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SUMMARY
The China Kadoorie Biobank (CKB) is a population-based prospective cohort of >512,000 adults recruited
from 2004 to 2008 from 10 geographically diverse regions across China. Detailed data from questionnaires
and physical measurements were collected at baseline, with additional measurements at three resurveys
involving �5% of surviving participants. Analyses of genome-wide genotyping, for >100,000 participants
using custom-designed Axiom arrays, reveal extensive relatedness, recent consanguinity, and signatures re-
flecting large-scale population movements from recent Chinese history. Systematic genome-wide associa-
tion studies of incident disease, captured through electronic linkage to death and disease registries and to
the national health insurance system, replicate established disease loci and identify 14 novel disease asso-
ciations. Together with studies of candidate drug targets and disease risk factors and contributions to inter-
national genetics consortia, these demonstrate the breadth, depth, and quality of the CKB data. Ongoing
high-throughput omics assays of collected biosamples and planned whole-genome sequencing will further
enhance the scientific value of this biobank.
INTRODUCTION

Major non-communicable chronic diseases, such as heart

attack, stroke, cancer, and chronic obstructive pulmonary dis-

ease (COPD), account for much of the adult disease burden in

China and globally. Several such diseases display large unex-

plained variations in incidence between different regions in

China, indicating that important genetic and non-genetic causes

remain to be discovered. The China Kadoorie Biobank (CKB)

was initiated in 2002, with the goal of investigating the causal
This is an open access article und
relevance of established and novel disease risk factors in the

adult Chinese population.1 From 2004 to 2008, CKB recruited

>512,000 adults aged 30–79 years from 10 geographically

diverse (five urban, five rural) regions across China, making it

one of the largest blood-based prospective biobanks in the

world.2

Many aspects of the CKB study design support a wide range

of hypothesis-driven and hypothesis-free research into many

different diseases: population-based recruitment; prospective

sample collection; a relatively medication-naive population;
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rich and diverse exposure and lifestyle data; and comprehen-

sive capture of incident disease events through electronic link-

age to death and disease registries and to health insurance re-

cords. The CKB also contributes to the growing demand for

ancestrally diverse biobanks, which not only expand opportu-

nities for novel discoveries of potential value to all human

populations but also address potential inequalities in healthcare

that may arise from the historical focus of research on individ-

uals of European ancestry, findings from which are not

necessarily transferable to other populations.3,4 In common

with many other large biobanks, the value of the CKB has

been greatly enhanced by large-scale genotyping of study par-

ticipants. Such genotype information enables investigation

of the contribution of genetic variation to phenotype and dis-

ease risk, Mendelian randomization (MR) assessment of the

causal contribution of risk factors and behaviors to disease,

and phenome-wide analyses of the impact of variation at spe-

cific loci.

We describe the design and performance of a custom Affyme-

trix Axiom array optimized for individuals of Chinese Han

ancestry, which provides both genome-wide coverage to enable

high-quality imputation of both common and low-frequency vari-

ation, and direct genotyping of �68,000 putative loss-of-func-

tion, missense, and expression quantitative trait loci (eQTL) var-

iants of potential use for MR or phenome-wide association

studies. On the basis of genotyping of >100,000 CKB partici-

pants, we demonstrate extensive population diversity across

China, identify substantial relatedness within the CKB study

population, and observe principal component (PC) signatures

consistent with population movements from recent Chinese his-

tory. Through linkage to deep phenotyping and >1.2 million re-

corded disease outcomes in the CKB, this genotyping has

already facilitated a wide range of studies, from investigation of

ancestry-specific loss of function variants to inform drug target

identification, validation, and repurposing5–8; to participation in

international trans-ancestry genome-wide association study

(GWAS) consortia including the Global Biobank Meta-Analysis

Initiative (GBMI).9–14 We report the results of GWASs of 224 dis-

ease outcomes, which can be accessed through a CKB PheWeb

browser.

STUDY POPULATION AND DATA COLLECTION

Recruitment of CKB participants was community-based, taking

place at a large number of local assessment centers within each

of 10 diverse regions of China (five rural counties and five urban

districts), respectively referred to by the name of the province or

city in which recruitment took place. At baseline assessment

participants completed an extensive interviewer-administered

questionnaire on factors including demographics and socio-

economic status, diet and lifestyle (e.g., smoking, alcohol), phys-

ical activity, reproductive history (for women), and medical

history and current medication. In addition, all participants un-

derwent physical examination including measurements of an-

thropometrics, blood pressure, spirometry, exhaled carbon

monoxide, and body composition (using bioimpedance).

Furthermore, there were onsite blood tests of (non-fasting)

glucose and hepatitis B virus (HBV) surface antigen, and blood
2 Cell Genomics 3, 100361, August 9, 2023
samples were processed within a few hours to separate plasma

and buffy coat for long-term storage.2

Subsequent to initial recruitment, three periodic resurveys

have been undertaken of approximately 5% of surviving par-

ticipants, selected on the basis of representative random sam-

ples of assessment centers, to provide repeat measurements

for correction of regression dilution bias, gather additional

questionnaire information, conduct additional physical mea-

surements and blood tests, and collect repeat blood samples

and other additional biosamples for long-term storage (Fig-

ure 1). The first resurvey of 19,802 participants, conducted

immediately after completion of study recruitment in 2008,

was largely a repeat of the baseline survey.2 This was

extended in the second resurvey (25,091 participants), con-

ducted in 2013 and 2014, with additional questionnaire data,

additional physical measurements, on-site assays of blood

lipids, and collection, testing, and storage of urine samples.

Additional enhancements in the third resurvey (25,087 partici-

pants) in 2020 and 2021 included additional measurements of

abdominal ultrasound and retinal imaging, and collection of

saliva and stool samples. Baseline characteristics of resurvey

participants were similar to those of the overall CKB cohort,

with only minor differences attributable to survivor bias

(Table S1). More than 22,000 individuals attended at least

two resurveys; these multiple measurements at different time

points will enable future longitudinal analyses of trajectories

of risk factors for major diseases.

In addition to data collected at baseline and the resurveys, an

increasing range of data are being generated from assays of

stored biosamples. As part of a nested case-control study of

stroke and ischemic heart disease (IHD), plasma samples from

up to 18,728 participants (all with genotyping) were assayed

for 17 clinical biochemistry measurements, with 1H nuclear mag-

netic resonance (NMR) metabolomics for 4,657; further 1H-NMR

metabolomics measurements were conducted for other nested

case-control studies of pancreatic cancer and diabetes (2,500

samples to date). Olink proteomics (3,072 proteins) and

SomaLogic proteomics (up to 7,000 proteins) have recently

been assayed for a further nested case-subcohort study of

myocardial infarction (MI; 3,977 participants, all with genotyp-

ing), with additional larger scale measurements planned in the

near future. Further assays include multiplex serology of anti-

bodies to antigens from 19 pathogens (4,500 samples to date,

with measurement in 40,000 cancer cases and controls under

way) and 1H-NMR metabolomics of urine samples from 25,251

resurvey participants.

ARRAY DESIGN

CKB genotyping used custom-designed arrays on the Affymetrix

(now Thermo Fisher Scientific) Axiom platform, with content se-

lection based on similar overall principles to those used for the

UK Biobank array design,15,16 but adapted to optimize perfor-

mance for individuals of East Asian ancestry. This addressed

three high-level criteria: (1) maximization of genome-wide

coverage of common and low-frequency variation in individuals

across thewhole of China, (2) detection of important variants and

of rare loss-of-function and other protein-coding variants that



Figure 1. China Kadoorie Biobank (CKB) survey details
Baseline questionnaire content, physical measurements, on-site assays, and biosample collection were repeated at three subsequent resurveys of approxi-

mately 5% of surviving participants. Second and third resurveys used updated questionnaires, included additional physical measurements and on-site assays,

and collected additional biosamples, as shown. Participants attending more than one resurvey are as indicated in the Venn diagram.

