustment speed of 0.28. Interestingly, we do not find evidence of the Compound DAI rate

adjusting to changes in the Aave or dYdX DAI rates in the short run, suggesting that Com-

pound’s interest rate changes drive changes in both Aave and dYdX’s borrowing rates, which

may indicate that Compound has market power. This is expected: as shown in Figure 3.3,

Compound has the largest borrow and supply volumes for DAI compared to the other two

PLFs and thus will plausibly shape interest rates across protocols. We obtain the following

long-run cointegrating relationships:

DAICompound = −1.151DAIdY dX − 0.030 (3.22)

and

DAIAave = −0.991DAIdY dX − 0.005 (3.23)

such that for DAI, dYdX has a long-run cointegrating relationship with Compound and Aave.

We present the impact of a shock to Compound’s DAI borrow rate on Aave and dYdX’s in

Figure 3.13. It can be seen that a positive shock to the borrowing rate results in a permanent

increase in the borrowing rate on Aave and dYdX.

USDC results For USDC, we find that between the series, there are two cointegrating re-

lationships [Sta13]. Again, testing for the number of cointegrating relationships between the

three series using Johansen’s multiple trace test method [Sta13], we find evidence of at most

two cointegrating relationships. After iteratively tuning the model with post-estimation results,

we find the optimum lag length to be 3. The results are presented in full in Table 3.9.

It appears that Compound has market power again, with the borrowing rates on Aave and

dYdX adjusting to match the Compound interest rate level. Aave appears to adjust faster at

0.607, compared to dYdX at 0.115. In terms of long-run relationships, we find that Compound

and dYdX share a long-run relationship and that Aave and dYdX share a long-run relationship.

We obtain the following long-run cointegrating relationships:



(1)

D c usdc
L. ce1 0.0146

(0.83)

L. ce2 0.0271
(1.89)

D a usdc
L. ce1 0.607∗∗∗

(3.42)

L. ce2 -0.720∗∗∗

(-4.97)

D d usdc
L. ce1 0.115∗∗

(2.75)

L. ce2 0.0200
(0.59)

Long-run ( ce1)
Compound USDC 1

Aave USDC 5.55e-17
.

DyDx USDC -1.353∗∗∗

(-7.77)
Constant 0.0066

Long-run ( ce2)
Compound DAI -2.78e-17

.
Aave DAI 1

DyDx DAI -1.347∗∗∗

(-7.95)
Constant 0.00283

Observations 119

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3.9: Vector Error Correction Model Results — USDC.
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Figure 3.13: Impulse Response Function: impact of a shock (at the beginning) to Compound’s DAI
borrow rate on Aave and dYdX’s DAI borrow rate.

USDCCompound = −1.353USDCdY dX − 0.007 (3.24)

and

USDCAave = −1.347USDCdY dX − 0.003 (3.25)

For USDC, like DAI, dYdX has a long-run cointegrating relationship with Compound and Aave.

We plot the impact of a change in the USDC borrowing rate in Figure 3.14. A shock to

Compound’s borrowing rate on USDC permanently affects the interest rates in Aave and dYdX.
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Figure 3.14: Impulse Response Function: impact of a shock to Compound’s USDC borrow rate on
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3.6.3 Robustness checks

We performed extensive robustness checks on the fitted VECM models. Since our ability to

draw sound inference on the adjustment parameters depends on the cointegrating equations

being stationary, we plot the cointegrating equations over time (see Figures 3.15, 3.16, 3.17

and 3.18.)
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Figure 3.15: DAI cointegrating equation 1.

The cointegrating equations appear overall without significant trends, though note the presence

of a large negative shock in the DAI specifications mid-March, and therefore broadly stationary.

Furthermore, we check that we have correctly specified the number of cointegrating equations

in Figures 3.19 and 3.20.
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Figure 3.16: DAI cointegrating equation 2.
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Figure 3.17: USDC cointegrating equation 1
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Figure 3.18: USDC cointegrating equation 2.
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Figure 3.19: DAI cointegrating equations misspecification test.
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Figure 3.20: USDC cointegrating equations misspecification test.

We find no evidence that any of the eigenvalues are close to the unit circle, and therefore no

evidence that the model is misspecified (see [Sta13] for details on this test.) Additionally, we

test for serial correlation in the residuals of the regressions and find little evidence of this. A

test for the normality of the errors in our models does suggest that the errors are non-normally

distributed, which may affect our standard errors but should not result in parameter bias.

This panel of robustness tests makes us confident that the VECM models are reasonably well

specified.

3.6.4 Summary

Overall we find evidence of cointegrating relationships between markets for DAI and USDC.

This suggests that interest rate changes in one protocol are associated with interest rate changes

in others, providing evidence of agents being incentivized to change protocol by the rates they



observe. Moreover, we also find some evidence of Compound having market power.

3.7 Related work

In this section, we present related work about interest rates in both traditional finance and

DeFi protocols. Since, to the best of our knowledge, this chapter is the first academic work to

investigate PLFs in detail; we include some non-academic work which covers some aspects of

PLFs interest rates.

The authors of [KCCM20] focus on the Compound protocol and present an overview of the

market risks and liquidation mechanism. They perform agent-based simulations to investigate

the economic security of the protocol and find that the protocol can scale to a larger market

size while maintaining a low probability even when markets are volatile.

In [Li19], the author describes how the interest rate models work in PLFs. The author first

defines the utilisation ratio of a PLF, then describes linear and polynomial interest rate models

and finally presents how these different models are used by three significant PLFs, namely,

Compound, dYdX and Aave.

The author of [Ale19] analyses Compound to show the risks inherent to decentralised lending.

In particular, they focus on the risks associated with illiquidity and bank runs. The authors

analyse the SAI market on Compound and find several periods of near-illiquidity and actual

illiquidity. They present instances where illiquidity is created because of large loans in a short

period and others made by the lenders withdrawing large amounts of funds they had locked.

In particular, they show that on five occasions, a single transaction was sufficient to withdraw

more than a quarter of the available liquidity. In the worst case, a single transaction drained

more than 95% of the available liquidity.

The author of [Fra20b] focuses on how Black Thursday [Reu20] in March 2020 affected the Aave

market. They first show that the amount of money borrowed through flash loans increased by

more than 10,000% in only a few hours because users were leveraging these to liquidate their

collateralised debt positions [Mak19b,Mak]. The author also highlights that the number of



borrows on Aave during Black Thursday was more than 100 times higher than the typical

amount liquidated, reaching more than 550k USD in a single day. Finally, the author shows

that during the Black Thursday crisis, some design flaws of MakerDAO’s protocol [Mak] caused

Maker to lose more than 4m USD worth of collateral.

In [JK15], the authors elucidate the difference between the intermediation and financing roles

of traditional banks and show that when modelling banks with financing models as opposed to

intermediation models, identical shocks have much more significant effects on the real economy.

Finally, [BHM19] presents a work about interest rates in the context of cryptocurrencies but

centred on a different problem. Their work focuses on how cryptocurrencies could set an interest

rate for their holders, such that they accumulate these interest rates continuously.

3.8 Conclusion

In this chapter, we coin Protocol for Loanable Funds to describe DeFi equivalents of Interme-

diaries for Loanable Funds in traditional finance, providing a classification framework for the

extant interest rate models. We analyze three of the largest PLFs in terms of market liquidity,

efficiency and dependence.

Regarding market liquidity, we find that individual PLFs often operate at times of high utiliza-

tion, and often, these moments of high utilization are shared across protocols. Moreover, we

find that token holdings can be concentrated to a very small set of accounts, such that at any

time were a small number of suppliers to withdraw their funds, perhaps in concert, they could

significantly reduce the liquidity available on markets and possibly make such markets illiquid.

In terms of market efficiency, we consider whether uncovered interest parity holds. Overall, it

does not, suggesting that token markets are, at present, relatively inefficient. This also suggests

that, at present, agents may need to be more responsive to interest rate incentives.

Regarding market dependence, we find that the borrowing rates on these protocols influence

each other. In particular, that Compound has some market power to set the prevailing borrow-

ing rate for Aave and dYdX.



Chapter 4

Decentralized Financial Crisis

4.1 Introduction

As explored at the outset of this thesis, blockchain technology emerged in part as a response to

the Financial Crisis of 2007–8 [Nak08].1 The perception that banks had misbehaved resulted

in a deterioration of trust in the traditional financial sector [Ear09]. The causes of the crisis

were several, but arguably chief among them was a lack of transparency regarding the amount

of risk major banks were accumulating. When Lehman Brothers filed for bankruptcy, it had

debts of 613bn USD, bond debt of 155bn USD and assets of 639bn USD [BBC09]. Central to

its bankruptcy was its exposure to subprime (i.e., bad quality) mortgages. This exposure was

compounded by the fact that the bank had a leverage ratio2 of 30.7x in 2007 [Bro07].

From their inception, blockchain-based cryptocurrencies sought to provide a remedy to such

crises: facilitating financial transactions without reliance on trusted intermediaries, shifting the

power, and therefore, the ability to cause crisis through the construction of opaque and complex

1The first Bitcoin block famously outlines: “The Times 03/Jan/2009, Chancellor on brink of second bailout
for banks”.

2Defined as total assets
equity ; the total assets were more than 30 times larger than what shareholders owned,

indicating substantial debt.
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financial instruments, away from banks and financial institutions [Nak08]. Ten years later, a

complex financial architecture—the architecture of Decentralised Finance (DeFi)—is gradually

emerging on top of existing blockchain platforms. Components in this architecture include those

that pertain to lending, decentralised exchange of assets, and markets for derivatives [Fou19,

Com19,Syn20,Pro20b,dYd20, Ins20].

DeFi architectures for lending require agents to post security deposits to fully compensate

counter-parties for the disappearance of the agent. We assume that when an economically

rational agent faces a choice between the repayment of a debt or the loss of collateral, given

the absence of reputation tracking—on account of agent pseudonymity and the possibility of

an agent using multiple addresses—the agent will choose the least costly option. Security de-

posits serve to guard against (i) misbehaviour of agents, where the action that would maximise

individual utility does not maximise social welfare, and (ii) external events, such as large exoge-

nous drops in the value of a particular cryptocurrency [HGGK19]. Of all DeFi protocols, those

with the most locked capital are for lending. As of April 15th, 2020, the largest protocol by

capitalisation, Maker [Fou19], has c. 65% of all capital locked in DeFi, corresponding to 342.9m

USD [Pul19a].

Governance is another crucial facet of DeFi protocols, and we observe differing degrees of

governance decentralisation. For example, Maker uses its own token (MKR) to allow holders

to vote on a contract that implements the governance rules. In contrast, Compound [Com19],

the third largest protocol by market share, is centrally governed, and a single account can shut

down the system in case of failure. Moreover, as in traditional finance, these protocols do not

exist in isolation. Assets that are created in Maker, for example, can be used as collateral in

other protocols such as Compound, dYdX [dYd20], or in liquidity pools on Uniswap [Pro20b].

Indeed, the composability of DeFi — the ability to build a complex, multi-component financial

system on top of crypto-assets — is a defining property of open finance [Pul19b]. However, if

the underlying collateral assets fail, all connected protocols will be affected as well: there is the

possibility of financial contagion.

This chapter. We focus on DeFi lending protocols, which constitute c. 76% of the DeFi market

in capital terms. We consider two distinct but interconnected aspects of the attack and risk

surface for collateral-based DeFi lending protocols: (i) attacks on the governance mechanism

and (ii) the economic security of such protocols in “black swan” [Tal07] financial scenarios.



