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Abstract: 11 

Two or more marine structures deployed side by side may encounter strong water-body 12 

resonances within narrow gaps between them. It may cause significant wave loads on structures 13 

and the green water phenomenon on the deck. In this article, the transient fluid motion within a 14 

narrow gap formed by two fixed boxes suffered from incident focused wave groups is investigated 15 

using a two-dimensional viscous flow numerical wave flume. The focused wave groups adopted 16 

have the spectral peak frequency equal to half the fluid resonant frequency inside the gap. The 17 

wave fields both inside the gap and around the two-box system, the response/damping time of the 18 

transient wave surfaces inside the gap, the maximum wave forces and the ratios of the 2nd-order to 19 

the corresponding 1st-order wave surfaces/forces are investigated. It is revealed that the most 20 

dangerous place to green water is always the front edge of the two-box system. The damping time 21 

of the 2nd-order wave surface is significantly larger than that of the 1st-order one. As the incident 22 

wave amplitude rises, the ratios of the 2nd-order to the first-order wave surfaces/forces becomes 23 

increases gradually and can even exceed 100% for the wave surface, the horizontal wave force and 24 

the moment.  25 

 26 
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1. Introduction 1 

For two or more marine structures deployed side by side and suffered from ocean surface 2 

waves, if there exist narrow gaps between them, large-amplitude piston-mode free surface 3 

oscillations can occur within the gaps at certain frequencies, which is normally called “gap 4 

resonance”. The phenomenon may cause extremely large wave elevations in the gaps and wave 5 

loads on the structures (Ning et al., 2018; Zhu et al., 2005). Therefore, much attention should be 6 

paid to the operational and/or structural safety for the multiple structures arranged side by side and 7 

very closely to each other, and correspondingly, more investigations need to be implemented to 8 

expand the understanding of gap resonance. 9 

At the early stage, theoretical analyses were widely adopted to study this phenomenon, and 10 

almost all the theoretical investigations were based on the linear potential flow theory (e.g. Miao 11 

et al. (2000); Molin (2001); Zhu et al. (2006)). To examine the previous theoretical researches and 12 

obtain a better comprehension on the phenomenon, numerous laboratory experiments were also 13 

carried out. Saitoh et al. (2006) and Iwata et al. (2007) implemented a series of two-dimensional 14 

(2D) experiments in physical wave flumes to analyze the fluid resonance occurring in a narrow 15 

gap formed by two boxes and that in two narrow gaps formed by three boxes, respectively. A 16 

series of 2D physical experiments were also conducted by Tan et al. (2014), Zhang et al. (2021a) 17 

and Milne et al. (2022) to investigate the gap resonance between a box-shaped ship cross-section 18 

and a vertical quay. In addition, a few three-dimensional (3D) experiments were also carried out 19 

by Li et al. (2016), Zhao et al. (2017) and Huang et al. (2020) to study the fluid resonance between 20 

two barges or inside a moonpool.  21 

Heretofore, most numerical studies on gap resonance adopted the classical potential flow 22 

theory (CPFT) combining with different numerical discretization techniques (e.g., Li and Zhang 23 

(2016); Sun et al. (2010)). Nevertheless, due to the neglect of the flow viscosity in the CPFT, the 24 

simulations based on them remarkably over-predict the wave elevation within the narrow gap and 25 

hence the wave forces acting on the structure (Kristiansen and Faltinsen, 2008). To address this 26 

disadvantage, some special techniques were proposed so that the energy dissipation can be added 27 

into the CPFT artificially (e.g., Ning et al. (2015); Tan et al. (2019); Wang et al. (2022)). With the 28 

fast development of computer technology, the numerical investigations based on the CFD 29 

(Computational Fluid Dynamics) simulations are becoming more and more prevalent in recent 30 



3 

 

years. Based on a domain-decomposition method, Kristiansen and Faltinsen (2012) developed a 1 

solver that can couple the Navier–Stokes equations with the potential theory, and the solver 2 

provides an effective tool to analyze gap resonance problems in the real engineering scale. Based 3 

on some in-house or open-sourced or commercial CFD models, different aspects of the gap 4 

resonance phenomenon have been widely studied by many scholars (e.g., Gao et al. (2019a); Gao 5 

et al. (2019b); He et al. (2021b); Jiang et al. (2018); Lu et al. (2011a); Lu et al. (2011b); Zhang et 6 

al. (2021b)), and it has been found that the CFD-based simulation results coincide with available 7 

experimental ones very well.  8 

Although many investigations on the phenomenon have been performed, most of them were 9 

concerned only on the steady-state gap resonance triggered by the incident steady-state regular or 10 

irregular waves (e.g., Chua et al. (2018); Ding et al. (2022); Gao et al. (2020b); He et al. (2021a); 11 

He et al. (2022); Jiang et al. (2021); Song et al. (2021); Zhao et al. (2021)). In contrast, only a few 12 

scholars performed the transient gap resonance investigations excited by transient wave groups. 13 

Based on a potential flow solver, the transient gap resonance was preliminarily studied in Taylor et 14 

al. (2008), and only simple comparisons between the incident focused waves and the free-surface 15 

elevations within the gap were made therein. Recently, various aspects of the resonant wave 16 

surface within the gap formed in between two fixed barges triggered by focused waves were 17 

experimentally investigated by Zhao et al. (2017; 2020). The resonant amplitudes and frequencies, 18 

mode shapes, the group dynamics and higher harmonics of fluid motions inside the gap were 19 

deeply studied in both papers. The mechanisms of the nonlinear interactions between different 20 

harmonic components and the various driven mechanisms of gap resonance were well revealed. 21 

The experiments of Zhao et al. (2017) were successfully reproduced by Wang et al. (2018) based 22 

on the open-sourced OpenFOAM® model. More recently, also based on OpenFOAM®, the so 23 

called 1st-order transient gap resonance phenomenon between two fixed boxes excited by focused 24 

waves was simulated in Gao et al. (2020a), where the incident focused waves always had the 25 

spectral peak frequency equal to the fluid resonant frequency of the gap. The amplification and the 26 

response/damping time of the wave surface, the maximum wave loads and the relative importance 27 

of the high-order wave loads to the first-order ones were investigated therein. 28 

To boost the knowledge and understanding of the hydrodynamic phenomena related to 29 

transient gap resonance, this paper further investigates the transient gap resonance excited by 30 
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focused wave groups. Similar to Gao et al. (2020a), the amplification and the response/damping 1 

time of the wave surface, the maximum wave elevations/loads and the relative importance of the 2 

high-order to the first-order wave elevations/loads are also investigated here. However, different 3 

from the previous work, the spectral peak frequency of the incident focused wave groups adopted 4 

in this article is no longer equal to the fluid resonant frequency of the gap, but instead the former 5 

is set to half of the latter. Due to the quadratic coupling of the linear wave components, the 6 

spectral peak frequency of the 2nd-order sum harmonic wave components coincides with the fluid 7 

resonant frequency of the gap, and the so-called 2nd-order gap resonance phenomenon could be 8 

triggered (Ding et al., 2022; He et al., 2021a; Zhao et al., 2017). Although the 2nd-order transient 9 

gap resonance excited by focused wave groups has been investigated in Zhao et al. (2017) and 10 

Wang et al. (2018), only the wave elevations within the gap were recorded and analyzed therein. 11 