See also Table S1.
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are present in Chinese populations, and (3) consistent perfor-

mance of photolithographic manufacturing processes across

array designs and batches of arrays manufactured over an

extended time period.17

Using the UK Biobank probe list as the starting point for the

CKB array design, this was then modified and extended,

informed by allele frequency and sequence data for more than

12,000 East Asians that were available to us in 2013 (Data S1;

Figure S1). In brief, we (1) removed variants identified as absent

or at low frequency in East Asians; (2) added specific variants

confirmed as being present in East Asians, including loss-of-

function, missense, and eQTL variants; (3) constructed an East

Asian-specific genome-wide grid that maximized imputation of

both common (>5%) and low-frequency (1%–5%) variants;

and (4) includedmultiple copies of a series of degenerate probes

for detection and classification of circulating HBV viral DNA. The

resulting array design comprised 781,937 probe sets assaying

700,701 variants, of which 354,399 were also present in the UK

Biobank array (Figure S2; Table S2). The design included dupli-

cate probe sets, one for each strand, for 81,236 variants that

did not have a validated assay on the Axiom platform.

The initial array design was revised on the basis of genotyping

data from the first 100 plates (8,995 samples after quality control
[QC]) (Data S2; Figure S3). Failed, poor-quality, or otherwise un-

informative monomorphic probe sets were removed, along with

the poorer-performing probes of each pair of duplicate probe

sets. Further specific content of interest (including further HBV

probes and tags for variants that failed QC) were added to the

design. Finally, variants were added to improve or restore

genome-wide imputation coverage. Figure 2 summarizes the

content of the final updated array, comprising 804,496 probe

sets assaying 803,030 variants, of which 340,562 are present

in the UK Biobank array (Table S3).

GENOTYPING AND QC

Genotyping and QC of a total of 105,408 CKB DNA samples are

summarized in Table 1. The initial CKB array design was used to

genotype 33,408 samples that had been selected for nested

case-control studies of cardiovascular disease and COPD. On

the basis of disease follow-up to January 1, 2014 (see below),

this initial genotyping included all incident cases of intracerebral

hemorrhage (ICH 5,020), subarachnoid hemorrhage (SAH; 455),

and fatal IHD (753); randomly selected incident cases of

ischemic stroke (IS; 5,662), MI (1,008), and COPD (5,376); partic-

ipants with no cardiovascular events (n = 10,038) at time of
Cell Genomics 3, 100361, August 9, 2023 3



Figure 2. Design of the CKB Axiom genotyping array

The figure illustrates the different categories of content on the revised CKB array. Numbers indicate the approximate counts of variants in each category. Some

variants fall into more than one category.

See also Figures S1–S3, Tables S2 and S3, and Data S1 and S2.
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selection, matched to ICH cases for sex, age, and region; and

4,766 randomly selected individuals who had attended the sec-

ond resurvey.

The updated array design was then used to genotype a further

72,000 samples, including all available additional cases of ICH

(602), SAH (46), MI (1,028), and fatal IHD (163) that had not pre-

viously been genotyped. The remaining genotyped samples

came from boxes of DNA samples that were either randomly

selected or selected as containing samples derived from the

assessment centers used for the second resurvey, in either

case being largely representative of the overall CKB cohort.

Duplicate samples were present on each pair of consecutive

plates to support sample and plate tracking and for other QC

purposes.

Genotyping and QC followed the Affymetrix best practice

workflow18 with additional checks for probe sets that displayed

substantial between-plate or between-batch differences in allele

frequency or call rate. After QC and removal of duplicate probe

sets, 76.1% and 85.5% of probe sets remained for the initial

and revised arrays, respectively (Table S4); 3.4% of samples

failed QC (summarized in Table 1), which were mostly initial

QC failures, likely reflecting low quality or low concentration

DNA samples; only 0.16% of samples were excluded because

of sex mismatch, reflecting the CKB’s stringent sample tracking

procedures.19 All pairs of duplicate samples showed high

concordance of non-missing genotypes, overall concordance
4 Cell Genomics 3, 100361, August 9, 2023
being 99.88% and 99.87% for the first and second array designs

respectively (with 0.67% and 0.64% calls missing in one or both

of a pair). Where probe sets on the revised CKB array were pre-

sent in the UK Biobank array, 192 samples genotyped on both

arrays yielded concordance of 99.80% (0.46% missing).

The allele frequency distribution for the two datasets re-

flected the design characteristics of the arrays (Figure 3A).

There were many more monomorphic or very low frequency

(minor allele frequency [MAF] < 0.0001) variants on the original

array design (5.7%) than on the revised array (1.6%) on which

many such variants had been removed. Conversely, revision of

the array design included selection of additional variants to

improve imputation of variants with MAF of 0.01–0.05, and

correspondingly more variants passed QC in this MAF range.

The allele frequencies of variants that passed QC showed

strong agreement with the East Asian populations in the 1000

Genomes reference dataset20 (Figure 3B), even at lower MAF

where estimates in the 1000 Genomes reference were affected

by small sample size, and this agreement was consistent

across all recruitment regions, although with somewhat greater

variation at lower MAF (Figure S4).

These allele frequency data provide some insight into the po-

tential utility of variants included on the CKB array for purposes

of investigating the impact of protein loss of function. Variants on

the revised array that passed QC were categorized according to

their potential functional significance as predicted by Combined



Table 1. Genotyping sample selection and quality control

Array version 1 Array version 2 Total

Total samples genotypeda 33,408 72,000 105,408

Sample ascertainment

ICH 5,020 602 5,622

SAH 455 46 501

IS 5,662 – 5,662

MI 1,008 1,028 2,036

Fatal IHD 753 163 936

COPD hospitalization 5,358 – 5,358

ICH-matched controls 10,038 – 10,038

Random selection 4,766b 69,378c 74,144

Intentional duplicates 347 766 1,113

Unintentional duplicates 1 36 37

Total unique samples 33,060 71,198 104,277

QC exclusions

Failed initial QC 524 2,184 2,708

Call rate <95% 2 0 2

Excess heterozygosityd 89 253 342

Excess homozygositye 3 0 3

Sex mismatch 47 121 168

Other linkage error 2 33 35

XY aneuploidyf 91 173 264

Ancestry outlier 3 1 4

Consent missing/withdrawn – 31 31

Samples in current data release 32,300 68,406 100,706

Number of samples genotyped on each genotyping array, showing reasons for selection for genotyping and for quality control exclusion.
aExcluding repeats of plate failures.
bRandom selection of samples from participants attending the second resurvey.
cSelected as complete boxes of DNA samples, prioritizing boxes with large numbers of samples from participants eligible for the second resurvey.
dMore than 3 SDs greater than mean heterozygosity for participants recruited in the same region.
eMore than 3 SDs less than mean heterozygosity for participants recruited in the same region and with total runs of homozygosity <2 SDs greater than

the mean.
fIdentified as XXY, XY with non-negligible chrX heterozygosity, XXX, X0, or mosaic X0. Some samples failed QC on the basis of >1 criterion.
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Annotation Dependent Depletion (CADD version 1.6)21,22; this

identified 7 classes of variant annotation representing 23,867

variants that had both substantially lower meanMAFs and higher

mean Phred values than the other classes, indicating strong

enrichment for deleterious variants (Figure 3C). Overall, 37,697

variants had Phred values > 15, corresponding to the top 3%

most damaging variants genome-wide, with a high likelihood of

pathogenicity.23 Of these variants, more than half (20,355

[54%]) had MAFs >0.01 in the CKB (28,057 [74%] for CKB

MAF > 0.001), of which 5,489 (27%) are virtually absent from Eu-

ropean populations (Figure 3D). These will provide opportunities

not available in European cohorts for genetic investigations of

the importance of the affected genes for disease and disease

risk, such as those already conducted for PLA2G7 and CETP.5,6

Initially, imputation was performed separately for each array

dataset, but the revised array provided only a modest improve-

ment in imputation quality, despite the substantially larger num-

ber of informative variants passing QC (Table S4). Therefore, to

minimize batch and array effects, we derived a single imputation

dataset, using only those variants passing QC in all batches on
both array versions (although variants excluded for imputation

remain available for analysis in the final dataset). We achieved

high-confidence imputation for the large majority of common

and low-frequency variants present in the EAS populations of

the 1000 Genomes Phase 3 reference (Tables S4 and S5;

Figure S5): mean info scores were 0.950 for variants with

MAFs > 0.05, 0.849 for MAFs of 0.01–0.05, and 0.695 for

MAFs of 0.005–0.01. Imputation was typically poorer for rare var-

iants with MAF <0.005, which are excluded frommany analyses.

