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Statins are commonly prescribed medications widely investigated for their potential actions on the brain and mental health. Pre-
clinical and clinical evidence suggests that statins may play a role in the treatment of depressive disorders, but only the latter has
been systematically assessed. Thus, the physiopathological mechanisms underlying statins’ putative antidepressant or
depressogenic effects have not been established. This review aims to gather available evidence from mechanistic studies to
strengthen the pharmacological basis for repurposing statins in depression. We used a broad, well-validated search strategy over
three major databases (Pubmed/MEDLINE, Embase, PsychINFO) to retrieve any mechanistic study investigating statins’ effects on
depression. The systematic search yielded 8068 records, which were narrowed down to 77 relevant papers. The selected studies
(some dealing with more than one bodily system) described several neuropsychopharmacological (44 studies), endocrine-
metabolic (17 studies), cardiovascular (6 studies) and immunological (15 studies) mechanisms potentially contributing to the effects
of statins on mood. Numerous articles highlighted the beneficial effect of statins on depression, particularly through positive
actions on serotonergic neurotransmission, neurogenesis and neuroplasticity, hypothalamic-pituitary axis regulation and
modulation of inflammation. The role of other mechanisms, especially the association between statins, lipid metabolism and
worsening of depressive symptoms, appears more controversial. Overall, most mechanistic evidence supports an antidepressant
activity for statins, likely mediated by a variety of intertwined processes involving several bodily systems. Further research in this

area can benefit from measuring relevant biomarkers to inform the selection of patients most likely to respond to statins’
antidepressant effects while also improving our understanding of the physiopathological basis of depression.
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INTRODUCTION

Statins are among the most prescribed medications worldwide
[1, 2]. Thanks to their established safety [3], statins are considered
prototype candidates for ‘drug repurposing'—an approach to find
new therapeutic uses for well-known molecules; this approach can
be useful in areas at high risk of failure in drug discovery such as
psychiatry [4]. One strategy behind drug repurposing in psychiatry
is based on the advances in our understanding of biological
determinants of mental illness, which can then be targeted with
molecules known to express the relevant pharmacological activity
[4]. A classic example involves the repositioning of anti-
inflammatory medications for the treatment of depression [5],
which was initially promoted by the observation that depressive
symptoms seen in chronic inflammatory disorders seem to
respond to immune-active drugs regardless of concomitant
physical health improvement [6]. Following this, a 'depressive-
inflammatory’ subtype of depression has been increasingly
established, and the same occurred for a variety of treatments
aiming to benefit this subgroup of patients [7]. Among these,
statins have been extensively investigated because of their
recognised anti-inflammatory activity [8]. However, these medica-
tions also have several other molecular targets—primarily the

reduction of cholesterol, that could argue against their use in
depression: for example, previous data suggesting that low
cholesterol, suicidality and low mood can be associated [9].

Overall, while statins’ general pharmacological actions are well-
established, their broader effects—especially neuropsychophar-
macological ones, are less clear and increasingly explored. The
general pharmacology and neuropsychopharmacology of statins
are now briefly summarised.

General pharmacology of statins

Statins’ primary mechanism of action involves the competitive,
reversible antagonism of liver 3-hydroxy-3-methylglutaryl-Coen-
zyme A (HMG-CoA) reductase, the rate-limiting enzyme in
cholesterol biosynthesis [10]. By inhibiting HMG-CoA reductase,
statins thwart the physiological production of cholesterol with a
subsequent decline of its blood levels [11]. The ensuing reduction
in cholesterol concentration within hepatocytes triggers the
upregulation of low-density lipoprotein (LDL)-receptor via sterol
regulatory element binding proteins [12], leading to increased
uptake of LDL cholesterol from systemic circulation [13]. In other
words, statins’ cholesterol-lowering properties depend not only on
the reduction of cholesterol biosynthesis from the liver, but also
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on the consequent substantial upsurge in LDL clearance from
plasma. Ancillary mechanisms of cholesterol reduction comprise
inhibition of hepatic synthesis of apolipoprotein B100 [14] and
decreased production and secretion of triglyceride-rich lipopro-
teins [15]. Overall, the effects on lipid profile include substantial
contractions in total cholesterol, LDL, and triglycerides, as well as
an accrue in high-density lipoproteins (HDLs) [16]. Additionally,
statins differ from other lipid-lowering agents because their
upstream inhibition of the mevalonate pathway affects several
end-products other than cholesterol, which are responsible for
numerous homoeostatic processes, including Coenzyme Q
(mitochondrial respiratory chain), farnesyl- and geranyl-geranyl
pyrophosphate moieties (protein post-translational modifications),
isopentenyl tRNAs (RNA transcription), and dolichol (protein N-
glycosylation) [17]. On this basis, statins are described as
possessing ‘pleiotropic effects’ [18].

Neuropsychopharmacology of statins

There is increasing—though not definitive evidence that all
statins, regardless of their lipophilicity, can reach the central
nervous system (CNS) [19-22]. These molecules are detected in
rodent brains after a few hours following a single dose
administration [19]. Both lipophilic and hydrophilic statins can
be found in the neuroparenchyma of animals [20] and humans
[21], with functional magnetic resonance imaging (fMRI) studies
displaying their effect on neural activity [22]. Consistent data
indicate that statins can affect brain function both directly and
indirectly [23, 24].