As far as the authors know, aiming at the 2nd-order transient gap resonance phenomenon, the wave 12 

elevations in the vicinity of (i.e., in the front or at the rear of) the multi-structure system and the 13 

wave forces impacting on the structure have heretofore not been investigated. Both similarities 14 

and differences between the hydrodynamic features in the present study and those in Gao et al. 15 

(2020a) will also be compared and analyzed in this article. 16 

Similar to Gao et al. (2020a), all simulations in this paper are performed by adopting the 17 

OpenFOAM® model and a 2D numerical wave flume (NWF). Both the NewWave theory of 18 

Tromans et al. (1991) and the phase/amplitude correction technique of Fernández et al. (2014) are 19 

utilized to generate the desired incident focused wave groups. The four-phase combination 20 

analysis technique of Fitzgerald et al. (2014) is used to decompose both wave elevations and wave 21 

loads into the lowest four order harmonic components during the 2nd-order transient gap 22 

resonance.   23 

The rest of this article is organized as follows. Section 2 briefly introduces the numerical 24 

model and the four-phase combination analysis technique. Section 3 describes the setups of both 25 

the NWF and the incident wave parameters in detail. Section 4 presents the simulation results and 26 

discussions. Finally, main conclusions are drawn in Section 5. 27 

 28 

2. Numerical model and analysis technique 29 

2.1 Numerical model  30 
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All simulations in this paper are carried out by utilizing OpenFOAM® version 3.0.1. Both the 1 

“interFoam” multiphase flow solver built in the model and a third-party wave-making toolboox 2 

“waves2Foam” of Jacobsen et al. (2012) are adopted to track the free water surface and 3 

produce/dissipate waves.  4 

Fig. 1 illustrates the NWF, its boundary conditions and the layout of relaxation zones utilized 5 

in present study. The inlet boundary prescribes both the elevation of air/water interface and the 6 

velocities of water particles based on desired wave theories, and the zero pressure gradient is also 7 

set therein. The “no-slip” boundary condition is defined at all the solid-wall-type boundaries 8 

which include the right and bottom boundaries of the NWF and all edges of both boxes. Near the 9 

inlet/outlet boundaries, the so-called “relaxation zones” are deployed to absorb the energy of 10 

outgoing waves. The upper part of the NWF prescribes the “atmosphere” boundary condition. To 11 

establish a 2D flume, the “empty” boundary condition is defined at both the front and back 12 

boundaries. As in Moradi et al. (2015) and Gao et al. (2021), the largest Courant number allowed 13 

in the model is set to 0.25 for all simulations.  14 

 15 

 16 

Fig. 1. The NWF adopted in the present study: (a) the boundary conditions and the coordinate 17 

system; (b) the layouts of wave gauges and relaxation zones.  18 

 19 
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It is noted here that the wave loads considered in this article include horizontal wave forces, 1 

vertical wave forces and wave moments impacting on the two boxes, and that the moments on 2 

both boxes correspond to their respective centroid. 3 

 4 

2.2 Analysis technique 5 

The current work adopts the four-phase combination analysis technique of Fitzgerald et al. 6 

(2014) to decompose the total wave elevations and wave loads into the lowest four order harmonic 7 

components during the 2nd-order transient gap resonance. To make readers better understand this 8 

article, this analysis technique is briefly introduced here. 9 

In the analysis technique, a narrow-banded wave power spectrum is assumed. Both the 10 

wave-wave interaction and the wave-structure interaction can then be described by a Stokes-type 11 

expansion, formulated up to the 4th order here:  12 

 2 3 4 5

11 20 22 31 33 42 44( ) cos ( cos 2 ) ( cos3 ) ( cos3 ) ( )F Af A f f A f f A f f O A    = + + + + + + + , (1) 13 

where F denotes the time series of wave surfaces or wave loads, A denotes the linear component 14 

amplitude, fij denotes some coefficients appearing in the expansion, and θ denotes the phase 15 

function of the incident focused waves.  16 

Four incident focused wave groups are produced by the same wave-making signal except that 17 

the phase of each Fourier component is shifted by 0, π/2, π and 3π/2, and the corresponding four 18 

time series of wave elevations or wave loads, F0, Fπ/2, Fπ and F3π/2 are generated and recorded. The 19 

lowest four order harmonic components of the signal of interest can then be obtained via a linear 20 

combination of its corresponding four signals excited by the four-phase focused wave groups 21 

mentioned above, and can be expressed as follows:  22 
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in which the superscript “H” denotes the Hilbert transform of the signal. For more detailed 27 

information on the theory of the analysis technique, the interested reader is referred to Fitzgerald 28 
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et al. (2014). 1 

Since the analysis technique was put forward by Fitzgerald et al. (2014), it has been 2 

successfully utilized to extract the harmonic components of both wave elevations and wave loads 3 

around/on various types of marine structures suffered from focused wave groups (e.g., Chen et al. 4 

(2019); Chen et al. (2021); Feng et al. (2020); Zhao et al. (2017)). 5 

3. Numerical wave flume  6 

As mentioned in Section 2, a 2D NWF is established in this article for all simulations (see Fig. 7 

1). A Cartesian coordinate system with the origin, o, at the SWL (still water level) of the inlet 8 

boundary is defined. The +x axial direction coincides with the propagation direction of the 9 

incident waves, the +y axial direction parallels with the width of the flume and points toward the 10 

back boundary, and the +z axis points vertically upwards. The length and the height of the flume 11 

are 35.0 m and 0.8 m, respectively. To simulate the 2D problem, only one computational cell is 12 

deployed along the y axis, and the width of the flume is set to W=0.01 m. At the middle of the 13 

NWF, a two-box system consisting of two identical fixed boxes is installed. Their draft d, height H 14 

and breadth B are respectively 0.25 m, 0.50 m and 0.50 m. The width of the narrow gap formed in 15 

between the two boxes is Bg=0.05 m. The still water depth is set to h=0.50 m.  16 

The above-mentioned layouts for both the two-box system and the still water depth are 17 

identical to the corresponding experimental/numerical setups in Saitoh et al. (2006) and Lu et al. 18 

(2011b) where the steady-state gap resonance triggered by monochromatic waves was studied. 19 

According to the two literatures, the fluid resonant frequency of the narrow gap presented in Fig. 1 20 

is ωR =5.285 rad/s. In this article, to successfully trigger the 2nd-order transient gap resonance, the 21 

spectral peak frequency of the incident focused wave group is set to ωp=0.5ωR=2.643 rad/s (it will 22 

be described in detail in the next paragraph), so that the double frequency of ωp coincides with the 23 

fluid resonant frequency of the gap. Based on the linear dispersion relationship, the wavelength of 24 

the wave component with the spectral peak frequency is Lp=4.95 m. Two relaxation zones with an 25 

identical length are placed around the inlet/outlet boundaries, and the length of each relaxation 26 

zone is set to 14.80 m (about 3Lp) to ensure the satisfactory dissipation for the outgoing waves. 27 

Three wave gauges (G1 – G3) are installed in the flume. G2 is placed in the middle of the narrow 28 

gap to record the fluid resonance. G1 and G3 are deployed very closely to the upstream of Box A 29 

and the downstream of Box B, respectively, with the distance of only 0.005 m from the edge of 30 
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each box. 1 

In present study, the NewWave theory of Tromans et al. (1991) is adopted to generate focused 2 

wave groups. The wave groups include numerous cosine wave components with various 3 

frequencies, and these components focus at a specific point both in space and in time. If the wave 4 

nonlinearity is ignored, the elevation of a focused wave group can be formulated as follows: 5 

