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We study the role of anisotropic steric interactions in a
system of hard Brownian needles in two dimensions.
Despite having no volume, non-overlapping needles
exclude a volume in configuration space that
influences the macroscopic evolution of the system.
Starting from the stochastic particle system, we
use the method of matched asymptotic expansions
and conformal mapping to systematically derive a
nonlinear non-local partial differential equation for
the evolution of the population density in position
and orientation. We consider the regime of high
rotational diffusion, resulting in an equation for the
spatial density that allows us to compare the effective
excluded volume of a hard-needle system with that of
a hard-sphere system. We further consider spatially
homogeneous solutions and find an isotropic to
nematic transition as density increases, consistent
with Onsager’s theory.

1. Introduction
Systems of interacting particles are ubiquitous in nature.
Examples include biomolecules (e.g. proteins), polymers
(e.g. DNA), cells (e.g. bacteria) and all the way to
multicellular organisms (animals). Interactions between
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organisms may be attractive (keeping a herd cohesive), aligning (keeping animals moving in the
same direction) or repulsive (keeping particles a safe distance apart) [1]. Short-ranged repulsive
interactions with singular or hard-core potentials are used to model steric or excluded-volume
interactions [2].

Anisotropy plays a crucial role in self-organization. For example, the helical form of the DNA
strand is due to highly anisotropic interactions between DNA bases [3]. The molecular shape of
liquid crystals leads to their remarkable properties [4]. Self-propulsion in active matter systems
can lead to motility-induced phase separation [5], where the uniform suspension becomes
unstable and dense clusters of almost stationary particles emerge [5]. Alignment interactions have
been shown to explain the emergence of flocking and milling [6].

Tools to study the rich collective properties of such systems range from simulations at
the microscopic level (e.g. molecular dynamics or Monte Carlo simulations) to the study of
macroscopic models for statistical quantities, often involving partial differential equations (PDEs).
While microscopic models provide a detailed system description, simulating them can become
computationally prohibitive. This is due to the large number of particles and the complexity of
interactions often involved, mainly if one is after statistical properties (which require averaging
over multiple simulations). Macroscopic models operate at the statistical level and can often
provide the insight lacking in their microscopic counterparts.

Anisotropy in particle systems comes in many forms. Models can be classified into either first-
or second-order models and either soft- or hard-core interactions. In second-order models (which
track particles’ positions and velocities), particles may interact differently depending on their
relative velocities. Examples with weak interactions include the Cucker–Smale model [7], and
the Vicsek model [8], which include alignment interactions in velocities. One may also add a
cone of vision such that an individual only aligns velocity with neighbours within the cone [6].
The Cucker–Smale and Vicsek models, and their many variants, have been the starting point
in multiple works concerned with deriving kinetic PDE models starting from such microscopic
dynamics. It is common to consider a weak or mean-field scaling 1/N of the interactions (where
N is the number of particles), leading to non-local and nonlinear kinetic PDE in the limit [9–13].
The focus in most kinetic models is on how the interaction rule depends on relative positions and
velocities, not particles’ shapes. An exception is the recent works [14,15], where they consider
a system of kinetic hard needles that align upon collision. Instead of a mean-field scaling, they
consider the Boltzmann–Grad limit of infrequent but strong interactions and invoke propagation
of chaos to derive a closed kinetic equation.

First-order models for anisotropic particles often consider the particle position and orientation
and assume diffusive behaviour in both. For isotropic particles, microscopic models are well
established (the hard-sphere, the Lennard–Jones, the Coulomb potential, etc.), and current efforts
primarily focus on deriving macroscopic models from them. By contrast, anisotropic particles are
much harder to model, even at the microscopic scale. There is a trade-off between the complexity
of the particles’ shape, on the one hand, and the model’s analytic tractability, on the other hand.
Interactions may be soft or hard depending on the application, either may be seen as the ‘true
dynamics’. For example, while soft interactions may be more appropriate for molecules, hard
steric interactions may be more fitting for cells, bacteria and animals.

The most well-known soft anisotropic potential is the Gay–Berne potential [16]. It builds
on the work of Berne & Pechukas [17], which proposed to represent particles as a union of
Gaussian potentials and their interaction as the overlap integral of their Gaussians. The Gay–
Berne potential combines this anisotropic overlap model with the Lennard–Jones potential (a
12-6 attractive-repulsive potential). The multi-phase-field approach [18,19] is at the other end
of the complexity-tractability trade-off. Here, each particle is not characterized by its centre
of mass and orientation but by a phase field variable, φi(x, t) ∈ [0, 1], such that φi(x, t) ≈ 1 if
location x is occupied by the particle i at time t and, conversely, φ(x, t) ≈ 0 if the ith particle
does not occupy location x at time t. Due to the diffusive interface between the two states
(occupied and unoccupied), repulsive interactions are incorporated in a fashion similar to that of
Berne and Pechukas: the overlap integral between two particles (now represented by phase-field
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Figure 1. (a) Excluded volume of a horizontal hard needle (blue) with centre at the origin. The centre of a second needle (red)
with orientation θ cannot be placed inside the excluded region (shaded grey area) as it would lead to an overlap. (b) Excluded
volume in phase space. The vertical axis denotes the relative angle between two needles.

variables rather than Gaussian) is computed, and the evolution is such that it minimizes the area
of overlap.

The aforementioned models have in common that the space taken up by particles is not
precisely localized, in contrast to hard-core models. Hard-core ellipsoids and rods are the natural
generalizations of hard spheres to model anisotropy. A hard-core particle induces an excluded
region (where no other particle can enter). In his seminal paper [20], Onsager finds expressions
for the excluded volume of various particle shapes such as ellipses, discs and rods. The most
striking example in his treatise is a hard needle of length ε in two dimensions, which has zero
volume but excludes a volume in configuration space of ε2| sin(θ )| to another needle with relative
orientation θ (figure 1). The problem of interacting needles in three dimensions is fundamentally
different since needles exclude zero volume in configuration space in addition to having no
volume. Rods with a core-shell structure have also been used in microscopic models of self-
assembly [21] and morphogenesis in bacterial colonies [22]. Interesting mathematical problems
arise from considering even just one anisotropic hard-core particle. For example, in the study by
Holcman & Schuss [23], they study the mean turnaround time of a Brownian needle in a narrow
planar strip as a simplified model for mRNA or stiff DNA fragments under extreme confinement.
In the study by Chen & Thiffeault [24], they consider an anisotropic Brownian microswimmer in a
channel and show that no-flux boundary conditions with the flat channel walls lead to non-trivial
boundaries in configuration space.

Since one hard-core anisotropic particle already poses mathematical challenges and, ordinarily,
natural systems comprise large ensembles of anisotropic particles, it is easy to see that
their study is substantially more challenging. This explains the dearth of macroscopic PDE
models systematically derived from underlying dynamics and the popularity of computational
and phenomenological approaches to incorporate anisotropic interactions in PDE models.
Phenomenological models have been widely used in the context of polymer and liquid crystals
theory. These include the so-called tube theory [25], which assumes polymers as rigid filaments
that, under crowding, move along a tube formed by the surrounding polymers, as well as
the Landau-de Gennes Q-tensor theory for nematic liquid crystals [26], which represents polar
molecules via a continuum order parameter. A lot of work has been dedicated to validating
these theories by comparing their predictions with microscopic models with different levels of
success [27].
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In Mandal et al. [28], they consider a system of self-propelled needles, with collisions such
that energy and momentum are preserved, and validate the tube theory (they find that the self-
diffusion coefficient of a needle increases with concentration, in contrast to that of hard spheres
[29]).

