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Abstract: The adoption of electric vehicles (EVs), including battery EVs and hybrid 
EVs, makes it possible to reduce fossil fuel consumption and greenhouse gas emission. 
However, an accurate battery model and an effective battery management system 
should be established to enable this benefit. This paper proposes a novel cloud-assisted 
online battery management method based on artificial intelligence and edge 
computing technologies. Integration of cloud computation and big data resources into 
real-time vehicle battery management is realized by establishing a novel cloud-edge 
battery management system (CEBMS). A deep learning algorithm-based cloud data 
mining and battery modeling method is developed to estimate the voltage and energy 
state of the battery. The accuracy of the established cloud battery model outperforms 
the onboard battery management system by utilizing multi-sources information from 
different EVs. Meanwhile, a cloud-assisted battery management method is established 
at edge nodes in the onboard battery management unit to realize real-time state 
estimation locally. By using precise battery state estimation provided by the cloud 
platform, vehicle battery model accuracy can be significantly improved. The 
performance of the proposed battery management method is verified by a vehicle big 
data platform and battery pack experimental test bench. Experimental results justify 
the effectiveness of the proposed method in battery state estimation, which can help 
the EVs use and manage the battery more effectively. 

Keywords: Electric vehicle, battery management system, edge computing, deep 
learning, battery energy storage, and state estimation. 

 

Nomenclature 

kUter     Battery terminal voltage state time series. 

kI      Battery current state time series. 

kTem     Battery temperature state time series. 

kSoC     Battery SoC state time series. 

kIN      Training input of RBM model. 
b ,a , W    The bias and weight matrixes of RBM unit.  
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θ      Parameter set of RBM unit. 

TF      Extracted battery feature from the original dataset. 

, 1
cloud
t kU + , 1

cloud
kSoC +   Estimated battery terminal voltage and SoC in the cloud. 

tf , socf     Mapping functions in cloud terminal voltage and SoC estimators. 
x ,u , y     System state, input, and output vectors. 
f , h     System state transfer functions. 
ω ,υ     System measurement and observation noises. 

,
cloud
oc kU , ocv socf −   Estimated battery OCV in cloud and SoC to OCV function. 

ke , potterf    Error feedback signal and potter measurement update function. 
K , M     Kalman gain and length of the observation window. 
Q , R , P  Covariance of system noise, measurement noise, and state 

estimation error. 

I. Introduction 
Increased electrification of the automotive industry has been identified as a key 

solution to resolve environmental and energy issues [1]. The adoption of electric 
vehicles (EVs), including battery EVs and hybrid EVs, makes it possible to reduce 
fossil fuel consumption and greenhouse gas emission [2, 3]. However, although EVs 
bring great benefits to society, their safety, endurance mileage, and costs still concern 
consumers [4]. The battery system is one of the most important and expensive 
components in EVs, and its management method has direct impacts on the safety and 
costs of EVs [5, 6]. Therefore, developing an effective battery management method has 
become a vital issue in recent years. 

The core of battery management is to build an accurate battery model to estimate the 
State of Charge (SoC) and monitor its operation [7, 8]. Researchers have developed 
various battery modeling and state estimation methods to enhance the efficiency of 
battery management system (BMS). The equivalent circuit model and least-square 
algorithm (LSA) were employed in [9] to estimate the state of series-connected battery 
packs in EVs. The proposed method was validated under various scenarios, and results 
showed that the SoC estimation error could be constrained within 5%. As an 
improvement, an adaptive sigma-point extended Kalman filter (EKF) algorithm was 
used in [10] to estimate the battery SoC in real-time. The battery-in-the-loop experiment 
results indicated the satisfactory performance of the proposed algorithm. However, 
limited by the computational capability and data quantity of onboard BMS, the accuracy 
and stability of LSA and EKF method always shows unsatisfactory performance in real-
world. 