In relation to attacks on the governance mechanism, we examine an attack on Maker [Fou19],

which consists of an adversary amassing enough capital to seize full control of the funds within

the protocol. Herein, we further consider two distinct attack strategies. We engaged in a

process of responsible disclosure with Maker, which we detail, who have since modified their

governance parameters to mitigate the two attack strategies we present. The first attack strat-

egy, crowdfunding, inspired by [Mic19], covertly executed, was feasible within two blockchain

blocks and required the attacker to lock c. 27.5m USD of collateral. This would have enabled

an attacker to steal all 0.5bn USD of locked collateral in the protocol and mint an unlimited

supply of DAI tokens. The second novel attack strategy utilised so-called flash loans and allows

an adversary to amass the Maker collateral within a single transaction. This attack did not

require the locking of collateral and only required a few US dollars to pay for gas fees.

With respect to the economic security of collateralised DeFi lending protocols, with reference

to our stylised model, we present the possibility of a DeFi lending protocol becoming undercol-

lateralised (or insolvent) — where security deposits become smaller than the issued debt — as

the result of a drying up of liquidity. Assuming rational economic agents, in such an under-

collateralisation event, the borrower would default on their debts since the amount they have

borrowed has become worth more than the amount they escrowed. Starting from formal def-

initions of the economic security constraints for DeFi lending platforms, we then use Monte

Carlo simulation to stress-test their financial robustness. We submit that such stress testing

constitutes an important approach to bounding the economic security of DeFi lending proto-

cols when formal security proofs are not obtainable, and their security primarily depends on

economic properties. We find that for plausible parameter ranges, a DeFi lending system could

find itself undercollateralised. To the extent that other DeFi protocols allow agents to lend or

trade the undercollateralised asset, financial contagion—where an economic shock spreads to

other protocols—would be expected to result.

Contributions.

• Governance attack on Maker (Section 4.2). With a specific focus on the largest DeFi

project by market share, Maker, we show how, prior to Maker implementing a parameter

change, it was feasible to successfully steal the funds locked in the protocol covertly

and within two blocks or within two transactions. By exploiting recent flash loan pool

contracts, we show how an attacker with no capital (besides gas fees) would have been



able to execute such an attack if the flash loan pools would provide sufficient liquidity

(which they did not at the time of writing).

• Formal modelling of DeFi lending protocols (Section 4.3). We provide definitions for

economically-resilient DeFi lending protocols, introducing overcollateralisation, liquidity,

and counter-party risk as formal constraints. These definitions serve to formalise financial

risk constraints for more than 93% of the funds locked in DeFi lending protocols as of

April 15th, 2020 [Pul19a].

• Financial stress-testing (Section 4.4). We develop a methodology to quantitatively stress-

test a DeFi protocol with respect to its financial robustness, inspired by risk assessments

performed by central banks in traditional financial systems. We simulate a price crash

event with our stress-test methodology to a stylised DeFi lending protocol that resembles

the largest DeFi lending protocols to date by volume: Maker, Compound, Aave and

dYdX. We find, for plausible parameter ranges, that a DeFi lending protocol could become

undercollateralised within 19 days.

4.2 Governance attack on Maker

In this section, we first present an attack on the governance mechanism of the Maker proto-

col [Fou19]. We use a representation of the state of the Ethereum main network on February

7th and the Maker contract to simulate how such an attack could take place as realistically

as possible. While focusing on a specific protocol, we submit that such a governance attack

represents a new element of the attack surface for DeFi protocols more generally. Since we first

analysed this attack vector, the Maker protocol has been modified to mitigate this attack: we

detail our interaction with the Maker team below. Although the basic idea of the attack had

been briefly presented in a blog post [Mic19], the feasibility has not been analysed.

4.2.1 Disclosure to Maker

We engaged in a process of responsible disclosure with Maker, as detailed below.



• On February 7th, 2020, we reached out to the Maker team regarding our exposition of

the feasibility of the governance attack.

• On February 14th, the authors had a conference call with Maker, where we described our

work. We agreed to give the Maker team sight of this chapter before publicising it; we

subsequently sent a draft on February 17th.

• On February 18th, the authors further contacted Maker to describe how the use of flash

loans increased the risk of the governance attack, offering a response window before pub-

licising this result, within which Maker provided helpful feedback.

After this exchange, on February 21st, Maker announced that the Governance Security Module

had been activated, implementing a delay period before proposals took effect of 24 hours [Mak20],

mitigating the vulnerability.

4.2.2 Background and threat model

The governance process relies on the MKR token, where participants have voting rights propor-

tional to the amount of MKR tokens they lock within the voting system. MKR can be traded

on exchanges [Coi20a].

Executive voting. Using executive voting, participants can elect an executive contract, defining

a set of rules to govern the system by staking (i.e., locking up) tokens on it. Executive voting

is continuous, i.e., participants can change their vote at any time, and a contract can be newly

elected as soon as it obtains a majority of votes. The elected contract is the only entity allowed

to manipulate funds locked as collateral. If a malicious contract were to be elected, it could

steal all the funds locked as collateral.

Defense mechanisms. Several defence mechanisms exist to protect executive voting. The

Governance Security Module encapsulates the successfully elected contract for a certain period,

after which the elected contract takes control of the system. At the time of first writing on

February 7th, this period was set to zero [Wee20]. This has subsequently been increased to 24

hours [Mak19a], see Section 4.2.1. The Emergency Shut Down allows a set of participants



holding a sufficient amount of MKR to halt the system. However, this operation requires a

constant pool of 50k MKR tokens, worth 27.5M USD as of February 7th.3

Threat model. We assume the existence of a rational adversary, i.e., one who would only

engage in the attack if the potential returns are higher than the costs. In this attack, the

costs are the amount of money that the adversary has to pay to have their contract elected

as the executive contract. The returns are the amount of money the contract could steal or

generate once elected. There are two ways in which electing an adversarial executive contract

can financially benefit the adversary. First, the contract can transfer all the ETH collateral to

the adversary’s address. Second, the contract can mint new DAI tokens and transfer them to

the adversary. The DAI tokens can then be traded until the DAI price crashes and effectively

destroy the Maker system.

As of February 7th, there were c. 150k MKR tokens used for executive voting, and the current

executive contract had 76k MKR tokens staked. We observed that the staked amount changes

relatively often, and the number of tokens staked on the elected contract often dropped be-

low 50k MKR tokens (eq. 27.5M USD). As of February 7th, there was c. 470M USD worth of

ETH locked as collateral of the DAI supply, which an executive contract can dispose of freely.

This shows that the attack would have been financially attractive even before trading the DAI

tokens.

4.2.3 Crowdfunding and flash loans

An adversary can choose between the following strategies to amass the capital required for the

governance attack.

Crowdfunding. Crowdfunding MKR tokens may allow users to lock their tokens in a contract

and program the contract so that when the required amount of MKR tokens is reached, it stakes

all its funds on a malicious executive contract. This would allow multiple parties to collaborate

trustlessly on such an attack while keeping control of their funds and being assured they will

be compensated for their participation. 4

3We use the price of MKR on 2020-02-01, which was 550 USD.
4An (admittedly informal) poll on Twitter from late 2019 conducted by a user soon after this attack first

appeared shows that several participants would be interested in such crowdfunding. See Figure 4.1.



Figure 4.1: Twitter poll for of a crowdfunding attack on MKR governance.

Liquidity pools and flash loans. A shortcoming of the crowdfunding attack is the required co-

ordination effort between the participants and the likely alerting of benevolent MKR members.

Instead, an attacker could use liquidity pools offering flash loans [Aav20c]. A flash loan is a

non-collateralised loan valid only within one transaction. In the Ethereum Virtual Machine

(EVM), a transaction can be reverted entirely if a condition in one part of the transaction is

not fulfilled. A flash loan then operates as follows: a party creates a smart contract that (i)

takes out the loan, (ii) executes some actions, and (iii) pays back the loan and, depending on

the platform, interest.

The interesting aspect for our purposes is that if step (ii) the execution of the actions fails or

step (iii) the loan repayment cannot be completed, the EVM treats this loan as if it never took

place. Hence, under the assumption there is enough liquidity available in protocols such as

dYdX [dYd20] and Aave [Aav20b], an attacker could execute the MKR governance attack in

step (ii), and, if successful, repay the flash loan in step (iii). Since the flash loan requires no

collateral, the capital lock-up cost for the attacker is significantly reduced. If enough liquidity

is available in these pools, the attacker might not have to lock any tokens. Furthermore, the

liquidity provider may have also profited from the execution of the attack, depending on in

which protocol their tokens were locked. For example, in Aave, as of February 7th, they would

have received an interest rate of 0.09% for each flash loan.



Figure 4.2: Evolution of the number of MKR tokens staked on different executive (i.e., governing)
candidate contracts. We observe that at times the MKR amount of the executive contract dropped
below 50k MKR.

4.2.4 Practical attack viability

In this section, we use empirical data to show how such an attack could take place and describe

potential shortcomings. We first analyse all the transactions received by Maker’s governance

contract of as February 7th: 0x9ef05f7f6deb616fd37ac3c959a2ddd25a54e4f5. Since the deployment

of this contract in May 2019, there were 24 different contracts elected as the executive contract

(see Figure 4.2).

When a contract is elected as the executive contract, the total amount of staked MKR is, for a

short period, distributed almost equally between the old and the new executive contract.5 This

reduces the number of tokens required for the attack by more than 50%.

One day after the first blog on this attack was published [Mic19], there was a sharp increase in

the MKR staked on the executive contract, rising from c. 75k to c. 160k MKR at the beginning

of December 2019. One token holder [i3n20] in particular injected a large number of tokens—

5This was particularly visible at the end of November 2019 (80k MKR to 40k MKR) and in the middle of
January 2020 (120k MKR to 45k MKR).



Figure 4.3: Daily traded volume of MKR tokens between 2020-01-30 and 2020-02-08.

c. 66k MKR—potentially to help prevent an attack from occurring. 6

4.2.5 The attacks

The crowdfunding strategy. We inspected the amount of MKR transferred between Jan-

uary 1st, 2020 and February 8th, 2020. See Figure 4.3.

We find a mean MKR transaction volume of c. 9k MKR tokens per day, corroborated by

e.g. [Coi20a]. Given such volumes, an attacker accumulating 1k MKR tokens per day, for

instance, would have sufficient tokens (i.e., more than 50k MKR) in less than two months.

However, accumulating all the tokens in a single account would attract attention. Indeed, from

our discussions with the Maker team, the large MKR token holders are known.

To be covert, an attacker could try accumulating tokens to multiple accounts without percep-

tibly changing the distribution of MKR tokens. On February 8th there were c. 5k accounts,

6It is unclear if the token holder was the Maker Foundation or some other party; in our discussion with
Maker, they stated they knew the identity of the token holder. The holder staked their tokens on the currently
elected contract, making the attack more difficult to execute, before releasing the staked tokens approximately
one month later. The token holder had more than sufficient tokens to execute the attack: were they malicious,
they could have stolen the funds.



Figure 4.4: Example flash loan attack against Maker. All steps can be executed within one transaction,
assuming the flash loan pool and DEX have sufficient liquidity. To execute the attack, the adversary
would not need upfront capital besides the gas fees (estimated to amount to c. 15 USD).

holding a total of c. 272k MKR tokens.7 Given that the attack is possible with 50k MKR

tokens, an adversary could spread their tokens across, e.g. 100 accounts with an average of 500

tokens each. However, one drawback of this approach is the requirement to vote from these

100 accounts. Voting for a contract costs, on average 69k gas. Given the gas limit per block on

Ethereum is 10 million, filling half of a block with voting transactions would allow votes from

10M/69k ≈ 72 contracts. Doing so would be inexpensive [PL20], meaning that an attacker

would have been able to perform the whole attack in two blocks easily. In the second block, the

attacker would finish voting for his malicious contract and execute the attack from the contract,

leaving only one block for anyone to react to the attack.

The flash loan strategy. Alternatively, to execute the governance attack without amassing

tokens, the attacker could utilise liquidity pools to borrow the required tokens via a flash

loan (e.g. via dYdX [dYd20] or Aave [Aav20c]). 8 The attacker makes two transactions (see

Figure 4.4).

Transaction 1: Deploy the malicious governance contract and deploy the attack contract exe-

cuting the flash loan.