In this article, we focus on, possibly, the simplest hard-core anisotropic system, namely, that
of N Brownian needles of length ε with non-overlapping constraints in two dimensions. By
using matched asymptotic expansions, we systematically derive a macroscopic PDE model in the
asymptotic regime ε2N � 1. To our knowledge, this is the first systematic derivation for such a
system. We take an approach similar to [2], in which the authors consider a system of N Brownian
hard disks of diameter ε under a drift f(x) in two spatial dimensions. Under the assumption that
the volume fraction of the particles is small, the one-particle probability density ρ(x, t) satisfies
the nonlinear diffusion equation (equation (11) of reference [2])

∂ρ

∂t
(x, t) = ∇x · {[1 + π (N − 1) ε2ρ]∇xρ − f(x)ρ}, (1.1)

in R
2. The goal of this article is to derive an analogous PDE to (1.1) for the one-particle density

p(x, θ , t) describing the probability of a needle with centre at x and orientation θ at time t.
The structure of this article is as follows. In §2, we introduce the particle-based model, that is,

a system of N Brownian needles with drifts and its associated Fokker–Planck equation describing
the whole ensemble probabilistically. Section 3 is devoted to the systematic derivation of the
effective model using the method of matched asymptotic expansions. Section 4 is dedicated
to systems with high rotational diffusion coefficients, which are shown to inherit striking
similarities with the hard-disk model, §5, proposed by [2]. We conclude this article with the space-
homogeneous model and, upon performing a linear stability analysis, we find that the system
exhibits an isotropic-to-nematic phase transition consistent with Onsager’s theory [30].

2. The microscopic model and its associated Fokker–Planck equation
We start by describing the individual-based (microscopic) model. We suppose there are N ∈ N

identical hard needles of length ε distributed in a bounded domain Ω ∈ R
2. For 1 ≤ i ≤ N, we

denote by Xi(t) ∈ Ω the centre of the ith needle and by Θi(t) ∈ [0, π ] its orientation. We choose
Ω to be the two-dimensional torus T = R/(πZ), imposing periodic boundary conditions. The π -
period is chosen for mathematical convenience, such that Υ = Ω × [0, π ) = T

3. As pointed out in
§1, the spatial extension of the needles restricts their ability to move freely in the domain due to
non-overlapping constraints, in contrast to a system of point particles.

Each needle evolves according to a translational (resp. rotational) Brownian motion with
diffusion constant DT (resp. DR) in an external force field f = (fT, fR) that may depend on both
the position and orientation of the needle, but not on the other needles. This leads to the system
of stochastic differential equations (SDEs)

dXi(t) =
√

2DT dWT,i(t) + fT(Xi, Θi) dt (2.1a)

and

dΘi(t) =
√

2DR dWR,i(t) + fR(Xi, Θi) dt, (2.1b)

for 1 ≤ i ≤ N and (Xi, Θi) ∈ Υ . Here, WT,i and WR,i are standard independent Brownian motions
for 1 ≤ i ≤ N. In addition, we impose reflective boundary conditions whenever two needles come
into contact, thereby introducing a coupling to an otherwise uncoupled system of N SDEs.

It is convenient to consider the joint probability density PN(�ξ , t) associated to system (2.1), where
�ξ = (ξ1, . . . , ξN) and ξi = (xi, θi), for 1 ≤ i ≤ N. The density PN describes the probability of the entire
system of N needles being in state �ξ at time t. It is well known that PN satisfies the Fokker–Planck
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equation [31]:

∂tPN = ∇�x · [DT∇�xPN − �FT(�ξ )PN] + ∇�θ · [DR∇�θ PN − �FR(�ξ )PN], (2.2a)

where �x = (x1, . . . , xN), �θ = (θ1, . . . , θN), �FT(�ξ ) = (fT(ξ1), . . . , fT(ξN)) and �FR(�ξ ) = ( fR(ξ1), . . . , fR(ξN)).
Due to the hard-core interactions between needles, note that (2.2a) is not defined on �ξ ∈ Υ N but
its perforated form Υ N

ε := Υ N \ BN
ε . Here, BN

ε denotes the set of illegal configurations where at least
two needles overlap, i.e.

BN
ε := {�ξ ∈ (Υ )N | ∃i 	= j s.t. N (ξi) ∩ N (ξj) 	= ∅},

where

N (x, θ ) :=
{

�x + λ

(
cos(θ )
sin(θ )

) ∣∣∣∣ |λ| ≤ ε

2

}

denotes the set of all points belonging to a needle at (x, θ ).
On ∂Υ N

ε (corresponding to configurations with at least two needles in contact), we prescribe
reflective boundary conditions[

DT∇�xPN − �FT(�ξ )PN

DR∇�θ PN − FR(�ξ )PN

]
· �n = 0, on ∂Υ N

ε , (2.2b)

where �n ∈ S3N−1 denotes the unit outward normal on the boundary. Finally, we assume that the
initial positions of the particles are identically distributed so that the initial condition P(�ξ , 0) =
P0(�ξ ) is invariant to permutations of the particles’ labels.

3. Derivation of the macroscopic model
In the previous section, we have established a connection between the particle-based dynamical
system (2.1) and the associated Fokker–Planck equation (2.2a), (2.2b). We highlight that the
dimensionality of both descriptions increases as more needles are added to the system, rendering
their analytical or numerical study intractable. This section is dedicated to deriving an effective
model in the form of a nonlinear evolution equation for the one-particle probability density

p(ξ , t) :=
∫
Υ N

ε

PN(�ξ , t)δ(ξ1 − ξ ) d�ξ . (3.1)

In the case of ε = 0, the needles become point particles and, as a consequence, their evolutions
(2.1) decouple and, for suitable iid initial conditions, we have that

PN(�ξ , t) =
N∏

i=1

p(ξi, t).

In this setting, the first marginal is shown to satisfy the following equation:

∂tp(ξ , t) = ∇x · [DT∇xp − fT(ξ )p] + ∂θ [DR∂θ p − fR(ξ )p], (3.2)

with t ≥ 0 and ξ ∈ Υ . Unlike point particles, needles of length ε > 0 exclude a certain volume in
phase space.

Remark 3.1 (Excluded region of a needle). The region in phase space excluded by a needle at
ξ1 is denoted by Bε(ξ1) (figure 1). Depending on the relative orientation θ := θ2 − θ1 between the
two needles, the cross-section of Bε for fixed θ range from a line of length 2ε(θ = 0) to a square of
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side ε (θ = π/2). For general θ , the slice is a rhombus of area ε2 sin θ with nodes at

xA = x1 + ε

2
Rθ1 (−1 + cos θ , sin θ ), xB = x1 + ε

2
Rθ1 (1 + cos θ , sin θ )

and xC = x1 + ε

2
Rθ1 (1 − cos θ , − sin θ ), xD = x1 + ε

2
Rθ1 (−1 − cos θ , − sin θ ),

⎫⎪⎬⎪⎭ (3.3)

where Rθ1 is the rotation matrix

Rθ1 =
(

cos θ1 − sin θ1
sin θ1 cos θ1

)
. (3.4)

We denote by n̂2 the outward unit normal on Bε(ξ1) (outward of Υ (ξ1) so it points into the shaded
area in figure 1. If the boundary of Bε(ξ1) is given by the relation χ (ξ2) = 0, we have that n̂2 ∝ ∇ξ2χ .
For example, the top edge xAxB is given by χ (ξ2) = yA + tan θ1(x2 − xA) − y2 = 0, and the normal
vector is

n̂2 ∝ ∇ξ2χ =
(

tan θ1, 1,
ε

2
(cos θ2 + tan θ1 sin θ2)

)
. (3.5)

For ε > 0, the equation for the one-particle density p(ξ1, t) is obtained by integrating (2.2a) with
respect to ξ2, . . . , ξN for ξ1 fixed. The perforations in Υ N

ε lead to boundary integrals for ξi ∈ Bε(ξ1)
on which the two-particle probability density P2(ξ1, ξi, t) needs to be evaluated. One can go back
to (2.2a) and (2.2b) and obtain an equation for P2, which in turn depends on the three-particle
probability density P3. This is known as the BBGKY hierarchy. In this work, we assume that
φ = ε2N � 1 such that this hierarchy can be truncated ‘asymptotically’.