The development of cloud platforms [11], data transmission technology [12], and 
artificial intelligence algorithms [13, 14] provide a possible solution to solve the issues 
of vehicle battery management. Cloud-based EV management was used in [15] to 
monitor the operation of battery systems and predict endurance mileage based on a 
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deep-learning algorithm. Experiment results in a real transportation system showed that 
the cloud platform could predict battery SoC and vehicle endurance mileage more 
accurately (error within 3.33%). Paper [16] and [17] propose an intelligent battery SoC 
and State of Health (SOH) estimation framework based on EVs' big data platform. The 
deep feedforward neural network is used in their study to establish a battery state 
estimation model, and the experimental results on a real vehicle monitoring dataset 
indicated that the developed method could estimate battery energy and life state 
accurately. However, to the authors' best knowledge, no research has been dedicated to 
integrating cloud state estimation information to real-time battery management issues 
yet. The vehicle and battery are both dynamic systems with high requirements on 
control system real-time performance [18]. However, the unavoidable data 
transmission delay between the cloud and vehicles makes it challenging to deploy cloud 
battery state estimation results in real-time battery management. 

In recent years, edge computing technology has brought a promising prospect to 
solving the problem discussed above [19, 20]. Edge computing is a multi-resource 
integration technology specially designed for solving complex system control problems 
and has been proved effective in smart cities [21], industrial applications [22], and 
intelligent transportation systems [23], etc. Cloud and edge computing technologies 
have also been successfully deployed in vehicle energy management. Hong Wang and 
Amir Khajepour proposed a cyber-physical energy management system for off-road 
and through-the-road hybrid EVs in [24] and [25]. Experiment results validated that the 
energy management strategies can schedule power system operation in real-time and 
improve vehicle energy efficiency at the same time. Edge computing is a bridge 
between the cloud platform and distributed sub-controllers, with which both system 
real-time performance and high accuracy can be realized. 

This paper aims to bridge the above research gap and construct a novel cloud-assisted 
online battery management method based on artificial intelligence and edge computing 
technologies for improving vehicle battery state estimation accuracy. Firstly, a CEBMS 
framework is established to integrate cloud computation and big data resources into 
online vehicle battery management. A deep learning algorithm-based cloud data mining 
and battery modeling method is developed to estimate the voltage and energy state of 
the battery. The accuracy of the established cloud battery model outperforms the 
onboard battery management system by utilizing multi-sources information from 
different EVs. Meanwhile, a cloud-assisted battery management method is established 
at edge nodes in the onboard battery management unit to realize real-time state 
estimation locally. By using precise battery state estimation provided by the cloud 
platform, vehicle battery model accuracy and real-time performance can be 
simultaneously ensured. The vehicle big data platform is used to validate the 
performance of the developed cloud battery data modeling method, and a battery pack 
experimental test bench verifies the performance of the cloud-assisted battery 
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management method. The main contributions of this paper can be summarized as 
follows: 

1) To the best of authors' knowledge, this paper is the first effort to study the use of 
cloud battery state estimation information in real-time online vehicle battery 
management. 

2) A novel CEBMS framework is designed. As a bridge between the cloud 
computation center and sub-controller, the CEBMS realizes real-time battery 
management locally with onboard BMS while successfully integrating cloud big 
data and computation resources. 

3) A novel cloud battery data mining method is developed based deep-learning 
algorithm. With the developed method, an accurate and stable battery state 
estimator can be established in the cloud data platform by utilizing big data 
resources. The derived high accuracy state estimation results can be further used 
to improve the performance of online battery management at edge nodes. 

4) It realizes real-time online vehicle battery management at edge nodes by a cloud-
assisted online battery state estimation model. Compared to conventional 
methods, battery state estimation accuracy can be significantly improved by 
utilizing information provided by the cloud platform. 

Furthermore, the theoretical and practical significance of the developed methods can 
be summarized as follows: 

1) The designed CEBMS framework provides a data-sharing platform between 
different EVs, which can significantly enrich the available dataset in battery 
modeling issues and improve vehicle battery management system performance. 

2) The established cloud-assisted online battery state estimation model brings a 
bright perspective for improving the accuracy and stability of onboard vehicle 
battery management. It further boosts the practical application of big data driven 
vehicle management technologies. 