RELATEDNESS

The community-based recruitment of CKB participants resulted

in family groups attending together, so that many individuals had

close relatives also recruited into the study (Tables S6 and S7).

Among genotyped participants, 31.9% had an also genotyped

second-degree or closer relative (23.6% having at least one

first-degree relative), with more relatedness in rural than in urban

regions (39.0% vs. 22.8% with first-/second-degree relatives),

with the exception of participants in Suzhou (54.7%); Suzhou
Cell Genomics 3, 100361, August 9, 2023 5



Figure 3. Allele frequency and functional annotation of genotyped variants

(A) Allele frequency distribution in unrelated CKB participants of variants passing QC on the two versions of the CKB genotyping array.

(B) Comparison of CKB allele frequency of quality-controlled variants on array version 2 with the corresponding allele in the East Asian subset of the 1000

Genomes Phase 3 reference.

(C) Frequency and characteristics of different classes of quality-controlled variants on array version 2, according to Combined Annotation Dependent Depletion

(CADD version 1.6).21,22

(D) Allele frequency distribution in CKB and European populations of quality-controlled variants on array version 2, for variants with different levels of predicted

functional impact according to CADD.

See also Figure S4.
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recruitment took place in a previously rural district that has only

recently become urbanized. Suzhou also had a particularly high

proportion of individuals with multiple close relatives (1,561

[20%] with R3 genotyped relatives). Further analysis of related-

ness in the CKB also identified 32 pairs of twins, 13,875 individ-
6 Cell Genomics 3, 100361, August 9, 2023
uals with at least 1 sibling (comprising 6,325 family groupings of

up to 7 siblings) and 6,571 parent-child relationships, including

1,189 trios.

Several regions displayed patterns of relatedness suggestive

of historical consanguinity (Figure S6). Histograms of pairwise



Figure 4. National and local population structure in the CKB

(A) Map of China and adjacent countries showing the locations of the ten CKB regional centers (RCs). Arrows denote known major population movements in

recent history that can account for mismatches in the correlation between PCA and geography.

(B) Plot of the two leading principal components from PCA of CKB genotypes, with each participant color-coded according to the RC where they were recruited.

(C) Local maps are shown for each recruitment region, showing the geolocation of individual assessment centers color-coded according to latitude and longitude;

the size of the symbol is proportional to the number of genotyped individuals from that center. Corresponding PCA plots show the first two principal components

from PCA of individuals from that region, color-coded according to their recruitment center. Top 2 rows, urban regions; bottom 2 rows, rural regions.

See also Figures S9, S10, S12, and S13.
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identity by descent (IBD) displayed not only the expected peaks

corresponding to integer numbers of meioses separating rela-

tives (at IBDs of 0.5, 0.25, 0.125, etc.), but also other peaks

centered on values corresponding to relationships that arise as

a result of consanguineous unions between individuals with

recent common ancestors, for instance triple second cousins

(expected IBD of 0.09375). Consistent with this, 1,050 partici-

pants had heterozygosity >3 SDs below the mean values across

all genotyped samples, all but 3 of whom had correspondingly

extensive runs of homozygosity (Figure S7).

CKB POPULATION STRUCTURE

We performed PC analysis (PCA) of 76,719 unrelated CKB par-

ticipants and identified that the first 11 PCs were informative

for CKB population structure, according to the Bayesian infor-

mation criterion (BIC) for models predicting individuals’ recruit-

ment region (Figure S8). Consistent with findings frommany pre-

vious studies, individuals formed discrete clusters, whose

locations on a plot of the first 2 PCs closely resembled the

pattern of longitude and latitude for the regions in which they

were recruited (Figures 4A, 4B, and S9). For three regions, how-
ever, the positions of their PCA clusters were clearly offset

compared with their geographic location. In each case, the

apparent discrepancy corresponds to a knownmajor population

movement from recent Chinese history: large-scale migration in

the 16th and 17th centuries AD fromGuangdong to Hainan island;

repopulation of the Chengdu Basin in Sichuan in the late 17th

and early 18th centuries, a large proportion of migrants coming

from Huguang (now Hubei/Hunan); and settlement of largely un-

populated Manchuria in the late 19th and early 20th centuries,

with the majority of settlers originating from Shandong province.

Thus, the lead PCs reflect the known historical geographic ori-

gins of the population in a region, rather than its current physical

location.

Although the leading PCs tightly clustered most individuals for

each recruitment region, a small proportion (5.7% overall) lay

outside the main cluster (>3 SDs from the region mean for PCs

1–11) and thus appeared to have non-local ancestry. Of these,

for those with data available from the second resurvey, a high

proportion (47.8%) reported that they or at least one parent

were born in a different province of China; by comparison, only

12.5% of the remainder reported origins from a province other

than that in which they were recruited. The large majority of
Cell Genomics 3, 100361, August 9, 2023 7
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participants with non-local ancestry was recruited in Liuzhou,

among whom a substantial fraction of individuals (25.4%) lay

outside the main PCA cluster, mostly reflecting outlier values

for PC 1 (corresponding to the major north-south axis); 87.2%

of these individuals reported that either they or a parent was

born outside Guangxi province.

Local population structure within each region was not readily

apparent from the above pan-China PCA but was clearly

observed for individuals within each region-specific cluster

(excluding those identified as having non-local ancestry). Be-

tween 2 and 9 PCs were informative for the latitude and longitude

of the assessment center at which an individual was recruited

(Figures 4C, S10, and S11). Rural regions (plus previously rural

Suzhou) typically displayed substantial structure, reflecting es-

tablished communities with little population movement; by

contrast, there was only limited population structure for most ur-

ban regions, with the exception of Liuzhou, for which an appre-

ciable proportion of second resurvey participants reported having

non-Han ancestry (17.6%comparedwith 1.0%across the other 9

regions). Although uninformative for geographical location within

Liuzhou, the first 4 PCs from whole-cohort PCA or the first 2 local

PCs were informative for Han status (Figure S12); however, there

was no clear discrimination between Han and non-Han that might

suggest a need to analyze these individuals separately.

The geographical and/or historical relationships between the

different CKB populations are reflected in Fst analyses of the ge-

netic distance between regions (Figure S13): the four northern

regions cluster together, and also with the northern Han 1000

Genomes population (CHB); the four regions situated on or

near the Yangtze River cluster together, in two pairs, and also

with the southern Han 1000 Genomes population (CHS); and

the southern two regions cluster together, with no appreciable

distinction in Liuzhou between Han and non-Han identity. The

positions of the 1000 Genomes Project East Asian populations

in this analysis indicate that the 10 regions in the CKB population

are components of a continuum running from north to south with

no clear separation from neighboring countries (KHV, from Viet-

nam) or ethnic populations (Dai Chinese, from near to the bor-

ders with Laos and Myanmar).

DISEASE OUTCOMES

In common with the other biobanks contributing to the GBMI,14

one of the chief strengths of the CKB is the ability to follow up

study participants for a wide range of fatal and non-fatal disease

outcomes.2 In the CKB, disease follow-up is obtained by elec-

tronic linkage using participants’ unique national identity

numbers to registries for death (with cause of death recorded)

and for 4 major diseases (stroke, IHD, cancers, diabetes) and

to the national health insurance system, which records all inpa-

tient hospital events. These procedures are complemented by

active follow-up through annual checks of local residential re-

cords and, if necessary, in-person visits by local staff to check

key data including vital status and to identify hospitalized epi-

sodes in a small proportion of the CKB (currently approximately

2%) who have not joined the health insurance scheme.24 Data

from these multiple sources, including parsing of free-text Chi-

nese language disease descriptions and matching to a clini-
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cian-curated disease description library, are integrated and

standardized into International Classification of Diseases, 10th

Revision (ICD-10), coded incident disease events. By January

1, 2019, >1.2 million incident events and 49,428 deaths

(including causes of death) had been recorded for the whole of

the CKB, covering >5,000 separate disease types (defined ac-

cording to three-character ICD-10 code), with only 5,302

(1.0%) of participants being lost to follow-up.