We note from remark 3.1 that the volume of Bε(ξ1) is ε2 ∫π
0 sin(θ ) dθ = 2ε2. If φ � 1, the volume

in Υ N
ε occupied by configurations where two needles are close by is O(φ), whereas the volume of

configurations where three or more needles are nearby is much smaller (O(φ2)). Hence, it means
that, at the leading order, the equation for p coincides with the point particles equation (3.2)
and that the first correction appears at O(φ) and is due to two-needle interactions. Three- and
more-needle interactions are higher-order corrections. Therefore, we may neglect three-particle
interactions in the equation for P2(ξ1, ξ2, t) and consider

∂tP2 = ∇ξ1 · [D∇ξ1 P2 − f (ξ1)P2] + ∇ξ2 · [D∇ξ2 P2 − f (ξ2)P2], (3.6a)

in Υ 2
ε , where D = diag(DT, DT, DR) and f (ξ ) = (fT(ξ ), fR(ξ )), together with reflecting boundary

conditions
[D∇ξ1 P2 − f (ξ1)P2] · n1 + [D∇ξ2 P2 − f (ξ2)P2] · n2 = 0, (3.6b)

on ∂Υ 2
ε . Here, n1 (resp. n2) are the components of the unit normal �n corresponding to

the coordinates of the first (resp. second) needle. It turns out that n1 = −n2 such that �n =√
2/2(−n̂2, n̂2), where n̂2 is defined in remark 3.1.

(a) Evolution of the first marginal
Let Υ (ξ1) = Υ \ Bε(ξ1) denote the second particle’s phase space given that the first particle is in
state ξ1. From (3.1), we have that p(ξ1, t) = ∫

Υ (ξ1) P2(ξ1, ξ2, t) dξ2. Integrating (3.6a) over Υ (ξ1) yields

∂tp(ξ1, t) =
∫
Υ (ξ1)

∂tP2(ξ1, ξ2, t) dξ2

=
∫
Υ (ξ1)

∇ξ1 · [D∇ξ1 P2 − f (ξ1)P2] dξ2 +
∫
Υ (ξ1)

∇ξ2 · [D∇ξ2 P2 − f (ξ2)P2] dξ2. (3.7)

By using Reynold’s transport theorem, the first integral becomes∫
Υ (ξ1)

∇ξ1 · [D∇ξ1 P2 − f (ξ1)P2] dξ2

= ∇ξ1 · [D∇ξ1 p − f (ξ1)p] +
∮
∂Bε (ξ1)

[f (ξ1)P2 − 2D∇ξ1 P2 − D∇ξ2 P2] · n̂2 dSξ2 . (3.8)
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The second integral in (3.7) is∫
Υ (ξ1)

∇ξ2 · [D∇ξ2 P2 − f (ξ2)P2] dξ2 =
∮
∂Bε (ξ1)

[D∇ξ2 P2 − f (ξ2)P2] · n̂2 dSξ2 . (3.9)

By substituting (3.8) and (3.9) into (3.7) and using the boundary condition (3.6b), we obtain

∂tp(ξ1, t) = ∇ξ1 · [D∇ξ1 p − f (ξ1)p] + I, (3.10)

where the collision integral I is

I = −
∮
∂Bε (ξ1)

D(∇ξ1 P2 + ∇ξ2 P2) · n̂2 dSξ2 . (3.11)

The evolution equation (3.10) for the first marginal p still depends on the joint probability
density function P2. A common approach to overcome this is to use a closure assumption, for
instance, the mean-field approximation, P2(ξ1, ξ2, t) = p(ξ1, t)p(ξ2, t). However, such an approach
ignores correlations between both particles, and it is not suitable for systems of strongly
interacting particles with short-range repulsive interactions such as hard needles. Instead, we
employ the method of matched asymptotics to compute the collision integral I systematically.

(b) Matched asymptotics expansions
We introduce a partition of the domain Υ (ξ1) consisting of an inner region, when the two needles
are close to each other, ||x1 − x2||2 ∼ ε, and an outer region, when the two needles are far apart,
||x1 − x2|| � ε. In the outer region, we suppose that particles are independent at leading order,
whereas we consider their correlation in the inner region.

In the outer region, we define Pout(ξ1, ξ2, t) = P2(ξ1, ξ2, t). Then by independence, the two-
particle density function is1

Pout(ξ1, ξ2, t) = p(ξ1, t)p(ξ2, t) + εP(1)
out(ξ1, ξ2, t) + · · · . (3.12)

In the inner region, we introduce the inner variables ξ̃1 = (x̃1, θ̃1) and ξ̃ = (x̃, θ̃ ), defined as
follows:

x1 = x̃1, x2 = x̃1 + εRθ1 x̃

and θ1 = θ̃1, θ2 = θ̃1 + θ̃ ,

}
(3.13)

and the inner function P̃(ξ̃1, ξ̃ , t) = P2(ξ1, ξ2, t). The coordinates (x̃, θ̃ ) define the configuration of the
second needle relative to the first. The excluded volume Bε(ξ1) becomes B1(0) in inner variables.
In the ξ̃ -space, this is now a volume centred at the origin with two horizontal sides (figure 1 and
remark 3.1). Using that x̃ = ε−1RT

θ1
(x2 − x1), the derivatives transform according to

∇x1 → ∇x̃1 − ε−1Rθ1∇x̃, ∇x2 → ε−1Rθ1∇x̃,

∂θ1 → ∂
θ̃1

− ∂
θ̃

+ ỹ∂x̃ − x̃∂ỹ, ∂θ2 → ∂
θ̃
.

In terms of the inner variables, (3.6a) reads

ε2∂tP̃ = 2DT�x̃P̃

− ε(2DT∇x̃1 · (Rθ1∇x̃P̃) + ∇x̃ · {Rθ1

[
fT(x̃1 + εx̃, θ̃1 + θ̃ ) − fT(ξ̃1)

]
P̃})

+ ε2
{
∇x̃1 · [DT∇x̃1 P̃ − fT(ξ̃1)P̃] + DR[(∂

θ̃1
− ∂

θ̃
+ ỹ∂x̃ − x̃∂ỹ)2 + ∂2

θ̃
]P̃

− (∂
θ̃1

− ∂
θ̃

+ ỹ∂x̃ − x̃∂ỹ)[fR(ξ̃1)P̃] − ∂
θ̃
[fR(x̃1 + εx̃, θ̃1 + θ̃ )P̃]

}
. (3.14)

In order to write the boundary condition (3.6b) in terms of the inner variables, we need to
determine how the normal n̂2 changes under the transformation. Following the procedure in

1Independence only tells us that Pout(ξ1, ξ2, t) ∼ q(ξ1, t)q(ξ2, t) for some function q, but the normalization condition on P2 implies
p = q + O(ε).
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remark 3.1, we have ∇ξ2χ → (ε−1Rθ1∇x̃χ̃ , ∂
θ̃
χ̃), where χ̃ (ξ̃ ) = 0 describes the boundary in inner

variables. Therefore,

n̂2 → (Rθ1 ñ, εñθ ). (3.15)

