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We revisit the problem of polytypism in layered MX2 materials, with a view to reinterpreting the phase
space accessible to this family. Our starting point is to develop a simple, constructive, and compact label for
the most commonly observed stacking arrangements, similar to the Glazer notation used to label tilt systems
in perovskites. The key advantage of this label in the context of MX2 systems is that it contains sufficient
information to generate the corresponding stacking sequences uniquely. Using a related approach, we generate
a Cartesian representation of the phase space containing all possible MX2 polytypes, with the most common
structures appearing as limiting cases. We argue that variation in, e.g., composition, temperature, or pressure
may allow navigation of this phase space along continuous paths. This interpretation is shown to be consistent
with the structural evolution of stacking-faulted MX2 systems as a function in temperature and pressure. In
this way, our study highlights the potential for controlling composition/structure/property relationships among
layered MX2 materials in ways that might not previously have been obvious.
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I. INTRODUCTION

Layered MX2 materials are a long-studied and broad family
of particular currency in the fields of topological insulators,
thermoelectrics, and strongly correlated electronic materi-
als. Topical examples include MoS2 [1–3], PtBi2 [4–6], and
WTe2 [7–9]. Central to an understanding of their electronic
properties is an appreciation of the underlying atomic-scale
structure, which can be particularly complex for this family.

The structures of individual MX2 layers are usually simple
enough: they are, in general, comprised of edge-sharing oc-
tahedra or trigonal prisms [10]. Complexity arises because of
the very large number of different possible stacking sequences
that in turn give very different crystal symmetries (e.g., polar,
chiral, centrosymmetric) [11,12]. Because interlayer interac-
tions are inherently weak, the energy landscape associated
with stacking variations can be shallow indeed, and it is often
possible to isolate isomers with different stacking sequences
for a single common composition. Such stacking-sequence
isomers are called polytypes, and (by way of example) CdI2

is reported to exhibit more than 150 of them [11].
There is a long and interesting history of the study of

polytypism in MX2 systems. On the one hand, there has been
a sustained experimental effort to identify as many polytypes
for different MX2 chemistries as possible, and then to cate-
gorize and/or label these polytypes in various empirical ways
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[13,14]. On the other hand, statistical mechanical models have
been used to address the underlying physical origin of com-
plexity in the family [15–17]. It was realized early on that
problems of layer stacking often map onto one-dimensional
(1D) Ising models [18–20]. A famous result in the field
concerns the so-called ANNNI model, which takes into
account different—and perhaps competing—interactions be-
tween nearest-neighbor and next-nearest-neighbor layers [18].
The ANNNI phase diagram admits an infinity of different
phases corresponding to stacking sequences with arbitrarily
long repeat lengths, and at face value might have explained the
complexity observed experimentally. Unfortunately, there is
no general correspondence between experimentally observed
polytypes and the ANNNI phases.

Here we revisit the problem of polytypism in layered
MX2 materials by focusing on correlations within stacking
sequences, rather than the interactions from which they might
arise. We have a few particular objectives. The first is to
develop a simple, constructive, and compact label for the most
commonly observed stacking arrangements—i.e., a label that
contains sufficient information to generate the corresponding
stacking sequences uniquely. Similarly to the Glazer nota-
tion used to describe tilt systems in perovskites, we hope
that enumerating the stacking sequences using constructive
labels will allow for targeted explanation of different stacking
sequences [21]. The second goal is to generate a represen-
tation of the phase space that contains all possible MX2

polytypes, with the most common structures appearing at its
boundary. Our hope here is that variation in e.g., composi-
tion, temperature, or pressure might allow navigation of this
phase space along continuous paths. And, third, we reinter-
pret the diffraction patterns of various ostensibly complex
polytypes in terms of disordered stacking arrangements found
within the interior of this MX2 phase space. In addressing
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these points, our study highlights the potential for controlling
composition/structure/property relationships among layered
MX2 materials in ways that might not previously have been
obvious.