Table 2 shows the number of individuals with selected incident

events as recorded through disease follow-up, in all CKB partic-

ipants and in the genotyped subset. Additional prevalent cases

are available through medical questionnaire data, and on-site

measurements at baseline (e.g., type 2 diabetes and COPD,

through blood glucose assays and spirometry). Reflecting the

strategy for selecting the genotyped samples, there was enrich-

ment for cardiovascular diseases, including IS (ICD-10 code I63),

intracerebral hemorrhage (ICD-10 code I61), and MI (I21), for

COPD (ICD-10 codes J41–J44 and J47), and for all-cause mor-

tality. By contrast, other diseases unrelated to the ascertained

case types were present in proportion with the number of geno-

typed samples.

The wide range of disease outcomes recorded during follow-

up is illustrated by the 224 different 3-character ICD-10 codes

that have at least 100 incident events recorded in genotyped par-

ticipants (Table S8). Although limited, this number of cases is suf-

ficient to permit analysis using software packages such as

SAIGE,25 and subsequent contributions to multi-cohort meta-

analyses. Work is ongoing to convert the ICD-10 data into Phec-

odes,26 to aid harmonization of disease outcomes between CKB

and other biobanks and to facilitate phenome-wide association

analyses.

ANALYTICAL APPROACH AND GWAS

The historical consanguinity and extensive relatedness in the

CKB have been exploited in analysis of the impact of inbreeding

on reproductive success27 and for within-sibship GWASs to

derive estimates of direct genetic effects unaffected by genetic

nurture.28 However, for the majority of studies, the population

structure of the CKB cohort together with the strategy for selec-

tion of samples for genotyping require thoughtful analytical ap-

proaches. The substantial relatedness within the CKB, as in

many other population-based cohorts, means that exclusion of

individuals to avoid inclusion of pairs of close relatives (typically

kinship > 0.05, corresponding to third-degree relatives, e.g., first

cousins) would result in a substantial reduction in sample size,

with some recruitment regions being disproportionately affected

(Tables S6, S7, and S9). Therefore, we typically use well-estab-

lished software packages such as BOLT-LMM29 and SAIGE25

that implement linear mixed models to account for both related-

ness and population stratification, thereby permitting inclusion of

related individuals.

It is unclear, however, that current software packages fully ac-

count for all aspects of population structure in the CKB, with its

recruitment in 10 discrete regions each with their own distinct

genetic characteristics, varying environments, cultures, demo-

graphics, and incidence rates of major disease outcomes. For

some diseases, this may be not only because they vary in



Table 2. Death and disease events in the CKB

Disease Definition, ICD-10 codes All participants Genotyped

Tuberculosis A15–A19, J65, K23.0, K67.3, M01.1, M49.0,

M90.0, N33.0, N74.0, N74.1

3,053 768

Lung cancer C33–C34 6,574 1,552

Liver cancer C22 3,256 665

Stomach cancer C16 3,771 756

Diabetes E10–E14 32,748 7,310

MI I21 7,984 3,386

ICH I61 11,638 6,663

IS I63 50,675 14,302

Heart failure I50 5,160 1,467

Pneumonia J12–J18 30,339 7,160

Asthma J45–J46 2,846 880

COPD J41–J44 20,391 7,971

Liver cirrhosis K70, K74 2,785 552

Chronic kidney disease N02–N03, N07, N11, N18 2,879 678

Self-harm T39.0, T39.1, T39.3, T40, T42, T43, T51,

T52, T60, X60–X84, Y87.0, Z91.5

654 114

All hospitalized events A00–Z99 286,167 60,558

All deaths A00–Z99, underlying cause 49,428 16,101

Numbers of CKB participants among the whole cohort and the genotyped subset who underwent selected death and disease events during follow-up

prior to January 1, 2018. See also Table S8.
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prevalence but also because of varying access to healthcare

(e.g., in rural compared with urban regions), so that patterns of

severity in reported cases may also vary between regions.

Therefore, although it is frequently appropriate to conduct ana-

lyses across the full genotyped dataset with adjustment for

recruitment center (as a 10-level categorical covariate), wherever

possible we supplement this with region-stratified analyses

(excluding the 5.7% of individuals with non-local ancestry) and

meta-analysis, to ensure that association signals are not due

to unresolved population stratification or subject to other biases

(e.g., arising from heterogeneity between regions).

A second consideration is that the selection for genotyping of

nested case-control samples has resulted in substantial over-

representation of participants with hospitalization for cardiovas-

cular disease or COPD; although the additional cases were

selected on the basis of incident events (i.e., after recruitment),

the baseline characteristics of these individuals nevertheless

differ from the overall population (e.g., cardiovascular disease

events are positively associated with blood pressure, adiposity,

blood lipids, smoking, and alcohol consumption). Their inclusion

potentially introduces biases or confounding into analyses using

the complete genotyping dataset, and we have therefore devel-

oped approaches that seek to minimize or eliminate these

biases. Where traits are available only in non-random subsets

of individuals (e.g., clinical biochemistry measures), we either

exclude ascertained cases entirely, include case ascertainment

as a covariate, or conduct analyses stratified by ascertainment;

note that this is not required for measurements taken at the sec-

ond resurvey, which was representative of surviving CKB partic-

ipants. For quantitative traits available for all participants, such

as blood pressure or reproductive traits, we perform all adjust-
ments for covariates and data transformations in the full CKB

cohort, prior to genetic analyses, so that these adjustments are

not distorted by the non-random nature of those genotyped;

this is typically performed as a single regression including region

as covariates, but we also check the impact of instead perform-

ing such adjustments in each region separately. This is the

approach used both for contributions to large multi-ancestry

meta-analyses13,30 and for several CKB-specific GWASs.31,32

For the analysis of dichotomous variables, to overcome the

potential biases due to case enrichment, we have constructed

a subset of 77,176 individuals representative of the full CKB

cohort in which over-representation of ascertained disease

cases was eliminated (STAR Methods; Tables S1 and S9).

Analyses of disease outcomes and other binary phenotypes,

including contributions to the first round of GBMI studies,14,33–35

have typically used this population-representative subset sup-

plemented with additional cases from the remainder of the data-

set. For these analyses we use SAIGE software,25 which is de-

signed to account for imbalances in numbers of cases and

controls. This approach is combined with region stratification

and meta-analysis for diseases with large numbers of cases,

so that separate analyses in each region are possible and do

not lead to exclusion from analysis of large numbers of variants

due to low minor allele count (MAC; see STAR Methods). It

should be noted that use of the population subset does not result

in a noticeable loss of power, despite the exclusion of �25% of

samples, as there is invariably a large excess of controls even for

more common diseases. It also provides a reduced dataset, un-

affected by disease ascertainment biases, which can be used for

sensitivity analyses of studies of other traits that use the full gen-

otyped dataset.
Cell Genomics 3, 100361, August 9, 2023 9



Figure 5. Genome-wide significant associations from GWASs of ICD-10-coded disease events

(A) Summary of the minor allele frequency and the effect size for the risk allele, for all associations with ICD-10-coded outcomes reaching genome-wide sig-

nificance (53 10�8). Symbols are colored according to whether the association has previously been reported, and are sized in proportion to the number of cases

in the corresponding GWAS.

(B–E) Labels denote newly identified associationswith (B) H40 (glaucoma), (C) H43 (disorders of vitreous body), (D) K60 (fissure and fistula of anal and rectal regions),

and (E) K81 (cholecystitis), illustrated in the corresponding regional association plots, for which there are previously reported associationswith related phenotypes or

diseases at the same locus. Further plots for these and all other ICD-10 GWASs are available on the CKB PheWeb browser at pheweb.ckbiobank.org.

See also Table S10.
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Using this approach, we have conducted GWASs of the ICD-

10 codes with at least 100 genotyped cases, yielding 35 associ-

ations at genome-wide significance (5 3 10�8) (Figure 5A;

Table S10). The majority of these replicated known association

signals for a range of diseases (type 2 diabetes, hypertension,

atrial fibrillation, cerebral infarction, gout, liver cirrhosis, liver

cancer, lung cancer), but we also identified 14 potentially novel

disease-associated loci. Although none of the latter associations

survived a strict Bonferroni adjustment to take account of the

multiple GWASs, and some were based on a small number of

cases, several were nevertheless at loci associated with closely

related diseases or phenotypes, suggesting that these reflect

robust associations: an association with ICD-10 H40 (glaucoma)

near EYS, at which there is also an association with retinitis

pigmentosa,36,37 a known risk factor for primary angle-closure

glaucoma38 (Figure 5B); an association with H43 (disorders of

vitreous body) at NCKAP5, close to reported associations with

optic disc size39 andprimary open-angle glaucoma40 (Figure 5C);

an association with K81 (cholecystitis) at MYLK4, at which there

is an association with serum alkaline phosphatase,37 an estab-

lished marker of bile duct stones and acute cholecystitis41 (Fig-

ure 5D); and a variant in SLC35F3 (rs4333882) associated with

K60 (fissure and fistula of anal and rectal regions) and also with

one of the causes of fistulas, diverticular disease42 (Figure 5E).