The local CNS effects of statins involve brain lipids, neuro-
transmission, neurogenesis and neuroprotection from trauma,
inflammation, and oxidative stress [24]. Firstly, it should be noted
that cholesterol and other end-products of the mevalonate
pathway are especially abundant in the CNS, where they serve
many essential physiological functions [25]. These molecules are
rather metabolically inert in the adult brain: their half-life spans
from months to years [26], and only some 0.02% undergo daily
turnover through de novo synthesis mainly by astrocytes [27],
meaning that there is no need to rely on uptake from systemic
circulation [28]. Nevertheless, even short-term statins administra-
tion seems to cause acute disruption in the homoeostasis of these
metabolites in the CNS [20], whereas chronic statin use
determines further reductions in brain cholesterol [29] and other
mevalonate end-products [30], either directly through HMG-CoA
reductase inhibition, or secondarily via a 'sink effect’. Modulation
of these lipids within the CNS leads to changes in brain function
and behaviour, and is therefore associated with neuropsycholo-
gical diseases [25] and their treatment [31].

Statins have widespread effects on neurotransmission, involving
the monoaminergic, cholinergic and glutamatergic systems that
have been implicated in a variety of neuropsychiatric disorders:
both cholesterol-dependent and unrelated (e.g. anti-inflammatory
and antioxidant) mechanisms can explain such alterations in
neurotransmitters levels [32]. Statins are also ligands of peroxi-
some proliferator-activated receptor (PPAR)a, which drives the
expression of neurotrophins such as brain-derived neurotrophic
factor (BDNF) [33]. Furthermore, statin-dependent inhibition of the
mevalonate pathway stimulates hippocampal neurogenesis via
Whnt signalling [34] and promotes neurite outgrowth [35], though
also appearing to inhibit synaptic spurring [36].

Finally, statins can be neuroprotective against a variety of
stressors. Following traumatic injury, statin use is associated with
reduced neuronal loss [37] and increased tissue recovery via
vascular endothelial growth factor (VEGF) and activation of the
PI3K/Akt-BDNF pathway [38]. Likewise, the suppression of certain
mevalonate metabolites mediated by statins dampens the
production of pro-inflammatory cytokines [39] and free radicals
[40] such as reactive oxygen species (ROS) and nitric oxide (NO),
thus protecting neurons from leaky blood-brain barrier (BBB) [41]
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and overly activated microglia [42] (i.e. neuroinflammation), as
well as oxidative stress [43].

The peripheral effects of statins involve a wealth of systems,
part of their dubbed ’pleiotropy’ [23]. In addition to, and
independently from their established activity on the metabolism
of bodily lipids [44, 45], statins can regulate critical functions of
endocrine (e.g. cortisol [46, 47] and insulin secretion [48, 49]),
cardiovascular (e.g. endothelial function, platelet activation and
atherogenesis [50]), and immune (e.g. regulation of innate
immunity via pro- and anti-inflammatory cytokines [51, 52] and
of adaptive immunity via inhibition of antigen-1 leucocytes (LFA-1)
[53], T-cell activation [54] and regulatory T-cells induction [55])
systems. All these processes share profound interactions with each
other [56-59], not to mention their substantial crosstalk with the
neurobiological mechanisms described above [23, 24].

Aim of the review

Despite considerable research probing statins in a variety of
neuropsychiatric disorders, and the growing amount of literature
available on this topic, the effects of statins in neuropsychiatric
disorders remain controversial [60]. Clinical studies show that
statins are promising candidate molecules to repurpose in
depression [61], but while evidence from trials and observational
studies has been extensively summarised, both descriptively
[62, 63] and quantitatively [64-72], the same cannot be said for
mechanistic studies. A prior paper had described the neurobio-
logical underpinnings potentially targeted by statins in mood
disorders [73], but evidence had not been systematically drawn
from studies that directly assessed statins’ use in depression—or
models thereof.

The large amount of original research investigating the use of
statins in depression, and the several articles attempting to
summarise such evidence over the last few years, highlight that
this is a topic of ongoing debate within the scientific community
[62]. In this context, the design of further clinical research may
benefit from a comprehensive overview of relevant translational
findings.

Evidence from in vitro, animal, and human translational
research is usually gathered and presented by means of narrative
reviews. Because these studies are abundant yet less methodically
organised on search engines and databases than their clinical
counterparts, systematically searching for relevant mechanistic
evidence can be daunting, though profitable [74]— and machine
learning approaches have been developed to support the task
[75]. In this paper, we, therefore, provide an overview of the
mechanistic evidence that defines the pharmacological bases for
repurposing statins in depression.

MATERIALS AND METHODS

In this review, we used a broad search strategy conducted on
three major databases (i.e. Pubmed/MEDLINE, Embase, Psy-
chINFO) via OvidSP on 8 April 2022, updated then on 22 April
2023 following peer-review. The search algorithms combined
index terms and free-text words for statins, depression or
depressive symptoms, and depression-like models used in
animals (Supplementary Material, S1). As advised for reviews
of mechanistic studies, a web-based software (i.e. Rayyan) [76]
for semi-automated text mining, and extensive forward/back-
ward searching were employed to support de-duplicating and
screening records. Two researchers (RDG, NRP) independently
screened titles and abstracts for relevance, assessed the full
texts for eligibility, and extracted relevant data. Disagreements
were discussed with the other authors and resolved by
consensus. Eventually, we only included mechanistic studies
that reported original data on the pharmacological effects of
statins in depression, with no restriction to their design and
language.