For example, the top edge xAxB becomes χ̃ = sin(θ̃) − ỹ = 0 and the normal vector in the inner
variables is ñ = (ñ, ñθ ) ∝ ∇x̃χ̃ = (0, −1, cos θ̃ ). Using (3.15) and n1 = −n2 as pointed out earlier, the
no-flux boundary condition (3.6b) becomes

0 = {2DTRθ1∇x̃P̃ − εDT∇x̃1 P̃ − ε[fT(x̃1 + εx̃, θ̃1 + θ̃ ) − fT(ξ̃1)]P̃} · Rθ1 ñ

+ ε2{DR
[
2∂

θ̃
P̃ − ∂

θ̃1
P̃ + x̃∂ỹP̃ − ỹ∂x̃P̃

] − [
fR(x̃1 + εx̃, θ̃1 + θ̃ ) − fR(ξ̃1)

]
P̃}ñθ , (3.16)

for ξ̃ ∈ ∂B1(0). Finally, we impose the matching boundary condition to ensure that, as the two needles
become further apart and enter the outer region, the inner solution P̃ will match with the outer
solution Pout. Expanding (3.12) in the inner variables,

P̃ ∼ p(x̃1, θ̃1, t)p(x̃1 + εRθ1 x̃, θ̃1 + θ̃ , t) + εP(1)
out(x̃1, θ̃1, x̃1 + εRθ1 x̃, θ̃1 + θ̃ , t)

∼ pp++ε[pRθ1 x̃ · ∇x̃1 p++P(1)
out(x̃1, θ̃1, x̃1, θ̃1 + θ̃ , t)], as |x̃| → ∞, (3.17)

where p := p(x̃1, θ̃1, t) and p+ := p(x̃1, θ̃1 + θ̃ , t).
We look for a solution of (3.14), (3.16) and (3.17) of the form P̃ = P̃(0) + εP̃(1) + · · · . The leading-

order problem is ⎧⎪⎪⎨⎪⎪⎩
�x̃P̃(0) = 0,

Rθ1∇x̃P̃(0) · Rθ1 ñ = 0, ξ̃ ∈ ∂B1(0),

P̃(0) ∼ pp+, |x̃| ∼ ∞.

(3.18)

This is a problem in the inner spatial variables x̃, and that x̃1, θ̃1 and θ̃ can be regarded
as parameters. In particular, (3.18) is defined for x̃ ∈ R

2 \ R
θ̃
, where R

θ̃
denotes the rhombus

corresponding to slicing the excluded volume B1(0) at θ̃ (figure 1). The solution of (3.18) is

P̃(0) = pp+. (3.19)

By using (3.19) and expanding fT, the O(ε) problem reads

�x̃P̃(1) = 0, x̃ ∈ R
2\R

θ̃
,

Rθ1∇x̃P̃(1) · Rθ1 ñ = 1
2

[
∇x̃1 (pp+) + (pp+)

DT
(f+

T −fT)
]

· Rθ1 ñ, x̃ ∈ ∂R
θ̃

and P̃(1) ∼ p∇x̃1 p+ · Rθ1 x̃ + P(1)
out(x̃1, θ̃1, x̃1, θ̃1 + θ̃ , t), |x̃| ∼ ∞,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.20)

where fT := fT(x̃1, θ̃1) and f+
T := fT(x̃1, θ̃1 + θ̃ ). We can rewrite problem (3.20) as follows:⎧⎪⎪⎨⎪⎪⎩

�x̃P̃(1) = 0, x̃ ∈ R
2\R

θ̃
,

∇x̃P̃(1) · ñ = RT
θ1

A · ñ, x̃ ∈ ∂R
θ̃
,

P̃(1) ∼ RT
θ1

B∞ · x̃ + C∞, |x̃| ∼ ∞,

(3.21)

where A, B∞ and C∞ are functions of x̃1, θ̃1, θ̃ and t only and given by

A = 1
2

[
∇x̃1 (pp+) + pp+

DT
(f+

T −fT)
]

,

B∞ = p∇x̃1 p+

and C∞ = P(1)
out(x̃1, θ̃1, x̃1, θ̃1 + θ̃ , t).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.22)

The solution to (3.21) is given by

P̃(1) = RT
θ1

A · x̃ + RT
θ1

B · u + C∞, (3.23)
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where B := B∞ − A and u = (u1, u2) satisfy the following problems:⎧⎪⎪⎨⎪⎪⎩
�x̃u1 = 0, x̃ ∈ R

2 \ R
θ̃
,

∇x̃u1 · ñ = 0, x̃ ∈ ∂R
θ̃
,

u1 ∼ x̃, |x̃| ∼ ∞,

(3.24)

and ⎧⎪⎪⎨⎪⎪⎩
�x̃u2 = 0, x̃ ∈ R

2 \ R
θ̃
,

∇x̃u2 · ñ = 0, x̃ ∈ ∂R
θ̃
,

u2 ∼ ỹ, |x̃| ∼ ∞.

(3.25)

Thus, we have reduced the inner problem (3.20) to two problems for u1(x̃) and u2(x̃) that only
depend on θ̃ through their domain of definition, namely, the exterior of a rhombus whose
tilting depends on θ̃ (figure 1). Problems (3.24) and (3.25) are solved via conformal mapping in
appendix A.

(c) Collision integral
In this subsection, we go back to the integrated equation (3.10) and use the inner solution P̃ to
evaluate the collision integral I in (3.11). By transforming (3.11) to inner variables, we obtain

I = −εDT

∮
∂B1(0)

∇x̃1 P̃ · Rθ1 ñ dS
ξ̃

− ε2DR

∮
∂B1(0)

(∂
θ̃1

P̃ + ỹ∂x̃P̃ − x̃∂ỹP̃)ñ
θ̃

dS
ξ̃
, (3.26)

using (3.13) and (3.15).
We evaluate (3.26) by breaking I in powers of ε, I = I(0) + εI(1) + · · · . Clearly, I(0) = 0. The first-

order integral is

I(1) = −DT

∮
∂B1(0)

RT
θ1

∇x̃1 P̃(0) · ñ dS
ξ̃

= 0,

using that P̃(0) is independent of x̃, see (3.19), and that we are integrating the normal of a closed
curve (for θ̃ fixed). At the next order, we have

I(2) = −DT

∮
∂B1(0)

RT
θ1

∇x̃1 P̃(1) · ñ dS
ξ̃︸ ︷︷ ︸

Ix̃

− DR

∮
∂B1(0)

∂
θ̃1

P̃(0)ñ
θ̃

dS
ξ̃︸ ︷︷ ︸

Iθ̃

, (3.27)

using again that P̃(0) is independent of x̃, making the terms ỹ∂x̃P̃(0) − x̃∂ỹP̃(0) vanish in the second
integral. The latter can be further simplified to

I
θ̃

= −
∫

B1(0)
∂
θ̃
∂
θ̃1

(pp+) dξ̃ = −∂
θ̃1

∫π

0
∂
θ̃
(pp+)

∫
Rθ̃

dx̃ dθ̃ = −∂
θ̃1

∫π

0
sin θ̃∂

θ̃
(pp+) dθ̃ . (3.28)

In the first equality, we have applied the divergence theorem to (0, 0, ∂
θ̃1

P̃(0)). In the last equality,
we have used that R

θ̃
is the rhombus tilted by angle θ̃ in inner variables, which has area sin θ̃

(remark 3.1). The integral Ix̃ in (3.27) can be rewritten as follows:

Ix̃ =
∫π

0

∫
∂Rθ̃

RT
θ1

∇x̃1 P̃(1) · ñ dSx̃ dθ̃ =
∫π

0
J(x̃1, θ̃1, θ̃ ) dθ̃ , (3.29)

with J = ∫
∂Rθ̃

RT
θ1

∇x̃1 P̃(1) · ñ dSx̃. By using the expression for P̃(1) in (3.23), we find that
(appendix B)

J = −∇x̃1 · (sin θ̃A + M(θ̃1, θ̃ )B), (3.30)

where M(θ̃1, θ̃ ) = Rθ1 T(θ̃ )RT
θ1

with T(θ̃) the symmetric 2 × 2 matrix (B 10) whose entries are plotted
in figure 2. The matrix T(θ̃ ) is positive definite and contains information on the effect of the
excluded volume due to a horizontal needle on a second needle with orientation θ̃ . We observe
that: for θ̃ = π/2, the diagonal terms are equal while the cross-terms are zero, as expected, since
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Figure 2. Values T11, T12 and T22 in (B 10) as a function of θ̃ .

the excluded region is symmetric (a square). For θ̃ = 0, π , the needle is ‘invisible’ to the horizontal
flow (T11 = 0) and the effect on the vertical flow is maximal (T22 largest).

Finally, by combining (3.28), (3.29) and (3.30), we find that the leading-order contribution to
the collision integral is

I = −ε2
(

DT

∫π

0
J dθ̃ + DRI

θ̃

)
= ε2∇

ξ̃1
·
∫π

0
D[sin θ̃A + M(θ̃1, θ̃ )B, sin θ̃∂

θ̃
(pp+)] dθ̃ . (3.31)

(d) A nonlinear non-local diffusion equation
By inserting the collision integral (3.31) into (3.10), we find that the integrated Fokker–Planck
equation for N = 2 is expressed as follows:

∂tp = ∇ξ1 ·
{

D∇ξ1 p − f (ξ1)p + ε2
∫π

0
D[sin θA + M(θ1, θ )B, sin θ ∂θ (pp+)] dθ

}
. (3.32)

The extension from two to N needles is straightforward up to O(ε2) since only pairwise
interactions need to be considered at this order. Noting that the first needle has (N − 1) inner
regions, one with each of the remaining needles, the marginal density for N needles satisfies

∂tp = ∇ξ1 ·
{

D∇ξ1 p − f (ξ1)p + ε2(N − 1)D
∫π

0
Q(θ , p) dθ

}
, (3.33a)

where D = diag(DT, DT, DR), f (ξ1) = (fT(ξ1), fR(ξ1), and Q = (QT, QR) is given by

QT(θ , p, p+) = sin θA + M(θ1, θ )B and QR(θ , p, p+) = sin θp∂θ p+. (3.33b)

In (3.33), p = p(x1, θ1, t), p+ = p(x1, θ1 + θ , t) and M(θ1, θ ) = Rθ1 T(θ )RT
θ1

, where Rθ1 is the rotation
matrix by θ1 (3.4) and T(θ ) is the matrix defined in (B 10) (figure 2), and

A = 1
2

[
∇x1 (pp+) + (pp+)

DT
(f+

T −fT)
]

and B = 1
2

[
p∇x1 p+ − p+∇x1 p + (pp+)

DT
(fT − f+

T )
]

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.33c)

The nonlinearities in (3.33) encompass the effect that the non-overlap constraint between needles
has on the macroscopic dynamics. In particular, we note that the interactions are local in space but
non-local in angle. The integrands QT and QR vanish for θ = 0 (as two parallel needles exclude
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no volume in phase space), while for θ ∈ (0, π ), they include a series of quadratic terms involving
p, p+ and their derivatives. The interaction in orientation is of mean-field type (see IR), where
only the ‘cross-diffusion’ term p∂θ1 p+ appears, whereas in space we obtain full cross-diffusion
terms p∇x1 p+ and p+∇x1 p as well as a drift-difference term (see IT), as in the case of mixtures
of hard spheres [29]. To give some intuition on their role, consider the kernel QT for θ = π/2
(perpendicular needles). This is the only value for which T is a multiple of the identity (see (B 10)),
T(π/2) = μI2 with μ ≈ 2.18. Thus, M(θ1, θ )B ≡ μB and the integrand simplifies to

QT(π/2, p, p+) = A + μB = 1
2

[
(μ + 1)p∇x1 p+−(μ − 1)

(
p+∇x1 p − fT − f+

T
DT

pp+
)]

.

In this form, one may readily compare it with the nonlinear terms arising from the interactions
between two types of hard-sphere particles of diameter ε (cf. equation (22) in [29])

QT(p, p+) = π

2

[
3p∇x1 p+−p+∇x1 p + fT − f+

T
DT

pp+
]

.

Thus, we observe the same structure with an ‘effective drift’ p∇x1 p+ due to gradients of the other
species, a reduced diffusion p+∇x1 p due to concentrations of the other species, and a quadratic
drift adjustment with the same relative strength and sign in both needles and hard-spheres cases.
The size of the coefficients is larger for hard spheres (3π/2 and π/2) than for needles ((μ ± 1)/2),
as expected given their excluded volume in this specific needles configuration (π versus 1).

Remark 3.2 (Active Brownian needles). We note that our model (3.33) may be used to describe
a system of N active needles similar to that considered in [28] (except that they use the θ -
dependent diffusion tensor D̂ in (4.2)). In particular, consider fR = 0 and fT(x, θ ) = v0e(θ ) with
e(θ ) = (cos θ , sin θ ) in (2.1), such that needles drift along their orientation θ at constant velocity
v0. This implies that we must now distinguish between a needle’s head and tail as its orientation
θ determines the direction of the drift in position; i.e. we must extend the range of θ to [0, 2π ).
Since the excluded volume between two needles is invariant under switching heads and tails, the
terms in (3.33) that describe the excluded volume, namely, sin θ and M(θ1, θ ) in (3.33b), must be
extended to [0, 2π ) as | sin θ | and M̃(θ1, θ ), respectively, where M̃(θ1, θ ) = M(θ1, θ ) for θ ∈ [0, π ) and
M̃(θ1, θ ) = M(θ1, θ − π ) for θ ∈ [π , 2π ). Then (3.33) becomes

∂tp = ∇x1 ·
[

DT∇x1 p − v0e(θ1)p + φ

∫ 2π

0
Q̃T(θ , p) dθ

]
+ DR∂θ1

[
∂θ1 p + φp

∫ 2π

0
Q̃R(θ , p) dθ

]
, (3.34)

where φ = (N − 1)ε2, with

Q̃T(θ , p) = DT

2
[(M̃ + | sin θ |)p∇p+−(M̃ − | sin θ |)p+∇p] + v0

2
(M̃ − | sin θ |)pp+ê

= DT(μ+p∇p+−μ−p+∇p) + v0μ
−pp+ê

and Q̃R(θ , p) = | sin θ |∂θ p+,

where ê = e(θ1) − e(θ1 + θ ) and μ±(θ1, θ ) = (1/2)(M̃(θ1, θ ) ± | sin θ |). Rearranging (3.34) may be
cast in a more familiar form in the active matter community (compared with equation (2.29) in
[32], corresponding to active Brownian hard disks):

∂tp + v0∇ · [p(1 − φρ−)e(θ1) + φm−p] = DT∇ · [(1 − φρ−)∇p + φp∇ρ+] + DR∂θ1 (∂θ1 p + φpρ̄),
(3.35)

with ‘effective’ spatial densities ρ± and ρ̄ and magnetization (also known as polarization)

ρ±=
∫ 2π

0
μ±p+ dθ , ρ̄ =

∫ 2π

0
∂θ | sin θ |p+ dθ , m−=

∫ 2π

0
μ−p+e+ dθ .