We have made the results and associated plots of all these

GWASs available through a PheWeb browser.43

RESEARCH CONTRIBUTIONS

In combination with genotyping and imputation, and the wide

range of phenotypes and disease outcomes available for CKB
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participants, the above analytical approaches have been applied

in diverse studies. Initial studies, using directly genotyped vari-

ants, were MR-based investigations that emphasized the value

of ancestry diversity for genetic analyses. In early examples of

‘‘drug target MR,’’ we found no association of East Asian-spe-

cific variants in PLA2G7 and CETP with major cardiovascular

disease outcomes or other major diseases, in each case com-

plementing the results of clinical trials that found nomajor benefit

of drug treatments targeting their respective protein prod-

ucts.5,6,44 We also exploited the high frequency in East Asians

of variants influencing alcohol metabolism, and thereby drinking

behavior, to investigate the causal relationship between alcohol

consumption and deleterious effects on health: we showed a

clear link between alcohol and risk for stroke and, for the first

time, we robustly refuted previous reports from observational

studies of apparent protective effects of moderate drinking.45

Other early genetic studies in the CKB investigated the causal

relevance of other disease risk factors, providing evidence that

vitamin D deficiency increases risk for diabetes and cardiovas-

cular disease,46,47 that diabetes is itself causally associated

with increased risk for cardiovascular disease,48 and that,

although lowering of low-density lipoprotein (LDL) cholesterol

decreases risk for IS, it also increases risk for hemorrhagic

stroke.49,50

Since becoming available, the genome-wide imputed data

have enabled a wider range of studies, including MR investiga-

tion of further drug targets7,8 and of diverse disease risk factors

such as bone mineral density,51 gallstone disease,52 height,53

blood pressure,32,54 and resting heart rate.55,56 We have contrib-

uted to replication of novel association signals from large

GWASs of blood pressure,57 menopause,12 and early-onset

http://pheweb.ckbiobank.org
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stroke,58 and have evaluated the performance of polygenic

scores in predicting disease risk for lung function,9,59 lung can-

cer,60 fracture,61 and breast cancer.62 A comprehensive set of

GWASs for major diseases and disease risk factors are in prog-

ress, including multiple adiposity and blood pressure traits.31,32

We also recently published the first large GWAS of lung function

in an East Asian population,63 identifying 48 independent associ-

ations of which 18 were novel, once again emphasizing the value

of expanding ancestry diversity in genetic studies.

In addition to these analyses conducted primarily within the

CKB, we have contributed to many genome-wide association

studies in collaboration with major consortia, including trans-

ancestry studies of intracranial aneurysm,10 recurrent miscar-

riage,11 blood lipids,64 fingerprint patterns,65 diabetes,66 and

height.13 In particular, CKB has made important contributions

to the growing number of studies focused specifically on popu-

lations of East Asian ancestry, including the largest single contri-

bution to a GWAS of depression in East Asians67; and a major

contribution to a GWAS of type 2 diabetes, the largest East Asian

GWAS to date.68 Summary statistics from CKB GWASs have

also contributed to the development of methods for genetic as-

sociation analyses using very low coverage whole-genome

sequencing from non-invasive prenatal testing69; trans-ancestry

colocalization to assess whether two populations share causal

variants70; and improved genetic discovery in multi-ancestry

meta-analyses.71

LIMITATIONS OF THE STUDY

Although also one of its strengths, the population-based nature

of CKB recruitment leads to certain limitations. First, voluntary

participation in the study, although mitigated by very low loss

to follow-up, might lead to selection bias, with those recruited

potentially being healthier and with fewer health conditions that

would reduce likelihood of study participation. In addition,

because of recruitment in specific, not necessarily representa-

tive locations, care may sometimes be required in extrapolating

results from CKB to the Chinese population overall.

Second, although there is near-complete linkage to any

episode of hospitalization subsequent to recruitment, data on

medical (and family) history is restricted to the limited details re-

corded during the baseline questionnaire, with no outpatient or

primary care data recorded (not covered by the health insurance

system). This, together with the middle- to old-age profile of the

cohort, means that some categories of disease (e.g., relating to

female reproduction) are under-reported or not captured.

Although addressed in part by updates to the resurvey question-

naires, this only applies to 5% of participants. Nevertheless, the

prospective nature of the cohort and comprehensive linkage en-

sures that analyses in the CKB can provide reliable assessment

of the contribution of genetic and non-genetic factors to major

diseases in China.

FUTURE PROSPECTS

Together, thesemany analyses have established the high-quality

linkage between genotyping, data collected at baseline recruit-

ment and resurveys, and disease follow-up. With its breadth of
phenotypes and disease outcomes, prospective study design,

and growing range of diverse omics assays, CKB will continue

to make significant contributions to genetic discovery and eluci-

dation of disease etiology and causality. Ongoing work will

further enhance the available genetic resources, including DNA

methylation arrays for 982 samples72; imputation using the

Trans-Omics for Precision Medicine (TopMED)73 and Westlake

Biobank for Chinese (WBBC)74 reference panels; and whole-

genome sequencing of 10,000 participants with incident IS.75

Whole-genome sequencing of the entire 512,000 cohort is

planned in the near future through private-public partnership.

Together with other notable biobanks across the world, CKB is

addressing the recognized need for ancestrally diverse bio-

banks, and will continue to make strong contributions to the

East Asian and trans-ancestry genetic analyses that are begin-

ning to correct the strong Euro-centric bias of the genetic

literature.4
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ALFA Phan et al.82 https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Robin

Walters (robin.walters@ndph.ox.ac.uk).

Materials availability
There are restrictions on the availability of extracted DNA due to the Administrative Regulations on Human Genetic Resources of the

People’s Republic of China.

Data and code availability
d Data from baseline, first and second resurveys, and disease follow-up are available under the CKBOpen Access Data Policy to

bona fide researchers. Full details of the CKB Data Sharing Policy are available at www.ckbiobank.org.

d Sharing of genotyping data is currently constrained by the Administrative Regulations onHumanGenetic Resources of the Peo-

ple’s Republic of China. Access to these and certain other data is available through collaboration with CKB researchers.

d GWAS summary statistics are available at https://pheweb.ckbiobank.org and have been deposited at GWAS Catalog, and are

publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d The paper does not report original code.
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Study permissions
All participants provided written informed consent at each survey visit, allowing access to their medical records and long-term stor-

age of biosamples for future unspecified medical research purposes, without any feedback of results to the individuals concerned.

Ethical approval was obtained from the Oxford Tropical Research Ethics Committee, the Ethical Review Committees of the Chinese

Center for Disease Control and Prevention, Chinese Academy of Medical Sciences, and the Institutional Review Board (IRB) at Pe-

king University. The ChineseMinistry of Health approved the study at the start in 2004 (including export of plasma samples to Oxford),

and also approved electronic linkage to health insurance records in 2011. Raw genotyping data were exported from China to the

Oxford CKB International Coordinating Center under Data Export Approvals 2014-13 and 2015-39 from the Office of Chinese Human

Genetic Resource Administration.

CKB study data
Full details of the CKB study design and methods have been previously reported.2 Briefly, 512,726 adults aged 30–79 years were

enrolled during 2004–2008 from ten urban and rural areas across China. At local study assessment centers, trained health workers

administered a laptop-based questionnaire; undertook physical measurements; and collected a blood sample for long-term storage

and onsite blood tests. Three subsequent resurveys of �5% randomly selected surviving participants were conducted using similar

procedures in 2008, 2013–2014, and 2020–2021. With the exception of genomics data, all CKB survey data were collected and

stored using bespoke IT systems and databases tailored to CKB requirements.86,87 Disease follow-up data from death and disease

registries and from health insurance records were processed and matched to study identifiers by local staff in each recruitment re-

gion, centrally processed and converted into ICD-10-coded events, and integrated into the main study database. The database is

regularly processed into research-ready snapshots from which datasets are served to researchers. All results are based on CKB

data release version 17.02, incorporating disease follow-up up to 1 January 2019.