Our paper is arranged as follows. We begin with a short
review of the fundamental crystallography of layered MX2

polytypes. In doing so, we revisit the various key nomencla-
tures used historically to distinguish different structure types.
We then introduce our approach to labeling (and understand-
ing) polytypes in terms of correlations between successive
layer and interlayer geometries. This approach suggests a
spatial organization of MX2 polytypes into three-dimensional
phase fields, and we proceed first to introduce and subse-
quently to explore this mapping. By considering key points
and trajectories within these phase fields, we determine the
effect of different correlations on x-ray diffraction patterns.
We then relate our calculations to previously published ex-
perimental data, demonstrating that the complexity often
attributed to long-period stacking sequences might be better
understood in terms of disordered stacking arrangements. Our
paper concludes with a discussion of the implications of our
results for polytype characterization and polytype selection in
MX2 systems more generally.

II. BACKGROUND: GEOMETRIC CONSIDERATIONS

The individual layers of MX2 systems consist of a close-
packed array of M cations at their core, with close-packed
arrays of X anions above and below [Fig. 1(a)]. The X anions
always sit above or below holes in the M layer. If the coordina-
tion geometry of M is trigonal prismatic, then the two X layers
sit directly above one another; for octahedral geometries, the
two X layers are slipped relative to each other. The symmetries
of the two arrangements are captured formally by the layer
groups p6̄m2 and p3̄m1, respectively. Electronically driven
distortions (e.g., M–M bond formation, Peierls instabilities,
charge-density wave formation) can break the symmetry of
individual layers, but we need not consider these additional
symmetry-lowering effects here, as they are orthogonal to the
polytypism problem.

Both octahedral and trigonal prismatic layer symmetries
are lower than that of the central close-packed array of M
atoms (p6/mmm), and this gives rise to two distinguish-
able but equivalent layer orientations in each case. It will
be convenient to assign to each orientation a “handedness.”
To do so, the labels A/α, B/β, and C/γ are assigned, re-
spectively, to the coordinates (0,0), ( 1

3 , 2
3 ), and ( 2

3 , 1
3 ) within

the two-dimensional projection of the p6/mmm layer unit-
cell; the Roman characters are used for X anion positions,
and the Greek characters for M cation positions. Then, pro-
gressing from the bottom X layer to the top X layer (octahedral
coordination), or from the central M layer outwards (trig-
onal prismatic coordination), the ion positions correspond
to permutations of either the clockwise cyclic sequence
A/α → B/β → C/γ (→ A/α) or its anticlockwise inverse
A/α → C/γ → B/β (→ A/α) [Fig. 1(b)]. The sequences
AβC and Bγ B are examples denoting clockwise octahedral
and anticlockwise trigonal prismatic coordination geometries,
respectively.

FIG. 1. Fundamental structural characteristics and representa-
tions of layered MX2 polytypes. (a) Individual layers comprise
close-packed M centers in either trigonal prismatic (left) or octa-
hedral (right) coordination. X Anions are shown as large spheres;
M cations as small spheres. The unit cells of these arrangements
are shown by a red outline. Views are given along (top) and per-
pendicular to (bottom) the layer normal. (b) M and X positions can
be assigned to one of three positions within the underlying unit
cell, denoted using the Greek letters α, β, γ for the former, and the
Roman letters A,B,C for the latter. Individual layers can be assigned a
handedness according to the sense of permutation of these positional
labels when traversing the layer from the bottom up (octahedral) or
from the inside out (trigonal prismatic).

In forming different polytypes, individual MX2 layers stack
one above the other. Irrespective of the coordination geometry
of M cations, these stacking arrangements are governed by a
single, universally observed rule, namely that the anion layers
of neighboring stacks occupy different positions relative to the
underlying close-packed unit cell. In other words, an AβC
layer might be followed by a BαC layer, but not by a CβA
layer—the sequence AβC CβA being too unfavorable. As the
anion layers bordering each van der Waals gap are always
in different positions, the slip direction from layer to layer
can also be assigned a handedness as if it were an octahe-
drally coordinated MX2 layer of its own. Taking the sequence
AβC AβC as an example, the slip direction from C to A
is assigned the anticlockwise handedness of the associated
octahedral layer sequence C(β )A.