If the excluded volume between two needles was a constant, then ρ± ≡ ρ = ∫2π
0 p dθ (the spatial

density), m− ≡ m = ∫2π
0 pe dθ and the nonlinear flux in orientation (pρ̄) would drop. This is
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because this term represents changes in orientation brought by the change in excluded volume
with relative orientation.

4. High rotational diffusion limit
In the context of colloidal suspensions, the diffusion coefficients corresponding to the rotational
and translational motions (parallel or perpendicular to the needle’s axis) are not independent. In
particular, by using Stokes’ law, we have that [25,33]

DR = 12D⊥
ε2 D‖ = 2D⊥, (4.1)

where D⊥ and D‖ are the translational diffusion coefficients for perpendicular and parallel
motion. This means that, instead of the constant diffusion matrix D = diag(DT, DT, DR) used in
our derivation, we would have an orientation-dependent matrix, i.e.

D̂(θ1) :=

⎛⎜⎝ Rθ1

0
0

0 0 1

⎞⎟⎠D =

⎛⎜⎝cos θ1D‖ − sin θ1D⊥ 0
sin θ1D‖ cos θ1D⊥ 0

0 0 DR

⎞⎟⎠ . (4.2)

Our derivation can be adapted to allow for a diffusion matrix of this form, resulting in a modified
equation for p (in particular, the QT in (3.33b) would change). We omit this generalization here
but comment on the asymptotic regime of (4.1), namely, when the rotational diffusion is much
larger than the translational diffusion

DR = DT

ε2 , (4.3)

and set DT ≡ 1 in this section. By inserting (4.3) into (3.33a), we have

ε2∂tp = ε2∇x1 · [∇x1 p − fT(ξ1)p] + ∂θ1 [∂θ1 p − ε2fR(ξ1)p]

+ ε4(N − 1)∇x1 ·
∫π

0
QT(θ , p, p+) dθ + ε2(N − 1)∂θ1

∫π

0
QR(θ , p, p+) dθ . (4.4)

We look for a solution of (4.4) of the form p ∼ p0 + ε2p1 + · · · . The leading-order problem gives
that p0 = p0(x1, t), i.e. the leading-order problem is independent of angle. Collecting the O(ε2)-
terms in (4.4) yields

∂tp0 = ∇x1 · [∇x1 p0 − fT(ξ1)p0] + ∂θ1 [∂θ1 p1 − fR(ξ1)p0], (4.5)

where we have used that QR(θ , p0, p+
0 ) ≡ 0. The O(ε4) of (4.4) is

∂tp1 = ∇x1 · [∇x1 p1 − fT(ξ1)p1] + ∂θ1 [∂θ1 p2 − fR(ξ1)p1]

+ (N − 1)∇x1 ·
∫π

0
QT(θ , p0, p+

0 ) dθ + (N − 1)∂θ1

∫π

0
QR(θ , p0, p+

1 ) dθ , (4.6)

noting that QR(θ , p1, p+
0 ) ≡ 0. We now write an equation for the spatial density

ρ(x1, t) :=
∫π

0
(p0 + ε2p1) dθ1.

By combining (4.5) and (4.6), and using periodicity in θ1, we find

∂tρ = ∇x1 ·
[
∇x1ρ −

∫π

0
fT(ξ1)p(ξ1, t) dθ1 + ε2(N − 1)

∫π

0

∫π

0
QT(θ ; p0, p+

0 ) dθdθ1

]
. (4.7)

In particular, if we assume that fT is independent of angle, then

∂tρ = ∇x1 ·
[
∇x1ρ − fT(x1)ρ + ε2(N − 1)

∫π

0

∫π

0
QT(θ ; p0, p+

0 ) dθ dθ1

]
. (4.8)

By using that p0 = p+
0 and fT = f+

T , from (3.33c), we have that A = p∇x1 p and B = 0, and hence,
QT = sin θ∇x1 (p2

0)/2. The double integral on QT is then π∇x1 (p2
0) ∼ (1/π )∇x1 (ρ2) using that ρ =
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πp0 + O(ε2). We find that (4.8) reduces to

∂tρ = ∇x1 ·
{[

1 + 2
π

(N − 1)ε2ρ

]
∇x1ρ − fT(x1)ρ

}
. (4.9)

Therefore, we find that the equation satisfied by N needles of length ε in the limit of large
rotational diffusion is a nonlinear diffusion equation of the same form as the equation (1.1)
satisfied by N disks of diameter ε. By comparing the two equations, we have that the effective
diameter of a needle with very fast rotational diffusion is

√
2/π times its length ε. That is, the

needle excludes roughly 45% less volume than a disk of diameter ε.

5. Space homogeneous solutions
In this section, we consider spatially homogeneous solutions to (3.33), i.e. solutions of the form
p(ξ1, t) = p(θ1, t) satisfying

D−1
R ∂tp = ∂2

θ1
p + ε2(N − 1)∂θ1

(
p

∫π

0
sin θ∂θ p+ dθ

)
. (5.1)

The integral is
∫π

0
sin θ∂θ p+ dθ = −

∫π

0
cos θp(θ1 + θ ) dθ =

∫π

0
cos θp(θ1 − θ ) dθ = W′ ∗ p,

where W(θ ) = sin(θ ). Therefore, the space-homogeneous system of interacting needles of length ε

is described by a periodic McKean–Vlasov equation with an attractive potential W ([34,35])

D−1
R ∂tp = ∂2

θ1
p + ε2(N − 1)∂θ1 (pW′ ∗ p). (5.2)

We study the linear stability of the homogeneous solution p∗ = 1/π of (5.2) by considering a
perturbation of the form

p = p∗ + δ eλt
∑
n≥0

an cos(2nθ1) + bn sin(2nθ1),

with δ � 1. By inserting this into (5.2), linearizing and keeping terms of O(δ), we arrive at

λ = −4n2DR

(
1 − 2φn

(4n2 − 1)π

)
,

where φ = ε2(N − 1). We look for growing modes by imposing λ > 0, leading to 2φn > (4n2 − 1)π .
The most unstable mode (n = 1) leads to linear instability if

φ > φc = 3π

2
. (5.3)

Note that, while φ represents an effective volume fraction (which would be bounded for isotropic
bodies by their close packing densities, e.g. φ < 0.74 for closely packed hard disks in two
dimensions), the hard-core needle system admits any φ ∈ [0, ∞), with ∞ corresponding to a
system of perfectly aligned needles.

It is also worth pointing out that, while our derivation relied on a diluteness assumption φ � 1,
the critical volume fraction is φc = O(1). Therefore, the aggregation behaviour occurs outside the
region of validity of our PDE model (3.33) and, as a by-product, of the space-homogeneous model
(5.2). In fact, the value φc agrees with the bifurcation point of isotropic-nematic transition obtained
in [30] using Onsager’s theory of orientational order [20]. In particular, Onsager considers the
virial expansion of the orientational probability density up to the second virial coefficient (which
depends on two-particle interactions, and Onsager obtains for a variety of hard anisotropic
particles evaluating the excluded volume for a pair of such particles). While the third- and higher-
order virial coefficients are negligible for hard needles in R

3, it is not the case in the present case
of two dimensions [30]. Therefore, the value we obtain for φc should be taken with caution, and
indeed, Monte Carlo simulations have found the critical density at the transition to be φc ≈ 7 [36].
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Figure 3. (a) Stationary solutions ps(θ1) of the space-homogeneous problem (5.2) for different values ofφ = (3π/2) + k/2
for k = 0, . . . , 10. Solutions are obtained via a fixed-point iterative scheme using Chebfun [37]. (b) Time evolution p(θ1, t)
for φ = 1.1 × 3π/2 for a small initial perturbation p0 = π−1 − 0.01 cos(2θ1). Times shown are t = 0, 4, 6, 8, 10, 12, 20.
At t = 20, the solution has already reached the stable equilibrium.