Translational Psychiatry (2023)13:253
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Records identified through structured
database search: 8,068

- PubMed/MEDLINE: 1,002

- PsycINFO: 498

- Embase: 6,568

| Records after duplicates removal: 6,726 |

l

| Records screened on Rayyan: 6,726 | — I Records excluded: 6,508 |
Full-text articles assessed for eligibility: K
— Full-text articles excluded: 141

218

o 1

77

1. Neurobiological effects: 44

2. Endocrine-metabolic effects: 17
3. Cardiovascular effects: 6

4. Immunological effects: 15

Studies included in qualitative synthesis:

system)

(Some studies deal with more than one bodily

Fig. 1 Flow chart of the search for mechanistic studies.

RESULTS

The search flow chart is in Fig. 1. The initial search yielded 6806
records, of which 2080 were duplicates. Screening of titles and
abstracts led to the removal of 4548 non-relevant studies. Further
107 articles were excluded from the eligibility assessment of their
full texts. Eventually, 77 studies were included in the review. Of
these, the majority included animal models of depression
(50 studies), six involved in vitro investigations and 21 were
translational studies in human participants.

Overall, mechanistic evidence showed that several intertwined
neuropsychopharmacological (44 studies), endocrine-metabolic
(17 studies), cardiovascular (6 studies) and immunological
(15 studies) processes may contribute to the effects of statins in
depression (Fig. 2).

Each included study was described in its relevant section(s) and
summarised in Table 1 (see also Supplementary Material, S2).

Further four studies assessed the putative antidepressant
activity of statins in animal models of depression without further
investigating their underlying mechanism of action and are here
briefly reported. These showed that the highly-lipophilic simvas-
tatin and lovastatin have antidepressant-like effects in rats or mice
[771, while the less lipophilic atorvastatin [78] and pitavastatin [79]
fail to do so. However, atorvastatin, pitavastatin and hydrophilic
rosuvastatin display antianxiety properties [80].

Neuropsychopharmacological effects of statins in depression
These include effects on neurotransmission, neurogenesis, neuro-
protection and neuropsychology.

Neurotransmission. The pathophysiology of depression is classi-
cally associated with anomalies in monoaminergic (i.e. serotonin
or 5-hydroxytryptamine, 5HT; noradrenaline, NA; dopamine, DA)
neurotransmission [81], though more recently glutamatergic, y-
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aminobutyric acid (GABA)ergic, and cholinergic receptors have
been implicated [82]. Numerous studies indicate that statins can
alter synaptic transmission by modulating the function of several
of these neurotransmitter receptors and their ligands [32].

Serotonin: In vitro, statin-induced cholesterol depletion impairs
5HT;o [83] and 5HTs [84] receptor function. Simvastatin also
increases serotonin reuptake by augmenting serotonin transporter
(SERT) activity via both cholesterol-mediated [85] and indepen-
dent [86] pathways. These effects would apparently decrease
serotonin activity. Nevertheless, animal models have shown an
antidepressant-like effect of simvastatin which may be linked to
an increase in the availability of tryptophan, the serotonin
precursor, through the inhibition of indoleamine 2,3-dioxygenase
(IDO) [87], and increases in hippocampal serotonin [88], as well as
reduced SERT activity [89]. Conversely, serotonin depletion or
5HT; 5 and 5HT,a,c receptor antagonism abolish the antidepres-
sant effect of atorvastatin [90]. These findings have not been
replicated in human studies assessing 5HT neuroendocrine
function and plasma tryptophan in hypercholesterolaemic
patients receiving statins [91]. Furthermore, simvastatin appeared
to increase SERT function in the short-, but not long-term in
humans [92].

Statins can also modulate the serotonergic effects of some
antidepressants in vitro, via the tyrosine kinase receptor 2 (TRKB)
domain of BDNF receptor [93]. In animals, the antidepressant
effect of selective serotonin reuptake inhibitors (SSRIs) seems
potentiated by several statins [87, 90, 94, 95], possibly involving
pharmacokinetics interactions [96-98], but the same does not
apply to tricyclic antidepressants (TCAs) [87].

Dopamine: Because dopamine neural circuitry, difficult-to-treat
depressive symptoms (especially anhedonia), and inflammation

SPRINGER NATURE
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Fig. 2 Current mechanisms explaining the effects of statins in depression.

appear reliably related [99, 100], statins might be ideally placed to
modulate these mechanisms at the same time. Indeed, the
dopaminergic system appears affected by statins administration,
but while certain studies demonstrate the occurrence of
concomitant dopaminergic and antidepressant- or anxiolytic-like
effects [87], perhaps mediated by interaction with BDNF function
[101, 102] or via potentiation of dopaminergic mechanisms [103]
for simvastatin, others fail to show any concurrent changes in
animal depressive or anxiety behaviour for atorvastatin [104].