II. Cloud-edge vehicle battery management framework 
To integrate cloud computation resources in onboard battery management and thus 

improve the performance and stability of onboard, a CEBMS framework is developed 
based on cloud platform and edge computing technology in this section. As shown in 
Fig. 1. the developed cloud-edge vehicle battery management framework consists of 
three components: i) the edge nodes, including battery, vehicle and its battery 
management system; ii) the cloud platform, including the vehicle battery database and 
cloud battery model; iii) the edge network, which is responsible for bidirectional data 
transmission between the cloud platform and edge nodes. 
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Fig. 1. The developed CEBMS framework for online vehicle battery management. 

a) Edge nodes: onboard battery management system 
In the basic concept of edge computing, the edge nodes are mainly responsible for 

real-time information perception and system control through distributed sensors, 
actuators, and sub-controllers [26]. Similar to the classical edge computing framework, 
the edge nodes are the cornerstone of the whole CEBMS framework, and real-time 
battery management and data communication are realized at this level. As shown in Fig. 
1, based on the real-time sampled battery external data, the equivalent circuit model 
and the Kalman filter algorithm are used to estimate battery SoC and manage the battery 
and vehicle online. However, the electrochemical reactions of the battery and the 
working condition of the vehicles are very complex, and thus onboard BMS can hardly 
achieve a satisfactory performance because of its limited calculation capability and data 
volume. Therefore, a data processing module with bi-directional sending and receiving 
functions is employed in the developed CEBMS framework to provide cloud-assisted 
service: the accurate battery state estimation results derived in the cloud center is used 
to provide prior information for onboard system identification and state estimation, thus 
improving the efficiency and performance of onboard BMS. Additionally, the data 
transmission module also uploads battery operation data to the cloud for further data 
mining and enriching the battery database. Therefore, all the grid-connected EVs in a 
district are integrated together through the communication network, and each can be 
regarded as a virtual sensor and edge node. 
b) Cloud platform: battery data center and state estimation model 
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The cloud platform is responsible for building the cloud battery data mining model 
and providing accurate battery reference state information for all grid-connected EVs. 
As shown in Fig. 1, a database is built to collect EV battery operation data and a data 
mining process is carried out to establish cloud battery terminal voltage and SoC 
estimators. Nevertheless, although the accuracy and stability of the cloud battery model 
are much higher than that of the onboard BMS, it still cannot be directly used for online 
battery management because of the information transmission delay between vehicles 
and the cloud. Therefore, in the proposed CEBMS framework, the estimated battery 
terminal voltage and SoC information in the cloud are transmitted to onboard BMS and 
serve as a reference calibration value for improving its performance. 
c) Edge network 

In the CEBMS framework, the communication network is the bridge between the 
cloud platform (data mining model) and edge nodes (BMS in vehicles). With the link 
services between vehicles and the cloud, the bi-directional parameter transmission 
between road EVs and the cloud platform can be realized. The operation data of EVs 
can be uploaded to the cloud platform for data mining, and the battery state estimation 
from the cloud battery model can be sent back to the EVs to improve the real-time state 
estimation accuracy of onboard BMS. The communication mechanism in cloud-edge 
computing has been well studied in previous literature and applications, and thus the 
rest of the paper mainly focuses on the cloud battery data mining technologies and 
cloud-assisted online battery management in onboard BMS. 

III. Vehicle battery modeling method based on data mining technology 
This section proposes a data mining method to establish terminal voltage and SoC 

estimator by utilizing the collected battery data in a cloud platform based on a deep 
learning algorithm.  

A. Data mining for vehicle battery big data in cloud platform 

The Restricted Boltzmann Machine (RBM) and Deep belief network [27] are the 
most popular data mining method and has been proved effective in image identification, 
renewable energy forecasting, and machine translation. In this part, a battery data 
mining method is developed by using the DBN algorithm. As shown in Fig. 2 (a), based 
on the RBM algorithm, the deep features are firstly extracted from the dataset. 
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Fig. 2. The data mining-based vehicle battery modeling method. (a) structure of RBM unit; (b) 
battery external characteristics simulation model. 

The external characteristics of the battery are mainly reflected by the terminal voltage, 
current, temperature, and SoC. Therefore, the input of the RBM module kIN  is 
designed as a combination of the above four sequences to excavate the deep temporal 
and model features in the cloud dataset: 

[ ]k k k k k=IN Uter I Tem SoC                    (1) 

Where: kUter , kI , kTem , and kSoC  are the historical terminal voltage, current, 
temperature, and SoC state of the battery. 