Transaction 2: Call the attack contract deployed in Transaction 1 that executes the following

steps.

1. Take out flash loan(s)(e.g. from Aave and dYdX) in the currency with the deepest

markets for buying MKR tokens. As of February 7th, this was ETH.

2. Sell the ETH loan for 50k MKR tokens on decentralised exchange(s).

7Excluding the holders with a low balance (less than 1 MKR token), and a large balance (more than 5k
MKR tokens).

8Aave is a protocol deployed on the Ethereum mainnet on January 8th, 2020, https://etherscan.io/tx/0x47
52f752f5262fb11733e0136033f7d53cdc90971441750f606cf1594a5fde4f.



3. Vote with the 50k MKR tokens to replace the current Maker governance contract

with the malicious contract deployed in Transaction 1.

4. Mint DAI into an account chosen by the attacker.

5. Take out enough ETH from the Maker system to repay the flash loan.

6. Repay the flash loan with the required 0.09% interest to Aave and repay the flash

loan to dYdX with minimal (1 WEI) interest.

In a naive approach, we could utilise the exchange rate for ETH to MKR to obtain that an

attacker requires 114,746 ETH to execute the attack. However, in practice, an attacker seeking

to buy such a large quantity of MKR tokens would pay a greater price than this, forced to buy

the tokens at the best remaining market price for each unit. As of February 14th, an attacker

sourcing the required 50k MKR tokens from three different DEXs—38k MKR from Kyber,

11,500 MKR from Uniswap, and 500 MKR from Switcheo—would need a total of 378,940

ETH, 3.3x that of the naive estimate. 9 As of February 14th, the flash loan providers had

insufficient pool liquidity: dYdX had c. 83,590 ETH and Aave had c. 13,670 ETH. However,

on February 14th, the ETH growth rate of Aave was 5.18% per day. Assuming the growth rate

continued, it would have only taken 66 days until enough liquidity was available in Aave.

4.2.6 Profitability analysis

The crowdfunding strategy. With the crowdfunding strategy, the profits from the attack could

be split equally between the funding parties. The only cost is the 20 USD for including the

transactions [PL20]. In return, the attackers could take away the 434,873 ETH in collateral in

Maker plus 145m DAI, amounting to a net profit of 263m USD (as of February 7th). Addition-

ally, the attackers could mint unlimited new DAI and use this to buy other cryptocurrencies

available at centralised and decentralised exchanges.

The flash loan strategy. Assuming dYdX’s and Aave’s liquidity pools had accumulated the

required 378,940 ETH to execute the attack, we can calculate the profitability as follows. The

attacker obtains a total of 434,873 ETH in collateral from Maker as well as the 50k MKR tokens

and the 22m DAI currently in circulation. The attacker needs to repay the 378,940 ETH loan

9For current liquidity and rates see https://dexindex.io/.



with minimal interest (1 WEI for dYdX and 0.09% for Aave (265.82 ETH)). Furthermore,

the attacker must pay the gas fees for the two transactions. The second transaction involves

various function calls to other contracts and will cost c. 15 USD equivalent of gas. However, by

the end of the attack, the attacker has c. 55k ETH, 50k MKR, and 145m DAI. This amounts

to a net profit of 191m USD. Moreover, the attacker can design the attack smart contract to

revert the transaction if it becomes unprofitable. This makes the attack risk-free from a cost

perspective for the attacker. As pointed out, the attacker can create unlimited DAI to buy up

existing liquidity on decentralised and centralised exchanges.

4.3 DeFi lending protocols

After presenting a specific attack vector, we now turn to a generalisation of the financial risk

for DeFi lending protocols. This section provides a formal system model for a DeFi lending

system and characterises system constraints. Table 4.1 details the parameters for existing DeFi

lending protocols we seek to generalise in this section.

4.3.1 DeFi lending protocol model

Overcollateralised borrowing allows an agent to provide asset A as collateral to receive or create

another asset B, of lower value, in return. Asset B, typically with the payment of a fee, can

be returned, and the agent redeems its collateral in return. However, borrowed asset B may

have different properties to asset A: for example, an agent might provide a highly volatile asset

A and receive a price-stable asset B in return. Furthermore, a third asset, C, can serve as

a governance mechanism, such as MKR. Asset C Holders can influence the rules of the DeFi

lending protocol. In the absence of a governance asset, DeFi lending protocols typically replace

this function with a central privileged operator introducing counterparty risk.

At the agent level, a DeFi lending protocol permits agents k ∈ K to escrow cryptocurrency i,

ci and borrow (or issue) units of another cryptocurrency d against that value. We formulate



the constraints herein such that i ∈ I, where I denotes all the permissible collateral types.

Table 4.1 provides the collateral assets and liquidation ratios for DeFi protocols that account

for 93% of the DeFi lending market. The prices of escrowed and borrowed assets are typically

quoted regarding an agreed quote currency, e.g. USD.

At the system level, a DeFi protocol is the aggregation of the individual acts of borrowing by

agents, such that the system collateral of type i is given by Ci =
∑K

k=1 ci,k for K agents. We

formally define an economically secure DeFi lending protocol as follows:

Definition 4.1 (Economically Secure DeFi lending protocol). Assuming rational agents, a DeFi

lending protocol is economically secure if it ensures that ∀t, with reference to a basis of value

(e.g. USD), the total value of the system debt D at time t is smaller than the total value of all

backing collateral types I (
∑I

i=1Ci) at time t.

4.3.2 Economic security constraints

We now provide three constraints on the economic security of a DeFi lending protocol. These

constraints apply to DeFi protocols that feature one or several collateral assets and may also

feature a reserve asset.

The overcollateralisation constraint. Since the values of both the collateral assets and debt are

subject to price fluctuations, overcollateralisation seeks to ensure that there is always sufficient

collateral to cover the debt, i.e., to avoid insolvency.

Definition 4.2 (Overcollateralisation). Escrowed collateral ci has a greater value with respect to

a basis of value than an issued loan d.

Denoting the overcollateralisation factor as λi ≥ 0, such that each collateral type has its mini-

mum collateralisation ratio, and the price and quantity of an asset as P () and Q() respectively,

the margin M of overcollateralisation at time t at the system level10 is as follows (summing

over agents k ∈ K and collateral types i ∈ I). A protocol designer faces a trade-off. If the

parameter λi is too low, volatile markets may mean the protocol becomes undercollateralised.

10The system level perspective looks at the aggregates of assets and liabilities; depending on the protocol the
ability to use one asset to cross-subsidise an undercollateralised another asset may be restricted.



However, if it is too high, there is significant capital market inefficiency, with more capital than

necessary in escrow, leading to opportunity costs.

Mt = (1 + λi)
K∑
k=1

I∑
i=1

Pci,k,tQci,k,t −
K∑
k=1

dk,t (4.1)

Clearly, Mt ≥ 0 ⇐⇒ ∑K
k=1 dk,t ≤ (1 + λi)

∑K
k=1

∑I
i=1 Pci,k,tQci,k,t . Should M < 0, the margin

of overcollateralisation is negative, and therefore, the system as a whole is undercollateralised.

In addition, a protocol may have another pool of reserve liquidity available, enabling it to act

as a lender of last resort.11 For example, one such pool of collateral could be constituted by

governance tokens Π for the protocol itself.12 In a DeFi protocol, participants can have voting

power proportional to the number of governance tokens they hold. The total value of this pool

of collateral is given by P (Π)Q(Π), and thus adding this into the margin of overcollateralisation

for the system yields:

Mt = (1 + λi)
K∑
k=1

I∑
i=1

Pci,k,tQci,k,t + PΠ,tQΠ,t −
K∑
k=1

dk,t (4.2)

Therefore, at the system level, the necessary condition for economic security in terms of over-

collateralisation is Mt ≥ 0. In the event that (1 + λi)
∑K

k=1

∑I
i=1 Pci,k,tQci,k,t <

∑K
k=1 dk,t, the

reserve asset Π of a protocol can be used as a lender of last resort to buy the collateral value.

If M < 0, even the liquidation of the primary collateral and reserve assets would be insufficient

to cover the total system debt. Since the collateral and reserve assets may be correlated13,

the ability of a reserve asset to recapitalise a system may be limited in the event of a sharp

price drops. Without additional protocol-specific defence mechanisms, this would constitute a

catastrophic system failure since the borrowed funds would become worthless as they would no

longer be redeemable.

The liquidity constraint. In an illiquid market, liquidating a collateral asset may only be

possible with a significant haircut, where the collateral is sold at a discount. Following [Nik09],

we define market liquidity as follows.

11If a protocol does not have this, QΠ,t = 0.
12MKR tokens in the case of Maker.
13There is evidence that crypto-assets display high intra-class correlation, limiting the advantage of diversifi-

cation [KPA+19].



Definition 4.3 (Market liquidity). A measure of the extent to which a market can facilitate the

trade of an asset at short notice, low cost and with little impact on its price.

The liquidity available in a market implies a security constraint: in expectations, over a certain

time horizon, DeFi marketplaces can offer enough liquidity that in the event of a sustained

period of negative price shocks, a protocol will be able to liquidate its collateral quickly enough

to cover its outstanding debt liabilities.

For a time interval [0, T ] this can be expressed as:

∫ T

0

E[Ω]dΩ ≤ E[Ωmax] (4.3)

where Ω denotes the total notional traded value, i.e., the (average) price multiplied by the

quantity for each trade. For a given trade ω of size q, ω = p̄q; aggregating these trades for a

total number of trades J provides Ω =
∑J

j∈J ωj. Ωmax denotes the maximum notional value

that could be sold off during a period of distress in the financial markets.

In the event of a severe price crash, on the assumption that a protocol is collateralised to a

representative 150%, we assume a protocol will seize 100% of the debt value from the collateral

pool and seek to sell this collateral as quickly as possible on a market pair to the debt asset.

Once a buyer has traded the debt asset d for the collateral, the protocol could burn the debt

d, effectively taking it out of circulation and offsetting the liability. Therefore, negative price

shocks’ impact on a DeFi lending protocol and how quickly they materialise depend on the

liquidity available on all collateral/debt pairs. In the event of a liquidity crisis, the demand

for liquidity outstrips supply14, such that equation (4.3) is binding. Indeed, if equation 4.3 is

binding, there are not enough buyers in the market to buy the ETH for sale.

The counterparty risk constraint. DeFi lending protocols need to be fully decentralised because

of, for instance, the possibility of Oracle attacks (which could cause a flash crash) and privileged

access to smart contracts. Therefore it is necessary to either assume the “operator” of the

protocol is honest or that the operator only offers the services of the protocol provided they are

profitable for them. We formally model this counterparty risk by assuming that its existence in

a given protocol creates a risk premium, ψ, such that for an agent deciding between earning a

14Indeed, such liquidity crises were at the heart of the Financial crisis of 2007-8, as the value of many financial
instruments traded by banks fell sharply without buyers [Ell12].



return in a DeFi lending protocol vs elsewhere, the expected return in the DeFi protocol (rD),

once adjusted for the risk premium (ψ), must be higher than an outside return rf . Formally,

we have participation constraint rD−ψ > rf . This constraint is a participation constraint, and

in Section 4.4, we assume that this inequality holds, such that agents have already chosen to

participate in the protocol.

There exists an inherent trade-off in counterparty risk. On the one hand, governance mecha-

nisms implemented through voting allow for a certain degree of decentralisation whereby mul-

tiple protocol participants can influence the future direction of a protocol. Depending on the

distribution of tokens, this may reduce the risk of one party becoming malicious. However, it

also opens the door to attacks on the voting system, as we introduced in Section 4.2. On the

other hand, a single ‘benevolent dictator’ who controls the governance mechanism can prevent

the attacks introduced in Section 4.2. Yet this requires trusting that this central entity does not

lose or expose its private keys controlling access to the smart contracts governing the protocol

and that this central party cannot be bribed to behave maliciously.