Glutamate and GABA: The most recent and successful develop-
ments in depression therapeutics have not been confined to
monoaminergic systems but have focussed instead on molecules
capable of targeting the glutamatergic and GABAergic pathways
[105](e.g., ketamine and esketamine for depression and suicidality
[106], brexanolone for post-partum depression [107]). The
antidepressant and anxiolytic properties of simvastatin
[87, 108-111] and atorvastatin [112] in rats seem linked to
glutamate N-methyl-D-aspartate (NMDA) receptor expression and
blockade, especially in the hippocampus and amygdala. However,
another study showed that while atorvastatin seems to affect
hippocampal glutamate and GABA, no concurrent effect on
depression or anxiety can be observed in mice [104].

Other neurotransmitters: Less conventional pathways have also
been explored in animal models of depression, showing that
simvastatin may elicit antidepressant-like action via opioid- [113]
and endocannabinoid-mediated [114] neurotransmission, while
atorvastatin does so via adenosine-dependant pathways [115].
Simvastatin might also increase the concentration of the
anxiogenic cholecystokinin-tetrapeptide in the cerebrospinal fluid
(CSF) of healthy human subjects [116] while no effect on CSF
serotonin or its metabolite 5-HIAA was found.

Neurogenesis. Processes of hippocampal neurogenesis and
neuroplasticity, largely controlled by neurotrophins such as BDNF
[117], are considered today a hallmark of depressive disorder and
antidepressant action [118].

Emerging evidence from animal studies suggests that lovastatin
and atorvastatin may enhance the proteolytic cleavage of pro-BDNF
[119-121], BDNF hippocampal concentrations [112, 122] and
a7nAChR-mediated activation of the PI3K/Akt-BDNF pathway [123],
with a consequent positive influence on depressive-like behaviour.
Agmatine and imidazoline receptors, whose function broadly relates
to BDNF neurogenesis, NMDA neuroprotection and monoamine
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regulation, have also been involved in the antidepressant-like effect
of simvastatin and atorvastatin [124]. On the other hand, simvastatin
or rosuvastatin administration seem associated with lower hippo-
campal BDNF and anxiogenic response in rats [125].

Neuroprotection. Excitotoxicity [126] and oxidative stress due to
reactive oxygen and nitrogen species in the brain [127] are strictly
related, to highly depressogenic triggers.

Numerous animal studies show that the antidepressant effect of
statins may occur because of decreasing glutamate-NMDA
excitotoxicity [128], PPARy-mediated [129, 130] or inflammation-
related [131, 132] nitrosative and oxidative stress, or all the above
[112, 133], while also inducing neuroprotective pathways such as
protein kinase B (PKB)/Akt [128], PI3K/Akt-GSK3b/mTOR [134] and
RhoA/ROCK [135] signalling.

Neuropsychology. The cognitive neuropsychological model of
depression uses changes in emotional processing as a biomarker
for depressive disorders and the assessment of antidepressant or
depressogenic responses [136]. Negative bias in emotional proces-
sing has long been recognised as a core feature of depression,
leading to a vicious circle of negative feelings, thoughts and
behaviour which triggers and maintains depressive symptoms
[137]. These emotional biases can occur across several cognitive
domains, including perception, attention and memory [138]: for
example, people with depression are more likely to perceive and
categorise facial expressions as negative or to attend and recall
negative information in emotional word-based tasks [139].

The cognitive effects of statins have been investigated for several
years [140], but only a few, recent studies have done so in humans
in the context of depression. Firstly, an observational study shows a
favourable association between statins use and lower recognition
of negative faces, with increased misclassification of these
expressions as positive, predicting increased depression and
anxiety symptoms at later assessments [141]. Conversely, two
experimental medicine trials respectively find that atorvastatin
[142] and simvastatin [143] have negative or no effects on
emotional processing.

Endocrine-metabolic effects of statins in depression

These include effects on lipid metabolism and on the
hypothalamic-pituitary-adrenal (HPA) axis and other hormones.
Lipid metabolism. Lipids in the CNS and peripheral circulation
interact with biological pathways implicated in depression [144]

Translational Psychiatry (2023)13:253
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Table 1.

Summary of included studies.