The core of RBM is an energy-based generation model [28], and for battery data 
mining issues, the state of RBM is: 

( , , ) T T TE = − − −IN F θ b IN a F F WIN                  (2) 

Where: θ , b , a , and W  are the hyperparameter of the RBM unit. IN  is the 
original battery data, and F  is the extracted battery feature from the original dataset. 
The training target of RBM is to optimize the hyperparameters in RBM to achieve the 
most stable state [29], expressed as maximizing the joint probability distribution of 
RBM parameters: 

( , , )1 1max{ ( , | )
( ) ( )

T T TEP e e
Z Z

− + += =IN F θ b IN a F F WININ F θ
θ θ

          (3) 

Where: ( , , )

,
( ) EZ e−= ∑ IN F θ

F IN
θ  is the normalization factor. The Contrastive Divergence 

algorithm [30] is employed in the paper to train the established battery features 
extraction model. 

To enhance the efficiency and performance of the established data mining model, 
RBMs are stacked layer by layer and end to end to generate a multi-layer network, i.e., 
a DBN model in the paper. As shown in Fig. 2 (b), the hidden layer output of the first 
RBM is used as the input of the next RBM's visible layer. The training method of the 
upper layer RBM is the same as the first RBM. The RBMs are trained layer by layer 
from bottom up, and the deeper features in battery data are extracted and excavated 
effectively. Finally, the output of the top-layer RBM is used as the battery data mining 
results. 
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B. Battery external characteristics simulation model 

The DBN and RBM algorithms can effectively excavate the hidden features in the 
battery dataset; however, the whole DBN model is trained in an unsupervised way and 
can only be used as a data mining model. The characteristics of the batteries are not 
possible to simulate and model because no definite outputs are defined in training. 
Therefore, in this section, a fine-tuning method is proposed to build state estimators in 
the cloud battery data platform. 

Firstly, the structure of the RBM model is simplified to adapt to the battery modeling: 
the visible layer offset b is abandoned and the network weight matrix W  degenerates 
to one-way mode. In this way, as shown in Fig. 2 (b), the whole DBN model can be 
regarded as a forward neural network. Then, the whole model is retrained with labeled 
battery data. In the terminal voltage estimator, the input of the network is constructed 
as a combination of battery historical working state, current, terminal voltage, and SoC. 
The mapping relationship can be represented as: 

( ), 1 1 1 1
cloud
t k t k k k kU f I Tem SoC+ + + += IN                  (4) 

Similar to the terminal voltage estimator, the mapping relationship in the battery SoC 
estimator is constructed as: 

( )1 1 1 1
cloud
k soc k k k kSoC f I Tem Uter+ + + += IN                (5) 

The Error Back Propagation algorithm [31] is employed to retrain the network with 
cloud battery data.  

IV. Cloud-assisted online battery management in onboard BMS 
The built data mining model in the cloud can estimate the battery state information 

accurately, but its real-time performance is not satisfactory. In this section, a cloud-
assisted method is developed to integrate cloud battery state estimation results into real-
time management. 

A. Vehicle battery mathematical model 

A mathematical that accurately describes the external characteristics of the battery 
pack is indispensable for realizing real-time battery management in the onboard BMS 
unit. The electrochemical reactions in Li-ion power batteries are very complex and it is 
difficult to construct detailed electrochemical models. Therefore, this paper uses a 2-
order RC equivalent circuit model to simulate the external characteristics of lithium-
ion batteries. 

Fig. 3 shows the circuit topology of the 2-order RC equivalent battery model, which 
consists of three resistances and two capacitors [32]. The state and output equations of 
the second-order RC equivalent circuit model are represented by the following formulas: 

d L
d

d d d

U IU
C R C

•

= − +                        (6) 
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c

c c c

U IU
C R C
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= − +                         (7) 

0t oc d c LU U U U R I= − − −                     (8) 
Where: ocU  and 0R  are the electromotive force and ohmic internal resistance of the 
power battery; dR  and dC  are polarization resistance and capacitance that reflect 
battery electrochemical polarization effect; cR  and cC  are concentration resistance 
and capacitance that reflect the concentration polarization effect in the battery. tU  is 
the terminal voltage of the battery. 