4.4 Stress-testing DeFi lending

This section considers the financial security of a generic DeFi lending protocol, stress-testing the

architecture to quantitatively assess its robustness as inspired by central banks [oE19,Res19].

4.4.1 Stress-testing framework

Central banks conduct stress tests of banking systems to test their ability to withstand shocks.

For example, in an annual stress test, the Bank of England examines the potential impact of

an adverse scenario on the banking system [oE19]. The hypothetical scenario is a “tail-risk”

scenario, which seeks to be broad and severe enough to capture a range of adverse shocks.

Following such best practices, we devise and implement a stress test of the DeFi architecture.



4.4.2 Simulation approach

We leverage the generic DeFi lending protocol architecture developed in Section 4.3.1. We focus

on a single collateral asset here for tractability. Still, this analysis can be extended to lending

protocols which rely on overcollateralisation by multiple volatile collateral assets in combination

with reserve assets.

Protocol Collateral asset Reserve
(liquidation ratio) asset

Maker [Fou19] ETH (150%), BAT (150%), USDC (125%) MKR
Compound [Com19] ETH (133%), BAT (167%), DAI (133%)

REP (250%), USDC (133%), ZRX (167%)
Aave [Aav20c] DAI (125%), USDC (125%), TUSD (125%)

ETH (125%), LEND (154%), BAT (154%)
KNC (154%), LINK (143%), MANA (154%)
MKR (154%), REP (154%), WBTC (154%)
ZRX (154%)

dYdX [dYd20] ETH (115%), USDC (115%), DAI (115%)

Table 4.1: Parameters of DeFi lending platforms, comprising 93% of DeFi market as of April 15th, 2020.

In part reflecting Table 4.1, we make the following assumptions about the system’s initial state.

1. The lending protocol allows users to deposit ETH as their single source of collateral ci.

2. The lending protocol has 1m tokens of a generic reserve asset. The simulation’s start has

the same price as ETH but with exactly half of the historical standard deviation of ETH

taken over the sample period.

3. By arbitrage among borrowers, before the crash, the lending protocol is collateralised to

λi + ε, i.e., just above the minimum collateralisation ratio.

4. At the start of the crisis, the protocol had a collateralisation ratio of exactly 150%, such

that every USD of debt is backed by 1.50 USD of collateral.

5. Each unit of debt dk maintains a peg of 1:1 to the US dollar, allowing us to abstract from

the dynamics of maintaining the peg.

6. At the start of the sell-off, it is possible to sell 30,000 ETH per day without impacting

the price.15.

15This assumption is based on the 24-hour volume of ETH/DAI across markets listed on CoinGecko on
February 7th, 2020 and, as such, is only a rough proxy for the market liquidity. We use this figure only as a
parameterisation baseline and highlight the theoretical possibility of illiquidity causing a default.



7. The amount of reserve asset Π is fixed at the start of the sell-off at 1m units.

8. System debt levels range from 100m USD to 400m USD.

Next, we detail the methodology we follow to obtain our simulation results.

Price simulation. Firstly, as inputs into our model we obtain OHLCV data at daily fre-

quency [Cry20], focusing on January 1st, 2018 to February 7th, 2020, incorporating the signif-

icant fall in the ETH price in early 2018.

Figure 4.5: Close prices for ETH/USD over the period January 1st, 2018 to February 7th, 2020.

We present the evolution of ETH close prices in Figure 4.5 and a histogram of log returns in

Figure 4.6. The most notable element is the decline in the ETH/USD price over the course

of 2018, with the price of ETH falling from an all-time high of 1,432.88 USD to c. 220 USD

as of February 7th, 2020. Taking parameters from this historical data16, we use Monte Carlo

simulation to capture how the ETH and reserve prices may evolve over the next 100 days.

Monte Carlo simulation leverages randomness to produce a range of outcomes of a stochastic

system. We simulate 5,000 randomly generated paths using a geometric Brownian motion,

specified with the following equation.

16For the daily ETH/USD price data, we find mean log returns of −0.001592 and standard deviation 0.050581,
parameter values which have been independently verified.



Figure 4.6: Broadly symmetric log returns for ETH/USD over the period January 1st, 2018 to Febru-
ary 7th, 2020.

Pci,t = Pci,0 exp

[
(μi − σ2

i

2
)t+ σiWt

]
(4.4)

Wt denotes a Wiener process [Wie76] and for collateral type i μi denotes the drift and σi denotes

the volatility.17 Of the 5,000 simulations, our subsequent analysis is focused on the iteration

which yields the fastest undercollateralisation event. By focusing on this worst-case, we test

the DeFi lending protocol with a “black swan” event, representing a severe challenge to its

robustness.

System simulation. We propose a simple model for the decline in liquidity over time as follows.

L = L0 exp(−ρt) (4.5)

where L0 denotes the initial amount of ETH that can be sold daily and ρ is a coefficient.

Intuitively, this equation captures the notion that if the protocol attempts to sell large volumes

17In this estimation, we draw shocks from the normal distribution, as is standard in GBM. Since performing
a Jarque-Bera test [JB87] over the sample period suggests that the log-returns are non-normal, it is possible
that, in our estimation, we underestimate the impact of heavy tails. Therefore, we present a best-case upper
bound; in practice, undercollateralisation could precipitate more quickly.



each period, the liquidity available in the next period will be lower.

In this simulation approach, we simplify by not modelling the impact that selling large volumes

of collateral will have on the price of the collateral asset. In such a sell-off scenario, selling large

volumes would endogenously push the price lower. Therefore what we present here represents

an upper bound on the price behaviour: in reality, the price drop may be even worse than the

one we examine.

4.4.3 Simulation results

We start with the Monte Carlo simulation of the correlated asset paths before considering how

this would impact a DeFi lending protocol and an ecosystem of multiple lending protocols.

Monte Carlo Price Simulation. To capture the effects of different correlations between the

collateral asset and the reserve asset, we consider three different extents of correlation between

the collateral and reserve asset: (i) strong, positive correlation (0.9), (ii) weak, positive cor-

relation (0.1) and (iii) strong negative correlation (-0.9). We then generate correlated asset

paths during the Monte Carlo simulation process. In this section, we report results for strong

correlations but include those for weak and strong negative correlations.

Figure 4.7 shows the results of 5,000 runs of the Monte Carlo simulator for the ETH price,

and Figure 4.8 shows the results for the reserve asset price in the presence of strong positive

correlation in the asset price returns. The starting price of assets used in the simulator is the

close price of ETH/USD on February 7th, 2020.

We isolate the simulation, which yields the fastest undercollateralisation event.18

In Figure 4.9, it is clear that in this worst-case scenario for the ETH/USD price, the price of the

reserve asset similarly falls. This illustrates the risk of using a reserve asset which is positively

correlated with the collateral asset: if the price of the collateral asset falls relative to the same

basis of value, the reserve asset value is likely to fall, limiting the ability of a DeFi lending

protocol to recapitalise itself.

Impact on Collateral Margin. We take the simulation yielding the fastest undercollateralisation

18We plot the co-evolution of the asset price paths for strong correlation in Figure 4.9.



Figure 4.7: Monte Carlo forecast of ETH prices over the next 100 days from February 7th, 2020.

Figure 4.8: Monte Carlo forecast of the reserve asset price over the next 100 days from Febru-
ary 7th, 2020.



Figure 4.9: For the simulation yielding the fastest undercollateralisation event, the co-evolution of the
ETH and reserve asset prices where the asset price returns are strongly positively correlated.

event and consider the impact this would have on the collateral margin of a DeFi lending

protocol. The main results of this are presented in Figure 4.10.

Plotted with solid lines is the evolution of the total collateral margin (comprising the collateral

and the reserve asset) over time as the prices of the collateral asset and reserve asset decline. The

dashed lines indicate how the amount of system debt evolves through time, on the assumption

that at the start of the 100 days, the protocol seeks to sell off all of the debt. The speed at

which the debt can be liquidated through the sale of its backing collateral, in turn, depends on

the available liquidity in the market for which we consider 3 cases:

1. Constant liquidity (such that it is possible to sell a constant amount of ETH every day

at the average daily price)

2. Mild illiquidity (where the illiquidity parameter is arbitrarily set to some low level ρ =

0.005)

3. Illiquidity, such that ρ = 0.01.

Where the initial system debt level is 100m USD, regardless of the liquidity parameter, the

collateral margin does not become negative. However, at higher debt levels, the margin gets



Figure 4.10: A DeFi lending protocol is experiencing a sharp decline in its collateral and reserve assets
price. Panels correspond to four different levels of system debt, with each panel showing the evolution
of the collateral margin (solid lines) and the total debt outstanding (dashed lines). Each panel also
shows the consequences of different liquidity parameters. The margin becomes negative in panels 3
and 4— entering the red region below zero—the situation in which the lending protocol has become
undercollateralised.



closer to 0. Once the debt level reaches 400m USD, the margin falls below 0, so the protocol

is undercollateralised overall. In the fourth panel of Figure 4.10, we see that after 19 days of

the protocol attempting to liquidate as much debt as possible, due to illiquidity, it is unable

to liquidate in time, and the margin becomes negative. This would constitute a crisis in a

DeFi protocol. Each unit of debt would not have sufficient collateral backing, and rational

agents would walk away from the protocol without repaying their debt.19 The results show

that a weakly correlated reserve asset can slow or prevent the collateral margin from becoming

negative (see Figure 4.11). In contrast, a strongly negative correlation between the assets can

bolster the collateral margin (Figure 4.12).

Figure 4.11: A DeFi lending protocol is experiencing a sharp decline in the price of its collateral and
reserve assets, where the assets correlate 0.1. Panels correspond to 4 different levels of system debt,
with each panel showing the evolution of the collateral margin and the total debt outstanding. Each
panel also shows the consequences of different liquidity parameters.

For the case where the collateral and reserve assets are strongly positively correlated, we consider

how quickly a crisis may materialise for varying starting values of ETH liquidity and initial debt

in Figure 4.14. Figure 4.14 shows that for a given amount of debt, the lower the starting liquidity

19If strong identities (i.e., where the mapping between an agent and online identity is one-to-one and time-
invariant) are enforced on-chain, this calculus may change for agents, reducing the probability of a crisis by
increasing the costs to the agent of reneging on their debt commitments. In this chapter, we assume that strong
identities are not enforced.



Figure 4.12: A DeFi lending protocol is experiencing a sharp decline in the price of its collateral asset
with a negatively correlated reserve asset, where the assets correlate -0.9. Panels correspond to 4
different levels of system debt, with each panel showing the evolution of the collateral margin and the
total debt outstanding. Each panel also shows the consequences of different liquidity parameters.

Figure 4.13: For the simulation yielding the fastest undercollateralisation event, the co-evolution of
the ETH and reserve asset prices where the asset price returns are strongly negatively correlated.



(i.e., the amount that can be sold within 24 hours), the faster a negative margin precipitates.

Similarly, for a fixed initial starting liquidity, the more debt in the system, the faster the margin

will become negative, down to below 15 days.

Figure 4.14: Number of days before the collateral margin becomes negative, depending on the amount
of system debt and the initial amount of ETH that can be sold within 24 hours.

4.5 Composability and contagion

The possibility of financial contagion in DeFi is significant given the unrestricted composability

of protocols [Pul19b]. In Sections 4.4 and 4.2, we considered an exogenous price drop and

a governance attack in each case on a single protocol. Now we argue why these two design

weaknesses can lead to contagion to other protocols that might ultimately lead to a decentralised

financial crisis.

Both weaknesses, exogenous price drops and governance attacks result in the debt asset being



Figure 4.15: Both the price crash and the governance attack lead to an under-collateralisation of a
DeFi lending protocol. In turn, agents will try to exit the protocol by buying other assets (liquidity
sweeping). Any agent in a protocol using the now under-collateralised asset as debt will face the same
situation and, in turn, try to exit by buying other assets (evaporating collateral).

under-collateralised. Assuming rational agents with weak identities, it is not individually ratio-

nal for agents to settle their debts, and thus, the under-collateralised asset eventually reaches

a value of 0. Hence, an agent holding such an asset can execute a strategy called liquidity

sweeping to use his existing holdings to buy other assets while the price is not yet 0. A special

sub-case occurs in the governance attack scenario where the attacker can additionally mint an

unlimited supply of the debt asset to buy up all the available liquidity of other assets.