Study ID Sample  Type of statin Main finding(s) System(s) involved
P e P — SOD2 polymorphism associated with ST esponSe 1 ot associaied with antidepressant or ant- p—
inflammatory response
Al-Asmari 2017 Animal  Simvastatin Coadministration of simvastatin and fluoxetine lead to increased serotonin levels Neuropsychopharmacological
Bhattarai 2017 Animal  Atorvastatin Fluoxetine increase when with Neuropsychopharmacological
Binder 2015 Animal  Atorvastatin Atorvastatin increase hippocampal mature BDNF/pro-BDNF ratio Neuropsychopharmacological
Binder 2019 Animal  Atorvastatin Atorvastatin cxerts antidepressant effects via activation of adenosine receptors Neuropsychopharmacological
Can 2012 Animal  Simvastatin shows Iytic-like cffects i of lpid levels Endocrine/metabolic
Casarotto 2021 Invito  Pravastatin Pravastatin modulated the effects of antidepressant drugs via BDNF pathway Neuropsychopharmacological
Citraro 2014 Animal - Alonvastatin, Simuastadn, Statins have anxiolytic-like effects independent of cholesterol lowering Endocrine/metabolic
Delva 1996 Human  NR No effect of statins on tryptophan levels or in platelet SHT concentrations Neuropsychopharmacological
Deveau 2021 Invito  Simvastatin Statins increase SERT activity independent of cholesterol levels Neuropsychopharmacological
Deveau 2022 Invito  Simvastatin Statins increase SERT-dependent 5-HT uptake Neuropsychopharmacological
Dolatshahi 2020 Animal  Simvastatin has dose-dependent like effects mediated by opioid system Neuropsychopharmacological
Downs 1993 Human  Lovastatin Statins lower cardiovascular risk, improving quality of life and reducing risk of depression Cardiovascular
- Statins antidepressant-like effects are mediated by decreased glutamate-NMDA excitotoxicity and .
Fisel 2010 Animal — NR enhanced neuroprotection via (PKB)/Akt pathway Neuropsychopharmacological
ElBatsh 2015 Animal  Simvastatin Simvastatin increases hippocampal serotonin and reduce circulating glucocorticoid levels Rereyae il -
Endocrine/metabolic
Eriksson 1996 Human Simvastatin Simvastatin increase concentration of the anxiogenic choleeystokinin-tetrapeptide in CSF, but docs Neuropsychopharmacological
not affect serotonin metabolism
Gudadappanavar ) Simvastatin, Lovastatin, ) ;
S Animal ety Statins have no antidepressant-like effects NA
Hai-Na 2020 animal Atorvastatin Atorvstainrdusesdepresiveikesymptoms by 1edeing pro-nflammatry 510knes ad SOBIR pypogica
Huffman 2010 Human  NR In depressed patients, statins did not reduce cholesterol levels cfficaciously Endocrine/metabolic
Tqubal 2015 Animal  Pitavastatin No antidepressant-like effects of pitavastatin NA
Ji2010 Human  Lovastatin No effect of lovastatin on glucocorticoid receptor activity Endocrine/metabolic
Jyothsna 2018 Animal - AloTastatn, Pilavastatin, Statins have anxiolytic-like properties NA
- .osuvastatin
Atorvastatin, Fluvastatin,
Kang 2016 Human  Lovastatin, Mevastatin, Statins compensate the pro-inflammatory effects of IL18 and IL6, with anti effects
Pravastatin, Rosuvastatin
Kilic 2010 Animal  Simvastatin, Lovastatin Lipophilic statins have antidepressant-like effects NA
- . . Simvastatin antidepressant-like effect is mediated by increased tryptophan concentrations,
L3T=20P Al i dopaminergic activity and NMDS; moreover, simvastatin potentiates the effects of SSRIs NemeE e
Kim 2018 Human NR Statins compensate the pro-inflammatory effects of IL18 and IL6, with effects.
Kuhad 2012 Animal  Atorvastatin Atorvastatin exerts antidepressant-like cffects through modulation of oxidative-nitrosative stress
Kumar 2012 Animal Atorvastatin, Flavastatin Statins are protective against anxiety-like behaviours through modulation of oxidative stress and Endoerine/metabolic
mitochondrial dysfunction
Lesperance 2004 Human  NR Statin compensate the pro-inflammatory effects of CRP Immunological
Li2017 Animal  Pravastatin Pravastatin modulates the pharmacokinetics of paroxetine Neuropsychopharmacological
Lim 2017 Al Simvastatin Simvastatin exerts antidepressant-like effects via reduction of neuronal apoptosis, microglia, and P———
TNF-a expression
Lin 2014 Animal  Simvastatin Simvastatin counteracts the depressogenic effects of chronic mild stress Endocrine/metabolic
, ) Antidepressant-/anxiolytic-like effects of statins are mediated by NMDA, increased
LoToAB At AR BDNF, and reduced oxidative stress
Ludka 2014 Animal Atorvastatin Atorvastatin cxgrls‘a‘nudcprcasnm—hkc effects via modulation of 5-HT1A/2A/C receptors activity and Neuropsychopharmacological
potentiate SSRIs effects
Ludka 2016 Animal  Atorvastatin Atorvastatin enhances neuroprotection via PI3K/AKUGSK3b/mTOR pathway Neuropsychopharmacological
Ludka 20172 Animal  Atorvastatin Atorvastatin increases hippocampal mBDNF/pro-BDNF ratio Neuropsychopharmacological
Ladia 20175 il Atomastatin Atorvastatin antidepressant-ike effects are mediated by decreased glutamate and
oxidative stress