 ( )
1

, cos
N

n n

n

x t a 
=

= ,  (6) 6 

in which 7 

 
( )

( )
f

1

n

n N

nn

S
a A

S

 

 
=


=


,  (7) 8 

 ( ) ( )f f 0+n n nk x x t t  = − − − .  (8) 9 

In these equations, N=100 refers to the number of the cosine wave components considered. Af is 10 

the focused wave amplitude and ranges from 0.01 m to 0.10 m with an increment of 0.01 m. an, kn 11 

and ωn respectively refer to the wave amplitude, the wavenumber and the circular frequency for 12 

the nth cosine component. Δω is the frequency difference between adjacent cosine components. 
ft13 

=15.0 s and 
fx =17.50 m (i.e., at gauge G2) are the focusing time and the focusing place, 14 

respectively. φ0 denotes the phase angle and is set to zero for a crest-focused wave group. S(ωn) 15 

denotes the wave power spectrum.  16 

The JONSWAP spectrum of Hasselmann et al. (1973) formulated as  17 

 ( )
4

p2

5

1 5
exp

4
n

nn

S g 


  


  
 = −  
   

 (9) 18 

is adopted in this article, in which α=0.0081 and 19 

 ( ) ( )
2

2 2

p p=exp 2n     − −
  

.  (10) 20 

ωp denote the spectral peak circular frequency, which is set to 2.643 rad/s for all simulations so 21 

that the 2nd-order transient fluid resonance in the gap can be excited. σ is set to 0.07 when ωn ≤ ωp 22 

and otherwise to 0.09. γ denotes the peak enhancement factor that is set to 3.3 in this paper.  23 

It should be stressed here that, due to that Eq. (6) ignores the effect of the wave nonlinearity, 24 

all the actual focusing time, focusing place, focused wave amplitude would have a certain degree 25 

of deviations from the desired ones. To ensure that the incident focused wave groups generated in 26 

the wave inlet boundary accurately possess the desired focusing time, focusing place and focused 27 
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amplitude, the methodology of Fernández et al. (2014) to iteratively correct both wave amplitude 1 

and the phase is also adopted. Due to limited space, its specific principle is not presented here. 2 

Meshes in the NWF are produced by “blockMesh” which is a mesh-generating utility built in 3 

the numerical model. Typical mesh layout in the vicinity of the boxes is shown in Fig. 2. To model 4 

the propagation of the incident waves and track the free water surface accurately, the cell size 5 

becomes smaller and smaller from the bottom/atmosphere boundaries to the SWL. Compared to 6 

the meshes at the two pure wave propagation regions in the front of and at the rear of the two-box 7 

system, finer meshes are deployed around the two boxes, especially within the gap. 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

Fig. 2. Typical mesh layout at the middle area of the NWF: (a) without the box; (b) with the 29 

two-box system  30 

 31 

The convergence analysis for the simulation results is performed by utilizing four sets of 32 

meshes (i.e., Meshes 1–4) with gradually finer resolutions. Aiming at the NWF without the box, 33 

the cell numbers for Meshes 1–4 are 193420, 331580, 426540 and 558670, respectively. The cell 34 

numbers of the NWF with boxes for the four meshes are slightly less than the corresponding ones 35 

of the NWF without the box because of the detachment of the cells within the two boxes from the 36 

(b) 

(a) 
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computational domain. Figs. 3 and 4 present the time series of wave elevations at gauge G2 under 1 

Meshes 1–4 for the NWFs without and with the two-box system, respectively. The simulated 2 

incident wave group in both figures is crest-focused (i.e., φ0=0) and has Af =0.03 m. For Meshes 3 

1–3, slightly differences between their wave elevations are observed at both the focusing crest and 4 

the following trough. As the mesh becomes denser, the wave elevations for Meshes 3 and 4 5 

become almost exactly coincident with each other. It shows that Mesh 3 obtains convergent results, 6 

and hence is chosen for all simulations. 7 

 8 

 9 

Fig. 3. Time series of the wave elevations at gauge G2 under Meshes 1–4 for the NWF without the 10 

box suffered from the incident crest-focused wave groups with Af=0.03 m  11 

 12 

 13 

Fig. 4. As in Fig. 3, but for the NWF with the two-box system  14 
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Prior to performing the present investigations on the 2nd-order gap resonance phenomenon, 1 

the accuracy of the numerical model in simulating the nonlinear wave-structure interaction is 2 

examined. Rodríguez et al. (2016) carried out a series of experiments in a physical wave flume 3 

with a length of 63 m and a width of 2.79 m. The water depth in the wave flume was h=1.25 m. A 4 

box was fixed at around the middle of the wave flume. The box has a breadth of B=0.50 m and a 5 

draught of d=0.25 m. The width of the box along the width direction of the wave flume was 2.76 6 

m, which leaves only 0.015 m to each sidewall of the wave flume. Two sets of the incident regular 7 

waves with kA0 = 0.05 and 0.10 were considered, where k and A0 are the wavenumber and the 8 

wave amplitude of the incident regular waves, respectively.  9 

To test the capability of OpenFOAM® to reproduce strong wave-structure interactions, the 10 

interactions between the box and the incident waves with kA0 = 0.10 are simulated here. Due to the 11 

identical breadth and draught of the box used in the physical experiments to those of the two boxes 12 

studied in this paper, a NWF very similar to that in Fig. 1 (not shown here for brevity) is utilized 13 

to perform the simulations. Different from the NWF shown in Fig. 1, only one box is placed in the 14 

middle of the flume. In addition, as in the physical wave flume, the water depth in the NWF is set 15 

to 1.25 m. A mesh with a similar density to Mesh 3 is adopted. The comparisons between the 16 

experimental data of Rodríguez et al. (2016) and the simulation results of the present numerical 17 

model for both the 1st-order and the 2nd-order vertical wave forces acting on the box are presented 18 

in Fig. 5, and a good agreement between them is seen. 19 

 20 

  21 

Fig. 5. The comparisons between the experimental data of Rodríguez et al. (2016) and the 22 

simulation results of OpenFOAM® for (a) the normalized 1st-order and (b) the normalized 23 

2nd-order vertical wave forces induced by the incident regular waves with kA0=0.10. 24 

 25 
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4. Numerical results and discussion 1 

To gain an overall understanding on the features of wave fields, not only the fluid 2 

magnification within the gap but also the variations of the wave elevations around the two-box 3 

system due to the existence of the two boxes are first shown in subsection 4.1, where the 4 

response/damping time of the first two order sum harmonic components of the wave elevation 5 

within the gap are also quantitatively estimated. Subsequently, the three types of wave loads on 6 

both boxes (including the horizontal wave forces, the vertical wave forces, and the wave moments) 7 

are investigated in subsections 4.2–4.4, respectively. In all the four subsections (i.e., 4.1–4.4), the 8 

results in each subsection are presented in the following way, overall. That is, the time series of 9 

total physical quantities (wave elevations or wave loads) and their maximum values in the positive 10 

and/or the negative directions are first analyzed, and subsequently, the first four order harmonic 11 

components are extracted and the first two order sum harmonics are carefully analyzed. Finally, 12 

the importance of high-order harmonics (represented by the 2nd-order sum harmonics) relative to 13 

first-order ones for all the four physical quantities (i.e., wave elevations, the horizontal wave 14 

forces, the vertical wave forces, and the wave moments) is compared in subsection 4.5.  15 