 
Fig. 3. The Restricted Boltzmann Machine-based battery data mining method. 

Based on the established battery mathematical model, system state and output 
equations are constructed in the following form: 

1 ( , )
( , )

k k k k k k k k k

k k k k k k k k k

f
h

ω ω
υ υ

+ = + = + +
 = + = + +

x x u A x B u
y x u C x D u

             (9) 

Where: x , u , and y  are system state, input, and output vectors, respectively. f  
and h  are system state transfer functions; ω  and υ  are the system and observation 
noise matrixes. A , B , C , and D  are system transformation matrixes that reflect 
battery external characteristics [33]. 

B. Cloud-assisted vehicle battery state estimation method 

The parameters in 2-order RC equivalent circuit model should be accurately 
identified to establish an observation system mathematical model for realizing battery 
state estimation. The extended Kalman filtering method has been commonly used in 
vehicle battery parameter identification and SoC estimation issues for its high 
computational efficiency. It can be easily deployed to vehicle onboard BMS hardware 
to realize real-time battery state estimation. However, limited by data quantity and 
quality, the robustness and convergence of the conventional EKF method are always 
unsatisfactory. This part improves the performance of the EKF algorithm by developing 
a cloud-assisted vehicle battery state estimation method. 
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Fig. 4. The information flow in the proposed cloud-assisted vehicle battery SoC estimation 
method. 

The flowchart of the proposed cloud-assisted vehicle battery SoC estimation method 
is shown in Fig. 4. The battery state estimation results provided by the cloud platform 
are combined into onboard BMS as extra system observation error prior information to 
improve the adaptability and robustness of the conventional EKF algorithm. Based on 
the estimated battery SoC value in the cloud platform, the corresponding open circuit 
voltage (OCV) state of the battery ,

cloud
oc kU  can be calculated as: 

, ( )cloud cloud
oc k ocv soc kU f SoC−=                    (10) 

Where: ocv socf −  is the OCV to SoC mapping relationship function [34]. Combining 
with the terminal voltage, the prior information provided by the cloud platform is 
arranged in the following vectors: 

, ,
cloud cloud

k t k oc kU U =  CE                     (11) 

The difference between the estimated battery terminal and open circuit voltage states 
in the onboard BMS and cloud platform is used as the error feedback signal to improve 
the performance of EKF estimator. The potter measurement update method [35] is 
employed in this study to generate the corresponding error signal: 

, , ˆ( , , , )cloud cloud
k potter t k o kc k kf U U −= x ue                  (12) 

The observation system state is updated from the initial state 1k−x  to kx  by the 
following two steps: prior state estimation and posterior state estimation, which can be 
represented by the following equations: 

( )1 1ˆ ,k k kf−
− −=x x u                       (13) 

ˆ ˆk k k k
+ −= +x x K e                        (14) 

The Kalman gain and observation system noise information are updated by the 
following five steps: noise and state covariance presupposition, error covariance 
estimation, Kalman gain innovation, covariance update, and error covariance 
innovation [36]. The update process is realized by the following equations: 
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-
-1 -1

T
k k k k k= +P A P A Q                       (15) 

( ) 1

1
T T

k k k k k k k

−− −
−= +K P C C P C R                   (16) 

1
k
T T

k k k k k kM
−= − +∑Q H e e C P C                   (17) 

( )1 T T
k k k kkM
= ∑R K e e K                      (18) 

( )k k k k
+ −= −P I K C P                       (19) 

Where: K  is Kalman gain; Q , R , P  are the covariance of system noise, 
measurement noise, and state estimation error, respectively. M  is the length of the 
observation window. 