METHOD DETAILS

DNA extraction and SNP genotyping
DNA extraction and genotyping was performed at BGI, Shenzhen, China, using KingFisherTM Blood DNA Kit and KingFisherTM Flex

24 Magnetic Particle Processors (Thermo Scientific), yielding 400mL DNA at 220 ng/L mean concentration. Buffy coat sample tubes

were barcode scanned, and up to 800mL wasmanually pipetted into the extraction tube at the positions specified by a bespoke sam-

ple-tracking IT system. Extracted DNA was transferred using a Freedom EVO� (Tecan) fluid handling system, up to 200mL to each of

two sets of 96-tube racks of 2D-barcoded cryovials (Fluidx, Azenta Life Sciences), and 12mL to a 96-well microtitre plate. DNA con-

centration and quality was recorded using a NanoDrop Microvolume Spectrophotometer (Thermo Scientific). Tubes were frozen and

shipped on dry ice to the CKB sample storage facility in Beijing, for long-term storage at�70C. All sample movements were recorded

by the sample-tracking IT system.

The first 95,680 DNA samples (from randomly-selected participants), extracted during 2012–2013, were genotyped using the

multiplex Golden Gate� platform (Illumina), for panels of 384 variants which included 3 variants informative for sex within the chro-

mosome XY pseudoautosomal regions. SNP genotyping was performed in 96-well microtitre plates, and used up to 5mL DNA from

the microtitre plate produced during DNA extraction. Each genotype plate included positive and negative controls at fixed positions,

and 2 pairs of duplicate samples at unique combinations of plate positions. Genotyping was performed for a total of 1,040 plates

according to GoldenGate Genotyping Assay Manual Protocols,88 with beadchip imaging using an iScan System (Illumina). The

384 SNP panel was revised after genotyping of the first 100 plates (9200 unique samples), and again after the second 100 plates.

Data processing, genotype calling, and quality control was conducted at CTSU, University of Oxford, UK. Genotyping calling was

performed in 4 batches using GenomeStudio software, with initial QC based on automated clustering. All negative controls had an

SNP call rate of 80% or less (mean = 34%). 15 plates were flagged for inspection due to an initial positive control call rate <95%, but

no failures of genotypingwere identified; the remaining positive controls hadmean call rate of 98.6%. A further 12 plates were flagged

for inspection due to 1 or both of 12 pairs of duplicates being among 709 samples excluded with call rate <90%, but again no failures

of genotyping were identified.

Following this initial QC, and again after final sample QC, SNPs were reclustered, and within each batch SNPs with GenTrain score

<0.7 were inspectedmanually, andmanually reclustered or excluded as appropriate. Across the 3 SNP panels, 30 SNP assays failed

genotyping within that panel (either due to gross genotyping failure or call rate <95%), and a further 42 SNP assays failed for a subset

of the 4 ‘plexes’. Two SNPs displayed Hardy-Weinberg disequilibrium due to presumed assay interference by nearby SNVs or indels.

15 SNPs displayed potential batch effects, identifying genotype clustering errors that were adjusted manually.

Following SNP QC, an additional 1,518 unique samples (2,217 in total) were excluded on the basis of an SNP call rate <98%. One

sample with excess heterozygosity (F-statistic >5 SDs above the mean) was excluded. For 2,063 remaining pairs of duplicate sam-

ples, genotyping concordance was between 98.66% and 100% (mean 99.98%), and only 118 samples (0.1%) were identified with

mismatches of reported gender and inferred sex based on 3 sex-informative SNPs from chrXY pseudoautosomal regions, confirming
Cell Genomics 3, 100361, August 9, 2023 e2
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good DNA quality and robust linkage to originating study participants. A further 136 samples (0.1%) from blocks with multiple sex-

mismatches or with other potential sample linkage errors were also excluded.

Genome-wide genotyping
For genotyping using the first version of the CKB array, samples were selected for genotyping as part of nested case-control or case-

cohort study designs. Incident cardiovascular disease cases were selected according to available disease follow-up at time of sam-

ple selection (August 2014) from amongst those with extracted DNA and no self-reported prior cardiovascular disease history, as

follows: (a) all cases of intracerebral haemorrhage (ICH – CD-10: I61, I69.1) where this was the first stroke event, including additional

samples selected for prioritised DNA extraction and one case originally incorrectly recorded as an ischaemic stroke (IS); (b) all avail-

able cases of subarachnoid haemorrhage (SAH – ICD-10: I60, I69.0) where this was the first stroke event; (c) 5,662 cases of IS (ICD-

10: I63, I69.3) occurring prior to 1 January 2014 at age %71 years where this was the first stroke event; (d) 1,008 incident cases of

myocardial infarction (MI – ICD-10: I21-I23); and (e) all available cases of death with ischaemic heart disease as underlying cause

(fatal IHD – ICD-10: I21-I25). Pairs of controls with no cardiovascular disease events or self-report were identified for each ICH

case, matched to sex, recruitment region, and year of birth. For respiratory disease, 5,358 participants were selected with at least

one event of hospitalisation with chronic obstructive pulmonary disease (COPD – ICD-10: J41-J44); as controls, 4,766 participants

were randomly selected from amongst thosewho attended the second resurvey. For genotyping using the second version of the CKB

array, selection was on the basis of complete boxes of DNA samples, prioritising those boxes that contained samples from partic-

ipants originally recruited in clinics at which the second resurvey was conducted. These samples were supplemented with additional

cases of ICH, SAH, MI, and fatal IHD that occurred subsequent to initial sample selection.

Genotyping was performed at BGI, Shenzhen, China. DNA samples selected for genome-wide genotyping were retrieved from

storage at �70C, either as complete boxes of 96 samples or (for nested case-control samples) individually selected and transferred

to new boxes, and were shipped on dry ice to BGI, Shenzhen. DNA concentration was checked using a NanoDrop Microvolume

Spectrophotometer (Thermo Scientific), and aMicrolab STAR liquid handling system (Hamilton) was used for transfer of sub-aliquots

to new racks of 96 Fluidx cryovials and dilution with TE buffer to 80 ng/mL; the equivalent measured concentration of a subset of sam-

ples measured using Qubit DNA quantification (ThermoFisher) was 50 ng/mL. Diluted DNA was plated onto 96-well microtitre plates,

with samples from a minimum of 3 boxes distributed across a single plate (a 1:1 mix of cases and controls for nested case-control

samples). Samples with low DNA concentration were plated separately for genotyping with a modified first stage of the protocol, us-

ing a larger volume of DNA in place of TE buffer. Samples at position H12 were replaced with a duplicate sample from position D1 on

the previous plate, thereby providing checks of genotyping quality and sample tracking. Genotyping was performed with manual

target preparation according to Affymetrix protocols with automated plate processing and imaging using CKB_1 and CKB_2 Axiom�
arrays and GeneTitan� Instruments.89 Raw genotyping data were exported fromChina to the Oxford CKB International Coordinating

Center under Data Export Approvals 2014-13 and 2015-39 from the Office of Chinese Human Genetic Resource Administration.

Genotyping quality control and calling (summarized in Table S4) was performed at CTSU, University of Oxford, UK, according to

Affymetrix Best Practice workflow18 using the Axiom Analysis Suite (Affymetrix) with default settings. Initial QC was performed on

samples genotyped on batches of 50 plates. Genotyping was carried out for a preselected set of �20K ‘‘high performance’’

SNPs, using the ‘Sample QC’ option, to give initial quality metrics. These were used to identify samples and plates to be excluded

from subsequent steps, on the basis of sample DQC<0.82; sample QC call rate <97%; or plates with mean call rate for remaining

samples <98.5%. Plates with sample pass rate <95%were flagged for inspection, and were excluded if there was evidence of a gen-

eral failure of genotyping (e.g. large sections of the plate have failed), or if sample call rate was systematically low relative to sample

DQC (rather than having a large number of failing samples due to e.g. a group of samples with poor-quality DNA). Some plate failures

identified array manufacturing defects; genotyping of these plates was repeated using a new array.