Further, any protocol that uses the now under-collateralised asset as a collateral asset to issue

another asset also becomes under-collateralised. Consider the example of Maker and Com-

pound: Maker uses ETH as collateral to issue DAI. Compound allows agents to collateralise

DAI to issue a cDAI token. As DAI becomes under-collateralised, cDAI loses its debt-backing.

We refer to this as evaporating collateral. Holders of composed assets like cDAI then have to

buy up existing liquidity once they are aware that individually rational agents will not settle

their debts. We illustrate this cycle in Figure 4.15 and give a total estimate of the financial

damage in Table 4.2.

Liquidity sweeping. Contagion occurs when the under-collateralised debt asset is used to



Weakness Financial damage (USD)

Under-collateralisation (price crash) of MakerDAO 145m
Under-collateralisation (governance attack) of MakerDAO 211m
Contagious under-collateralisation (price crash) of MakerDAO 180+m
Contagious under-collateralisation (governance attack) of MakerDAO 246+m

Table 4.2: Financial damage for an initial failure of the MakerDAO protocol either through a price
crash or a governance attack.

“soak-up” as much liquidity as possible before buyers of the debt asset can react. There are

two cases: First, if, as detailed in Section 4.4, the debt asset is under-collateralised due to an

exogenous price crash, the agent can trade all their under-collateralised debt (such as DAI) for

other assets on DeFi lending protocols which offer liquidity pools such as Compound [Com19],

Uniswap [Pro20b], and Aave [Aav20c]. This way, the agent can dispose of the debt asset if it

assumes the debt asset will fall to 0. Second, if, as detailed in Section 4.2, an attacker gains

the ability to create new tokens without collateral backing, the attacker can use these tokens

to buy all existing liquidity on available exchanges.

However, both cases assume that the price of the under-collateralised debt asset is not 0 at

least as long to complete the trades. We support this assumption with the halting of the IOTA

cryptocurrency network that occurred on February 13–15, 2020 [IOT20b]. Following a security

incident, the IOTA foundation stopped the centralised coordinator. The IOTA network could

not process transactions containing value and advised its users not to access their funds in their

wallets [IOT20a]. During the incident, the trading volume on exchanges of IOTA fell from 41m

USD to 21m USD Notably, the price of IOTA only moved from 0.34 USD to 0.31 USD within 14

hours of the announcement and recovered back to around 0.32 USD after another two hours.

Hence, the inability to transfer the IOTA cryptocurrency and access funds on the IOTA network

for an extended period caused only a maximum price drop of 9%.

To quantify the impact of liquidity sweeping, we took an instantaneous snapshot of major

marketplaces offering a DAI pair at approximately noon GMT+8 on 15 February, as presented

in Table 4.3. In the price crash case, agents could trade the whole of their $145m holdings.

However, an agent who had successfully undertaken the governance attack would be able to

soak up all of the order book liquidity since, with, in effect, an unlimited DAI supply, they can

pay any price to acquire other assets. We estimate the total USD value, aggregating across



markets and pairs, to be c. 211m USD20.

Marketplace Total orders
for DAI (USD)

CoinbasePro [Dat20] 7,343,000
OasisDEX [MEGH20] 2,483,000
Kraken [Dat20] 6,085,000
Bitfinex [Dat20] 2,661,000
Bittrex [Dat20] 39,957,000
KuCoin [KuC20] 2,442,000
Probit [Lim20] 10,000
Switcheo [Swi20] 176,000
VCC Exchange [Exc20] 21,000
OkEx [OKE20] 11,000
Exmo [EXM20] 61,000
DDEX [DDE20] 46,000
Coinut [Coi20b] 6,000
Compound [Com19] 143,283,000
Uniswap [Pro20a] 2,176,000
Kyber [Pro20a] 2,176,000
Bamboo Relay [Pro20a] 979,000
Eth2DAI [Pro20a] 971,000
Airswap [Pro20a] 99,000

TOTAL 210,986,000

Table 4.3: Assuming DAI:USD peg maintained at 1:1, total USD liquidity on all DAI pairs by mar-
ketplace. Rounded to the nearest thousand.

Evaporating collateral. Liquidity sweeping is not contained to agents that participate in a

single lending protocol if the assets of the protocol are used in others as well. Instead, a vicious

cycle occurs where any debt-backed asset issued in another protocol, e.g., DAI would be used to

issue cDAI on Compound, loaned in Aave, and used as a margin trading collateral in dY/dX.

Considering the DAI example in the price crash case, 145m USD of DAI would be exchanged,

35m USD of cDAI and any other protocol that uses DAI as backing collateral.

Collateral composition. As a stylised example, assume that there are N protocols with different

minimum collateralisation ratios, and each uses D/N as collateral. If this collateral becomes

less than 100% collateralised, we assume that the value of the debt would quickly fall to 0. We

further assume that agents choose a particular protocol for reasons exogenous to the system

and that each agent obtains the maximum leverage they can on a particular protocol by using

their issued debt to purchase additional collateral, which in turn is used to issue more debt.

To reflect heterogeneity in collateralisation ratios among protocols, we assign each of the N

protocols a collateralisation ratio based on random sampling from a uniform distribution over a

specified range. The maximum possible leverage for a given protocol π when an agent allocates

D/N units of collateral to it is given by D/Nπ/λπ. Therefore the maximum systemic loss is

20see Figure 4.3



Figure 4.16: Financial losses for 30 DeFi protocols which use the debt asset as collateral. “O/C”stands
for overcollateralisation.

given by
∑Π

π=1D/Nπ/λπ.

Figure 4.16 demonstrates how for three different maximum overcollateralisation parameter

ranges, namely (101–105%), (101–150%), and (101–300%), what the maximum system-wide

losses could be, assuming that the protocol in which the crash occurs has a debt of 400m USD,

and the liquidity parameter is ρ = 0.01. As the minimum overcollateralisation ratio falls, the

maximum potential losses for the system grow: from right to left, as the minimum overcol-

lateralisation requirement falls from 3× (or 300%) to 1.01× (101%), the maximum possible

loss increases. Given our uniform splitting of debt, what also emerges is that the minimum

collateralisation ratio drives the result.

Crisis. Agents seek to exit their under-collateralised asset positions by buying other available

assets. Individually rational agents should seek assets uncorrelated with the asset they are

disposing of. However, this leads to a spread of the initial DeFi lending protocol failure to

any other asset available for trading on exchanges that accept the initial lending asset. Hence,

the DeFi crisis can spread across multiple blockchains and affect centrally-backed assets like

USDT [Tet20].



4.6 Related work

There is a paucity of directly related work. However, existing work can be divided into the

following categories. A series of fundamental results in relation to the ability of non-custodial

stablecoins to maintain their peg is provided in [KMM19]. It is shown that stablecoins face

deleveraging spirals, which cause illiquidity during crises, and that stablecoins have stable and

unstable domains. The model primarily involves the assumption of two types of agents in

the marketplace: the stablecoin holder (who wants stability) and the speculator (who seeks

leverage). The authors further demonstrate that such systems are susceptible to tail volatility.

While unpublished, [CDK+18] uses option pricing theory to design dual-class structures that

offer fixed-income stablecoins that are pegged to fiat currency. Further, [Pen18] considers how

one might build an asset-backed cryptocurrency through the use of hedging techniques.

4.7 Conclusions

This chapter has sought to demonstrate that, as they stand, DeFi lending protocols are liable to

various attack vectors. Firstly, we show the feasibility of an attack on the governance mechanism

of Maker, finding that, before the fix implemented by Maker, provided an attacker was able

to lock 27.5m USD of governance tokens, they would have been able to steal all 0.5bn USD

worth of collateral within two blocks. Therein we presented a novel strategy that would have

enabled an attacker to steal the collateral within two transactions without the need to escrow

any assets.

Secondly, after providing formal constraints on the robust operation of a DeFi lending protocol,

we use simulations to show that a DeFi lending protocol may become under-collateralised for

given parameters. We describe the interrelation of market liquidity and outstanding debt,

showing how the larger the debt, or the less liquid a market, the faster insolvency can occur.

We also consider different levels of correlation between the collateral and the reserve asset in a

DeFi lending protocol and show that having a reserve asset that is weakly positively correlated

or indeed negatively correlated can help to ensure protocol solvency.



These two failure modes in a DeFi protocol are potentially mutually reinforcing. If the collateral

and reserve assets of a DeFi lending protocol experience a sharp decline in price, the cost

of acquiring enough governance tokens to undertake the governance attack would also likely

fall. Conversely, should an actor undertake a governance attack, this would send shock waves

throughout the DeFi ecosystem, reducing the price of the collateral asset and making under-

collateralisation more likely.



Chapter 5

Dissimilar Redundancy

5.1 Introduction

Decentralized Finance (DeFi) Protocol hacks are frequent — with more than 150 to date to-

talling losses of more than 1.5bn USD. See Appendix A.1 of this thesis for a list of such hacks.

This is problematic for a financial infrastructure that is purportedly going to replace traditional

finance. The severity of the issue of hacks is exacerbated by the non-custodial nature of DeFi

systems. Unlike in traditional financial systems where there are safety nets such as the state or

insurers, in the DeFi setting, there are no such safety provisions at scale. Moreover, while there

is a nascent insurance market for DeFi insurance, e.g. [Mut21], such solutions provide only a

(necessary) second-best solution: providing coverage in the event of a DeFi system failure. A

first-best solution is to prevent failure in the first place.

Preventing such failures is challenging. Leaving aside the security of the underlying blockchain

layer, the two main pillars of DeFi protocol security are (i) extensive smart contract testing

and (ii) code audits. Both of these have drawbacks. Ensuring adequate test coverage is very

challenging, not least when the objective is to ensure all edge cases are covered in the tests.

While testing is an essential part of smart contract development, we suggest that it is unrealistic
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to expect even best-practice testing with a very high degree of coverage to be sufficient to prevent

all bugs. External teams often perform code audits under time pressure, with audits typically

lasting 2 to 3 weeks from start to finish, even for teams unfamiliar with the code base. Even for

the most experienced software engineer, native to DeFi, it is wishful thinking to believe that

they will always be able to catch every bug. The problem is compounded by smart contract

composability — where DeFi protocols are snapped together like DeFi Lego — which increases

the challenge as tests and auditors now have to anticipate bugs that could arise with unseen

smart contracts.

This final major chapter in the thesis presents a new approach to preventing smart contract

failure: dissimilar redundancy. In aviation, the safety-critical nature has led to the emergence

of a practice of implementing multiple separate and redundant flight control systems. For

example, the Boeing 777 [Yeh96] featured a Fly-By-Wire flight control system that had to meet

extremely high levels of functional integrity and reliability. To do this, it had three primary

flight computers, each containing three dissimilar internal computational lanes. The lanes

differed in terms of compilers, power supply units and microprocessors, with, for example, lane

one using the AMD 29050, lane two the Motorola 68040 and lane three the Intel 80486. Within

each of the three flight computers, two lanes acted as monitors while the third lane was in

command. In this way, the flight computer features a form of redundancy that is dissimilar,

with the multiple lanes resistant to bugs induced by microprocessors or compilers.

We apply the core of this idea to smart contracts. We implement and detail a system based on

a proxy pattern that relies on dissimilar DeFi protocol implementations and cross-checks one

against the other before effecting any on-chain state change. On Ethereum, this approach has

already been taken for client implementations, with the community maintaining multiple open-

source clients developed by different teams and using different programming languages [Eth21].

This approach aims to strengthen the network and make it more diverse, with a view to avoiding

a single client dominating the network to remove single points of failure. We extend this concept

to the smart contract layer itself.