V. Experimental platform and results  
The vehicle and battery monitoring cloud platform established in our previous work 

is used to monitor the operation state and collect the battery data [37]. The operation of 
the battery pack on 45 EVs (same type) within three months is collected and 
downloaded from the cloud platform to verify the performance of the developed battery 
data mining method. It should be figured out that the abnormal samples, including the 
noise polluted data and missing value, are removed and restored from the dataset during 
the data collection process to avoid their impact on the establishment cloud battery 
model. The corresponding data cleaning scheme employed in the cloud platform is 
provided in [38]. The typical battery data within one complete discharging cycle is in 
Fig. 5. The terminal voltage (a), current (b), SoC (c), and temperature (d) are collected 
by sensors installed on the battery pack and uploaded to the cloud data center. 
Compared to system real-time performance, accuracy and stability are more significant 
for cloud-based battery management platforms. Therefore, the data uploading 
frequency is set as 3hz in this study.  

 
Fig. 5. The collected battery operation data from electric buses. 
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As described in section III, the battery data mining model is trained by the unlabeled 
dataset in an unsupervised way, and the battery state estimators are trained with labeled 
datasets in fine-tuning process. Two independent battery state estimators are generated, 
and their performance is evaluated by comparing with the conventional neural network 
method [39] and time-series analysis method [40] in this study.  

The accuracy of the established cloud battery terminal voltage estimator is illustrated 
in Table I. Conventional neural network method shows very limited capability in 
vehicle battery modeling issues. The model Mean Absolute Percent Error (MAPE) is 
as high as 4.16% (0.54V), which indicates that the big data environment is failed to be 
effectively utilized. Meanwhile, the model also shows limited stability in the operation 
period, and the Standard Deviation (STD) of estimation error reaches 1.3621. The time-
series method can better utilize the time dependence information in the battery dataset. 
Model accuracy and stability are improved by 34.6% and 39.6% compared with the 
neural network method. However, model dependence information is ignored in time-
series analysis, which limits battery model performance dramatically. With the 
developed data mining method and DBM algorithm, the overall performance of the 
battery terminal voltage estimator is significantly improved, and the MAE is limited to 
1.55% (0.20v). Meanwhile, the model estimation error STD is reduced to 0.6819 after 
the DBN algorithm and the data mining process are adopted, which indicates that the 
stability of the model is also significantly improved. 

Table I. Accuracy and stability comparison of different cloud-based battery state estimation methods. 

Methods 

Terminal voltage 
estimation 

SoC estimation 

MAPE (%) STD MAPE (%) STD 

Neural network method 4.16 1.3621 0.64 0.4899 
Time-series analysis method 2.72 0.8232 0.33 0.2357 

Data mining method 1.55 0.6819 0.17 0.1342 

 
In terms of SoC estimation, the developed data mining method also shows 

satisfactory performance. As shown in Table I, the MAE of and error STD of the 
estimated SoC in the conventional neural network method are as high as 0.64% and 
0.4899, which is not precise enough to guide real-time battery state estimation in 
onboard battery management. The time-series analysis method improves model 
accuracy and stability greatly by excavating the temporal dependence in the dataset. 
Compared to the neural network method, model MAPE and STD are reduced by 48.4% 
and 51.9%, respectively. With the developed data mining method, the battery SoC 
estimation MAPE is reduced to 0.17%, which indicates that the accuracy of the cloud 
battery SoC estimator is improved significantly. Furthermore, with the unsupervised 
feature extraction process provided by the DBN model, the stability of the established 
battery SoC estimator can be significantly improved. The estimation error STD is 
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limited to 0.1342, which indicates that the established model can stably work in the 
whole SoC range. 

For verifying the performance of the developed cloud-assisted battery modeling 
method, a battery test bench shown in Fig. 6 is set up to collect real-time accurate 
battery operation data. The whole test system consists of 4 parts: a battery testing 
system (Arbin BT2000), which is used to control the state of the battery; a thermal 
chamber, which is responsible for providing battery test environments; a battery 
management unit (MPC5644A), which is used to manage and control the behavior of 
the battery, and at last, a host computer is used to collect and analyze the battery test 
and experimental data. The connection and communication mechanism between the 
above four equipment are also illustrated in Fig. 6. The battery operation data in 
different test cycles are collected to verify the proposed cloud-assisted battery 
management method. 

 

Fig. 6. The hardware and connection of the battery test bench. 