 16 

4.1. Wave elevations around the two-box system 17 

4.1.1. Total wave elevations 18 

 19 

 20 

Fig. 6. Comparisons of the time series of total wave elevations under the two conditions of 21 

with/without the two-box system at all the three gauges for the crest-focused wave groups with (a–22 

c) Af=0.01 m, (d–f) Af=0.05 m, and (g–i) Af=0.10 m. iηm and iζm denote the maximum total wave 23 

elevations at the gauge Gi (i=1, 2 and 3) without and with the two-box system, respectively. 24 
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 1 

Fig. 6 compares the time series of the total wave elevations under the two conditions of 2 

with/without the two-box system at gauges G1–G3 subjected to the incident crest-focused wave 3 

groups with Af=0.01 m, 0.05 m and 0.10 m, which directly show how the existence of the two-box 4 

system influence the wave fields not only in the narrow gap but also around the system. The 5 

following phenomena can be observed. First, at G1 (Fig. 6a, d and g), owing to the reflection 6 

occurring at the front edge of Box A, the normalized maximum wave elevations for the two-box 7 

system (1ζm/Af) are remarkably higher than the corresponding ones for the no-box system (1ηm/Af). 8 

The former is around 2.0 for all the three cases, while the latter is always slightly less than 1.0. 9 

Second, at G2 (Fig. 6b, e and h), the normalized maximum wave elevations for the two-box system 10 

(2ζm/Af) is always less than 1.2, much lower than that at G1. Compared to the incident focused 11 

wave groups (2η), the fluid motion in the gap (2ζ) lasts for a much longer time after reaching the 12 

maximum elevation, which is similar to the related finding in Taylor et al. (2008) and Gao et al. 13 

(2020a) where the 1st-order transient gap resonance triggered by focused waves is concerned. 14 

Third, at G3 (Fig. 6c, f and i), the maximum wave elevation with the two-box system (3ζm) is 15 

shown to be notably lower than the corresponding one of the incident wave group (3ηm), which can 16 

be attributed to the occlusion effect of the two-box system for the incident wave group.     17 

 18 

 19 

Fig. 7. Variations of the amplification factor of the wave elevations with respect to Af at (a) G1, (b) 20 

G2, and (c) G3   21 

 22 

Fig. 7 presents the variations of the amplification factor of the wave elevation defined as 23 

iζm/iηm (i=1, 2 and 3) with respect to Af at the three wave gauges. For G1 (Fig. 7a), the 24 

amplification factor gradually increases from 1.95 to 2.15 with the rise of the focused wave 25 

amplitude, Af. For G2 (Fig. 7b), however, the amplification factor there seems insensitive to Af, and 26 
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basically maintains a slight fluctuation around 1.90. Different from both G1 and G2, the 1 

amplification factor for G3 shows a gradual decline from 0.49 to 0.35 (Fig. 7c). It is clear that the 2 

fluid oscillation behind the two-box system has the least possibility to cause the green water on the 3 

deck due to the smallest amplification factor of wave elevation therein. On the contrary, the wave 4 

elevation at G1 always shows the largest amplification factor, which implies that the greatest 5 

possibility for the green water probably always appears in front of the two-box system.  6 

To confirm the above speculation, Fig. 8 directly compares the normalized maximum wave 7 

elevations at G1 and G2 inside the NWF with the two-box system for all the incident focused wave 8 

amplitudes considered. It can be intuitively observed that the maximum wave elevation at G1 is 9 

indeed always significantly higher than the corresponding one at G2, no matter whether the 10 

incident focused wave amplitude is small or large. The ratio of the former to the latter (i.e., 1ζm/2ζm) 11 

is also shown here. It is seen that 1ζm/2ζm has a minimum value 1.65 when Af=0.01 m, and as Af 12 

rises, the ratio gradually increase up to 1.81. It indicates that the most vulnerable place to green 13 

water is indeed always at the front edge of Box A, regardless of Af. This phenomenon is quite 14 

different from the corresponding one for the 1st-order transient gap resonance revealed by Gao et 15 

al. (2020a), and it was found that the most vulnerable place to green water is inside the gap or at 16 

the front edge of Box A, which is dependent on the magnitude of Af.  17 

 18 

 19 

Fig. 8. Comparison of the maximum wave elevations at G1 and G2 for various focused wave 20 

amplitudes.     21 

 22 

4.1.2. High-order harmonics 23 

Based on the analysis technique described in subsection 2.2, the lowest four order harmonic 24 
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are extracted. Fig. 9 shows the time series of the lowest four order harmonic components of the 1 

wave elevations at G1–G3 for Af=0.03 m, 0.06 m and 0.10 m. Four phenomena are observed from 2 

this figure. First, at all the wave gauges, the high-order harmonic components (especially the 3 

2nd-order sum harmonic one) become more and more important as the incident focused wave 4 

amplitude increases. Second, due to that the 2nd-order transient gap resonance is triggered by the 5 

incident focused wave groups, the high-order fluid motions inside the gap (i.e. at G2) present the 6 

most significant importance compared with those at G1 and G3. When Af=0.10 m, the maximum 7 

2nd-order sum harmonic wave elevation in the gap even exceeds the corresponding 1st-order one 8 

(see Fig. 9h). Third, at gauges G2 and G3, there exists an obvious difference between the moment 9 

of the appearance of the maximum 1st-order sum harmonic wave elevation, t(1)
m, and the moment 10 

of the appearance of the maximum 2nd-order sum harmonic wave elevation, t(2)
m. That is, the 11 

appearance of the maximum 2nd-order sum harmonic wave elevation is always obviously later than 12 

that of the corresponding 1st -order one at G2 and G3. However, for gauge G1, the maximum 1st- 13 

and 2nd-order sum wave elevations appear almost at the same time. Fourth, although the 14 

high-order wave elevation becomes more significant with the increase of Af, all of the 3rd- and the 15 

4th-order sum components and the 2nd-order difference component are still very small compared 16 

with the 1st- and the 2nd-order sum components overall. Hence, only the lowest two order sum 17 

harmonic components are carefully analyzed in the following.   18 

 19 

 20 

Fig. 9. Time series of the lowest four order harmonic components of the wave elevations at all 21 

wave gauges for (a-c) Af=0.03 m, (d-f) Af=0.06 m, and (g-i) Af=0.10 m. All the harmonic 22 

components are normalized by Af. ζ(1)
m and ζ(2)

m denote the maximum 1st-order and 2nd-order sum 23 

harmonic wave elevations, respectively. t(1)
m and t(2)

m denote the moments of the appearances of 24 
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ζ(1)
m and ζ(2)

m, respectively. 1 

 2 

 3 

Fig. 10. Ratios of ζ(2)
m to ζ(1)

m at all wave gauges under various incident focused wave amplitudes.     4 

 5 

To quantitatively describe the relative importance of the high-order wave components to the 6 

1st-order one, Fig. 10 presents the ratios of ζ(2)
m to ζ(1)

m at gauges G1–G3 under various incident 7 

focused wave amplitudes. The first two phenomena shown in Fig. 9 are quantitatively presented in 8 

this figure. Furthermore, it can also be seen that the relative importance of the high-order wave 9 

components at G1 is always higher than that at G3, although the former is always significantly 10 

lower than that at G2. 11 

 12 

4.1.3. Response time and damping time for the first two order sum harmonics  13 

In the actual project, the full understanding about the response time and the damping time of 14 

the transient gap resonance is very valuable to guide the berthing/production operation and the 15 

evacuation of staff reasonably. Therefore, the response/damping time for the 2nd-order transient 16 

gap resonance excited by focused wave groups is studied in this subsection. More specifically, the 17 

response/damping time for both the 1st- and the 2nd-order sum harmonic wave elevations in the gap 18 