Our contributions are as follows.

• We introduce the notion of dissimilar redundancy for DeFi protocols.

• We provide an implementation of a protocol for dissimilar redundancy for a DeFi proto-



col1.

• We evaluate the protocol on a smart contract auction system implemented in both Solidity

and Vyper, verify that a fuzzing approach would be able to detect purposefully introduced

bugs and provide the costs in USD of using a protocol for dissimilar redundancy.

Outline

We provide our methodology in Section 5.2, evaluate it in Section 5.3, consider related work in

Section 5.4 and conclude in Section 5.5.

5.2 Methodology

5.2.1 Overview

We now turn to how we use the approach of dissimilar redundancy in the context of Ethereum.

At the centre of our approach is a proxy architecture pattern. With a proxy pattern, all

message calls to a contract C first go through a proxy contract P that serves to direct the

message calls to contract C. With this pattern, contract C contains the actual implementation

logic while contract P provides a storage layer. At present, a common use of this pattern is

to provide contract upgradeability [BG19,Pal19]: while contracts cannot be directly upgraded

once deployed, upgradeability can be mimicked by changing where contract P delegates calls

to from contract C to contract C1.

We expand on this pattern: in pursuing dissimilar redundancy, we allow P to delegate to

multiple implementations simultaneously. This contrasts with the standard pattern, which

only permits delegation to a single implementation at a time. In a nutshell, our proxy contract

P sequentially calls two different implementations - supposedly identical in logic - C1 and C2, and
ensures that the data returned by function calls to each implementation as well as return values

1https://github.com/danhper/smart-contract-dissimilar-redundancy



Figure 5.1: Overview of our dissimilar redundancy framework

from an arbitrary number of checks provided by the contract developer match. In this context,

a check is a call to a contract’s function of which the return value is deemed relevant to the

function called. For example, in the context of an ERC-20 token [VB15], the developer might

want to add balanceOf(from) and balanceOf(to) as a check for transferFrom(from, to, amount).

The proxy will then call balanceOf twice after each call to transferFrom and ensure consistent

results among the implementations.

Although the idea is straightforward, the implementation involves overcoming several technical

challenges. Figure 5.1 shows an overview of the framework.



5.2.2 Technical challenges

Calling implementations with the same state. The first challenge is that we need to call both

implementations with the same initial state; however, sequential contract calls typically result

in state changes. To overcome this, all state changes made by a call to an implementation

must be rolled back before we call the next implementation. We leverage the atomic nature of

Ethereum’s message calls to achieve this: if a transaction raises an error, the state reverts to

the initial state.

Algorithm 1 Dissimilar redundancy framework call delegation

function CallDelegate(impl, data, checks, isLast)
(ok, retData) ← DelegateTo(impl, data)
checkResults ← RunChecks(checks)
checksHash ← HashChecks(checkResults)
if isLast then

return (ok, retData, checksHash)
else

revert (ok, retData, checksHash)
end if

end function

function RedundantCall(implementations, data)
n← Length(implementations)
signature ← GetSig(data)
checks ← GetChecks(signature)

for i← 0, n− 1 do
impl ← implementations[i]
last ← i == n− 1

callData ← Encode(CallDelegate, impl, data, checks, last)
( , delegateRet) ← DelegateTo(this, callData)
(ok, retData, checksHash) ← Decode(delegateRet)

if IsDefined(previousOk) then
Assert(previousOk == ok)
Assert(previousRetData == retData)
Assert(previousChecksHash == checksHash)

else
previousOk ← ok
previousRetData ← retData
previousChecksHash ← checksHash

end if
end for

return (ok, retData)
end function



Instead of the proxy directly delegating to an implementation, our approach first delegates

to itself, passing in the call data as an argument along with the implementation to call and

the checks to perform. In this delegated call, the proxy then delegates to the implementation

executes all the checks and combines their result in a single hash value. It then reverts the

execution to roll back the changes made by the implementation and returns the checks hash

as the revert data. The only exception is the call to the last implementation, where it returns

the checks hash normally instead of reverting to persist the changes. We provide a high-level

overview of the delegation logic in Algorithm 1. Low-level implementation details can be found

in our open-source implementation.

Check encoding. A second challenge concerns how the checks performed after each execution

should be encoded. A check is a call to a contract that needs to be consistent across implementa-

tions after each execution. To make the proxy retain the interface of a proxied implementation,

we must pre-register the checks with the proxy rather than specifying the checks with each call.

A naive implementation could involve the developer registering a function with pre-encoded

arguments to be called after any call. However, such an implementation would have severe

limitations. Pre-encoding arguments make calls such as the one described above for balanceOf

impossible, as these depend on call data and transaction information—this information is only

available at runtime. Since these calls need to be well targeted for them to be effective and find

potential discrepancies among implementations, there needs to be a different approach.

Instead, we implement an approach which achieves the following objectives:

1. the registration of per-function checks without pre-encoded arguments. For example,

transferFrom and approve could have a different set of checks registered.

2. call data and transaction information should be accessible during the checks.

The first objective is easily achieved by storing a mapping from function signature to checks

and retrieving the relevant checks depending on the function signature called by the current

call to the proxy. The second objective is more challenging, as the developer must be able to

register checks upfront that rely on information only available when the function is executed.

To allow for this, rather than registering checks by passing in the arguments themselves, we



design a simple byte encoding for the arguments that allows abstract arguments, registered

with the checks, to be mapped to the concrete arguments that are computed when executing

the checks. For example, an abstract argument could be “the first argument of the current call”

or “the sender of the current transaction”. When executing the checks, the proxy will map these

to the actual value of the first argument or the transaction’s sender and encode these when

calling the check function.
0 1 2 3 4 5

sig C arguments

0 N content

1 O L

2 T

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Arguments

�⏐
Argument type

Figure 5.2: Encoding for registering checks. C is the number of arguments. The three types of
arguments are shown. Type 0 represents a static argument, and N is the length of the static content.
Type 1 represents the call data argument where O and L are the offset and length to retrieve from
call data. Type 2 represents the environment argument, and T is the type of environment variable
(e.g. msg.sender) to use

In Figure 5.2, we show how we encode abstract arguments to register the checks. As for regular

contract calls, the first four bytes represent the signature of the function to be called. The next

byte is the number of arguments to pass to the function. Each argument can then be one of

three types: a static argument, a call data argument or an environment argument. These types

determine how the concrete argument will be computed when the contract is called:

• A static argument: simply passed through to the function as a concrete argument.

• A call data argument: the given bytes from the transaction call data are extracted and

passed as an argument.

• An environment argument: looks up the concrete argument in the current transaction.

The argument to be looked up in the environment, e.g., the transaction’s sender or the

current block timestamp, is specified by a single byte in the abstract argument.

Once all the abstract arguments are converted into their concrete counterpart, they are encoded

along with the function signature, and the check can be performed.



tokenProxy . r eg i s t e rCheck (
s i g [ " transferFrom " ] ,
tokenProxy ,
encode_args (

Token ,
" balanceOf " ,
[ ( ArgumentType . CallData , (4 , 3 2 ) ) ]
)

)

tokenProxy . r eg i s t e rCheck (
s i g [ " transferFrom " ] ,
tokenProxy ,
encode_args (

Token ,
" balanceOf " ,
[ ( ArgumentType . CallData , (36 , 3 2 ) ) ]
)

)

tokenProxy . r eg i s t e rCheck (
s i g [ " transferFrom " ] ,
tokenProxy ,
encode_args (

Token ,
" a l lowance " ,
[ ( ArgumentType . CallData , (4 , 32 ) ) ,
( ArgumentType . Env , EnvArg . Sender ) ]
)

)

Figure 5.3: Example checks registration for an ERC-20 token transferFrom function

This encoding provides enough flexibility to perform a wide variety of different checks.

5.2.3 Implementation

We show an example of such checks in Figure 5.3, where we register three different checks for the

transferFrom function of an ERC-20 token. The two first checks are for the balance of the first

argument (the address sending tokens) and the second argument (the address receiving tokens)

of the transferFrom. In both cases, we extract these arguments from the call data. The third

check is for the allowance and uses the first argument but also the sender of the transaction, as

their allowance is expected to decrease after a successful call to transferFrom.



5.3 Evaluation

We use a smart contract that implements a simple auction system to evaluate our solution.

The rules of the auction system are as follows:

1. A seller starts an auction with an NFT of their choice and sets an end time

2. The NFT is transferred to the auction contract

3. Any user can bid in the auction, and the bid must be strictly greater than the previous

highest until the auction ends

4. After the auction ends, anyone can “finalise” the auction, which will either transfer the

NFT to the winner of the auction or transfer it back to the owner if there were no bids

We implement the auction contract with the same behaviour in Solidity and Vyper but pur-

posefully introduce implementation bugs in one of the two contracts. We then check whether

these bugs would be detected by fuzzing the contract, i.e., passing many arbitrary input values,

causing the proxy to fail due to inconsistencies in the evaluation results.

The bugs. We introduce two bugs to the Vyper version of the contract. First, rather than

checking that the bid is strictly greater than the previous one, we check that the bid is greater

or equal to the previous one. This means that in this particular case, the Solidity version will

revert the transaction while the Vyper one will successfully execute. Second, in the Vyper

implementation, we omitted to implement the case without bidders. As a result, both versions

will successfully execute, but for the Vyper implementation, the ownership of the NFT will still

be the auction contract in the case there are no bidders.

5.3.1 Development-time testing

We first test our code locally to show how our approach can make bug detection at development

time significantly easier.



auction_proxy . r eg i s t e rCheck (
s i g [ " f i n a l i z e " ] ,
n f t _ c o l l e c t i o n . address ,
encode_args (

Nf tCo l l e c t i on ,
" ownerOf " ,
[ ( ArgumentType . S ta t i c , ( " u int256 " , NFT_ID) ) ]
)

)

@given ( b ids=s t . l i s t s ( s t . t u p l e s ( s t . i n t e g e r s ( min_value =0) ,
addre s s e s ( ) ) ) )

def test_bid ( b ids ) :
with ensure_cons i s t ent ( ) :

f o r value , account in bids :
auction_proxy . bid ({ " from " : account , " va lue " : va lue })

@given ( b ids=s t . l i s t s ( s t . t u p l e s ( s t . i n t e g e r s ( min_value =0) ,
addre s s e s ( ) ) ) )

def t e s t _ f i n a l i z e ( b ids ) :
with ensure_cons i s t ent ( ) :

f o r value , account in bids :
auction_proxy . bid ({ " from " : account , " va lue " : va lue })

chain . s l e e p (3600)
auction_proxy . f i n a l i z e ( )

Figure 5.4: Testing code using dissimilar redundancy

To test our code, we use Python combined with the Brownie framework 2 for testing and

the Hypothesis library [MHD+19] to generate test cases. We show the most critical part of

the code we use in our auction contract in Figure 5.4. We note that the ensure_consistent

context manager is implemented as part of our tooling and will only fail if a call reverts because

implementations did not behave similarly.

In the tests, we first register a check for finalise that will look up the owner of the NFT that

was on sale. For testing both bid and finalise , we generate random bids, where a bid is an

account and value (price to pay for the auction) pair. For bid, we only execute all the bids,

while for finalise , we also ensure that the auction has ended and execute finalise.

Using this approach, fuzzing the contract requires performing differential fuzzing on the different

implementations of the contract logic registered by the proxy. This makes it possible to quickly

identify the cases where the two implementations do not behave in the same way.