In the developed cloud-assisted battery state estimation method, the derived battery 
terminal voltage and SoC estimation results in the cloud platform are used as additional 
prior information to improve the accuracy of the battery model in onboard BMS. In this 
part, the performance of the proposed methods is qualitatively evaluated through 
system identification and SoC estimation experiments, respectively.  

The Hybrid Pulse Power Characteristic (HPPC) test [41] is firstly employed to 
qualitatively analyze the effectiveness of the proposed cloud-assisted method in 
parameter identification. Fig. 7 (a) shows the battery operation conditions in 10 cycles, 
where the battery is tested under 1C, 2C, and 3C working conditions to better reflect its 
characteristics. As shown in (b), the developed cloud-assisted method accurately 
follows the change of battery terminal voltage in the whole tested cycle, which validates 
its effectiveness. The performance of the developed method is further compared with 
offline [42], EKF[43], adaptive EKF (AEKF) [44], and cooperative co-evolutionary 
differential evolution (CCDE) [45] methods. The bounds of absolute percent error 
(BAPE) reaches 4.34% in the conventional offline method. The online identification 
method shows better accuracy, the estimation BAPE is reduced by 17.7% and 48.2% 
after the EKF and AEKF methods are deployed. Under the same dataset, the CCDE 
method shows the best performance, the estimation error is limited to 1.41%. Compared 
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to the conventional EKF and AEKF methods, the prior information provided by the 
cloud platform significantly improves parameter identification model accuracy. The 
terminal voltage estimation error is reduced by 76.5% and 62.7%. Meanwhile, the 
accuracy of the cloud-assisted method is also better than the CCDE method by 40.4%, 
which indicates that the knowledge improvement is more effective than the algorithm. 

 
Fig. 7. Performance comparison of different battery parameter identification methods. 

Table. II further compares battery SoC estimation error of different methods in a 
hybrid of DST, FUDS, and UDDS working conditions. The conventional EKF method 
achieves an inferior result, the bounds and root mean square (RMS) errors reach 7.81% 
and 1.462 in the simulation. The performance of the EKF method is effectively 
improved after the adaptive rules are adopted. Battery SoC estimation bounds error and 
RMS error are reduced by 61.5% and 43.5%, which indicates that model accuracy is 
significantly improved. Meanwhile, model stability is also enhanced, and the estimation 
error STD is reduced by 51.7%. Compared to the AEKF method, the developed 
CEBMS method achieves a more remarkable accuracy and stability improvement by 
utilizing the prior information provided by the cloud platform. Model bounds error and 
RMS error are further limited to 1.25% and 0.473, which validate its accuracy in SoC 
estimation. Meanwhile, SoC estimation STD is also reduced by 53.9% compared to the 
AEKF method, which indicates that model stability is also significantly improved. 

Table II. Battery SoC estimation accuracy and stability comparison of different methods. 

Methods Bounds error (%) RMS error STD 

EKF method 7.81 1.462 1.681 
AEKF method 2.97 0.826 0.812 

Cloud-edge combination method 1.25 0.473 0.374 
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VI. Conclusion 
The cloud platform and edge computing technologies are employed in the paper to 

integrate the cloud computation resources into real-time vehicle battery management. 
The vehicle big data platform and battery pack experimental test are used to validate 
the performance of the cloud-assisted battery management method. Through extensive 
simulations, the key findings are as follows: 
 The designed CEBMS framework provides a data-sharing platform between 

different EVs, which can significantly enrich the available dataset in battery 
modeling issues and improve vehicle battery management system performance. 
The proposed data mining method could model the battery accurately, and the 
mean absolute error of the estimated terminal voltage and SoC in the cloud can 
be limited to 1.55% and 0.17%. Meanwhile, the estimation error standard is also 
limited to 0.6819 and 0.1342, guaranteeing cloud battery model stability. 

 The performance of battery parameter identification and SoC estimation is 
improved significantly with the implementation of cloud reference battery state 
information. The battery terminal voltage identification and SoC estimation error 
can be limited to 0.89% and 1.25%, respectively. Meanwhile, the SoC estimation 
error standard deviation is successfully limited to 0.374, which validates that 
model stability is also significantly improved.  
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