(i.e., at G2) is investigated. The response time for each harmonic component refers to the time 19 

length between the moment that the free surface of each component just starts to move from the 20 

rest and the moment that it reaches the corresponding maximum. The damping time is defined as 21 

the time length between the moment with the maximum wave elevation and the moment that the 22 

wave crest decays to 0.05 times the maximum wave elevation.    23 

Fig. 11 illustrates the time series of the 1st- and 2nd-order sum harmonic wave elevations at 24 

gauge G2 during their response stages. Note that both the 1st- and 2nd-order wave elevations are 25 
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normalized by their respective maximum values for all the focused wave amplitudes considered, 1 

and that the time axis utilized is t-t (i)
m (i=1 or 2). For the 1st-order wave elevations (see Fig. 11a), 2 

it can be seen that the response time for all the incident wave amplitudes is extremely close to 3 

each other and is around 11.0 s. A similar phenomenon is also observed for the 2nd-order wave 4 

elevations (see Fig. 11b). However, the response time for the latter is obviously shorter than that 5 

for the former, and is only about 9.0 s. These phenomena are similar to the response time for the 6 

total wave elevation inside the gap during the 1st-order transient gap resonance (Gao et al., 2020a), 7 

but are quite different from the 1st-order steady-state gap resonance whose response time heavily 8 

relies on the amplitude of incident regular waves (Gao et al., 2019b).   9 

 10 

 11 

Fig. 11. Time series of the normalized (a) 1st-order and (2) 2nd-order sum harmonic wave 12 

elevations at gauge G2 during their response stages. ζ(1) and ζ(2) denote the 1st-order and 2nd-order 13 

sum harmonic wave elevations, respectively. 14 

 15 

For both the 1st-order steady-state and the 1st-order transient gap resonance phenomena, the 16 

total wave elevations in the gap have been revealed to decay in an exponential function during 17 

their attenuation stages (Gao et al., 2020a; Gao et al., 2019b). However, aiming at the 2nd-order 18 

transient gap resonance phenomenon, whether the exponential-form decay is still valid for the 19 

lowest two order sum harmonic wave elevations in the gap is unknown. Through observing Fig. 20 

9b, e and h, the envelopes for both lowest two order sum harmonic wave elevations during their 21 

attenuation stages seem to follow the exponential form as well. To examine the above speculation, 22 
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the lowest two order wave elevations within the gap during their attenuation stages are assumed as  1 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

m m mcos exp ( 1 or 2)i i i i i i i ia t t t t i       = − + − − =
   

,  (11) 2 

in which ( )ia , ( )i , ( )i  and ( )i  are four fitting parameters, and the superscript “(i)” marks 3 

out that the variable corresponds to the ith-order sum harmonic wave elevation. If wave elevations 4 

decayed in a perfect exponential way from their maximums, ( )ia  and ( )i  would equate to 1.0 5 

and 0, respectively. Moreover, based on the physical understandings for the lowest two order sum 6 

harmonic wave elevations, it can be inferred that the oscillations for them should be dominated by 7 

the spectral peak frequency (ωp=2.643 rad/s) and the fluid resonant frequency (ωR=2ωp=5.285 8 

rad/s), respectively.  9 

 10 

 11 

Fig. 12. Comparisons of the lowest two order wave elevations inside the gap extracted by the 12 

four-phase combination analysis technique and their corresponding fitted ones by Eq. (11) for the 13 

attenuation stage. (a-j) and (k-t) correspond to the 1st-order and the 2nd-order sum harmonic wave 14 

elevations, respectively.  15 

 16 

Fig. 12 demonstrates the lowest two order sum harmonic wave elevations inside the gap 17 
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extracted by the four-phase combination analysis technique and their corresponding fitted ones by 1 

Eq. (11) for the attenuation stage. It can be visually observed that, for both the lowest two order 2 

wave elevations, the fitted wave elevations are consistent well with the extracted ones by the 3 

analysis technique, regardless of whether the incident focused wave amplitude is small or large.  4 

 5 

Table 1. The fitted values of the parameters in Eq. (11) and the correlation coefficient, R, between 6 

the extracted and the fitted curves of the 1st-order sum harmonic wave elevations during the 7 

attenuation stage. Err1 denotes the error between ω(1) and the spectral peak frequency, ωp. 8 

Af (m) 
Fitted values  

(1)a  (1) (rad/s) (1) (rad) (1)  R Err1 (%) 

0.01 1.052 2.627 0.348 0.332 0.920 0.605 

0.02 1.043 2.612 0.354 0.320 0.946 1.173 

0.03 1.037 2.605 0.331 0.309 0.966 1.438 

0.04 1.014 2.599 0.301 0.297 0.969 1.665 

0.05 0.984 2.599 0.271 0.279 0.970 1.665 

0.06 0.970 2.601 0.232 0.264 0.976 1.589 

0.07 0.963 2.601 0.227 0.247 0.979 1.589 

0.08 1.006 2.621 0.079 0.239 0.984 0.832 

0.09 0.953 2.609 0.140 0.227 0.986 1.286 

0.10 0.959 2.612 0.107 0.214 0.982 1.173 

 9 

Table 2. As in Table 1, but for the 2nd-order sum harmonic wave elevations. Err2 denotes the error 10 

between ω(2) and the fluid resonant frequency of the gap, ωR. 11 

Af (m) 
Fitted values  

(2)a  (2) (rad/s) (2) (rad) (2)  R Err2 (%) 

0.01 1.063 5.305 -0.039 0.087 0.995 0.378 

0.02 1.071 5.304 -0.049 0.093 0.999 0.360 

0.03 1.087 5.306 -0.016 0.099 0.999 0.397 

0.04 1.062 5.308 -0.014 0.109 1.000 0.435 

0.05 1.029 5.306 -0.014 0.118 1.000 0.397 

0.06 1.040 5.305 -0.016 0.125 0.999 0.378 

0.07 1.094 5.308 0.033 0.129 0.999 0.435 

0.08 1.102 5.314 0.062 0.132 0.999 0.549 

0.09 1.070 5.310 0.043 0.135 0.999 0.473 

0.10 1.053 5.309 0.082 0.140 0.999 0.454 

 12 
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Tables 1 and 2 further list the fitted values for all the four fitting parameters in Eq. (11) and 1 

the correlation coefficient between the extracted and fitted curves, R. Err1 and Err2 in them refer 2 

to the error between ω(1) and the spectral peak frequency (ωp) and that between ω(2) and the fluid 3 

resonant frequency (ωR), respectively. For ( )ia  and ( )i , their respective values are shown to be 4 

very close to 1 and 0 for all incident focused wave groups and for both the lowest two order 5 

harmonic wave elevations. The correlation coefficients, R, for the 2nd-order sum harmonic 6 

components are all larger than 0.990 and even reach up to 1.000. Although the correlation 7 

coefficients for the 1st-order sum harmonic components are slightly lower than those for the 8 

2nd-order ones, their smallest value is also high up to 0.920. These fitted results indicate that both 9 

the lowest two order wave components in the gap indeed damps out in the form of an exponential 10 

function formulated by Eq. (11) during their attenuation stages. It can also be seen from the two 11 

tables that both the errors Err1 and Err2 are extremely small; the largest values for them are only 12 