2https://eth-brownie.readthedocs.io/



F a l s i f y i n g example : te s t_bid_cons i s tency ( b ids =[
(1 , <Account ’0 x66aB6 . . . 5 871 ’ >) ,
(1 , <Account ’0 x66aB6 . . . 5 8 7 1 ’ > ) ] ,

)
===========================================================
FAILED t e s t s / tes t_auct ion . py : : test_bid -
brownie . excep t i ons . VirtualMachineError : r e v e r t : a l l
implementat ions must re turn the same s u c c e s s

(a) Failing test case for the bid function showing a failure after two bids with the same value were placed

F a l s i f y i n g example : t e s t _ f i n a l i z e _ c o n s i s t e n c y (
b ids =[ ]

)
===========================================================
FAILED t e s t s / tes t_auct ion . py : : t e s t _ f i n a l i z e -
brownie . excep t i ons . VirtualMachineError : r e v e r t : a l l
implementat ions must re turn the same checks

(b) Failing test case for the finalize function showing a failure when no bids have been placed

Figure 5.5: Failing tests when fuzzing the auction contract with a correct and an incorrect implemen-
tation

In Figure 5.5, we show the results of these tests. Note that we fix the first failing test before

proceeding to the second one.

The test framework correctly outputs a failure for the bid function when two bids are placed

with the same value in a row. The test output makes the failure scenario clear, as the two bids of

the input have a value of 1. The error message mentions that all implementations should return

the same“success”, which means that one of the implementations was successfully executed (the

bug-ridden version) while the other failed to execute.

The test for the finalise function also correctly fails with an example containing no bids. This

is consistent with the bug in the Vyper version of the Solidity, which does not transfer back the

token properly to its original owner. The failing test also mentions that all implementations

must return the same checks, which means that all implementations had the same success

status (they all succeeded in this particular case), but the checks did not return the same value.

Indeed, a check was registered to look up the NFT owner.

Overall, with this example, with only a few lines of code, it was possible to have extensive cov-

erage of the tested function that can automatically find discrepancies among implementations

and indicate to the developer the test cases that would yield different results.



Name Address

Auction proxy 0xAd837BDD116C14aA82311Db7D1879C7cDDCfd283
Auction (Sol, proxied) 0xdb85f3DB2aA6E5e294485972ABE921be188b6A37
Auction (Vy, proxied) 0x9FD31161360B5E772f2b9C469D4A35E679273Dbf
Auction (Sol, standalone) 0xE575CCb0213393eBFc9258013af1c43e9E416544
Auction (Vy, standalone) 0xEe164319fE07127Efc8fdf8b3e99ea736F8c955E

Table 5.1: Contracts deployed on Polygon mainnet. “Sol” are Solidity contracts. “Vy” are Vyper
contracts. “Proxied” are contracts used by the proxy. “Standalone” are contracts interacted with
directly.

Start First bid Subsequent bid Finalize

Proxied 0.0229 0.0092 0.006 0.0144
Solidity 0.0094 0.0045 0.0029 0.0052
Vyper 0.0108 0.0045 0.0029 0.0071

Table 5.2: USD cost3 of calling different functions of the auction contract with and without dissimilar
redundancy proxy. The gas price is fixed at 30 Gwei.

5.3.2 Real-world deployment

An essential strength of our approach is that it is possible to utilise the two implementations

not only at development and testing time but also after the contract is deployed, ensuring that

all the transactions executed will always be consistent across the different implementations

provided. To demonstrate how this would perform on a real-world blockchain, we deploy our

auction and its two implementations on the Polygon main network (an Ethereum side-chain

suitable since it offers lower transaction fees), ensure that the calls that would trigger revert

correctly and measure the cost overhead of our approach. We list all the deployed contracts in

Table 5.1.

To give comparable results, we deploy our proxy using the Solidity and Vyper implementations

and a standalone version of each implementation. During our interactions with the contracts,

we maintained a fixed gas price of 30 Gwei, which was enough at the time of writing for

near-instantaneous inclusion in a Polygon block.

We summarise the cost nominated in US dollars of all the interactions with our auction contracts

in Table 5.2. We split the costs of the first and the subsequent bids since the first bid allocates

3We use the December 12th 2021, price of 2.15 USD per MATIC token, Polygon’s native token used to pay
for gas fees



storage, using more gas than the subsequent ones. Since the proxy uses both the Solidity and the

Vyper implementation, a lower bound for the cost is the sum of the cost of each implementation.

The difference between the sum of these costs and the cost of calling the proxy is the overhead

of the proxy itself, including the cost of calling checks after each call and checking consistency

among results. In our example, only finalise has a check registered to check for the owner of the

NFT after execution. For the calls to start and bid, respectively, about 1.2% and 2.2% of the

total cost is part of the proxy overhead, the rest of the cost being used by the actual underlying

functions. For finalise , the overhead is understandably higher as a check is registered. Indeed,

about 14.5% of the cost is used by the proxy itself.

We also check that a transaction that would cause our correct and our buggy implementation

to diverge would correctly revert. To do so, we bid using subsequently twice the same amount,

which fails for the proxied version (tx 0x5f840a...6dc334c) by returning the same error as the one

we saw during the tests. As a sanity check, we try the same sequence of bids on the standalone

implementations, and the Solidity version reverts correctly (tx 0x406ad7...7759673) while the

Vyper one succeeds (tx 0x888189...7df41e8).

5.4 Related work

We first present how a similar approach has been helpful for Ethereum clients, then in the

context of bug bounties, before finally presenting some related research discussing differential

fuzzing.

5.4.1 Ethereum clients

The Ethereum network has been running using different client implementations. The goal of

having multiple clients has always been to make the network more robust and ensure that it

does not fail in case there is a bug, a vulnerability, or an avenue for a potential denial-of-service

(DoS) attack in one of the implementations. In the case of Ethereum, this allows for several

failure modes. If one of the implementations had a bug that would make it crash on certain



transactions, the network would continue to operate with other implementations that do not

contain this bug. This would be similar in the case of a DoS attack only effective on one type

of implementation. On the other hand, if a bug or exploit results in a different state transition

after executing a transaction, it would create a network split where the victim implementation

would only manage to reach consensus with nodes using the same implementation. This is

riskier than the previous case but remains safe as long as exchanges and other entities bridging

on-chain activity to off-chain assets ensure all implementations are in a consistent state before

accepting to process a transaction. Despite the high maintenance cost, this diversity of clients

has benefited Ethereum and allowed it to operate smoothly for over six years.

5.4.2 Application to bug bounties

In [BDTJ18], the authors develop the Hydra Framework, which is the first general approach to

modelling bug bounties in a way that seeks to incentivize bug disclosure. This framework relies

on a concept the authors refer to as an exploit gap, with their framework transforming programs

via N-of-N version programming, running multiple program instances. This framework has

similarities to the approach we develop but differs in some crucial respects. In Hydra, the

authors rely on an instrumentation approach, instrumenting opcodes, whereas ours relies on an

argument encoding scheme and proxy contracts.

5.4.3 Differential fuzzing

Having two implementations that should behave in the same way allows to perform differ-

ential fuzzing: fuzzing both implementations trying to look for cases where they would be-

have differently. This technique has already been used in multiple domains such as cryptogra-

phy [BJR+14], programming languages [CSS+16], and blockchain consensus [Eth19,FRM+19].

A recent work leveraging differential fuzzing to find bugs in Ethereum clients [YKC21] has

managed to find not only the most known consensus bugs but also two new ones, including a

bug that led to a fork in the consensus due to only part of the full nodes in the network having

upgraded to the latest version [Cop21]. Overall, this shows the potential of differential fuzzing

and how it can help find bugs and zero-day exploits.



5.5 Conclusion

We have argued that the high financial stakes in the context of DeFi merit an approach to

program redundancy inspired by avionics: the utilization of dissimilar redundancy. Through

implementing the same program logic more than once, ideally with different programming

languages and even by different engineering teams, and then using an on-chain execution logic

that ensures that the dissimilar implementations must agree before the on-chain state can

update, redundancy is brought into the smart contract ecosystem. Such redundancy should

make smart contracts and DeFi, as a whole, less vulnerable to exploits from implementation

bugs.

We hope this chapter can offer one step toward a more robust and secure DeFi. As in avionics,

in DeFi, the stakes are high, and the risks material.



Chapter 6

Conclusion

6.1 Summary of thesis achievements

The first part of the thesis examines the interconnection of DeFi protocols, focusing on —

and coining the term — Protocols for Loanable Funds (PLFs). Our empirical examination

showed that nascent DeFi protocols display substantial degrees of interconnection, existing as

a series of connected nodes. We presented a liquidity study on markets for a set of assets. We

found that liquidity plays a critical role in the performance of DeFi protocols, with interest

rate rules behaving differently in response to varying degrees of liquidity. We find that periods

of illiquidity are common, often shared between protocols, and the sources of liquidity reserves

are concentrated. In some cases, three accounts control as much as 50% of the liquidity.

On investigating one particular PLF, Compound, we found that the no-arbitrage condition of

Uncovered Interest Parity did not hold for the sample period, suggesting that markets associated

with the protocol may be relatively inefficient. Further, we investigated the extent of market

dependence between different PLFs. The borrowing rates appear to be interdependent, with

protocols seeming to influence the interest rates on other protocols. These findings highlight

the importance of understanding the complex and dynamic interconnections between DeFi

protocols to assess better and manage systemic risk within the ecosystem.

The second part of the thesis investigates the fragility of an individual DeFi node, using Mak-
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erDAO’s DAI as a case study. Our analysis first revealed a design weakness in the governance

system of MakerDAO’s DAI that made it feasible for an attacker to take complete control of

the protocol, exposing users to significant risk. We presented a novel strategy utilising flash

loans that would have allowed the execution of the governance attack in just two transactions

without locking any assets. We then developed a stress-testing framework for a stylised DeFi

lending protocol and simulated a price crash event with this stress-testing methodology. In this

simulation, we found that for plausible parameter values, a DeFi lending protocol could become

undercollateralised within 19 days.

In the final major chapter, we proposed an approach to making DeFi protocols less dangerous

from a smart contract perspective through leveraging redundancy for smart contracts: using

multiple smart contracts that are supposed to implement the same program logic to reduce

the chance of software bugs occurring. Our analysis of over 70 exploits of DeFi protocols and

the total loss of approximately 1.5bn USD highlighted the urgent need for new approaches

to minimise such attacks’ frequency and severity. We developed a new self-delegation proxy

pattern approach, with novel argument encoding for arbitrary function checks, to We showed

that dissimilar redundancy could reduce the likelihood of successful attacks on DeFi protocols

that exploit the code-is-law property.

6.2 Looking toward the future

In direct relation to this thesis, the most pressing avenues for future work seem to be:

• Developing formal models that examine financial contagion in the DeFi setting. Such

work could extend that in the economics literature [EGJ14, AG00], which investigates

cascades of failures in a network of interdependent financial organisations. DeFi protocols

could be considered along the key axes of integration (how dependent each protocol is on

counterparties) and diversification. In particular, in the economics literature, such work

considers the role of discontinuities in asset values (for example, defaults) on cascades:

in the DeFi setting, smart contract risk is a very plausible source of such discontinuities

in asset values. Therefore extending the analysis of the impact of discontinuities in asset

prices into the DeFi realm is of great importance.



• Perhaps of all the contributions of this thesis, there remains the most work to do con-

cerning chapter 5. The extent of DeFi protocol exploits, both in terms of frequency and

value, is staggering; clearly, significant effort must be invested in reducing the frequency

of such exploits. One immediate area for future work relates to improving the efficiency of

schemes that leverage dissimilar redundancy. In particular, reducing the computational

resources required on-chain since these seem likely to be prohibitively expensive. How-

ever, the extent to which computational efficiency (especially in terms of gas on Ethereum)

matters long-term will depend on advances made at the layer-one level. If gas costs fall

significantly on Ethereum, the need for computationally efficient dissimilar redundancy

regimes is less important. The existence of such exploits prevents DeFi from safely scal-

ing and supplanting traditional financial mechanisms since consumers seem likely to be

exposed to significant welfare losses.