It is not surprising, therefore, that layered MX2 materials
can be so structurally complex: there are two possible M
coordination geometries for each layer, two possible layer ori-
entations for each geometry, and two possible slip directions
as each new layer is added to the last. In principle, an MX2
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FIG. 2. Representations of the (a) CdCl2 and (b) MoS2 structures with crystallographic unit cells shown by a black outline. In each case,
the central y = 1 − x plane is shown in pink. A representation of the atomic positions intersecting this plane provides a two-dimensional
representation of the structure types, shown in the central panel using black filled circles to denote M atoms and open circles to denote X
atoms. The right-hand panels show a concise visual representation of polytype structure (used, e.g., in Ref. [12]) which gives the orientation
within (gray areas) and between (white areas) layers. The corresponding handednesses are shown to the right of each panel. Note that in the
MoS2 structure, both layer orientation and slip orientation alternate from layer to layer. By contrast, in CdCl2 all layers and all slip directions
have a single common handedness.

solid containing N layers has ∼8N possible polytypes. In prac-
tice, a handful of high-symmetry arrangements tend to occur
most frequently; some key examples are illustrated in Fig. 2.
Here we include also frequently used representations of AB2

structures that derive from taking a cut through the y = 1 − x
plane of the three-dimensional (3D) unit cell. The positions
of M and X atoms on this cut allow the 3D structure to be
uniquely described in two dimensions, facilitating comparison
from polytype to polytype.

III. STACKING SEQUENCE NOTATION

There are remarkably many different labeling systems used
in different communities to describe polytype structures. The
so-called “ABC” notation we have already introduced pro-
vides an explicit description of layer positions that is exact
but cumbersome [22]. Hägg notation is a more compact vari-
ant that condenses layer and interlayer arrangements into
“+” and “–” symbols, denoting clockwise and anticlockwise
sequences, respectively [23]. Zhdanov compresses Hägg’s no-
tation further [24], giving only the number of consecutive
layers of common handedness. The “hc,” “xyz,” and “t-o-f”
notations are further alternatives that can also be used to
transcribe layer arrangements in a condensed form [25]. These
various different notations are all flexible in the sense that
they can be used to denote any polytype of a given, fixed, M
coordination geometry. Likewise, they are constructive in the
sense that there is a unique mapping (up to origin shift) from
label to stacking sequence.

Yet none of these notations is particularly common in
contemporary literature. Instead, there is a preference for
polytype labels—e.g., “1T ,” “2Ha,” “6R,” . . .—which simply
combine the number of layers within the unit cell together
with the crystal symmetry (Ramsdell symbols [26]). Here
there are a number of problems. First, different communities
use different labels for the same structure, or the same label
for different structures: a frequently encountered example is
that of the textbook CdI2 structure type, which is sometimes

denoted “1T ” and other times “2H” [43]. Second, different
stacking sequences can result in unit cells with the same size
and crystal system—hence the inelegance of the 2Ha, 2Hb,
and 2Hc labels, and the ambiguity of labels such as 12R. And,
third, there is generally no means of determining a stacking
sequence from a label; instead, one simply has to learn which
polytype is implied in each case. The key advantage—and pre-
sumably the reason for its widespread use—is that commonly
occurring polytypes are labeled succinctly.

Recognizing the tension between precision, on the one
hand, and ease, on the other hand, we were reminded of
the success of Glazer notation used to denote different octa-
hedral tilt combinations in perovskites [27]. Glazer notation
such as a+b−b− is precise in that it uniquely describes the
particular combination of tilts governing the symmetry of a
perovskite (in this case, in-phase tilts along the a axis and
equal-magnitude out-of-phase tilts along b and c). It is helpful
too in making clear the relationships between different phases
[28], and hence rationalizing transitions between different tilt
systems. In proposing his nomenclature, Glazer knew that
it could not label all theoretically possible tilt systems [29],
but its success is that it focuses on the tilt systems most fre-
quently observed in practice: those propagating either entirely
in-phase or entirely out-of-phase.

We suggest that a similar approach might be taken with
regard to polytypism in AB2 structures. Among the 8N pos-
sible layer sequences, it is those for which layer orientations
and slip directions propagate in-phase or out-of-phase that are
most commonly observed.

Three components must then be considered: the relation-
ship between successive layer orientations, the relationship
between successive slip orientations, and the coupling be-
tween the two. Hence, following Glazer’s lead, we propose
a three-component symbol of the form l±s±c±, denoting in
turn the layer (l), slip (s), and coupling (c) correlations. We
further use the letters o, t in the l position to denote octahedral
and trigonal-prismatic coordination geometries, respectively,
which we take to be uniform among a single phase. So, the
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TABLE I. Glazer notation for MX2 polytypes.