1.665% and 0.549%, respectively. It directly proves that the oscillations for the 1st- and the 13 

2nd-order sum harmonic wave components during the attenuation stage are indeed dominated by 14 

the spectral peak frequency and the fluid resonant frequency, respectively. 15 

 16 

 17 

Fig. 13. The damping time for the lowest two order sum harmonic wave elevations at G2 for 18 

various focused wave amplitudes 19 

 20 

According to Eq. (11), the time τψ% that is taken by the lowest two order wave elevations to 21 
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5%  is chosen here to estimate the damping time. The damping time of the lowest two order wave 1 

elevations for all the incident wave amplitudes is presented in Fig. 13. The following two obvious 2 

phenomena can be seen. First, the damping time for the 2nd-order wave elevation is always much 3 

longer than that for the 1st-order one; the shortest damping time for the former is equal to 21.75 s 4 

that appears at the case with Af=0.10 m, while the longest damping time for the latter is only 13.64 5 

s that occurs at the same case. This phenomenon can be attributed to the fact that the spectral peak 6 

frequency of the 2nd-order sum harmonic components is consistent with the fluid resonant 7 

frequency of the gap, and hence the 2nd-order sum harmonic components are in the resonance state. 8 

Second, the damping time of the lst-order wave elevation is shown to gradually increase with the 9 

increase of Af. On the contrary, for the 2nd-order sum harmonic wave components, their damping 10 

time gradually decrease with Af. 11 

 12 

4.2. Horizontal wave forces 13 

4.2.1. Total horizontal wave forces 14 

Fig. 14 presents the comparisons of the time histories of the total horizontal wave forces 15 

impacting on the two boxes subjected to the incident crest-focused wave groups with Af=0.03 m, 16 

0.06 m and 0.10 m. It should be noted here that both the total horizontal wave forces and their 17 

harmonic components (they will be shown in the subsection 4.2.2) are normalized by ρghAfW in 18 

this article. Two phenomena can be visually observed. First, in the +x axial direction, for all the 19 

three crest-focused wave groups, the maximum horizontal wave forces on Box A are shown to be 20 

always larger than the corresponding ones on Box B. Contrarily, in the -x axial direction, the 21 

former becomes always smaller than the latter. Second, at the attenuation stage, the time histories 22 

of the horizontal wave forces acting on both boxes gradually become nearly anti-phase and tend to 23 

possess similar amplitudes. It can be explained as follows. The wave groups propagate away from 24 

the two boxes in both forms of reflected waves and transmitted waves after the incident focused 25 

wave groups hit the two-box system. As shown in Fig. 13, the 1st-order wave elevations inside the 26 

gap gradually vanish in around 14 s or shorter time; however, the 2nd-order wave elevations need a 27 

much longer time to completely vanish. Hence, the remaining 2nd-order components oscillate 28 

inside the gap like a piston, which tends to produce nearly symmetrical flow velocity fields and 29 

dynamic pressure fields with respect to the vertical plane located at the middle of the gap. 30 
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Obviously, the nearly symmetrical dynamic pressure fields would generate the anti-phase 1 

horizontal wave forces with similar magnitudes impacting on the two boxes.  2 

 3 

Fig. 14. Comparisons of the time series of the normalized horizontal wave forces on Boxes A and 4 

B for the crest-focused wave groups with (a) Af=0.03 m, (b) Af=0.06 m, and (c) Af=0.10 m. ti (i=1–5 

3) are three moments when both the velocity and dynamic pressure fields around the two-box 6 

system will be shown and analyzed, and the specific values for ti-tf are listed in Table 3.  7 

 8 

Table 3. The specific values of the three moments shown in Fig. 14c, ti-tf (i=1–3)  9 

Values of the three moments 

t1-tf (s) t2-tf (s) t3-tf (s) 

-0.382 13.610 18.338 

 10 

To show the above explanations more intuitively, both the velocity and dynamic pressure 11 

fields in the vicinity of both boxes at the three different moments shown in Fig. 14c and Table 3 12 

are presented in Fig. 15 for the incident crest-focused waves with Af=0.10 m. It is seen that when 13 

the incident focused waves start to hit the two-box system, both the velocity and dynamic pressure 14 

fields in the vicinity of both boxes show significant asymmetry with respect to the vertical plane 15 

located at the middle of the gap (see Fig. 15a and b). As the incident waves pass far away from the 16 

structures, the symmetric tendency with respect to that vertical plane for them becomes more and 17 
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more obvious (see Fig. 15c–f). Based on the distributions of both the velocity and dynamic 1 

pressure fields, it can be inferred that the vertical wave forces on both boxes during the damping 2 

stage (including their amplitudes and the phases) tend to become almost identical with each other, 3 

and that the wave moments on both boxes during that stage would have almost identical amplitude 4 

but become almost anti-phase. These inferences will be proved in subsections 4.3.1 and 4.4.1, 5 

respectively.     6 

 7 

 8 

                                       9 

 10 

 11 

 12 

 13 

 14 

 15 

Fig. 15. Velocity and dynamic pressure fields in the vicinity of the two-box system at the three 16 

moments shown in Fig. 14c and Table 3. The units of the color bars for the velocity and the 17 

dynamic pressure fields are m/s and Pa, respectively.   18 

 19 

Fig. 16 further quantitatively compares the normalized maximum horizontal wave forces on 20 

Boxes A and B in the same direction. In the +x direction (see Fig. 16a), the normalized maximum 21 

horizontal wave forces on Boxes A and B gradually increase and decrease, respectively, with the 22 

incident focused wave amplitude. For Af=0.01 m, the maximum horizontal wave force on Box A is 23 

slightly less than that on Box B. When Af increases to 0.02 m, the two variables become almost 24 

identical. As Af further increases, the maximum horizontal wave force on Box A becomes higher 25 

and higher than that on Box B. The ratio of the maximum horizontal wave force in the +x direction 26 

on Box B to that on Box A decreases gradually from 113.7% for Af=0.01 m to 58.9% for Af=0.10 27 

m. In the -x direction (see Fig. 16b), the normalized maximum horizontal wave force on Box A 28 

still increases gradually with Af, just like the corresponding one in the +x direction. However, the 29 
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normalized maximum horizontal wave force on Box B does not change monotonically any more. 1 

It first increases and then decreases with the increase of Af, and its maximum value appears at 2 

Af=0.04 m. Furthermore, at the variation range of Af considered in this article, the normalized 3 

maximum horizontal wave force on Box B in the -x direction is always larger than that on Box A. 4 

The ratio of the former to the latter first slightly increases and then sharply decreases with Af, and 5 

there is a maximum value of 162.5% at Af=0.03 m.         6 

 7 

 8 

Fig. 16. Comparisons of the normalized maximum horizontal wave forces on Boxes A and B in (a) 9 

the +x axial direction and (b) the -x axial direction. F+xm and F-xm denote the maximum total 10 

horizontal forces in the +x and the -x axial directions, respectively.  11 

   12 

4.2.2. High-order harmonics 13 

Based on the analysis technique shown in subsection 2.2, the lowest four order harmonic 14 

components of wave loads on both boxes are also separated. Fig. 17 demonstrates the decomposed 15 

lowest four order harmonic components of the horizontal wave forces for the focused waves with 16 