Variant QC
Samples passing initial QC were processed and co-clustered, again in batches of 50 plates, to derive genotypes and further quality

metrics. Within each batch, probesets were ‘‘failed’’ if they were classified as ‘‘OTV’’ (off target variation), ‘‘CallRateBelowThreshold’’

(using the default threshold 95%), or ‘‘Other’’, and genotypes for non-failed probesets; all further QCwas performed using PLINK v1.9

and/or v2.0.80 Within each batch, probesets were assessed for the presence of plate effects: logistic regressions were conducted to

test each individual plate within a batch for significant deviations in genotype calling: each plate in turn was treated as ‘‘case’’ status

with all other plates in the batch as controls, with recruitment center as covariate; probesets were failed according to criteria deter-

mined empirically throughmanual review of cluster plots to identify clustering failures – any plate effect with p < 10�10, >3 instances of

plate effect p < 10�4, or any plate effect p < 10�8 and clustering metrics FLD<8, HetSO<0.68, and HomRO<3.7; in addition, for pro-

besets with any plate effect P < 23 10�5, cluster plots were manually reviewed, and appreciable clustering failures (e.g. poor cluster

separation) were ‘‘failed’’.

Probesets passing this initial QC were combined into a single dataset, and a preliminary round of sample QC was performed (see

below). A set of autosomal probesets pruned for linkage disequilibrium (LD; PLINK option --indep-pairwise 50 5 0.1) was then

used to identify an unrelated subset of samples (PLINK --rel-cutoff 0.025). These were used to test for significant deviations in

genotype calling between batches: logistic regressions were performed treating each batch in turn as ‘‘case’’ status with all other

batches as controls, again with recruitment center as covariate; probesets were failed entirely, across all batches, again according
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to criteria determined empirically throughmanual review of cluster plots to identify clustering failures: probesets with any batch effect

with p < 10�10, >2 or >7 with p < 10�4, for array versions 1 and 2 respectively. Clustering was manually checked for remaining pro-

besets with a batch effect with p < 10�3 and were scored as either ‘‘Pass’’, ‘‘Batch Fail’’ (fail in one batch only), or ‘‘Fail’’. Probesets

failing in >10% of batches (i.e. any batch for array version 1, >1 batch for version 2), or with call rates <98% (in passed batches) were

excluded entirely from the dataset for that array version.

Probesets were then tested for deviation fromHardy-Weinberg equilibrium (HWE): tests were performed in each recruitment region

separately (PLINK --hardy midp) using unrelated individuals (women only for chrX variants), and probesets with an HWE p < 10�6

(10 degree of freedom sum-of-Chi-squared test) were excluded. In addition, variants with a minor allele frequency (MAF) > 0.2

different from that in the 3 Chinese populations from the 1000 Genome Project Phase 3 ref. 20 were excluded, and one pair of dupli-

cate probesets assaying the same variant (that with the lower call rate) was removed.

Overall performance of the revised array was tested using 192 samples (152 Chinese, 40 European) from the European Vasculitis

Genetics Consortium90 genotyped using both CKB_2 and UK Biobank Axiom arrays. For 331,838 probesets passing QC on both

arrays, concordance between the two arrays was assessed (PLINK --merge-mode 7): 99.5% of genotypes were non-missing for

the data from both arrays, with a concordance of 99.80%. Combined Annotation Dependent Depletion (CADD v1.6)21,22 was

used to look up the predicted functional consequences of 721,308 variants passing QC on the CKB_2 array; the corresponding allele

frequency in Europeans was according to the dbGAP Allele Frequency Aggregator (ALFA)82 v2020-11-14, population

SAMN10492695.

Sample QC
Primary sample QC was conducted for each array version separately, on the basis of criteria as summarized in Table 1. Based on

genotyped variants passing QC as above, samples were excluded which had genotyping call rate <0.95, or high/low heterozygosity

determined as follows: sample heterozygosity was assessed for autosomal variants with MAF>0.01 (PLINK –het followed by calcu-

lation of heterozygosity as 1–HOM/NMISS), mean and SDwas determined for samples from each recruitment region (Note: therewas

a clear North-South gradient in heterozygosity, with a range of values > 1 SD), and samples with a region-specific Z score >+3 were

excluded; total runs of homozygosity were determined for each sample (PLINK --homozyg-kb 1000), and 3 samples with a region-

specific Z score <–3 and a Z score <2 for total runs of homozygosity were excluded (Figure S7).

Samples from individuals with appreciable non-Chinese ancestry were identified by projecting onto principal components

derived from 2,504 individuals from 26 populations (5 ancestries) from 1000 Genomes Project Phase 320 using an LD-pruned set

of 104,866 variants with MAF >0.01, passing QC for both CKB array versions, and excluding major regions of long-range LD91

(PLINK --pca --within --pca-clusters) (Figure S14). A total of 4 individuals were excluded who had a value > 10 SDs from the

CKB-wide mean for at least one of the first 10 PCs.

Initial checks of computed sex with that reported in participant data (PLINK --check-sex) identified multiple clusters of sex mis-

matches, indicating systematic linkage errors. All such clusters of mismatches were tracked back through all steps of sample

handling, and the majority could be unambiguously traced to specific sample-handling errors (e.g. 180� rotation of boxes of DNA

samples), such that correcting such sample-linkage errors removed all instances of sex mismatch in a cluster without leading to

new ones. For clusters that remained uncorrected, all samples in the affected block of samples, irrespective of sex mismatch,

were marked for exclusion from the dataset. Other individual sex-mismatched samples were also excluded.

For more detailed checks for sex mismatch, the chrY/chrX probe intensity ratio (parameter cn-probe-chrXY-ratio_gender_ratio

output to file AxiomGT1.report.txt during genotyping) was plotted against the chromosome X heterozygosity F-statistics (from

PLINK --check-sex), grouping genetically male and female samples into distinct clusters and clearly identifying sex mismatches

(Figure S15A). In addition, groups of samples were observed representing potential chromosome XY aneuploidies, including Kline-

felter Syndrome and non-Klinefelter XXY, and XO (Turner Syndrome) or XXX, and phenotypic males with appreciable chrX heterozy-

gosity and lower than average chrY/chrX probe ratio. These latter individuals may include individuals with partial chrX translocations,

but for most of them the heterozygous markers were distributed along the length of chrX. The samples corresponding to phenotyp-

ically male participants were clearly identifiable and were excluded without further investigation. To more robustly identify aneuploid

female samples, probe intensity data was extracted using Affymetrix Axiom�CNV Tools software,92 and 363 samples were identified

whose mean probe intensity (LRR) on chrX was >3 SDs from the mean; for these, probe heterozygosity (BAF) was visualised across

chromosome X, enabling identification of 6 Turner, 10 Turner mosaic, and 36 XXX individuals, either with no chrX heterozygosity

(Turner) or with BAF values for heterozygous states consistently different from 0.5 (Figure S15B); other aneuploidies were also iden-

tified including a partial deletion of the p-arm of chrX and a complex rearrangement with both a partial q-deletion and partial p-dupli-

cation. All these individuals were marked for exclusion.

After merging the datasets for the two array versions into a single dataset, genetically identical samples with PI_HAT of�1.0 were

identified using an LD-pruned and thinned set of 10k autosomal SNPs with MAF>0.05 (PLINK --thin-count 10000 –make-rel). All

expected duplicate pairs (including a small number of samples genotyped twice in error) were identified, confirming correct genotyp-

ing plate layout and order. All unexpected duplicate pairs were resolved as due either to repeat samples from the�2,000 individuals

known to have attended the baseline survey twice, or to pairs of individuals whose personal data at recruitment (e.g. recruitment

location, date of birth) supported their assignment as putative monozygotic twins. For each pair of duplicate samples, the dataset

with the lower call rate was excluded.
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Imputation
Prior to imputation, additional QC excluded variants at multiallelic sites or with mismatched alleles compared with the 1000Genomes

Project Phase 3 refernece20 (October 2014 release); where indicated, strand-flips were performed tomatch the reference. Imputation

was conducted for each array version separately, in each case excluding variants that failed QC in any genotyping batch, and for a

combined dataset limited to variants passing QC in all batches on both array versions. For imputation, samples were included which

had been excluded from the main dataset on the basis of sex mismatch, linkage errors, or chromosome XY aneuploidy (autosomal

imputation only). Phasing was performed for entire chromosomes using biobank-scale SHAPEIT3 r88281 with default parameters,

except for chromosome X (SHAPEIT2 v2.1793 with the -X option, and with pseudoautosomal regions excluded). Imputation used

the 1000Genomes Project Phase 3 reference panel20 filtered to exclude variants withMAF = 0 in the 5 East Asian populations, leaving

24,759,908 variants, and was conducted in 20 batches of samples split into 713 chunks (length ranges from 330Kbp to 5264Kbp,

mean 3948Kbp) with buffer regions of 500Kbp, using IMPUTE4 v4.r26516 for autosomes and IMPUTE2 v2.3.294 for chromosome

X. Subsequent to imputation, checks for batch and array-version effects were conducted by testing for association using

BOLT-LMM v2.3.129 with individual batches or array version as binary variables; 3867 variants displaying significant batch effects

(P < 5 3 10�8) were excluded from the imputed dataset. After exclusion of variants with imputation info<0.3, imputed genotypes

were available for 21,024,481 variants, of which 8,976,892 had MAFR0.01 (Tables S4 and S5; Figure S5).