Ramsdell
Symbol Z Space group symbol(s)a Example Ref.

o+s+c+ 3 R3̄m 3R, 6R CdCl2 [30]
o+s+c− 1 P3̄m1 1T , 2H CdI2 [31]
o+s−c0 6 R3̄m 6R
o−s+c0 6 R3̄m 6R′, 12R PbI2 (high T ) [32]
o−s−c+

o−s−c−
2
2

P63mc
P63mc

1T ′, 4H (↑)
1T ′, 4H (↓)

}
CdI2 (high T ) [33]

t+s+c+

t+s+c−
3
3

R3m
R3m

3R(↑)
3R(↓)

}
NbS2 [34]

t+s−c0 2 P6̄m2 2Hb Nb1+xSe2 [35]
t−s+c0 6 R3̄m 6R′′

t−s−c+ 2 P63/mmc 2Ha NbSe2 [36]
t−s−c− 2 P63/mmc 2Hc MoS2 [37]

aRamsdell symbols are comprised of a number indicating the number
of layers within the unit cell, the symmetry of the unit cell—e.g.,
H , T , and R for hexagonal, trigonal, or rhombohedral symmetries,
respectively—and a suffix that is either a letter or number or a prime
(′), denoting the difference in structures with the same symmetry and
number of unit cells.

symbol o+s+c+ describes a polytype in which octahedrally
coordinated layers have the same (i.e., in-phase) orientation
and slip direction from layer to layer. Written explicitly, one
obtains an αB(γ )AβC(α)Bγ A(β )C stacking sequence; this is
the CdCl2 structure type [Fig. 2(a)]. Likewise, the MoS2 struc-
ture type with (α)CαC(α)BαB stacking is given by t−s−c−:
it consists of trigonal-prismatic layers whose handedness in-
verts from layer to layer (i.e., out-of-phase)—as does the slip
direction [Fig. 2(b)]. The coupling term c− implies that the
handedness of a layer orientation is opposite to that of the slip
direction directly above it.

It is straightforward then to enumerate all polytypes with
Glazer-like notation. There can be at most 16 (= 24), as there
are two coordination geometries, and two phase choices for
each of layer orientations, slip directions, and coupling terms.
In practice—as with Glazer tilts—not all combinations are
physically realizable. An example of a “forbidden” label is
o+s−c+: as the layer orientations are always the same, but
the slip direction alternates from van der Waals gap to van
der Waals gap, the coupling between layer orientation and
slip direction cannot always be in-phase, as implied. Rather,
the combination of o+ and s− implies c0, and so the correct
label is o+s−c0. Accounting for other such forbidden cases,
there remain in total 12 unique allowed labels, which we
summarize in Table I. Of these 12, there are two pairs of two
that correspond to opposite polarities of the same structure
type, giving 10 symmetry-unique polytypes that include all of
the most common candidates. Full structural descriptions of
all polytypes are provided in the Appendix.

IV. MX2 PHASE SPACE

This labeling approach suggests a means by which the
phase space accessible to MX2 polytypes might be visualized
and further understood. Here we can create a 3D Cartesian

phase space for each of the coordination types (octahedral
and trigonal prismatic), where the x, y, and z components
correspond to average nearest-neighbor layer, slip, and cou-
pling correlations, respectively. By letting li and si denote,
for an arbitrary polytype, the handedness of the ith MX2

layer and of the slip direction in the ith van der Waals gap,
taking values of ±1 accordingly, we obtain the Cartesian
coordinates

x = 〈lili+1〉, (1)

y = 〈sisi+1〉, (2)

z = 〈lisi〉, (3)

where the averages are taken over all layers i. The relationship
to our Glazer notation is most easily seen by considering lim-
iting values of these coordinates. For example, a value x = 1
corresponds to polytypes in which successive layer orienta-
tions are always in-phase, and a value y = −1 corresponds to
those in which successive slip directions are always out-of-
phase. For all polytypes—irrespective of their complexity or
whether a corresponding Glazer notation exists—the values
of these coordinates are bounded, −1 � x, y, z � +1. Enu-
merating all 4N possible polytypes for finite N , it is possible
to show that the corresponding coordinates lie within an
octahedral volume of Cartesian space (Fig. 3). The co-
ordinates lie on a discrete mesh, but this mesh becomes
increasingly dense as N increases to form a continuous vol-
ume in the limit N → ∞. The six vertices of this volume
correspond to the six octahedral Glazer notations enumerated
in Table I. The mapping is straightforward (by construction)
as one simply uses the Glazer indices to extract the corre-
sponding phase-space coordinates. For example, the polytype
o−s+c0 maps to the coordinate (−1,+1, 0).