Ma 2016 Human  Atorvastatin Atorvastatin antidepressant effects are mediated by downregulation of IL1B Immunological
Massardo 2020 Human  NR Statins affect endothelial function, with positive effects on depression and cognition Cardiovascular
Massardo 2022 Human  Rosuvastatin Rosuvastatin affect cerebral blood flow with positive effects on depression and cognition Cardiovascular
Menolascino 2012 Human  Simvastatin Simvastatin use is associated with decreased testosterone levels and with depressive symptoms Endocrine/metabolic
Menze 2021 Animal  Simvastatin Simvastatin exerts antidepressant-like cffects via inhibition of NLRP
Nosersadena019 Ammal Simvastatin Simvastatin antidepressant-like effects are mediated by NO-cGMP-KATP channels pathway and e ————
PPARY receptors.
Neurauter 2003 Invitto  Atorvastatin inhibits IFN-y-mediated pathways, T cells and Neuropsychopharmacological -
Immunological
Nothdurfter 2010 Invito  Simvastatin Simvastatin-mediated cholesterol depletion impairs SHT3 function Neuropsychopharmacological
Okudan 2020 Animal  Simvastatin, Rosuvastatin Statins lower hippocampal BDNF, NGF, and Irsin levels Neuropsychopharmacological
Persons 2016 Human  NR Statins-mediated cholesterol lowering doesn't correlate with depression Endocrine/metabolic
Rahangdale 2021 Animal  Atorvastatin, Simvastatin Antidepressant-like effects of atorvastatin and simvastatin involve agmatine and receptors
Rana 2014a Animal  Simvastatin potentiates the like effects of dopaminergic agents Neuropsychopharmacological
Rana 2014b Animal  Simvastatin Simvastatin increase BONF expression Neuropsychopharmacological
Renshaw 2009 Animal  Lovastatin Lovastatin potentiates the antidepressant-like cffcct of fluoxetine Neuropsychopharmacological
Atorvastatin, Simvastatin,
Sahebkar 2016 Human Lovastatin, Rosuvastatin, Lipophilic statins increase serum cortisol levels Endocrine/metabolic
Pravastatin
Santos 2012 Animal  Simvastatin potentiates the anti like effect of fluoxetine Neuropsychopharmacological
Segatto 2014 Animal Simvastatin Simvastatin exerts antidepressant-like effe ‘modulation of the isoprenoid/cholesterol Endocrine/metabolic
biosynthetic path
Sehar 2015 Animal P — Atorvastatin affects hippocampal dopamine, glutamate and GABA levels, without effects of Neuropsychopharmacological
depressive-like behaviours
Shahsavarian2014  Animal  Atorvastatin Atorvastatin antidepressant-like effects are mediated by PPARY receptors and NO pathway Neuropsychopharmacological
, _— , Statins antidepressant-like effects are mediated by reduced circulating id levels, of i i
Sheets 2016 Animal  Atorvastatin, Simvastatin hrombosans oo of INE-slpha s
Shrivastava 2010 Invito  Mevastatin Mevastatin-induced cholesterol depletion impairs SHT1A function Neuropsychopharmacological -
Endocrine/metabolic
Tang 2020 Animal  Lovastatin Lovastatin increase hippocampal mBDNF Neuropsychopharmacological
Taniguti 2019 Animal  Atorvastatin Atorvastatin reduce hippocampal TNF-u release and oxidative stress, and modulate BDNF expression  Neuropsychopharmacological
Vevera 2005 Human  Simvastatin Short term, but not long term, simvastatin treatment enhanced SERT activity Neuropsychopharmacological
Vevera 2016 Animal Simvastatin Four-weeks simvastatin decreased brain cholesterol content and SERT activity, and showed Neuropsychopharmacological
anxiolytic-like effects
Wang 2009 Animal  Simvastatin Simvastatin exhibit NMDA antagonist-like effects Neuropsychopharmacological
Wang 2017 Animal  Simvastatin Simvastatin antidepressant-like effects are mediated by endocannabinoid system Neuropsychopharmacological
Wirleitner 2003 Human  NR Coronary heart disease is associated with decreased tryptophan levels ey sl
Immunological
Wu 2019 Animal  Simvastatin Simvastatin reduces expression of p cytokines in the Immunological
Yan 2011 Animal  Simvastatin Simvastatin modulate NMDA receptor activity with and anxiolytic-like effects
Yan 2020 Amimal Simvastatin Simvastatin shows antidepressant-like effects through modulation of NMDA receptor activity and Neuropsychopharmacological -
inhibition of expression of COX2 and TNF-alpha Immunological
Yan 2021 Animal  Atorvastatin show like effects via anti-oxid; (NOX2 inhibition) Neuropsychopharmacological
Atorvastatin, Cerivastatin,
Yang 2003 Human  Fluvastatin, Pravastatin, Statins lower cardiovascular risk, improving quality of life and reducing risk of depression Cardiovascular
Simvastatin
Yang 2022 Animal  Atorvastatin Atorvastatin exerts antidepressant-like cffects via modulation of PI3K/AKt-BDNF signaling pathway  Neuropsychopharmacological
Yu 2019 Animal  Simvastatin Simvastatin exerts antidepressant-Jike effects via modulation of NF-xB activity Immunological
Zhang 2017 Animal  Simvastatin in induces depressive-like symptoms via Immunological
Zhou 2022 il Simvasatin Simvastatin exert antidepressant-like cffccts by reversing RhoA and ROCK expression increase Newropsychopharmacological