Af=0.03 m, 0.06 m and 0.10 m. It is seen that the magnitudes of the 2nd-order sum harmonic 17 

components are significant when compared to those of the 1st-order components even for the 18 

incident focused wave group with Af=0.03 m (Fig. 17a and d). When Af=0.06 m and 0.10 m (Fig. 19 

17b, c, e and f), the former approaches and even exceed the latter. Similar to the wave elevation 20 

inside the gap, for the horizontal wave forces, the magnitudes of both the 3rd/4th-order sum and the 21 

2nd-order difference harmonic components are also extremely small compared with the lowest two 22 
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order sum harmonic ones. In fact, this phenomenon can also be observed for both the vertical 1 

wave force and the wave moment (their lowest four order harmonics are not presented in this 2 

article due to limited space). Therefore, only the lowest two order sum harmonic wave loads are 3 

analyzed in the following. More specifically, the maximum values of the lowest two order sum 4 

harmonic horizontal wave forces in both the +x direction and the -x direction will be extracted and 5 

compared in this subsection.  6 

  7 

 8 

Fig. 17. The lowest four order harmonic components of the normalized horizontal wave forces on 9 

(a-c) Box A and (d-f) Box B subjected to the focused waves with Af=0.03 m, 0.06 m, and 0.10 m. 10 

F(i)
+xm and F(i)

-xm (i=1 and 2) denotes the maximum ith-order horizontal forces in the +x direction 11 

and the -x direction, respectively.  12 

 13 

Fig. 18 shows the variations of the normalized maximums of the lowest two order sum 14 

harmonic horizontal forces in both the +x and the –x directions with respect to Af. The ratios of the 15 

2nd-order to the 1st-order maximum forces in the same direction acting on each box are also 16 

presented. For the 1st-order maximum horizontal forces on both boxes (Fig. 18a and b), it is seen 17 

that their normalized magnitudes in the +x direction are always larger than the corresponding ones 18 

in the –x direction overall. In addition, for all the 1st-order maximum forces in the +x direction on 19 

Box A and those in both directions on Box B, their normalized values decrease monotonically with 20 

the increase of the incident wave amplitude. However, for the 1st-order maximum horizontal 21 
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forces in the -x direction on Box A, their normalized magnitudes seem insensitive to the incident 1 

wave amplitude. For the 2nd-order maximum horizontal forces on both boxes, their characteristics 2 

are completely different from those of the 1st-order ones. For all the incident focused wave 3 

amplitudes considered, the 2nd-order maximum horizontal forces in both directions are always 4 

almost identical with each other, regardless of Box A or Box B. Furthermore, all of them gradually 5 

increase with Af and eventually approach a specific value in each direction when Af >0.07 m.  6 

 7 

 8 

Fig. 18. The normalized maximums of the lowest two order sum harmonic horizontal wave forces 9 

in both the +x and the –x directions for (a) Box A and (b) Box B, and (c) the ratios of the 2nd-order 10 

to the 1st-order maximum horizontal forces in the same direction for each box  11 

 12 

     13 

Finally, the relative importance of the 2nd-order harmonic components with respect to the 14 
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ratios of the 2nd-order to the 1st-order maximum forces on both boxes can even exceed 110%, 1 

while in the +x direction, the ratios are also high up to about 90%. Among the four ratio 2 

parameters, |F(2)
-xm|/|F(1)

-xm| for Box A always has the largest value except at Af=0.10 m where it is 3 

only slightly less than |F(2)
-xm|/|F(1)

-xm| for Box B.     4 

 5 

4.3. Vertical wave forces 6 

4.3.1. Total vertical wave forces 7 

 Fig. 19 illustrates the time series of the total vertical wave forces acting on both boxes for 8 

Af=0.03 m, 0.06 m and 0.10 m. Identical to the horizontal forces, both the total vertical wave 9 

forces and their harmonic components that will be shown in subsection 4.3.2 are also normalized 10 

by ρghAfW. Two phenomena can be easily observed. First, the maximum vertical forces on Box A 11 

in both the +z and –z directions are always notably larger than the corresponding ones on Box B 12 

because of the occlusion effect of Box A on Box B. Second, during the damping stage, the time 13 

histories of the vertical wave forces on Boxes A and B tend to become almost overlapped with 14 

each other. These two phenomena mentioned above are distinct from the corresponding ones 15 

presented in Fig. 14. 16 

 17 

 18 

Fig. 19. Time series of the normalized vertical wave forces on Boxes A and B for (a) Af=0.03 m, 19 

(b) Af=0.06 m, and (c) Af=0.10 m.  20 
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Fig. 20 presents the quantitative comparisons of the normalized maximum vertical wave 1 

forces on both boxes in the same direction. In the +z direction (Fig. 20a), the normalized 2 

maximum vertical wave forces on both boxes decrease monotonically with the incident focused 3 

wave amplitude, and the maximum vertical wave force on Box A is always significantly larger 4 

than the corresponding one on Box B, although their difference gradually becomes smaller with 5 

the increase of Af. The ratio of the maximum vertical force on Box B to that on Box A gradually 6 

increases from 51.7% for Af=0.01 m to 61.8% for Af=0.10 m. In the -z direction (Fig. 20b), the 7 

similar phenomena to those in the +z direction are observed, although the specific magnitudes of 8 

all the three parameters (i.e., the normalized | F-zm| on Boxes A and B and their ratio) are slightly 9 

different from the corresponding ones in the +z direction.      10 

 11 

 12 

Fig. 20. Comparisons of the normalized maximum vertical wave forces on Boxes A and B in (a) 13 

the +z axial direction and (b) the -z axial direction. F+zm and F-zm denote the maximum total 14 

vertical wave forces in the +z and the -z direction, respectively.  15 
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maximum vertical forces on each box, their magnitudes in both directions are almost identical 1 

with each other, regardless of whether Af is large or small. Moreover, all of them increase nearly 2 

linearly with the rise of Af. To quantitatively display the relative importance of the 2nd-order 3 

harmonic components, the ratios of the 2nd-order to the 1st-order maximum vertical forces in the 4 

same direction for each box are also presented in Fig. 21c. All the four ratio parameters (i.e., 5 

F(2)
+zm/ F(1)

+zm and |F(2)
-zm|/|F(1)

-zm| for both boxes) are shown to increase nearly linearly with the 6 

incident wave amplitude. In addition, among the four parameters, the values of |F(2)
-zm|/|F(1)

-zm| for 7 

Box B are always larger than those of the other three parameters at the whole variation range of Af. 8 

The maximum value of |F(2)
-zm|/|F(1)

-zm| for Box B is 40.2% which appears at Af=0.10 m.   9 

 10 

 11 

Fig. 21. The normalized maximums of the lowest two order sum harmonic vertical wave forces in 12 

both the +z and the –z directions for (a) Box A and (b) Box B, and (c) the ratios of the 2nd-order to 13 

the 1st-order maximum vertical forces in the same direction for each box  14 
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Fig. 22 presents the time series of the total wave moments acting on both boxes for Af=0.03 1 

m, 0.06 m and 0.10 m. It should be noted here that both the total wave moments and their 2 

harmonic components which will be shown in subsection 4.4.2 are normalized by ρghAfBW. Two 3 

phenomena can be easily observed. First, the maximum moments in the +y direction on Box A are 4 

always larger than the corresponding ones on Box B for all the three incident wave amplitudes. 5 

However, the maximum moments in the -y direction on Box A becomes always smaller than the 6 

corresponding ones on Box B. Second, the time series of the vertical wave forces on Boxes A and 7 