The coordinates defined in Eqs. (1)–(3) are simply the
nearest-neighbor terms from the correlation functions gen-
erated by 1D Ising models of polytype sequences. In this
context, they are closely related to the Warren-Cowley param-
eters used to define correlations in many types of disordered
materials [38]. One expects a strong sensitivity to these pa-
rameters in the diffraction signature of polytypes, as they are
related to the leading Fourier component of any expansion
of the scattering function in terms of layer orientations and
positions [39]. Similar representations of stacking-fault phase
fields have been developed for water ice [40,41] and diamond
[42]; in both cases, the representations were two-dimensional,
and termed “stackograms.”

A key advantage of the coordinate representation is that
the values of x, y, z are well defined and bounded for all
stacking sequences—whether ordered or disordered, thermo-
dynamic, or metastable: every possible sequence maps to a
single point within the bounded phase volume shown in Fig. 3.
This mapping is not, in general, uniquely reversible. Different
stacking sequences can (and often will) map onto the same
coordinates. Stacking sequences with the same coordinates
share the same first-order components in the Fourier expan-
sion of their scattering functions (or lattice energy) in terms
of layer orientations/positions, and differ only in higher-order
components. One important example concerns the origin
x = y = z = 0, which represents an infinity of phases for
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FIG. 3. Representation of the phase space accessible to oc-
tahedrally coordinated MX2 polytypes. Axes are as defined in
Eqs. (1)–(3); tick-marks denote the correlation function limits of ±1.
The six limiting octahedral polytypes listed in Table I correspond
to points on the boundary of the diagram, shown here as red solid
points. Every possible octahedral polytype maps to a single point
contained within the octahedral volume bounded by these six ver-
tices. The volume is dense in that, for each point within the allowed
octahedral volume, there exists at least one polytype (and possibly
very many) with the corresponding nearest-neighbor layer and slip
correlations. The edges (1, 1, z) and (−1, −1, z) (represented here as
open lines) are the only exceptions: polytypes exist only for z = ±1
in each case. The phase space accessible to trigonal-prismatic MX2

polytypes is equivalent in all respects, but with the “o” component of
the Glazer notation replaced by “t .”

which the nearest-neighbor pair correlations vanish: these
include random stacking, many ANNNI ground states, and
periodic stacking sequences whose ordering wave vectors lie

within the Brillouin zone interior. By contrast, the vertices of
the MX2 phase space are uniquely invertible: for each vertex,
the only corresponding polytype is that represented by the
relevant symbol in the Glazer notation.

There is one oddity of the MX2 phase space that deserves
brief comment: the volume is continuous at all x, y, z except
at the edges (−1,−1, z) and (1, 1, z), which are forbidden for
z 
= ±1. These discontinuities are straightforwardly rational-
ized in terms of the definitions in Eqs. (1)–(3).

Glazer notation is useful in demonstrating the relationships
between different structure types. It is clear, for example, that
the t+s−c0 and t+s+c+ structures are comprised of trigonal
prismatic layers in the same relative orientation, but which
slip with different periodicities. We would argue that this
point is not at all clear from the conventional labels 2Hb and
3R. The relationships between polytypes become evident ge-
ometrically in our Cartesian representation of polytype phase
space. Traversing the x direction, for example, corresponds
to varying layer-orientation correlations; traversing y corre-
sponds to varying slip-direction correlations. Consequently,
we anticipate that transitions from one polytype structure to
another—e.g., as a function of composition, extent of inter-
calation, temperature, or pressure—may often correspond to
continuous trajectories within the volume of MX2 phase space.