induced by prenatal stress in mice

Green: positive effect; yellow: no effect; red: negative effect.
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and antidepressant action [145]. Intriguingly, lipid homoeostasis is
critical to several interconnected mechanisms involved in mood
regulation, anxiety and suicidal behaviour, including serotonin
neurotransmission [146-148], neurogenesis [149], neuroprotection
from excitotoxicity [109] and systemic inflammation [148]. From a
clinical standpoint, dyslipidaemia and depression, its severity and
prospective course appear associated [150], while SSRI-induced
increase in cholesterol has been argued to be protective against
depression [151]. Correlations between depressive symptomatol-
ogy and both raised [152, 153] and diminished [154-157]
concentrations of circulating lipids, including total cholesterol,
LDL, HDL, triglycerides, w-3 polyunsaturated fatty acids (PUFA),
can be observed. These associations may differ between men and
women [158]. Some studies highlight a link between cholesterol
and anxiety, rather than an effect on mood [159]. Nevertheless,
changes in lipid metabolism have been proposed as potential
biomarkers for depressive disorders [160].

In keeping with the variable findings above, the effects of
statins on lipid metabolism and thus depression seem conflicting.
An in vitro study shows that statin-mediated cholesterol depletion
inhibits 5HT;5 receptor dynamics [83]. High-fat diet induces
depressive and anxiety behaviours in rats, but these effects are
counteracted by simvastatin [161]. Also, simvastatin administra-
tion affects mevalonate metabolites within the hippocampus and
prefrontal cortex of rodents, with consequent modulation of
emotional cognition [17], though another study highlights a
detrimental association between cholesterol-lowering and altered
behaviour, weight loss, and circadian disruption [162]. On the
other hand, the antidepressant- and anxiolytic-like effects of
several statins are observed in rats in the absence of concurrent
changes in plasma cholesterol [163]. An intriguing study in
humans reports that, despite low LDL cholesterol levels correlating
with depression, as also described above, such association is not
observed when cholesterol-lowering is achieved via statins [164].
Furthermore, failure to improve the lipid profile, following statin
therapy, in patients who suffered a myocardial infarction, seems
associated with a higher incidence of depression at 6 months
[165].

Hypothalamic-pituitary-adrenal axis and other hormones. Distur-
bances of glucocorticoids and the HPA or ’stress’ axis, closely
related to abnormal inflammatory response, are known to play a
major role in the pathophysiology of depression [166], with
elevated plasmatic cortisol potentially predicting the development
of depressive disorders [167].

Some reviews have hypothesised that statins may mediate the
relationship between lipid metabolism, stress, inflammation, and
depression in animals [168] and humans [169, 170]. Simvastatin
[88] and atorvastatin [171] reduce glucocorticoid levels while
expressing antidepressant-like effects in rats. Equally, the depres-
sive- [172] and anxiety-like [173] behaviours caused by chronic
mild stress are neutralised with statins use. In humans however
statins have been observed to have no effect on glucocorticoid
receptors [174] or to even increase serum cortisol [46], although
neither study specifically addresses whether these events
eventually lead to the development of depression. A case report
instead describes the onset of depressive symptomatology in a
male whose simvastatin initiation was associated with a reduction
of testosterone levels [175].

Cardiovascular effects of statins in depression
These include effects on vascular disease and overall quality of life.

Vascular disease. Atherosclerosis and endothelial dysfunction,
which statins lessen via both cholesterol-mediated and other
mevalonate-dependant pathways, appear involved in depression
[176, 177], especially in late-life according to the ‘vascular
depression hypothesis’ [178]. A recent meta-analysis has indeed
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identified a pattern of increased hyperintensity burden on
magnetic resonance imaging (MRI) in people whose depression
has a late onset [179]. Furthermore, there is a clear bidirectional
association between depression and cardiovascular morbidity and
mortality [180, 181], therefore interventions that are capable of
targeting both mechanisms could yield particular benefit.

Statins are considered excellent candidates for reducing
vascular dysfunction of the small white matter vessels in the
neuroparenchyma, with consequent positive effects on depression
[182]. In obese rats, atorvastatin administration reduces throm-
boxane and improves vascular reactivity while decreasing
depressive-like behaviour [171]. One recent human study shows
that low doses of statins in depressed participants determine
blood flow changes in key brain areas of mood and cognitive
control as well as an improvement in depressive symptoms and
markers of endothelial function [183, 184].

Quality of life. On the back of strong bidirectional links between
depression, cardiovascular disorders and quality of life [185], some
authors argue the ability of statins to prevent cardiovascular and
cerebrovascular accidents can lead to improved quality of life and
thus lower onset of depressive disorders [186, 187]. However, no
studies that explicitly investigate this issue in humans could be
retrieved.

Immunological effects of statins in depression
These include effects on innate immunity or inflammation and
adaptive immunity.

Innate immunity (inflammation). Extensive evidence suggests
that immune processes, especially inflammatory ones, are
prominent in depression pathophysiology [7]. Both peripheral
and CNS inflammation appear causally involved [188].
Simvastatin [189-193] and atorvastatin [194] reduce depressive-
like symptoms in animals by decreasing neuroinflammation
thanks to the suppression of pro-inflammatory cytokines, P2X7-
inflammasome complex, and microglia activation. In addition, the
reduction of circulating tumour necrosis factor (TNF)a by
simvastatin [171] and atorvastatin [195] is likewise associated
with improved depressive-like behaviour. Some translational
human studies indicate that statins might positively affect mood
by offsetting the peripheral pro-inflammatory effects of interleukin
(IL)1B [196], IL6 and IL18 [197, 198] and C-reactive protein (CRP)
[199]. Nonetheless, a study on a functional genetic polymorphism
of superoxide dismutase (SOD)2, an enzyme responsible for the
anti-inflammatory activity of rosuvastatin, could not observe any
association with an antidepressant response or CRP [200].

Adaptive immunity. Though with less consistency, disruptions in
adaptive immunity (i.e. acquired humoral and cell-mediated
immune system) have been implicated in depression [201].

No studies could be identified that directly assessed the effect
of statins on these mechanisms. One study shows that atorvastatin
can inhibit interferon (IFN)y-dependant cellular immunity, which is
related to increased tryptophan availability [202]. Since trypto-
phan is the precursor of serotonin, it is suggested that statins
might reduce the risk of depression by decreasing immune-
mediated tryptophan degradation [203, 204].