The stationary solutions of (5.2) satisfy

∂θ1 ps + φpsW′ ∗ ps = −J,

where J is a constant corresponding to the flux of the stationary solution. Without any external
forcing, we expect solutions with J = 0. By imposing J = 0 and integrating, we arrive at

ps(θ1) = C exp
(

φ

∫ θ1

0
(W′ ∗ p)(θ ) dθ

)
,

where C is a normalization constant such that
∫π

0 ps dθ1 = 1. We consider a fixed-point iteration
method to compute ps(θ1) above for various values of φ. Specifically, given an initialization p0
(normalized to one), we compute

pk+1 = C exp
(

φ

∫ θ1

0
(W′ ∗ pk)(θ ) dθ

)
, for k = 1, 2, . . . . (5.4)

We initialize the scheme with the most unstable mode from the linear stability analysis (p0(θ1) =
1/π + δ cos(2θ1)) and solve (5.4) with Chebfun [37] until it reaches a stationary profile. We
consider several values of φ ≥ 3π/2 so that we expect non-trivial stationary states. Figure 3 shows
the results for 10 values of φ. We observe that the stationary solution becomes more concentrated
as φ increases. This means that needles are forced to align more to avoid overlapping as their
number increases.

6. Discussion
We have systematically derived an effective PDE model for a system of non-overlapping
Brownian needles in two dimensions (3.33). The nonlinearities of the PDE describe the effect of
pairwise interactions at the macroscopic level: interactions are non-local in angle (the nonlinearity
is of mean-field type, only p∂θ1 p+ term) and local in position (full cross-diffusion terms p∇x1 p+
and p+∇x1 p as well as a drift-difference term appear, consistent with other local-in-space models
[29,38]). To gain insight into the behaviour of the PDE model, we consider two simplifications.
Firstly, we obtain a reduced PDE for the spatial density in the high-rotational diffusion limit.
By comparing the resulting PDE with the effective PDE for hard-core disks in two dimensions,
we find that the needles’ effective diameter is about 45% of their length. Secondly, we consider
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space-homogeneous solutions of the non-local PDE and show they satisfy a well-known McKean–
Vlasov equation with an attractive potential in orientation. Notably, we identify instability of the
uniform distribution (in angle) for effective packing densities above a critical threshold, see (5.3).
Intuitively, we expect this phase transition to occur and arise from the finite-size interactions
between needles. Indeed, the instability corresponds to the emergence of a preferred direction of
needles to exclude less volume in configuration space in crowded settings. Let us point out that
the non-local interaction term in equation (5.2) includes the size of the excluded volume.

In this work, we find that the strength of the nonlinearity in the macroscopic PDE is
proportional to the total excluded region volume (N − 1) ε2 sin θ . The form of such nonlinearity is
non-trivial in the full PDE (3.33) (due to the spatial interactions). Still, it may have been inferred in
the space-homogeneous case (5.1) (in fact, this was the approach taken in [30] using Onsager’s free
energy functional based on the geometry of the excluded region). A natural question is whether
this can be generalized to similar systems. A particularly interesting case is that of Brownian
needles in three dimensions, which have zero excluded volume in configuration space (for fixed
relative angles, the excluded region is a two-dimensional surface in R

3). If the result from two
dimensions were to extend to three dimensions, it would imply that the effective PDE for needles
in three dimensions would not ‘see’ the non-overlapping constraints, at least not to O(Nε3).
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Appendix A. Solution of the first-order inner problem via conformal mapping
We solve problems (3.24) and (3.25) by mapping them to problems in the interior of a circle. We
consider the problem for u1 (3.24); the problem for u2 follows similarly.

Let D denote the exterior of the rhombus in the z-plane, D = C \ R
θ̃
, where z = x̃ + ı ỹ, and let

Γ be its boundary, Γ = ∂R
θ̃
. Let �z denote the Laplacian operator ∂2/∂ x̃2 + ∂2/∂ ỹ2. We look for

a complex function w1 : D → D such that the solution we need is given as u1 = Re(w1). By the
Cauchy–Riemann relations, it follows that the boundary condition ∇x̃u1 · ñ = 0 on Γ is equivalent
to imposing that the conjugate harmonic function Im(w1) is constant on Γ , e.g. equal to zero.
Then, w1 must satisfy

�zw1 = 0 in D,
Im(w1) = 0 on Γ

and w1 ∼ z at ∞.

⎫⎪⎬⎪⎭ (A 1)

To proceed with the solution of (A 1), we seek a transformation that simplifies the definition
domain. In particular, we look for an analytic function z = g(ζ ) that maps a domain D′ of the ζ

plane, namely, the interior of the unit disk, to D in the z plane (figure 4). Then the unit circle,
denoted by Γ ′, is mapped into the boundary of the rhombus Γ . This is a Schwarz–Christoffel
transformation, given by [40, eq. (4.6)]

z = g(ζ ) = a0 + a(θ̃ )
∫ ζ

(1 − t2)θ̃/π (1 + t2)1−θ̃/π t−2 dt, (A 2)

where a0 and a(θ̃ ) are chosen so that g(ζk) = zk, for k = A, B, C, D, where ζk = ±1, ±ı (4). Note that,
as we move through the points A → B → C → D → A, we travel the circle counterclockwise, but
the rhombus clockwise (so that both curves are positively oriented, i.e. we have the domain to
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ζC

z = g(ζ)

zA
Γ'

zB

zD zC

ζD

ζB

ζA

Γ

θ
z

ζ

Figure 4. Mapping of the exterior of the unit circle with boundaryΓ ′ into the D of the rhombus with boundaryΓ .

our left as we travel on its boundary). We note that g(ζ ) goes to infinity like −a(θ̃ )/ζ as ζ → 0. The
constant a(θ̃ ) is given exactly as follows:

a(θ̃ ) = α

β − ıγ
, (A 3)

where α, β and γ are the following real functions of θ̃ :

α(θ̃ ) = 21+2θ̃/π sec θ̃ ,

β(θ̃) = Γ ( 1
2 − θ̃

π
)Γ (1 + 2θ̃

π
) ×

[
2F̄1

(
1
2

,
θ̃

π
;

3
2

+ θ̃

π
; −1

)
− 22F̄1

(
−1

2
,
θ̃

π
;

1
2

+ θ̃

π
; −1

)]

and

γ (θ̃ ) = 16θ̃/πΓ ( 1
2 + θ̃

π
)Γ (1 − 2θ̃

π
) ×

[
2F̄1

(
1
2

, − θ̃

π
;

3
2

− θ̃

π
; −1

)
+ 22F̄1

(
−1

2
, − θ̃

π
;

1
2

− θ̃

π
; −1

)]
,

where 2F̄1(a, b; c; z) = 2F1(a, b; c; z)/Γ (c) is the regularized hypergeometric function.
The map g corresponding to θ̃ = π/4 is illustrated in figure 5a, and the complex constant a(θ̃ ) =

a1(θ̃ ) + ıa2(θ̃ ), where a1 = αβ/(β2 + γ 2) and a2 = αγ/(β2 + γ 2), is shown in figure 5b. Note that
although α, β and γ are singular at θ̃ = π/2, a1 and a2 are not.