V. (RE)INTERPRETATION OF EXPERIMENT

As a simple example of interpreting the MX2 phase space,
we consider the 2H- (or 1T )-4H transition of CdI2 observed
on heating [43]. This transition involves a change from a
polytype with Glazer notation o+s+c− to one with symbol
o−s−c−, and it might be understood as traversing an edge
of the phase-space octahedron [Fig. 4(a)]. Consequently, we
generated structural models of polytypes whose stacking se-
quences correspond to appropriate intermediate coordinates
(x, x,−1) (1 > x > −1), using CdI2 geometries and inter-
layer spacings commensurate with the ordered 2H and 4H

FIG. 4. Thermal transitions in MX2 solids as trajectories in phase space. (a) Phase-space trajectory for the 2H -4H transition in CdI2

(blue). (b) The left-hand panels show [10l]∗ sections of the single-crystal x-ray diffraction patterns for CdI2 polytypes generated at regular
intervals along the relevant trajectory shown in (a). Each strip represents an average over patterns generated for five distinct realisations,
each containing 48 layers. Note the continuous evolution of scattering intensity between the 2H and 4H polytype extrema. The right-hand
panels show the experimental data of [43] for the 2H polytype (left), the 4H polytype (right), and faulted 4H polytypes of varying degrees
of disorder (in between). There is good qualitative similarity between some of these patterns and that calculated for the coordinate (−0.75,

−0.75, −1).

093605-5



WOLPERT, CASSIDY, AND GOODWIN PHYSICAL REVIEW MATERIALS 7, 093605 (2023)

FIG. 5. Representative polytype stacking sequences for
(a) faulted 4H -CdI2 and (b) Re0.23Ta0.77Se2.

polytypes. The simulated single-crystal x-ray scattering func-
tions along the [10l]∗ axis are shown in Fig. 4(b), where they
are also compared against the experimental data of Ref. [43].
We observe qualitatively similar trends between the two. The
diffuse streaks observed at intermediate x were interpreted in
Refs. [43,44] as arising from stacking faults, which is entirely
consistent with our own analysis: we illustrate in Fig. 5(a)
a representative stacking arrangement that emerges from our
x = −0.75 configuration.

Disordered stacking arrangements were also reported for
PbI2 in a study of its thermally driven 2H-12R transition.
This transition again corresponds to traversing an edge of the
MX2 phase-space octahedron, with intermediate coordinates
of the form (2z − 1, 1,−z) (1 > z > 0) [Fig. 6(a)]. Following
a similar process to that outlined above for CdI2, we generated
diffraction patterns for intermediate polytypes. In Fig. 6(b)
we compare slices of these diffraction patterns with those
reported in Ref. [32], observing particularly close correspon-
dence between the two.

As a third example, we consider the compositional solid-
solution between TaSe2 and ReSe2. The former crystallizes in
the 3R structure type with Glazer notation o+s+c+ [36], and
the latter in the 2Hb structure type t+s−c0 [45]. So, in terms of
polytypism, the structural effect of doping Ta for Re is clearly
extreme, and it involves switching coordination geometry, and
also inverting the periodicity of slip direction from in-phase to
out-out-phase. One might then expect intermediate composi-
tions to contain a mixture of layer-geometry, slip directions,
and layer-slip correlations, and hence to correspond to poly-
types with Cartesian coordinates along the line (1, 2z − 1, z)

FIG. 6. Thermal transitions in MX2 solids as trajectories in phase
space. (a) Phase-space trajectory for the 2H -12R transition in PbI2

(green). (b) The left-hand panel shows an equivalent progression
in [10l]∗ scattering intensity for PbI2 polytypes generated at regu-
lar intervals along the corresponding trajectory shown in (a). The
right-hand panel shows the experimental measurements of [32] for
gel-grown PbI2 crystals subjected to successively prolonged heat
treatments.

(1 > z > 0). We calculated the diffraction patterns for a series
of structural models based on the corresponding polytype
correlation functions, and interpolating cell dimensions and
internal coordinates from the end-member structures. These
x-ray powder diffraction patterns are shown in Fig. 7(a);
what is immediately clear is the evolution of one structure
type to another via phases with substantial structured dif-
fuse scattering. Such scattering is evident in experimental
data of intermediate-composition phases, and we include in
Fig. 7(b) the experimental powder x-ray diffraction pattern of
Re0.23Ta0.77Se2 [46] for comparison. We find that this pattern
is reasonably well accounted for by a polytype located at
(1,0,0.5); a corresponding representative stacking sequence is
shown in Fig. 5(b).