DISCUSSION

In this article, after recapitulating the general pharmacological and
neuropsychopharmacological activities of statins, we reviewed the
mechanistic evidence for the effects of these drugs in depression.
While a few studies only assessed the behavioural consequences
of statins administration in animal models of depression, the great
majority (67 studies) of the investigations were mechanistic in
nature, thus providing valuable insights on the interactions
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between statin use, depressive and anxiety symptoms, and
numerous biological and psychological mechanisms.

Overall, most studies pointed toward an antidepressant and
anxiolytic effect of statins by means of neurobiological, endocrine-
metabolic, cardiovascular, and immunological mechanisms largely
communicating with each other. A minority of investigations
reported no effect, or even depressogenic and anxiogenic ones.
Among the few in vitro studies, most identified a modulatory role
of statins on serotoninergic pathways, possibly supporting some
clinical evidence that statins’ effects in depression might be related
to their ability to augment traditional antidepressants [64].
Evidence from the numerous studies in animal models of
depression appears particularly suggestive of statins’ benefit: 32/
36 studies showed a positive effect by influencing neurotransmit-
ters turnover, neuroreceptors function, and neuroplasticity (two
studies showed no effect [98, 104] and one a negative effect [125]),
7/7 studies via lipid metabolism and HPA axis regulation, and 7/
8 studies via modulation of circulating molecules involved in
immunological and cardiovascular function (one study showed,
however, an increase in neuroinflammatory markers [190]).
Findings from human translational studies were instead mixed:
10/201studies identified a potentially beneficial effect mainly
mediated by anti-inflammatory and cardioprotective mechanisms,
while the remaining showed either no effect or indeed a negative
one on neurobiological, neuropsychological, and endocrine-
metabolic processes — the latter perhaps in keeping with well-
documented literature about the associations between low levels
of cholesterol and some depressive symptoms [205]. Nevertheless,
negative pre-clinical findings are less frequently published [206],
therefore the dearth of the latter associations might not reflect a
lack of harmful effects for statins. It is also important to notice that
several other bodily systems probably affected by statins admin-
istration, such as the gut-brain axis [207], have not been assessed
in the context of depression yet, and warrant further investigation.

Meanwhile, a few new clinical studies have recently been
completed [208] or are ongoing (NCT04301271, NCT04685642),
which may provide important insights not only on establishing
the clinical efficacy of statins in depression, but also on
mechanistic aspects of such effects (or lack thereof). Specifi-
cally, the last published clinical trial [208] has investigated the
putative antidepressant effect of adjunctive (i.e., in addition to
standard care) simvastatin in a large sample of 150 adults with
treatment-resistant depression followed up for 12 weeks. This
study design includes several features (e.g., use of the most
lipophilic simvastatin, focus on a subgroup of patients with
treatment-resistant depression, measurement of baseline lipid
and inflammatory markers) that both pre-clinical and clinical
evidence would support [61]—which is why the lack of any
beneficial effect of statin compared to placebo, regardless of
the mediating effect of lipid and inflammatory markers, appears
disappointing [208] in contrast with earlier promising, yet
smaller trials [64, 68]. Nevertheless, a large amount of clinical
evidence (extensively reviewed elsewhere [63], see also
Supplementary Material, S3 for an up-to-date list of studies)
continues supporting the value of identifying subgroups of
patients whose specific depression phenotype (as based on
neuropsychopharmacological, endocrine-metabolic, cardiovas-
cular, immunological or other markers) may be more responsive
to, or preventable with, targeted statin treatment [208].

Limitations

This review has several limitations. Although we used a broad and
systematised approach to literature searching, it is possible that
some records may have been missed, especially from grey
literature, because pre-clinical studies are generally much more
numerous and less methodically organised in databases than their
clinical counterparts [209]. Overall, our work remains a narrative
overview of mechanistic evidence, which includes a variety of
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heterogeneous studies including in vitro, animal, and human
(both in clinically depressed and healthy populations) investiga-
tions. As such, the review was not been pre-registered, there was
no attempt at pooling results to produce new evidence, and we
did not systematically assess for sources of bias in the studies
included—though we followed available advice on narrative
reviews reporting [210] (Supplementary Material, S4). In this
context, it should be noted that the internal validity of many pre-
clinical experiments is sometimes poor, while publication bias is
common [74]—meaning that caution is required when drawing
any conclusion from the evidence reported.

CONCLUSION

The translation of findings from in vitro, animal, and indeed
human studies to medical practice remains a particular challenge
for mental illnesses [211]. Consequently, the repurposing of
medications based on the targeting of molecular pathways
shown to be associated with the course of psychiatric diseases [4],
such as mood disorders, has thus far produced modest results
[212]. Mechanistic reasoning or “pathophysiologic rationale”—as
compared to evidence produced via clinical trials, has often led to
unjustified interpretations, to the extent that most evidence-
based medicine proponents are legitimately sceptical about using
such reasoning as evidence for efficacy or harm [213]. Never-
theless, the design of further pre-clinical and clinical studies
investigating the effects of statins—or of any molecule targeting
the physiopathological pathways examined above, as well as
measurement of related biomarkers for depression and anti-
depressant response, may be informed by the evidence
presented in this review.
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