We now write the problem in the ζ plane. If w1 satisfies (A 1) in D, W1(ζ ) := w1(g(ζ )) satisfies
the following problem in D′:

�ζ W1 = 0 |ζ | < 1,
Im(W1) = 0 |ζ | = 1
W1 ∼ −a(θ̃ )ζ−1 at 0,

⎫⎪⎬⎪⎭ (A 4)

where �ζ denotes the Laplacian operator in the ζ -plane. The solution to (A 4) is

W1(ζ ) = −
(

a(θ̃ )ζ + a(θ̃ )
ζ

)
. (A 5)

Repeating the same procedure to solve for (3.25), we find that u2 = Re(w2), where w2 satisfies
(A 1) but replacing the condition at infinity by w2 ∼ −ız. Then the solution in the ζ plane W2(ζ ) :=
w2(g(ζ )) needs to go like ia(θ̃ )/ζ at the origin and is therefore is given by

W2(ζ ) = −ı

(
a(θ̃)ζ − a(θ̃ )

ζ

)
. (A 6)
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(b)
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θ
�

Figure 5. (a) Schwarz–Christoffel map g in (A 2) from the interior of unit circle to the exterior of the rhombus, for θ̃ = π/4.
The black curves are the images of 10 evenly spaced circles centred at the origin and 10 evenly spaced radii in the unit disk. Plot
generated using the Schwarz–Christoffel MATLAB Toolbox [41]. (b) Real and imaginary parts of themultiplicative constant a(θ̃ )
(A 3).

Appendix B. Collision integral
In this appendix, we evaluate the integral J in (3.29),

J =
∫
∂Rθ̃

RT
θ1

∇x̃1 P̃(1) · ñ dSx̃, (B 1)

where R
θ̃

is the excluded rhombus in the inner region with |R
θ̃
| = sin θ̃ (remark (3.1)). By using

the first-order inner solution P̃(1) (3.23), we write J = JA + JB + JC with

JA =
∫
∂Rθ̃

RT
θ1

∇x̃1 (RT
θ1

A · x̃) · ñ dSx̃ = ∇x̃1 ·
[

Rθ1

(∫
∂Rθ̃

x̃ ⊗ ñ dSx̃

)
RT

θ1
A

]
,

JB =
∫
∂Rθ̃

RT
θ1

∇x̃1 (RT
θ1

B · u) · ñ dSx̃ = ∇x̃1 ·
[

Rθ1

(∫
∂Rθ̃

u ⊗ ñ dSx̃

)
RT

θ1
B

]

and JC = RT
θ1

∇x̃1 C∞ ·
∫
∂Rθ̃

ñ dSx̃.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B 2)

We have JC = 0 since we integrate the normal along the closed curve ∂R
θ̃
. To evaluate JA and JB,

we are left to compute the matrices inside the round brackets, which we denote by −Q and −T,
respectively,

Q = −
∫
∂Rθ̃

x̃ ⊗ ñ dSx̃ and T = −
∫
∂Rθ̃

u ⊗ ñ dSx̃.

The first row of Q is

Q1· = −
∫
∂Rθ̃

x̃ñ dSx̃ ∼
∫
Rθ̃

∇x̃x̃ dx̃ = (1, 0)
∫
Rθ̃

dx̃ = (1, 0) sin θ̃ , (B 3)

applying the divergence theorem (on x̃c with c constant). The ∼ equivalence is due to the fact that
ñ is the projection of the unit normal ñ onto the x̃ plane, and so it is not normalized (see (3.15) and
discussion thereafter). However, since the component of ñ in the θ̃ direction is O(ε), and we only
require the leading order of J, we can treat ñ as if it were the unit normal on R

θ̃
. For example, on

the top edge of the rhombus, we have ñ ∼ (0, −1) (figure 1). Note also the change in sign in the
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first equivalence since ñ is the inward unit normal to R
θ̃
. Similarly, we find that the second row

of Q is expressed as follows:

Q2· = −
∫
∂Rθ̃

ỹñ dSx̃ ∼ (0, 1) sin θ̃ . (B 4)

Therefore, we find that Q(θ̃ ) = sin θ̃ I2. Matrix T has rows

Ti· = −
∫
∂Rθ̃

ui(x̃)ñ dSx̃, (B 5)

where ui for i = 1, 2 solve (3.24) and (3.25), respectively. Rather than transforming the solutions W1
and W2 obtained in appendix A back to the x̃ plane, we express the integrals as complex integrals
in the ζ plane (figure 4). To transform (B 5) into a complex integral, first recall that z = x̃ + ı ỹ.
Given a parameterization (x̃(s), ỹ(s)) of ∂R

θ̃
≡ Γ , the integral along the arc length is

dSx̃ ≡ ds = (x̃′(s), ỹ′(s)) ds = (x̃′(s) + ı ỹ′(s)) ds = z′(s) ds = dz.

Since the curves Γ and Γ ′ are positively oriented (figure 4), the corresponding outward normals to
the interior of the rhombus or the exterior of the circle, respectively, are given by a −π/2 rotation,
or −ı , of the tangent vector. Therefore, Ti as a complex integral is

Ti· = ı
∫
Γ

ui(z) dz = ı
∫
Γ

wi(z) dz = ı
∫
Γ ′

Wi(ζ )g′(ζ ) dζ . (B 6)

In the second equality, we have used that Im(wi) = 0 on Γ (A 1) and in the third that Wi(ζ ) =
wi(g(ζ )).

The integrand in (B 6) has a singularity at the origin and branch points at ±1 and ±ı . We
choose branch cuts going to infinity so that the contour of integration follows Γ ′ with four small
semicircular indentations at the branch points as shown in figure 6. This way, Ti· can be computed
using Cauchy’s residue theorem, with 2π ı times the residue at the origin and −π ı times the
residues at the four branch points.2 In fact, the four branch points do not contribute to the integral
for θ̃ ∈ (0, π ) as their residues are zero (no singularities). Because of the form of W1(ζ ) and W2(ζ )
((A 5) and (A 6)), it is sufficient to compute the following residues

Resζ=0[ζg′(ζ )] = a(θ̃ ) and Resζ=0[ζ−1g′(ζ )] =
(

1 − 2θ̃

π

)
a(θ̃ ). (B 7)

By substituting in the expressions for Wi (A 5) and (A 6) in (B 6) and using (B 7), we find

T1· = −ı
∫
Γ ′

(
a(θ̃ )ζ + a(θ̃ )

ζ

)
g′(ζ ) dζ = 2π{a Resζ=0[ζg′(ζ )] + a Resζ=0[ζ−1g′(ζ )]}

= 2πaa − (4θ̃ − 2π ) a2, (B 8)

and

T2· =
∫
Γ ′

(
a(θ̃)ζ − a(θ̃ )

ζ

)
g′(ζ ) dζ = 2π ı{a Resζ=0[ζg′(ζ )] − a Resζ=0[ζ−1g′(ζ )]}

= 2π ıaa + ı(4θ̃ − 2π )a2. (B 9)

By writing (B 8) and (B 9) as two-dimensional vectors, we obtain the symmetric matrix

T(θ̃ ) := −
∫
∂Rθ̃

u ⊗ ñ dSx̃ = 4

[
a2

1(π − θ̃ ) + a2
2θ̃ a1a2(π − 2θ̃ )

a1a2(π − 2θ̃ ) a2
2(π − θ̃ ) + a2

1θ̃

]
, (B 10)

where a1 and a2 are shown in figure 5b.

2Note that the contribution of the four points on the unit circle is −π ı since it is only half a circle, and we are taking the small
semicircles clockwise.
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Figure 6. Contour to compute the integral (B 6).
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