Genetic analyses
Unless otherwise specified, genetic analyses were conducted using PLINK v1.9 and PLINK v2.0.80 Sets of unrelated samples for

variant QC and Fst analyses were derived using --rel-cutoff, but for PCA and exclusions for GWAS instead used --king-cutoff

0.05, in each case determined using LD-pruned sets of 122,675 autosomal variants with MAF>0.01 derived using

--indep-pairwise 50 5 0.1. On the assumption that near relatives were not present in different recruitment regions, identity-

by-descent was determined for all pairs of individuals within each region using --genome gz, from which first and second degree

relatives were defined using PI-HAT thresholds of >0.375 and >0.1875, respectively (Tables S6 and S7; Figure S6) and, from the

first-degree relatives, parent-child pairs were identified as those with Z0 <0.05 and Z1 >0.5, with the parent identified as the older

of the pair. Each pair of siblingswas checked for the number of recorded first-degree relatives in the dataset, and the family structures

of mismatches were investigated, leading to the identification of one instance of 2 sets of putative three-quarter siblings.

PCA was conducted using FlashPCA v2.183 after LD pruning and exclusion of regions of long-range LD which, if not excluded or

otherwise accounted for, can interfere with PCA potentially leading to erroneous conclusions about population structure, or to erro-

neous genetic association signals. Initial PCA used an LD-pruned set of SNPs excluding previously-identified regions of long-range

LD,91 but visualisation of variant weights revealed that multiple PCs were nevertheless affected by disproportionate contributions

fromparticular regions of the genome, likely reflecting further regions of long-range LDpresent in theChinese population (Figure S16).

Therefore, following an approach similar to that previously used for UK Biobank,95 a systematic iterative search was conducted to

identify and remove regions of long range LD that influenced PCA in this way, using as a starting point an LD-pruned set of 180,570

autosomal variants with MAF>0.01, call rate>0.99, HWE p > 10�4, derived using --indep-pairwise 50 5 0.2, in 76,719 unrelated

CKB participants. Leading PCs from PCA were tested for the presence of long range LD regions, pairs of identified regions closer

than 1Mbp were merged into single extended regions, variants within those regions were excluded, and the PCA was repeated.

This process was continued until no long range LD regions were identified in any of the leading 11 PCs informative for CKB population

structure, nor in the 12th (not informative) PC. Long range LD regions were identified using a hidden Markov model: presence within/

outside a long range LD region was the hidden state; transition between states was in proportion to EAS recombination rates (down-

loaded fromSNiPA79); and emissionwas the posterior probability of being in a long range LD region given the square of theZ score for

the variant loadings for that PC. Variants were identified as within a long range LD region if they had a posterior marginal probability

>0.5. A total of 223 regions were identified (Table S11) and variants within these regions were excluded so that 171,236 variants and

76,719 unrelated CKB participants were included in the final PCA; PCs for the remaining individuals were derived from the corre-

sponding variant weights.

To identify PCs informative for population structure of the full CKB dataset, models were constructed predicting individuals’

recruitment region in which the top PCswere progressively added to themodel, usingmultinom() fromR package ‘nnet’,96 and Bayes

Information Criterion (BIC) was derived using the R BIC() function, informative PCs being those that reduced BIC when added to the

model (Figure S8). Thesewere confirmed by ANOVA tests for non-random association of PCswith region of recruitment; above-trend

eigenvalues on a scree plot; and visual examination of plots of the top PCs with colour-coding of region of recruitment (Figure S9).

Similarly, PCs informative for local population structure were identified on the basis of BIC for linear models predicting latitude and

longitude for the assessment center at which individuals were recruited (Figure S11) or Han status (Figure S12). Maps used in PCA

plots were drawn with R package ‘ggmap’84 using map tiles by Stamen Design (maps.stamen.com) under CC BY 3.0, using data by

OpenStreetMap under Open Data Commons Open Database License.

Analysis subsets
Subsets of the full genotyped dataset were derived for different analysis approaches (Table S9). For region-stratified analyses, sam-

ples with non-local ancestry were excluded; these were identified as outliers for one or more of the informative PCs for that region, on

the basis of a robust Mahalanobis distance (from the R mahalanobis() function) of >3 SDs. For analyses requiring unrelated
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individuals, these were defined using 122,675 LD-pruned variants with MAF>0.01, as above, but applying PLINK --king-cutoff

0.05 which generally gives a larger set of unrelated individuals than --rel-cutoff.

Construction of a subset of genotyped individuals that was largely representative of the overall CKB cohort was based on the fact

that the majority of genotyped samples were not selected individually but as complete boxes of DNA samples. These boxes of DNA

were prioritised for genotyping solely according to the number of samples they contained that were from participants recruited at

study clinics subsequently used for the second resurvey; these clinics had themselves been selected to be population-representa-

tive. The procedures for sample collection and DNA extraction meant that each box of DNA included a mixture of samples from at

least two randomly-selected boxes of buffy coat samples. Therefore, samples in boxes of DNA were either from individuals invited to

the second resurvey and therefore largely representative of the overall CKB cohort, or were random collections of samples from other

recruitment locations.

An initial attempt to construct a cohort-representative subset used samples from those boxes with at least 70% of samples gen-

otyped (irrespective of QC), but this was found to be depleted for certain ascertained disease cases; this was due to the early priori-

tisation of a proportion of ICH, SAH, and fatal IHD cases, which led to the transfer of these samples to different storage locations prior

to DNA extraction. Therefore, the CKB-representative subset was instead based on the boxes in which blood samples were originally

stored immediately after collection and processing at time of recruitment, and used samples originating from boxes of buffy coat with

R40% of samples selected for genotyping. This gave a set of 77,176 participants which were representative of the overall CKB

cohort, in which over-representation of the ascertained diseases was eliminated.

Genome-wide association
GWASswere performed for each 3-character ICD-10 chapter with at least 100 genotyped cases, with non-casemembers of the pop-

ulation representative set of 77,176 individuals as controls (Tables S1 and S9); for diseases expected to be specific to males or fe-

males, analyses were restricted to the corresponding sex. Analyses used SAIGE25 version 0.42.1 with array version, sex, age, age,2

recruitment region and the first 11 national PCs as covariates, and relatedness defined by the LD-pruned set of 122,675 autosomal

variants, and were restricted to variants with MAF>0.01, with additional filtering of variants with an effective MAC<20, according to

the formula MACeff = 2*MAF*(imputation info)*Neff, where Neff = 4/(1/Ncases + 1/Ncontrols). Loci at genome-wide significant variants

(P < 5 3 10�8) were defined by LD-clumping with --clump-p1 5e-8 --clump-kb 5000 --clump-r2 0.05 --clump-p2 0.05 options.

Locus novelty was assessed by checking for previously-reported genome-wide significant associations or pathogenic mutations

within locus boundaries, according to GWAS catalog,76 OpenGWAS,77 and ClinVar.78 Regional association plots were generated us-

ing LocusZoom v1.485 using 10,000 randomly-selected unrelated CKB participants for the LD reference and recombination rates

derived from the 1000 Genomes Project Phase 3 EAS populations20 using SniPA.79
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