B during their damping stages tend to have similar amplitudes but become almost anti-phase. Both 8 

phenomena are similar to the corresponding ones shown in Fig. 14. 9 

 10 

 11 

Fig. 22. Time series of the normalized wave moments on Boxes A and B for (a) Af=0.03 m, (b) 12 

Af=0.06 m, and (c) Af=0.10 m. 13 
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116.9% for Af=0.01 m to 61.0% for Af=0.10 m. In the -y direction (Fig. 23b), the normalized 1 

maximum wave moments on both boxes gradually increase with Af overall. In addition, for all the 2 

incident wave amplitudes considered, the maximum moments in the -y direction on Box B are 3 

shown to be significantly larger than the corresponding ones on Box A, and the ratio of the former 4 

to the latter fluctuates only slightly around 180%. 5 

         6 

 7 

Fig. 23. Comparisons of the normalized maximum wave moments on Boxes A and B in (a) the +y 8 

direction and (b) the -y direction. M+ym and M-ym denote the maximum total moments in the +y and 9 

the -y direction, respectively.  10 
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the 2nd-order moment to the 1st-order one, it can be seen from Fig. 24c that the 2nd-order wave 1 

moment becomes more and more important as Af increases. For the four ratio parameters, except 2 

|M(2)
+ym|/|M(1)

+ym| for Box B, all the other three ratio parameters exceed 100% for larger incident 3 

wave amplitudes. Even for |M(2)
+ym|/|M(1)

+ym| for Box B, its maximum value is high up to 94.2% at 4 

Af=0.10 m, very close to 100%. These phenomena indicate that for the 2nd-order transient gap 5 

resonance, the 2nd-order sum harmonic wave moment tends to become dominant for larger focused 6 

wave groups.   7 

 8 

 9 

Fig. 24. The normalized maximums of the lowest two order sum harmonic wave moments in both 10 

the +y and the –y directions for (a) Box A and (b) Box B, and (c) the ratios of the 2nd-order to the 11 

1st-order maximum moments in the same direction for each box 12 
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respect to the 1st-order ones for all the four physical quantities (i.e., wave elevations, the 1 

horizontal wave forces, the vertical wave forces, and the wave moments) is compared in Fig. 25. 2 

For the wave elevations, only the curve of ζ(2)
m/ζ(1)

m at gauge G2 shown in Fig. 10 is chosen here 3 

because of its largest value among the three wave gauges. For each type of wave loads (see Figs. 4 

18c, 21c and 24c), only the curve that corresponds to the overall largest ratios of the 2nd-order to 5 

the 1st-order wave loads is selected and reflected in this figure. It can be seen that the importance 6 

of the 2nd-order sum harmonic components is the most prominent for the wave moment, and it is 7 

the weakest for the vertical wave force. While for the wave elevation and the horizontal wave 8 

force, the importance of their 2nd-order components falls in between that for the wave moment 9 

and that for the vertical wave force. It should be stressed here that, although the relative 10 

importance of the 2nd-order sum harmonic components for the vertical wave force is the weakest 11 

among the four physical quantities, the ratio of the 2nd-order to the 1st-order maximum vertical 12 

wave forces can reach up to 40.2%, which is still a considerable quantity and cannot be ignored in 13 

the calculation of wave loads for the real engineering. 14 

 15 

 16 

Fig. 25. Comparisons of the ratios of the maximum 2nd-order magnitude to the corresponding 17 

maximum 1st-order one for the wave elevation inside the gap, the horizontal wave force, the 18 

vertical wave force, and the wave moment.   19 

    20 

5. Conclusions 21 

The 2nd-order transient gap resonance phenomenon excited by the incident focused waves is 22 

comprehensively investigated here based on the OpenFOAM® model and the “waves2Foam” 23 

wave-making toolbox. The wave fields both inside the gap and around the two-box system, the 24 

three types of wave loads (including the horizontal wave force, the vertical wave force and the 25 
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wave moment) acting on both boxes, and the relative importance of the 2nd-order wave 1 

elevations/loads to the first-order ones are systematically revealed and discussed. In addition, both 2 

the response time and the damping time of the lowest two order sum harmonic components of the 3 

wave elevations inside the narrow gap are also studied. The research in this article has enriched 4 

the knowledges about the transient gap resonance phenomenon.  5 

Main conclusions are drawn in the following: 6 

1. The variation characteristics of the amplification factors of the wave elevations inside the gap, 7 

in front of and at the rear of the two-box system with respect to the incident focused wave 8 

amplitude are completely different from each other. The amplification factor of the wave 9 

elevation inside the gap is insensitive to the incident wave amplitude. However, the 10 

amplification factors in front of and at the rear of the two-box system are respectively shown 11 

to gradually increase and gradually decrease with the incident wave amplitude. From the 12 

perspective of the occurrence of green water on the deck, the location in front of the two-box 13 

system, rather than inside the gap, is always the most vulnerable during the 2nd-order transient 14 

gap resonance excited by focused wave groups. In addition, the high-order fluid motion inside 15 

the narrow gap presents the most significant importance compared with those in front of and 16 

at the rear of the two-box system.  17 

2. The response time of the 1st-order wave elevations inside the gap is extremely close to each 18 

other and is around 11.0 s for all the focused wave groups considered. Similar phenomenon is 19 

also found for the response time of the 2nd-order wave elevations inside the gap, but their 20 

response time is only about 9.0 s. During the decaying stage, the oscillations for the 1st- and 21 

the 2nd-order sum harmonic wave components are found to be respectively dominated by the 22 

spectral peak frequency and the fluid resonant frequency. The damping time of the lst-order 23 

wave elevation and that of the 2nd-order one gradually increases and decreases, respectively, 24 

with the incident focused wave amplitude. Moreover, the damping time of the 2nd-order wave 25 

elevation is always much longer than that of the 1st-order one. 26 

3. For the three types of wave loads, except the maximum total vertical wave force, both the 27 

maximum total horizontal wave force and the maximum total wave moment on Box B are 28 

prone to exceed and even become much larger than the corresponding ones on Box A. 29 

Although the maximum total vertical wave force on Box B is always lower than the 30 
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corresponding one on Box A, the former can still reach up to 61.8% of the latter. These results 1 

imply that the maximum wave loads on the downstream structure should be paid the same 2 

(and even more) attention with (than) those on the upstream structure during the 2nd-order 3 

transient gap resonance. Furthermore, the changing trends of the normalized maximum total 4 

wave loads with the incident wave amplitudes depend closely on both the type and the 5 

direction of wave loads, and on the structure location (Box A or Box B). 6 

4. Among the four physical quantities studied (i.e., the wave elevation, the horizontal wave force, 7 

the vertical wave force, and the wave moment), the importance of the 2nd-order sum harmonic 8 

components is the most prominent for the wave moment, and it is the weakest for the vertical 9 

wave force. While the importance of the 2nd-order components for the wave elevation and the 10 

horizontal wave force falls in between that for the wave moment and that for the vertical wave 11 

force. Although the relative importance of the 2nd-order components for the vertical force is 12 

the weakest, the ratio of the 2nd-order to the 1st-order maximum vertical wave forces can reach 13 

up to 40.2%, which is still a considerable quantity and cannot be ignored in the calculation of 14 

wave loads for the real engineering. 15 

Finally, it should be reaffirmed here that the above conclusions are only applicable for the 16 

given geometric layout and the given incident focused wave groups considered in this article.    17 
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