Aside from future work that pertains most directly to this thesis, it is clear that how pri-

vacy is approached on-chain must evolve for DeFi to scale. On Ethereum, DeFi grants pseu-

doanonymity. But if an address is linked to an individual, the entire transaction history of that

address is visible to anyone in the world. For individuals, such possible privacy breaches may

result in significant personal danger: for example, the wealthy could be targeted. For busi-

nesses, exposing all of their payments to other companies makes modern commerce prohibitive

on-chain and, in some cases, may encourage the formation of oligopolies to the detriment of

consumers.



Appendix A

A list of exploits in DeFi

A.1 Exploits

Table A.1: Funds lost in protocol hacks. Source: DeFiLlama, https://defillama.com/hacks

Date Name Technique Loss (m, USD)

2022-03-23 Ronin Private Key Compromised (Social En-

gineering)

624.0

2021-08-10 Poly Network Access Control Exploit 611.0

2022-10-06 Binance Bridge Proof Verifier Bug 570.0

2022-11-12 FTX Private Key Compromised (Unknown

Method)

450.0

2022-02-02 Wormhole Signature Exploit 326.0

2018-04-21 Gate.io Private Key Compromised (Unknown

Method)

235.0

2021-12-04 Bitmart Private Key Compromised (Unknown

Method)

196.0

2022-08-01 Nomad Trusted Root Exploit 190.0

2022-04-17 Beanstalk Flashloan Governance Attack 181.0

Continued on next page
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Table A.1 – continued from previous page

Date Name Technique Loss (m, USD)

2022-09-20 Wintermute Private Key Compromised (Brute

Force)

160.0

2017-11-09 Parity Multisig Contract not initialized 150.0

2021-09-29 Compound Math Mistake Exploit 147.0

2021-12-13 Vulcan Forged Private Key Compromised (Unknown

Method)

140.0

2021-10-27 Cream Flashloan Price Oracle Attack 130.0

2021-12-02 Badger Frontend Attack 120.0

2022-10-11 Mango Market Price Oracle Attack 115.0

2022-06-23 Harmony Bridge Private Key Compromised (Unknown

Method)

100.0

2021-10-08 Mirror Protocol Duplicate Call Exploit 90.0

2022-05-01 Fei Rari Flashloan Reentrancy Attack 80.0

2022-01-28 Qubit Finance Transfer Logic Exploit 80.0

2021-10-29 AnubisDAO Drained Contracts 60.0

2016-06-17 The DAO Reentrancy 60.0

2021-04-19 EasyFi Private Key Compromised (Unknown

Method)

59.0

2021-04-28 Uranium Finance Math Mistake Exploit 57.2

2021-11-05 bZx Private Key Compromised (Phishing) 55.0

2022-03-23 Cashio Collateral Validation Exploit 48.0

2020-09-29 Kucoin Private Key Compromised (Unknown

Method)

45.0

2021-05-19 PancakeBunny Flashloan Price Oracle Attack 45.0

2021-02-13 Alpha Finance Flashloan Pool Shares Exploit 37.5

2021-09-21 Vee Finance Flashloan Price Oracle Attack 34.0

2022-01-18 Crypto.com Private Key Compromised (Unknown

Method)

33.7

2021-03-04 Meerkat Finance Drained Contracts 32.0

Continued on next page



Table A.1 – continued from previous page

Date Name Technique Loss (m, USD)

2021-11-30 MonoX Swap Function Exploit 31.4

2021-05-02 Spartan Protocol Flashloan Pool Shares Exploit 30.5

2021-12-18 Grim Finance Flashloan Reentrancy Attack 30.0

2022-11-01 Deribit Private Key Compromised (Unknown

Method)

28.0

2022-06-05 Wintermute Cross Chain Multisig Deployment Ex-

ploit

27.6

2021-03-05 Paid Network Infinite Mint and Dump 27.0

2021-06-23 StableMagnet Drained Contracts and User Wallets 27.0

2020-04-19 dForce Reentrancy 25.0

2020-10-26 Harvest Finance Flashloan Price Oracle Attack 25.0

2021-05-12 XToken Flashloan Price Oracle Attack 24.0

2021-04-12 Elephant Money Flashloan Price Oracle Attack 22.2

2022-11-06 Pando Rings Price Oracle Attack 22.0

2022-05-13 Blizz Finance Outdated Oracle Exploit 21.8

2021-08-03 Popsicle Finance Flashloan Incentive Rewards Exploit 20.0

2020-11-22 Pickle Finance Vault Swap Exploit 19.7

2021-08-30 Cream Finance Flashloan Reentrancy Attack 18.8

2021-11-25 Snowdog Drained Contracts 18.1

2021-05-17 bEarn Flashloan Withdraw Logic Exploit 18.0

2021-10-14 Indexed Finance Flashloan Price Oracle Attack 16.0

2022-10-27 Team Finance Migrate Function Mistake Exploit 15.8

2022-04-02 Inverse Finance Price Oracle Attack 15.6

2020-09-28 Eminence Flashloan Price Oracle Attack 15.0

2021-02-27 Furucombo Delegatecall Exploit 14.0

2022-04-28 Deus DAO Flashloan Price Oracle Attack 13.4

2020-12-02 Compounder Finance Drained Contracts 12.0

2021-02-05 Yearn Flashloan Price Oracle Attack 11.0

2021-05-07 Value DeFi Math Mistake Exploit 11.0

Continued on next page



Table A.1 – continued from previous page

Date Name Technique Loss (m, USD)

2021-12-02 Saddle Finance Flashloan Swap Logic Exploit 11.0

2021-05-08 Rari Capital Price Oracle Attack 10.0

2021-05-05 Value DeFi Access Control Exploit 10.0

2022-01-04 Arbix Finance Drained Contracts 10.0

2022-02-10 Dego Finance Private Key Compromised (Unknown

Method)

10.0

2020-12-29 Cover Incentives Function Mistake 9.4

2021-08-10 Punk Protocol Delegatecall Exploit 8.95

2022-07-02 Crema Access Control Exploit 8.8

2022-02-08 Superfluid CTX Exploit 8.7

2023-02-16 Platypus Finance Flashloan Reentrancy Attack 8.5

2022-10-18 Moola Market Price Oracle Attack 8.4

2021-12-21 Visor Finance Access Control Exploit 8.199999

2021-07-22 Thorchain Refund Logic Exploit 8.0

2020-11-17 Origin Protocol Flashloan Reentrancy Attack 8.0

2022-01-08 LCX Private Key Compromised (Unknown

Method)

7.94

2021-07-10 Anyswap Private Key Compromised (Bad

ECDSA Implementation)

7.9

2020-12-18 Warp Finance Flashloan Price Oracle Attack 7.8

2022-02-06 Meter Deposit Function Exploit 7.7

2017-07-18 CoinDash Frontend Attack 7.7

2022-02-01 BNS Private Key Compromised (Unknown

Method)

7.5

2021-05-28 BurgerSwap Flashloan Reentrancy Attack 7.2

2021-08-12 DAO Maker Private Key Compromised (Unknown

Method)

7.0

2020-11-14 Value Defi Flashloan Price Oracle Attack 7.0

2022-12-10 Lodestar Finance Flashloan Price Oracle Attack 6.9

Continued on next page



Table A.1 – continued from previous page

Date Name Technique Loss (m, USD)

2021-06-16 Alchemix Borrow Logic Exploit 6.5

2021-05-29 Belt Flashloan Price Oracle Attack 6.3

2022-03-15 Hundred Finance Flashloan Reentrancy Attack 6.2

2021-07-15 Bondly Private Key Compromised (Unknown

Method)

5.9

2022-06-16 Inverse Finance Flashloan Price Oracle Attack 5.8

2021-03-14 Roll Private Key Compromised (Unknown

Method)

5.7

2022-03-15 Agave DAO Flashloan Reentrancy Attack 5.5

2022-08-02 Slope Wallet Private Key Compromised (Stored

Publicly)

5.3

2022-12-02 Ankr Access Control Exploit 5.0

2021-07-15 THORChain Over-ride Logic Exploit 5.0

2022-11-03 pGALA *white hack Misconfiguration 4.589449

2021-06-22 Eleven Finance Flashloan Burn Function Exploit 4.5

2021-08-29 X-Token Flashloan Price Oracle Attack 4.5

2022-12-16 Raydium Private Key Compromised (Unknown

Method)

4.4

2021-11-07 ChainSwap Exploit Weak Authentication Check 4.4

2021-08-17 SurgeBNB Flashloan Reentrancy Attack 4.0

2021-09-04 DAO Maker Access Control Exploit 4.0

2022-11-10 DFX Reentrancy 4.0

2022-03-31 Ola Finance Reentrancy 4.0

2023-02-10 dForce Network Reentrancy 3.65

2022-08-08 Dragoma Drain Vaults 3.5

2022-07-28 Nirvana Finance Flashloan Price Oracle Attack 3.5

2021-09-03 Siren Protocol Reentrancy 3.45

2020-11-16 CheeseBank Flashloan Price Oracle Attack 3.3

2021-09-17 JayPegs Automart Redirected Deposits 3.1

Continued on next page



Table A.1 – continued from previous page

Date Name Technique Loss (m, USD)

2022-05-08 Fortress Protocol Governance and Oracle Exploit 3.0

2021-03-15 Deus DAO Flashloan Price Oracle Attack 3.0

2022-11-02 Skyward Finance Reentrancy 3.0

2023-02-02 Orion Reentrancy 3.0

2021-03-20 Turtle Dex Drained Contracts 2.5

2021-07-16 PancakeBunny Flashloan Incentive Rewards Exploit 2.4

2022-10-11 TempleDAO Exploit Lack of Input Authentication 2.3

2022-06-08 Gym Network Deposit Function Exploit 2.1

2022-03-27 Revest Finance Reentrancy 2.009999

2020-11-12 Akropolis Flashloan Reentrancy Attack 2.0

2021-03-09 DODO Access Control Exploit 2.0

2022-05-04 MM Finance DNS Spoofing 2.0

2023-02-20 Dexible Arbitrary External Call 2.0

2021-10-08 Mirror Protocol Outdated Oracle Exploit 2.0

2023-02-20 Hope Finance Router Exploit 1.86

2021-12-08 8ight Finance Private Key Compromised (Unknown

Method)

1.75

2023-02-01 BonqDAO Price Oracle Attack 1.7

2022-03-13 Paraluni Flashloan Reentrancy Attack 1.7

2021-08-13 Acala Network Incentives Function Mistake 1.6

2021-07-30 Levyathan Private Key Compromised (Stored

Publicly)

1.5

2022-12-25 Rubic Router Exploit 1.41

2022-03-03 Treasure DAO Buy Function Exploit 1.4

2021-02-09 Growth DeFi Flashloan Price Oracle Attack 1.3

2022-11-02 Solend Price Oracle Attack 1.26

2021-07-14 ApeRocketFi Flashloan Incentive Rewards Exploit 1.26

2020-04-19 Lendf.me Reentrancy 1.2

2022-12-13 ElasticSwap Price Oracle Attack 0.854

Continued on next page
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Date Name Technique Loss (m, USD)

2022-08-23 SudoRare Drained Contracts 0.8

2021-05-24 Autoshark Flashloan Incentive Rewards Exploit 0.745

2021-05-26 Merlin Labs Flashloan Incentive Rewards Exploit 0.68

2023-01-17 Midas Capital Flashloan Reentrancy Attack 0.66

2020-02-18 bZx Flashloan Price Oracle Attack 0.65

2022-08-10 Blur Finance Drained Contracts 0.6

2022-08-09 Curve Finance DNS Spoofing 0.575

2022-09-18 GMX Price Oracle Attack 0.565

2021-05-26 Merlin Labs Math Mistake Exploit 0.55

2020-02-15 bZx Flashloan Slippage Attack 0.35

2021-06-29 Merlin Labs Incentive Rewards Exploit 0.33

2022-10-21 Bond Protocol Arbitrary External Call 0.3

2021-06-28 Safe Dollar Incentive Rewards Exploit 0.248

2023-03-02 ArbiSwap Infinite Mint and Dump 0.1

2023-01-11 ROE Finance Flashloan Pool Shares Exploit 0.08
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