So it seems that, at least for these three examples, physical
transformations in MX2 solids—through variation in temper-
ature or composition—might reasonably be understood in
terms of trajectories through the phase space developed in
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FIG. 7. Powder x-ray diffraction (PXRD) patterns relevant to
the RexTa1−xSe2 solid solution. ReSe2 adopts the CdCl2 structure
with Glazer notation o+s+c+, and TaSe2 the 2Hb structure with
symbol t+s−c0. (a) PXRD patterns (λ = 1.541 Å) calculated for
polytypes generated between these two extremes—i.e., lying along
the (1, 2z − 1, z), 0 < z < 1 line in the MX2 phase space. Each
pattern is generated from 10 independent stacking sequences, them-
selves containing 48 layers, of which fractions of z and 1 − z
contained octahedral and trigonal-prismatic coordination, respec-
tively. (b) A comparison of the z = 0.5 PXRD trace (burgundy line)
with the experimental pattern reported in Ref. [46] (black line) for
Re0.23Ta0.77Se2.

our study. Intermediate states (unsurprisingly) correspond to
faulted structures whose diffraction patterns contain textured
streaks of diffuse scattering. Revisiting the early crystallo-
graphic characterization of polytypes (e.g., [47]) from this
new perspective, we might argue that it is probably more
meaningful to consider, e.g., the 150+ reported polytypes of
CdI2 as examples taken from a continuum of states whose
structures correspond to polytypes either within the interior
or on the boundaries of the MX2 phase space. We expect that
there may be many instances in which similar reevaluation is
warranted.

VI. CONCLUDING REMARKS

If varying composition, on the one hand, and varying
temperature, on the other hand, each lead to exploration of
the MX2 phase space along continuous trajectories, then in
principle the entire composition/temperature phase diagrams
of MX2 systems lie buried as two-dimensional surfaces within
the three-dimensional phase space. In favorable cases, one
might hope to recover these surfaces from knowledge of the
coordinates corresponding to the end-member polytypes at

low- and high-temperatures. We hope to explore this possi-
bility in future studies.

Within MX2 systems, there are a number of compounds
whose structures change with temperature, pressure, and/or
composition [48] which can help fill out the phase space
spanned by the Glazer notation. For example, FeCl2 is known
to transition from 3R (symbol o+s+c+) at low pressure to
1T (symbol o+s+c−) at high pressure—an observation that
warrants further investigation experimentally [49].

Powder x-ray diffraction remains the most straightforward
experimental method for characterizing the structures of most
MX2 phases. Now that there exist efficient methodologies
for calculating diffraction patterns for large stacking models,
and subsequently refining the internal parameters from which
they are derived (e.g., layer structure and composition) [50],
it should be possible to locate the effective Cartesian coor-
dinates describing the MX2 stacking sequence in a sample
uniquely from a suitable measurement of its x-ray and/or
neutron powder diffraction pattern.

The approach we have taken here might be straight-
forwardly extended to other families of layered materials.
Layered double hydroxides (LDHs) are closely related to the
MX2 systems on which we have focused, and these systems
support a similarly rich polytypism in practice [51,52]. Many
of the applications of LDHs involve intercalation of guest
species within the interlayer regions, and this process can
involve changes in polytype. The same is true of MX2 materi-
als, of course, and one structurally important consequence of
intercalation is that it can drive coalignment of the anion po-
sitions on either side of the layer gap—a feature intentionally
excluded in our model. The AMX2 delafossite structures are
an obvious limiting example, and the Glazer notation would
need to be adapted to account for these additional possibilities.
Likewise, layered polytypes based on, e.g., honeycomb BI3

layers or square-grid FeSe layers may be interpretable using
conceptually similar approaches—but there will be meaning-
ful differences. A recurring distinction between polytypism
in layered materials and that in dense phases (e.g., SiC)
is that the former always requires independent considera-
tion of correlations between successive layers, correlations
between successive van der Waals gaps, and correlations
between layers and gaps. From a statistical mechanical view-
point, the problem is one of coupled 1D chains, which is
presumably why the behavior of layered materials is not
necessarily well captured by conventional (single-chain) 1D
models.

The ultimate goal of establishing composition-polytype
relationships in various layered MX2 systems is to establish
methodologies for synthetic control over polytype selection.
Doing so will provide a means for targeting polytypes with
particular features of interest—e.g., preservation or breaking
of inversion symmetry, or chirality, or polarity, or even tar-
geting specific structures whose electronic states give rise to
quantum properties [53]. Our hope in presenting a spatial rep-
resentation of the MX2 phase field is to highlight relationships
between different polytypes that might not have been obvious
from established nomenclatures. Such relationships motivate
the use of synthesis parameters (composition, temperature,
pressure) to navigate MX2 phase space in a controlled man-
ner. Establishing clear polytype-property relationships then
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provides a means for linking structural complexity to material
function in MX2 systems.
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APPENDIX

We provide crystallographic details of the 12 ordered poly-
types listed in Table I and representative structures in Fig. 8.
In each case, the crystal symmetry and atom coordinates were
determined using the FINDSYM code [54]. The symbols aref

and cref denote, respectively, the in-plane hexagonal cell con-
stant and the stacking distance. The parameter z denotes the
fractional out-of-plane coordinate for the X anions relative to
the M layer.

Glazer notation o+s+c+: R3̄m; a = aref , c = 3cref ;
M 3a(0, 0, 0); X 6c(0, 0, 1

3 − z).

Glazer notation o+s+c−: P3̄m1; a = aref , c = cref ;
M 1a(0, 0, 0); X 2d ( 1

3 , 2
3 ,−z).

Glazer notation o+s−c0: R3̄m; a = aref , c = 6cref ;
M 6c(0, 0, 1

12 ); X1 6c(0, 0, 5
12 − z

6 ); X2 6c(0, 0, 3
4 + z

6 ).

Glazer notation o−s+c0: R3̄m; a = aref , c = 6cref ;
M1 3a(0, 0, 0); M2 3b(0, 0, 1

2 ); X1 6c(0, 0, 1
3 − z

6 ); X2
6c(0, 0, 1

6 − z
6 ).

Glazer notation o−s−c+: P63mc; a = aref , c = 2cref ;
M 2b( 1

3 , 2
3 , 1

2 ); X1 2a(0, 0, z
2 ); X2 2b( 1

3 , 2
3 ,− z

2 ).
Glazer notation o−s−c−: P63mc; a = aref , c = 2cref ;

M 2b( 1
3 , 2

3 , 1
2 ); X1 2b( 1

3 , 2
3 , z

2 ); X2 2a(0, 0,− z
2 ).

Glazer notation t+s+c+: R3m; a = aref , c = 3cref ;
M 3a(0, 0, 0); X1 3a(0, 0, z

3 − 1
3 ); X2 3a(0, 0, 2

3 − z
3 ).

Glazer notation t+s+c−: R3m; a = aref , c = 3cref ;
M 3a(0, 0, 0); X1 3a(0, 0, 1

3 − z
3 ); X2 3a(0, 0, z

3 − 2
3 ).

Glazer notation t+s−c0: P6̄m2; a = aref , c = 2cref ;
M1 1e( 2

3 , 1
3 , 0); M2 1b(0, 0, 1

2 ); X1 2g(0, 0,− z
2 ); X2

2h( 1
3 , 2

3 , 1
2 − z

2 ).

Glazer notation t−s+c0: R3̄m; a = aref , c = 6cref ;
M 6c(0, 0,− 1

12 ); X1 6c(0, 0, 1
4 − z

6 ); X2 3a(0, 0, 1
4 + z

6 ).
Glazer notation t−s−c+: P63/mmc; a = aref , c = 2cref ;

M 2b(0, 0, 1
4 ); X 4 f ( 1

3 , 2
3 , 1

4 + z
2 ).

Glazer notation t−s−c−: P63/mmc; a = aref , c = 2cref ;
M 2c( 1

3 , 2
3 , 1

4 ); X 4 f ( 1
3 , 2

3 , 3
4 + z

2 ).

FIG. 8. Two-dimensional representations of the 12 ordered poly-
types listed in Table I. Here the atomic positions are represented
along the central y = 1 − x plane where black filled circles denote
M atoms and open circles denote X atoms.
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